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Abstract

Real-time on field scale estimation of a target with accuracy is a research problem in visual tracking. It

is important due to its applications in domains like surveillance, robotics and automation. In general,

only the initial position of the object is known, and the trajectory of the object motion is desired to

be traced. It becomes further difficult due to problems like fast motion of the objects, motion blur,

size and scale variations. Existing algorithms estimate the size of target based on exhaustive scale

search which faces problems when scale varies a lot and involves expensive computation. They learn

size or appearance model of target by using generative or discriminative approach. This model is then

utilized to estimate the state target in a new frame. Typically, the model is evaluated at multiple

resolutions by an exhaustive scale search, hence computationally expensive.

To tackle these problems, we used an algorithm which relies on online explicit filtering based

target sampling at different scales. This proposes an alternative, discriminative approach for scale

adaptive visual tracking. Separate scale filters are used for scale estimation and translation by Dis-

criminative Scale Space Tracker (DSST). To reduce the computational cost Fast Fourier Transform

(FFT) and pointwise operations are used, hence the fast Discriminative Scale Space Tracker (fDSST)

is developed.

This thesis aims at FPGA or hardware based implementation of fast discriminative scale space

tracking algorithm. FPGAs are used for many DSP applications. They are fast prototyping devices

for real-time applications. The hardware created on FPGA will be fast and use resources to a min-

imum to decrease the cost and will be optimized based on different matrices like performance-cost,

power-performance and cost-power etc.

For this purpose, the major mathematical blocks in this algorithm are studied and their best

implementation approach for this algorithm is described. The best implementation approach is given

in terms of the complexity and dimensions of inputs involve, less area and fast operation. The whole

algorithm is also depicted with the step by step operations involved, to better understand the de-

cisions. The implementation strategies and the implemented blocks are implemented in VIVADO

HLS tool, which is a tool for high level synthesis. It is suggested to keep the area of target image

at maximum, half of the frame size for good performance. Also, the synthesized version of Discrete

Fourier Transform hardware is depicted with simulating on real image data.
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CHAPTER 1

Introduction

Image processing is used in vast varieties of applications. It extends from simple image enhancement

algorithms to face detection algorithms. From object detection or identification to more complex

algorithms. Based on this it has a vast domain of research areas. One active research area of Image

processing is in the domain of visual object tracking. In a lot of applications like surveillance, robotics,

automation and other security purposes it is important to have sophisticated algorithms for safety and

reliability. As these fields progress it is necessary to have hardware support for these algorithms to

be implemented in real world. The more sophisticated and complex an algorithm becomes, it requires

more computations. Which in turn mean huge burden on hardware. Therefore there is need of efficient

and smart hardware implementation of these algorithms.

The research in Visual object tracking algorithms have mostly been done on two major categories.

Namely generative or discriminative approaches. Before looking into these approaches let’s first get

an insight of what Visual object tracking means. Usually, in most of the cases Visual object tracking

means given an initial position/location of target object in a frame, one now has to trace the next

location of target in a sequences of other frames. As the locations of target changes it can move in the

horizontal or vertical directions along with motion along the camera axis. There are some difficulties

in connection with it. Some of these are variations in target appearance, occlusions[33] shown in

figure 2.2, fast motion of target, target motion blur and scale variations of the target. They make the

detection process more complicated.

Figure 1.1: Occlusions

Keeping these complications in mind, tracking the object requires an appearance model of the

target. This can be learned by discriminative approach[15],[23],[24] or generative approach[30],[13],[3].

By using either generative or discriminative approach the appearance model of target is developed,

which is than put into work for estimating state of the target in the new frame. Usually the state only

involves the vertical and horizontal position of the target object in the frame i.e, its initial position.

Along with this position, the target size is also important in many of the applications. In Surveillance

1
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cameras and robotics it is important to compute and estimate the size of target along with its position.

The target size changes due to the motion of target along the axis of camera or the changes that occur

in appearance of the target. To take this into account, the scale has to be estimated. Correct and

precise estimation of the changes in scale is a complicated problem which is further affected by other

factors like fast motion, occlusions and variations in illumination.

A simple and direct method for implementing scale estimation of an object tracking scenario is

to compute the appearance model of target at different resolutions, by computing an extensive scale

search approach. But, this brute-force strategy, for scale search, is computation hungry and in case

hardware implementation poses limits on speed. In applications involving real-time, efficiency in terms

of computation is a vital factor to be considered. Thus, an ideal strategy for tracking better be robust

for handling variations in scale while operating in real-time. The paper[18] on which this work is

based on, investigates the issue of precise scale adaptive object tracking with focus on the real-time

performance.

Before going into the implementation used by[18], lets first look at the two approaches mentioned

earlier that is discriminative and generative.

The Generative models are based on describing the appearance of target by utilising statistical

models or templates. Thus, it does require constructing a template appearance model and than using

it to search the next frame. Hence it has a high computational cost for implementing in hardware. On

the other hand the discriminative approach uses methods of machine learning to distinguish between

the target object appearance and the surrounding background. Thus, thw Discriminative approach

tries work by only riling on the given data while learning the classification from the observed statistics.

This makes it less computation hungry with respect to generative approach. Examples containing

learning approaches are boosting techniques and Support Vector Machines (SVM).

In the recent past, visual trackers that are based on discriminative correlation filter (DCF) [18],

[15], [3] have depicted excellent result in terms of performance. Moreover, these trackers are efficient

in terms of computation which is a very good advantage, thereby making them a good approach for

many real-time applications. Hence really good for hardware implementation. Their success can be

seen from the Visual Object Tracking (VOT) Challenge (2014) [17], in which the first 3 visual trackers

were based on correlation filters. Also methods involving DCF [15], [10] have depicted good results

on OTB data set [32]. This is also true while working at speed of over 100 frames per second(fps).

First they learn an optimal correlation filter that is then utilized to find the target in a new frame

sequence. The real advantage in speed(fps) is achieved by using the fast Fourier transform (FFT).

This is applied both at the detection and learning stages. The approaches that use DCF for visual

object tracking has emphasis on translation estimation. A paper[18] utilizes DCF based approach for

visual tracking while incorporating real time scale adaptation. Hence suitable for such hardware.

Two kind of search strategies are considered for taking into account the target scale estimation

in discriminative correlation filter(DCF) based visual object tracking. First method does the joint

estimation of target scale and translation by utilising a 3 dimensional correlation filter. While the

other strategy uses a 2 dimensional correlation filter at different resolution. Thus both being highly

computational demanding are not a good option for the real-time object tracking. This work utilises

another approach using discriminative filter for scale adaptive object tracking based on [18] called fast

Discriminative Scale Space Tracker(fDSST).

The paper[18] firstly, suggests the discriminative scale space tracker (DSST), which learns different

discriminative correlation filters (DCF) for target scale estimation and target translation. For learning

scale filter, samples of target at different scales are considered. But before scale estimation, translation

estimation is preformed. In new frame the visual target translation is predicted by using a standard

filter for translation. Than for estimating the accurate target size, the learned scale filter is applied

at the new target location. Thus discriminative scale space tracker[18] in comparison with other

exhaustive scale search strategies reduces the search space and learns the change in appearance of
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target, by changes induced due to variations in object size. Secondly, authors [18] suggest the fast

discriminative scale space tracker (fDSST) by improving the computational cost, increasing the search

space and hence making it more robust and accurate. Thus making it more suitable for real-time

applications. The implementation of current algorithm is considered in this work for targeting a

FPGA.

The paper[18] validates its approach by, a comprehensive evaluation done on Online Tracking

Benchmark (OTB) data set [32], having fifty videos. The results are evaluated on the VOT chal-

lenge 2014 [17]. Qualitative and quantitative experiments were executed. This approach refines the

Discriminative Correlation Filter methods for scale search, both for speed and accuracy. This DCF

tracker overcomes nineteen approaches on OTB data set. It is further shown to achieve high rank on

VOT 2014 data set by leaving behind 37 trackers.

This work mainly focuses on hardware implementation of [18].It discusses the major blocks which

are needed for the implementation of the algorithm. For the implementation of these block Vivado

HLS 2016.1 is used. The major mathematical blocks in this algorithm are studied and their best

implementation approach for this algorithm is described. The best implementation approach is given

in terms of the complexity and Dimensions of inputs involve, less area and fast operation. The whole

algorithm is also depicted with the step by step operations involved to better understand the decisions.

It is suggested to keep the area of target image at max half of the frame size for good performance.

Also, the synthesized version of Discrete Fourier Transform hardware is depicted.

Major blocks involve Discrete Time Fourier Transform(DFT), Singular value decomposition(SVD)

to find eigenvalues and eigenvectors, QR factorization, image resizing, Hann windowing, image in-

tegral, fhog features. This work suggests the suitable methodology for their implementation. With

main focus on less area to be able to fit in an FPGA meanwhile achieving latency for operating in

real time.

The remaining of this thesis is organized as follows. Chapter 2 gives an overview of the literature

review of work most related to this work. In Chapter 3 we introduce our methodology. Chapter 4 to

8 discusses the best approaches for implementation of the major blocks of the algorithm, i.e, DFT,

SVD, QR, Resizing image, Hann windowing, integral image. Chapter 9 gives the best approaches for

implementation of the minor blocks of the algorithm. Finally the conclusion is given in Chapter 10.



CHAPTER 2

Literature Review

2.1 Object Tracking

2.1.1 Visual object tracking

In computer vision Visual object tracking is a basic research problem. In most of the cases, Visual

object tracking means given an initial position of target in a frame, one has to trace the location of

the target in a sequences of frames. In general visual tracking, the target to be tracked can be any

item/object and is only defined by its initial position. Therefore the only information available to

the tracker is its position. Since it has this generic nature many applications exist for it. Mostly it

includes surveillance cameras [11] robotics [14], and road view understanding [1].

Given the initial frame than the tracking methods involve creating an appearance model for the

target from the initial frame information. This task can be achieved by either of the two methods.

• Generative Methods

• Discriminative Methods

Generative Methods

The Generative appearance models are based on describing the appearance of target by utilising

statistical models or templates. This does require constructing a template appearance model and

than using it to search the next frame. Thus it has a high computational cost for implementing in

hardware.

Discriminative Methods

Discriminative approach use machine learning methods to distinguish between the target appearance

and the surrounding back-ground. Discriminative approach work by only riling on the given data

while learning the classification from the observed statistics. This is less hungry for computations

with respect to generative approach. Examples of involved learning approaches are Support Vector

Machines (SVM) and boosting techniques.

Based on this Discriminative approach seems more feasible for hardware implementation than

generative approaches.

4
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2.1.2 Discriminative Correlation Filters

The discriminative correlation Filter is an algorithm. It trains a template to distinguish between

an image and its translation. It is feasible for object tracking because of its formulation in Fourier

transform domain provides a fast solution, allowing the tracker to be re-trained one time per frame.

In Recent years, Discriminative Correlation Filters(DCFs) have successfully been employed for

visual object tracking [15], [3], [10], [16]. In real-time operation, these approaches have shown to give

excellent performance on benchmark tracking data sets [17], [32]. These trackers learn a discriminative

correlation filter for target estimation in a new frame.

Author of [3] trained the filter on a set of sample gray-scale patches by minimizing the total squared

error between the desired correlation and the actual output. The authors showed that with the help

of circular correlation, the filter can be computed using just FFTs and point wise operations thus

making it efficient. Author [9] further showed that the formulated Discriminative Correlation Filter

can equally be casted as learning a least squares regression or ridge regression on the set of all cyclic

shifts of the involved sample patches. This formulation than led to the introduction of fast kernelized

correlation filters.

