
POLYTECHNIC OF TURIN

Department of Electronics and
Telecommunications

Master of Science in Electronic engineering

Master Degree Thesis

Portable Embedded System for
Continuous Monitoring of

Anaesthetics

Supervisor
prof. Maurizio Martina
dott. Motto Ros Paolo
dott. Simone Aiassa

Candidate
Davide Tunzi
mat.: 243593

Academic year 2018-2019

This work is subject to the Creative Commons Licence

Acknowledgements

First of all, I would like to express my gratitude to my thesis supervisor Prof.
Maurizio Martina for the opportunity to work at this project, for his willingness
and kindness shown me during all the work time. I would like to thank Dr Paolo
Motto Ros for his willingness and suggestions. Finally, I would like to express my
gratitude to my supervisor Dr Simone Aiassa for all the support provided, for the
advice and for his patience, he always has encouraged me and helped me in all the
moment representing an expert and trusty point of reference.
I would like to express my gratitude to my family to be always on my side in all
the decisions taken along these years. Thank them for the emotional support in
all the moments. Thanks to Ale for her infinite patience, support, the advice in all
the moments academic and not, above all she is always ready to make me happy.
Thanks to my friends and "bombers" Pappina, Pier, Fra, Simone, Marco, Bombone
to be always on my side and for the best moments together and thanks to Terry,
Penny, Gio, Dory for their super-friendship. Thanks to my friends (and colleagues)
Gianni, Luca, Marco and Giuseppe, for their friendship and to have shared all the
experience together, for the aristocracy housemate adventure and anxiety, for the
big Sicilian smile and the sinusitis "mocevo" and finally thanks to Giuseppe for the
right advice at the right moment. Thanks to all the friends not mentioned but
always present.

1

Summary

This thesis project presents the development of an electronic system to enhance the
success in the procedure of anaesthesia, the fundamental point during surgery. The
anaesthesia is the result of the sum of a mix of various drugs as a hypnotic, anal-
gesic, and muscle relaxant, to administer in the correct order, route and quantity.
The most common cause of problems in anaesthesia is the "wrong dose", usually
linked to difficulties in the real-time evaluation of the dose. Indeed, at the state
of art, the most widespread method of evaluation is based on the Bispectral Index
(BIS), which is the long-time estimation weighted sum of several electroencephalo-
graphic parameters. This approach, not always accurate, presents some limitations
due to the high inter-patient variability. In the aforementioned scenario, the the-
sis work proposes a novel electronic device based on Therapeutic Drug Monitoring
(TDM), an innovative approach grounded on the evaluation of drugs concentration
directly by the blood vessel, with not invasive and easy routine.
The objective is to design a small size, low-cost and low power system to achieve a
portable device, with syringe shape to be compliant with future medical application.
The evaluation of anaesthetics drugs concentrations is based on the chemical RedOx
reaction. At the variation of analyte concentration corresponds to the changing of
the electron flux. The electrochemical analysis, for the investigation of the reaction
mechanisms, requires the employment of external electronic hardware called poten-
tiostat to control the electrode cell. The Screen-Printed Electrode (SPE) composed
of Working, Counter and Reference electrodes, is properly connected to the circuit.
In the implemented circuit solution, a potential is provided to the Working (with
respect to the Reference), and placing the voltage reference at the middle of the dy-
namic, both the Reduction and Oxidation are evaluated without the usage of dual
supply voltage, finally the potentiostat circuit is closed through the Counter and
the current flow collected. Therefore the potentiostat has the double roles to drive
the electrochemical cell and the ReadOut of the input current. In the proposed po-
tentiostat, to avoid the use of AD-DA converter, replaced by adopting a low power
solution based on quasi-digital waveform. Both driver and reader are quasi-digital:
the driver converts the Pulse Width Modulation (PWM), in the ramp voltage signal
for the electrochemical cell. On the other side the potentiostat ReadOut receives
as input the sensor current response converted in a voltage signal, and through the
integrator analog circuit, the information is coded in the temporal distance between

2

the consecutive edge of a digital signal. The event signal is measured directly by
the microcontroller: the time gap between two rising edges of the wave results to
be proportional to Faradaic current produced by the reduction of the drug.
The presented system is implemented by a custom Printed Circuit Board (PCB),
completely dedicated to the application, in which the microcontroller and the circuit
are integrated into a unique compact board. The device’s board realization from
the schematic layouts, the components selection, the placement and the routing,
has carried out minimizing the final size, the cost and to provide all the function-
alities, compliant for a portable low power device. The PCB is divided into the
front-end and the microcontroller areas, the two sections continuously interface and
communicate with each other. In the former, the sensor connector is placed on one
side of the board, and the response signal travels through the dedicated circuits.
The event-based waveform represents the input of the processor interface. Whereas,
the opposite route is covered by the PWM signal addressed to the voltage reference
control. In the same side of the board, the mechanical ON-OFF switch is mounted
directly connected with the circuit for the voltage regulation. In the latter region,
the need components for the microcontroller and the user are allocated, such as
LEDs, control-button and reset mechanical switch, finally, exactly on the opposite
side of the sensor, the printed antenna is placed. The firmware dedicated to The
ARM® Cortex®-M4 32-bit processor mounted on the board is dedicated to cop-
ing all the needed tasks, to drive the cell and thus the precise PWM generation
sequence, and to correctly measuring the event-based square waveform exploiting
coded interrupt routine. Moreover, to respect the idea to obtain a portable device,
the Bluetooth® 5 Low Energy SIG (BLE) protocol is exploited and the associate
firmware developed. The innovative BLE allows for wireless communication and
low power consumption adapted to the low amount of data transmission. The cho-
sen solution has covered all the main required features, and the printed onboard
antenna allows the communication at radio frequency at 2.4 GHz. Finally, the
receiver firmware and terminal graphic user interface developed permits easy data
management and elaboration. The firmware and the PCB are tested electrically
and functionally to ensure the correct behaviour and the measured data elaborated
with the support of Matlab.
Table I presents the feature of the system, on the full load it consumes 62.7 mW,
in idle 29.7 mW and the received signal strength indication with a range value
compliant with the BLE specifics:

3

Min Max
Voltage supply 3.3 V 7 V
Idle Current 9 mA 13 mA
On Current 19 mA 24 mA
Idle Power 29.7 mW 42.9 mW
On Power 62.7 mW 79.2 mW
BLE RSSI -95 dBm @ 18 m -51 dBm @ 0 m

Table 1: Electric and communication features of the device

To validate the system, electrochemical experiments are finally performed. Four
different samples catheterized by different concentration of paracetamol as bench-
mark drug have been prepared. The board is connected to a commercial SPE
electrode through support and the zero concentration, the 100 µM , the 200 µM
and the 300 µM are analyzed. For each concentration, a clean electrode is exploited
and the data collected. The post-processing results are summarized in Figure 6.11:

Figure 1: Test results: Voltammogram with the current response vs. driven elec-
trode voltage.

In conclusion in Figure 6.11, it is possible to observe the expected results con-
sistent with the state of art For each different paracetamol concentration, it is
possible to observe two corresponding peaks. The peaks stand for the Reduction
and Oxidation reactions. The increasing (with respect to the concentration) of the
peak height, furthermore, is the indicator of the goodness of the device operation.
Possible further development could consist in the evaluation and test with all the
anaesthetic drugs element, and the design of the final device with the electrode
integrated into a unique board and case for a final compact solution.

