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Abstract

After conquering the data-communication and sensing markets, vertical-cavity surface-

emitting lasers (VCSELs) are now playing a key role in imaging applications in smart-

phones and automotive contexts. In fact, among their ”competitors”, these lasers

exhibit unique features in terms of power consumption, reliability, testability, pack-

aging costs and array-oriented manufacturability, making them the ideal light source

for portable applications. In order to export these advantages to the widest range of

upcoming applications, the VCSEL community is exploring novel concepts and mate-

rials, aiming to move the emission from the consolidated 850 nm wavelength towards

mid-infrared and/or blue ranges.

A criticality of VCSEL design is the injection of holes in the active region, which

is controlled, in classical AlGaAs VCSELs, by an aperture obtained through wet oxi-

dation processes. A pitfall of the to-be-explored material systems is the technological

unavailability of such processes, combined with poor hole transport processes, which

demand for alternative strategies. A very interesting approach concerns the employ-

ment of a buried tunnel junctions (BTJ). Tunnel junctions consist of heavily doped

pn junctions where, under reverse bias operation, the conduction and valence bands

are overlooking, and carrier transport can take place through band-to-band tunneling

(BTBT). In addition to replacing the oxide aperture, BTJs allow to eliminate p-doped

contacts, with huge benefits to the VCSEL electrical conductivity and giving room to

better thermal control and enhanced modulation speed overcoming the state of the

art. Despite the great interest in this subject, the frantic times-to-market discourage

investments such a revolution of the VCSEL architecture, which would require exten-

sive and expensive prototyping campaigns. In this view, computer-aided design (CAD)

tools play a starring role as alternative prototyping frameworks for research and devel-

opment departments.

The purpose of this Master’s thesis is to include the BTBT quantum corrections

within the drift-diffusion carrier transport picture implemented in the multiphysics

Vcsel Electro-opto-thermal NUmerical Simulator VENUS, developed by CNR-IEIIT

and Politecnico di Torino. Two BTJ-VCSELs are investigated as case studies: an

InGaAsP long-wavelength device, and an AlGaAs device manufactured and character-

ized at Chalmers University of Technology. In the first part of the thesis Hurkx’s work

has been reviewed and implemented, which is based on local generation-recombination

(GR) rates accounting for the junction electric field. Even though this model is quite

consolidated for silicon electronics and implemented in commercial simulators such as

Sentaurus Device by Synopsys, it doesn’t appear to be applicable to these material
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systems and devices. Therefore, the second part of the thesis explores a non-local GR

model derived from a 4-band non-equilibrium Green’s functions (NEGF) formalism. It

is demonstrated that the ballistic nature of BTBT allows to apply the NEGF solver in

the coherent limit, lowering its staggering computational cost. This observation is at

the basis of the self-consistent NEGF-VENUS simulation framework, enabling to cou-

ple a semiclassical picture of the bulky sections of the device with a genuine quantum

description of BTBT.
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CHAPTER 1

Introduction

The main goal of the whole thesis is the extensive analysis of the buried tunnel junctions

(BTJ) working principles and their introduction inside state-of-the-art vertical-cavity

surface-emitting laser (VCSEL) structures to improve their performances. In fact,

as presented afterwards, due to the several issues caused by the p-doped contact of

a VCSEL structure and by the oxide aperture production process, BTJs have been

demonstrated to be a good solution, able to mitigate some of the problems. This work

is mainly focused on carrier transport and electrical results, while optical and thermal

simulations are left out from the analysis, even though they also represent a crucial

portion of the overall problem, that in the end needs to be tackled by means of a

multiphysics simulator able to solve simultaneously and in a self-consistent fashion the

electrical, thermal and optical problems.

Throughout this introduction, first a brief description of both short and long-

wavelength VCSELs together with their corresponding applications is presented. Of

course, also their structure and the problems related to them are described. Then, a

section is devoted to a preliminary description of the buried tunnel junctions structure

and working principle, and especially the reasons they are implemented for. A great

relevance is obviously given to the physical and mathematical concepts behind all the

obtained results. Therefore, chapter 2 is completely dedicated to their presentation

and to how they are implemented in the exploited softwares. Of course, all the formal

justifications are presented for the use of drift-diffusion model, together with the main

assumptions introduced to make the equations of such a model more easily manage-

able by a numerical simulator. As a matter of fact, the action of the tunnel junctions

is initially investigated with a quantum local model, originally born to describe sili-

con systems and then adapted to other semiconductors, which is presented in details

in chapter 3; then tunneling issue is tackled with a more sophisticated mathematical

and physical approach, based on non-equilibrium Green’s functions (NEGF) formal-

ism, able to extract a non-local generation/recombination model. The latter is briefly

3
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described at the end of chapter 4.

Given that two BTBT models are actually exploited, the whole analysis involves

three distinct simulators. The main one is D1ANA, a drift-diffusion (DD) based Mat-

lab code developed by CNR-IEIIT and Politecnico di Torino, that provides the carrier

transport picture for the multiphysics Vcsel Electro-opto-thermal NUmerical Simula-

tor (VENUS) [1], which is able to simulate both short and long structures, such as

a complete VCSEL devices. Furthermore, the simplest but most critical and inter-

esting parts of these devices (i.e., the BTJs themselves) are extensively explored by

means of the commercial software Sentaurus Device TCAD by Synopsys (where car-

rier tranport is based on drift-diffusion model as well) and by a NEGF code developed

by Prof. Francesco Bertazzi and dr. Alberto Tibaldi, which relies on a completely

different physical theory. The former was first introduced to me by Professors Simona

Donati Guerrieri and Michele Goano during two of their courses in two semesters of

the Master Degree, but I also have to thank dr. Alberto Tibaldi for providing me

some basic files to start my work with. Such a TCAD (Technology computer-aided

design) suite has proved to be very useful to validate the correct implementation of

the local band-to-band tunneling quantum corrections into the original D1ANA code

(which are introduced for the first time during the thesis work), even though it has

not been used to perform calculations on the whole structure, that would have been

beyond the scopes of the thesis work.

The intentions when starting using NEGF in the first place were to further validate

some results coming from drift-diffusion including Hurkx’s model (see section 4.3). On

the contrary, this actually sorted an opposite effect, revealing that something in the

simple local BTBT model was missing, and that a more detailed model should be

taken into account to obtain results closer to the experimental ones. Therefore, the

task demands for a genuine quantum approach to the tunneling problem, and a good

candidate is NEGF formalism itself. However, NEGF is here used as an instrument

to extract data from which compute a GR rate to be plugged inside the previously

mentioned drift-diffusion code, and allows for simple comparisons with experimental

results and already performed simulations. In fact, the last step of the work is the

inclusion of the computed non-local GR rates in the D1ANA code, that actually leads

to reproduce more useful and reliable results on the studied structures (in particular

for the short wavelength device), with respect to the simpler local tunneling model.

All the results coming from simulations (DD and NEGF) on both short and long-

wavelength VCSELs are showed in the last chapter, together with the description of all

the unsolved issues. In particular, the two case studies of the thesis are an InGaAsP

long-wavelength VCSEL and an AlGaAs short-wavelength VCSEL: extensive analysis

of their BTJs are also provided for a comprehensive understanding of the matter.
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1.1 VCSELs

Before entering into the details and describing accurately how a tunnel junction works,

let’s start from addressing the primary reason to investigate and find models able to

simulate them properly: their inclusion inside vertical cavity surface emitting lasers,

electrically- or optically-pumped pin diodes.

VCSELs have been developed as an alternative to the traditional in-plane lasers,

also called edge emitters. In fact, due to the aperture field pattern of the latter, the

emitted radiation diagram is not circular, making difficult the fiber coupling process.

This issue is readily solved in a VCSEL, since its circular emitting area (placed per-

pendicularly with respect to the active layers growth) translates into a circular far-field

beam [2], thus providing high coupling efficiencies, high modulation bandwidths at low

current levels, single-mode operation (due to its short cavity length), and low power

consumption. A vertical cavity surface emitting laser is able to deliver single mode

optical power as large as few mW, limited by the small aperture required for maintain-

ing sufficient discrimination against higher order transverse modes [3]. Furthermore,

it allows for high-volume, low-cost manufacturing, because of its compatibility with

low-cost wafer scale fabrication (such as ion implantation) and easy testing methods

[4].

However, the ”standard” VCSEL structure presents some issues related to power

dissipation (i.e., self heating of the device) and to the confinement of the emitted light,

which need to be addressed. Such problems are mainly related to the low-resistivity p-

side contacts and to the oxide aperture technique, as described in the following section.

For this reasons, it has been found that the use of buried tunnel junctions may provide

the needed improvements, as presented in section 1.2.

1.1.1 Some applications

Depending on the output light beam wavelength a VCSEL may have different applica-

tions. Short-wavelength VCSELs are typically made in AlGaAs/GaAs due to its wide

gap, and are used for several purposes regarding laser products (computer mice, face

ID, fiber optics communications - FC), ethernet applications (10-100 m connections,

for λ = 850 − 980 nm), optical trace-gas sensing (by means of tunable diode laser

spectroscopy, e.g. 759 nm laser, for O2 detection), atomic clocks (780-895 nm) and

even as light sources for laser printers. As a matter of fact, Gigabit Ethernet and fiber

channel are currently major markets for VCSELs [5, 6].

On the other hand, long-wavelength VCSELs are typically based on alloys of

GaAsP and InGaAsP lattice matched with InP substrates, due to their small band

gap, and are exploited for optical trace-gas sensing (e.g. H2O - 1800 nm, CO2 - 2 µm,

CH4 - 1680 nm) as well, illumination and bio-medical (such as eye-safe laser beams)

applications, but their main purpose are the long range optical communication systems
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(10-20 km). The latter require 1310-1550 nm of wavelength, particularly interesting

for single-mode fiber metropolitan area and wide area networks, since they may drive

significant cost reduction in high-speed links of over several kilometers with single-

mode fibers [5]. However, ternary and quaternary alloys used for these applications

show some really poor properties with respect to the simpler AlGaAs systems used

for short-wavelength emission. In particular, InP-based materials are characterized by

low thermal conductivity due to alloy scattering of phonons, especially when carriers

(holes) are injected from p-doped contacts. This is actually the main reason for which

buried tunnel junctions have been introduced in first place in such devices. Further-

more, their refractive index modulation is limited: this increases the amount of number

of layers needed to build a semiconductor DBR, which in turn increases the losses of

the cavity leading to a larger power dissipation.

1.1.2 Structure

Let’s now discuss about the general structure of a VCSEL. A scheme of a VCSEL

including DBR only at one facet is reported in fig. 1.1, from which it is possible to

recognize the main building blocks of such a laser. The vertical emission of coherent

light in a VCSEL requires mirrors parallel to the junction plane. This is realized by

exploiting DBR (distributed Bragg’s reflectors) technique, which makes use of stacks

of quarter-wavelength layers (to ensure photons constructive interference), making the

cavity design more critical than in conventional edge-emitting lasers. In fact, VCSELs

have very short cavity (with Lcav = λ/n, where λ is the lasing wavelength and n is the

effective refractive index of the cavity material) which therefore needs larger gains and

very low mirror losses (e.g. a reflectivity larger than 99.5%) to achieve lasing threshold

[2]. In particular, DBRs are used to make the reflectivity depending on the wavelength

and to make easier a fine tune of the frequency position of the lasing mode. The

DBR mirror is composed by quarter-wavelength semiconductor or dielectric material

layers with different refractive index. In the latter case, few pairs of isolating dielectric

material with high-index contrast need to be epitaxially grown.

The active region, i.e. where the cavity gain is attained by radiative recombination

from spontaneous emission, is made of a stack of quantum wells (MQWs) separated by

barriers, whose material and size has to be properly engineered to match the geometry

of the cavity: active region must be designed to have a lower band gap energy than the

surrounding layers. This is due to the fact that in a VCSEL the emission wavelength

mainly depends on the cavity design itself, rather than on QW characteristics, given

the very short length of the former, which is on the order of magnitude of λ (while in

a simple laser diode Lcav is few hundreds of microns). Electrons and holes are injected

inside the active region through the DBR mirrors or by using intracavity contacts. In

all the performed simulations, I assume to exploit the latter method: in fact, the former

would have required highly doped DBR mirrors, which are not easily and efficiently
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Figure 1.1: Scheme of a VCSEL with a DBR mirror on the top facet. La and Lg are the

active region and the grating region lengths, respectively, while La+Lp is equal to the cavity

length Lcav; rg is the grating reflectivity and r1 is the bottom mirror reflectivity.

achieved.

On the other hand, intracavity contacts are far from ideal. Lateral confinement of

both optical mode and electric current is needed to achieve optimal gain-mode overlap,

thus providing low threshold current and high efficiency. Typically, electrical and

optical confinement is obtained by incorporating buried oxide aperture together with

top mesa. This leads to a low threshold and high power-conversion efficiency, over

50%. In fact, a poor lateral hole spreading into p-type contact makes the bare annular

contact geometry inefficient for achieving current injection in the central part of the

devices, since emission results to be only localized under the contact. Furthermore,

state-of-the-art oxide aperture techniques show some major criticalities, especially in

InGaAsP-based devices. Again, a solution to overcome these problems is the use of

buried tunnel junctions, which are presented in the followings.

1.2 Buried tunnel junctions

As stated in the previous section, ”standard” VCSEL structure shows some issues re-

lated to the use of p-doped layers as electric contacts and to oxide aperture realization

technique. Let’s start from the former. Since transport in acceptor-doped layers is

inherently dominated by holes motion (which typically are much heavier than elec-

trons), their thermal and electrical conductivity is significantly lower with respect to

the donor-doped ones, due to the microscopic Ohmic law:

σe,h =
1

ρe,h
=
ne,hq

2λe,h
m∗e,hvF

(1.1)
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with ne,h electrons (holes) density, λe,h electrons (holes) mean free path, vF Fermi

velocity and m∗e,h electrons (holes) effective mass, where typically m∗h � m∗e. As a

consequence, resistivity of p-doped layers is much greater than n-doped ones (ρ∗h �
ρ∗e). The straightforward consequence is a larger amount of dissipated electrical power

(P = RI2) at the p-side of the structure, and thus to a greater self-heating process,

eventually limiting the maximum operating temperature of the device. Furthermore,

low ohmic resistance R contacts result to be crucial also for high speed modulation,

since it directly acts on the parasitic time constant τ = RC of the laser.

Eventually, the other reason that pushes to the use of BTJs is related to standard

oxide aperture technique. Even though it is proved to be a very good solution to

improve the efficiency of VCSELs by properly confining optical mode and current, it

may also lead to lateral loss issues when the aperture, put in the proximity of the active

region, reaches very small diameters [7]. The inclusion of buried tunnel junctions in

the structure helps to solve such a problem [8]. In addition to this issue, the practical

realization of an oxide aperture requires a wet oxidation process of Al compound (in

order to obtain AlxOy layers), and this is not easily obtained in InP-based systems

([9, 10]), such as the long-wavelength VCSEL presented in section 4.1. For all these

reasons, alternative carrier injection methods should be explored, in order to keep the

device resistance as low as possible and avoid also the reduction of the wall-plug effi-

ciency of the VCSEL.

Let’s recall that a VCSEL is a device that produces both an electrical and an optical

output during its working operations. The latter is highly dependent from temper-

ature of the device, and this dependence is twofold. In first place, the emitted light

wavelength depends on the round trip (RT), which should fulfil the first Barkhausen

condition inside its optical cavity: this is reached when the optical gain in the cavity

is great enough to compensate for the losses the field experiences during a round trip:

|RT | =
∣∣r1rge

−2jβLcave(Γg−<αi>)Lcav
∣∣ = 1 (1.2)

where r1,g are the reflectivity of the DBRs on both sides of the VCSELs, Γg is the

gain of the cavity and Lcav is the cavity length. Moreover, the emitted light resonant

frequencies are given by [2, p. 289]:

fn = n
c0

2neffLcav
(1.3)

where n is the mode order, c0 is the speed of light in vacuum and neff is the effective

refractive index of the cavity. The latter is modified by temperature (due to band

gap modification), according to the linear law

∆nT = n0 · αT (T − T0) (1.4)

where αT > 0 is the thermo-optic coefficient. Notice that the refractive index also plays

a role into the material losses < αi >. As a consequence, the cavity modes undergo a
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shift and output power is reduced as the temperature rises. Eventually, an increase in

temperature leads to a variation of the threshold current. This is due to the fact

that high temperatures favour non-optical recombination processes, meaning that gain

decreases and losses are stronger: higher currents are required, and dissipated power

rises accordingly [2, p. 320].

The lasing condition is directly related to the round trip, and is reached for:

Γgth =
1

Lcav
log

(
1

r1rg

)
+ < αi > (1.5)

with Γgth threshold gain of the cavity. As a consequence a VCSEL requires a lasing

cavity mode wavelength that is red-shifted with respect to that of the active material

(QWs) gain peak at room temperature. In fact, under current injection, internal tem-

perature increases (and this is particularly true in case of lossy p-contacts): due to

(1.5) the threshold condition is reached for a lower wavelength [11].

To solve or mitigate part of these problems, buried tunnel junctions (BTJs) repre-

sent a good solution, even though their use have been mainly demonstrated on light

emitting diodes (LEDs, [12–14]) and they may generate some difficulties in reaching las-

ing condition. As a matter of fact, BTJs have some problems related to a non-uniform

current injection, due to local composition and doping inhomogeneities. However, the

crucial advantage that they provide is that n-contacts can be used instead of p-doped

ones if a reverse-biased tunnel junction is introduced, such that p-doped layers are

located only near the active region, thus reducing optical absorption. A BTJ is a de-

generately doped pn-junction which enable band-to-band tunneling for strong electric

fields (> 106 V/cm), first discovered by Esaki in 1958 [15]. A schematic of a tunnel

junction band diagram is reported in fig. 1.2, where valence and conduction bands are

overlooking in a reverse bias condition. Furthermore, this solution allows to work with

a much more laterally uniform injection current (due to the large electron mobility),

which simplifies current [9] and light confinement [16] to any shape and size, by means

of state-of-the-art photolithography techniques.

