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A B ST R A C T

In this thesis an algorithmic procedure to characterize a non linear harmonic resonator is de-
scribed and the computation of the resonator’s stability limit potential is performed by the means
of homotopy analysis method. The homotopic amplitude response approximation is reduced to a
third order polynomial using Cardano’s formulae. With the extracted solutions, a batch of mock
data is generated. Consequently, the mock data is fitted to check its sensitivity to initial condi-
tions and the formula is used to fit experimental data.
Python is used as the coding language to perform all operations and the code is disclosed. The
summary of the algorithm’s robustness and the fitting of the experimental data are reported, the
setup used is also described. The experiments were carried out with industrial pressure sensors
of microGauge AG. The results obtained proves that the following method can be used to char-
acterize non linear oscillator for industrial applications.
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1 I N T R O D U C T I O N

aim

The company microGauge is a start-up and spin off of E.T.H. (Swiss Federal Institute of Tech-
nology), that develops pressure sensors. Every new sensor needs to be calibrated before being
used. An operator performs several frequency sweeps with different actuation potentials and the
response amplitude is evaluated. The operator chooses the actuation potential that makes the
oscillator look linear.
This procedure aims to find the best signal to noise ratio, since every sensor has lower detection
limit due to electronics noise, the input signal needs to be amplified up to the linearity boundary.
However, the company used to make those measurements manually trying different actuations,
then by evaluating the response, the actuation potential that make the response’s amplitude look
like a Cauchy distribution is choosen. This kind of procedure depends on the arbitrary evaluation
of the operator so, to make the calibration automatic, an algorithm to find an objective set-point
is necessary.
The aim of this porject is to find an objective set-point, for an automatic calibration procedure of
pressure sensors.

h.a.m.: homotopy analysis method

Shijun Liao, the author of homotopy analysis method, describes the homotopy analysis as "a
global convergent numerical method mainly for non linear differential equations" [1, Advances
in the homotopy analysis method, page v].
The roots of this method reside in the concept of homotopy, which consists of the continuous
transformation of one function to another, especially mapping space "MAP(X, Y)" from the first
function to the second. Two mathematical objects are said to be homotopic if one can be contin-
uously deformed into the other, this concept was first formulated by Poincaré around 1900 [2,
Homotopy Theory and Models].
An example of homotopy can be a continuous deformation of a cup to a doughnut shape. How-
ever, the cup cannot be continuously deformed into a sphere because this kind of shape does not
contain an opening.
In the frame of non linear analytic solutions, the novelty of H.A.M. consists of:

1. no dependence on small physical parameters

2. great freedom to choose the analytic equation and solution expression of high order ap-
proximation
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3. guaranteeing the convergence of approximation series

[1, Advances in the homotopy analysis method, page 5]
Georg Cantor pointed out in his book [3, From Kant to Hilbert : a source book in the foundations
of mathematics] that "the essence of mathematics lies entirely in its freedom". This quote resumes
fully the substance of H.A.M.
The flexibility of choosing the equation type and the solution expression are the keys of the
success of H.A.M. Some noticeable examples of the achievements of this method are listed below:

• boundary-layer flows

• optimal boundary of American put option

• multiple equilibrium-states of resonant waves in deep water

Other examples can be found in [1, Advances in the homotopy analysis method].
In this thesis, H.A.M. is applied to study the non linear regime of a harmonic resonator and the
non linear factor is correlated with the actuation potential of the resonator.
H.A.M. provides a powerful solution to predict the amplitude response in strongly non linear
oscillator, conversely it can parse significant parameters from the experimental data of a resonator
as described in chapter 2. Chapter 3 illustrates the methodology used, with examples of mock and
experimental data, and chapter 4 discusses how to employ the results in the frame of automatic
calibration.
The mathematical assumption and correlation are in the Appendix A or in the paper [4, Nonlinear
dynamics of MEMS/NEMS resonators]. In the Appendix B the company’s gain from this project
is presented and in the Appendix B the list of symbols used is shown.



2 N O N L I N E A R H A R M O N I C R E S O N ATO R

Starting from the linear harmonic oscillator, non linear resonator behaviour is discussed with a
description of its potential function.
A brief explanation on how to use homotopy analysis method to extrapolate non linear solutions
is provided and using Cardano’s formulae an explicit solution is extracted.

2.1 duffing equation

The Duffing equation was developed by Georg Duffing during the first world war at the Technical
University of Berlin.

d2u
dτ2 + µ ·

du
dτ

+ λ2 · u + k2 · u2 + k3 · u3 = K · cos(w · τ) (2.1)

The expression 2.1 is a non linear second order differential equation where:

• u(τ) : modal displacement

• τ : time

• µ : viscous damping

• λ : natural frequency of the beam in its equilibrium configuration

• w : actuation frequency

• K : actuation amplitude

• k2 : second order non linear term

• k3 : third order non linear term

This equation became well-known to study different phenomena, from non Hooke springs to
electronic circuits and transformers with iron core. In particular the k2 coefficient represents
the long-term mean displacement of the resonator that presents a static buckling, while the k3

parameter represents the third order coefficient of a non linear Hooke’s spring:

F = C1z + C3z3

Where F is the force applied, C1 the linear spring constant, C3 the first order approximation term
of the non linear spring constant and z the displacement.

3



2.1 duffing equation 4

The appearance of C3z3 leads the resonator to have hardening or softening effect, further details
in A.1b.
The linear correspond of the Duffing equation is the harmonic oscillator [5, The Duffing oscillator].

d2u
dτ2 + µ ·

du
dτ

+ λ2 · u = K · cos(w · τ) (2.2)

The linear configuration of a resonator can be solved analytically and can be a starting point to
study the non linear case. The solution is:

u(τ) = K · cos(wτ − $) (2.3)

Which inserted into the oscillator gives an ellipse in the phase space (x, v) = (x, ẋ) [5, The Duffing
oscillator, page 158]. (

u(τ)
K

)
+

(
u̇(τ)
wK

)
= 1 (2.4)

The amplitude u and the phase shift $ depend on the driving frequency w, which shows a be-
haviour similar to a Lorentzian function:

u(w, A, λ, σ) =
A
π

σ

(w2 − λ2) + σ2 (2.5)

tan($(w)) =
µ · w

λ2 − w2 (2.6)

In which σ is the standard deviation of the Lorentzian function.
The resonance frequency is [5, The Duffing oscillator, page 158]:

wres =

√
λ2 − (µ/2)2 (2.7)

The appearance of the cubic term in the non linear formula introduces complexity into the so-
lution, in particular the superposition principle is no longer valid so the linear combination of
orthogonal solutions does not solve the equation of the motion.
The long time behaviour trajectories approach different types of strange attractors for diverse
initial conditions. Several strange attractors can also coexist in the same phase plane. More infor-
mation can be obtained by parsing the potential belonging to the time independent part of the
force:
integrating the segment λ2 · u + k3 · u3, an approximation of the potential V(u) is obtained. This
equation shows an heuristic behaviour of the real potential.

V(u) =
1
2

λ2 · u2 +
1
4

k3 · u4 (2.8)

The equation 2.8 can be viewed as the Taylor expansion of a general, symmetric, potential [5, The
Duffing oscillator, page 159]. An important factor is the parameter λ2 that can also be negative, in
the latter case λ cannot be considered as a frequency. The figure 2.1 shows the potential function
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for the cases λ2 positive and negative. For u close to zero the potential is almost harmonic while
for λ2 < 0 the system shows two local minima at:

Figure 2.1: Potential function in case of a positive λ2 (thin line) and negative λ2 (thick line). This image
was extracted from the article [5, The Duffing oscillator, page 159]

u± = ±
√
−λ2/k3 (2.9)

with depth −λ4/4k3.
The two local minima can explain the hysteresis behaviour of certain oscillator, however the
problem’s complexity requires an exhaustive mathematical analysis.