4

Contents

List of Figures 7

1 Introduction 1
1.1 Anaesthesia Drugs Composition and Interaction 1

1.1.1 Anesthetic compound . 2
1.1.2 Interaction classification . 3
1.1.3 Risk and side effect . 4

1.2 Drug Monitoring - State of the art 5
1.2.1 Electrochemical sensor . 6

2 Circuit design 10
2.1 Analog driver . 10

2.1.1 Pulse width modulation and Voltage converter 11
2.1.2 Design proposal and LTspice Simulation 13

2.2 Analog Read-out . 14
2.2.1 Trans-Impedance Amplifier (TIA) 14
2.2.2 Integrator and Edge Trigger stage 15
2.2.3 Design proposal and LTSPisce Simulation 18

3 Printed circuit design: PCB 22
3.1 Analog driver & Read-out layout 23
3.2 Voltage regulator layout . 26
3.3 Micro-controller layout . 29
3.4 Connection and Test layout . 30
3.5 PCB Description . 32

3.5.1 Top Layer . 32
3.5.2 Bottom Layer . 36

3.6 PCB Production . 37
3.6.1 Components . 37
3.6.2 Production . 39

5

Contents

4 Micro-controller & firmware 43
4.1 Device Routine . 43
4.2 Micro-controller . 44

4.2.1 Pulse Width Modulation for electrochemical cell driven . . . 45
4.2.2 Timer counter for event-based signal 46
4.2.3 Bluetooth Low Energy BLE 48
4.2.4 Receiver dongle Firmware description 51

5 User Interface 53
5.1 User interface description . 53

6 Test and Validation 57
6.1 Firmware Test . 58
6.2 Electrical Test & Functional Test 59
6.3 Final Result . 63

7 Conclusion & Future works 67

A Bill of material of PCB 68

B Firmware code 69
B.1 Device firmware . 69
B.2 Receiver firmware . 84

C User interface code 99

6

List of Figures

1 Test results: Voltammogram with the current response vs. driven
electrode voltage. 4

1.1 Triad of anesthesia . 3
1.2 Pharmacodynamics vs. Pharamcokinectics 4
1.3 Classification of drug administration errors in anesthesia malpractice

cases . 5
1.4 Electrochemical cell scheme . 7
1.5 Redox and electron flow in Electrochemical cell 8
1.6 Potentiostat circuit configuration 9

2.1 Schematic of Potentiostat architecture for the voltage control and
current conversion . 10

2.2 Potentiostat circuit configuration 11
2.3 Circuit configuration to drive the electrochemical cell: PWM input

signal and integral filter circuit . 11
2.4 Simulation layout configuration . 13
2.5 Input voltage signal (blue square wave) and Output voltage signal

(black wave) with 70% of duty cycle 13
2.6 Input voltage signal (blue square wave) and Output voltage signal

(black wave) with 30% of duty cycle 14
2.7 Read-out topology block diagram 14
2.8 Trans-impedance amplifier configuration 15
2.9 Two stages configuration: the integrator U1 and the edge trigger

stage U2 . 16
2.10 Three stage circuit configuration analog read-out 17
2.11 Circuit configuration analog read-out simulation in LTSpice 18
2.12 Charge and Discharge of the capacitor: current (black curve) and C2

voltage (blue curve) . 18
2.13 Output square quasi digital signal(black curve) and C2 voltage signal

(blue curve) . 19
2.14 Output square quasi digital signal(blue curve) and input cell current

= 30µA (black line) . 19

7

List of Figures

2.15 Trend of the event-rate vs input cell current in Matlab plot (simula-
tion data) . 21

3.1 Altium configuration for the Analog driver & Read-out layout . . . 23
3.2 Zoom on the three main front-end parts: The red path follows the

PWM driver circuit interconnection, the blue follows the Read-Out
layout, the green lines follows the ìtrans impedance amplifier circuit. 26

3.3 Left: buck-boost converter in on state; Right: buck-boost converter
in on state . 27

3.4 Altium configuration for the Voltage regulator circuit 27
3.5 Voltage regulator circuit from datasheet [20] 28
3.6 Altium configuration for the µController circuit 30
3.7 Altium configuration for the circuit interconnection 31
3.8 Altium configuration for the test circuit 32
3.9 2D PCB layout from the top (Image from Altium designer) 32
3.10 Example of symbol component and footprint (ADA4807) 33
3.11 Empty provisional board and component to place 34
3.12 Antenna layout on PCB. Left: antenna geometry trace; Right: An-

tenna with matching network . 34
3.13 PCB placement region, the white line delimits the different region:

from the left antenna, µController and front-end 35
3.14 3D PCB layout top view (Image from Altium designer) 36
3.15 2D PCB layout bottom view (Image from Altium designer) 37
3.16 3D PCB layout bottom view(Image from Altium designer) 37
3.17 Top:Altium Cam file, picture of the Gerber data Bottom: Drill draw-

ing figure, the position of the vias hole. 41
3.18 PCB real device photo . 42

4.1 Flow Chart of the device firmware routine 44
4.2 PWM module schematic nRF52840 datasheet image [23] 45
4.3 Block schematic for timer/counter nRF52840 data sheet image[23] . 47
4.4 BLE protocol . 49

5.1 User interface at the start . 53
5.2 User interface working condition . 55
5.3 User interface working condition . 56

6.1 Final design system: In the bottom part there is the custom PCB
connected to the electrode. In the top part, there is the receiver and
terminal PC . 57

6.2 J-Link connector to flash and debug the custom PCB 58
6.3 PCB header for the testing . 59
6.4 Oscilloscope image for various PWM duty-cycle 60

8

List of Figures

6.5 Output filter signal: at each duty-cycle value corresponds to a volt-
age reference level holds for few milliseconds. The staircase is ob-
tained observing the signal with large time scale 61

6.6 Driven electrode voltage signals. The yellow line represents the ref-
erence voltage value at WE. The blue line changes with respect to
the duty-cycle sequence in the PWM generated. The oscilloscope
picture is obtained with a large time scale 62

6.7 Four different cases of the quasi digital signal. The time gap between
two events is proportional to the input current 63

6.8 Fitting data measured with the resistor model at different values and
circuital model curve . 64

6.9 ELectrode DropSens DRP-110, image from [29]. In the picture are
indicated the position of the three electrodes. 65

6.10 Matlab data elaboration: events rate vs. PWM duty-cycle 65
6.11 Matlab data elaboration: Voltammogram with current response vs.

driven electrode voltage. 66

9

Chapter 1

Introduction

Anaesthesia or anaesthesia is a Greek term ("without sensation"), exploited to
indicate a temporary, reversible and controlled loss of sensation or consciousness
that is induced for medical purpose.[1] The anaesthesia is fundamental in medical
practices to avoid pains to the patient exposed to medical surgery. During the
operation, the patient is kept partially or totally insensitive to external stimulus.
According to the different kinds of medical operation, the anaesthesia procedure
can be:

• General Anesthesia (GA): suppression of the central nervous system activity
and total lack of consciousness, through an intravenous liquid or inhalation
gas.

• Sedation: less suppression of the central nervous system with respect to the
GA, inducing inhibition of anxiety and creation of long-term memories (with-
out unconsciousness).

• Regional and local anaesthesia: interdiction of nerve impulse transmission
from a specific part of the body. The drug can be targeted at peripheral
nerves to isolate locally the body.

1.1 Anaesthesia Drugs Composition and Interaction
In the anesthesiology, the drug composition and the interaction with the body, rep-
resent a cornerstone to guarantee the success of this procedure.
In order to define an anaesthetic process, not only based on the knowledge and
the experience of the doctors and professors, it has been introduced the "magic
formula" to administer the cocktail of a drug correctly in the largest part of the
surgical operation. The model adopted for the description and balance of the main
components of the anaesthesia takes the name of the triangle (AT introduced by
Gray) [2] and it represents the key of anaesthesia. In the last year, the evolution of

1

1 – Introduction

the model and the technology has resulted in the focus on some aspects: concen-
tration, targets, probability of not response and synergism, summarized with the
term "interactions", the main idea at the base of safe anaesthesia.[2]
In sum, there are three basic components, opioid, hypnotic and relaxant, which
presence in the body may cause different interaction: pharmaceutical, pharmacoki-
netics, pharmacodynamics and thermodynamics. The study of the aforementioned
interactions allows the administration of anaesthesia with a multimodal approach
that is safer and reproducible.

1.1.1 Anesthetic compound
The drugs component takes the name of "Triad of anaesthesia" and it is fundamental
to define the correct balance of them in order to reduce the risk and side effects.
Each component plays a different role at the body level, here a brief description is
reported:

• Propofol: induction and/or maintenance of anaesthesia as the sedative and
hypnotic component of balanced anaesthesia (depolarizing and nondepolariz-
ing skeletal muscle relaxants, benzodiazepines, anticholinergic agents, opiate
analgesics, inhalation and/or a regional anaesthetic) or total in patients un-
dergoing inpatient or outpatient surgery.[3]

• Midazolam is a medication used for anaesthesia, trouble sleeping, severe agi-
tation and procedural sedation .[4] It works by inducing sleepiness, causing a
loss of ability to create new memories and decreasing anxiety.[4]

• Acetaminophen also called N-acetyl para-aminophenol or paracetamol is one
of the most widely used over-the-counter analgesic and antipyretic agents.
Studies have shown that acetaminophen lacks peripheral anti-inflammatory
properties. It may be that acetaminophen inhibits the COX pathway in
the central nervous system but not peripheral tissues. The reduction of the
COX pathway activity by acetaminophen is thought to inhibit the synthesis
of prostaglandins in the central nervous system, leading to its analgesic and
antipyretic effects. Other studies have suggested that acetaminophen or one
of its metabolites also can activate the cannabinoid system, contributing to
its analgesic action [5].