Let’s remark that if the TJ is grown across the whole cross section of the structure,

a current blocking layer would be required, and this is sometimes very difficult to

realize. The simplest solution to this is the removal of the tunnel junction outside the

active region and overgrow a lightly doped n-doped layer (namely, a mesa), such that

blocking is naturally realized by a n/p-junction beneath the active region itself. Such

a pattering is useful because it allows to obtain both a current confining layer and

optical guiding (due to refractive index step), and to realize without further steps large

arrays of VCSELs. Moreover, low series resistance is obtained because only n-contacts

and n-layers are used for lateral current flow [9]. Another procedure to place the TJ

only in the required region is briefly described in [3, 11], where tunnel junctions are

patterned on the VCSELs array before they are overgrown; then, a double wafer fusion
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Figure 1.2: Schematic of a reverse-biased tunnel junction. Ec and Ev denotes the conduction

and the valence band edges, while EF denotes the Fermi energy. Only electrons tunneling is

sketched here.

of the DBRs is performed. In such a way, the position of the tunnel junctions actually

defines the pattern of the VCSELs array.



CHAPTER 2

Modelling and Simulation

As mentioned at the beginning of the introduction, in this chapter the used physical

and mathematical models are described. This initial presentation of the physical ap-

proximations is followed by the descriptions of how they are actually implemented in

the simulators.

Let’s start from the fact that optoelectronic devices such as VCSELs need to be

simulated from both temporal and three-dimensional (3D) spatial dynamics standpoint.

This is realized by coupling a full-wave optical solver to a semiclassical carrier transport

model derived from the Boltzmann transport equation (BTE) [17, p. 35], generalized for

carrier transport in semiconductors, which deals with the probability time evolution:

∂f(k, r, t)

∂t
+ v(k)∇rf(k, r, t) +

F

~
∇kf(k, r, t) =

df(k, r, t)

dt

∣∣∣
coll

(2.1)

where f(k, r, t) is the carrier distribution function describing the evolution in the phase

space of carriers treated as point-like particles with well-defined geometrical position

r and wave vector k (as they were classical particles); v(k) = ∇kE(k)/~ is the carrier

group velocity (which includes information about the electronic band structure) and

F = ~dk/dt is the electric field force. The right hand side (RHS) of (2.1) takes into

account the scattering phenomenon the carriers may undergo during transport:

df(k, r, t)

dt

∣∣∣
coll

= −|f(k, r, t)− f0(k)|
τ(k)

(2.2)

in which f0(k) is the distribution function at equilibrium and τ(k) is the average life-

time due to scattering processes assuming relaxation-time approximation, that takes

into account the rate at which a particle scatters from an initial to a final state.

Since (2.1) is an integro-differential equation, nonlinear because the collision term

depends on the distribution function, a direct statistical solution is provided by the

Monte Carlo methods. This consists in simulating the motion of a carrier ensemble,

subject to the action of electric and magnetic fields and of given scattering mechanisms.

11
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In this scheme, the states of the carriers after a scattering process are determined

stochastically according to the scattering probabilities themselves. For this reason,

this is the most general way to solve the BTE, and it allows to include sophisticated

physical models. Unfortunately, such an approach has several drawbacks. First of all,

it is not computationally efficient for a self-consistent implementation, i.e. when Pois-

son’s equation is solved self-consistently with the charge distribution, so that different

time constants are involved in the calculations (this is the case of bipolar devices). Fur-

thermore, Monte Carlo method results to be inaccurate in treating minority carriers:

as a consequence, usually it is used only for non-self-consistent approximations or to

unipolar devices [17, pp. 37, 38].

In order to overcome such limitations and simulate more complex systems, alterna-

tive paths can be followed to reach acceptable solutions of BTE. A simple one assumes

homogeneous conditions and small electric fields, such that closed-form approximate

solutions of (2.1) can be obtained by linearizing it with respect to the field itself

(relaxation-time approximation). Another possible way to solve the Boltzmann trans-

port equation is the expansion of the unknown f(k, r, t) into spherical harmonics and

then solving the obtained equation for the expansion coefficients (expansion method).

However, the most common approach to a transport problem is the derivation of

semiclassical models directly from the BTE, starting from reasonable assumptions and

approximations: hydrodynamic, energy balance and drift-diffusion models. In the next

section a focus on the last one is presented.

2.1 Drift-Diffusion model

In this section are presented some details of the model actually used in all the simula-

tions. Since we are dealing with devices that are small with respect to the operating

wavelength, Maxwell’s equations can be simplified, such that a simpler model (with

respect to BTE) is derived. This is called drift-diffusion model, whose constitutive

equations are the following [18]:

−∇2
rφ =

q

ε
[p− n+N+

D −N
−
A ] (2.3a)

∂n

∂t
− 1

q
∇rJn + Un = 0 (2.3b)

∂p

∂t
+

1

q
∇rJp + Up = 0 (2.3c)

where (2.3a) is the Poisson’s equation: ε = ε0εr is the dielectric permittivity, φ is the

electrostatic potential, p and n are the hole and the electron densities, respectively;

eventually, N+
A and N−D are the ionized acceptor and donor densities (a focus on this

is provided in section 2.1.1). On the other hand, (2.3b) and (2.3c) are the electron

and hole continuity equations, where Jn,p is the electron (hole) current density and
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Un,p = Gn,p − Rn,p is the net electron (hole) recombination rate. Notice that all the

quantities in (2.3) explicitly depend on space and time, e.g. n = n(r, t) and p = p(r, t).

In turn, the current densities are made of two contributions (i.e., drift + diffusion),

derived from BTE [18]:

Jn = −qnµn∇rφ+ qDn∇rn (2.4a)

Jp = −qnµp∇rφ− qDp∇rp (2.4b)

where electrons (holes) diffusivity is given by a generalized Einstein relation:

Dn,p(E) = µn,p(E)
kBT

q
(2.5)

that depends on electric field E through the electrons (holes) mobility µn,p.

Notice that at equilibrium condition, both (2.4a) and (2.4b) are equal to 0, such

that the system (2.3) reduces to Poisson’s equation (2.3a), since continuity equations

provide no additional information. However, let’s remark that the equilibrium condi-

tion simulation is a crucial step for a correct implementation of the DD model, because

it provides a proper initial guess needed by the self-consistent loop to correctly converge

far from equilibrium.

2.1.1 Charge density

As mentioned, some clarifications are needed for the RHS of (2.3a), because it is a

general form of the charge density:

ρ = q[p− n+N+
D −N

−
A ] (2.6)

that includes the carrier densities n and p, and the ionized doping charges N+
D and N−A .

Generally, the former are described by the Fermi distribution:

n = NCF 1
2

(
EF − EC
kBT

)
(2.7a)

p = NVF 1
2

(
EV − EF
kBT

)
(2.7b)

where F 1
2

is the integral or order 1/2 of the Fermi-Dirac statistics (or simply ”Fermi

function”) ([19, 20]) and NC,V effective densities of states (DOS).

However, in case of non-degenerate semiconductor (n < NC , p < NV ), an approxi-

mation of the Fermi statistics can be used, the so called Boltzmann statistics, which

is much simpler and does not require the computation of any integral:

n ' NC exp

(
EF − EC
kBT

)
(2.8a)

p ' NV exp

(
EV − EF
kBT

)
(2.8b)
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Furthermore, such a distribution obeys to the law of mass action, stating that the

product of the carrier concentrations at thermodynamic equilibrium is constant:

n2
i = np = NCNV exp

(
− Eg
kBT

)
(2.9)

which also implies that the product of concentrations only depends on material and

temperature.

Beside the two distribution models presented in (2.7) and (2.8), some additional

attention must be paid for the evaluation of the ionized doping densities. A first,

simple approximation takes N+
D = ND and N−A = NA, thus assuming a full ionization

of doping impurities. On the other hand, a more realistic simulation must take into

account that not all the dopant species are activated after implantation/diffusion inside

another semiconductor: incomplete ionization of dopants. In fact, a dopant results to

be activated only in case it generates a substitutional impurity, and such a phenomenon

actually does not occur for every atom. To consider the effect of this, a model including

donor and acceptor activation energies should be used:

N+
D =

ND

1 + 2
n1
n

(2.10a)

N+
A =

NA

1 + 4
p1
p

(2.10b)

where parameters n1 and p1 are given by

n1 = NC exp

(
−∆ED
kBT

)
(2.11a)

p1 = NV exp

(
−∆EA
kBT

)
(2.11b)

in which ∆ED and ∆EA are the donor and acceptor’s activation energies (few meV),

respectively, and are material and dopant dependent.

2.1.2 Generation-Recombination models

A further approximation involves the simplified collision term of the DD model, in-

cluded in the carriers continuity equations, i.e., the net recombination rates Un,p =

Gn,p−Rn,p. In particular, the generation term Gn,p takes into account the phenomenon

during which an e-h pair is generated: this happens when an electron (hole) is pro-

moted from the valence (conduction) band to the conduction (valence) band, starting

to play a role in the transport mechanisms. On the other hand, recombination process

is described by the term Rn,p, and is simply the reverse process with respect to gener-

ation: an electron (hole) in the conduction (valence) band fills an empty state in the
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valence (conduction) band. As a consequence, the e-h pair is annihilated and energy is

released in the form of phonons or photons. Both these process can be phonon-assisted

(thermal), photon-assisted (optical) or assisted by other electrons or holes (Auger).

Furthermore, GR transitions can be either interband (direct) or assisted by interme-

diate trap levels in the forbidden band (indirect or Shockley-Read-Hall mechanisms).

Let’s remark that in stationary conditions Un = Up = U , while the same does al-

ways not hold true in case of time-varying conditions (e.g. for GR occurring through

intermediate traps or recombination centers acting as reservoirs). The main GR mech-

anisms that take place in bulk regions of the device are spontaneous emission, Auger,

and Shockley-Read-Hall, each of them characterized by a specific rate: U sp, UAug, and

USRH [17, pp. 48, 49].

Spontaneous emission

Spontaneous emission is the radiative recombination actually exploited to generate

photons in a semiconductor. In a VCSEL, the quantum wells in the active region are

designed to obtain a high rate of spontaneous emission: electrons and holes are injected

in the QWs where they radiatively recombine, transferring their energy to a photon,

whose energy depends on the energy band diagram of the quantum well itself. In this

way, gain is obtained and lasing condition is reached. Spontaneous emission rate is

modelled by the following:

U sp = Brad(np− n2
i ) (2.12)

where Brad in (2.12) is the radiative recombination coefficient (cm3/s) and ni is the

intrinsic carrier concentration of the semiconductor; n and p are the usual carrier

densities. Of course, at equilibrium conditions U sp is equal to zero, due to (2.9).

Auger recombination

Radiative recombination has an unwanted competitor when a device works in high-

injection condition: the Auger recombination. This is an electron or hole-assisted

(three particles) process which involves an e-h pair and an additional electron or hole.

The expression describing it is:

UAug = (Cnn+ Cpp)(np− n2
i ) (2.13)

where Cn and Cp are the Auger coefficients for electrons and holes (cm6/s). It is worth

noticing that (2.13) takes into account the third particle by including two coefficients

which in turn are multiplied by the populations (∝ n2p or np2). This because the

proportionality of the Auger recombination rate on the carrier densities is related to

both their collisions and their energies, since they supply some energy to the process.

Notice that the inverse process of the Auger recombination is the generation by impact

ionization, and is not taken into account in my simulations.
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Shocley-Read-Hall recombination

As mentioned, SRH recombination deals with the trap-assisted processes. These are

possible when a semiconductor has some traps introducing, in the forbidden band, a

discrete energy level. The latter increases the probability of a interband transition,

because the energetic ”jump” a carrier has to face becomes smaller. The net trap-

assisted recombination rate can be expressed as follows:

USRH =
np− n2

i

τp(n+ nt) + τn(p+ pt)
(2.14)

where nt = ni exp(Etrap/kBT ), pt = ni exp(−Etrap/kBT ) and τp, τn in (2.14) are

the trap level population densities (Etrap is the difference in energy between the trap

level and the intrinsic level; particularly important are the recombination centers, i.e.,

midgap traps, that maximize the SRH rate) and the average carrier lifetimes, respec-

tively. Lifetimes are doping level independent and of course they are smaller for larger

trap densities.

Eventually, band-to-band tunneling (BTBT) is presented in section 3.1, since it

requires a deeper description.

2.2 D1ANA implementation

The drift-diffusion model presented in section 2.1 represents a huge simplification with

respect to BTE, but it hides some difficulties. In fact, it consists of a system of partial

differential equations that needs to be solved in a self-consistent fashion in order to

reach meaningful results. The problem is that it is not possible to directly solve this

kind of mathematical problems by means of a software. The only way to perform

some calculations on (2.3) requires a spatial discretization (by means of a proper mesh

grid) together with an iterative solving method (e.g., the Newton’s scheme), able to

solve numerically all the involved equations. This allows to reduce the complexity of

the problem, because the unknowns quantities are computed only at the node of the

spatial grid (finite box discretization). As a consequence, the mathematical problem

becomes a simpler system of linear equations, which is easily manageable by standard

commercial softwares.

2.2.1 Spatial discretization

An important remark is needed before starting: D1ANA takes into account only a 1D

DD model, so all the space gradients reduce to simple 1D space derivatives (z-direction

has been chosen as the transport one), such that (2.3a) can be written as follows:

d

dz

[
ε(z)

d

dz
φ(z)

]
= −q[p(z)− n(z) +N+

D (z)−N−A (z)] (2.15)
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This is done in order to further reduce the complexity of the problem, allowing for faster

simulations. Such an approximation is allowed because we are assuming a symmetry

across the transverse directions to the transport one, meaning that the latter is the only

one that really matters when the drift-diffusion model is used, while some quantities

such as the net generations/recombination rates and the carriers and current densities

can be obtained with simple volume integrations.

According to the mentioned finite box discretization, after having defined a spatial

1D mesh, a system of linear equations is obtained by simply integrating the differential

equation on a control space box of each region. As a consequence, nn equations are

obtained, with nn equal to the number of nodes used to discretize the 1D domain. All

the quantities related to each elements are computed by means of a trapezoidal rule

for numerical integration, which represents a good approximation for the functions we

are dealing with.

Let’s introduce a bit of notation:

le : length of the lth element. Assuming that element e is identified by node e and

e+ 1:

le = xe+1 − xe (2.16)

ne : is the number of elements of the mesh (in 1D, ne = nn− 1)

Li : length of the control box, with i the index identifying a node. In D1ANA, this is

defined as:

Li = zi+ 1
2
− zi− 1

2
(2.17)

For i = 1, Li = zi+ 1
2
, while for i = nn, Li = znn−znn− 1

2
. Notice that Li is exactly

the length used to performed the already mentioned trapezoidal rule

Now, by integrating (2.15) on the control boxes for each ith node:∫ zi+1/2

zi−1/2

d

dz

[
ε(z)

d

dz
φ(z)

]
dz = −q

∫ zi+1/2

zi−1/2

[
p(z)− n(z) +N+

D (z)−N−A (z)
]
dz (2.18)

with i = 1, ..., N . By applying FD/FEM/FB to the LHS, we obtain:

εi+ 1
2

φi+1 − φi
zi+1 − zi

+ εi− 1
2

φi−1 − φi
zi−1 − zi

= −q
[
pi − ni +N+

D,i −N
−
A,i

]
(2.19)

where xi , x(zi), being x a generic node quantity. Eq. (2.19) can be very easily imple-

mented in Matlab assembling matrices in a node-wise fashion, by using loops running

on all the nodes. Even more manageable would be an element-wise implementation.

In order to realize it, one needs to rewrite (2.19) by considering two cases concerning

each ith node:
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• i = 1e. In this case, the term:

εi+ 1
2

φi+1 − φi
zi+1 − zi

→ εe
φ2e − φ1e

le
= −εe

le
φ1e +

εe
le
φ2e =

[
M11 M12

] [φ1e

φ2e

]
(2.20)

with M11,e = −εe/le and M12,e = εe/le

• i = 2e. In this case, the term:

εi− 1
2

φi−1 − φi
zi−1 − zi

→ εe
φ1e − φ2e

le
=
εe
le
φ1e −

εe
le
φ2e =

[
M21 M22

] [φ1e

φ2e

]
(2.21)

with M21,e = εe/le and M22,e = −εe/le

Implying that LHS of (2.19)=(2.20)+(2.21). Consequently, the matrix notation:M11 M12

M21 M22

 (2.22)

indicates simply how to assemble the final matrix using an element-wise notation.

Similarly, the RHS of (2.19) can be written by means of such a notation. To this

purpose, the definition of Li in (2.17) must be reconsidered. In particular, we need to

move to the element quantity L
(n)
e , defined as the contribution of the eth element on its

nth node (n = 1 indicates the node on the left, n = 2 the one on the right). Eventually,

the RHS is assembled.

The same procedure needs to be applied to the continuity equations (2.3b) and

(2.3c). Let’s start from the stationary condition (∂n, p/∂t = 0). Considering again a

1D condition and integrating similarly to what has been done in (2.18), we obtain, for

the electrons (the same holds for holes):∫ zi+1/2

zi−1/2

∂Jn
∂z

dz = q

∫ zi+1/2

zi−1/2

Undz (2.23)

with RHS ≈ qUn,iLi. On the other hand, the LHS requires non-trivial steps. First

of all, notice that continuity equations belong to a system of three partial differential

equations, with formally three unknowns (electrostatic potential φ, electron density

n, and hole density p). Now, it is useful to rewrite equations (2.3b) and (2.3c) by

introducing the quasi -Fermi levels (Efn and EFp) as unknowns. This can be realized

by exploiting the constitutive relationships:

Jn = µnn∇EFn (2.24a)

Jp = µpp∇EFp (2.24b)
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which are formally equivalent to (2.4a) and (2.4b), respectively. In fact, recalling that

n = NC exp

(
Ec − EFn
kBT

)
⇒ EFn = Ec − kBT ln

(
n

NC

)
(2.25)

one could compute the gradient of EFn and come back to (2.4a). A similar procedure

could be applied to holes case. The use of electrons and holes quasi-Fermi levels (also

referred to as IMREF) is justified by the fact that even though the new formulation

is formally identical to the old one, numerically the use of IMREFs could result in a

more efficient solution.