2.2 h.a.m applied to resonator

An analytical solution which is able to predict the non-linear response of a mechanical resonator
is also capable of predicting a hardening-type behaviour, softening-type or mixed frequency
response. It starts with the definition of "rule of the solution expression" which consists of an
equation responsible for computing the deviation in temporal average of amplitude [4, Non
linear dynamics of MEMS/NEMS resonators]. It is supposed that the solution of equation 2.1 is
the following:

u(τ) = δ +
∞

∑
k=1

(
Uk · exp(ikwτ) + Uk · exp(−ikwτ)

)
(2.10)

• δ: long-time average of the harmonic response

• Uk, Uk: complex conjugate constants
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Using an embedded parameter p ∈ [0, 1] it is possible to exhibit a continuous evolution from an
initial estimation to the exact solution. More details are reported in the Appendix A.
The zero-order deformation equation is stated below A.11:

(1 − p) · Γ [φ (τ, p) − u0(τ)] = c0 · p · Ψ [φ (τ, p)] (2.11)

The expression 2.11 represents the starting point for the deformation equation of higher order
equations.
Given u0(τ) as the initial estimate using the template of eq. A.12, the first order deformation
equation is displayed in A.19:

∂2u1(τ)

∂τ2 + w2 · u1(τ) = c0 · Ψ [u0 (τ) , τ] (2.12)

The formula A.19 must have bounded solution so it is necessary to eliminate the secular and
constant terms by setting them to zero.
Zeroing secular terms:

c0 · f1
(
U, U, δ

)
= 0 (2.13)

Zeroing constant terms:
c0 · g1

(
U, U, δ

)
= 0 (2.14)

The coefficients U, U are defined by the amplitude z and the phase shift b of the response signal.

U =
1
2

zei · b

U =
1
2

ze−i · b (2.15)

Introducing them into equations A.20 and A.21, it is possible to obtain the long-time average
constant and the response frequency.

δ =
−z2 · k2

2λ2 + 3z2 · k3
(2.16)

(
2k2 · δ · z +

3
4

k3 · z3 +
(
λ2 − w2) · z

)2

+ (µ · w · z)2 = K2 (2.17)

2.3 h.a.m. solution

In the case where the steady state average of the system response is zero, then δ = 0. So, the
first order solution is: (

3
4

k3 · z3 +
(
λ2 − w2) · z

)2

+ (µ · w · z)2 = K2 (2.18)
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The quadratic term is now expanded:

9
16

k2
3 · z6 +

3
2

k3
(
λ2 − w2) · z4 +

[
µ2

0 · w2 +
(
λ2 − w2)2

]
· z2 = K2 (2.19)

With the replacement of y = z2 it is possible to solve the above equation as a third-order polyno-
mial, losing three of the six solutions. Since the equation is even, the six solutions are symmetrical
and solving the third order equation gives the positive portion of the solutions.

9
16

k2
3 · y3 +

3
2

k3
(
λ2 − w2) · y2 +

[
µ2

0 · w2 +
(
λ2 − w2)2

]
· y − K2 = 0 (2.20)

The coefficients are substituted for clarity.

a =
9

16
k2

3 (2.21)

b =
3
2

k3
(
λ2 − w2) (2.22)

c =
[
µ2

0 · w2 +
(
λ2 − w2)2

]
(2.23)

d = −K2 (2.24)

(2.25)

It yields:
a · y3 + b · y2 + c · y + d = 0 (2.26)

2.4 cardano’s method

Gerolamo Cardano was an Italian doctor, mathematician, philosopher and astrologer. He was
recognized as the inventor of the universal joint as well as the founder of probability and the
discoverer of the roots of the cubic function [6, Cardano].
Cardano’s formulae of the third-order equation requires a 6= 0 and consequently k3 6= 0.
It is defined y = x − b

3a , replacing y with x in the third-order equation yields:

x3 +

(
c
a
− b2

3a2

)
· x +

d
a
− b · c

3a2 +
2b3

27a3 = 0 (2.27)

Replacing p = c
a −

b2

3a2 and q = d
a −

b · c
3a2 + 2b3

27a3

x3 + p · x + q = 0 (2.28)

Now ∆ is defined as:

∆ =
q2

4
+

p3

27
(2.29)
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There are three possible conditions based on the positivity of Delta, each condition yields differ-
ent equations for the solutions. To proceed finding the roots it is necessary to assert the identity:

x = u + v (2.30)

Powering to the third order

x3 = (u + v)3 (2.31)

x3 = u3 + 3u2v + 3uv2 + v3 (2.32)

x3 = u3 + v3 + 3uv · (u + v) (2.33)

x3 = u3 + v3 + 3uv · x (2.34)

x3 − 3uv · x−
(
u3 + v3) = 0 (2.35)

Based on hypothesis, the solution to this third order equation is known (the solution is x =

u + v). So it is possible to match the coefficients of this equation with the coefficients of the
reduced equation in x. {

−3uv = p

−
(
u3 + v3) = q

(2.36)

so {
uv = − p

3

u3 + v3 = −q
(2.37)

To solve for u and v, the first equation needs to be expressed in the cubic form.{
u3v3 = − p3

27

u3 + v3 = −q
(2.38)

Thus, it is possible to solve for u and v as a second-order equation.

u = 3

√
− q

2
+
√

∆ (2.39)

v = 3

√
− q

2
−
√

∆ (2.40)

In the domain of complex numbers the cubic root has three solutions:

u1 , u2 , u3

and
v1 , v2 , v3
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The total combinations of solutions are nine: ui, vj for i , j ∈ (1, 2, 3)
However, according to the first equation declared:

uv = − p
3

The product uv has to be a real number, so among the nine possible tuples only three respect the
condition:

uv ∈ <

Specifically, only the tuples in which ui, vi are complex conjugate respect the above condition.

(u1 , v1) , (u2 , v2) , (u3 , v3)

The triplet u1, u2, u3 are separated by 120◦ angle in the complex plane. The same is also valid for
v1, v2, v3.
All the cases for ∆ were analysed and the solutions extracted are shown below.
Case ∆ > 0

y1 = x1 −
b

3a
= − b

3a
+ u + v (2.41)

y2 = x2 −
b

3a
= − b

3a
+ u ·

(
−1

2
+ i
√

3
2

)
+ v ·

(
−1

2
− i
√

3
2

)
(2.42)

y3 = x3 −
b

3a
= − b

3a
+ u ·

(
−1

2
− i
√

3
2

)
+ v ·

(
−1

2
+ i
√

3
2

)
(2.43)

Case ∆ = 0

y1 = x1 −
b

3a
= − b

3a
− 2 3

√
q
2

(2.44)

y2 = x2 −
b

3a
= − b

3a
+ 3

√
q
2

(2.45)

y3 = y2 (2.46)

Case ∆ < 0

ρ · (cos θ + i · sin θ) = − q
2
+ i
√
−∆ (2.47)

y1 = x1 −
b

3a
= − b

3a
+ 2

√
−p
3

· cos
θ

3
(2.48)

y2 = x2 −
b

3a
= − b

3a
+ 2

√
−p
3

· cos
θ + 2π

3
(2.49)

y3 = x3 −
b

3a
= − b

3a
+ 2

√
−p
3

· cos
θ + 4π

3
(2.50)

In the case of ∆ > 0:



2.4 cardano’s method 10

• one solution (y1) is real

• the other two solutions are complex conjugate (y2, y3)

In the case of ∆ = 0:

• one solution (y1) is real

• the other two solutions are coincident (y2, y3)

In the case of ∆ < 0, so
( p

3

)3
< −

( q
2

)2:

• all the solutions (y1, y2, y3) are real

The three solutions represent the zero-derivatives of the potential where two of them, y1 and y3

are long-term stable solutions and y2 is the unstable solution.



3 M E T H O D O LO GY

A new model has to be tested before being applied in the field in order to make sure its consis-
tency and reliability.
The first order H.A.M. solution is extrapolated and it is used to generate mock data using the
same parameter’s values from the paper by F. Tajaddodianfar, M. R. H. Yazdi, H. N. Pishkenari
[4, Non linear dynamics of MEMS/NEMS resonators], to check for repeatability of the results.
The correct replication of the paper’s examples proves the extrapolation of the mathematical laws
to be correct. Consequently, a batch of mock data with known parameters is created in order to
be fitted to check if the algorithm converge to the right solutions.
The parameters’ effect on the solution and the microGauge’s experimental set-up are described.
Finally, real experimental data from microGauge’s pressure sensor is fitted and an actuation limit
potential is computed.