• Opioid, common anaesthetic specific uses for opioids that have been FDA ap-
proved include use during almost every phase of surgery, including use during
pre-induction for chronic pain conditions, induction of anaesthesia, mainte-
nance, as well as to reduce immediate postoperative pain and decrease agita-
tion. Opioids characteristically exert their effects by interacting with the few
types of opioid receptors in the body. These interactions may result in a range

2

1 – Introduction

of receptor responses from inducing greatest receptor activity to no activity
at all. Those medications that induce the most profound receptor response
are referred to as agonists, while those inducing a partial response are known
as partial agonists, and those which induce no activity are described as an-
tagonists. These receptors are known as the mu-opioid receptor, delta-opioid
receptor, and gamma-opioid receptor Opioid receptor-like (ORL1) receptor is
also considered to be an opioid receptor system [6].

Figure 1.1: Triad of anesthesia

1.1.2 Interaction classification
• Pharmaceutical interactions "(PIs) are changes in the physical-chemical struc-

ture of a drug due to the action of a second drug when combined in the same
solution, whether in a bag, a syringe, or in a Y-infusion system"[2]. This kind
of interactions provides information about the compatibility between two or
more drugs mixed for anaesthesia purposes for instance opioids and hypnotics
components.

• Pharmacokinetic interaction takes into account the possible atypical behaviour
of certain medicines, it is usually found in infusing remifentanil and propo-
fol[7].

• Pharmacodynamic interaction is about the simultaneous administration of
anaesthetic agents acts on various receptors resulting in different PDIs[7]. In

3

1 – Introduction

the additive case when the actions of components are similar on the patient;
in the synergistic interaction the actual effect of drugs interaction is higher
with respect to the expected; the last case, the opposite of synergistic, occurs
when the real effect results lower than the expected one.

Figure 1.2: Pharmacodynamics vs. Pharamcokinectics

1.1.3 Risk and side effect

The anesthesia, as said, is exploited in many medical operation and plays an im-
portant role for the success of that, without unnecessary suffering. For this reason,
the correctness of the process is fundamental for the patient safe. However, the
percentage of error and side effect or risk is not zero, the main ones could be sum-
marized as temporary confusion and memory loss, dizziness, nausea and vomiting,
shivering and feeling cold, difficulty passing urine. Even if, general anaesthesia is
safe in the large common case, sometimes there are complications linked to different
causes.

According to [8] the most common causes of mistake in anaesthesia are the
"Wrong drug", "Wrong route", "Wrong order" and "Wrong dose" (see 1.3).

4

1 – Introduction

Figure 1.3: Classification of drug administration errors in anesthesia malpractice
cases

The first three causes, above listed, are mainly connected to the attention and
professionalism of the anesthesiologist. The order, the route and the drug type
correctness are patient independent and must be carefully executed at the begin of
operation. On the other hand, the "wrong dose" aspect can vary with respect to
the patient and during the operation causing risk of overdose (and all the linked
consequence), low-dose (possible pains) and wrong mix-dose. At the aim to help
the doctors to minimize all the risk linked to the Wrong dose, a real-time support
system can be placed side by side during the whole surgery duration.
The thesis work is focused on the design for a possible solution to this common
problem. The project, described in the next chapters, pose the attention on the
development of an electronic system able to monitoring in a continuous way, the
response of an electrochemical sensor associated to the measure of drugs concen-
tration in the patient’s blood.

1.2 Drug Monitoring - State of the art
Nowadays, there are no commercial tools able to offer real-time monitoring of anaes-
thetics, indeed, there is still a lack in sensing technologies able to maintain high
performances in long term monitoring within a portable miniaturized hardware
system [9]. The monitoring of the patient during the administration of drugs per
anaesthesia reasons (not only) is a crucial task required to avoid and to reduce
potential health dangerous risk.
Personalized therapy offers the opportunity to increase the therapeutic efficacy of
drugs by targeting the right dosage for each patient and, at the same time, by
decreasing toxicity due to overdosing [10]. The main goal of this medical approach

5

1 – Introduction

is to maintain, ensuring patient-safe condition, the concentration of drug dosage
in blood within a pre-defined range, in order to optimize the efficacy in patients
treatments and reduce the toxicity for the body. At this scope, during anaesthesia,
accurate balanced delivery of several compounds, including anaesthetics, analgesics
and muscle relaxants is fundamental to achieve to avoid intoxication or awareness.
The traditional methods evaluate the Depth of Anesthesia (DOA), very difficult-
evaluation parameter, basing the approach on the observation of human parameter
as physiological symptoms such as patient’s heart rate and blood pressure. How-
ever, these parameters vary a lot depending on the type of surgery and the patient,
then they are inadequate and with very poor predictive value[10]. Algorithms based
on Bispectral Index (BIS) are actually used in surgery to monitor the DOA of the
patient. The BIS is a weighted sum of several electroencephalographic (EEG)
parameters and its value decreases linearly with the increasing of the DOA[10].
Unfortunately, also these techniques return wrong estimations in clinical situations
due to abnormal EEG patterns or to different anaesthetics or interference by other
drugs. [10] Currently, other technologies such as "mass spectrometry", liquid or
gas "chromatography" and "immunoassay" [10], are exploited as well as EEG they
result not suitable for Continuous Anesthetic Monitoring. In this thesis, in order to
guarantee the commercial tools able to offer real-time monitoring of anaesthetics,
the electrochemical biosensor approach is adopted.

1.2.1 Electrochemical sensor

Electrochemical sensors are considered as better candidates for the realization of
such portable monitoring systems with respect to standard bulky techniques nowa-
days adopted [11]. The sensor cell is composed of a sensing part based on three-
electrodes. Typically, the name of these three electrodes is WE (Working), RE
(Reference) and CE (Counter) electrodes. The voltage potential between the RE
and WE is kept constant thanks to the potentiostat circuit; the current is collected
by the CE contact whereas the reduction and oxidation reactions take place on the
WE electrode. The cell potential between RE and WE is distinct for each analyte,
allowing specific compound recognition while the current through CE permits the
quantification of such analyte.[11] In the system developed in order to drive the
cell the Cyclic Voltammetry technique is applied. The method consists in the bias
the cell with a linear-sweep potential ramp within a defined voltage range, and
simultaneously measure the current provided by the cell at each voltage step, cor-
responding to a certain drugs concentration.
Among many electrochemical techniques are feasible, but Cyclic Voltammetry (CV)
is the most suitable for detecting multiple compounds at the same time [11].

6

1 – Introduction

Figure 1.4: Electrochemical cell scheme

The chemical reaction in the cell is based on two half-reactions at the two elec-
trodes where the potential difference is present between electrode and electrolyte.
Generally, only one of the two half-reactions is considered and the electrode where
it occurs. Driving the electrode towards more negative potentials causes an increase
of electrons energy up to the value at which the electron is transferred to the elec-
trolyte. This aforementioned case is called Reduction and the current flows from
the electrode to the solution. In the opposite potential configuration, Oxidation
the electron energy decreases and the current follows the opposite direction (w.r.t.
reduction case).
In conclusion, the measured current flows WE and CE (the CE electrode should
have a larger surface with respect to WE to avoid RedOx limitation kinetics); the
potential difference is evaluated between RE and WE

RedOx chemical reaction in electrochemical cell

This section is dedicated to better explain, in the previous chapter mentioned chem-
ical reaction exploited to measure the substance density. The electrochemical cell is
composed of two half cell, one in which the oxidation of metal electrode occurs and
the other where the reduction of metal ions in solution is considered. The reaction
is (as previously said) called RedOx, it is a chemical reaction characterized by the
transfer of electrons between chemical species: the reducing agent and the oxidizing
one. The reducing agent loses electrons, gained by the oxidizing one.