2.1.3 Multi-channel Discriminative Correlation Filters

In recent, several works have utilized generalizations of the Discriminative Correlation Filter approach

[3] for multidimensional features [7], [28], [8]. Given the set of training samples they learn an exact

multi-channel filter.

The authors of [18] show generic approach for Multi-channel Discriminative Correlation Filters.

From target appearance a single sample f is considered for learning a multi-channel correlation filter.

In the general scenario f is an image patch that is centered around the target object. This is used

for learning a 2 dimensional correlation filter for computing the target translation. Normally, domain

of f has arbitrary dimension, which is very useful. This means that the same technique can be used

for one - dimensional, two- dimensional or even three- dimensional filters. One-dimensional filter is

for scale estimation, two-dimensional filter is for translation estimation and three-dimensional is for

combined scale and translation estimation. To achieve this, for each case, the feature extraction step

needs to be adapted. The authors of [18] further explore that the sample of object target f, at each

location n in a rectangular domain, comprises of a d-dimensional feature vector f(n) ∈ Rd.

For the translation case the gray scale intensity value/ RGB value at every pixel position of the

patch is considered. In general usually, any grid-based feature representation can be considered. The

feature channel l ∈ {1, 2, ..., d}of image patch f is denoted by fl.

The goal then is to learn a correlation filter h for each feature channel comprising of one filter hl

. This is accomplished by minimizing the L2 of correlation response error compared to the required

correlation output g,

ε = ||g −
d∑

l=1

hl ∗ f l||2 + λ

d∑
l=1

||hl||2 (2.1)

where * means circular correlation, g is the required correlation output which usually is a Gaussian

function having its standard deviation parametrized [3]. Lambda is weighting parameter of the second

regularization term in Eq (2.1). Also it is important to see that the all terms hl, fl, and g poses equal

sizes and dimensions. The authors[18] further suggested that Eq (2.1) is a linear least square problem.

Parseval’s formula can be used to solve it efficiently by transforming Eq (2.1) to the Fourier analysis

domain. Than, the filter that minimizes Eq (2.1) is given by,

H l =
GF l∑d

k=1 F
kF k + λ

(2.2)
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where,

l ∈ {1, 2, ..., d}

and the Upper case letters means the discrete Fourier transform (DFT) of the terms. The symbol bar

means complex conjugation of corresponding quantities. The divisions and multiplications in Eq(2.2)

are not matrix divisions and multiplications but are point wise.

Given a sample f for training of target Eq (2.2) gives the optimal filter h. In practice robust

correlation filter h is learned by taking many samples (fj)
t
1 at different instances of time, which can

be accomplished by taking the mean of the the correlation error in Eq (2.1) of all training samples

f1,...,ft. As depicted by author in [7], by using Discrete Time Fourier Transform the least squares

problem which is linear can be block diagonalized. As a result N number of d * d linear systems

can be solved to find the final H, where N being the elements in the filter hl. But, for the real-time

online learning this will result in a bottleneck computationally. Hence, the authors[18] consider the

exact solution of Eq (2.2) for one training sample to get a robust approximation. Authors[18] use the

update rule of [3] for single feature i.e (d = 1) to update numerator and denominator of the filter for

a sample ft. Let the current numerator At
l and the current denominator be Bt

l, than the update is

given as,

Al
t = (1− η)Al

t−1 + ηGF l
t (2.3)

Bt = (1− η)Bt−1 + η

d∑
k=1

F k
t F

k
t (2.4)

where, the scalar

η

is a learning rate parameter. To apply the filter in the next frame t, a sample zt is taken from

the region of transformation considered. Where in the standard case, zt is an image patch centered

around the estimated target position. The sample zt is taken similarly to the other training samples

ft, considering the same representation of features. The Discrete Time Fourier Transform(DFT) of

the correlation scores yt is computed in the Fourier domain

Yt =

∑d
l=1A

l
t−1Z

l
t

Bt−1 + λ
(2.5)

To compute correlation scores at the positions reflected in zt the inverse Discrete Time Fourier

Transform(IDFT) is taken as

yt = F−1{Yt}

The prediction of the current state of target is obtained by taking the maximum of the correlation

scores.

2.1.4 Correlation filter for translation estimation

For tracking involving only translation first learn a 2-dimensional multi channel Discriminative Cor-

relation Filter(DCF). For this in a frame number t, firstly the target location is given. Then extract

a sample training patch ft centered around the object target. The translation filter numerator and

denominator are then updated using Eq (2.3) and Eq (2.4). Then to compute the target position in

a new frame t, a sample patch zt is taken from the previously computed location. The correlation

scores are taken from Eq (2.5).
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2.1.5 Correlation filter for scale estimation

In visual object detection an approach for detection of an object at variety of scales is to apply the

filter at multiple resolutions [21]. This approach is used for the standard DCF-based tracker [31].

Same strategy as previous section is utilized. In the detection step, many patches are sampled at

different resolutions centered around the last target position. The translation filter is then used for

each sample patch independently by Eq (2.5). Both the scale and translation of the desired target is

obtained by taking the resolution or scale and position with the highest correlation score considering

all the patches.

2.1.6 Joint Scale Space Filter

A direct approach for taking into account scale estimation is to create a 3-dimensional scale space

filter. This filter can estimate jointly the scale and translation of the target. It is done by estimating

the correlation scores of a box-shaped(rectangular cuboid) area of a scale pyramid representation.

Both the scale and translation estimates are computed by maximizing the correlation score. The

update of this joint scale space filter is done as follows.

• First create a feature pyramid in a rectangular region centered around the desired target location

such that the object size at current resolution belongs to the spatial filter dimension i.e M * N.

• ft, the sample for training, is set to the box or rectangular cuboid of dimensions M * N * S

around the object scale and position. S being the size of filter in the dimension of scale.

• This filter is than updated for numerator and denominator using Eq (2.3) and Eq (2.4). In this

case Gaussian function for the desired correlation output is taken to be three-dimensional.

• After updating the filter, in the detection stage, create a feature pyramid centered around the

previously computed target scale and position.

• This rectangular cuboid of dimension M * N * S around the location is used to extract zt.

• Finally using Eq (2.5) the correlation scores for this scale space region are computed.

However, these approaches are not directly applicable to the real-time object tracking case due

to a significant amount of the computational cost. On the other hand, approximate formulations for

multi-channel filters learning are investigated [15], [10]. These methods are robust and they scale

linearly with the number of feature channels. Also, to reduce the cost author of [15] introduced a

technique for adaptive feature dimensionality reduction while preserving performance of the tracker.

The DCF based methods have shown the capability of precise target localization in many challenging

situations.

The authors[18] aim directly at learning the change in appearance induced by scale variations.

This allows to track at a higher frame-rate while achieving accurate scale adaptive tracking. This

is described in the next section of Discriminative Scale Space Tracker(DSST). In section 2.1.9 DSST

algorithm is analyzed for techniques to reduce its computational cost. This allows not only to increase

the robustness of tracker by increasing the target search area but also it doesn’t sacrificing real-time

performance hence very good solution to be implemented in hardware. These improvements result in

higher tracking performance with twice the speedup.

2.1.7 Discriminative Scale Space Tracker(DSST)

The authors[18] propose the Discriminative Scale Space Tracker. The idea is that to use separate

filters for scale and translation. It learns a separate one-dimensional correlation filter for scale. This
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scale filter is applied at a target location in an image to compute correlation scores in scale dimension.

These correlation scores are then utilized to predict the scale of target. To create ft,scale, the training

sample, features are extracted using different patch sizes centered around the target location. Assume,

P * R denotes the size of target in the present frame and let S be the scale filter size. For each

n ∈
{[
−S − 1

2

]
, ...,

[
−S + 1

2

]}
an image patch In is extracted with a size of an P X an R around the target position. where, a

represents the scale factor between the feature layers. The sample ft,scale for each scale level n has

the value ft,scale(n) which is set to the d-dimensional feature descriptor of In. In the end of, Eq (2.3)

and Eq (2.4) are used for updating the scale filter ht,scale with the new sample ft,scale. As expected a

one-dimensional Gaussian is used for the desired correlation output g.

For estimating the target translation, the standard translation filter is used. Usually, the scale

target difference between two consecutive frames is less compared to the difference in target translation.

Hence translation filter ht,scale is applied first for a new frame. Then the scale filter ht,trans is applied at

the new estimated target location. zt,trans. Same procedure is used for extracting the scale estimation

of test sample zt,scale. Finally, by maximizing the scale correlation scores using Eq (2.5), the relative

difference in scale from previous is obtained. The algorithm is depicted in figure 2.1 of the DSST [18].

2.1.8 Fast Discriminative Scale Space Tracker(FDSST)

The authors[18] suggest strategies for reduction of the computational cost of the DSST method. Two

methods for reducing the number of computations in the learning and detection steps of the multi-

channel DCF are described.

• Sub grid based interpolation of correlation scores

• Feature dimensionality reduction using Principal Component Analysis (PCA)

Sub grid based interpolation of correlation scores

Sub-grid interpolation is used for creating coarser feature grids for the samples of detection and

training. This decreases the computational cost by the reduction in the size of the performed DFTs

required to compute Eq (2.3),(2.4) and (2.5) for detection and training respectively. The interpolation

is done with trigonometric polynomials[25]. This is feasible since the coefficients of DFT for the

correlation score, required for implementing the interpolation, are available from in Eq (2.5). The

interpolated scores yt” are obtained by zero-padding the high frequencies of Yt in Eq(2.5) keeping its

size equal to that of interpolation the grid. The interpolated scores yt” are then obtained by taking

the inverse DFT of the padded Yt.

Feature dimensionality reduction

Most of the computational cost of the DSST is due to the DFT. Since equation (2.3) (2.4 and (2.5)

requires one DFT per feature dimension, as a result the number of DFT computations scale linearly

with the feature dimension d. Hence a dimensionality reduction technique need to used to decrease

the number of DFT computations. The dimensionality method is based on the standard Principle

Component Analysis (PCA).

For reducing the number of DFT computations, the update is to be done on a target template

instead given by,

ut = (1− η)ut−1 + ηft



Department of Electronic Engineering 9

Figure 2.1: Algorithm of DSST taken from paper [18]

By the linearity property of the Fourier transform, the numerator Eq(2.3) of the learned filter can

then equivalently be obtained by

Al
t = GF{ult}

A projection matrix Pt is constructed by the learned template ut. For projection of the low-

dimensional features on to the low-dimensional subspace the projection matrix is used. The projection

matrix Pt is d’ * d, where d means the dimensionality of the compressed feature representation. Pt is

obtained by minimizing the reconstruction error of the target template ut

ε =
∑
n

‖ut(n)− PT
t Ptut(n)‖2 (2.6)

where, n, the index tuple, ranges over all elements in the template ut. Eq (2.6) ut. Eq. (5) is

minimized under the orthonormality constraint
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PtP
T
t = I

It can be solved by performing an eigenvalue decomposition (SVD) of the auto-correlation matrix

Ct =
∑
n

ut(n)uTt (n) (2.7)

The rows of projection matrix are set to the d’ eigen-vectors of Ct corresponding to the largest

eigenvalues.