3.1 mock data

An industrial pressure sensor device is normally driven to have linear response thus, in the frame
of Cardano’s solutions it is equivalent to having ∆ > 0. As a consequence, an artificial batch of
data with ∆ > 0 is created to represent the conditions similar to real laboratory experiments, then
the computed data is fitted using the Python’s package lmfit [7, LMFIT: Non-Linear Least-Square
Minimization and Curve-Fitting for Python].
The sweeping variable w is the actuation frequency of the resonator and its unit is Hz. The
amplitude of the resonator is derived from the conversion of a transimpedance amplifier to
potential, and thus its unit is arbitrary. In the mock data generation the same convention was
kept.
The parameters: k3 , k2 , λ , µ , K were chosen such that ∆ has to be always greater than zero.

k3 = −0.02

k2 = 0

λ = 10

µ = 0.001

K = 0.01

11
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Using the Cardano’s formula 2.41 the solution was extracted only for the branch y1 and the
frequency w was swept between 9.995 ≤ w ≤ 10.005 .
In the code language these equivalents are made:

µ = mu (3.1)

λ = lb (3.2)

Applying all the substitutions:

#The p o l y n o m i a l e q u a t i o n c o n s i d e r e d i s ay^3+by^2+cy+d=0
# a i s t h e f i r s t c o e f f i c i e n t o f t h e t h i r d o r d e r po lynomia l , f ( k3 )
a =9*k3 **2/16

# b i s t h e s e c o n d c o e f f i c i e n t o f t h e t h i r d o r d e r po lynomia l , f ( k3 , l b ,w)
b=3*k3 * ( lb * * 2 − w* * 2 ) / 2

# c i s t h e t h i r d c o e f f i c i e n t o f t h e t h i r d o r d e r po lynomia l , f ( l b , w, mu)
c = ( ( lb * * 2 − w* * 2 ) * * 2 + (mu* * 2 ) *w* * 2 )
# d i s t h e l a s t c o e f f i c i e n t o f t h e t h i r d o r d e r po lynomia l , f (K)
d= −K* * 2

# p i s an i n t e r m i d i a t e c a l c u l a t i o n
p= c/a − b * * 2 / ( 3 * a * * 2 )
# q i s an i n t e r m i d i a t e c a l c u l a t i o n
q= d/a − b * c /(3* a * * 2 ) + 2* b * * 3 / ( 2 7 * a * * 3 )

# D e l t a c o n t r o l s t h e number o f r e a l s o l u t i o n ,
# thus t h e s t a b i l i t y o f t h e r e s o n a t o r
d e l t a = q**2/4 + p**3/27

# i n i t i a l i z a t i o n
u = np . zeros ( len ( d e l t a ) )
v = np . zeros ( len ( d e l t a ) )

y1 = np . zeros ( len (w) )

The real solution of the third order equation was computed.

# P e r f o r m s a l o o p t o a s s i g n an a m p l i t u d e f o r e a c h f r e q u e n c y (w) v a l u e
for i in range ( 0 , len (w) ) :

# Case o f Del ta >0
i f d e l t a [ i ] > 0 :

# Those n e s t e d ’ i f ’ g i v e s t o u on ly
# t h e r e a l s o l u t i o n o f c u b i c r o o t
i f −q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) > 0 :

u [ i ]= mp. c b r t (−q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) )
e l i f −q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) < 0 :
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u [ i ]= −mp. c b r t ( np . abs(−q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) ) )
e lse :

u [ i ]= 0

# Nes ted ’ i f ’ f o r v , i t g i v e s on ly
# t h e r e a l s o l u t i o n o f c u b i c r o o t
i f −q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) > 0 :

v [ i ]= mp. c b r t (−q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) )
e l i f −q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) < 0 :

v [ i ]= −mp. c b r t ( np . abs(−q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) ) )
e lse :

v [ i ]= 0

# r e a l a m p l i t u d e s o l u t i o n
y1 [ i ] = −b [ i ] / ( 3 * a ) + u [ i ] + v [ i ]

e lse :
# c h e c k i s t h e r e a r e any n e g a t i v e v a l u e s

r a i s e ValueError ( ’ d e l t a has to be g r e a t e r than 0 . ’ )

Previously it was declared y = z2, so the conversion of y gives the solution of H.A.M.

z =
√

y

The following figure 3.1 represents the case k3 close to zero and ∆ > 0 everywhere.
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Figure 3.1: Plot of the mock data with the coefficients k3 = −0.02, k2 = 0, λ = 10, µ = 0.001, K = 0.01.
This image was generated through Python script

3.2 parameters analysis

The positivity of ∆ is very important to understand the phenomenological behaviour of the
resonator as well as its relationship with the physical parameters. First, the formula is expanded
until the Duffing’s parameters become visible.

∆ =

(
3ac− b2)2

36a4 +

(
27a2d− 9abc + 2b3)3

274a9 (3.3)

∆ =
1

9a4 ·

[
9a2c2 + b4 − 6ab2c

4
+

(
27a2d− 9abc + 2b3)3

310a5

]
(3.4)

it can be re-written as:

∆ =
27a2d2 − 18abcd + 4ac3 + 4b3d− b2c2

108a4 (3.5)
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With k3, lb , mu , K parameters:

∆ =
64

81k4
3

·
[

K2 +
8
81
(
lb2 − w2)2

+ 9w2mu2
]2

+
4096
729k6

3
·

[
mu2w2 −

(
lb2 − w2)2

3

]3

(3.6)

The Jacobian of ∆ is composed of:

∂∆
∂k3

= − 1
k3

·
(

q2 +
2p3

9

)
(3.7)

∂∆
∂K

= −16qK
9k2

3
(3.8)

∂∆
∂mu

=
32 · mu · w2

81k2
3

·
(
−4q ·

(
lb2 − w2) + p2) (3.9)

∂∆
∂lb

=
64lb
81k2

3
·

[
−2q ·

(
(lb2 − w2)2

3
+ mu2w2

)
+

p2 ·
(
w2 − lb2)

3

]
(3.10)

The value of ∆ is totally positive when k3 is close to zero. For increasing values of k3 it would
be divided into three parts, a range of frequencies to the left where ∆ > 0, a center range where
∆ < 0 and the remaining part where ∆ > 0.
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Figure 3.2: According to the skewness of the data, the plot can be divided into three parts, the parts that
have only one real solution, in which ∆ > 0, and the part with three real solutions, in which
∆ < 0. This image was generated through Python script

In the frame of H.A.M., the k3 controls only the curve’s skew, hence the non linearity of the
function.
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Figure 3.3: The parameter k3 is directly proportional to the skewness of the plot, it would lean towards
the left in the case of softening, and towards the right in the case of hardening. This image
was generated through Python script

The viscosity parameter µ would enlarge the curve and decrease the peak’s value, if too large
it can resolve the curve to Lorentzian-like:
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Figure 3.4: The parameter µ is inversely proportional to the quality factor. This image was generated
through Python script

The K parameter is proportional to the force applied to the resonator thus, K ∝ (VAC + VDC)
2.

It controls the amplitude and the curve’s skew.
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Figure 3.5: The parameter K is directly proportional to the square of the actuation potential, it influences
the peak’s amplitude and the non linearity. This image was generated through Python script

3.3 fitting

In this section, the procedure to fit the generated data and the outcome quality of this algorithm
are presented. To check for the robustness, first the mock data is fitted and the parameters are
compared with the initial coefficients, then the procedure is applied to the experimental data.

3.3.1 Fitting mock data

The fitting procedure uses the Python package lmfit [8, LMFIT: Non-Linear Least-Square Min-
imization and Curve-Fitting for Python], which performs least-squares fitting and calculates the
residuals.
The residuals are the differences in amplitude values between the points calculated through the
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estimated parameters and the given amplitude points. The residuals are minimized in the sum
least-square mean varying the three parameters in an iterative loop.

residuals =
N

∑
i
(zi,estimated − zi)

2 (3.11)

In the case of ∆ > 0 only one solution is real, thus the fitting is constrained to one point. In the
case of ∆ < 0, instead, there are three real solutions, and thus the program will select the solution
with the minor module difference with respect to the experimental data point.

i = min
index

(||zn − y1||, ||zn − y2||, ||zn − y3||) (3.12)

zestimated =
√

yi (3.13)

The centre of the frequency axes is the initial condition for the resonant frequency (λ). It is an
accurate approximation of the real resonance frequency.
The correct parameters, those used to generate the data are:

• k3 = −3 · 10−5

• λ = 1

• µ = 10−3

• K = 10−2

Their boundaries are defined to have a reasonable domain near the estimated value.