7

1 – Introduction

Figure 1.5: Redox and electron flow in Electrochemical cell

Each half-reaction has a standard electrode potential, it is equal to the potential
difference at equilibrium (under standard conditions) of an electrochemical cell in
which at the cathode occurs the considered half-reaction, at the anode the refer-
ence standard Hydrogen electrode, where hydrogen is oxided (losing electron). The
standard cell potential is described by the following relation 1.1

Eeq
cell = Eeq

cathode − Eeq
anode (1.1)

The electrons flowing is generated by the potential in electrochemical cells between
the anode to become oxidized and the potential for the cathode to become reduces.
The electrons fall from the anode (higher potential) to the cathode (lower poten-
tial). In conclusion, the electron flow generates the current which is the electrical
parameter measured to evaluate the substance concentration in a fluid.
Potentiosat
The precise control of the electrochemical cell, during chemical analysis, represents
one of the most important points in electrochemistry. Several techniques are avail-
able but the best in term of stability and control is given by potentiostat one.
The potentiostat circuital solution has mainly two tasks: the control of the applied
voltage to the cell and the measure of voltage response or current one (as in the
thesis case). Other kinds of techniques result to be unstable and impedance depen-
dent[12]. The potential control circuit is designed to control the potential at the
working electrode (WE), and obtain a measure of current at a stable and constant
voltage. The goal is obtained in common solution with a single op-amp connected

8

1 – Introduction

to the three-electrode cell, where the voltage is applied to the counter electrode
(CE), which current compensate the RedOx reactions at WE. The RE electrode is
connected in the negative feedback loop and the final configuration is 1.6:

Figure 1.6: Potentiostat circuit configuration

The aforementioned circuit configuration plays an important role in the so call
voltammetry-based-electro- analytical tools to obtain information about the RedOx
process. Usually, the current measured in the CE and WE loop is reported versus
the applied potential realizing the voltammogram which peculiar shape depends
on the solution with current peaks relating to the phenomena[13]. The applied
approach in the thesis analysis consists of the Scan Cyclic Voltammetry (SCV),
where the driving voltage ramp between the WE and RE is generated through a
staircase of voltage step[13].

9

Chapter 2

Circuit design

The potentiostat is an electronic circuit configuration able to correctly control a
three electrodes cell in order to run electroanalytical experiments. The system
functions by maintaining the potential of the working electrode at a constant level
with respect to the reference electrode by adjusting the current at an auxiliary
electrode. Besides the voltage control of the cell, the potentiostat plays the central
role in the current flow measure among the Working electrode and Counter one.

2.1 Analog driver
In this section is reported in details the description of the circuit configuration aims
to properly drive the electrochemical cell and acquire the sensor data.

Figure 2.1: Schematic of Potentiostat architecture for the voltage control and cur-
rent conversion

As shown in figure 2.1 the double tasks of the potentiostat results to drive the
cell, by means a Pulse Width modulation that allows step-by-step voltage reference
between WE and RE value, changing the duty-cycle of the square wave;on the other

10

2 – Circuit design

hand the current flow among WE and CE electrode is properly converted to a quasi-
digital signal, to exploit the event-based approach avoiding power-consuming ADC
[9].
From the circuital point of view, the potentiostat consists of an electric circuit
which is usually described in terms of simple op-amps.[14]

Figure 2.2: Potentiostat circuit configuration

2.1.1 Pulse width modulation and Voltage converter
Pulse width modulation (PWM) is a method of digital modulation which allows
the obtaining of a variable average voltage based on the ratio among the time of
the positive pulse with respect to the period of the square wave (duty cycle).
This technique has been proposed in the circuit implementation in order to provide
a linear sweep voltage value to feed the electrochemical cell.
In figure 2.3 is reported the electronic circuit that receives the PWM signal with
variable sequence of Duty-Cycle (waveform generated by the µController),the input
enters in the filter circuit and the output(Vout) results in a voltage-ramp shape (as
function of the input duty cycle), act to drive the chemical cell.

Figure 2.3: Circuit configuration to drive the electrochemical cell: PWM input
signal and integral filter circuit

11

2 – Circuit design

The input PWM signal, is filtered through the 2nd order integrator circuit,
maintaining only the DC harmonic component and rejecting the other contributes.
In particular in figure 2.3 is described the Sallen-Key topology. The formula to
describe the relation between the input and the output is reported in the following
equations 2.1, 2.2, 2.3, 2.4:
By inspection the circuit with the K.C.L.

PWM − Vx

R1
= Vx − V out

Z1
+ Vx − V−

R2
(2.1)

PWM − Vx

R1
= Vx − V out

Z1
+ Vx − V−

R2
(2.2)

and
Vx − Vout

R2
= V out

Z2
(2.3)

Combining and rearranging the equation:

Vout

PWM
= Z1Z2

R1R2 + Z1(R1 +R2) + Z1Z2
(2.4)

The equation 2.4 shows the transfer function, by replacing to Z1 and Z2 the value
of the capacitor impedance, in the Laplace domain s = jωt, the final 2nd order
transfer function is available.

Vout

PWM
= 1

1 + C2(R1 +R2)s+ C1C2R1R2s2 (2.5)

The design of the filter depends on two parameter Q and f0, respectively the shape
of the frequency response and the resonant frequency, to be chosen appropriately
according the application. The definition of the two factors are:

f0 = 1
2π

√
R1R2C1C2

(2.6)

Q = 2πf0

2α =
√
R1R2C1C2

C2(R1 +R2) (2.7)

For example the Q factor in order to obtain the maximum flat band response must
be selected equal to 1√

2 .
At the end of the design, the unknowns (4) and the two parameters definition
requires the imposition of a relation between R1 and R2 with R and C1, C2 with C
by means of m and n .
In conclusion the relation to respect are:

R1 = mR;R2 = R

m
;C1 = nC;C2 = C

n
. (2.8)

12

2 – Circuit design

In order to "transform" the PWM signal in voltage ramp, the pole position must be
chosen much lower with respect to the modulation frequency, the output integrated
signal will be

Vout = Vdd ·DC (2.9)
with DC equal to the modulation duty cycle.

2.1.2 Design proposal and LTspice Simulation
Exploiting all the considerations done in the previous section, the electrochemical
cell driver has been designed and then simulated in LTspice. The resistance R1 and
R2 have been chosen equal to 47 kΩ and 10 kΩ and the two capacitance C1 = 47
nF and C2 = 10 nF. The input signal has been modelled with a variable pulse in
the time at frequency f = 20 kHz, simulating a signal with a variable duty cycle.

Figure 2.4: Simulation layout configuration

To obtain a more clear picture of the circuit behaviour, a single Duty Cycle per
time has been simulated and here reported.

Figure 2.5: Input voltage signal (blue square wave) and Output voltage signal
(black wave) with 70% of duty cycle

In figure 2.5 is possible to note the relation between the output voltage value and
the input one, linked by the Duty cylce, indeed, Vout = DC ·V in = 0.7·3.3 Ä 2.31V .

13

2 – Circuit design

In order to observe the correctness of the behaviour of the circuit, it is useful to
compare figure 2.5 with the one reported below 2.6. In the second case the duty
cycle is equal to 30 %, indeed, the output voltage results to be lower than the first
case following the expected behaviour.

Figure 2.6: Input voltage signal (blue square wave) and Output voltage signal
(black wave) with 30% of duty cycle

In conclusion, combining at different duty cycle the input signal (the PWM
purpose), it is possible to obtain a linear-sweep voltage ramp (in order to drive the
electrochemical cell) from [DCmin · Vdd ÷DCmax · Vdd] Volt.

2.2 Analog Read-out
In this section is described the circuit exploited in order to convert the signal comes
from the output of the electrochemical cell in suitable signal for the microcontroller.
The electronic circuit can be described by splitting the whole layout into the three
stages that compose the configuration : the trans-impedance amplifier, the integra-
tor stage and the edge trigger.

Figure 2.7: Read-out topology block diagram

2.2.1 Trans-Impedance Amplifier (TIA)
The first stage, the so call TIA configuration, is the fundamental electronic circuit
aims to convert an input current signal into a voltage one. In the figure 2.8 the
classical circuit configuration is reported:

14

2 – Circuit design

Figure 2.8: Trans-impedance amplifier configuration

The relation among the input current signal, generated by the sensor response,
and the output voltage depends on the feedback resistance (in parallel to the ca-
pacitor to force the pole position).

Vout = −IW E ·R1 + Vdd

2 (2.10)

The current is measured from the Working electrode at each drive voltage step of
the ramp voltage signal above described. This current signal derives from the oxi-
dation or reduction of the analyte at the WE surface and it is strictly related to the
presence and the concentration of the analyte itself[11]. The WE is connected to an
half-supply node (Vdd⁄2) to achieve both a dual-voltage driving and a dual current
measurement without the introduction in the system of a dual-voltage supply[9].