Eventually, the discretization of (2.3) returns a matrix problem with the form:
A
φ,φ

A
φ,n

A
φ,p

A
n,φ

A
n,n

A
n,p

A
p,φ

A
p,n

A
p,p



φ

n

p

 =


ρ

Un

Up

 (2.26)

The matrix A in the LHS of (2.26) has a dimension equal to 3 × nn, recalling that

nn is the number of nodes. In fact, it has as many rows as the number of equations

(nn) and as many columns as the number of unknowns (3). The vector of the 3× nn
unknowns is called u (the column vector at the left hand side of the system above),

while the vector containing the 3 × nn known terms is called t (the column vector at

the right hand side).

Furthermore, notice that:

• A
φ,φ

is exactly the matrix obtained by assembling (2.22)

• A
φ,n

is a diagonal matrix containing qLi as ith element

• A
φ,p

is a diagonal matrix containing −qLi as ith element

ending up by writing Au+ t = 0. Furthermore, the unknowns variables are considered

as independent (even though they are of course coupled), meaning that:

∂φ

∂n
= 0,

∂n

∂φ
= 0,

∂p

∂φ
= 0, ...

At this point, it is possible to write down the whole system matrix into two parts:

Lmat (L): containing the linear part of the system, i.e., the parts related to the dis-

cretized differential equations:

Lmat*uvet + tvet = fvet (2.27)

where fvet is the ”function” set to be equal to 0 inside the Newton’s method
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Nmat (N): some parts of the Jacobian are already inserted in Lmat: the linear terms,

i.e., all those parts which, when directly multiplied by the unknowns, return

fvet . On the other hand, the derivatives of the non-linear components such as

recombinations rates or all those contributions not entering in the computation

of fvet are inserted in Nmat

Then, Jmat = Lmat + Nmat. The convergence of the Newton’s scheme is reached when

the vector containing the unknown terms changes of a quantity smaller than a control

one. The variation of uvet between a step and the previous one is simply given by:

delta u = -Jmat\fvet (2.28)

Returning now to the LHS of (2.23):∫ zi+1/2

zi−1/2

∂Jn
∂z

dz = Jn,i+ 1
2
− Jn,i− 1

2
(2.29)

and applying finite difference (FD) to (2.4a), we get:

Jn,i+ 1
2
≈ −qni + ni+1

2
µn
φi+1 − φi
zi+1 − zi

+ qDn
ni+1 − ni
zi+1 − zi

,

useful to assemble the case i = 1e in both L and N ; and

Jn,i− 1
2
≈ −qni−1 + ni

2
µn
φi − φi−1

zi − zi−1

+ qDn
ni − ni−1

zi − zi−1

,

useful to assemble the case i = 2e, in L, N ; similarly to what is done in (2.19) when

matrix M is computed with an element-wise notation.

2.2.2 Stability issues

The formulation just presented results to be rather unstable when implemented, in

particular when the number of nodes nn is not high enough. In fact, it is common to

observe lack of convergence of Newton’s scheme or oscillating quantities where smooth

curves should be obtained instead.

The problems of such a formulation come from the discretization used for the elec-

trostatic potential and the carrier densities. In fact, by using eq. (2.7a) or even the

simpler (2.8a), the dependence of the density on φ is exponential. Moreover, some

issues may arise from the fact that (2.4a) and (2.4b) are made up of two contribu-

tions, namely drift and diffusion. These are two competing physical phenomena, which

are likely to lead to convergence problems [21]. In order to solve the stability issues,

some manipulations to the current density expressions are needed. Let’s focus on the

electron case, and rewrite its equation as follows:

1

qDn

Jn = − n

VT

∂φ

∂z
+
∂n

∂z
(2.30)
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in which is possible to discretize φ by using finite differences. In fact, the electrostatic

potential varies rather mildly through the 1D domain so it becomes reasonable to

approximate (2.30) by means of a linear interpolation (FD):

1

qDn

Jn;i,j ≈ −
n

VT

φj − φi
zj − zi

+
∂n

∂z
(2.31)

where Jn;i,j has the meaning of current between nodes i and j. Let’s define l = zj−zi as

the distance between adjacent nodes. Now, taking a definition from the fluid dynamics,

let:

R =
φj − φi
VT

(2.32)

be the Reynolds number of the element delimited by nodes i and j. Such a number is

a measure of how big is the variation of the electrostatic potential between two nodes

with respect to the thermal voltage VT . Now, it is necessary to understand how n

varies in a cell, i.e., between consecutive nodes. To this purpose, let’s impose the two

conditions zi = 0 and zj = l, in order to simplify the problem:

∂n

∂z
− R

l
n =

Jn;i,j

qDn

(2.33a)

n(0) = ni, B.C. at z = 0 (2.33b)

n(l) = nj, B.C. at z = j (2.33c)

If a proper mesh is used, then Jn;i,j can be assumed as constant; of course, from (2.32)

R is constant. Therefore, let K be:

K =
Jn;i,j

qDn

constant as well. It is straightforward to deduce that Jn;i,j depends on both n(0) and

n(l), and it could be interpreted as the ”boost” that makes carrier density change from

n(0) and n(l) across the element. Consequently, K can be considered as a degree of

freedom to enforce the boundary conditions.

A solution of the system (2.33) for the electron density can be demonstrated to be:

n(z) = c1 exp
(
Rz
l

)
− A l

R
(2.34)

Then, by enforcing the boundary conditions, one can write:

n(z) =
nj − ni
eR − 1

eR
z
l − nj − nieR

eR − 1
(2.35)

which, according to [22], can be rewritten as:

n(z) = nj
1− eR z

l

1− eR
+ ni

eR
z
l − eR

1− eR
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By setting a function g(z,R) as:

g(z,R) ,
1− eR z

l

1− eR

it becomes possible to write more compactly (2.35):

n(z) = (1− g(z,R))ni + g(z,R)nj (2.36)

which is exactly the expression we look for to investigate stability more into the details.

In fact, from an analysis of the magnitude of R, one may obtain three cases (also

depicted in fig. 11.1, [21, p. 275]). In practice, for R ≈ 0, n(z) varies linearly from

node i to node j; if R � 0, n(z) is almost equal to nj throughout the whole element;

eventually, if R � 0, n(z) is mostly similar to ni. Same reasoning may be applied to

holes population, of course.

Such a result implies that a linear interpolation for the carrier densities is usually

wrong, possibly leading to instabilities, unless R ≈ 0. Recalling that Reynolds number

(2.32) depends on how large is φj − φi with respect to VT , by using a proper (very

fine, nn large) mesh, linear interpolation assumption may hold true. Let’s remark that

while all the previous reasoning can be applied to 1D case, when moving to 2D and 3D

domain, such instabilities are not solvable.

2.2.3 Scharfetter-Gummel method

Now we have a rough idea on how carrier concentrations change in a grid element,

assuming a linear variation of the potential. Following this path, Scharfetter and

Gummel in 1998 provided an alternative discretization scheme for the drift-diffusion

constitutive relations (2.4), not affected by numerical instabilities. The idea, presented

in [23], is reported in the followings.

Again, let’s reformulate eq. (2.4a) as:

1

q
Jn = −nµn

∂φ

∂z
+Dn

∂n

∂z

Then, by writing:
∂n

∂z
=
∂n

∂φ

∂φ

∂z

it is straightforward to write:

∂φ

∂z

[
−nµn +Dn

∂n

∂φ

]
=

1

q
Jn

Now, we know from the previous section that φ can be approximated with a linear

interpolation between nodes i and j:

∂φ

∂z
≈ φj − φi

zj − zi
,

∆φ

l
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leading to:
1

q
Jn;i,j ≈

∆φ

l

[
−nµn +Dn

∂n

∂φ

]
By dividing both members of the latter by −µn∆φ/l and rewriting as it was a separated

variables ODE:

n+
1

q
Jn;i,j

l

µn∆φ
=
kBT

q

∂n

∂φ
⇒ 1

n+ 1
q
Jn;i,j

l
µn∆φ

∂n

∂φ
=

q

kBT
(2.37)

Whose solution is obtained by integrating both members with respect to the electro-

static potential, leading to:

n+
1

q
Jn;i,j

l

µn∆φ
= exp

(
q

kBT
φ+ c

)
(2.38)

where c is the constant arising from the integration of the RHS of (2.37). By setting:

α =
1

q
Jn;i,j

l

µn∆φ
, β =

1

VT
=

q

kBT

it is possible to avoid the evaluation of c. In fact, it is straightforward writing:

nj + α = exp(βφj + c)

ni + α = exp(βφi + c)

which leads to:

nj + α

ni + α
= exp(β∆φ)⇒ nj − ni exp(β∆φ) = α(exp(β∆φ)− 1).

After some manipulations:

1

β∆φ
=

[
nj

β∆φ

exp(β∆φ)
− ni

−β∆φ

exp(−β∆φ)− 1

]
=

1

q
Jn;i,j

l

µn∆φ
(2.40)

Then, by introducing the Bernoulli function B(x), defined as:

B(x) =
x

exp(x)− 1
, (2.41)

thus obtaining:

1

q
Jn;i,j =

µn
lβ

[
njB

(
φj − φi
VT

)
− niB

(
φj − φi
VT

)]
(2.42)

The latter can be applied to (2.29), which still holds true because only the definition

of the constitutive relation of Jn has been manipulated, while the electrons continuity
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equation has not been changed. Therefore, the expression for Jn,i+ 1
2
−Jn,i− 1

2
is modified

as follows:

Jn,i+ 1
2
− Jn,i− 1

2
= q

Dn

zi+1 − zi

[
ni+1B

(
φi+1 − φi

VT

)
− niB

(
φi − φi+1

VT

)]
︸ ︷︷ ︸

useful for i = 1e

+

−q Dn

zi − zi−1

[
niB

(
φi − φi−1

VT

)
− ni−1B

(
φi−1 − φi

VT

)]
︸ ︷︷ ︸

useful for i = 2e

(2.43)

In this way, it is possible to proceed and compute the matrix elements useful to reach

the solution for the electron (and similarly for hole) current density:

• L
n,n

: including the Jacobian of the linear part. More specifically, this term

contains the derivative of the electron density with respect to electron density

itself.

– for i = 1e:

q
Dn

l

[
n2eB

(
φ2e − φ1e

VT

)
− n1eB

(
φ1e − φ2e

VT

)]
=

−qDn

l
B

(
φ1e − φ2e

VT

)
︸ ︷︷ ︸

M11

n1e + q
Dn

l
B

(
φ2e − φ1e

VT

)
︸ ︷︷ ︸

M12

n2e (2.44)

– for i = 2e:

−qDn

l
B

(
φ2e − φ1e

VT

)
︸ ︷︷ ︸

M22

n2e + q
Dn

l
B

(
φ1e − φ2e

VT

)
︸ ︷︷ ︸

M21

n1e (2.45)

• N
n,φ

: Jacobian for the non-linear part. In this element are inserted the deriva-

tives of the electron current continuity equation with respect to the electrostatic

potential φ. This is done starting from (2.29), and it could have been done also

without introducing the Scharfetter-Gummel scheme. Basically, eq. (2.43) is

Taylor expanded, and only the first order terms are inserted in N
n,φ

, while the

0th order contribution is already included in L
n,n

.

– for i = 1e, the ”function” results to be:

f1e = q
Dn

l

[
n2eB

(
φ2e − φ1e

VT

)
− n1eB

(
φ1e − φ2e

VT

)]
such that

M11 =
∂f1e

∂φ1e

= q
Dn

VT l

[
−n2eB

′
(
φ2e − φ1e

VT

)
− n1eB

′
(
φ1e − φ2e

VT

)]
M12 =

∂f1e

∂φ2e

= q
Dn

VT l

[
n2eB

′
(
φ2e − φ1e

VT

)
+ n1eB

′
(
φ1e − φ2e

VT

)]
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– for i = 2e, the ”function” results to be:

f2e = −qDn

l

[
n2eB

(
φ2e − φ1e

VT

)
− n1eB

(
φ1e − φ2e

VT

)]
such that:

M21 =
∂f2e

∂φ1e

= −q Dn

VT l

[
−n2eB

′
(
φ2e − φ1e

VT

)
− n1eB

′
(
φ1e − φ2e

VT

)]

M22 =
∂f2e

∂φ2e

= −q Dn

VT l

[
n2eB

′
(
φ2e − φ1e

VT

)
+ n1eB

′
(
φ1e − φ2e

VT

)]
For what concerns the hole current continuity equation, the derivation of the equa-

tion is very similar to the electron one. Therefore, the matrix elements are computed

in the exact same way:

• L
p,p

:

– for i = 1e:

q
Dp

l

[
p1eB

(
φ2e − φ1e

VT

)
− p2eB

(
φ1e − φ2e

VT

)]
=

q
Dp

l
B

(
φ1e − φ2e

VT

)
︸ ︷︷ ︸

M11

p1e + q
Dp

l
B

(
φ2e − φ1e

VT

)
︸ ︷︷ ︸

M12

p2e (2.46)

– for i = 2e:

−qDp

l
B

(
φ2e − φ1e

VT

)
︸ ︷︷ ︸

M21

p1e + q
Dp

l
B

(
φ1e − φ2e

VT

)
︸ ︷︷ ︸

M22

p2e (2.47)

• N
p,φ

:

– for i = 1e:

M11 =
∂f1e

∂φ1e

= q
Dp

VT l

[
−p1eB

′
(
φ2e − φ1e

VT

)
− p2eB

′
(
φ1e − φ2e

VT

)]

M12 =
∂f1e

∂φ2e

= q
Dp

VT l

[
p1eB

′
(
φ2e − φ1e

VT

)
+ p2eB

′
(
φ1e − φ2e

VT

)]
– for i = 2e:

M21 =
∂f2e

∂φ1e

= −q Dp

VT l

[
−p1eB

′
(
φ2e − φ1e

VT

)
− p2eB

′
(
φ1e − φ2e

VT

)]

M22 =
∂f2e

∂φ2e

= −q Dp

VT l

[
p1eB

′
(
φ2e − φ1e

VT

)
+ p2eB

′
(
φ1e − φ2e

VT

)]
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Notice that also the recombination terms introduce some contributions to the

known vector tvet, because they enter the carriers continuity equations and to the

Jacobian Jmat. In particular, in tvet the contribution of each rate is added to matrix

M = qRLi (where R is the overall recombination rate at one node) and assembled in

the electron and hole continuity equations. A very similar procedure is performed for

the Jacobian, where derivatives with respect to electrons and holes are assembled to

the continuity equations.

2.2.4 Material parameters and geometry

D1ANA code allows to easily insert new material parameters, by simply adding a

section in the proper function. The parameters that need to be provided to the code

are the following:

• m∗n,p: bulk electrons and holes effective mass, m0

• µn,p: electron and hole mobility, cm2/V·s

• NC,V : bulk conduction and valence density of states, cm−3

• Eg: energy band gap, eV

• ni: intrinsic carrier concentration, cm−3

• χ: electron affinity, eV

• εr: relative dielectric constant

• ∆EA,D: acceptors and donors activation energies, used in the incomplete ioniza-

tion model seen in (2.10) , eV

• Brad: radiative recombination coefficient (see eq. (2.12)), cm3/s

• Cnnp, Cppn: electron and hole Auger coefficients (see eq. (2.13)), cm6/s

• τn,p: SRH electron and hole capture time (see eq. (2.14)), s

• Etrap: position in energy of the intermediate SRH trap level, eV

All these are associated to the corresponding node or element. The dependence of the

carrier mobilities on the electric field is not taken into account for these simulations;

furthermore, the effect of the polarization charges can be neglected, because no nitride

is used in any of the investigated structures. For each material not already inserted in

the archive of D1ANA, I’ve looked at the sections in NSM Archive [24].

Eventually, for what concerns the geometry of each layer composing the simulated

structure, it is required to insert:
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• length of the layer

• material the layer is made of

• doping type and level (a graded doping is also feasible), associated to each mesh

node

• molar fractions for ternary and quaternary alloys, associated to each mesh node,

needed to compute the alloy parameters by means of linear interpolations

2.2.5 Solver

After having generated the mesh and associated all the quantities to the corresponding

nodes or elements, D1ANA starts with the simulation. The first step performed is

aimed to solve the Poisson’s equation at thermodynamic equilibrium condition. This

is a crucial step, because it provides an accurate initial guess for the drift-diffusion

solver, before starting with the voltage sweep. Simulation starts from the boundary

conditions: neutrality is imposed at contacts. While analytical solutions are available

if Boltzmann statistics and full ionization (PBFI) are assumed, when Fermi statistics

and/or incomplete ionization of doping concentration (PBII, PFFI, PFII) are taken into

account neutrality at contacts can be solved only numerically. To do it, in D1ANA

Netwon’s method is adopted. In particular, it begins from the analytical solution of

PBFI at each point of the device mesh; then, if one of the other three cases is required,

Newton’s scheme is used only at the contacts mesh nodes, i.e., the first and the last

one. At each Newton’s loop, charge concentrations are computed starting from the

potential. The derivatives are introduced inside the Jacobian matrix Jmat, such that

the linear system Jmat*delta u = -rvet is solved (where delta u is the variation

uvet at each step and is used to determine convergence, while rvet is the ”residual

vector”).

Once thermodynamic equilibrium solution is computed, drift-diffusion far from

equilibrium simulation starts. Again, this is based on a generalized Newton’s method;

the difference with respect to the previous case is that now electron and hole continu-

ity equations are solved in addition to Poisson’s, with an overall of 3 × nn equations,

in a self-consistent fashion. After taking the result from the equilibrium condition,

the voltage sweep loop can start. At each step, all the needed matrix are assembled as

described in the previous section. Again, optical generation model and quantum correc-

tions are not included in the simulations, so are not described. Also here, convergence

is reached once the norm of delta u takes a value lower than a control value.

A final remark must be done: in order to properly converge, D1ANA exploits

a scaling of some quantities during their computation: this is done for numerical

reasons, but it does not affect units or order of magnitude of the final results.
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2.3 Synopsys TCAD

The core of all the simulations performed throughout the whole thesis work involves

the use of D1ANA. Nonetheless, another simulator is used beside it: a software based

on technology computer-aided design (TCAD) developed by Synopsys called Sentaurus

Device. More into the details, it is a multidimensional device simulator that is used to

simulate electrical characteristics of some compound semiconductor structures. Just

like D1ANA, drift-diffusion model is the carrier transport model used by Sentaurus

Device. By simply changing some options in the physics input files it is possible to

make the software using the very same physical models of D1ANA, i.e., Fermi-Dirac

statistics or Boltzmann approximation; full or incomplete ionization.