The compressed training sample

F ′t = Four{PtFt}

and the compressed target template

U ′t = F{Ptut}

are used to update the filter as the

Al
t
′ = GU l

t
′ (2.8)

B′t = (1− η)B′t−1 + η
∑
k=1

d′F k
t
′F k

t
′ (2.9)

The linear operation of projection matrix is applied as an element-wise matrix multiplication

(Ptut)(n) = Ptut(n)

that projects the feature vector ut(n) Rd onto the rows of projection matrix. The equation (2.8) can

be directly obtained from Ut
l’ because it linearly depends on ft. Same cannot be said about Equation

(2.9) since it is dependent on the auto-correlation of the samples. So a different projection matrix is

required for the denominator. A good approximation of Bt is obtained by using the projection matrix

for every frame t and using different projections for each term∑
k=1

d′F k
t
′F k

t
′

By applying the filter on the compressed sample

Z ′t = F{Pt−1zt}

the correlation scores at the test sample zt are obtained as

Yt =

∑
l=1 d

′Al
t−1
′Zl

t
′

B′t−1 + λ
(2.10)

Compressed scale filter

The number of elements ut,trans(n) in the template are greater than feature dimensionality for the

translation filter used in DSST. On the other hand, for the scale filter, the reverse is true. In that

scenario the rank of the auto correlation matrix from Eq(2.7) is smaller than or equal to the number

of scales, i.e., rank(Ct,scale) ≤ S.
Thus, without losing any information, the scale template ut,scale can be compressed to d’ = S

feature dimensions. The same is true for the training sample ft,scale of the scale filter.
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This dimensionality reduction method is used for the scale filter by employing the following prop-

erties. Two projection matrices are computed and used to compress the sample and template without

losing any information. Filter is updated by using these compressed versions. By linearity of Fourier

transform the scale filter in Fourier domain is not affected by the dimensionality reduction since it

can be fully reconstructed. By using a compressed test sample

z′t,scale = Pu
t−1,scalezt,scale

equation (2.10) is applied to estimate the scale correlations scores for the detection stage.

For less computational and memory efficiency, the auto-correlation matrices are not explicitly

calculated but rather obtain the projection matrices Pt,scale
u and Pf,scale

u through a QR-factorization

of ut,scale and ft,scale respectively. This does not affect the tracking output since the multi channel

DCF approach is invariant to any change of orthonormal basis in the feature representation.

2.1.9 Mathematical operations

As this thesis involves a discussion on hardware implementation of the fDSST [18] algorithm. It is

necessary to understand the involved mathematical operations in this algorithm, their nature, function-

ality and complexity. For this purpose this section deals with the introduction of these mathematical

operations as well as shedding some light on their implementation. The major mathematical oper-

ations involved in the algorithms[18] include Singular value decomposition(SVD), QR Factorization,

Discrete Fourier Transform(DFT), Fast Fourier Transform(FFT), and Inverse Discrete Fourier Trans-

form(IDFT), FFT2, Image resizing, Hanning window, FHOG, circular shifting, Matrix multiplication

and matrix transpose.

QR Factorization

QR factorization, also named as a QR decomposition or QU factorization is a form decomposition

of a matrix B (B = QR) into a matrix product of QR i.e of an upper triangular matrix R and an

orthogonal matrix Q. QR factorization is mostly used to solve the linear least squares problem and is

the basis for a particular eigenvalue algorithm. After the QR factorization the two matrices created

have these properties. QT x Q = I the identity matrix. If the dimension B is M x N then Q has the

dimension of M x M and R has dimension of M x N.

It is implemented using Gram–Schmidt process. In this process the columns of the matrix are

used. Let x1, x2, x3 denote the columns of the original matrices. Projection is found using

Projux =
u.x

u.u
u

where ”.” represents inner product. In case of complex numbers the first term is conjugated. Than the

Q matrix can be found by finding orthonormal columns of A from each other by using the projections

as,

uj = ai −
j−1∑
i=1

Projuiaj

where ui divided by its length make the columns of Q matrix. To find matrix R dot product of ui

(divided by its length) and column of original matrix is required.

Singular value decomposition(SVD)

The singular value decomposition of a M * N matrix of a matrix A is a factorization of the form USV.

Here U is M * M real or complex matrix, S is M * N diagonal matrix with real non-negative values
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and V is N * N unitary matrix. The diagonal elements of the matrix S are the singular values of A,

while the columns of matrices U and V are left singular vectors and right singular vectors of A. The

vector V is in transposed form.

The singular value decomposition can be calculated by using the following properties:

• The left singular vectors of matrix A are orthonormal eigenvectors of A * conjugate(A).

• The right singular vectors of matrix A are orthonormal eigenvectors of conjugate(A) * A.

• The non-negative singular values of matrix A i.e, the values on the diagonal of matrix S are the

square roots of the eigenvalues of both conjugate(A) * A and A * conjugate(A).

Discrete Fourier Transform(DFT)

The discrete Fourier transform (DFT) transforms a series of equally-placed samples of a function into

an exact length series of equally-placed samples of the discrete time Fourier transform (DTFT), which

is a complex function of frequency. The length of the DTFT is the reciprocal of the duration of the

input series.

It is calculated as

Xk =

N−1∑
n=0

xn.e
− j2πN kn

Inverse Discrete Fourier Transform(IDFT)

The inverse discrete Fourier transform (DFT) is a Fourier series. This uses the DTFT samples as

coefficients of the sinusoids at the corresponding DTFT frequencies. It has the same equally-placed

samples as the input series.

It is calculated as,

xk =
1

N

N−1∑
n=0

Xn.e
j2π
N kn

Discrete Fourier Transform2(DFT2)

This is the DFT of a matrix. First of all it takes the columns of matrix and calculates DFT. Than it

takes the transpose of the result. It again performs the DFT of columns (hence this times rows).

Fast Fourier Transform(FFT)

This is the DFT of a matrix. This uses a technique called butterfly approach to calculate DFT in a

fast manner for implementation.

Hanning window

In digital signal processing a window function is a function of mathematics that is zero outside of

allocated interval, usually symmetric around the center of the interval. When another function is

”multiplied” by a window function, the product is also zero-valued outside of allocated interval,

except the overlap part. Hann window is one such window. It is also called cos window. It is used to

realize Hann smoothing. It gives coefficients which are multiplied by the input series.

The coefficients are calculated as,
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Wn = 0.5[1− cos(2πn

N
)]

the length of the window is N + 1.

Image resizing

Resizing of an image means changing the size or its dimension, it can be the width only or the height

alone or both of them. But, the aspect ratio of the input original image would be preserved i.e, not

changed in the resized image. This is done with the help of interpolation of some sort. Most common

is bilinear interpolation. A bilinear interpolation or INTER LINEAR interpolation is an extension of

linear interpolation for 2-dimensional rectangular interpolation.

The main idea is to do the linear interpolation first in one direction, and then in the other direction.

Although each step on its on is linear, the interpolation as a whole is not a linear interpolation but a

quadratic one.

In this interpolation method linear interpolation is utilised to get smooth scaling based on Neigh-

bouring pixels of the image.

Linear Interpolation

This is an approach to approximate a random point between any two other points. Suppose there are

two dots of different colors, blue and red. Suppose they are along a straight line, and there is a dot

at an arbitrary point on this line. Objective is to find a suitable color for it. Let, its color value be x.

The other two dots colors values are A and B respectively. Let L be the distance between A and B

and the distance between A and x is l. Than the interpolation function [27] is

x−A
l

=
B −A
L

x = A+ l ∗ B −A
L

FHOG

Before understanding FHOG some terms are necessary to be introduced.[29]

GRADIENT The gradient vector of an image is defined as for each individual pixel, containing

the information of the pixel color changes in both x direction and y direction. Its definition is in

parallel with that of the gradient of multi-variable continuous function, which actually contains a

vector having the partial derivatives of all the involved variables. The two main characteristics of an

image gradient are its magnitue and direction.

HISTOGRAMOFGRADIENTS(HOG) An efficient method for extracting the features

of the pixel colors, for creating a target recognition classifier, is named the Histogram of Oriented

Gradients (HOG). With the help of image gradients here is how it works.

• Preparation of the image using color normalization and resizing.

• For each pixel the gradient vector is computed along with its direction and magnitude.

• The image is divided in many cells of 8 * 8 pixels. With in each of it, the 64 cells magnitude

values are binned together and added cumulatively into nine buckets have direction unsigned.

That is if a pixel’s gradient vector direction lays between 2 buckets, it is split proportionally

between them rather than assigning it to the close one. Thus, this gives robustness against

distortions.
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• Than a block is created of four histograms of 4 cells in 1-D vector by concatenating, which has

36 values. Then with the help of normalization this becomes unit weight.

• By concatenating all of these blocks the HOG feature vector is created.

Felzenszwalb′sAlgorithm Felzenszwalb suggested an algorithm for the purpose of dividing

an image into similar areas utilizing a graph-based strategy. Since it is needed to define an area that

potentially contains an object since usually there are multiple targets in an image. It is also the

initialization method for Selective Search.

When there exist multiple objects in one image (true for almost every real-world photos), we need

to identify a region that potentially contains a target object so that the classification can be executed

more efficiently.

FHOG is used to efficiently compute the features of Felzenszwalb’s HOG (FHOG). The HOG

features that are computed have three times the number of Orients requested + 5 dimensions. Two

times the number of Orients requested are channels that are contrast sensitive, four are for channels

with texture, one contains zeros, while remaining channels are insensitive to contrast. The usual value

is nine for each cell thus giving feature vector of 32 dimensions.

Circular shifting

It involves shifting the elements of a matrix or vector by number of positions as desired, but the last

elements which is shifted goes to the start of the array. So size doesn’t change. In case of a matrix it

shifts the columns or rows.

Matrix multiplication

Matrix multiplication involves generating one matrix from two involved matrices. It is preformed as

if A is an m * n matrix and B is an n * r matrix, than their product C = AB is an m * r matrix, in

which the n elements in a row of A are multiplied by the n entries in a column of B and added to get

an element of C.

2.1.10 Parameters for measuring image quality

Overlap Precision

The score for overlap precision is calculated using as percentage over all the frames included of which

the intersection over union overlap exceeds a given threshold over the ground truth values. Using

PASCAL evaluation criteria the threshold of overlap precision is set to 0.5 as suggested in [18].

Distance Precision

The score for distance precision is calculated as the percentage of all frames included of which the

euclidean distance between centroids of ground truth and the tracker output is less than a given

threshold. For this purpose twenty pixels are used as threshold as suggested in [18] .

PSNR

The score for PSNR(Peak/Pixel signal to noise ratio) is calculated using percentage over all the frames

included. The difference of the real and expected value is taken and squared, for all the pixels in an

image and summed together. Than the maximum value of the pixel is divided by this. To express it

is decibels log10 is taken.
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2.1.11 VIVADO HLS

A Xilinx software tool named Vivado Design Suite is developed for analysis and synthesis of HDL/hard-

ware designs, along with Xilinx ISE with extra features for performing a SOC development and most

importantly high-level synthesis.

It supports high level synthesis. Thus the code return in C++ will be converted to a HDL code.

It allows with the help of pragmas to unroll, pipeline or partition loops and pieces of codes for

optimization. It is very useful tool since it gives control over hardware with just using C/C++.

Figure 2.2: VIVADO HLS work environment



CHAPTER 3

Implementation of the algorithm

This chapter involves the fDSST algorithm [18] from a hardware implementation point of view. It

goes through a sequence of steps in hardware from which the image passes, this is done for the sake of

understanding the complexity of each block. The future chapters details the implementation strategies

for these blocks.

The algorithm is implemented under the instructions mentioned in the paper [18]. The regular-

ization parameter is fixed to

λ = 0.01

and the learning rate parameter is fixed to

η = 0.025

For desired correlation output g the standard deviation is fixed at 1/16 times the size of target in the

dimension of translation. The padding around the image target to create the image patch is set to

three times the original target size for the fDSST algorithm.