2.2.2 Integrator and Edge Trigger stage
Since the input signal is an analog signal, one possible circuital solution could be
the employ of the Analog-to-Digital converter. This last solution has been replaced
with two-stages, integrator and comparator, in order to transform the input analog
signal in the so call Quasi-Digital signal [15], the event-based approach guarantees

15

2 – Circuit design

a reduction in the term of power consumption with respect to the classical ADC
solution. The circuit configuration with the two-stages is reported in 2.9

Figure 2.9: Two stages configuration: the integrator U1 and the edge trigger stage
U2

The voltage output signal of the TIA becomes the input for the second and
third stage. Starting from the second (integrator) stage:

Ic =
VT IA − 1

5Vdd

R1
= −C · dV

dt
(2.11)

Solving the differential equation, the output voltage proportional to the input
one (and thus to the input current) is:

Vo = − 1
RC

Ú
(VT IA + 1

5Vdd)dt (2.12)

The capacitor, thus, is discharged by the current Ic and when it overcomes
the threshold of the comparator (third stage) the QDE signal is set, the current
start to flow through the MOSFET and the QDE rapidly is reset. This process
represents the conversion loop between the input current and the output quasi-
digital signal. When the integrator input is composed by a time-constant voltage

16

2 – Circuit design

signal, the output is just proportional to the input. The integral relation 2.12
becomes:

Vo = − 1
RC

(VT IA + 1
5Vdd) · T (2.13)

Observing the equation 2.13, it is possible to describe the dependency time-
current of the circuit in figure 2.10 just obtaining the input current from 2.10 and
inverting the previous equation, leading to equation 2.14.

icell = −R2 · C2 · Vth

R1 · T
+ i0 (2.14)

Where T is the time interval, Vth is the last stage comparator threshold and i0 the
offset current computed when the cell current is equal to 0.

Figure 2.10: Three stage circuit configuration analog read-out

The value of T can be obtained by the following equation 2.15:

17

2 – Circuit design

T = R2 · C2 · 1/2Vdd

VT IA − Vlow

;Vlow Ä 0.6V (2.15)

2.2.3 Design proposal and LTSPisce Simulation
Considering all the previous studies and relations, the simulation in LTspice for
further validation of the configuration has been developed. In figure 2.11 is reported
the layout for the simulation. The input RedOx current is modelled by a simple
current generator(I1).

Figure 2.11: Circuit configuration analog read-out simulation in LTSpice

The results of the simulation are listed below : In figure 2.12 is reported the
charge and discharge of the capacitor C2 according to the mos current.

Figure 2.12: Charge and Discharge of the capacitor: current (black curve) and C2
voltage (blue curve)

18

2 – Circuit design

Figure 2.13: Output square quasi digital signal(black curve) and C2 voltage signal
(blue curve)

The capacitor voltage at the negative input of the third stage is compared with
the threshold. The final square (quasi-digital) output in the example with input
current 80µA is generated as shown in figure 2.14

Figure 2.14: Output square quasi digital signal(blue curve) and input cell current
= 30µA (black line)

Finally, a variable current ramp signal has been exploited in order to observe
the variation of event rate (evaluated as the time distance between two consecutive
rise edge). Some case of input current and output event rate of the quasi-digital
signal obtained from the simulation are reported here in the following table 2.1

19

2 – Circuit design

Input cell current [µA] Output event rate [kevent
s

]
-100 4.24
-90 4.97
-70 6.73
-50 8.54
-10 12.10
20 14.75
30 15.65
40 16.54
50 17.41
60 18.32
70 19.22
80 20.14

Table 2.1: Results of the simulation in LTSpice

The general trend of the event rate vs. the current evaluation is reported in the
Matlab graph 2.15 obtained exploiting the LTspice simulation data.

20

2 – Circuit design

Figure 2.15: Trend of the event-rate vs input cell current in Matlab plot (simulation
data)

21

Chapter 3

Printed circuit design: PCB

This chapter is dedicated to the description and the analysis of the design of the
printed circuit board.
The printed circuit board (PCB) is mechanical support that electrically connects
electronic components using conductive paths. In the thesis project, it has been
chosen this kind of technology realization, because it is the best one to implement
a customizable and portable device. For the final medical application, the main
features required well marry with the PCB implementation. In order to obtain a
possible commercial and usable medical equipment, the device has to respect some
indications:

• it has to be small with a proper shape suitable for the measure of the blood
substance of the patient. At this purpose, the main idea has seen the realiza-
tion of a board "long and narrow" as a medical syringe, in order to facilitate
the application;

• it has to be portable and at this purpose, the circuit, the components and
the firmware have been selected in order to reduce the power consumption;

In this chapter will be discussing the steps for the implementation of the different
parts of the project. Will be reported the details for the circuit schematics for the
analogue part seen in chapter 2, the layout for the micro-controller, the realization
of the antenna for the communication and all the components symbol and footprint,
parameters (etc...) for the actual realization of the device.
The project for the realization of the printed circuit board, the main part of the
thesis project and of the final device, has been developed employing the software
"Altium designer", developed by Australian software company Altium Limited. Al-
tium is a world-leading provider of software for the PCB and electronic design
automation, for the management of the components and data. The four main func-
tional areas are schematic capture, 3D PCB design, Field-programmable gate array
development and release/data management [16]. Moreover, it has got the further

22

3 – Printed circuit design: PCB

feature as integration with several components distributors, interactive 3D editing
(etc.).

3.1 Analog driver & Read-out layout
In this section, it is reported in detail the Altium project relative to the analogue
part described in the previous chapter. The analogue driver and the read-out circuit
cover the great part of the PCB in term of area. In the following figure 3.1, it is
reported the realized layout.

Figure 3.1: Altium configuration for the Analog driver & Read-out layout

Starting from the left of the layout, it is possible, as first, to note the connector
(J1 in Altium), this component represents the connector for the input electrochem-
ical cell from WE, RE and CE electrodes. From this part of the project and for
all the PCB design, an important role has covered by the components selection, in
term of availability and dimension. The connector J1 has been chosen for its small
dimension (see later section 3.6). Continuing toward the right, the first integrated
component is present(U1), this component as the second one (U2) is composed by
four op-amps, thus compose by eight input signal, 2 input for the supply and four
signal output. Always for space reason, the eight op-amps, needed to implement

23

3 – Printed circuit design: PCB

the driver and read out part of the circuit, have been integrated into just two com-
ponents. Moreover, it is also important to underline the main features of U1 and
U2. The U1 is the amplifier series LTC6085 whereas the second one ADA4807,
the difference between the two lies in the performance and power consumption.
The ADA4807 has been chosen for its speed performance, indeed, that part of the
circuit is addressed to the PWM conversion in linear-sweep voltage for the sensor,
and the comparison task to obtain the Quasi-digital signal as output. On the other
hand, to preserve power, all the stage that not needs high performance were realized
with LTC6085. The following table 3.1 summarizes the two op-amp’s parameters
in order to compare them in terms of power and performance.

Parameter LTC6085 ADA4807
Input bias current 1 pA 1.6 µA

Gain Bandwidth Product 1.5 MHz 165 MHz
Slew rate 0.5 V/µs 118-237 V/µs

Table 3.1: Comparison between LTC6085 and ADA4807 performance from
datasheet [17] [18]

Focusing the attention on the U1 component, the LTC series, it is possible to
describe the different circuital configurations implemented in the PCB. Input -INA
and +INA are connected respectively to RE electrode signal and the PWM filtered
signal as the circuit 1.6, and obviously the output OUTA linked to CE electrode
signal. This first configuration follows the potentiostat circuit commented in sec-
tion 2.1.1.
The -INB and +INB are attached to a voltage divider composed by two resistor
with equal value (this choice turns out in an output signal equal to VnRF

2); the out-
put of the voltage follower is exploited as voltage reference for the electrochemical
cell driver stage 2.8, implemented with ADA4807 (U2) due to the speed required
by the operation.
As well as for the op-amp U1-B, also the U1-D input and output of the LTC6085
have been used as voltage follower once, by means of the two resistors (voltage
divider), the input has been set to VnRF

2 . The output is connected to the +INC of
the U2 component.
About the input +INC of the U1 component, the voltage divider is not act to
realize VnRF

2 , but the OUTC of the voltage follower will be mirror the input voltage
set to VnRF · RF4