As described in several sections of chapter 4, such a software is used to test only

the tunnel junctions included in the investigated VCSELs. In fact, Sentaurus Device is

a very good benchmark for my implementation of the local BTBT model in D1ANA,

for the reasons described at the end of section 3.1. Furthermore, also in this simulator

some materials are not included, so that the generation of proper sections to fully de-

scribe them is a required step. In order to perform a fair comparison with respect to

D1ANA, the very same parameters of the materials are used in the two simulators. Of

course, also the physical models activated in the TCAD simulations are the very same

already included in D1ANA, in order to avoid discrepancies not due to implementation

errors which would be difficult to debug if different parameters were employed.

Considering that also Sentaurus Device has to work with a drift-diffusion model, it

is worth spending some words to talk about the used mesh. First of all, let’s remark

that while D1ANA deals with a 1D spatial domain, in a TCAD this is not allowed. As

a matter of fact, at least a 2D spatial grid must be defined when even a very simple

structure like a tunnel junction is realized. Therefore, if the mesh is not properly

designed, significant longer simulation times may occur with respect to a simpler 1D

case, without obtaining improved results. In order to realize an efficient mesh, first one

should recognize the direction along which the results are more important: in such a

way, the grid across the other direction can be made more coarse, and the simulation

time can be shortened. This is exactly what is done when working with Sentaurus

Device. An example is reported in figures 2.1, where pn junction at equilibrium is

shown. In fig. 2.1a, a fine mesh is adopted in both the directions. Nevertheless, along

x direction this is not required, since none of the parameters change in that direction

(material, doping, applied bias, . . . ). On the other hand, the junction is generated

along y direction and the bias is applied between the top and the bottom contacts,

so this is the only relevant direction. As a consequence, it is possible to reduce down

to few points along x, as represented in fig. 2.1b. This allows to add points along y,

thus improving the result of the interpolation on the points in that direction across

the whole length. Or, similarly, it becomes possible to improve the mesh in the zone
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(a) The mesh is fine in both x and y direction, with a small refinement region

in the depletion region.

(b) A very coarse mesh is used along x, since the relevant results are all on

y direction. This allows for a wider refinement region where is needed.

Figure 2.1: Examples of 2D mesh generated in Sentaurus Device.

around the depletion region, which is the most important one in a pn junction (this is

what is actually done in the figure).

A little remark on the obtained results from the TCAD. As mentioned, pure 2D

simulations are not possible, but all the quantities are extracted by performing a vertical

cut in the mid point of the x direction, such that they are compatible between each

other. These quasi-1D results are then exported to Matlab where they are plotted.

This makes easier a fast comparison with the results coming from D1ANA.



CHAPTER 3

Band-to-band tunneling

The buried tunnel junctions analysed during the thesis all work at equilibrium or in

reverse bias condition: for the latter, the main transport mechanisms across the pn

junction are represented by the direct interband band-to-band tunneling (BTBT) and

the trap-assisted tunneling (TAT). However, TAT plays only a marginal role in case

of heavily doped (NA,D > 1018 cm−3) homojunctions in reverse bias [25], while it

is crucial in case of tunneling through oxide barriers and heterojunctions [26]. On

the contrary, BTBT must be added to the recombination mechanisms (SRH, Auger,

radiative) already incorporated in the drift-diffusion solver to get significant and reliable

results about BTJs.

This is very important because, in principle, no significant current should be able

to pass through a reversely biased junction, due to the presence of a very high potential

barrier arising due to the different type of doping at the two sides and the effects of

the applied reverse bias. Nevertheless, such a mechanism is able to bring a remarkable

amount of charges from one side to the other one of the junction by means of quantum

tunneling. In particular, it is able to move electrons from the top of the valence band

(VB) on the p-side to the bottom of the conduction band (CB) on the n-side of the

junction. Therefore, it could be exploited in VCSEL structure to inject holes in the

active region by using only a very thin p-doped layer near the active region, instead

of large p contacts, which otherwise could lead to some issues, for the reasons already

discussed in section 1.2.

3.1 BTBT modelling

In the following sections an overview about the main band-to-band tunneling models

is presented. This is done to provide a brief physical justification to all the performed

numerical simulations.

The simplest model dealing with quantum tunneling mechanisms is based on the

Wentzel-Kramers-Brillouin (WKB) theory, which allows to evaluate bound-state en-

30
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ergies and tunneling rates through a potential barrier. The basic idea behind this

semiclassical approximation is to avoid the application of the perturbation theory to

reach a solution of the one-dimensional time independent Schrödinger equation. This

is possible with the assumption of a particle an energy E moving in a slowly vary-

ing potential V (x). In general, the particle wavevector k(x) in the 1D Schrödinger

equation:
d2ψ(x)

dx2
+ k(x)2ψ(x) = 0 (3.1)

takes the following form, according to the magnitude of E with respect to V (x):

k(x) =

√
2m

~2
(E − V (x)), E > V (x) (3.2a)

k(x) = i

√
2m

~2
(V (x)− E) = iκ(x), E < V (x) (3.2b)

In case k(x) is constant, a simple solution of (3.1) is easily found to be ψ(x) = Ae±ikx,

where the amplitude is given by A and its wavelength is given by λ = 2π/k. On

the other hand, when k(x) changes (this is actually the case of non-constant potential

V (x)) another solution can be used: ψ(x) = e±i
∫
k(t)dt. In particular, in case of slowly

varying potential (slowly with respect to λ), the varying part of k is much smaller

than its constant part, allowing to exploit a first-order approximation. Therefore, the

wavefunction can be rewritten as:

ψ1(x) =
1√
kz(x)

exp

(
±i
∫ x2

x1

kz(x)dx

)
(3.3)

where kz(x) is the imaginary transverse component to the potential profile (i.e., the

tunneling direction z ), while the integration extrema are the classical turning points,

namely the points where E = V (x), thus the boundary points identifying the regions

in which both classical and quantum tunneling are allowed.

In a reversely biased heavily doped pn junction, i.e., in a tunnel junction, the

energies available for quantum tunneling span from the valence band edge energy at

the p-side to the conduction band edge energy at the n-side. Such energies can be used

to identify the classical turning points x1 and x2 needed for the WKB approximation

[27]. In this framework, the tunneling probability along z direction across the forbidden

band gap is described by the following expression:

TWKB = exp

(
−
∫ x2

x1

2kz(x)dx

)
(3.4)

Notice that the maximum value of tunneling is reached at the midgap point of the

junction, whereas at the turning points T = 0, since kz(x1) = kz(x2) = 0.
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Solving WKB approximation assuming a triangular potential barrier leads to the

Fowler-Nordheim tunneling transmission expression [28, 29]:

T FNWKB = exp

− 4

qE
√

2m∗tE
3/2
g

3~

 (3.5)

where q is the elementary charge, E is the electric field in the tunneling region, Eg is the

semiconductor band gap and m∗t is the tunneling effective mass, whose value depends

on the investigated structure.

3.1.1 Kane’s Model

WKB approximation is useful to compute states and tunneling rate of simple potential

profiles. Therefore, the crucial step of the thesis is the research for a simple model

able to grasp the main details of the BTBT phenomenon across a BTJ and yet easily

implementable inside the drift-diffusion simulator. To this purpose, local tunneling

models are taken into account in first place, meaning that non-local properties of the

process are adapted to obtain local variables. In literature, a great work has been done

by Kane in its inspiring works [30, 31], and here some of the main details about them

are reported.

The starting point of the model is the evaluation of the moving particle energy

eigenfunctions, needed to provide a rigorous treatment of the phenomenon. To this

purpose, the time-independent Schrödinger equation of an electron in case of uniform

electric field in one direction (hereinafter is assumed to be the z-direction) must be

solved: [
En(k)− iE ∂

∂kz
− Etot

]
φn(k)−

∑
m

EXn,mφm(k) = 0 (3.6)

where n,m are band indexes, E is the (electric) force acting on the electron, En(k) is

the electron energy in the semiconductor bulk (with k electron wavevector) and Etot is

the total energy. φn,m(k) is the wavefunction included in the Bloch approximation:

ψ(r) =
∑
n,k

φn(k)Ψn,k(r) (3.7)

where Ψn,k(k) is a Bloch function. The transitions are governed by the terms i∂/∂kz
and Xn,m, called intra and inter -band operators, respectively, obtained by decomposing

the position operator. The off-diagonal matrix elements of X, actually including the

interband components, are defined as:

Xn,m = i

∫
u∗n,k(z)

∂

∂k
um,k(z)dz (3.8)

where u(z) is the periodic part of the Bloch function and the integration in space

includes the volume of the unit cell.
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Kane computes the intraband matrix elements by first extracting the eigenfunctions

from (3.6) neglecting the operator i∂/∂kz, thus obtaining:

M (1)
n,m(kz) = − E

K

∫
Xn,m(k) exp

{
i

E

∫ kz

0

[
E(1)
n (k′, E)− E(1)

m (k′, E)
]
dk′z

}
dkz (3.9)

where superscript 1 denotes the term related to transitions with electric field at the first

order (even though Kane demonstrated that it is equivalent to the expression for second

order case) and K is the principal vector of the reciprocal lattice. The probability per

unit time, w, that a transition from band n to band m occurs is obtained by means of

the Fermi Golden’s rule:

w =
2π

~
∣∣M (1)

n,m

∣∣2 ρ(E) (3.10)

where ρ(E) is the density of states.

Now, if one wants to evaluate the transition rate between conduction and valence

band, first needs to take into account the dispersion relations. Thus, let’s assume a

two-band dispersion relation, as done by Mandurrino [32, pp. 114, 115]:

Ec,v(k) =
Eg
2

+
~2k2

2m∗n,p
±

√
E2
g + Eg

~2k2
m∗r

2
(3.11)

where Eg is the energy band gap and m∗n,m are the electron and hole effective masses;

m∗r = (m∗n ·m∗p)/(m∗n +m∗p) is the reduced mass.

Then, the expression for the off-diagonal elements of the interband matrix X is also

computed:

Xc,v = i
~E2/3

g

2
√
m∗r(Ec − Ev)2

(3.12)

Before calculating the transition probability by inserting (3.11) and (3.12) in (3.9) and

then in (3.10), a crucial assumption is needed in order to simplify the calculations. In

fact, the assumption of sufficiently small and constant electric field E allows to simplify

the integral in (3.9) and obtain [31]:

Mc,v(kz) =
πE
3K

exp

(
−π
√
m∗rE

3/2
g

2q~E

)
(3.13)

Furthermore, such an approximation allows to write the DOS as ρ(E) ' K/2πE .

Transmission coefficient can be now computed in WKB approximation as T (E) =

~Kw/E [31]:

T =
π2

9
exp

(
−2

∫ x2

x1

ikdz

)
(3.14)

=
π2

9
exp

(
−π
√
m∗rE

3/2
g

2
√

2~E

)
exp

(
−2E⊥/Ē

)
(3.15)
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with E⊥ = ~2(k2
x+k2

y)/2m
∗
r perpendicular component of the electron energy (such that

E = E⊥ + Ez) and Ē =
√

2~E/π
√
m∗rEg a constant which depends on the material

through the effective masses and the energy band gap. It is clear that (3.15) contains

two contributions to the tunneling: one coming from the electron motion in the same

direction of electric field, the other coming from its perpendicular components, which

are responsible of reducing such a probability.

At this point, the expression of the BTBT current density is simply given by [33]:

Jbtbt =

∫
T (E)(fFD(E,Ec)− fFD(E,Ev))dE (3.16)

which contains an integration over energy and the Fermi-Dirac statistics at the n and

p-regions, to take into account the occupancy of the bands. Putting all the results

together [31], the following expression is obtained:

Jbtbt =
qm∗r
18~3

exp

(
−
π
√
m∗rE

3
g

2
√

2~E

)∫
[fFD (E,Ec)− fFD (E,Ev)] exp

(
−2E⊥

Ē

)
dEdE⊥ =

=
qm∗r
18~3

exp

(
−
π
√
m∗rE

3
g

2
√

2~E

)(
Ē⊥
2

)
·

·
∫

[fFD (E,EC)− fFD (E,EV )]

[
1− exp

(
−2Emin

Ē

)]
dE (3.17)

In order to get a more manageable expression, two further assumptions are made by

Mandurrino [32, p. 112]: the applied reverse bias should be strong enough to have

qVbias � Ē⊥, which assures discontinuous quasi-Fermi levels at the borders of the de-

pletion region; the contribution coming from the electron perpendicular energy should

be neglected, such that:∫
e−2⊥/ĒdE⊥ '

∫ (
1− e−2Emin/Ē

)
dE ≈ 1 (3.18)

where Emin is the minimum energy between E −EC,min at the n-side and EV,max −E
at the p-side. The final result, retrieved using WKB approximation, can be written as:

Jbtbt ≈
q3
√

2m∗rE
4π3~2

√
Eg
Vbias exp

(
−
π
√
m∗rE

3
g

2
√

2q~E

)
(3.19)

3.1.2 Hurkx’s Model

The model obtained in the previous section only provides a value of tunnel current

density in a reversely biased tunnel junction. Unfortunately, this is not suitable for

a D1ANA implementation, since it needs an expression able to take into account the
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quantities at the mesh nodes or elements (like charge densities, electrostatic potential

or electric field) of the spatial grid and return the corresponding value of current density

in each point. However, it is important to highlight that mainly reversely biased pn

junctions are investigated: this actually is the condition in which Hurkx’s model [34] is

applicable. In practice, it simplifies a lot all the formulas coming from Kane’s papers,

treating the band-to-band tunneling simply as a net local recombination/generation

GR rate which has to be added to the other ones, like Auger, radiative, SRH rates

(already included in D1ANA code). It is important to underline the fact that such a

model is originally intended for silicon-based systems simulations, therefore any other

material requires some adjustments to the model.

More into the details, Hurkx extracts a band-to-band tunneling GR rate, which

in case of a reversely biased tunnel junction actually is a generation rate, from the

expression of the current density coming from [31]. This is done by simply using the

relation:

Rbtbt = −1

q
∇ · Jbtbt = −1

q

dJbtbt
dψ

· ∇ψ = −dJbtbt
dE

· E (3.20)

where Jbtbt is the tunnel current density presented in the previous section. This step

leads to:

Rtunn =
q2√m∗r

18π~2
√
Eg
E2D (E , E, Efn, Efp) exp

(
−π
√
m∗rE

3/2
g

2q~E

)
(3.21)

whose units are the typical ones of a recombination rate: cm−3s−1. Notice that the

function D (E , E, Efn, Efp) accounts for the relative position of the electron and hole

quasi-Fermi levels Efn and Efp in the neutral regions and for the dependence of elec-

trons tunneling on the electric field E , and is better described afterwards. The terms

containing fundamental physical constant and/or material parameters can be grouped

into Kane’s coefficients A and B, defined as:

A =
q2√m∗r

18π~2
√
Eg

(3.22)

with units V−2cm−1s−1, and

B =
π
√
m∗rE

3/2
g

2q~
(3.23)

that has the units of an electric field (V/cm). In fact, B can be seen as the critical

electric field at which Rtunn starts to play a significant role, typically few tens of

MV/cm large. The Kane’s coefficients can be used to rewrite (3.21) in a simpler way

[34]:

Rbtbt = AE2D (E , E, Efn, Efp) · exp (−B/E) (3.24)

which is the expression actually implemented in D1ANA to include band-to-band tun-

neling contribution. Notice that in a reversely biased tunnel junction, the transition
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probability described in (3.21) is a generation rate, and this is the power of Hurkx’s

model.

Before explaining how (3.21) has been included in D1ANA together with the other

recombination mechanisms, let’s return to the function D. As a matter of fact, such

a function comes from the fact that in his calculations Hurkx has not neglected the

contribution coming from the perpendicular energy integral, such that:

D (E , E, Efn, Efp) '
∫

1− e−2E⊥/ĒdE⊥

while in Kane it is approximated to 1 (see eq. (3.18)).

In forward bias, D is able to model the tunneling current in an Esaki diode. How-

ever, Hurkx in [34] also provides an expression for it which is suitable for implemen-

tation in a device simulator when dealing with zero and reverse bias conditions, which

in turn comes from [31]:

D(ψ,Efn, Efp) =
1

exp
(
−Efp−qψ
kBT

)
+ 1
− 1

exp
(
−Efn−qψ
kBT

)
+ 1

(3.25)

This function should be equal to zero outside the depletion region because of lack of

final states into which an electron can tunnel or initial states from an electron can

tunnel.

Whereas eq. (3.25) has a problem related to the reference potential, which is not

well defined and may lead to a wrong evaluation of the electrostatic potential ψ, however

Sentaurus Synopsys TCAD user guide [35, p. 453] provides an alternative formulation

of the function D:

D(n, p) =
np− n2

i

(n+ n2
i )(p+ n2

i )
(3.26)

This results to be much more easy to be implemented in D1ANA. In fact, the code is

able to compute at each point of the mesh the value of the charge concentration, such

that the value of D is quickly calculated. Notice that in this framework, BTBT GR

does not explicitly depend on tunnel path length or on tunnel window wideness, but

only on charge concentrations and electrical field across the system, since it is a local

model.

The formulation contained in (3.26) is very useful when trying to include (3.21) in

D1ANA, as it allows to evaluate the recombination (which actually is a generation)

rate due to interband band-to-band tunneling at each node of the mesh. As a matter

of fact, Rbtbt is implemented in a total similar way with respect to the other rates. A

slightly deeper analysis is needed to for its derivatives, included in the Jacobian matrix.

In fact, while SRH, Auger and radiative recombination show derivatives equal to zero

with respect to the potential, the presence of electric field in (3.21) requires also the

computation of ∂Rbtbt/∂φ:

∂Rbtbt

∂n
= AE2e−B/E

ni
n+ n2

i
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∂Rbtbt

∂p
= AE2e−B/E

ni
p+ n2

i

∂Rbtbt

∂φ
= AD(n, p)

[
∂E2

∂φ
e−B/E + E2

(
∂

∂φ
e−B/E

)]
=

= AD(n, p)e−B/E(2E +B)
∂E
∂φ

where the derivative of the electric field with respect to the electrostatic potential is

computed point-wise in D1ANA, without using an analytical expression.