The scale factor a is set to 1.02. For this approach number of scales is set to 17, which is then

interpolated to 33 to get the required scale. For desired correlation output g the standard deviation

in dimension of the scale is fixed at 1/16 times the number of scales.

The PCA-HOG[21] is for representing image which is implemented according to the method given

by [5]. The pixel-dense feature representation is achieved by using HOG computed on coarser feature

grid for translation. The vector for feature is created by HOG 4 x 4 cells. The vectors of HOG are

provided with the average gray scale value in the respective cell. These are then normalized to be in

the range of [-1/2,1/2].

For computing the feature descriptor of the image patch for scale filter, firstly re-sizing is put into

action. Resizing is done to a fixed size. he fixed size is basically the original target size. Then a 4 x 4

coarser cell is utilized for HOG extraction. T But when target area increases the limit (512 number

of pixels), then a fixed size is maintained for it by keeping the aspect ratio unchanged. This is due to

the fact, so that the maximum feature length is not greater than 992. After feature extraction, each

of the extracted feature channel in the sample is passed through (i.e multiplied point wise) a Hann

window.

This algorithm utilizes PCA for the reduction in the dimension of the translation filter. The

original 32-dimensional HOG and its intensity combination is not utilized rather than its reduced

version is used. For this approach, it is reduced to 18 dimensions. The other reduction scheme is used

for the scale filter which reduces the dimension from d = 1000 to just S = 17 dimensions of the scale

features.

16
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3.0.1 Hardware blocks used in the algorithm

This section deals with the hardware blocks used in the algorithm. Also their sequence of application

and complexity are considered. The block diagram of the hardware blocks involved is depicted here.

It is drawn in two parts. Part 1 in figure 3.1 describes the initial steps of the algorithm and the

Translation search part. Part 2 in figure 3.2 deals with the scale estimation block as well as the part

belonging to translation filter update and scale filter update.

Figure 3.1: fDSST algorithm Block Diagram Part1

Input block

The algorithm starts at the first block as shown by red in the figure 3.1. The initial frame is given

as input along with its corresponding initial target size, target position. Also the general constants of

the algorithm are given as input from here. The Discrete Fourier Transform(DFT) and Hann window

coefficients are also provided in the first block. Initial target size is given as height and width of the

target [h,w] so a 1 x 2 vector. Its maximum values are 240 and 320 respectively.

Preparation Block

Than the second block in the top right corner of the figure 3.1 is entered. Here first of all an initial

check on the dimensions of target are done to make sure to that they are in range i.e, less than the
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Figure 3.2: fDSST algorithm Block Diagram Part2

total maximum pixel area. Based on this the scale factor is decided accordingly using:

currentScaleFactor = sqrt(init target sz/translation model max area)

This involves a square root operation and division of floating point. Thus these two hardware

units are to be implemented. Than based on this the target size is updated.

base target sz = target sz/currentScaleFactor

Similarly the same operations for the scale are applied in this block. Than the scale size is scaled

accordingly. After this, for the extraction of the target from an image, a patch is created. Also window

size is determined. Here a round off unit is required.

size = hls :: floor(base target sz ∗ (1 + padding))

Then using feature ratio of 4 the new size is defined.

From here two tasks are performed in parallel. In the figure 3.1 the block on left is for translation

window coefficients calculation and on the right is for scale window coefficients calculation.
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Translation window preparation

To generate row indices and column indices, two vectors are defined based on initial size with the help

of circular shifter. This blocks takes as input the height and width of target and generates circularly

shifted indices. So the maximum dimension is based on initial target size. Then they are converted

to matrices of initial size dimensions with repetition of elements in rows and columns. This performs

transformation using for loops. So this transformation will affect the latency but this is only done

for the first frame. Than to generate the input for the Discrete Fourier Transform(DFT) unit the

elements of matrices are squared and raised to an exponential e = 2.71. This operation is applied on

the whole matrix. Than the Discrete Fourier Transform2(DFT2) unit is exercised to created a window

whose output is complex 2D matrix. This must be clear here that the maximum size possible here is

240 x 320 as it is the maximum number of target pixels in each frame.

Than hanning window is applied separately on width and height of the matrix i,e the rows and

columns. The maximum size possible here is 240 or 320 as it is the maximum number of target pixels

in each frame. Then to generate cos window matrix multiplication of the above two hann windows

occur. Again the same maximum size.

Scale window preparation

From here on some necessary calculations occur for coefficients of scale, which are done once in the

start and are independent on input target size. So it can be performed once and not included in

algorithm. They are general constants and scale window coefficients. This is not true for a logarithm

unit which has an input that is size dependent. But it only depends on the size of first frame target,

so it can be taken out of the algorithm to save hardware and used as pre-computed values.

It is recommended to perform these two block at the start and store the results in a memory block

in FPGA to save hardware.

The main algorithm starts from here. From here on, the required units and operations are repeated

for each frame.

For the first frame there is no need to estimate target as it is already provided so jump to filter

update part in figure 3.2 . Firstly the translation filter is updated.

Translation Filter update

The first major function in this block is getting sub-window. It involves patch image extraction. So

it requires generating indices based on initial target size which is then used to extract the patch from

the image. After that it is resized to the padded target size. Since padding is 3 so the maximum

resized output dimension is 4 times the initial target size. So at maximum it can be 4 * 240 * 320.

But it is a recommendation here that the try to pick target of maximum 120 * 160, so for FHOG part

the dimensions are less to save heavy calculations. If target is small compared to the whole frame it

is less computation hungry so less cost.

Then the fhog is applied. The maximum output is a 3D matrix with dimensions of initial target

size * 32. As mentioned before for coarser grid the last matrix of fhog output is updated. on the

fhog output it is desired to exercise the image integral unit. This is done by extracting along row and

column each fourth element and joined. Which is then scaled down to so that the maximum value

is less than 255. The maximum size of this scaled down output is initial target size. Then finally it

passes through a reshaping hardware. Here the maximum output is a 2D matrix with rows = initial

target size and columns 32. So it is a recommendation here that the try to pick target of maximum

120 * 160 so the dimensions are less to save hardware. If target is small compared to the whole frame

it is less computation hungry so less cost.

The previous result is multiplied with its transpose which generates a 32 * 32 matrix. Then the

result is decomposed using SVD decomposition of matrix. But maximum dimension here is 32 * 32
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and out of which only 18(number of compressed dimension) columns are utilized in the projection

matrix.

The second major function of this block is feature projection. This involves windowing of the cos

window with projection matrix. Maximum output dimensions here are initial target size * 18 a 3D

matrix. Then this is passed through a DFT2 unit. This is part is sort of the bottleneck of algorithm,

as now it involves target size * 18 DFT calculations(also involving twice the matrix transpose). Thus

the maximum can be 240 * 320 times 18. Then the output is conjugated and is windowed with the

co-coefficients of Hann calculated earlier.

The second function is repeated with sub window output. Then the output is multiplied with

its conjugated version element wise. The corresponding elements in the third dimension are summed

together to get a 2D matrix as output. If it is not the first frame than it is update as

hf = (1− interp factor) ∗ hf + interp factor ∗ new hf

Scale Filter update

After the translation filter, scale filter is updated. Again the major function is getting sub window

for scales.It also involves patch extraction based on scales. It is equivalent to the translation version

except it is repeated for 17 timed based on number of scales. The output has dimensions of scale’s

initial target size * 32.

After this, it is decomposed using QR factorization of matrix. But maximum dimensions here are

31 * (scale model size/4) * 17. This step is done twice.

Than the second major function feature projection for scale is applied. The maximum can be

17 * 17 for the DFT (2D). Than the output is conjugated and is windowed with the co-coefficients

of Hann calculated earlier for scale. The second function is repeated with sub window output. The

corresponding elements in the first dimension are summed together to get a 2D matrix as output.

Translation search

This first of all involves the same two major function steps as translation filter. Then third major

function is resizing of 2D DFT result before taking IDFT2. This is done using linear interpolation.

Again the maximum is 4 * the initial target size. That Inverse DFT2 is applied whose output has of

same dimensions but real values.

Scale search

This first of all involves the same two major function steps as scale filter. Then third major function

is resizing of 1D DFT result before taking IDFT. This is done using linear interpolation. Again the

maximum is 31 * (scale model size/4) * 17. That Inverse DFT is applied whose output has of same

dimensions but real values.



CHAPTER 4

Discrete Fourier Transform implementation

This chapter details with the implementation of discrete Fourier transform. This is in three basic

versions.

• DFT (One dimensional 1D)

• DFT2 (Two dimensional 2D)

• DFT2 (Three dimensional 3D)i,e, repeated for fixed 18 times

Different approaches for DFT implementation exists. The best solution for hardware implemen-

tation is butterfly based DFT. This requires the DFT size to be a power of 2. So, butterfly approach

can’t be used since target selection is generic. So basic implementation based on its original formula

is considered. Their implementation details are given as under:

4.1 Discrete Fourier Transform(DFT)

For the implementation of this block Vivado HLS is used as a tool. The basic DFT is calculated as

Xk =

N−1∑
n=0

xn.e
− j2πN kn

where xn is the real input and Xk is the complex output. For the case of inverse Discrete Fourier

Transform(IDFT) it is described as

xk =
1

N

N−1∑
n=0

Xn.e
j2π
N kn

In the case of this algorithm the maximum size of DFT or IDFT required are 17 and 33 respectively.

The equation also involves the multiplication by coefficients. These coefficients are pre-computed and

given at the input of DFT block as matrices. Also two separate vectors are given as inputs for real

and imaginary inputs. These ports are bidirectional for saving resources i.e, input ports are re utilized

for output. The core involves two main computational blocks. The first one uses 2 for loops, the inner

loop implements the DFT equation. It involve 2 multiplication one subtraction and one addition.

The same is also done here for the imaginary case. So computations are done twice. The outer loop

iterates the inner one for all the DFT points. The second block involves one loop for assigning the

final values to the output, so it is actually copying data.

21
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As a general reference a FFT algorithm present in vivado library is synthesized with 1024 point

butterfly, the results are shown in figure 4.1. The latency is 875 cycles operating at 100MHz. The

resource consumption is high as it can be seen.

Figure 4.1: Vivado hlsfft library(1024 point FFT) implementation

After this the real DFT first version is implemented. This DFT unit will be used for DFT2 as well

which has the maximum dimension of 320 * 320. So the DFT it self is designed for size 320. Then as

a first approach, complex input and output numbers with only 2 vectors are used. One is for input

and one is for output. After doing synthesis the achieved results are shown in figure 4.2. Its resource

consumption is less but latency is high. To improve this other versions are developed.

As a second approach of this same case of complex input and output numbers, pipelining is used.

The inner loop, the one implementing the DFT equation is pipelined. With this the output assignment

loop is also pipelined. The results are shown in figure 4.3. It can be seen that the resources are less

but the important result is improved latency.

To further decrease latency, another approach using two separate vectors one for real numbers

and one for imaginary numbers is considered. For input and output both using the same vector to

minimize resources. The results are shown in figure 4.4. It uses little more resources but latency is

improved.

Now for the second case the previous approach is used but with pipelining and loop unrolling. The

output assignment loop is unrolled by a factor of 2. The inner loop for DFT equation and the output

assignment loops are pipelined. The results are shown in figure 4.5. It uses less resources and the

latency is improved. The minimum latency is 803 clock cycles. So simple cases like one dimensional

(1D) DFT which has the maximum size of 17 or 33 it will fall in this category and will be fast.