RF4+RF3
, obtaining VnRF

5 exploited as input in U2 +INB as described
in figure 2.9.
Before to enter in details with the U2 four op-amp, it is possible to observe the
N-MOS in common source configuration, with the drain linked to +INB. The aim
of the MOSFET is to "turn off" the analogue circuit when needed. It is controlled
on the gate by the IDLE signal, the flag is asserted by the µController when the

24

3 – Printed circuit design: PCB

whole device is in the stand-by condition, in this way the first stage has the input
connected to ground and the current flowing is minimized. This system has been
adopted in order to reduce the power consumption and make the device low-power
in standby condition.
Centring the attention, on the second U2 integrated component it is possible to an-
alyze the circuital configuration. The input +INA is connected to the voltage refer-
ence, the output is negative feedback (linked to -INA) defines the Trans-impedance
amplifier (figure 2.8), where the output voltage depends on the current from WE
electrode and of course by the feedback resistance RR1.
The key part for the Read-out circuit has been implemented with the B ampli-
fier, indeed the input -INB results connected to the drain of the N-MOS, driven
by QDE signal in the negative feedback chain that includes OUTC. +INB, on the
other hand, is connected to the voltage reference VnRF

5 (as previously defined). The
inner feedback circuit, with CR1, works in order to obtain the triangular voltage
signal on the capacitance it-self that will be compared in the following stage (see
figure 2.12.). Completing the description, the -INC and +INC define the last com-
parator where the positive input is connected to the voltage divider composed by
the resistor RR3 and RR4 that sets the reference voltage to VnRF

4 (the divider input
is connected to the U1-OUTD equal to VnRF

2); the negative node linked to the feed-
back capacitor, the voltage drop on CR1 is compared and finally the quasi-digital,
QDE signal is obtained. In conclusion the above circuital configuration implements
the circuit in figure 2.10.
The last amplifier the U2-D is dedicated to the realization of the integrator Sallen-
Key filter as in figure 2.3. The RD1 and RD2 resistor with CD1 and CD2 capacitor
corresponds to the resistor and impedance described in 2.3 and allow for the voltage-
sweep ramp output signal (OUTD) modulated by the PWM wave with a variable
duty cycle (set by the microcontroller).
In conclusion, the configurations analyzed in chapter two have been accurately im-
plemented in Altium designer in order to obtain the final front-end circuit composed
by the Readout and the PWM driver for the electrochemical cell.
The last mention is for the square on the right corner of figure 3.1, in which the
output and input signal connection are reported. As said, the project has been
done in a modular way and the final connections have been defined in the 3.5 sec-
tion in this chapter. In the case of the front-end circuit the main signal were QDE
and PWM, respectively output and input, furthermore there were the input idle
signal (as above introduced) and finally two test signals, to check the correct device
function, called TEST_FILTER and TEST_VDD.
In the following figure 3.2, the main aforementioned circuits, the above discussed
are highlighted.

25

3 – Printed circuit design: PCB

Figure 3.2: Zoom on the three main front-end parts: The red path follows the PWM
driver circuit interconnection, the blue follows the Read-Out layout, the green lines
follows the ìtrans impedance amplifier circuit.

The red path follows the PWM driver circuit interconnection, the blue one
defines the Read-Out layout, crossed with the green lines, that point out the trans-
impedance amplifier-circuit. As observable, the key tasks of the front-end in term
of speed demand, are addressed to the ADA4807 op-amps.

3.2 Voltage regulator layout
The "last" part of the analog design is composed by the circuit aims to regular the
voltage supply, to provide to the entire circuit, and to guarantee enough current.
For the final medical application of the project, in order to realize a portable de-
vice, a battery supply will be adopted with a voltage value around 3.3V. In the
developing stage also an external voltage supply has been exploited. The type of
circuit configuration used for the voltage regulator is the so call buck-boost DC-DC
converter. This kind of converter provides an output voltage with the same polarity
of the input one with lower o higher value and it exploits a single inductor for both
the buck and boost mode. The operation of the buck-boost is understood in terms
of the inductor’s "reluctance" to allow the rapid change in current. From the initial
state in which nothing is charged and the switch is open, the current through the
inductor is zero. When the switch is first closed, the blocking diode prevents cur-
rent from flowing into the right-hand side of the circuit, so it must all flow through
the inductor. However, since the inductor doesn’t allow rapid current change, it
will initially keep the current low by dropping most of the voltage provided by
the source. Over time, the inductor will allow the current to slowly increase by

26

3 – Printed circuit design: PCB

decreasing its voltage drop. Also during this time, the inductor will store energy
in the form of a magnetic field.[19]

• On-state: the input is directly connected to the inductor (L). This results in
accumulating energy in L. In this stage, the capacitor supplies energy to the
output load.[19]

• Off-state: the inductor is connected to the output load and capacitor, so
energy is transferred from L to C and R.[19]

Figure 3.3: Left: buck-boost converter in on state; Right: buck-boost converter in
on state

The circuit layout exploited in the PCB design is reported in figure 3.4

Figure 3.4: Altium configuration for the Voltage regulator circuit

First of all, it is possible to define the second connector (J2) dedicated, this time,
to the voltage supply interconnection, VnRF and ground reference. The connector
bridges the out battery or voltage supplier with the mechanical switch (S1) through
it is possible to completely switch off the device or turn on.
At this point, the circuit enters in the heart of its functionality, that is the control

27

3 – Printed circuit design: PCB

of the voltage to provide to all components on the board. For this purpose, the
component (IC1) has been introduced in the design, it is a voltage regulator, with
fixed output voltage series TPS 63031. The whole external connections have been
realized paying attention to the data-sheet indications. To better explain the circuit
behaviour the inner links of the component are here reported from the data-sheet:

Figure 3.5: Voltage regulator circuit from datasheet [20]

The device has eight pins. Once the EN signal is asserted the device starts
operating. The device is based on an average current mode topology, the average
inductor (L1 for both pins L1 and L2) current is regulated by a current regulator
loop, controlled by means of voltage loop [20]. The average current limit ramps
up from an initial 400 mA following the output voltage increases. At an output
voltage of about 1.2 V, the current limit is at its nominal value, thus the output
voltage overshoot at start-up, as well as the current is kept at a minimum.
To regulate the output voltage properly, the device automatically switches from
step-down operation to boost operation and back as required by the configuration
[20]. It operates according to the value of the input voltage with respect to the out-
put one: if the VIN results higher than VOUT, it works as a step-down converter
(buck state), and as boost converter when the input voltage drops below the output

28

3 – Printed circuit design: PCB

one. Therefore VIN and VOUT, represent respectively the input and the output
voltage pins. The FB pin works as voltage feedback and in case of constant output
voltage must be connected to Vout to properly set the fixed output configuration.
Finally, PS/SYNC pin sets different operation modes. Power safe is selected to
improve efficiency at light load, in this situation the converter stops to operate if
the average inductor current results are lower than 100 mA and voltage below its
nominal value.
The capacitors CVR1, CVR2, CVR3 and CVR4 and the inductor LVR1 components
have been selected as possible equal as the indication suggested by the data-sheet.
Indeed the component, with the proposal configuration, has been tested before to
be mounted, and the correct work validated.

3.3 Micro-controller layout
Once defined the front-end of the device with all the fundamental parts for the
measure, for the driving and the for the voltage supply, it is possible to introduce
the "mind" of the device. In this section, in particular, is described as the Micro-
controller layout and functionality. The nRF52840 is the micro-controller chosen
for the design (the description is postponed to chapter 4). The component (U3 in
the Altium annotation) mounted in this specific case is the QIAA and it presents
fifty-five pins on the 4 sides.
The layout and the connections have been executed following different reasons: the
choice of the pin has been done considering first of all their functions and tasks and
then considering the better way to place and route the component on the PCB.
For the description of the layout, it is possible to take as reference figure 3.6 On
the left top corner of the picture, in the square, the LEDs with their circuit are re-
ported. The two LEDs, green and red, are controlled by the output pins p0.10 and
p0.09. The LEDs result to be useful for mainly two reasons: during the debug in
the developing phase and during the execution of the firmware in order to indicate
to the operator the state in which the operation lies.
Always on the left, two buttons SW1 and SW1 are placed. The former is used to
give some commands to the microcontroller, it is a mechanical user interface, the
latter (SW2) is dedicated to the reset of the device, essential for the programming,
moving the device in DFU mode, indeed it is connected to the RESET port of the
micro-controller p0.18.
Closer to the device it is possible to observe the component X2, it is the first of
two-oscillator, with the two capacitor C10 and C12. Broadly speaking, some parts,
(as for the oscillator) of the circuit configuration, have been strongly realized con-
sidering the data-sheets indications and suggestions. Continuing describing the
oscillator, the second one is placed on the top right corner with the name X1. The
two oscillators work at a frequency equal to 32.707 kHz and 32 MHz.
Focusing the attention on the right bottom corner, it is possible to note a second