3.2 BTBT in Sentaurus Device

One of the reasons leading to the use of Sentaurus Device TCAD as a benchmark for

some of the results obtained from D1ANA is the fact that the former allows to select

among a number of band-to-band tunneling models, one of them being the Hurkx’s one.

Furthermore, we have actually borrowed the definition of D (3.26) contained in [34]

from Sentaurus manual because it provides a simpler way to implement the function

in a drift-diffusion code.

Just like it is done in D1ANA, here BTBT is modeled by an additional GR process.

The expression for Rbtbt used by Sentaurus Device also includes a basic expression to

introduce the effects due to temperature, which acts on the energy gap and thus on

the tunneling (higher T typically means larger lattice constant, which in turn reduces

the energy band gap: tunneling is enhanced; the converse holds for T < 300 K). The

function D can take either positive or negative values: if D > 0 recombination is

dominating; if D < 0, then net generation is larger (and this is the condition we are

actually working into in case of reversely biased tunnel junctions). The TCAD uses

fixed values for Kane’s parameters (3.22 and 3.23), [35, p. 452]:

A = 3.4 · 1021 cm−1s−1V −2, B = 22.6 · 106 V/cm

These values will be used also in D1ANA instead of the material dependent ones

previously described, in order to perform a more significant comparison between the

simulators, rather than obtain more accurate results for the investigated structures.

However, let’s remark that the values computed for each material are very close to

these ones, especially the critical electric field, such that there is no loss of information

due to this slight modification.

3.2.1 Other band-to-band tunneling models

As mentioned at the beginning of this section, the used TCAD includes several ways

to model BTBT. Here there is a brief list of the most interesting ones.
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• Kane’s model [35, p. 452]: the expression is very similar to (3.21), beside the

fact that the function D is dropped:

RKane
btbt = AE2 exp

(
−B
E

)
As a consequence, such a simple model predicts a nonzero generation rate even

at equilibrium, which obviously is far from a real case

• Schenk model, for phonon-assisted BTBT in highly doped junctions reaching

very high electric field values

• Non-local band-to-band tunneling model. In contrast to the previous mod-

els, this model introduces real spatial carrier transport through barriers. It is

straightforward that whereas in local models e-h pair recombines in the same po-

sition, in a non-local model recombination occurs at different physical positions

(at the ends of the tunneling path), such that there is an actual transport of

carriers [33]. Senaturus Device allows to activate a non-local model for tunneling

mechanism [36], again relying on WKB approximation. This is usually required

in case of devices containing some abrupt and graded heterojunctions [35, p. 454].

The corresponding GR rate takes the following form:

RCV (u, l, E) =
ACV
qkB

· E · ΓCV (r) · T · ln

1 + exp
(
Efp(u)−E

kBT

)
1 + exp

(
Efn(l)−E
kBT

)
 (3.27)

where u and l are the points corresponding to the tunneling window (with E

range of energies included in the window). All the other parameters are fitting

or material constants.

This model actually does not bring to much different results, meaning that it

must be optimized to return significant improvements. Furthermore, in D1ANA

this is not implementable, but an attempt of adding a non-local model is done

by moving to NEGF formalism, that will be presented at the end of the next

chapter together with the corresponding results.



CHAPTER 4

Investigated structures

Now that the main transport mechanism occurring in a reverse bias pn junction has

been described and implemented, it is time to move to the main purpose of the thesis:

the complete simulation of VCSELs with buried tunnel junctions included in their

layers. Let’s remark that all the simulations are only performed from the electrical

results point of view, while both optical and thermal analysis are not considered here.

Two case studies are investigated, including both short and long-wavelength devices.

In the following sections are presented all the results obtained for each of them. In both

cases, further analysis are performed on the included TJs, in order to fully understand

the effects of the junction on the results. This is done in order to comprehensively

understand if the models retrieved in literature actually work properly or not for these

material systems. Of course, a comparison with literature results is also performed.

4.1 Long-wavelength BTJ-VCSEL

For the reasons already introduced in 1.2, literature is full of works dealing with long-

wavelength device, such as VCSELs and LEDs, including a BTJ in their structure.

Therefore, it is reasonable to start from the analysis of one of them. After having read

several papers [16, 37–39] which however lack of crucial details about doping levels,

geometry or molar fractions, the choice for the first investigated device has fallen on

the fully described structure presented in Lamy’s work [40]. In particular, it deals with

a long wavelength λ = 1.55 µm electrically pumped lattice matched In1−xGaxAsyP1−y

quantum well based BTJ-VCSEL grown on InP substrate.

As already mentioned, the buried tunnel junction is exploited here to inject holes

into the active region of the device, by using only a very thin layer of p-doped material.

All the layers (grown over an InP substrate) embodied in the structure are reported

in table 4.1, together with the corresponding molar fractions, thickness, doping type

and level. The overall length of the structure is approximately 300 nm. The DBR

layers are not included in the latter because they are made of dielectric material (a-

39
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Si (n = 3.7) and a-SiNx (n = 1.8) stack realized by means of magnetron sputtering,

leading to a reflectivity value of 99.5% at λ = 1.55 µm): as a consequence, electrical

simulations is not performed for such layers, and thus are not inserted in D1ANA code.

The active region can be realized by growing by molecular beam epitaxy (MBE) and

contains six quantum wells (molar fractions: x = 0.47, y = 1; 7.2 nm of length each);

lattice matched alloy (In0.8Ga0.2As0.435P0.565 named Q1.18 because its gap corresponds

to λ = 1.18 µm) is used to generate the five barriers (length = 10 nm each).

As already highlighted, it is worth noticing that the layers corresponding to the

contacts (#1 and #19) are both heavily n-doped (ND = 1 · 1019 cm−3), thanks to the

BTJ included in layers #2 and #3, that allows to avoid p contacts. In particular, the

tunnel junction mesa is realized with a strongly doped (ND = NA = 5 · 1019 cm−3)

lattice matched alloy called Q1.4 (molar fractions: x = 0.34, y = 0.732; each side is

25 nm long), whose energy gap avoids optical absorption at λ = 1.55 µm (to further

limit this phenomenon, BTJ is thin and positioned at a node of the standing wave

of the VCSEL) and which due to applied bias allows for strong quantum tunneling

probability. While carrier and optical confinements in the active region are provided

by the tunnel junction mesa, the current confinement is further ensured by a 30 nm

p+-doped InP layer #5, realized by stopping the MBE growth at the Q1.4 and realizing

a mesa by chemical etching together with a InP over-etching. Such a layer is important

also because it should avoid the change of curvature of active region band diagram in

reverse bias conditions. In order to obtain a transversal monomode emission, VCSEL

should have a diameter < 10 µm [40].

Before presenting the results of the simulations, it is worth talking about the in-

clusion of InGaAsP-based layers into D1ANA. In fact, when the thesis work started,

the library containing the material parameters did not include InGaAsP ones in the

list of materials. Consequently, before starting any simulations, the needed InGaAsP

parameters are retrieved from the proper section of NSM Archive [24]. Given that

this is a quaternary alloy and Lamy’s structure contains layers with different values

of molar fractions x and y, some kind of linear interpolation is required to evaluate

accurately each layer parameters. This is really useful, because it allows to tailor some

crucial parameters (e.g. lattice constant of energy band gap) to obtain alloys with

intermediate properties with respect to their components.

A good choice to compute the parameters of In1−xGaxAsyP1−y is to use a global

Vegard’s law [41], which is a bilinear approximation:

PInGaAsP = (1− x)(1− y)PGaAs + (1− x)yPGaP + xyPInP + x(1− y)PInAs (4.1)

where P is a generic property of the alloy (e.g. Eg, εr, m
∗
n,p, . . . ). Let’s remark

that GaP has an indirect band gap, and thus (4.1) could lead to little inaccuracies [2,

p. 29]. Electron affinity χ needs a further remark: in fact, by taking a look to the

calculated band diagram, it seems clear that Vegard’s law is not suited to interpolate
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Layer # Material Molar Thickness Doping Doping level

fractions [nm] type [cm−3]

Left contact 1 InP x = 0; y = 0 30 n 1 · 1019

TJ 2 Q1.4 x = 0.34; y = 0.732 25 n 5 · 1019

TJ 3 Q1.4 x = 0.34; y = 0.732 25 p 5 · 1019

Buffer layer 4 Q1.18 x = 0.2; y = 0.435 10 p 2 · 1018

EBL 5 InP x = 0; y = 0 30 p 2 · 1018

Cladding 6 Q1.18 x = 0.2; y = 0.435 30 / /

QW 1 7 InGaAs x = 0.47; y = 1 7.2 / /

Barrier 1 8 Q1.18 x = 0.2; y = 0.435 10 / /

QW 2 9 InGaAs x = 0.47; y = 1 7.2 / /

Barrier 2 10 Q1.18 x = 0.2; y = 0.435 10 / /

QW 3 11 InGaAs x = 0.47; y = 1 7.2 / /

Barrier 2 12 Q1.18 x = 0.2; y = 0.435 10 / /

QW 4 13 InGaAs x = 0.47; y = 1 7.2 / /

Barrier 4 14 Q1.18 x = 0.2; y = 0.435 10 / /

QW 5 15 InGaAs x = 0.47; y = 1 7.2 / /

Barrier 5 16 Q1.18 x = 0.2; y = 0.435 10 / /

QW 6 17 InGaAs x = 0.47; y = 1 7.2 / /

Cladding 18 Q1.18 x = 0.2; y = 0.435 30 / /

Right contact 19 InP x = 0; y = 0 30 n 1 · 1019

Table 4.1: Summary of the layers which compose the long-wavelength VCSEL structure

[40] along a vertical cut passing through the buried tunnel junction and the top and bottom

contacts. All of them are made of quaternary alloy In1−xGaxAsyP1−y, with different molar

fractions x and y.

such a parameter. Therefore, Anderson’s rule [42] has been used to correctly generate

the energy band diagram, by taking χInAs and Eg,InAs as the reference values for the

electron affinity and energy band gap, and by setting the conduction band offset (CBO)

to 0.65.

4.1.1 Results

Once that all the structure layers are inserted in the code, a simulation at equilibrium

condition is run, where Fermi statistics and incomplete ionization of dopants are used

(PFII); all the recombination mechanisms are activated. The obtained energy band

diagram is reported in fig. 4.1, which seems to reproduce rather accurately the one

proposed in fig. 5 of [40], meaning that the implementation of the layers has been

performed correctly. Moreover, notice that when the applied bias is equal to 0, the

tunnel junction arising at approximately 50 nm from the left contact is not able to
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Figure 4.1: Energy band diagram of the VCSEL described in [40], at equilibrium condition.

bring a significant amount of holes in the active region, because the bands are not

overlooking so they don’t allow for any interband band-to-band tunneling of carriers.

As expected from an equilibrium condition, right and left contacts of the VCSEL lie

at the same energy, due to the very same doping level; furthermore, the quasi-Fermi

levels are superimposed and don’t move from 0 eV, since no recombination mechanism

is acting to modify them.

Of course, it is more interesting an analysis of the forward bias condition of the

device, realized by applying a positive tension (cathode) to the n-side of the tunnel

junction, i.e., at the left hand side of the VCSEL, in order to bring the BTJ in reverse

bias condition. A voltage sweep is thus performed from 0 V to 2 V: when such a value is

reached, D1ANA plots the quantities of interest. Convergence of the code is very fast,

requiring just three or four iterations at each step of the voltage sweep. The voltage

step between each bias must be set to a value small enough to avoid too steep jump

in successive simulations (which would lead to a convergence failure), but it should

also be large enough to reduce simulation times. Fermi distribution with incomplete

ionization of dopants is assumed, with Auger, radiative, SRH, BTBT models activated.

For the latter, Kane’s coefficients take the following values:

A = 2.5 · 1020 cm−1s−1V −2, B = 13.9 · 106 V/cm

Again, the first analysed plot is the one containing the energy band diagram, rep-

resented in fig. 4.2a. The most interesting detail to highlight is that when a strong

reverse bias is applied to the pn junction, the BTJ works as described in the previous

chapter: bands get much closer in space with respect to the equilibrium condition, and
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the tunnel window is clearly much wider for what concerns the energy values, thus

providing the carriers with a significant tunnel path. However, in the framework of

Hurkx’s model this does not affect the tunneling current. What actually matters is

the shorter depletion region which yields larger electric fields at the interface of the

junction sides. As a consequence, local GR rate from Hurkx’s model reaches significant

values in the central region of the tunnel junction, thus leading to a significant tunnel

current. The effect of the applied bias, and consequently of BTBT mechanism, is also

clear from the splitting of the electrons and holes quasi-Fermi levels, especially in the

active region. The role of the BTJ in hole injection can be appreciated in fig. 4.2b.

The presence of n-doped contacts forces zero holes current density to be null at the

two ends of the VCSEL, but in correspondence of the BTJ Jp reaches the level of Jn
at the contacts, due to the conservation of the current across the structure, providing

the correct amount of holes to the active region.

Obviously, D1ANA extracts a value of current at each bias point; from these a

current-voltage plot is realized and reported in fig. 4.3. It is worth noticing that

a significant current starts to flow through the structure only above a certain value

of applied forward bias, similar to the results presented in fig. 5 of [16]. Once the

threshold is reached, the dependence of current on the applied voltage is almost linear

(instead of the typical parabolic trend displayed in literature), whose slope depends

on the sum of the series resistances across the structure, namely the contributions

coming from: TJ, pn junctions, bulk layer and contacts (which typically are designed

to provide a very small resistance to the overall structure; the use of a BTJ actually

allows to reduce it by avoiding highly resistive p-doped contacts). This is due to the

nature of the band-to-band tunneling and to the active region layers that limits the

current, and eventually by the current blocking layer (layer #5 of tab 4.1). Notice

that the reached current level is close to the values obtained for VCSELs emitting at

λ = 1.55 µm [43]. Therefore, the inclusion of a BTJ in a long-wavelength VCSEL

based on InGaAsP is demonstrated effectively substitute a p-type contact, without

worsening carrier transport meanwhile providing all the advantages presented in the

introduction.

In the following section, a deeper analysis on the InGaAsP-based tunnel junction

characteristics is presented, in order to better evaluate the impact of the latter and of

BTBT process on the performances of the whole VCSEL.

4.1.2 InGaAsP BTJ

After having investigated the whole VCSEL structure, a deeper analysis of the buried

tunnel junction included in the device is performed. This is useful to understand if the

structure actually operates as expected, and if the Hurkx’s model presented in section

3.1.2 is correctly implemented in D1ANA. To this aim, two different simulators have

been exploited. Of course, one is D1ANA; but, for a more comprehensive analysis, also
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Figure 4.2: Energy band diagram and current densities of Lamy’s VCSEL in reverse bias

condition (2 V applied to the left contact).
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Figure 4.3: Current density vs Voltage plot of Lamy’s device, coming from D1ANA simula-

tions in PFII with all the recombination mechanisms turned on.

Sentaurus Device TCAD from Synopsys has been used.

Let’s recall that the BTJ is 50 nm long, such that each side (with molar fractions

x = 0.34 and y = 0.732) has a length of 25 nm. The doping levels are symmetric and

equal to the tunnel junction described in table 4.1, namely ND = NA = 5 · 1019 cm−3,

realized with Te (∆ED ≈ 3 meV as donor activation energy) and Mg (∆EA ≈ 35 meV

as acceptor activation energy), respectively.

Charge models

Since this is the first analysed BTJ, all the possible charge models described in section

2.1.1 (PBFI, PBII, PFFI, PFII) are investigated and compared, in order to appreciate

their impact on the results. Moreover, beside the band-to-band tunneling models, the

other three recombination mechanisms included in D1ANA are compared with TCAD

results, to understand if they play a significant role in carrier transport. In doing this,

it is also taken the chance to understand the relative importance of such processes in

a tunnel junction working in reverse bias conditions. A brief remark is needed before

going on: Auger, SRH and radiative recombination by spontaneous emission are acti-

vated only for PFII model. Furthermore, for a fair comparison they are not switched

on all together, but one simulation at a time is performed in order to better understand

the contribution coming from each mechanism. On the other hand, BTBT is activated

for all the charge density models, while it is turned off in PFII whenever one of the

other process is investigated.

As a first step, every recombination mechanism is left out from all the simulations.
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(b) Reverse bias condition

Figure 4.4: Energy band diagram of InGaAsP BTJ at equilibrium and at reverse bias condi-

tion with PBFI model, without any GR mechanism, in both the simulators.

This is mainly done to ensure a correct implementation of all the material parame-

ters. The simplest case involves Boltzmann approximation (2.8) and full ionization of

dopants (PBFI). The band diagrams coming from both D1ANA and Sentaurus Device

for this case are reported in fig. 4.4. Both equilibrium (fig. 4.4a) and reverse bias

condition (fig. 4.4b) the superimposition of the curves coming from the two simulators

displays a high degree of agreement. Of course, at equilibrium the quasi-Fermi levels

are not split and lie on the zero level, chosen as a reference by both the simulators.

It is interesting to notice that in this framework, at equilibrium conduction band and

valence band already offer to the carriers a tunneling path, even though tunneling cur-

rent is still equal to 0, suggesting that PBFI is not suited. On the other hand, when

a 2 V reverse bias is applied to the pn junction, electron and hole quasi-Fermi levels

undergo a separation in the depletion region.

Such a situation is reflected into an another interesting quantity to evaluate: the

charge densities across the tunnel junction. The comparison of them between the two

bias conditions is plotted in fig. 4.5. In both the figures, the doping levels far from

the depletion region are equal to the ”nominal” one, since a full ionization model is

used here. In reverse bias condition, see fig. 4.5b, mass action law does not hold any

more, so that all the recombination mechanisms will surely be different from zero at

the center of the structure. Moreover, in that region the overall charge level of both

carriers is below 1 cm−3, when BTBT is not activated.