In the previous approach after trying with more unrolling there were no significant improvements in

result. So another strategy is considered. Previous method is repeated but with fixed point datatype.

The synthesis results are shown in figure 4.7. The maximum latency is almost half of the previous

case.

Till now only DFT is considered. The IDFT also can be easily incorporated just by putting a

check for it in the output assignment loop. When the check is true than instead of normal assignment,
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Figure 4.2: DFT (320 * 320) implementation using complex matrices

the normalized DFT values are assigned to the output. And the coefficients for IDFT instead of DFT

will be passed as input. Hence same resource can perform both operations.

4.2 Discrete Fourier Transform2(DFT2)

This block involves transpose of matrices and DFTs. Firstly transpose the input matrix. Pass the

rows (reality columns) to the 1 D DFT block for DFT computation. The result from DFT is again

transposed and the rows are sent for DFT again. So it takes the DFT first along columns then along

rows. In this case the maximum size of DFT and IDFT required is 240 * 320 and 4 * 240 * 320.

Since transpose is involved, so for hardware implementation the maximum size would be 320. Thus it

makes the maximum dimensions to be 320 * 320. Important to note here is that the coefficients are

pre-computed and given in the input as a matrix. Also two separate matrices are given as inputs for

real and imaginary. For saving resources ports are bidirectional meaning the same matrices are also

used to writing the output result. The core involves 4 mains computation blocks. The first one uses

two for loops, the inner loop implements the transpose of the matrices. The outer loop iterates it for

all the rows. The second block involves DFT 1D. The result is transposed by the third block. The

fourth is again DFT 1D. It is depicted in the figure 4.6

Again using the approach of DFT 1D, the loops involved in transpose are unrolled by a factor of

2 and also pipelined. The results are shown in figure 4.8. The latency is too high for this block.

But before moving forward one thing to be considered here is that this algorithm is for object

tracking. In object tracking Usually the size of target is small as compared to the frames size. It

suggested that if the maximum target size is set to half, than the DFT2 can be scaled to 120 * 160.

This will save lot of computations. The previous approach is repeated for these dimensions i.e, 160

* 160. The results are shown in figure 4.9. The latency is much improved from the previous version.



Department of Electronic Engineering 24

Figure 4.3: DFT (320 * 320) pipelined implementation of complex matrices

Now lets consider the IDFT2 block. The IDFT2 block has the maximum size of 4 * the initial target

size. Using maximum size of 160 it is implemented for 640 i.e 4 * 160. The results are depicted in

4.10. These results are compared in next sections.

4.3 Discrete Fourier Transform2(3D)

This block uses DFT2 as a base unit. It performs the DFT2 function for 3 dimensional matrices. It

simply calls the DFT2 function for a number of times. In this case the maximum size of DFT2 or

IDFT2 required is 240 * 320 * 18 but suggested to be scaled to 160 * 160 *18. This will save lot of

computations. Important to note here is that the co-coefficients are pre-computed and given in the

input as a matrix. The core involves one main computation block. That uses one for loop, this loop

implements the DFT2 of matrix. The main thing to note is the one major loop for computing 18

DFT2’s. This is the real bottleneck of the algorithm.

4.4 Discrete Fourier Transform2 performance measurement

This sections deals with applying the test bench to check the correctness of the implemented algorithm.

DFT is used as a block inside DFT2. As a result, this major block is used for checking the behaviour.

The test data is taken from matlab implementation of the algorithm. On matlab, a 8 * 6 target size

is selected from an image frame. This 8 * 6 matrix is traced along the algorithm, until it reach the

input of DFT2. This input is taken as golden reference. Then matlab DFT2 is exercised with this

data and output is sampled for comparison later. The real input and output of the DFT2 (3D) block

from matlab implementation are shown in figures 4.7 and 4.8 respectively.
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Figure 4.4: DFT (320 * 320) implementation using two array for real and imaginary

Now in VIVADO HLS the DFT2 unit is exercised with matlab input data. It is simulated for

fixed point. The fixed point is implemented for 32 bit with 20 bits of fractional part. The simulation

output results are shown in 4.9. Also the relative difference in the result is compared with the golden

matrix, and PSNR (Pixel/Peak Signal to Noise Ratio) is calculated and shown in table 4.10. The

relative percentage value is small. This is very less justifying our use of fixed point. The PSNR value

is negligible here because the difference is very small and PSNR calculation involves squaring so the

results become negligible. This makes the PSNR values go to infinity.

4.5 Comparisons with other literature implementation

For comparing our results, two other implementations [4] [2] are selected and compared with our

approach. The timing results from paper [4] which has implemented DFT in a FPGA are taken

just as a reference to compare with our VIVADO results. They are shown in table 4.2. While our

timing results are depicted in table 4.1. This paper implements DFT in 1D, and uses CORDIC to

compute the twiddle factor. Authors have shown results for 50 Mhz clock. While our DFT runs at

100 MHz. Our approach exceeds the their timing results. Also in the resources section our approach

4.3 consumes less resources then in [4] in table 4.4. Mainly because of pipelining and also because in

our approach the twiddle factors are pre calculated.

The timing results from [2] which has implemented FFT2 and FFT2 3D in FPGA are taken just

as a reference to compare with our VIVADO results. They are shown in table 4.5. While our timing

results are depicted in table 4.1. This paper implements FFT2 and FFT2 3D. There timing results
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Figure 4.5: DFT (320 * 320) pipelined implementation of separate arrays for real and imaginary

Figure 4.6: DFT2 block diagram

far exceeds our but it is important to note that their implementation is for FFT while our us based

on DFT. The main insight given by these results is that the authors[2] used an approach to avoid

transform. This is accomplished by using a fast SDRAM block. This allows burst transfer mode for

accessing the columns. This approach can be utilised in our implementation to improve latency. On

the other hand in the resources section our approach 4.3 consumes less resources then in [4]. It is

displayed in table 4.6.
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Figure 4.7: DFT (320 * 320) pipelined implementation using fixed point

Figure 4.8: DFT2 (320 * 320) pipelined implementation
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Figure 4.9: DFT2 (160 * 160) pipelined implementation

Dimensions for Transform Type Datatype Pipeline Number of clock Time

implementation cycles

1024 FFT – – 875 7656.25 ns

320 DFT (complex) – 1640002 13.792 ms

320 DFT (complex) Yes 518083 4.3571 ms

320 DFT float – 1639682 13.79 ms

320 DFT float Yes 803(min) 6753.23 ns

320 DFT float Yes 415523(max) 3.495 ms

320 DFT (fixed point) Yes 803(min) 6753.23 ns

320 DFT (fixed point) Yes 208163(max) 1750.65 us

320 * 320 DFT2 (fixed point) Yes 2546(min) 21411.86 ns

320 * 320 DFT2 (fixed point) Yes 266552324(max) 2.241 ms

160 * 160 DFT2 (fixed point) Yes 1284(min) 9873.96 ns

160 * 160 DFT2 (fixed point) Yes 17064004(max) 131.222 ms

640 * 640 IDFT2 (fixed point) Yes 5124(min) 39403.56 ns

640 * 640 IDFT2 (fixed point) Yes 1059283204(max) 8145.888 ms

Table 4.1: Timing results of VIVADO based implementation of our approach
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Figure 4.10: IDFT2 4*(160 * 160) pipelined implementation

Figure 4.11: DFT2 (160 * 160) pipelined implementation co-simulation result

Number of input Transform Type Number of clock Time (ns)

sequences cycles

10 DFT 24179 483580

12 28999 579980

20 96509 1930180

Table 4.2: Timing results take from [4] for DFT implementation in FPGA
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Dimensions for Transform Type Datatype Pipeline LUT FF DSP48E

implementation

1024 FFT – – 9806 12484 24

320 DFT (complex) – 1866 1065 10

320 DFT (complex) Yes 1216 800 5

320 DFT float – 2443 1351 16

320 DFT float Yes 1247 903 5

320 DFT (fixed point) Yes 368 619 16

320 * 320 DFT2 (fixed point) Yes 2360 1494 5

160 * 160 DFT2 (fixed point) Yes 5256 6312 16

640 * 640 IDFT2 (fixed point) Yes 5445 6442 16

Table 4.3: Resourse utilization of VIVADO based implementation of our approach

No of input Transform Type Slice Slice FF

Sequence registers LUTs LUT-FF pairs

10 DFT 655 616 1232

12 DFT 682 648 1285

20 DFT 798 776 1505

Table 4.4: Resource utilization results taken from [4] Spartan 3E

Shape Image size Row operations(ms) Column local DFT(ms) Total(ms)

Square 128 * 128 0.89 0.90 1.79

256 * 256 3.01 3.04 6.05

512 * 512 12.14 12.72 24.86

1024 * 1024 50.21 52.42 102.63

2048 * 2048 202.45 209.56 412.10

Rectangle 512 * 2048 50.34 52.37 102.71

2048 * 512 50.11 50.47 102.58

Table 4.5: Timing results taken from [2]

Slices DSP48E

25% 53%

(8273/33088) (68/128)

Table 4.6: Resource utilization results take n from [2] for VIRtex-5
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0 1 2 3 4 5

0 0.0000 ,j0.0000 0.0000 ,j0.0000 0.0000 ,j0.0000 0.0000 ,j0.0000 0.0000 ,j0.0000 0.0000 ,j0.0000

1 0.0000 ,j0.0000 -0.0572 ,j0.0000 -0.1204 ,j0.0000 -0.0903 ,j0.0000 -0.0554 ,j0.0000 0.0000 ,j0.0000

2 0.0000 ,j0.0000 -0.1262 ,j0.0000 -0.3881 ,j0.0000 -0.3400 ,j0.0000 -0.1007 ,j0.0000 0.0000 ,j0.0000

3 0.0000 ,j0.0000 -0.2611 ,j0.0000 -1.1746 ,j0.0000 -0.9769 ,j0.0000 -0.2860 ,j0.0000 0.0000 ,j0.0000

4 0.0000 ,j0.0000 -0.3540 ,j0.0000 -1.0068 ,j0.0000 -1.0217 ,j0.0000 -0.3382 ,j0.0000 0.0000 ,j0.0000

5 0.0000 ,j0.0000 -0.2181 ,j0.0000 -0.4519 ,j0.0000 -0.4440 ,j0.0000 -0.1746 ,j0.0000 0.0000 ,j0.0000

6 0.0000 ,j0.0000 -0.0505 ,j0.0000 -0.1126 ,j0.0000 -0.1632 ,j0.0000 -0.0450 ,j0.0000 0.0000 ,j0.0000

7 0.0000 ,j0.0000 0.0000 ,j0.0000 0.0000 ,j0.0000 0.00000 ,j0.0000 0.0000 ,j0.0000 0.0000 ,j0.0000

Table 4.7: Real input from Matlab, dimensions are 8 * 6

0 1 2 3 4 5

0 -8.3574 ,j0.0000 4.6297 ,j2.8766 -0.3754 ,j-1.0285 -0.1512 ,j0.0000 -0.3754 ,j1.0285 4.6297 ,j-2.8766

1 5.3115 ,j1.8092 -2.2532 ,j-2.8848 -0.1894 ,j0.7096 0.0815 ,j0.2814 0.7659 ,j-0.6668 -3.7162 ,j0.7514

2 -1.3945 ,j-1.0867 0.3183 ,j1.2039 0.4048 ,j-0.2384 -0.0026 ,j-0.2299 -0.5660 ,j-0.0026 1.2400 ,j0.3537