λmax = max(w) upper boundary of resonance frequency (3.14)

λmin = min(w) lower boundary of resonance frequency (3.15)

k3, max = −10−8 upper boundary of non linear term (3.16)

k3, min = −1 lower boundary of non linear term (3.17)

µmax = 1 upper boundary of viscosity (3.18)

µmin = 10−4 lower boundary of viscosity (3.19)

Kmax = +∞ upper boundary of actuation parameter (3.20)

Kmin = 0 lower boundary of actuation parameter (3.21)

To study the effect of different initial conditions to the fitting function, a three nested sweeps was
performed in loop.

1. k3,estimated = First value of first parameter

µestimated = value of second parameter

Kestimated = Sweeping value

...

...
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Through this method all possible estimated values are used in the fitting function.

k3,estimated = [−10−7,−10−6,−10−5,−10−4,−10−3] (3.22)

µestimated = [10−4, 10−3, 10−2] (3.23)

Kestimated = [10−4, 10−3, 10−2, 10−1, 1] (3.24)

The function that calculates the zestimated using k3,estimated, µestimated, Kestimated is defined as:

# Th i s f u n c t i o n c a l c u l a t e s t h e a m p l i t u d e f o r g i v e n p a r a m e t e r s ( k3 , mu, lb , K)
# t h e f i t t i n g program would f i r s t e s t i m a t e t h e
# p a r a m t e r s ’ v a l u e s c l o s e t o t h e s u p p o s e d s o l u t i o n
# then i t w i l l vary them a c c o r d i n g t o t h e minimum r e s i d u a l s v a l u e o b t a i n e d
def s o l (w, k3 , lb , mu, K ) :

# f i r s t p o l y n o m i a l c o e f f i c i e n t
a =9*k3 **2/16

# s e c o n d p o l y n o m i a l c o e f f i c i e n t
b=3*k3 * ( lb * * 2 − w* * 2 ) / 2

# t h i r d p o l y n o m i a l c o e f f i c i e n t
c = ( ( lb * * 2 − w* * 2 ) * * 2 + (mu* * 2 ) *w* * 2 )
# l a s t p o l y n o m i a l c o e f f i c i e n t
d= −K* * 2

# i n t e r m i d i a t e c o m p u t a t i o n s
p= c/a − b * * 2 / ( 3 * a * * 2 )
q= d/a − b * c /(3* a * * 2 ) + 2* b * * 3 / ( 2 7 * a * * 3 )
# D e l t a c o n t r o l s t h e number o f r e a l s o l u t i o n s
d e l t a = q**2/4 + p**3/27

# i n i t i a l i z a t i o n
u = np . zeros ( len (w) )
v = np . zeros ( len (w) )
z= np . zeros ( len (w) )
y1= np . zeros ( len (w) )
y2= np . zeros ( len (w) )
y3= np . zeros ( len (w) )
# l o o p t o a s s i g n an a m p l i t u d e t o e a c h f r e q u e n c y ’ s v a l u e (w)
for i in range ( 0 , len (w) ) :

# C o n d i t i o n f o r d e l t a >0 , one r e a l s o l u t i o n
# and two complex s o l u t i o n s
i f d e l t a [ i ] > 0 :

# n e s t e d ’ i f ’ f o r u , i t g i v e s on ly t h e r e a l s o l u t i o n
# o f c u b i c r o o t
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i f −q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) > 0 :
u [ i ]= mp. c b r t (−q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) )

e l i f −q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) < 0 :
u [ i ]= −mp. c b r t ( np . abs(−q [ i ]/2+mp. s q r t ( d e l t a [ i ] ) ) )

e lse :
u [ i ]= 0

# n e s t e d ’ i f ’ f o r v , i t g i v e s on ly t h e r e a l s o l u t i o n
# o f c u b i c r o o t
i f −q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) > 0 :

v [ i ]= mp. c b r t (−q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) )
e l i f −q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) < 0 :

v [ i ]= −mp. c b r t (mp. fabs (−q [ i ]/2−mp. s q r t ( d e l t a [ i ] ) ) )
e lse :

v [ i ]= 0

i f −b [ i ] / ( 3 * a ) + u [ i ] + v [ i ] > 0 :
z [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) + u [ i ] + v [ i ] )

e lse :
z [ i ] = 0

# C o n d i t i o n f o r d e l t a ==0 , one r e a l s o l u t i o n
# and two c o i n c i d e n t s o l u t i o n s
e l i f d e l t a [ i ] == 0 :

i f q [ i ] > 0 :
y1 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) −2*(q [ i ] / 2 ) * * ( 1 . / 3 . ) )
y2 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) + ( q [ i ] / 2 ) * * ( 1 . / 3 . ) )

e l i f q [ i ] < 0 :
y1 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) +

2 * (mp. c b r t ( ny . abs ( q [ i ] / 2 ) ) ) )
y2 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) +

−mp. c b r t ( np . abs ( q [ i ] / 2 ) ) )
e lse :

y1 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) )
y2 [ i ] = y1 [ i ]

y3 [ i ] = y2 [ i ]
i f np . abs (amp[ i ]−y1 [ i ] ) < np . abs (amp[ i ]−y3 [ i ] ) :

z [ i ] = y1 [ i ]
e lse :

z [ i ] = y2 [ i ]
# C o n d i t i o n d e l t a <0 , t h r e e r e a l s o l u t i o n s , z has t h e p o i n t
# c l o s e r t o t h e a m p l i t u d e d a t a
e lse :

angle = mp. phase ( −q [ i ]/2 − mp. s q r t ( d e l t a [ i ] ) )
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y1 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) +
2*mp. s q r t (−p [ i ] / 3 ) *mp. cos ( angle / 3 ) )

y2 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) +
2*mp. s q r t (−p [ i ] / 3 ) *mp. cos ( angle /3+2*(mp. pi ) / 3 ) )

y3 [ i ] = mp. s q r t (−b [ i ] / ( 3 * a ) +
2*mp. s q r t (−p [ i ] / 3 ) *mp. cos ( angle /3+4*(mp. pi ) / 3 ) )

# Choose t h e y v a l u e with module d i f f e r e n c e c l o s e r
# t o t h e i n p u t a m p l i t u d e
i f np . abs (amp[ i ]−y1 [ i ] ) <

min ( np . abs (amp[ i ]−y3 [ i ] ) , np . abs (amp[ i ]−y2 [ i ] ) ) :
z [ i ] = y1 [ i ]

e l i f np . abs (amp[ i ]−y2 [ i ] ) < np . abs (amp[ i ]−y3 [ i ] ) :
z [ i ] = y2 [ i ]

e lse :
z [ i ] = y3 [ i ]

return z

3.3.2 Fitting results

The package lmfit provides useful tools to check the properties of the fitting. Lmfit calculates the
Goodness-of-fit statistics and provides different methods to calculate the residuals. The Goodness-
of-fit statistic is described in table 3.1.
In figure 3.6 there is an example of good fitting with some injected noise into the data, the noise
was generated through a random digital value.
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Table 3.1: Table of the Goodness-of-fit provided by the package lmfit

Attributes Description

nfev number of function evaluations

nvarys number of variables in the fit Nvarys

ndata number of data points: N

nfree degrees of freedom in the fit: N − Nvarys

residual residual array, [Residi]

chisqr chi-square: χ2 = ∑N
i [Residi]

2

redchi reduced chi-square: χ2
ν = χ2

N−Nvarys

aic Akaike information criterion statistic

bic Bayesian information criterion statistic

var-names ordered list of variables parameters names

covar covariance matrix

init-vals list of initial values for variable parameters
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Figure 3.6: Example of mock data fitted correctly, the extracted parameters can be visible on a separate
report. This image was generated through Python script
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The resulting report is in the following.