Even though the correspondence between the curves appear to be good, a zoom

in the depletion region, where the bands bending is more accentuated, reveals some

discrepancies, especially in reverse bias condition. Therefore, in figures 4.6, the zoom

of both energy band diagram and carrier densities are plotted in reverse bias (2 V)

condition. In particular, in fig. 4.6a a very sall difference of ≈ 20 meV between
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Figure 4.5: Electron and hole densities of InGaAsP-based BTJ at equilibrium and at reverse

bias condition with PBFI model, without any GR mechanism activated.

D1ANA and Sentaurus Device band diagram levels can be highlighted. More evident

is the difference arising in the carrier densities curves. In fact, from fig. 4.6b, it is

clear that the result coming from the TCAD has a significant difference with respect

to D1ANA, since it shows a step-like behaviour that should not be present. Both

these two issues are due to the two used different meshes: in fact, by performing some

adjustments to the mesh generated by Sentaurus Device (as discussed at the end of

section 2.3 and in fig. 2.1), a far better correspondence between the curves is obtained.

The reason of this is straightforward. As a matter of fact, the spatial discretization

of the domain means that all the physical quantities are approximated and associated

at each node (or element) of the mesh: if the latter is not properly designed, then the

interpolation of the curves by means of the trapezoidal rule between adjacent points

of the 1D mesh could result in a lack of smoothness.

Very similar results are obtained from the PBII model, in which the only difference

with respect to the previous case is the activation of a more accurate model for the

dopants ionization (see equations (2.10)). Consequently, a slight asymmetry between

hole and electron densities can be noticed. To appreciate it, only the results in reverse

bias are reported for such a case, with energy band diagram plotted in fig. 4.7a and

the carrier density curves plotted in fig. 4.7b, where actually the observations on the

discrepancies made right above are even more clear.

Let’s now leave Boltzmann approximation to consider the more accurate Fermi-

Dirac distribution (equations (2.7)), initially considering a full ionization approxima-

tion. The most clear difference with respect to PBFI and PBII is the very strong

asymmetry of the band diagram between n and p-sides. In fact, in both the bias con-

ditions reported in fig. 4.8, the bands at the n-side of the tunnel junction reach much
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Figure 4.6: Zoom of energy band diagram (in the left hand side figure) and charge densities

(in the right hand side figure) of InGaAsP-based BTJ at reverse bias condition with PBFI

model.
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Figure 4.7: Energy band diagram and carrier densities of InGaAsP-based BTJ at reverse bias

condition with PBII model; without any GR mechanism.
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Figure 4.8: Energy band diagram of InGaAsP BTJ at equilibrium and at reverse bias condi-

tion with PFFI model; without any GR mechanism.

lower (≈ 1 eV smaller) values, significantly below the quasi-Fermi energy levels: this

makes Fermi distribution paired with full ionization model a weak choice for simulat-

ing such a system. Also the separation between Efn and Efp is greater than in the

previous cases, as clear in fig. 4.8b. Of course, the unbalancing arising in the energy

bands leads to a significant difference in the charge densities, as reported in fig. 4.9.

Beside this, D1ANA and Sentaurus Device still have a high degree of correspondence,

which allows to state that the tunnel junction is correctly implemented in both the

simulators, together with all the material parameters.

Eventually, incomplete ionization together with Fermi distribution (PFII) makes

the curves return to reasonable levels in both conditions. The results are reported in

fig. 4.10, in which the band diagrams at equilibrium and in reverse bias condition are

plotted in fig. 4.10a and 4.10b, respectively, whereas the electron and hole densities are

reported in fig. 4.10c. For what concerns the comparison between the band diagrams

coming from D1ANA and Sentaurus Device, similar observations with respect to the

previous cases can be made. Furthermore, the incomplete ionization model makes

the energy band levels come back close to Efn and Efp far from the depletion region,

meanwhile maintaining the separation between the latter. However, in this case, an

improved mesh is also tried in the TCAD, in order to improve the smoothness of the

curves. By comparing fig. 4.10d, a little improvement can be appreciated with respect

to the original code result. Nevertheless, this modification yields slightly heavier TCAD

simulations from the computation time standpoint, and thus it is probably not worth

it given the little advantage it provides in the results.
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Figure 4.9: Electron and hole densities of InGaAsP BTJ at equilibrium and at reverse bias

condition with PFFI model; without any GR mechanism.

Recombination rates analysis

Given that a strong confidence that the buried tunnel junction is correctly implemented

in both the simulators is reached, it is time to start a brief analysis on the recombination

rates magnitude in a BTJ at reverse bias condition. Since the definitions shown in 2.1.2

lead to rates equal to zero at equilibrium (due to mass action law (2.9)), the results

illustrated afterwards are obtained at a reverse bias of 2 V, and are evaluated both in

D1ANA and in Sentaurus Device.

Let’s start from Auger recombination process. For this, Auger coefficients are set

to:

Cnnp = 1.2 · 10−30 cm6/s, Cnnp = 8.5 · 10−30 cm6/s

which are the ones inserted in equation (2.13). The obtained rates are plotted in fig.

4.11, where both linear and semi-logarithmic scales are provided in order to perform a

more accurate comparison. First of all, it is worth noticing that the order of magnitude

of such a rate is rather low to provide a significant contribution to charges generation

(≈ 109 cm−3s−1) in the TCAD, and almost equal to 0 (≈ 10−9 cm−3s−1) in D1ANA.

Nevertheless, by multiplying the latter by a factor 4.1016 ·1017, a good superimposition

of the curves is retrieved. The need of the scaling factor is unexpected, because the

used models are exactly the same. An explanation may be sought in the magnitude

of the rate itself: since it is low and is acting alone in the junction (remember that no

other mechanism other than this is acting), D1ANA struggles in calculating it and the

corresponding generated current, therefore it is strongly affected by numerical noise.

Beside this, the biggest discrepancies are found at both the ends of the domain, proba-

bly because Sentaurus Device sets to zero all the recombination rates at the last points

before the contacts. On the other hand, the step-like behaviour originally appreciable
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(d) Charge density with an improved spatial mesh

in Sentaurus Device

Figure 4.10: Energy band diagram at equilibrium and in reverse bias condition, and carrier

densities of InGaAsP-based BTJ at reverse bias condition with PFII model applied, without

any GR mechanism.
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Figure 4.11: Auger recombination rate obtained in D1ANA and in Sentaurus Device TCAD,

in reverse bias condition. Both linear and semi-logarithmic scale are displayed.

in the semilog scale was again due to the mesh used in the TCAD, which then is easily

improved by following the procedure illustrated at the end of section 2.3, obtaining

what is displayed in fig. 4.11b. Eventually, the low level of such a recombination

mechanism leads to the fact that both energy band diagram and charge densities are

basically not modified with respect to figures 4.10b, reporting the results without any

recombination mechanism activated, so they are not reported again here.

Let’s now switch off Auger recombination, and let’s move to the analysis of the

radiative recombination rate. The spontaneous emission coefficient is set to:

Brad = 1.1 · 10−10 cm3/s

in both the simulators. Again, the results are superimposed in figures 4.12. A perfect

overlap of the curves can be appreciated only close to the center of the domain (between

20 and 30 nm), corresponding to the depletion region. The values at the very ends of

the junction are again different due to the reason already discussed for Auger case. A

more significant difference arises at n-side of the junction, even though the order of

magnitude is the same in both the curves. Moreover, just like the Auger recombination,

the rate for such a mechanism is on the order of 1010 cm−3s−1, such that the energy

band diagram and the charge densities are basically not affected by the activation of it.

Shockley-Read-Hall (SRH) recombination rate is the next analysed mechanism, for

which the following electron and hole lifetimes are used in D1ANA:

τn = 5 ps, τp = 20 ps



Master’s Degree Thesis in Nanotechnologies for ICTs 53

0 10 20 30 40 50 60
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
R

ra
d, (

cm
3

s)
-1

1010 Radiative

D1ANA
TCAD

(a) Linear scale

0 5 10 15 20 25 30 35 40 45 50

-1010

-105

-100

-10-5

R
ra

d, (
cm

3
s)

-1

Radiative

D1ANA
TCAD

(b) Semi-logarithmic scale

Figure 4.12: Radiative recombination rate by spontaneous emission obtained in D1ANA

and in Sentaurus Device TCAD. Both linear and semi-logarithmic scale are provided.

On the other hand, Sentaurus Device makes use of a particular model for the lifetimes

computation, such that it is not possible to retrieve the exact values used for the sim-

ulations. However, the trap energy level is set to 0 eV in both the simulators. The

corresponding rates are reported in figures 4.13, in which the apparent good superim-

position must take into account the fact that there is a factor ∼ 125 which separates the

value of the rate coming from D1ANA to the TCAD one in each point of the domain.

This can actually be explained by the lifetimes issue mentioned above. Beside this,

the curves are almost identical across the whole domain (especially at the center of the

depletion region), beside the usual discrepancy at both ends. A huge difference with

respect to Auger and radiative recombinations is that SRH rate reaches values approx-

imately ten orders of magnitude larger (≈ 1019 cm−3s−1). Therefore, both the energy

band diagram and the charge densities are heavily affected by such a mechanism.

For this reason, they are reported in figures 4.14. In particular, in the energy band

diagram plotted in fig. 4.14a, both the quasi-Fermi levels are slightly different with

respect to the case not including SRH mechanism. This is especially true for holes

Efp, for which a hump can be appreciated just near the beginning of the n-side de-

pletion region. For what concerns the comparison between the two simulators, due to

the already mentioned factor ≈ 100 between the rates, the TCAD curve shows a more

pronounced difference with respect to Efp without SRH. This is reflected on the carrier

densities curves, reported in fig. 4.14b: at the center of the structure there is a rather

large discrepancy between the results of the two simulators. It is important to notice

that inside the depletion region, SRH process makes the population densities several

orders of magnitude larger with respect to all the previous cases, even though they are
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Figure 4.13: Shockley-Read-Hall (SRH) recombination rate obtained in D1ANA and in

Sentaurus Device TCAD. Both linear and semi-logarithmic scale are provided.

not yet large enough to create a significant current into the structure. Since none of the

already included mechanism is able to produce large currents in reverse bias condition

across the junction, it is even more clear that the introduction of a model including

BTBT is needed to correctly model carrier injection in VCSELs by means of a BTJ.

Therefore, let’s move to the actual reason for which the tunnel junction is investi-

gated separately: the analysis of the direct interband band-to-band tunneling (BTBT).

For this reason, the refined spatial mesh plotted in fig. 2.1b is used. The values of

the Kane’s parameters for Hurkx’s model used for the comparison are the ones already

mentioned in section 3.2, and not the material dependent ones:

A = 3.4 · 1021 cm−1s−1V −2, B = 22.6 · 106 V/cm

The resulting rates are plotted in fig. 4.15a, while fig. 4.15b displays the comparison

if a coarse mesh were used in Sentaurus Device. First of all, notice that the results

coming from the two simulators are exactly superimposed. Furthermore, curves show

three peaks, corresponding to the regions where the function D becomes significantly

different from zero, i.e., when np� n2
i , and where the electric field is greater than the

critical value given by B. Moreover, BTBT rate is ∼ 7 orders of magnitude larger than

SRH one. Therefore, when activated in the InGaAsP-based BTJ, it has a huge impact

on the junction operations, meaning that all the other mechanisms play a marginal

role in a reversely biased tunnel junction. Let’s start from the analysis of the band

diagram by considering fig. 4.16a. The most clear difference between this case and

all the previous ones is that the electron and hole quasi-Fermi levels are no more

split, such that they are joined in the whole domain in both D1ANA and Sentaurus
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(b) Charge density.

Figure 4.14: Energy band diagram and carrier densities of InGaAsP-based BTJ at reverse

bias condition with PFII model and SRH recombination rate activated.

Device, including the depletion region. As expected, this has a strong impact on the

carrier densities, represented in fig. 4.16b. In fact, inside the depletion region the

levels reached by both of them is significantly larger (several orders of magnitude) with

respect to the Auger, radiative and SRH cases. In turn, this affects the amount of

current able to flow across the tunnel junction in reverse bias. While with the previous

mechanisms the current flowing across the BTJ was very close to zero (or anyhow

lower than the mathematical noise level), when BTBT is activated the obtained result

is different, actually due to the level of density reached around the junction interface.

The generated characteristic is plotted in fig. 4.17, where both D1ANA and Sentaurus

Device TCAD results are plotted and superimposed. The curves are very interesting.

They show an initial quick increase in current, which corresponds to the bias point

at which valence and conduction bands start to get closer and overlook, such that a

significant tunneling window opens, depletion region becomes narrower, electric field

increases, eventually overcoming significantly the critical field B. Then, a region of

less steep increase begins: this is due to the fact that entering deeper in a reverse

bias condition, electrical field increases less, so that BTBT struggles more and more to

bringing more charges from one side to the other of the junction.

It is worth noticing that the trend of the curve is rather different from the one

obtained from the whole VCSEL, already reported in fig. 4.3. In that plot, current

remained very close to zero until a certain bias threshold, followed by an almost linear

increase in current. This means that the layers of the whole device actually play a role

in determining the voltage threshold of the VCSEL, and parasitic resistances strongly

change the current profile. Nevertheless, the magnitude of the obtained current is

roughly the same in both the plotted characteristics.
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Figure 4.15: Superimposition of the BTBT recombination rate curves obtained from D1ANA

and Sentaurus Device by using ”Model E2” in reverse bias. The smaller picture reports the

rate comparison when a coarse mesh is used in the TCAD.
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Figure 4.16: Energy band diagram and carrier densities of InGaAsP-based BTJ at reverse

bias condition with ”Model E2” for band-to-band tunneling. The curves almost perfectly

superimpose because a very fine mesh is used.



Master’s Degree Thesis in Nanotechnologies for ICTs 57

0 0.5 1 1.5 2
Voltage, V

0

1

2

3

4

5

6

7

C
ur

re
nt

, m
A/

cm
2

104

D1ANA
TCAD

Figure 4.17: Current density vs voltage characteristic of the InGaAsP-based BTJ included

in the Lamy’s VCSEL. The curves obtained in D1ANA and in TCAD superimpose perfectly.

A final analysis on BTBT local model is then performed, in order to confirm the

robustness of the implementation of Hurkx’s model inside D1ANA. This involves the

use of a different set of values for the Kane’s parameters, thus giving a different ”weight”

to the electric field contribution. In particular, the values used previously are included

in the so called ”Model E2”, described in Table 82 in [35, p. 452]; in the same table,

another possibility is to choose ”Model E1”, which implies:

A = 1.1 · 1027 cm−2s−1V −1, B = 21.3 · 106 V/cm

The different units of coefficient A are due to the fact that the exponent of the electric

field E changes and becomes 1, instead of 2. Of course, the same set of parameters is

inserted in D1ANA. The corresponding BTBT rate is plotted in fig. 4.18, as always

including results from both simulators: the generation peak reached in the TCAD is

twice as deep as the D1ANA one, probably due to the different meshes used; more

importantly, the order of magnitude ≈ 1031 cm−3s−1 is much greater than the one

obtained for ”Model E2”. Therefore, energy band diagram (reported in fig. 4.19a) is

modified even more strongly than before: in fact, both Efn and Efp are again split

and are different even in the neutral sides. As a consequence, the charge densities (fig.

4.19b) take greater values in the depletion region. The correspondence between the

curves is very good in both the plots, beside a slight difference in the electron density in

the p-side, again confirming that BTBT model is correctly working in D1ANA (band

diagram also shows a discrepancy between the e− quasi-Fermi level). Eventually, the

IV curve obtained from this model is reported in fig. 4.20. The results is radically

different with respect to ”Model E2” curve: current now increases parabolically as the

applied bias grows, and reaches values up to four orders of magnitude greater than
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Figure 4.18: Superimposition of the BTBT recombination rate curves obtained from D1ANA

and Sentaurus Device by using ”Model E1”.

before, which has not any literature confirmation, suggesting that the model is not

suited to this case.

4.2 Short-wavelength BTJ-VCSEL

Since the model exploited for the low band gap tunnel junctions returns results in

a good agreement with literature for large-wavelength VCSELs, let’s now try to in-

vestigate short-wavelength devices including BTJ with Hurkx’s model. This is done

with the aim of producing some new results, since literature is plenty of works talking

about BTJ in 1310-1550 nm VCSEL, but lacks of results for shorter wavelength devices

(GaAs-based BTJ VCSELs, 850-920 nm). The main difference in the structure of the

latter with respect to the former is the energy gap of the used semiconductor alloy,

which becomes much wider (in [40], Eg in the BTJ was ≈ 0.97 eV, while GaAs and

AlGaAs alloys gap is greater than 1.4 eV). The consequence of such a difference is

straightforward: as described in chapter 3, tunneling probability heavily depends on

the value of the gap. This means that an AlGaAs BTJ surely has a reduced tunneling

current with respect to an InGaAsP one, if Hurkx’s model is taken into account. The

results presented afterwards agree with this observation.

For the analysis of such devices, data coming from Chalmers University of Technol-

ogy (contacted by dr. Pierluigi Debernardi) are used as a starting point to generate the

investigated structures. Besides the buried tunnel junctions, in these are also included

oxide apertures (easily realized here since large portions of Al are included in the device
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Figure 4.19: Energy band diagram and carrier densities of InGaAsP-based BTJ at reverse

bias condition with ”Model E1” for band-to-band tunneling.
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Figure 4.20: IV plot of InGaAsP-based BTJ, exploiting ”Model E1”.
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layers), used to better confine the current to a well defined injection area and prevent

surface recombination. The details of all the layers are not shown in a table, unlike done

in table 4.1 for Lamy’s structure, since the devices suggested by Chalmers University

are still object of study and experimental results about them have not been published

yet. However, they are designed to produce an output light at λ = 850 nm. Therefore,

the ternary alloy AlxGa1−xAs is used, with different values of molar fraction x in each

layer. Every alloy parameter is computed by means of a specific linear approximation

coming from the AlGaAs section of the NSM archive [24], because now the indirect

gap GaAs may lead to major problems if a simple Vegard’s approximation similar to

(4.1) was used. Anderson’s rule is used again here by taking a CBO = 0.65, but now

the reference value of Eg and χ is provided by GaAs.