3 0.1300 ,j0.6420 0.1699 ,j-0.4108 -0.1718 ,j-0.0686 -0.1430 ,j0.1240 0.2843 ,j0.2181 -0.2695 ,j-0.5046

4 0.2634 ,j0.0000 -0.1192 ,j-0.1844 -0.1523 ,j0.1746 0.2796 ,j0.0000 -0.1523 ,j-0.1746 -0.1192 ,j0.1844

5 0.1300 ,j-0.6420 -0.2695 ,j0.5046 0.2843 ,j-0.2181 -0.1430 ,j-0.1240 -0.1718 ,j0.0686 0.1699 ,j0.4108

6 -1.3945 ,j1.0867 1.2400 ,j-0.3537 -0.5660 ,j0.0026 -0.0026 ,j0.2299 0.4048 ,j0.2384 0.3183 ,j-1.2039

7 5.3115 ,j-1.8092 -3.7162 ,j-0.7514 0.7659 ,j0.6668 0.0815 ,j-0.2814 -0.1894 ,j-0.7096 -2.2532 ,j2.8848

Table 4.8: Real output from Matlab, dimensions are 8 * 6

0 1 2 3 4 5

0 -8.3575 ,j0.0000 4.6297 ,j2.8766 -0.3754 ,j-1.0283 -0.1511 ,j0.0000 -0.3754 ,j1.0283 4.6297 ,j-2.8766

1 5.3115 ,j1.8093 -2.2532 ,j-2.8850 -0.1894 ,j0.7097 0.0815 ,j0.2813 0.7657 ,j-0.6667 -3.7160 ,j0.7513

2 -1.3944 ,j-1.0867 0.3183 ,j1.2040 0.4048 ,j-0.2386 -0.0028 ,j-0.2299 -0.5660 ,j-0.0025 1.2400 ,j0.3537

3 0.1299 ,j0.6419 0.1698 ,j-0.4108 -0.1717 ,j-0.0684 -0.1429 ,j0.1239 0.2843 ,j0.2181 -0.2694 ,j-0.5047

4 0.2635 ,j-0.0000 -0.1192 ,j-0.1844 -0.1523 ,j0.1746 0.2795 ,j-0.0000 -0.1523 ,j-0.1746 -0.1192 ,j0.1845

5 0.1299 ,j-0.6419 -0.2694 ,j0.5047 0.2843 ,j-0.2181 -0.1429 ,j-0.1239 -0.1717 ,j0.0684 0.1698 ,j0.4108

6 -1.3944 ,j1.0867 1.2400 ,j-0.3537 -0.5660 ,j0.0025 -0.0028 ,j0.2299 0.4049 ,j0.2386 0.3183 ,j-1.2040

7 5.3115 ,j-1.8093 -3.7160 ,j-0.7513 0.7657 ,j0.6667 0.0815 ,j-0.2813 -0.1895 ,j-0.7097 -2.2532 ,j2.8850

Table 4.9: Real output from VIVADO HLS co-simulation(post synthesis), dimensions are 8 * 6
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0 1 2 3 4 5

0 0.0013 ,j0.0000 0.0002 ,j0.0006 0.0009 ,j0.0182 0.0661 ,j0.0312 0.0011 ,j0.0176 0.0000 ,j0.0001

1 0.0007 ,j0.0065 0.0007 ,j0.0076 0.0285 ,j0.0180 0.0211 ,j0.0415 0.0247 ,j0.0208 0.0043 ,j0.0079

2 0.0069 ,j0.0002 0.0127 ,j0.0064 0.0133 ,j0.0793 7.2688 ,j0.0001 0.0072 ,j3.6615 0.0029 ,j0.0031

3 0.0557 ,j0.0116 0.0478 ,j0.0093 0.0435 ,j0.2192 0.0576 ,j0.0927 0.0128 ,j0.0107 0.0461 ,j0.0264

4 0.0380 ,j100.0000 0.0022 ,j0.0349 0.0030 ,j0.0051 0.0361 ,j100.0000 0.0001 ,j0.0062 0.0002 ,j0.0334

5 0.0586 ,j0.0102 0.0472 ,j0.0267 0.0135 ,j0.0121 0.0570 ,j0.0904 0.0446 ,j0.2262 0.0461 ,j0.0095

6 0.0073 ,j0.0000 0.0031 ,j0.0072 0.0067 ,j3.5827 7.1741 ,j0.0007 0.0140 ,j0.0789 0.0109 ,j0.0068

7 0.0006 ,j0.0079 0.0041 ,j0.0102 0.0253 ,j0.0224 0.0176 ,j0.0387 0.0285 ,j0.0189 0.0001 ,j0.0082

* Pixel/Peak Signal to Noise Ratio for Real is inf and for imaginary inf *

Table 4.10: Relative difference in percentage between Golden Matrix and our approach, dimensions

are 8 * 6



CHAPTER 5

QR Factorization implementation

This chapter details with the implementation strategies for QR Factorization of a matrix. Vivado

HLS is used as a tool for this purpose. This factorization decomposes the Matrix B into matrices Q

and R. If the dimension of original matrix B is M x N then Q has the dimension of M x M and R has

dimension of M x N. Where R is an upper triangular matrix while Q is an orthogonal matrix.

The QR factorization as a preliminary approach can be implemented using Gram–Schmidt process.

In this process the columns of the matrix are used. Let x1, x2, x3 denote the columns of the original

matrix. Projection of a column is found by

Projux =
u.x

u.u
u

where ”.” represents inner product or dot product of vectors, in this case the columns. In case of

complex numbers the first term of the inner product or dot product is conjugated. After calculating

the projection of all the columns of the original matrix, the Q matrix can be obtained by finding

orthonormal columns of A from each other by using the projections as,

uj = ai −
j−1∑
i=1

Projuiaj

where ui divided by its length make the columns of Q matrix. To find matrix R take the dot

product of ui (divided by its length) and columns of original matrix. It involves lengthy calculations

which is not suitable for hardware.

Another better approach to implement QR factorization is by using Givens Rotations method.

For this a series of Givens rotations are computed. Lets have a quick recall of given rotations. This is

basically a rotation in a plane which is common to two of the coordinate axes. It is usually given by,

R =

[
c s

−s c

]
here c = cos( theta ) and s = sin( theta ). If this is left multiplied by a matrix than the element

in the position of -s is zeroed. Theta is chosen as

theta =
x2√
x2 + y2

where y is the element to be zeroed and x is the top element of that column.

For three dimensional matrices, three given rotations exists for rotating along three axis. They

are as under:

33
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R3 =

c −s 0

s c 0

0 0 1



R2 =

c 0 −s
0 1 0

s 0 c



R1 =

1 0 0

0 c −s
0 s c


-s should be in the position of the element which has to be zeroed. And 1 should be at the axis

around which it is needed to be rotated.

With the help of these given rotations from a Matrix B the upper triangular matrix R can be

extracted by turning the respective elements to zero. QR decomposition has a property that QT * B

= R. This means the product of rotation matrices gives QT. Hence the QR factorization. Compared to

the Gram–Schmidt process this method is less computation hungry and also offers a lot of parallelism.

This approach is used by the authors [25] for the FPGA based implementation of the QR de-

composition. Also the rotation of vectors in this is calculated by CORDIC algorithm with the help

of additions and shifts. The one implementation provided in vivado library uses this approach but

without the CORDIC part.

Now back to the algorithm [18]. The maximum dimensions required here depends on target size.

The rows corresponding to scaled area while the columns are fixed to be 17. Rows depends on the

target size by

y = sqrt(MaxArea/TargetArea)

rows = y ∗ TargetArea

Which mounts up to huge dimensions. The number of columns are always 17 but the rows are

greater than 1000.

Also another important thing to note is that from qr factorization in this algorithm only the

matrix Q is used. The matrix R is not used. As a general idea the implementation of qr factorization

from vivado HLS library is used. Two versions from VIVADO library are synthesized. They are

shown in 5.2 and 5.1 and are synthesised for 320 * 17 dimensions. The results are compared with

the implementation in FPGA provided by [25]. It is implemented for 4 * 4 matrix. So for a fair

comparison the one in VIVADO library is also synthesized for 4 * 4 dimensions and DATAFLOW

pragma is used to take the advantage of task level parallelism. The VIVADO based implementation

results are in 5.3 and 5.4 while the timing and area details of the one implemented in FPGA by [25] is

in 5.5. In timing analysis the implementation by [25] performs better than the one in vivado. Vivado

based implementation works at 100MHz. In [25] some implementations work at about 400MHz which

is really good. The latency of the VIVADO implementation in 5.3 of 544 cycles is comparable to the

non-piplined one at 32 bits from 5.5 which is 2.5 times faster. The reason for high latency is that,

that the one in 5.5 is implemented with fixed point and uses CORDIC while in VIVADO only floating

point version is available. So it can achieve good performance by switching to fixed point. Area results

are better for VIVADO specially in terms of number of DSP48E and FFs utilized.
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Figure 5.1: Vivado qr factorization Basic implementation
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Figure 5.2: Vivado qr factorization Alternate implementation
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Figure 5.3: Vivado qr factorization alternate 4 * 4 implementation
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Figure 5.4: Vivado qr factorization basic 4 * 4 implementation

Figure 5.5: QR factorization 4 * 4 implementation by [25]



CHAPTER 6

SVD Decomposition implementation

This section details the implementation strategies for SVD Decomposition i.e, singular value decom-

position of a matrix. Vivado HLS is used as a tool for this purpose. This decomposes the Matrix into

matrices U, S and V. If the dimensions of a matrix B is M * N then the dimensions of matrix U are M

* M, dimensions of matrix S are M * N and the dimensions of matrix V are N * N. Where U can be

a real or a complex matrix, S is a diagonal matrix with real non-negative values and V is an unitary

matrix. The diagonal elements of the matrix S are the singular values of original matrix, whiles the

columns of matrices U and V are left singular vectors and right singular vectors of original matrix.

The singular value decomposition can be calculated by using the following properties:

• The left singular vectors of matrix B are orthonormal eigenvectors of B * conjugate(B).

• The right singular vectors of matrix B are orthonormal eigenvectors of conjugate(B) * B.

• The non-negative singular values of matrix B i.e, the values on the diagonal of matrix S are the

square roots of the eigenvalues of both conjugate(B) * B and B * conjugate(B).

For implementing SVD there are many approaches like Jacobi method(double sided rotation); QR

factorization and Hestenes-Jacobi (one-sided rotation) approach. Among them, the Jacobi algorithm

is better because the parallelism in it can be utilized for a fast approach. If the matrix dimension is M

than it is partitioned into M/2 2x2 sub matrices and solved. This approach in hardware is implemented

in FPGA by the authors of [12]. The one available in VIVADO library uses this approach.

The maximum dimensions required here does not depend on target size. The number of columns

and rows are always 32 so dimensions are 32 * 32. This simplifies SVD calculations.

Also only the U matrix is required for the algorithm not the other two. As a general idea the

implementation of SVD factorization from vivado HLS library is used. It is available in two versions.

The results are depicted in 6.1 and 6.2. But for both of them resource consumption is high. This will

be improved by implementing SVD approach for calculating only the U matrix not the other two.

6.1 Comparison with other implementations

This section deals with the comparison of vivado based implementation with other solutions. The

authors of [12] provide implementation based on Jacobi two sided algorithm. This is implemented for

4 * 4 fixed point. The resource consumption is shown in 6.3. The timing results are depicted in table.