29

3 – Printed circuit design: PCB

Figure 3.6: Altium configuration for the µController circuit

square, which is reported the second connector of the whole PCB (P1). The pres-
ence of this connector is fundamental to program the device with the firmware.
The connector, indeed, is linked to SWDIO and SWCLK pin (furthermore linked
to Voltage supplier and ground), dedicated to the programming of the micro-
controller.
Finally, on the right is reported the antenna circuit: it starts from the pin called
ANT, and it is composed by a common antenna matching π-network with L3, C13
and C14, to end with a bridge resistor (0Ω) and the antenna. The physical struc-
ture of the antenna is reported in section 3.6 of the same chapter.
The last point of the description concerns the input-output signals, reported in the
square called I/O. As largely discussed, the are three main signals: QDE, PWM
and IDLE, with the first analyzed in input by the nrf52840, the second and the
latter transmitted by the control to the front-end circuit. The other ports listed in
the square represent the test-signal described in the following section

3.4 Connection and Test layout
Finally, before to describe and show the PCB, it is possible to report the whole
connection between the different parts. In order to obtain a more regular and
modular design, indeed, the circuit layout has been divided in more mini-project
and then connected by this circuit file as shown in figure 3.7.

The figure shows the whole circuit project as a schematic block. Each part from

30

3 – Printed circuit design: PCB

Figure 3.7: Altium configuration for the circuit interconnection

the front-end to the micro-controller circuit are represented by one block which
presents a certain number of ports marked as input or output. As observed in
every section, a part of the project was reserved for the definition of these ports.
In the first analysis, it is possible to start by the heart of the device, the connection
between the microcontroller and the front-end circuit. The idle signal is a simple
flag asserted or not according to the operation state by the microcontroller and
it is sent to the analogue circuit in order to minimize the power consumption.
The Quasi digital signal, generated by the analogue circuit, is transmitted to the
controller and thus read and elaborated by the latter. Opposite path is dedicated
to the PWM signal, indeed the variable duty-cycle modulation, set up by the micro,
is sent to the analogue circuit in order to drive properly the electrochemical cell.
It is possible to note on both the connections two bridge resistors with a nominal
value equal to 0 Ω, their purpose is to connect or disconnect according to the need,

31

3 – Printed circuit design: PCB

during the test and development step the three main blocks the micro-controller
circuit, the analogue one and the unmentioned test-pin block.
The test pin is a simple connector exploited during the test and developing step.
In order to favourite the circuit check, some nodes of the analogue circuit and
some signals have been connected toward the external to be tested a to investigate
potential problems, bad function and to fix it. At this purpose, the two main signal,
QDE and PWM, the reference voltage and the filtered signal have been connected
to the test-pin connector. Moreover, some micro-controller pin has been linked for
possible future new functions. In figure 3.8 the aforementioned test connector is
reported, it is composed of 10 pins, and only 8/10 have been exploited for the test.

Figure 3.8: Altium configuration for the test circuit

3.5 PCB Description
In section 3.6 the steps to realize the PCB are reported. This step is the final one,
once the functionality and the topology of the front-end circuit and the µController
layout have been defined. The PCB has been designed on two layers the top and
the bottom one

3.5.1 Top Layer

Figure 3.9: 2D PCB layout from the top (Image from Altium designer)

The top layer is the upper-side of the device, in this project all the components have
been mounted on this layer. The milestone of the PCB realization is represented

32

3 – Printed circuit design: PCB

by the place and route of the components which represent the principal challenge
for the device project area. Due to the final application as "syringe", it is very
important to guarantee the minimum area extended along the horizontal direction,
to obtain a long and narrow board.
Therefore the placement and routing of the components must take into account the
area constrains and not only: this limitation has influenced also the selection of
components in term of dimension.
Footprint
The first step, before to start to import all the components and place them on the
empty board, is the definition of the symbol and the footprint of each component
itself. The symbol of the component is nothing else that its representation in
the circuit schematic, the important point in its definition is the number of the
pin and the correct (as indicated in the data-sheet) enumeration and connection
with the footprint in order to reflect the reality. On the other hand, define the
footprint means to realize the 2D (fundamental) or 3-D model of the component,
that accurately mirrors the real component and to associate it to a defined symbol
(pin correspondence). It is important at this aim to take as reference the data-sheet
indication of dimension shape and area. In order to obtain the final results, it is
possible to exploit the wizard tool available in Altium designer and to design the
footprint from the begin, otherwise it is possible to import file ".lia" containing the
accurate footprint already realized, follow an alternative Altium wizard, and finally
check the correctness and validate them. Both the solution have been exploited for
all the components. In the following (3.10 just an example is reported, in this case,
it is possible also to note the star indicating the correct direction position of the
device on the board (usually the star is placed to indicate the pin number one):

Figure 3.10: Example of symbol component and footprint (ADA4807)

When all the components footprint have been defined, the begin of the project
of PCB starts with a provisional shape and dimension definition of the board, at

33

3 – Printed circuit design: PCB

this point all the components imported will be available at the side of the empty
board region for the placement.

Figure 3.11: Empty provisional board and component to place

Antenna layout
The PCB trace antenna is a simple path of copper on the surface of the board.

Figure 3.12: Antenna layout on PCB. Left: antenna geometry trace; Right: An-
tenna with matching network

Figure 3.12 (left) is the zoom of the antenna layout on the top surface of the
board. This kind of antenna has been designed in order to work at a frequency of
2.4 GHz, for the BLE (Bluetooth Low Energy) protocol transmission. The total

34

3 – Printed circuit design: PCB

height (vertical extension) is equal to 10.092 mm and the width equal to 2.964
mm. The geometrical design is a replica of the one proposes by the Nordic and
developed on the dongle device Nrf52840, it has been chosen to reproduce the same
geometrical layout after the test for the transmission and reception with the dongle
provided. Together with the antenna copper trace, it is fundamental to a matching
circuit. In the project, the π network matching has been realized composed by an
inductor connected on two capacitors.
Components placement & Routing
Once defined the antenna region, it is possible to divide ideally the device into
the other two parts. On the left, close to the antenna, the QIAA series of the
Nrf52840 is present together with all the circuit connection, defining the region
that is possible to call control part of the device. The rest area of the board is
addressed to mount the front-end part of the project. This choice has been done
in order to try to minimize the length of interconnection and to keep closed the
components that "communicate" between them. The aforementioned division is
here 3.13

Figure 3.13: PCB placement region, the white line delimits the different region:
from the left antenna, µController and front-end

At this point in the analysis, it is possible to introduce all the position of
the main components. Starting from the middle region, it is possible to find the
programmer connector P1 on the top and the two LEDs on the bottom (D1 and D2
annotation), on the left of the QIAA nrf52840 component. In between the connector
and the LEDs, the matching network for the antenna lies, this configuration is an
example of the decision to place the components one close to the other reducing
the connection distance. Just below of the micro-controller, the X1 oscillator is
reported, whereas the X2 one is on the right in the middle between the SW1 and
the SW2 respectively the reset switch and the user button. All the aforementioned
components represent the main parts of the micro-controller layout.
Moving the attention on the right zone, it is possible to note the first U2 integrated
amplifiers with all the needed capacitors and resistors. On the top in the middle
of this zone, the second P2 connector is present, it is, as said, dedicated to the test
of the signal during the developing step (it becomes effectively useless once verified
the correct device work). Next to the test-point, the on-off switch is placed just

35

3 – Printed circuit design: PCB

above (for obvious reasons of closeness) the voltage regulator circuit. The signal
front-end circuit ends with the second amplifier U1 and the two-channel N-mos.
Final mention for the two external connectors, one, before the U1 component, for
the voltage supplier (close to the switch and voltage regulator); and the latter at the
lateral side of the board in order to simplify the connection with the sensor wires.
As said all the components have been mounted on the top of the board, apart for
the battery, indeed for it has been preferred as solution, an external location for
the battery in the same case of the PCB.
About the connection routes, they have been designed on the top side, but mainly
for space reasons, not all the routes have been linked on the top. To solve this
problem, it has been very widespread the employment of the VIAs, conductive
holes in the board, to connect the top layer with the bottom one. The aims of the
VIAs are double, the former the link among top layer and bottom layer connections,
to guarantee short-circuit and the continuity for the routes. The latter (of course
based on the same principle) is to establish a connection between the two ground
planes on the top and the bottom layers. Indeed, the red background of the board
represents the ground plane on the top, and in order to obtain a unique ground
reference with the bottom, it is connected, through Vias, to the ground on the
bottom (blue background see figure 3.15. Thus to minimize the possible potential
difference between the two ground plane, many vias are placed in free and available
positions.
In conclusion, the 3D picture of the board is reported, this figure results to be
interesting because it reproduces in a loyal manner the final PCB, considering also
the vertical space occupation of the components (where the model is 3D).