Similarly to the long-wavelength structure analysed in the previous section, the use

of a BTJ allows to reduce the amount of long p-doped layers and contacts, so that

the overall resistance is decreased and efficiency is improved. Furthermore, the molar

fraction in the tunnel junction is tailored to obtain a energy band gap of Eg = 1.566

eV, much greater with respect to the InGaAsP-based BTJ. Two configurations are

simulated, and in both cases the overall investigated VCSELs are longer than Lamy’s

one, because a much wider substrate (≈ 500 nm long) is considered in the geometry.

Active region is not included in these simulations. For the analysis of AlGaAs BTJ

presented afterwards, different doping levels are tested (symmetric and asymmetric),

to evaluate the impact of such a parameter on BTBT mechanism in wide band gap

materials.

4.2.1 Results

For the two short-wavelength VCSELs, both equilibrium and forward bias conditions

are simulated, just like before. The only difference between the two structures is that

the BTJ layers have a different order, such that in one case n-side is grown on p-doped

layer, and in the other one the opposite occurs. Because of the exchange of position of

the pn junction, also some other layers have a different order, but the devices should

work approximately in the same way. Moreover, notice that since the tunnel junction

properly works in reverse bias, in the two structures the bias is applied at opposite

contacts.

At equilibrium, in both the devices does not flow any current, and the obtained

energy band diagrams are plotted in fig. 4.21. Just like in the long-wavelength VCSEL

case, conduction and valence bands in the tunnel junction do not provide any tunneling

path to the carriers, such that tunneling current is null. The regions between 600 and

700 nm are where the oxide apertures are actually placed: a graded doping produces

this well in the band diagram. Again, since both contacts are both n-doped, at equi-

librium their energy levels are exactly the same. The quasi-Fermi levels lie at the same
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Figure 4.21: Energy band diagram of the short-wavelength VCSELs designed by Chalmers

University of Technology at equilibrium condition.

energy of the conduction band in the neutral regions, i.e., at 0 eV in the whole domain.

However, when a forward bias is applied, bringing the BTJ in reverse bias condi-

tion, the devices start to work. The corresponding energy band diagrams are reported

in fig. 4.22. As already mentioned, the bias is applied on the left contact for the p+ on

n+ structure in the left-hand side figure, while it is applied at the right contact for the

n+ on p+ structure. From these, it is clear that the bands corresponding to the tunnel

junctions behave aa expected, providing a tunneling path to the holes which now are

able to flow across the structure by means of band-to-band tunneling, thus generating

a non-zero current. In fact, electron and hole quasi-Fermi levels superimpose in the

BTJ region, whereas the Efp separates from Efn, elsewhere: this is actually the reason

for which the tunnel junctions are introduced in the structures, that are able to inject

holes effectively in absence of p-contacts. Let’s remark that the simulation of both

structures is not as fast as in the long-wavelength case. This is due to the low current

level reached, that makes D1ANA struggle to reach the convergence. A confirmation

is given by the fact that by reducing the BTBT rate in the InGaAsP BTJ-VCSEL

simulation, a similar issue would be encountered.

The IV curves of VCSELs are of course generated, and superimposed in fig. 4.23.

Several observations are needed for such a plot. First of all, as expected, the two

curves as almost identical, beside the fact that n+ on p+ structure reaches slightly

higher values for larger applied bias. Then, a similar overall behaviour with respect

to the homologous IV plot for the long-wavelength VCSEL can be appreciated: at low

bias the current is almost null; on the other hand, when it overcomes a value of ≈ 0.6

V, a steep increase can be noticed, followed by a more gentle linear increase, due to

the overall resistance of the device, just like in the InGaAsP system. Nevertheless,

it must be highlighted that the currents magnitude is considerably lower, displaying
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Figure 4.22: Energy band diagram of the short-wavelength VCSELs designed by University

of Chalmers in forward bias condition, with a 2 V bias applied.

values four and even five orders of magnitude smaller. The most clear consequence of

this is that the IV plots result to be rather noisy. Therefore, D1ANA code struggles to

converge for some values of the voltage sweep, especially near threshold. This is a clear

sign that the used local model is not well suited to simulate wide band gap material

systems. A comparison with literature [44] and with the experimental results provided

by Chalmers University confirms it, since values not so far from InGaAsP device ones

are suggested in both of them (≈ 20 · 103 mA/cm2).

For this reason, a deeper analysis of the BTJ characteristic is even more needed than

the InGaAsP-based one, to understand exactly where Hurkx’s model fails. Therefore,

in the followings, a version of the code which does not require the already mentioned

use of scaling is exploited. It is computationally heavier than the original code, but it

possibly allows to obtain slightly more accurate results.

4.2.2 AlGaAs BTJ

Just like in the case of InGaAsP-based BTJ, let’s go deeper into the details of the

wide gap (Eg = 1.566 eV) tunnel junction included in the short-wavelength VCSEL

previously described. However, all the analysis about charge density models and re-

combination mechanisms already performed for the previous BTJ is left out, so that

only BTBT is investigated in this case. All the simulations are performed by taking

Fermi-Dirac distribution (2.7) and assuming incomplete ionization of dopants model

(2.10); reverse bias condition is obtained by applying a 2 V voltage to the n-side of the

junction, as usual.

The doping levels initially used for the AlGaAs-based BTJ are supposed to be
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Figure 4.23: Current vs voltage comparison of Chalmers’ VCSELs for a forward bias going

from 0 to 2 V.

asymmetric, with ND = 1019 cm−3 (where Te is the dopant, whose activation energy

in AlGaAs is ∆ED = 30 meV) and NA = 1020 cm−3 (with C as a dopant species,

∆EA = 26 meV). All the recombination mechanisms are now activated in D1ANA,

including the BTBT with Kane’s parameters obtained by using (3.22) and (3.23):

A = 2.03 · 1020 cm−1s−1V −2, B = 29.1 · 106 V/cm

The energy band diagram obtained at reverse bias condition is reported in fig.

4.24a: since the doping levels are not equal, the depletion region results to be asym-

metric as well. Furthermore, by comparing it with the InGaAsP-based BTJ band

diagram in fig. 4.16a, it is clear that the bands are much more far away in space,

possibly resulting in a lower junction electric field. The charge distribution is similar

to the one obtained in the InGaAsP system, and is displayed in fig. 4.24b. This, to-

gether with the wider energy gap, surely leads to a significantly lower tunneling rate,

as plotted in fig. 4.25. In the latter, one has to notice that the generation peak reaches

a value ≈ 5.3 · 1021 cm−3s−1, five orders of magnitude lower than in the InGaAsP BTJ,

positioned approximately at the center of the depletion region, with just one side peak

to the asymmetric doping profile, i.e., where np > n2
i and the electric field becomes

larger than the critical value given by B.

The results just explained have a strong impact on the current-voltage character-

istic of the junction, which is plotted in fig. 4.26. In fact, as already mentioned for

the IV curve of the whole device, even though the behaviour of the current is basically

identical to the InGaAsP one, the values reached are considerably lower (more than

five orders of magnitude), such that noise plays an important role (as clear from the

result in fig. 4.26b, that comes from the version of the code including scaling). Noise
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Figure 4.24: Energy band diagram and charge densities of the asymmetrically doped (ND =

1019 cm−3, NA = 1020 cm−3) AlGaAs-based BTJ at reverse bias condition.
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Figure 4.26: Current density vs voltage curve of AlGaAs-based BTJ included in Chalmers

University of Technology VCSEL for a reverse bias going from 0 to 2 V, computed with

different versions D1ANA in case of asymmetric doping profiles.

level is reduced by using the improved version of the code which avoids scaling, thus

yielding the curve in fig. 4.26a, at the cost of a slower simulation.

All the analysis showed until this point highlight the fact that the current flowing in

AlGaAs-based device in reverse bias due to band-to-band tunneling is much lower with

respect to the structure based on lower Eg semiconductor alloys, when modelled with a

local model. Therefore, it is important to understand why Hurkx’s model predicts such

a low level of current, while experimental results coming from Chalmers University of

Technology claim for much larger values. To this aim, several material parameters are

adjusted one at a time, in order to understand which is the critical one.

The first attempts involves a direct adjustment of the BTBT rate. This is obtained

by simply decreasing by two orders of magnitude the critical electric field at which

tunneling becomes significant:

B = 29.1 · 104 V/cm

Due to the exponential dependence of Rbtbt on it, an increase of the GR rate should

be appreciated. Therefore, a simulation (performed with the code including scaling)

at reverse bias is performed. Surprisingly, the resulting current has an identical profile

with respect to the previous case. From this, it is already clear that Hurkx’s model is

very limited, and completely unsuited for such a material system. The explanation to

such a result can be likely retrieved in the fact that a local Rbtbt is not able to grasp all

the details of such a structure, and the wide Eg imposes a limitation to the maximum

reachable current in a DD simulator exploiting this kind of model.
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However, let’s now move to another approach. In the previous attempt, the doping

levels of the junction were asymmetric in p and n-sides. Here, they are set to be equal

to the values used for the InGaAsP-based BTJ:

NA = ND = 5 · 1019 cm−3

while B returns to its previous value. It is didactic to show the BTBT GR rate

computed by the original version of the code, that is plotted in fig. 4.27a. The position

of the main peak changes, and reaches a maximum value of ≈ 1027 cm−3s−1 which

is three orders of magnitude larger than the previous cases. However, such a strong

value of Rbtbt holds only in few mesh points, while it returns to be ”small” in all the

other ones. As a consequence, it basically does not play a significant role in current

transport, and this is the reason why the obtained IV curve (not reported here) does

not reach values larger than the previous case.

Therefore, it is better to move to the improved version of D1ANA. In fig. 4.27b,

the rates for asymmetric (already computed) and symmetric doping profile cases are

displayed. The latter, depicted in blue, has a similar trend to the InGaAsP BTJ,

despite having a generation rate five orders of magnitude smaller, obviously meaning

that a lower tunneling current level must be expected. Such a curve also confirms

that the strong and narrow peaks arising in the code including scaling have no impact

in computing tunneling current, but they are probably due to a mathematical noise.

For this case, it is also interesting to take a look to the energy band diagram of the

tunnel junction in reverse bias condition, which is reported in fig. 4.27c. The bands as

well resemble a lot the InGaAsP-based BTJ ones, with the difference that the distance

between conduction and valence bands in the depletion region, namely the tunneling

path, is slightly larger. Moreover, the depletion region is much shorter, passing from

≈ 20 nm to ≈ 5 nm. This should have an impact on the computed current, because it

modifies the mesh points at which function D (3.25) is different from zero. Eventually,

the IV curve is plotted in fig. 4.27d, where a comparison with the asymmetric doping

case is proposed. It is clear that the current is almost doubled if a symmetric doping

is injected; nevertheless this is not enough to bring current to acceptable values, useful

to make the BTJ-VCSEL working properly. However, it is interesting to notice that a

significant modification of the bands in the depletion region leads to a stronger variation

in current with respect to a simple increase of the BTBT generation rate.

As seen until now, the adjustment of the Hurkx’s model parameters and of the

doping levels has not yielded the expected results on the current. Therefore, the low

values of the latter must be due to one or more material parameters that ”kill” the

carrier motion inside the tunnel junction. In table 4.2, the main parameters of the two

investigated BTJ materials are reported: the biggest differences arise for the energy

gap Eg, the electron affinity χ and the electron mobility µn. Therefore, simulations

on AlGaAs BTJ are performed for each mentioned parameter (keeping the original

asymmetric doping levels and B coefficient), by setting it to be equal to its homologous
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Figure 4.27: BTBT recombination rate, energy band diagram and corresponding IV curve

for symmetric doping levels at both sides of the BTJ.
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Parameter Units In0.66Ga0.34As0.732P0.268 Al0.12Ga0.88As

Eg eV 0.97 1.57

χ eV 4.5 3.98

Nc cm−3 5 · 1017 5 · 1017

Nv cm−3 8.95 · 1018 1.1 · 1019

m∗n m0 0.0754 0.077

m∗p m0 0.5031 0.58

µn cm2 · V −1 · s−1 22400 5500

µp cm2 · V −1 · s−1 390 264

Table 4.2: Comparison of the main alloy parameters of the BTJs included in the short and

long-wavelength VCSELs.

in InGaAsP-based BTJ. While electron affinity modification does not produce any

improvement in current levels and electron mobility adjustment has a similar effect of

imposing a symmetric doping to the pn junction, even a slight decrease of the value of

the energy band gap has a significant impact on the results.

Let’s first try to keep all the parameters untouched, and impose Eg = Eg,InGaAsP =

0.97 eV. The same quantities plotted for the previous cases are reported. In particular,

generation rate by band-to-band tunneling is plotted in fig. 4.28a: the much smaller

Eg leads to a maximum rate five orders of magnitude larger than the original case,

again in the whole BTJ region. The results should approach to the small band gap

alloy BTJ. In fact, a strong impact on the carrier densities and on the energy band

diagram should be expected, mainly because we have deduced that Eg imposes a limit

to the maximum reachable current. The latter is displayed in fig. 4.28b. Beside the

fact that bands get of course closer in the depletion region (which however remains as

wide as before), and thus the tunneling path is shorter, a modification on the holes

quasi-Fermi level Efp can be appreciated. Both these factors lead to IV curve (see fig.

4.28c) very similar to the one obtained for the InGaAsP-based tunnel junction (fig.

4.17) analysed in the previous section, at least for what concern the reached values

which are on the same order of magnitude (≈ 104 mA/cm2). The main difference is

that the initial increase is much less steep, and is characterized by a positive curvature,

namely a parabolic increase, followed by the usual square root trend.

The effect of the energy band gap on tunneling current is worth a further analysis

to understand what it actually acts on to allow such levels of carrier generation and

tunneling current. To this aim, several simulations are run by reducing each time Eg
by 0.1 eV, starting from the original value 1.56 eV. While in the energy band diagram

the only clear difference is represented by a decrease of the band gap, it is much more

interesting to report the charge densities as a function of Eg. This is done in fig. 4.29a,

where gap moves from 1.56 eV to 1.26 eV. Notice that majority carriers are not af-

fected by the gap value; on the other hand, Eg strongly acts on the amount minority
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Figure 4.28: BTBT recombination rate, energy band diagram and corresponding IV curve

computed using an energy gap equal to the InGaAsP-based BTJ one, with the original

asymmetric doping profile.
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charges, and more importantly on the population densities inside the depletion region,

both surely depending on the enhanced BTBT, depicted in fig. 4.29b. This means

that for lower Eg a larger amount of charges is brought from one side to the other of

the junction by BTBT mechanism, strongly enhancing the tunnel current, as plotted

in fig. 4.29c. Thus, it is clear that even a little decrease of the gap leads to much larger

currents, which always follow the usual increasing behaviour.

Some final observations on Hurkx’s model derive from the whole analysis. First

of all, it is straightforward to state that the depletion region length does not play a

crucial role in the value reached by the current, even though it can slightly change its

value. Furthermore, the generation rate Rbtbt does not affect the value of the current

once it reaches high values (on the other hand, if it is reduced even slightly, almost

no current flows any more and the code struggles to converge): what affects the most

the tunneling current is the wideness of the region in the junction where it takes those

values, such that the strong narrow peaks appreciated in the original version D1ANA

actually do not impact on current values at all. As a matter of fact, it is better to

have a lower rate in a larger amount of points, rather than obtaining a very strong

peak in few nodes of the mesh. However, this is still not enough to reach high values

of current: a low gap is also needed, otherwise it remains stuck to noise level. This

impacts directly on the charge densities in the depletion region; the same does not

happen when one of any other parameter is modified.

Notice that all these remarks concern only the Hurkx’s model implemented in

D1ANA (and in Sentaurus Device) and not the actual physical phenomenon of band-

to-band tunneling. In fact, from literature and from Chalmers University of Technology

we know that there are several experimental results that display large values of current

even for wide gap materials BTJs, like AlGaAs. The conclusion is that for these latter

Hurkx’s model is no more valid, such that another kind of model is required to reach

experimental results. This is exactly what is attempted in the next section, in which is

involved the use of the so called non-equilibrium Green’s functions formalism to move

from a local to a non-local BTBT model.

4.3 NEGF simulations

In the previous analysis, it is demonstrated that the simple drift-diffusion simulations

on the small band gap (e.g. InGaAsP) BTJ reveal to be accurate when a simple

local BTBT model is used, whereas completely unsuited for a proper analysis of BTJ

current injection in AlGaAs-based VCSELs. These results suggest to move to a radical

different way to simulate the tunneling phenomenon, based on non-equilibrium Green’s

functions (NEGF) formalism.

This approach is still based on the modelling of tunneling process as an addition of
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Figure 4.29: Charge densities, BTBT and current-voltage curves as a function of the decreas-

ing Eg in the AlGaAs-based BTJ. Doping levels are asymmetric.
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a recombination/generation rate Rbtbt, but NEGF formalism has a more rigorous and

solid physical basis, in which tunneling is included naturally, due to the characteristics

(material, dimension, doping) of the structure, such that it is capable of provide a

non-local GR rate. In fact, when non-equilibrium Green’s functions are used, it is

enough to include the proper system and parameters to the model, so that tunneling

is just a consequence of the system band diagram, with a genuine quantum description

of BTBT. The novelty of this approach is that NEGF is exploited not only to extract

the spectral quantities related to the explored structure, but the resulting tunneling

current is used to extract the BTBT non-local GR rate to be included in the DD model

in place of Hurkx’s rate.

As a matter of fact, NEGF relies on quantum-field theory treating carrier inter-

actions perturbatively by means of self-energies computed within the self-consistent

Born approximation (SCBA). Furthermore, the ballistic nature of BTBT (tunneling

probability is large only in nanoscale dimensions) allows to assume a coherent limit,

thus reducing the otherwise staggering computational cost. Basically, the purpose is to

retrieve a non-local tunneling rate from a 4-band NEGF formalism for the BTJ region

only, and then include the obtained results in D1ANA and eventually evaluate the cor-

responding current-voltage curve. The eigenmodes coming from NEGF approach are

evaluated here in a real-space representation, in order to take into account tunneling

process from any energy value and not only from band-edges, as done in mode-space

representation [45, 46]. Therefore, mode-order reduction [47] is not needed for ballistic

BTBT simulations.