For comparison VIVADO based both solutions are synthesized for 4 * 4 architecture. The solution is

only available for floating point. The results are shown in figures 6.5 and 6.4. The timing results are
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compared in the table. Our approach is much slower but it is floating point based. So if implemented

in fixed point results will improve.

For a more fair comparison our approach is tested with double floating point implementation of 30

* 30 matrix implemented by [19]. This is implemented in a work station which has an Intel core(TM)2

Quad, 2.5 GHz processor and 4GB DDR2 memory. But the fixed point approach is implemented in

FPGA. The timing details and resources consumption are shown in 6.6 and 6.7. Also the vivado

based 30 * 30 synthesized implementation are shown in figures 6.8 and 6.9. Our results are just 2

times slower than the fixed point implementation but are 3 times faster than double floating point

implementation in software. The timing details are given in table.

Number of input Implementation Number of clock Time

sequences cycles

4 * 4 CORDIC based fixed point[12] 555 (11.244ns clock) 6.240 us

4 * 4 VIVADO basic 26601 223.98 us

4 * 4 VIVADO alternate 7378 105.726 us

30 * 30 VIVADO basic 1655401 23.722 ms

30 * 30 VIVADO alternate 5542501 46.668 ms

30 * 30 Jacobi floating point [19] – 94 ms

Table 6.1: Timing results take from [12], [19] and Vivado based implementation of SVD



Department of Electronic Engineering 41

Figure 6.1: Vivado SVD Decomposition Basic implementation
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Figure 6.2: Vivado SVD Decomposition Alternate implementation

Figure 6.3: CORDIC based SVD Decomposition 4 * 4 implementation
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Figure 6.4: VIVADO based SVD Decomposition 4 * 4 basic implementation

Figure 6.5: VIVADO based SVD Decomposition 4 * 4 alternate implementation
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Figure 6.6: Fixed Jacobi SVD Decomposition implementation Execution time (sec)

Figure 6.7: Fixed Jacobi SVD Decomposition implementation Resource used

Figure 6.8: VIVADO based SVD Decomposition 30 * 30 basic implementation
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Figure 6.9: VIVADO based SVD Decomposition 30 * 30 alternate implementation



CHAPTER 7

Image Resize implementation

This section details the implementation strategies for Image Resizing i.e, the original image or image

patch is resized to a new dimension. Vivado HLS is used as a tool for this purpose. The input and

output dimensions are dependent on initial target size. So the maximum dimensions are 240 * 320.

As described before the linear interpolation function[27] is,

x−A
l

=
B −A
L

x = A+ l ∗ B −A
L

this is used for finding a new color or gray scale intensity x. A bi-linear interpolation or INTERLIN-

EAR interpolation is an extension of linear interpolation for 2-dimensional rectangular interpolation.

The main idea is to do the linear interpolation first in one direction, and then in the other direction.

Although each step on its on is linear, the interpolation as a whole is not a linear interpolation but a

quadratic one.

As it can be seen it is very simple and not computation hungry. This is also implemented in

VIVADO HLS library but it is not generic to the image size. An image resizing algorithm based on

bilinear interpolation is depicted in [26].

7.0.1 Generic resizing

The one implementation available in vivado library is utilised and made generic. The only trick to

use is instead of taking the second matrix dimensions as new size, it is passed as another parameter.

Then this is used as a new size. Note: When reading image only the parameter size should be read

not the whole matrix. The solution implemented and the results are depicted in 7.1. A test bench is

designed to exercise it. The input image is shown 7.2. It has the dimensions of 240 * 320. It is resized

to 200 * 200. The output image is shown 7.3. The black area represents empty values so should not

be read.

For comparison of results the same image is used and simulated in Matlab and VIVADO HLS. The

timing and PSNR values are measured. The same function is repeated 100 times in Matlab and than

averaged to find the execution time which was 1.3 ms. This result was achieved with running Matlab

on intel corei7 with 16 GB RAM. This is then compared with the maximum time of our algorithm

which is 758 us. So it is much faster than software implementation. The same image is resized to

dimensions of 8 * 6 in both matlab and VIVADO. The Matlab output is used as refrence and the

PSNR was measured. It was 47.783. The output of matlab and VIVADO are shown 7.1 and 7.2

respectively.
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186 207 202 152 155 152

193 209 211 191 185 106

192 203 206 182 155 64

187 198 185 153 152 88

179 192 169 124 141 66

171 171 135 139 55 33

116 128 59 75 24 22

67 80 42 47 21 21

Table 7.1: Resized image 8 * 6 gray scale values from Matlab

192 211 204 151 165 151

195 209 211 188 190 65

193 204 205 206 188 95

190 196 197 159 167 127

180 190 190 73 149 64

172 175 157 193 29 25

158 107 34 99 23 22

44 49 16 74 22 21

Table 7.2: Resized image 8 * 6 gray scale values from VIVADO HLS

Figure 7.1: Generic Image resizing bilinear interpolation based implementation
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Figure 7.2: Input image for resizing 240 * 320

Figure 7.3: Resized output image 200 * 200



CHAPTER 8

Integral Image and FHOG implementation

8.1 Image Integral

This section details with the implementation strategies for image integral of an image. Vivado HLS

is sued as a tool for this purpose. The integral image at location (x, y) contains the sum of the pixels

above and to the left of (x, y).

ImageIntegral =

m∑
i=0

n∑
j=0

I(i, j)

Where I is the image and I(i,j) represents the gray scale value of the pixel. It is dependant on

target image initial size. The rows of input matrix are fixed at 32 while the columns are the product of

the target dimensions. The output dimensions are input dimension + 1. So the maximum dimension

of input is 33 * (height*width + 1) which mounts up to huge dimensions. Another important thing

to note is that as the input is gray scale image, the output is the summation of pixel values where

each pixel has the maximum value of 255. This mounts up to large values which than needs to be

scaled down. It is implemented in vivado hls. The results are shown in 8.2 for 241 * 321 and in 8.1

for 33 * 1001. Which are good enough considering it is synthesized for 32 * 1000 dimensions. An

implementation of this approach is used in [34].

The results of VIVADO implementation are compared with the paper [6]. The timing of paper [6]

results are shown in 8.3. To achieve a fair comparison VIVADO based approach is implemented for

similar dimensions. Results for 360 * 240 in 8.4 and for 720 * 576 8.5. Our results for the comparison

are shown in table 8.6. Our results are comparable only to the serial approach. But in terms of

resources used out approach use consumes less. This paper [6] gives insight towards exploring the

parallelism of this approach. Our results can be improved by using a more parallel approach on row

calculations but again keeping an eye on resources.

8.2 FHOG

This section details the implementation strategies for fhog feature extractions of an image patch.

Vivado HLS issued as a tool for this purpose.

Before understanding FHOG some terms are necessary to be introduced.[29]

GRADIENT The gradient vector of an image is defined as for each individual pixel, contain-

ing the information of the pixel color changes in both x direction and y direction. The two main

characteristics of an image gradient are its magnitude and direction.
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Figure 8.1: Image integral implemented for 33 * 1001 dimensions

HISTOGRAMOFGRADIENTS(HOG) An efficient method for extracting the features

of the pixel colors, for creating a target recognition classifier, is named the Histogram of Oriented

Gradients (HOG). This is done with the help of image gradients.

Felzenszwalb′sAlgorithm Felzenszwalb suggested an algorithm for the purpose of dividing

an image into similar areas, utilizing a graph-based strategy. Since it is needed to define an area that

potentially contains an object since usually there are multiple targets in an image.

In the algorithm [18] the FHOG is implemented with the maximum dimensions of the output as

240 * 320 * 32. That is the initial target size times 32. So the output is three dimensional matrix.

For implementing this, the paper [20] suggests an approach. It is based on fixed point implementa-

tion. The gradient magnitude and orientation is computed using CORDIC’s vector translate feature.

The magnitude of gradient is assigned to suitable bins based on the orientation gradient. Then an

aggregate module is utilized for adding the 64 pixels 64 values of histogram bin by bin, so that the the

final cell features can be sent to output. In the end, cell features contrast are normalized block wise.

Where each block contains four cells. The algorithm implemented by the authors [20] in FPGA has

the speed of 526 fps. As a general idea the results from the paper are shown here for implementation

in 8.7.
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Figure 8.2: Image integral implemented for 241 * 321 dimensions

Figure 8.3: Image integral timing results from [6]
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Figure 8.4: Image integral implemented for 360 * 240 dimensions

Figure 8.5: Image integral implemented for 720 * 576 dimensions
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Figure 8.6: Integral image Timing values for VIVADO implementation

Figure 8.7: HOG Extractor implementation details



CHAPTER 9

Miscellanies blocks implementation

This chapter deals with the implementation of the minor blocks used in the algorithm [18].

9.1 Hann Window

This section deals with the implementation of the Hann window used in the algorithm. The Hann

window generates Hann coefficients to be used later for windowing. The maximum dimensions depend

on the initial target size. So the maximum possible window size is 320. It is a pretty simple block. It

is calculated as

Wn = 0.5[1− cos(2πn

N
)]

It uses cos function for computations. This is used from VIVADO HLS library which is based

on cordic algorithm. The implementation results are shown here. It is implemented in two versions.

Pipelined in figure 9.2 and without pipeline in 9.1. It is synthesized for 160 size. It can be seen

that the results of pipelined version are better. Also the simulation is performed to verify the results

from matlab. The matlab results are shown in 9.2. Our results are in 9.2. And the post synthesis

performance is in 9.3. For comparison the paper [22] suggests to use free scale CORDIC to implement

the function. They were able to achieve latency of 7 with only 16 bit input samples. The minimum

latency of our approach is 225 out of which 182 cycles of them are occupied by cos function. By using

scaling free CORDIC this can be improved further.

9.2 Windowing

This section deals with the implementation of the windowing function used in the algorithm. The

windowing basically multiplies point-wise two matrices. The maximum dimensions depend on the

initial target size. So the maximum possible window size is 240 * 320. It is a pretty simple block. It

is calculated as element by element multiplication.

VIVADO based implementation results are shown here. It is implemented in two versions. In

9.4 for without pipeline and in 9.5 for pipelined. It is synthesized for 160 size. It can be seen that

the results of pipelined version are better. Also the simulation is performed to verify the results.

The latency can be seen as it is run for 1*10 matrix in 9.6. This simply involves the point-wise

multiplication. It is simply a matter of running multi objective optimization. It suits well for Pareto

analysis. Run 2 objective optimization to find the Pareto points for minimum latency and minimum

number of resources. Lets see what is Pareto analysis.
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Figure 9.1: Hann window implementation

For a nontrivial optimization problem with multiple objectives, a single solution can not be found

that simultaneously optimizes each objective. In this scenario, the objective are conflicting, and a

number of Pareto optimal solution exists (possibly infinite). If none of the objective can be optimized

without degrading some of the other than such a solution is called Pareto optimal, nondominated,

Pareto efficient or noninferior. All of the Pareto optimal solutions are considered equally well. Than

the question remains to quantify a set of Pareto optimal solutions, in achieving the different goals, or

a solution that satisfies the subjective preferences of a human decision maker.

Now back to our main topic. This analysis can be used and a Pareto point is chosen to reach our

goals. The Pareto in this case will be done with maximum size of 160.

9.3 Circular shifting

This section deals with the implementation of the circular shifting function used in the algorithm.

This basically shifts the elements of a vector from start to the end. The maximum dimensions depend

on the initial target size. So the maximum possible size is 320. It is a pretty simple block.