[ [ Model ] ]
Model ( FirstOrderHAM )

[ [ F i t S t a t i s t i c s ] ]
# f i t t i n g method = l e a s t s q
# f u n c t i o n e v a l s = 143
# d a t a p o i n t s = 200
# v a r i a b l e s = 3
chi−square = 19 .8613523

reduced chi−square = 0 .10081905

Akaike i n f o c r i t = −455 .908324

Bayesian i n f o c r i t = −446 .013372

[ [ Var iab les ] ]
k3 : −3.0175e−05 +/− 1 .2603 e−09 (0 .00%) ( i n i t = −1e−05)
lb : 1 ( f i x e d )
mu: 0 .00105292 +/− 2 .2752 e−05 (2 .16%) ( i n i t = 0 . 0 0 1 )
K: 0 .01043445 +/− 1 .2235 e−04 (1 .17%) ( i n i t = 0 . 0 1 )

[ [ C o r r e l a t i o n s ] ] ( unreported c o r r e l a t i o n s are < 0 . 1 0 0 )
C( k3 , mu) = −0.915

C(mu, K) = 0 . 731

C( k3 , K) = −0.394

In case the fitting did not succeed the function would not be able to calculate the uncertainties
on the parameters and coefficients’ values will not be meaningful.

[ [ Model ] ]
Model ( FirstOrderHAM )

[ [ F i t S t a t i s t i c s ] ]
# f i t t i n g method = l e a s t s q
# f u n c t i o n e v a l s = 10
# d a t a p o i n t s = 200
# v a r i a b l e s = 3
chi−square = 2247 .77408

reduced chi−square = 11 .4100207

Akaike i n f o c r i t = 489 .875669

Bayesian i n f o c r i t = 499 .770621

[ [ Var iab les ] ]
k3 : −1.0000e−06 +/− 1 .6037 e−06 (160 .37%) ( i n i t = −1e−06)
lb : 1 ( f i x e d )
mu: 1 .0000 e−04 +/− 6 .0197 e−14 (0 .00%) ( i n i t = 0 . 0 0 0 1 )
K: 1 .0000 e−03 +/− 2 .0719 e−04 (20 .72%) ( i n i t = 0 . 0 0 1 )

[ [ C o r r e l a t i o n s ] ] ( unreported c o r r e l a t i o n s are < 0 . 1 0 0 )
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C(mu, K) = 0 . 196
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Figure 3.7: Example of fitting curve that does not match with data. This image was generated through
Python script

In conclusion, three different graphs were produced where each of them had one µestimated value
fixed. Following that, k3 value was extracted, plotted and confronted with the real k3 (the red
horizontal line). In figure 3.8 every point represents a fitted parameter k3.
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Figure 3.8: In this graph the µestimated is 0.0001, on the x-axis different values of Kestimated swept are
shown. Kestimated is swept with the values [10−4, 10−3, 10−2, 10−1, 1], while k3,estimated between
[−10−7,−10−6,−10−5,−10−4,−10−3]. Every 5 values of Kestimated represent a fitting with a
certain k3,estimated. Since this is a semi-logarithmic plot, it was taken the module of k3 values.
This image was generated through Python script
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Figure 3.9: In this graph the µestimated is 0.001, on the x-axis different values of Kestimated swept are
shown. Kestimated is swept with the values [10−4, 10−3, 10−2, 10−1, 1], while k3,estimated between
[−10−7,−10−6,−10−5,−10−4,−10−3]. Every 5 values of Kestimated represent a fitting with a
certain k3,estimated. Since this is a semi-logarithmic plot, it was taken the module of k3 values.
This image was generated through Python script
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Figure 3.10: In this graph the µestimated is 0.01, on the x-axis different values of Kestimated swept are
shown. Kestimated is swept with the values [10−4, 10−3, 10−2, 10−1, 1], while k3,estimated between
[−10−7,−10−6,−10−5,−10−4,−10−3]. Every 5 values of Kestimated represent a fitting with a
certain k3,estimated. Since this is a semi-logarithmic plot, it was taken the module of k3 values.
This image was generated through Python script

The fitting function was tested with estimate values for k3 ranging 5 different orders of magni-
tudes, µ estimate ranging 3 diverse orders of magnitude and K, 5 orders of magnitude.
To resume, the correct parameters are:

• k3 = −3 · 10−5

• λ = 1

• µ = 10−3

• K = 10−2

The estimate values used to fit the data are:

k3,estimated = [−10−7,−10−6,−10−5,−10−4,−10−3] (3.25)
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µestimated = [10−4, 10−3, 10−2] (3.26)

Kestimated = [10−4, 10−3, 10−2, 10−1, 1] (3.27)

The values of failed fits were discarded. The criteria of passing/failing fit is:

−3.1 · 10−5 ≤ k3 ≤ −2.9 · 10−5

• For µestimated = 10−4 => 13 fittings were rejected among 25

• For µestimated = 10−3 => 4 fittings were rejected among 25

• For µestimated = 10−2 => 15 fittings were rejected among 25

Taking one parameter fixed, the average and standard deviation of k3 were computed.

• For µestimated = 10−4 => k3,mean = −3.015 · 10−5, k3,σ = 1.68 · 10−6

• For µestimated = 10−3 => k3,mean = −3.012 · 10−5, k3,σ = 2.20 · 10−6

• For µestimated = 10−2 => k3,mean = −3.013 · 10−5, k3,σ = 1.62 · 10−6

The outcome proves that the fitting function is highly sensitive to the initial value of µestimated. If
µestimated is close to the the exact solution, the probability that the fitted k3 intersects the solution
with an accuracy of ±0.1 is 84.0%.
In the case where µestimated is one order of magnitude away from the exact solution, the prob-
ability that the fitted k3 intersects the solution with an accuracy of ±0.1 is 40.0%. Thus, in the
experimental data fitting a procedure to compute the value of µ was implemented.
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3.4 fitting experimental data

The fitting procedure was proved accurate for artificially generated data. The next step consists
of parameters extraction from real experimental data.
This section describes the laboratory set-up of microGauge, the specific sensors used for experi-
ments and their outcome.

3.4.1 Set-up

The experimental set-up consists of a vacuum chamber connected to two pumps, a nitrogen gas
bottle, an automatic flow controller, pressure and temperature sensors, butterfly valve, flow pipes
to the gas tank and microGauge electronics boards. The first stage pump is a liquid-oil pump able
to lower the pressure in the chamber up to 1 · 10−2 mbar.
The second stage pump is a turbo molecular pump, able to shift the chamber pressure from
1 · 10−2 mbar to 1 · 10−7 mbar. It is connected to the chamber through the butterfly valve.
The vacuum chamber is connected to a nitrogen tank with an automated flow-control system,
that is able to regulate the inlet through a fine screw. In figure 3.11 a schematic of the apparatus
is presented:

• MicroGauge sensors

• several third-party sensors for calibration

• two resistive gauge temperature sensors Pt1000
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Figure 3.11: Schematic of the experimental apparatus of microGauge with an automatic flow controller
at the top that moves a fine screw to open/close the inlet. Several sensors and temperature
resistive gauges are attached to the vacuum chamber to cover a large range of pressures
and temperatures. At the bottom of the vacuum chamber the butterfly valve provides an
intermediate connection with the turbo molecular pump, which is connected with the first
stage rotary pump. This image was generated through Microsoft Office PowerPoint
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The transduction method consists of a capacitance read-out. In figure 3.12 the schematic is
shown.

1. The top electrode is attached to the sensor’s moving part, it actuates the device by applying
an alternating potential

2. The sensor can be approximated to a parallel place capacitor

3. The microGauge’s electronics board can be approximated to a black box, it gives the read-
out signal

The signal analysis was made through a custom electronic board exclusive of microGauge.

~

Black Box

electronics
𝑍(𝑡)

Sensor

𝑉 ∙ sin(𝑤𝑡)

Figure 3.12: The sensor can be considered as a suspended mass with four electrodes that provide actu-
ation as well as sensitivity. In the schematic Vr sin(wrt) is equal to VoutB. This image was
generated through Microsoft Office PowerPoint
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3.4.2 Fitting of the experimental data

Before applying the algorithm to the experimental data, multiple data sets were fitted with
Lorentzian curve, in order to extract the average and standard deviation of the viscosity pa-
rameter.
It is supposed that the viscosity remains constant during all the experiments and equal to the
F.W.H.M. (full width at half maximum) of the curves. In figure 3.13 it is shown one plot as well
as the outcome report.