Nevertheless, NEGF formalism also has some limitations: in fact, long systems are

not simulated because they would require a huge amount of time to be completed. This

is the reason why only the BTJ (only few tens of nm long) is investigated by means of

such an approach. Moreover, the obtained results are often not easy to be interpreted,

since a tunneling rate is not returned directly, but only spectral quantities are retrieved,

that integrated in space and energy return macroscopic observables, such as current

or carrier densities. In particular, this formalism provides a microscopic theory of

quantum transport [48] (a simplified treatment is presented in [49]).

However, the nature of the investigated structures allows to restrict the attention to

the coherent limit and to the steady-state regime. In this framework, under equilibrium

conditions electron density is obtained by filling up the states according to the Fermi

function. On the contrary, when a bias is applied to the ballistic device, a flux of carriers

naturally builds up between the contacts by tunneling (even though some carriers are

reflected back by the potential barrier arisen in reverse bias condition). A device in this

condition is very far from equilibrium, given that no scattering mechanism is activated

to drive it back to thermodynamic equilibrium. Since tunneling occurs, the different

states ψα(r) of the Schrödinger equation are occupied in a correlated fashion described
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by a density matrix

ρ(r, r′) =
∑
α,β

ψα(r)ψ∗β(r′)ρ̃αβ (4.2)

where α and β indicates different states, and ρ̃αβ is a correlation term written in

the eigenstate representation. The density matrix actually is the unknown of NEGF

formalism, and is needed to compute all the quantities of interest. In particular, at

equilibrium the sum over its diagonal terms returns the electron density

n(r) =
∑
α

|ψα(r)|2 fFD(Eα − µ) (4.3)

where fFD(Eα − µ) is the Fermi function, µ is the Fermi level and Eα denotes the

eigenenergies of the longitudinal Hamiltonian H: Hξ = EMξ, where M is a matrix

coming from the finite-element modelling used to discretize the 1D longitudinal domain,

in a very similar fashion already presented for the drift-diffusion model. Such an affinity

also reveals to be crucial when the obtained results from NEGF have to be included in

D1ANA. Therefore, density matrix in real space can be written performing a unitary

transformation:

[ρ] = [V ] [ρ̃] [V ]† (4.4)

where [ρ] is a matrix whose columns denote the eigenvectors of M−1H, such that

density matrix takes the following form:

[ρ] = fFD
([
M−1H − µI

])
(4.5)

=

∫
dEfFD(E − µ)δ ([EM −H]) (4.6)

where δ is the Kronecker function that can be defined as follows:

δ ([EM −H]) =
i

2π

(
[(E + iη)M −H]−1 − [(E − iη)M −H]−1) (4.7)

with η is positive infinitesimal called contact broadening parameter that is neglected in

the next simulations since it is required only when bound states are involved (while an

open system is investigated in this work). From (4.7), retarded and advanced Green’s

function are retrieved:

GR(E) = [(E + iη)M −H]−1 (4.8a)

GA(E) = (GR(E))† = [(E − iη)M −H]−1 (4.8b)

which in turn are used to define the spectral function:

[A(E)] = i
([
GR(E)

]
−
[
GR(E)

]†)
(4.9)

that can be seen as the available density of states, such that

[ρ] =

∫
dE

2π
fFD(E − µ) [A(E)] (4.10)
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Far from equilibrium, e.g. when an external tension is applied to the device, µ split

into two values because of the action of different bias at the two contacts. However, by

neglecting scattering processes (and this is exactly what is done when BTJ BTBT is

simulated), left and right eigenstates can be assumed to stay in equilibrium with left

and right contacts, respectively. Therefore, the density matrix can be written as [49]:

[ρ] =

∫
dE

2π
[fFD(E − µ1) [A1(E)]− fFD(E − µ2) [A2(E)]] (4.11)

where [A1,2(E)] = GR(E)Γ1,2(E)GA(E). In the latter,

Γ1,2 = i
[
ΣRB

1,2 − (ΣRB
1,2 )†

]
(4.12)

are the so called broadening functions. The main advantage of NEGF method is con-

tained in the function ΣRB, namely the retarded boundary self-energy, a nn×nn matrix

with all zero entries beside the upper-left and the lower-right corner elements account-

ing for left and right leads. Retarded boundary self-energy is needed to compute the

retarded Green’s function of the device, which has a similar form of (4.8a):

GR
D(E) =

[
EMD −HD − ΣRB

]−1
(4.13)

which is known as Dyson’s equation and shows that the coupling between device and

its carrier reservoirs can be described by simply adding the self-energy matrix to the

device Hamiltonian. Subscript D stands for ”device”, and it is dropped in the following

expressions.

Dyson’s equation must be evaluated numerically by moving from continuous space

variables to a discrete basis and by Fourier transforming from time to energy domain

(this is allowed in steady-state conditions), allowing to write the needed Green’s func-

tions as functions of k [50, 51]:

GR(k,E) =
[
EM −H(k)− ΣR(k,E)

]−1
(4.14a)

GA(k,E) = GR(k,E)† (4.14b)

G≶(k,E) = GR(k,E)Σ≶(k,E)GA(k,E) (4.14c)

where (4.14c) is the Keldysh’s equation, which defines the lesser and greater Green’s

functions. The lesser and greater self-energies are computed with the fluctuation-

dissipation theorem:

Σ<(k,E) = ifFD(E − EF )Γ(k,E) (4.15a)

Σ>(k,E) = i [fFD(E − EF )− 1] Γ(k,E) (4.15b)

Having defined all the needed Green’s functions and the related quantities, let’s now

express the quantities of interest as functions of the latter. In particular, spectrally-

resolved electron density in steady-state is computed by taking the diagonal elements
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of the lesser Green’s function [52] in the continuum limit, and then assuming axial

approximation (k ≈ k), eventually obtaining:

n(zi, E) = − i

2π

∫
dk kG<

i,j(k,E) ≈ i
∆k

2π

∑
kj

kjG
<
i,i(kj, E) (4.16)

that can be integrated over energy to retrieve the level of electron density along the

transport direction z:

n(z) =

∫
dE

2π
n(z, E) ≈ ∆E

2π

∑
j

n(z, Ej) (4.17)

In the NEGF code, ∆k and ∆E are two parameters used to define the spatial and

energy grid. Current density is computed element-wise, as follows [51]:

Jj+1/2(E) =
e

h
∆k
∑
kj

kj[(Hj,j+1(kj)− EMj,j+1)G<
j+1,j(kj, E)−

G<
j,j+1(kj, E)(Hj,j+1(kj)− EMj,j+1)] (4.18)

This approach is really powerful when dealing with ultrashort devices, since ballistic

assumption permits to divide the contact-device-contact structure into two separated

groups whose eigenstates are assumed to remain in equilibrium with the corresponding

contacts. This leads to a huge simplification of the calculations, since it actually allows

to treat a non-equilibrium problem using equilibrium statistical mechanisms.

4.3.1 AlGaAs BTJ

NEGF formalism is therefore applied to the BTJ included in the short-wavelength

VCSEL just presented. The followed procedure is quite cumbersome. First of all, the

simple geometry of the structure is produced in D1ANA, one file for each bias point of

the voltage sweep. These are the starting point for the NEGF simulations. For each

bias point, an output file is generated, and then exported in Matlab, where spectral

quantities can be plotted and investigated. As mentioned, it is not possible to directly

extract a BTBT rate as a NEGF output, so the computed spectral current density

(4.18) is first integrated in energy domain:

JNEGF =
1

2π

∫ Emax

Emin

Jspectral(E)dE (4.19)

such that an overall current density (which due to charge conservation is constant across

the whole transport direction of the system) is retrieved. The parameters defining the

k and energy grid which enter into the expressions (4.16), (4.17) and (4.18) take the

values of ∆k = 0.0455 nm−1 (with kmax = 2 nm−1) and ∆E = 5 meV, respectively.
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The energy integration spans an energy domain going from below 200 meV from the

minimum of the valence band to 200 meV above the maximum of the conduction band.

Then, (4.19) is converted in a GR rate by simply dividing the current value by the

elementary charge constant. Such a rate is assigned to those mesh points in the BTJ

region where bands are overlooking, while it is equal to zero elsewhere. The drawback

of this method is that the retrieved rate does not vary across the points where BTBT

can occur. Therefore, even though a non-local model is exploited to obtain the current

density, tunneling probability does not depends on tunnel path in each point, but comes

from an overall current from which a constant rate is computed and plugged in the DD

solver, which now reproduces the same value of current coming from NEGF.

Once that BTBT GR rate for each bias point of the voltage sweep is computed

from NEGF formalism, a slightly modified version of D1ANA code is launched. In

the latter, after the usual thermodynamic equilibrium simulation needed as a starting

point, a loop on the bias points begins. For each step, BTBT is initially turned off;

then a piece of code recognizes the mesh points where conduction and valence bands

are overlooking: these are the ones where the non-local GR rate will be plugged in.

However, the rate is not immediately set to the value coming from the procedure de-

scribed before, since this would lead to a convergence failure. Therefore, BTBT is

activated and a vector of rates is generated, starting from the value of 1011 cm−3 · s−1:

for each bias point, another loop over the BTBT rate begins until the final value is

reached. Even though this results in a slow code, it is the best way to avoid issues

related to convergence of the code.

Before moving to the analysis of the electrical quantities, it is interesting to comment

on the results coming from NEGF in different bias conditions, in order to grasp some

details about BTBT mechanism across a BTJ. As mentioned, NEGF produces spectral

quantities as output. The spatial grid is obtained by using a spacing of 0.5 nm between

each point. Let’s start the analysis from the equilibrium condition, whose related

quantities are reported in figures 4.30. Since no bias is applied, no BTBT can occur,

therefore the electrons spectral density (fig. 4.30a) is different from zero only at the

bottom of the CB of the n-doped side, whereas holes spectral density (fig. 4.30b) is

non-zero only at the top of the VB of the p-doped side of the BTJ. Just in a very

thin region near the band edges carrier densities take significant values, because of the

position of the Fermi level. Local density of states (LDOS) is reported in fig. 4.30c,

while in fig. 4.30d a cut of the local density of states is provided, from which it is

clear that no states exist below 0 eV level. The ripples in the LDOS are due to the

discretization used in the NEGF code.

Then, the system slowly enters the reverse bias condition. At V = 0.5 V bands

level allows BTBT mechanism to occur. It is interesting to notice that in the cut of the

LDOS provided in fig. 4.31a, some states are available below 0 eV, until -0.5 eV, thanks

to the action of the applied bias: therefore, the main contribution to the tunneling



Master’s Degree Thesis in Nanotechnologies for ICTs 77

eSpectral Density, 1/(eV*cm3)

0 20 40 60
Position, nm

-1.5

-1

-0.5

0

0.5

1

1.5

En
er

gy
, e

V

0

2

4

6

8

10

12
×1019

(a) Electrons spectral density

hSpectral Density, 1/(eV*cm3)

0 20 40 60
Position, nm

-1.5

-1

-0.5

0

0.5

1

1.5

En
er

gy
, e

V

0

2

4

6

8

10

12

14

16

18
×1020

(b) Holes spectral density

LDOS, 1/(eV*cm3)

0 20 40 60
Position, nm

-1.5

-1

-0.5

0

0.5

1

1.5

En
er

gy
, e

V

0

2

4

6

8

10

12

14
×1022

(c) Local density of states

0 2 4 6 8
×104

-1.5

-1

-0.5

0

0.5

1

1.5

En
er

gy
, e

V

LDOS0, 1/(eV*cm3)

(d) Local density of states

Figure 4.30: Spectral quantities in the AlGaAs BTJ simulated with NEGF at equilibrium.
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Figure 4.31: Spectral quantities in the AlGaAs BTJ simulated with NEGF at reverse bias

(0.5 V).

current comes from the holes, as plotted in fig. 4.31b, whereas electron current stays

at zero. The spectral current density profile is in reported in fig. 4.31c, from which it

should be highlighted that the major contribution to the spectral current density comes

from the 0 eV level, corresponding to the VB band edge at p-side, whereas carriers

moving deeper in the band participate less to the tunneling process.

In figures 4.32, a bias of 1 V is applied to the junction. The cut of the LDOS is

again reported in fig. 4.32a, where a considerably larger density of states is available

for tunneling. This result already demonstrates that tunnel junctions can be exploited

to effectively inject holes into a VCSEL active region. The value of spectral current,

whose corresponding plot is displayed in fig. 4.32b, reaches values of thousands of

A/(eV · cm2), meaning that BTBT is actually capable of building of generating a large

current across the junction. Again, (4.19) must be used to retrieve the corresponding

current density value.
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Figure 4.32: Spectral quantities in the AlGaAs BTJ simulated with NEGF at reverse bias

(1 V).

Eventually, the results for the last bias point (corresponding to 2 V) of the voltage

sweep are reported in fig. 4.33. It is interesting to notice (from fig. 4.33b) how the en-

largement of the bias window (and, consequently, of the tunneling window), leads to a

larger range of energies for which carriers are able to provide a significant contribution

to the tunneling current, which in fact is one order of magnitude greater with respect

to the previous case. The effect of the wider tunneling window is even more clear from

the LDOS cut reported in fig. 4.33a.

By applying (4.19) to all bias points investigated by means of NEGF formalism,

the current density vs voltage curve plotted in fig. 4.34a is obtained. Some remarks

are needed for it. First of all, the curve reaches values two times larger with respect to

the InGaAsP-based BTJ ones, and several orders of magnitude larger than the current

density values coming from Hurkx’s model. This means that a short-wavelength emit-

ting device implementing such a tunnel junction may actually work properly. However,

one has to take into account that now the curve shows a different trend: while the small

band gap system was characterized by an initial steep increase followed by a milder one,

here current density stays low for bias smaller than 0.5 V, and then there is a parabolic

increase of current. The curve reporting of the rates Rbtbt (in semilog scale) computed

from NEGF as a function of the applied bias is displayed in fig. 4.34b. Notice that the

maximum value, of course reached at V = 2 V, is four orders of magnitude larger than

the peak values coming from Hurkx’s model applied to InGaAsP system.

In order to give a satisfactory explanation to the result just presented, it is worth

taking a look to energy band diagram and to the charge densities computed in DD

when it exploits the non-local BTBT GR rate from NEGF formalism, when the applied

tension is equal to 2 V. The former is reported in fig. 4.35a, which is very similar to
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Figure 4.33: Spectral quantities in the AlGaAs BTJ simulated with NEGF at reverse bias

(2 V).
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the one coming from Hurkx’s model. The greatest difference can be appreciated in

the behaviour of both the quasi-Fermi levels inside the depletion region. Let’s recall

that in the local BTBT model they were joined in the whole spatial domain (see fig.

4.24a. On the contrary, the use of a non-local rate heavily modifies their behaviour,

making them splitting and crossing several times. Furthermore, the plot highlights

with a circle the points where tunneling of carriers occurs (of course, at equilibrium,

there will be no points tagged with a circle, and overall tunneling is equal to zero).

The modifications in the energy band diagram obviously lead to huge differences in the

carrier densities profile, as clear from fig. 4.35b. The steep changes are due to the fact

that tunneling rate is abruptly plugged only at the already discussed tagged points,

and it does not reduces mildly close to the neutral sides. However, the most worthwhile

difference with respect to the Hurkx’s model result (see fig. 4.24b) is that the charge

levels in the depletion region are significantly larger, and very close to the level reached

by the InGaAsP-based BTJ. This explains the high level of current reached across the

junction in this new framework.
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CHAPTER 5

Conclusions and outlook

The carrier injection analysis performed about buried tunnel junctions VCSEL through-

out the whole thesis work underlines that the goal of reaching a solid modelling of

interband band-to-band tunneling is far from being said complete, at least in the drift-

diffusion model framework. Nevertheless, it is demonstrated that BTJs efficiently in-

ject carriers in the active region of a VCSEL, thus effectively substituting p-doped

contacts. VCSEL performances are consequently improved when a properly designed

tunnel junction is included in its layer (as discussed in the first chapter), with the ad-

ditional advantage of a simplified fabrication process, when compared to the standard

structure growth techniques (e.g. oxide aperture realization). However, whereas the

simplest models that treat BTBT as a local generation-recombination rate, e.g. Hurkx

and Kane’s models (which are diffusely described in the third chapter), are suited only

for small band gap semiconductors and thus for long-wavelength devices application, as

described in section 4.1, on the other hand they completely fail when they are exploited

to deal with wide gap materials (see section 4.2) BTJs.

The results coming from Hurkx’s model implementation in a drift-diffusion solver

suggest the need of more refined and rigorous methods to explore BTBT. The idea of

using NEGF formalism comes from the fact that it has already been demonstrated to

be a great solution to compute tunneling currents across nanoscaled structure over the

years, especially in ballistic approximation and in steady-state conditions. The high

degree of accuracy of such an approach, compared to the strongly approximated re-

sults coming from drift-diffusion models, is balanced by its huge computational burden,

which makes it unsuited to work with structures longer than few hundreds of nanome-

ters. Since it cannot be used to simulate a complete VCSEL, here it is employed for

a novel scope. As a matter of fact, in order to go beyond local models, it is actually

exploited to compute a non-local GR rate starting from a genuine quantum mechan-

ical description of the tunneling mechanism. The thesis work only investigates the

application of NEGF-based rate in wide-band gap AlGaAs-based BTJ. However, the

final goal must involve the simulation of a complete structure, but several convergence

83
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issues must be addressed before being able to obtain results for a BTJ-VCSEL.

A further work should also deal with a more sophisticated method of tunneling

points recognition, which should be able to give a larger weight to the tunneling occur-

ring in the points closer in space with respect to the ones more far away. This would

lead to a more realistic and accurate simulation of the carrier tunneling phenomenon

across a tunnel junction, and it could be also one of the possible way to solve the

arising convergence issues. Furthermore, an optoelectronic device needs a multiphysics

simulation (such as the academic simulator VENUS) able to solve in a self-consistent

fashion optical, thermal and electric problems. Therefore, having demonstrated the

improvements provided by the inclusion of a BTJ in VCSELs structures from the elec-

trical standpoint, a deep analysis of the optical and thermal ameliorations is needed to

reach a comprehensive understanding of the advantages of buried tunnel junctions.
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