The implementation results are shown here. It is implemented in two versions. Pipelined in 9.8

and without pipeline in 9.7. It is synthesized for 160 size. As can be seen from the result piplining

makes no difference and latency will be equal to the array dimensions. A solution can be in using

barrel shifter.
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Figure 9.2: Hann window piplined implementation

9.4 Reshaping2

This section deals with the implementation of the reshaping function used in the algorithm. This

basically copies the elements of a 3D matrix [R][C][S] to a 2D matrix with dimensions [R*C][S] from

start to the end. The maximum dimensions depend on the initial target size. So the maximum possible

window size 60 * 80 * 32 and for output (60 * 80) * 32. It is a pretty simple block.

The implementation results are shown in figure 9.9 for 60 * 80 * 32 and in 9.10 for 40 * 40 * 32.

It is implemented in two versions. Pipelined in 9.11 and without pipeline. It is synthesized for 160

size that is 40 * 40 * 32. It can be seen that the results of pipelined version are better. Also the

simulation is performed to verify the results.

This can be simply optimized by completely unrolling the loops. That is just using wires to connect

the input matrix elements to respective outputs. But the whole matrix can not be read at once. A

SDRAM memory can be used for increasing memory bandwidth.

9.5 Reshaping

This section deals with the implementation of the reshaping function used in the algorithm. This

basically copies the elements of a 2D matrix [R][C] to a 1D matrix with dimensions [R*C][1] from

start to the end. It deals with the reshaping of scale matrices. The maximum dimensions depend on

the initial target size. But the maximum possible window size scaled model size and for output (scale

model size) * 31. It is a pretty simple block. It is run 17 times and each time it just copies one 2D

matrix into a column vector. After all the iterations it creates a 2D matrix.
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Figure 9.3: Hann window VIVADO Post synthesis results for N=10

The implementation results are shown. It is implemented in two versions. Pipelined in 9.13 and

without pipeline in 9.21. It can be seen that the results of pipelined version are better.

For optimization see the previous section.

9.6 Resize DFT2

This section deals with the implementation of the resizing function used in the algorithm. This

basically copies the scaled elements of a original matrix [R][C] to a new matrix with dimensions

[R*4][C*4] from start to the end while remaining entries are zero filled. The maximum dimensions

depend on the initial target size. So the maximum possible window size (4*240) *(4*320). It is not a

simple block.

The implementation results are shown. It is implemented in two versions. Pipelined in 9.15 and

without pipeline in 9.14. It is synthesized for (4* 160) and (4 *160) size. It can be seen that the results

of pipelined version are better. The latency can be seen as it is run for 32 * 32 for non pipelined 9.16

and for pipelined 9.17.

For optimization the solution strategies from Windowning and reshaping sections can be utilized.

The important thing to note here is that the scaling is always by 16. Which is a power of 2. So it is

equivalent to a shift left by 4. Which will save a huge amount of resources.

9.7 Resize DFT

This section deals with the implementation of the resizing function used in the algorithm. This

basically copies the scaled elements of a original vector [R] to a new vector with dimensions [2*R]

from start to the end while remaining entries are zero filled. The maximum dimensions depend on

the scale interps which is fixed constant of the algorihm. So the maximum possible input size is 17

and output size is 33. It is a simple block.

The implementation results are shown. It is implemented in two versions. Pipelined in 9.19 and

without pipelining in 9.18. It is synthesized for 160 size. It can be seen that the results of pipelined

version are better. Also the simulation is performed to verify the results. The latency can be seen as

it is run for vector size 9.20. See the optimization strategies for the previous block.

9.8 Comparison of Minor Blocks

The latency and implementation details of minor blocks are summarized in this section. They are

given in the form of table in table 9.1. The pipelined also means loop unrolling of factor 2 involved.
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Figure 9.4: Window function implementation of size 160
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Figure 9.5: Window function pipelined implementation of size 160

Figure 9.6: Window function post synthesis latency for N=10
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Figure 9.7: Circular shifting implementation for size 160
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Figure 9.8: Circular shifting piplined implementation for size 160
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Figure 9.9: Reshaping a 3D matrix to 2D implementation for 60 * 80 * 32



Department of Electronic Engineering 63

Figure 9.10: Reshaping a 3D matrix to 2D implementation for 40 * 40 * 32
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Figure 9.11: Reshaping a 3D matrix to 2D pipelined implementation for 40 * 40 * 32
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Dimensions for Implemented Latency type Pipeline Number of clock

implementation Block cycles (Latency)

160 Hann window min – 323

160 Hann window max – 18999

160 Hann window min Yes 225

160 Hann window max Yes 225

160 Window function min – 230721

160 Window function max – 230721

160 Window function min Yes 12810

160 Window function max Yes 12810

160 Circular Shifter min – 161

160 Circular Shifter max – 161

160 Circular Shifter min Yes 162

160 Circular Shifter max Yes 162

60 * 80 * 32 Reshaping (3D) min – 213885

60 * 80 * 32 Reshaping (3D) max – 213885

40 * 40 * 32 Reshaping (3D) min – 105025

40 * 40 * 32 Reshaping (3D) max – 105025

40 * 40 * 32 Reshaping (3D) min Yes 25603

40 * 40 * 32 Reshaping (3D) max Yes 25603

40 * 40 Reshaping (2D) min – 3281

40 * 40 Reshaping (2D) max – 3281

40 * 40 Reshaping (2D) min Yes 803

40 * 40 Reshaping (2D) max Yes 803

160 - 640 Resizing DFT2 min – 430486

160 - 640 Resizing DFT2 max – 430486

160 - 640 Resizing DFT2 min Yes 211686

160 - 640 Resizing DFT2 max Yes 211686

17 - 33 Resizing DFT min – 67

17 - 33 Resizing DFT max – 166

17 - 33 Resizing DFT min Yes 23

17 - 33 Resizing DFT max Yes 23

Table 9.1: Latency of VIVADO based implementation of minor blocks
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S.N0. Hann coefficient

1 0

2 0.1170

3 0.4132

4 0.7500

5 0.9698

6 0.9698

7 0.7500

8 0.4132

9 0.1170

10 0

Table 9.2: Hann window matlab results for N = 10

S.N0. Hann coefficient

0 0.000000

1 0.116978

2 0.413176

3 0.750000

4 0.969846

5 0.969847

6 0.750000

7 0.413176

8 0.116978

9 0.000000

Table 9.3: Hann window vivado results for N = 10

S.N0. A B C = A.*B

0 0.000000 0.000000 0.000000

1 1.000000 1.000000 1.000000

2 2.000000 2.000000 4.000000

3 3.000000 3.000000 9.000000

4 4.000000 4.000000 16.000000

5 5.000000 5.000000 25.000000

6 6.000000 6.000000 36.000000

7 7.000000 7.000000 49.000000

8 8.000000 8.000000 64.000000

9 9.000000 9.000000 81.000000

Table 9.4: Window function results for N = 10
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3D Matrix [0] Col 0 Col 1 Col 2 Col 3

Row 0 0.110000 1.650000 0.560000 0.006000

Row 1 0.453000 0.1760000 1.4300000 0.120000

3D Matrix [1] Col 0 Col 1 Col 2 Col 3

Row 0 0.567400 1.287000 0.261000 0.1136000

Row 1 0.953000 0.1600000 1.4310000 0.123000

2D Matrix Col 0 Col 1

Row 0 0.110000 0.567400

Row 1 1.650000 1.287000

Row 2 0.560000 0.261000

Row 3 0.006000 0.1136000

Row 4 0.453000 0.953000

Row 5 0.1760000 0.1600000

Row 6 1.4300000 1.4310000

Row 7 0.120000 0.123000

Table 9.5: Simulation results Reshaping Matrix 3 D for 2 * 4 * 2 size to Matrix 2D 8 * 2

Figure 9.12: Reshaping of a 2D matrix to 1D column vector implementation
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Figure 9.13: Reshaping of a 2D matrix to 1D column vector pipelined implementation

Input Vector having size of 1 * 17 to the DFT resizing

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0

Outpur Vector having size of 1 * 33 of the DFT resizing and scaling

0.0 1.941176 3.882353 5.823529 7.764706 9.705882 11.647058 13.588235 15.529411 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 19.411764 21.352940 23.294117 25.235292

27.176470 29.117645 31.058823

Table 9.6: Simulation results for Resizing DFT from 1 * 17 size to vector 1 * 33 and scaling
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Figure 9.14: Resizing DFT2 of a 2D matrix to 4 times its size implementation
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Figure 9.15: Resizing DFT2 of a 2D matrix to 4 times its size pipelined implementation

Figure 9.16: Post synthesis timing from 32 * 32 Resizing DFT2
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Figure 9.17: Post synthesis timing from 32 * 32 Resizing DFT2 pipelined

Figure 9.18: Resizing DFT of a 1*17 vector to 1 * 33 implementation
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Figure 9.19: Resizing DFT of a 1*17 vector to 1 * 33 pipelined implementation

Figure 9.20: Post synthesis timing of Resizing DFT
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Figure 9.21: Simulation results for Resizing DFTn



CHAPTER 10

Conclusions

Real-time on field scale estimation of a target with accuracy is a research problem in visual tracking. It

is important due to its applications in domains like surveillance, robotics and automation. In general,

only the initial position of the object is known, and the trajectory of the object motion is desired to

be traced. It becomes further difficult due to problems like fast motion of the objects, motion blur,

size and scale variations. Existing algorithms estimate the size of target based on exhaustive scale

search hence computationally expensive.

To tackle these problems, we used an algorithm [18] which is based on online explicit filtering based

on target sampling at different scales. This thesis aims at FPGA or hardware based implementation

of fast discriminative scale space tracking algorithm. The hardware created on FPGA will be fast and

use resources to a minimum to decrease the cost.

For this the major mathematical blocks in this algorithm are studied and their best implementation

approach for this algorithm is described. The best implementation approach is given in terms of the

complexity and Dimensions of inputs involve, less area and fast operation. The whole algorithm is

also depicted and the step by step operations involved, to better understand the decisions. Also, the

synthesized version of Discrete Fourier Transform hardware is depicted. It is developed in different

versions to detail their features. It include one dimensional Discrete Fourier Transform and inverse

Discrete Fourier Transform. DFT2 which involves transposes and three dimensional DFT. Their

timing behaviour is compared in the end.

VIVADO HLS tool is used for this purpose. It is the high level synthesis version of the VIVADO

environment. The language used is synthesise able C++. The target code can be generated in both

of the hardware descriptive languages i.e, verilog and VHDL. It is final targeted to be implemented

in Xilinx FPGA Zed board. All codes are for this target FPGA board. Along with this VIVADO can

be used for using brams and other interfaces.

Also the major blocks used in the algorithm are given study and their implementation details are

discussed. They include QR factorization of a matrix, Singular value Decomposition of a matrix, Image

resizing, Resizing a matrix, Image integral, FHOG. Along with that also major blocks some minor

blocks are studied and implemented as well. They include Hann window, Windowing application,

Resizing a vector, Circular shifting, reshaping a 3 dimensional matrix, reshaping a 2 dimensional

matrix.

In the end some suggestions are suggested. In the block diagram it was described all the steps.

The steps before the Translation search are only to be done for the first frame. It should be once

performed than stored in the algorithm. This is to save the computational resources. Also as in visual

object tracking the target size is usually smaller than the whole frame of image, so it will be more

efficient and economical in terms of used resources. It is suggested to keep the area of target image

at max half of the frame size for good performance.
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For future works, the described methods for remaining blocks can be implemented in hardware

to develop the whole working algorithm. Other implementation for major blocks can be utilised for

different image sizes to incorporate them as well. Also a power consumption based analysis of the

algorithm can be performed.
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