[ [ Model ] ]
Model ( lo r en t z i a n , p r e f i x = ’ Loren_ ’ )

[ [ F i t S t a t i s t i c s ] ]
# f i t t i n g method = l e a s t s q
# f u n c t i o n e v a l s = 13
# d a t a p o i n t s = 25
# v a r i a b l e s = 3
chi−square = 107 .248387

reduced chi−square = 4 .87492670

Akaike i n f o c r i t = 42 .4067924

Bayesian i n f o c r i t = 46 .0634199

[ [ Var iab les ] ]
Loren_sigma : 0 .03832561 +/− 2 .3828 e−04 (0 .62%) ( i n i t = 0 . 0 3 3 7 0 3 5 )
Loren_center : 1551 .24195 +/− 1 .4307 e−04 (0 .00%) ( i n i t = 1 5 5 1 . 2 4 5 )
Loren_amplitude : 42 .1832643 +/− 0 .21736442 (0 .52%) ( i n i t = 4 4 . 3 1 6 1 )
Loren_fwhm : 0 .07665123 +/− 4 .7656 e−04 (0 .62%)
Loren_height : 350 .349262 +/− 0 .91692307 (0 .26%)

[ [ C o r r e l a t i o n s ] ] ( unreported c o r r e l a t i o n s are < 0 . 1 0 0 )
C( Loren_sigma , Loren_amplitude ) = 0 . 911

C( Loren_center , Loren_amplitude ) = −0.146
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Figure 3.13: Lorentzian fitting of the sensor’s data. This intermediate step is necessary to extract µ. This
image was generated through Python script

Thus, the µ parameter is 0.077± 0.0020.
In the section 3.1, the fitting algorithm was explained, now it will be applied to an experimental
set of data.
The initial condition of the parameter µ was extracted from the Lorentzian curve. The boundaries
of the parameters are:

λmax = max(w) upper boundary of resonance frequency (3.28)

λmin = min(w) lower boundary of resonance frequency (3.29)

k3, max = −10−8 upper boundary of non linear term (3.30)

k3, min = −1 lower boundary of non linear term (3.31)

µmax = 1 upper boundary of viscosity (3.32)

µmin = 10−4 lower boundary of viscosity (3.33)

Kmax = +∞ upper boundary of actuation parameter (3.34)

Kmin = 0 lower boundary of actuation parameter (3.35)

The fit with alternating potential VoutB = 0.13 V is reported, figure 3.14.
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Figure 3.14: H.A.M. fitting of the experimental data. With an intermediate actuation potential the fit-
ting has an R2 = 0.9999, the extracted parameters are reported. This image was generated
through Python script

[ [ Model ] ]
Model ( FirstOrderHAM )

[ [ F i t S t a t i s t i c s ] ]
# f i t t i n g method = l e a s t s q
# f u n c t i o n e v a l s = 46
# d a t a p o i n t s = 25
# v a r i a b l e s = 4
chi−square = 29 .9154983

reduced chi−square = 1 .42454754

Akaike i n f o c r i t = 12 .4875214

Bayesian i n f o c r i t = 17 .3630247

[ [ Var iab les ] ]
k3 : −1.4505e−05 +/− 3 .9507 e−06 (27 .24%) ( i n i t = −2.5e−05)
lb : 1551 .15953 +/− 2 .3026 e−04 (0 .00%) ( i n i t = 1 5 5 1 . 2 4 2 )
mu: 0 .08138200 +/− 1 .9088 e−04 (0 .23%) ( i n i t = 0 . 0 7 7 5 3 8 3 7 )
K: 74634 .3225 +/− 148 .296779 (0 .20%) ( i n i t = 130000 )

[ [ C o r r e l a t i o n s ] ] ( unreported c o r r e l a t i o n s are < 0 . 1 0 0 )
C(mu, K) = 0 . 956
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C( k3 , lb ) = −0.941

The figure 3.15 shows the extraction of k3 parameter from the fitting of multiples experiments
with R2 > 0.99 and k3,std less than 25% of k3 value:
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Figure 3.15: Summary of k3 extraction with H.A.M. fitting. The red crosses represent the extracted value
while the vertical black lines refer to the standard deviations. This image was generated
through Python script

The average of k3 is:
k3,mean = −2.6 · 10−5 (3.36)

The standard deviation of k3 is:
k3,σ = 5.4 · 10−6 (3.37)

This parameter can be considered constant for the specific sensor used. It is correlated to the
manufacturing process used and the defectivity of the device.



4 R E S U LT S A N D D I S C U S S I O N

Due to the large sensitivity of the fitting algorithm to µ, a Lorentzian fitting was carried out to
the most linear set of data. Once the µ parameter was identified, the fitting computed the k3 and
K values.
The initial values of the resonance frequency λ and µ are close to their exact values, while k3 and
K can be deduced by vectorial fitting and square-low interpolation of previously fitted data.
A k3 value was computed for a specific sensor:

k3 = −2.6 · 10−5 ± 5.4 · 10−6 (4.1)

Multiple experiments can be carried out to other microGauge’s sensors in order to characterize
them through the extraction of their non-linear parameter.

4.1 linearity’s boundary identification

The objective of the fitting is to find the actuation potential limit between a linear and non-linear
resonator. In this section, the procedure to compute this limit is described, with the assumptions
and a real-data example.
The linearity limit is defined as the transition point between a monostable resonator to its bistable
configuration. Algebraically, it means to find the transition point for a certain VoutB where ∆ starts
to have some negative values.
In figure 4.1 the value of ∆ for VoutB = 0.3 V is reported.
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Figure 4.1: Delta values of a specific sensor, the red points in the middle of the figure represent the bi-
stability of the device near its resonance frequency. This image was generated through Python
script

4.2 limit potential

The automation procedure requires a consistent and defined actuation potential limit regardless
of the fitting and the initial conditions. To check for consistency the algorithm for Vlimit extraction
was applied to several fittings.
The values of fitted parameters k3 , λ , µ , K are inserted in the solution equation in order to find
∆

# Th i s f u n c t i o n p e r f o r m s t h e i n i t i a l c o m p u t a t i o n s t o d e l i v e r t h e D e l t a v a l u e s
def del ta fun (w, k3 ,mu, lb ,K ) :

a= f l o a t ( 9 * k3 * *2/16 )
b=3*k3 * ( lb * * 2 − w* * 2 ) / 2

c = ( ( lb * * 2 − w* * 2 ) * * 2 + (mu* * 2 ) *w* * 2 )
d= −K* * 2

p= c/a − b * * 2 / ( 3 * a * * 2 )
q= d/a − b * c /(3* a * * 2 ) + 2* b * * 3 / ( 2 7 * a * * 3 )
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d e l t a = q**2/4 + p**3/27

return d e l t a

Two loops are defined, one to increase K up to the non linearity condition, the other to decrease
it until the resonator is linear:

# Those two l o o p s change t h e K p a r a m t e r in o r d e r t o f i n d
# t h e minimum K f o r which D e l t a i s t o t a l l y p o s i t i v e
loopcheck=0

# I n c r e a s e K u n t i l d e l t a has some n e g a t i v e v a l u e
while np . a l l ( d e l t a > 0 ) :

loopcheck=+1

i f loopcheck > 1e4 :
r a i s e ValueError ( ’ Error : K not found , i n f i n i t e loop ’ )

K2=K2 * 1 . 5

d e l t a =del ta fun ( wdense , k3 ,mu, lb , K2 )
loopcheck=0

# D e c r e a s e f i n e l y D e l t a u n t i l t h e o p t i m a l K i s found
while np . any ( d e l t a < 0 ) :

loopcheck=+1

i f loopcheck > 1e4 :
r a i s e ValueError ( ’ Error : K not found , i n f i n i t e loop ’ )

K2=K2 * 0 . 9 9 9

d e l t a =del ta fun ( wdense , k3 ,mu, lb , K2 )

The obtained value of ∆ is shown in figure 4.2.
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Figure 4.2: Delta prediction of the resonator when VoutB is at the limit of linearity. This image was gener-
ated through Python script

In the end it was found the Vlimit value that define the limit between mono-stability and bi-
stability through a simple quadratic proportionality with respect to K.

Vlimit = VoutB ·

√
Klimit

Kinitial
(4.2)

The average value of the limit actuation potential of a specific microGauge’s device is:

Vlimit = 0.303 V (4.3)

The standard deviation limit actuation potential is:

Vlimit, σ = 0.0087 V (4.4)



5 C O N C LU S I O N

In the closing stage of this thesis, a summary of the obtained results is presented.

actuation limit The obtained objective setpoint defines the limit boundary between mono-
stability and bi-stability, hence the company is able to set the right actuation potential for every
sensor. The calibration procedure does not depend on arbitrary evaluation, and thus it can be
automated as stated in the introduction 1.

fitting robustness The behaviour of the algorithm was tested through the computation
of mock data, and consequently the mock data was fitted with different starting parameters.
The converged results prove the robustness of the algorithm for certain variation of the initial
parameters’ conditions and set boundaries to their starting values.

experimental data The algorithm is successfully applied to sensors’ experimental data, with
extraction of intrinsic parameters. Multiple experiments were carried out to check for the theory’s
consistency and the obtained results follow the expectations.

characterization The k3 parameter is related to the intrinsic non linearity of the device
because it is related to the third coefficient of non linear Hooke’s spring constant. It was made
the assumption that k3 is a constant and the outcomes in figure 3.15 bolster this statement.

categorize The k3 parameter is used also to categorize diverse sensors and to discriminate
between several production processes.

future work

For future development the autonomous calibration procedure will be implemented using the
presented algorithm. The automation of the process saves elaboration time and reduces the cost
for production of new devices.
This algorithm is a starting point research for the elements affecting k3. The company can be
interested to minimize the above mentioned value in order to increase the actuation potential as
much as possible.
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A H . A . M . : M AT H E M AT I C S

This appendix includes the mathematical fundamentals of the H.A.M. (homotopy analysis method)
and gives an overview of its application with respect to harmonic resonator, according to the ar-
ticle [4, Non linear dynamics of MEMS/NEMS resonators].
In this chapter, you will find an overview of the Duffing equation, then a description of various
sources of loss in a harmonic resonator, followed by the H.A.M. and concluded by a practical
example of a harmonic oscillator actuated by two fixed electrodes.

a.1 duffing equation

The Duffing equation is one of the most wide-spread model used to represent the non linear
oscillation of a resonator.

d2u
dτ2 + µ ·

du
dτ

+ λ2 · u + k2 · u2 + k3 · u3 = K · cos(w · τ) (A.1)

• u(τ) : non-dimensional modal displacement

• τ : non-dimensional time

• µ : viscous damping

• λ : natural frequency of the beam in its equilibrium configuration

• w : non-dimensional pulsation

• K : non-dimensional actuation amplitude

• k2: second order non linear term

• k3: third order non linear term

More details about this topic can be found in the following book: [9, The Duffing Equation: Non-
linear Oscillators and their Behaviour].
Shortly, a harmonic oscillator can exhibit a symmetric amplitude response, with respect to the
actuation frequency thus, it can be considered as "Linear harmonic oscillator". In the cases where
the amplitude response deviates from the symmetric shape, the oscillation magnitude will in-
crease and the plot’s peak would deviate from the centre towards one of the two sides. On top
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of that, an hysteresis effect is observed for non linear oscillator.
The resonator, approaching the non linear region, will present one of the two following be-
haviour:

1. Hardening effect;

2. Softening effect;

In the first case, the plot’s peak will shift towards the right side and in the second case it will
lean towards the left side, as displayed in figures A.1a and A.1b.

(a) Hardening behaviour of
Duffing resonator

(b) Softening behaviour of
Duffing resonator

Figure A.1: Distortion of the transfer function of a typical non linear resonator. The oscillator’s peak lean
towards one of the plot’s sides. Images were extracted from the article [4, Non linear

dynamics of MEMS/NEMS resonators] page 1919

These phenomena are related to the appearance of a non linear term (C3) in the spring constant
of the device. Thus, the resonator does not follow the Hooke’s law, figure A.2.
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Figure A.2: This figure describes the deviation from the Hooke’s law. The red curve represents an hard-
ening type spring, the blue curve a softening type and the black line the Hooke’s law. This
image was generated through Microsoft PowerPoint

The non linear spring is described by the following equation A.2.

F = C1z + C3z3 (A.2)

Where F is the force applied, C1 the linear spring constant, C3 the first order approximation term
of the non linear spring constant and z the displacement.
In the Hooke’s law only the C1 term exist. If the spring presents some non linearity, then the C3

term appear as a Taylor expansion of the spring constant. In the case C3 > 0 the device has the
hardening effect, because the same displacement requires higher force, on the other hand in the
case C3 < 0 the device has the softening effect, and thus the same displacement requires less
force.
The equation A.2 can be translated in the force equation of an oscillator, as shown in the equation
A.3.

d2z
dt2 + ν ·

dz
dt

+ C1 · z + C3 · z3 = F · cos(w · t) (A.3)

Where:

• z : displacement
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• t : time

• ν : viscous damping coefficient

• C1 : linear spring constant

• C3 : first order approximation term of the non linear spring constant

• w : pulsation

• F : force

By normalizing the values and dividing by the mass the Duffing equation is obtained A.1. The
terms λ and k3 appear as:

λ =
1

2π

√
C1

m
(A.4)

√
k3 =

1
2π

√
C3

m
(A.5)

The k3 parameter is related to C3, and thus it is a constant representing the intrinsic non linearity
of the oscillator.
Historically, the Duffing equation was resolved through non-perturbation techniques [10, An ap-
proximate solution technique depending on an artificial parameter: A special example]. Such
techniques use small parameters assumption that would not be reliable in case of high non linear
problems since it would lose its physical meaning.
Meanwhile, the H.A.M. does not depend on any small parameter assumption and it can guar-
antee the convergence of a numerical solution through an artificial parameter: c0 [4, Non linear
dynamics of MEMS/NEMS resonators].

a.2 h.a.m. convergence

H.A.M. is intended to derive a solution analytically or semi-analytically, for the non linear re-
sponse of the forced vibrations in a typical MEMS resonator.
It is supposed that the solution has the following form:

u(τ) = δ +
∞

∑
k=1

(
Uk · exp(ikwτ) + Uk · exp(−ikwτ)

)
(A.6)

The parameters of equation A.6 are:

• δ: long-time average of the harmonic response

• Uk, Uk: complex conjugate constants
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To express a continuous evolution from an initial estimate φ(0) to the final solution, it is declared
an embedding parameter p ∈ [0, 1] and a variation φ (τ, p) so that:

φ (τ, p) : <+ x [0, 1] → < (A.7)

The function φ (τ, p) displays a continuous evolution proceeding from the initial estimate, when
p = 0, up to the final solution:

φ (τ, 1) = u(τ) Final solution (A.8)

As p varies from 0 to 1, it is possible to replace u(τ) of equation A.1 with the variation φ (τ, p),
thus, it is possible to construct the non linear operator Ψ [φ (τ, p) , τ].

Ψ [φ (τ, p) , τ] =
∂2φ

∂τ2 + µ
∂φ

∂τ
+ λ2 · φ + k2 · φ2 + k3 · φ3 − K · cos(w · τ) (A.9)

The equation A.9 represents the residual error of the variation with respect to the exact solution.
The expected solution have to satisfy a proper linear-differential operator:

Γ [φ (τ, p)] =
∂2φ

∂τ2 + w2 · φ(τ, p) (A.10)

Thus, there are all the elements to construct the Zero-order deformation equation according to the
article: [4, Non linear dynamics of MEMS/NEMS resonators]:

(1 − p) · Γ [φ (τ, p) − u0(τ)] = c0 · p · Ψ [φ (τ, p)] (A.11)

The parameters of equation A.11 are reported:

• c0: convergence control parameter

• u0: initial estimate of modal displacement

According to the author of the H.A.M. S. Liao [1, Advances in the homotopy analysis method],
the c0 parameter does not have any physical solution and it can be adjusted to make algebraic
series always convergent.
The initial estimate of the modal displacement can be expressed as equation A.12:

u0(τ) = δ0 +
∞

∑
k=1

(
U0k · exp(ikwτ) + U0k · exp(−ikwτ)

)
(A.12)

The definition of the variation φ (τ, p) is a convergent series in p, with uk(τ) as the deformation
derivatives, expressed in A.14.

φ (τ, p) =
∞

∑
k=0

(
uk(τ) · pk

)
(A.13)

uk(τ) =
1
k!

∂kφ (τ, p)
∂pk

∣∣∣∣
p=0

(A.14)
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a.3 higher-order deformation equation

Through an iterative approach it is possible to solve the following k-th order deformation equa-
tion for uk(τ) until the ordering number reduces the approximation’s residuals to the desired
level.

Γ [uk(τ) − χk · uk−1(τ)] = c0 · Rk(τ) (A.15)

with:

χk =

{
0, if k ≤ 1

1, if k > 1
(A.16)

Rk(τ) =
1

(k− 1)!
∂k−1

∂pk−1 Ψ [φ (τ, p) , τ]

∣∣∣∣
p=0

(A.17)

Through this method it is possible to compute the next k-th solution starting from the previous
step.
The final solution of equation A.1 is found by setting p = 1 in the obtained series solution.

a.4 first order h.a.m approximation

Suppose u0(τ) is consistent with the rule of solutions of equation A.6, then the initial estimate is:

u0(τ) = δ0 + U0k · exp(ikwτ) + U0k · exp(−ikwτ) (A.18)

The first order-deformation equation is reckoned through the initial estimate and the equations
A.15, A.16, A.17.

∂2u1(τ)

∂τ2 + w2 · u1(τ) = c0 · Ψ [u0 (τ) , τ] (A.19)

The formula A.19 must have bounded solution so it is necessary to eliminate the secular and
constant terms by setting them to zero.
Zeroing secular terms:

c0 · f1
(
U, U, δ

)
= 0 (A.20)

Zeroing constant terms:
c0 · g1

(
U, U, δ

)
= 0 (A.21)

The coefficients U, U are defined by the amplitude z and the phase shift b of the response signal.

U =
1
2

zei · b

U =
1
2

ze−i · b (A.22)
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Introducing them into equations A.20 and A.21 it is possible to obtain the long-time average
constant and the response frequency.

δ =
−z2 · k2

2λ2 + 3z2 · k3
(A.23)

(
2k2 · δ · z +

3
4

k3 · z3 +
(
λ2 − w2) · z

)2

+ (µ · w · z)2 = K2 (A.24)

In the equations A.23 and A.24 all the terms δ2 and its higher power are neglected. In the latter
equation, A.24 it is possible to compute the amplitude value z knowing all the parameters of the
Duffing equation A.1.
A typical amplitude response of a non linear resonator using H.A.M approach is displayed in the
figure A.1a, in which the H.A.M. numerical solution is printed with black dots and it is compared
with a numerical-forward approach (red diamonds) and a numerical-backward approach (blue
rings).
It is possible to notice that the H.A.M calculation is more consistent and can give an approximate
solution in one sweeping computation while other techniques require a forward and backward
run.

a.5 straight beam with double clamped electrodes

Figure A.3: Schematic of a straight beam with double clamped electrodes, a DC potential is applied to
the beam while an oscillating actuation potential is applied to the top electrode. Images were
extracted from the article [4, Non linear dynamics of MEMS/NEMS resonators] pag. 1919

Figure A.3 shows a bounded beam between two electrodes, where the top electrode imposes
an alternating potential, while a direct voltage is applied on the beam.
From the article [11, Chaos prediction in MEMS-NEMS resonators] the equation of the transverse
motion of a lumped system with a single degree of freedom is extracted.

∂2χ

∂τ2 + µ
∂χ

∂τ
+ χ + β · χ3 = γ ·

[
1

(1− χ)2 −
1

(1 + χ)2

]
+

A

(1− χ)2 sin(w · τ) (A.25)
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The parameters are defined as:

• χ: non dimensional lateral displacement

• τ: non dimensional time

• w: non dimensional actuation frequency

• µ: non dimensional viscous damping coefficient

• β: stretching parameter

• γ: DC potential parameter

Through a MacLaurin series the non linear terms χ near the origin is expanded up to the 3° order.
Neglecting the coefficients of the harmonic terms, this yields:

∂2χ

∂τ2 + µ
∂χ

∂τ
+ λ2 · χ + k3 · χ3 = K sin(w · τ) (A.26)

in which:

λ2 = 1− 4 · γ (A.27)

k3 = β− 8 · γ (A.28)

K = A (A.29)

For the equation A.26 the constrain is that the origin has to be a stable point thus, γ < 1
4 .

By using this function, it is possible to prove experimentally the validity of the H.A.M. solution,
confronting the amplitude response with the equation A.24 yielding:(

3
4

k3 · z3 +
(
λ2 − w2) · z

)2

+ (µ · w · z)2 = K2 (A.30)



B M I C R O G AU G E P R O F I T S

In this chapter the average profit that the company microGauge AG gained introducing the auto-
mated procedure is computed.
The average salary of an engineer per hour is Qeng = 50.00 CHF/h, in the present state of the
organization, a microGauge’s specialist is calibrating manually every new sensors.
The mean time to take a point in a frequency sweep is 60 s and usually there are 14 points in a
frequency sweep.
The specialist uses in average 20 frequency sweeps to calibrate properly a device, thus it is needed
280 minutes overall.
This new automated procedure needs only 1 or 2 frequency sweeps to find the bi-stability limit,
thus it takes in the worst-case scenario 28 minutes.
The time saved using the algorithm is:

tsaving = toperator − talgorithm = 252 min (B.1)

The equivalent salary saved by the company, for only one calibrated device, is:

Csaved = tsaving · Qeng = 210 CHF (B.2)

Moreover, it is pointed out that the specialist can calibrate at the same time up to 8 sensors
together, while the automated procedure does not have any parallelisation limit.
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L I ST O F SYM B O L S

E.T.H. Swiss Federal Institute of Technology
H.A.M. homotopy analysis method

AG Public limited company
F.W.H.M. full width at half maximum

u(τ) non-dimensional modal displacement
τ non-dimensional time
µ viscous damping
λ natural frequency of the beam in its equilibrium configu-

ration
w actuation frequency
K non-dimensional actuation amplitude
k2 second order non linear term
k3 third order non linear term
F force

C1 linear spring constant
C3 first order approximation term of the non linear spring

constant
z displacement
$ harmonic oscillator phase

wres harmonic oscillator resonance frequency
A harmonic oscillator amplitude
σ harmonic oscillator half frequency width

V(u) potential function of Duffing’s equation
δ long-time average of the harmonic response

Uk, Uk complex conjugate constants of the homotopy solution
u0(τ) initial estimate of homotopy solution
< real numbers
Ψ non linear operator
Γ linear operator
c0 convergence control parameter
y root square of amplitude response
a first coefficient of third order polynomial
b second coefficient of third order polynomial
c third coefficient of third order polynomial
d fourth coefficient of third order polynomial
x shifted root square of amplitude response by −b

3a
∆ discriminant of cubic equation

VAC alternate applied potential
VDC direct applied potential
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zestimated amplitude value computed with estimated parameters
k3, estimated initial non linear coefficient

k3, mean average of the non linear coefficient
k3, σ standard deviation of the non linear coefficient

µestimated initial viscous coefficient
Kestimated initial amplitude coefficient

λmax upper boundary of resonance frequency
λmin lower boundary of resonance frequency

k3, max upper boundary of non linear term
k3, min lower boundary of non linear term
µmax upper boundary of viscosity
µmin lower boundary of viscosity
Kmax upper boundary of actuation parameter
Kmin lower boundary of actuation parameter
VoutB experimental applied potential
Vlimit limit potential at bi-stability

Vlimit, σ standard deviation of limit potential at bi-stability
Klimit actuation coefficient at bi-stability
Kinitial actuation coefficient extracted from experiment
Qeng estimation of the average salary of an engineer per hour

tsaving time difference between the algorithm and an human op-
erator

Csaved gross profit of the company
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