Figure 3.14: 3D PCB layout top view (Image from Altium designer)

3.5.2 Bottom Layer
The second layer description is very straightforward seen that only the remaining
routes have been designed on this side. As is possible observe in figures 3.15 and
3.16, the bottom area is occupied by only conductive paths and VIAs in all the
case in which the connection starts on one side, continues (through Via) on the
bottom to end again on the top. Noteworthy is the externally visible route, this
path has been made wider to the other and it follows the confine of the board. This
connection is the voltage reference and for that, it is important that all the part of

36

3 – Printed circuit design: PCB

the device were reached by the power signal in a similar way. Trying to minimize
in this way the distance between voltage reference and components it is possible to
reduce potential voltage drops, moreover the choice to make the path wider rows
in the same direction: the reduction of voltage drop.

Figure 3.15: 2D PCB layout bottom view (Image from Altium designer)

Figure 3.16: 3D PCB layout bottom view(Image from Altium designer)

3.6 PCB Production
3.6.1 Components
In parallel with the design of the schematic circuit and thus of the PCB project,
the important role has been covered by the selection of the components. Short
mentions about the components have been done during the previous description,
in this section more information are given.

• The Integrated amplifier, U1 and U2, as above said, have been chosen ac-
cording to their main features in terms of power and speed (see table 3.1.
Moreover, the LTC608 and ADA4807 series of amplifier present 1,2 or 4 am-
plifier versions. The selection of the 4 op-amp configuration has been done in
order to minimize the area occupation.
Series: LTC6085 (annotation U1) and ADA4807-4 (annotation U2)

• The two-channel n-mos (annotation T1), it is composed of only (the needed)
two mos for the front-end circuit.
Series: 2N7002DW-TP Micro Commercial

• The on-off mechanical switch (S1), which task is to turn on and off the device.
Series: SS312SAH4-R

37

3 – Printed circuit design: PCB

• The voltage regulator component (annotation IC1), chosen for its character-
istics, that is the output constant voltage equal to 3.3 V and the current
control.
Series: Texas instrument tps63031

• The connectors, J1 and J2, exploited to link respectively the sensor and the
battery, have been chosen between a large totality of connectors for their
number of pins equal to three and the small dimension always to preserve
area occupation.
Series: Molex 5037630391

• The ten pins connectors P1 and P2 have been chosen more for their task
than for the area occupation. Indeed, they play an important role for the
programming (the component series was the one suggested by the Nordic)
and the test.
Series: ftsh_smt-1316912

• The 32.768 kHz (X2 annotation) and 32 MHz (X1 annotation) oscillators
have been chosen as indicated in the data-sheet on nRf52840, to guarantee
the correct operation condition of the latter.
Series: LFXTAL062558 (X1 annotation) XRCGB32M000F1H01R0 (X2 an-
notation)

• The reset switch SW1, it is a mechanical switch, with lateral button, to avoid
unwanted pressure.
Series: pts840-1280343

• The button switch SW2, it is a mechanical switch, with top button, exploited
as user button to start and stop the measure.
Series: pts810-1382876

• the nRf52840 controller component, it has been chosen for the GPIO (general
purpose input and output) availability, the counter hardware, the PWM driver
and the possibility to BLE (Bluetooth low energy) transmission.
Series: nRF52840-QIAAC0

• The LEDs, green and red with dimension 0603 (mils) to indicate the opera-
tion state of the board
Series SML-LX0402GC-TR (D1 annotation) and SML-P12U2TT86R (D2 an-
notation)

• The capacitors exploited in the circuit have been selected with different di-
mension in particular 0201 and 0402 (mils). The small dimension ones have
been preserved in the layout of a matching network for the antenna, in order
to avoid any possible failure, whereas in the rest of the board the 0402 have

38

3 – Printed circuit design: PCB

been mounted, a good compromise between area and practicality. A further
consideration in the decision about capacitors has concerned their class. All
the capacitors selected have been chosen of class 1 and 2 (where the first class
was not available), to guarantee the highest stability and lowest losses for
resonant circuit applications. No particular considerations have been done
about the work temperature range since it does not represent a hot spot.

• The inductors and resistors follow part of the consideration done for the
capacitor.

3.6.2 Production
The production of the PCB represents the more "commercial" part of the project,
as such the realization cost, the production time and the availability have been
played the central role in this step.
Components order
The order of components has considered two important aspects of the cost and
availability. Once defined all the aspect of the project, the proper components
have been selected, in order to piratically make the order, different important and
reliable distributor of electronic components have been compared in term of cost
and delivery time. The final option has been Mouser Electronics, that with the
minimum cost has guaranteed all the component with the minimum time.
PCB order
The physical realization of the PCB has been addressed to Eurocircuit the Euro-
pean reference for PCB prototypes & small series. In order to allow the specialist
manufacturers and assemblers of prototype company, the realization of the PCB,
some project files have been provided.
The first point to investigate, when the PCB is produced, is the technology ex-
ploited for the realization. The technology used has consequence in the technology
adopted in the board, indeed the two have to share the same parameter to make
possible the project. This fundamental consideration, at the design level, is trans-
lated in a set of rule to respect during the design. Since the technology is provided
by Eurocircuit, the same rules have been imported by the same company in the
Altium project. The rules concern a different aspect of the project and to make
clear what they affect, the Altium set are here listed:

• Manufacturing:

– Minimum annular ring, this rule specifies the minimum annular ring
required for a pad or via. The annular ring is measured radially, from
the edge of the pad/via hole to the edge of the pad/via (also referred to
as the land perimeter).[21]

39

3 – Printed circuit design: PCB

– Minimum solder mask sliver, this rule helps identify narrow sections
of solder mask that may cause manufacturing problems at a later stage.
Ensuring that there is a minimum width of solder mask across the board,
this rule checks the distance between any two solder mask openings that
are equal to or greater than a user-specified value. This includes the
pads, vias, and any primitives that reside on solder mask layers. It also
checks Top and Bottom sides independently[21]

– Silk to solder mask clearance, this rule checks the clearance between any
silkscreen primitive and any solder mask primitive, or exposed copper-
layer primitive (exposed through openings in the solder mask). The
check ensures that the distance is equal to, or greater than, the value
specified in the constraint. [21]

– Silk to silk clearance, this rule defines the minimum clearance allowed
between any two objects on a silkscreen layer. [21]

– Net Antennae, this rule operates at a net level in the design to flag any
track or arc end that is not connected to any other primitive and thus
forms an antenna. [21]

– Board Outline Clearance, this rule defines the minimum clearance al-
lowed from design objects that are fabricated, to edges of the board.
Either a single clearance value can be specified for all object-to-edge
possibilities, or different clearances for different pairings can be defined,
through the use of a dedicated Minimum Clearance Matrix. [21]

At the conclusion of the project on Altium, it is fundamental to run the "PCB
rules and violations" tool of the software itself to check that all the rules have been
respected. The final control has highlighted just one violation about net antennae
rule since an antenna layout is actually present on the device.
At this point, all the step of the project have been followed, and to produce the
board some files have to be provided to Eurocircuit. The first file is the "Picks and
Place" file, that contains all the assembly information about the position of each
component on the board. In particular in this file are reported the position accord-
ing to a reference point, the rotation degree and the layer in which the component
is mounted.
The other documentation is focused on the fabrication output and the file consid-
ered are the "Gerber" and the "Drill drawings". The Gerber is the de-facto standard
used by the PCB industry (called the backbone of the electronics) software to de-
scribe the printed circuit board image. It is based on an open 7-bit ASCII and it
is exploited for the PCB data transfer. Gerber files contain copper layers, solder
mask, legend and drill and route information. The Altium designer’tool allows au-
tomatically for the description of the board in term of Gerber file. The software
generates a series of output document with all the information stored furthermore

40

3 – Printed circuit design: PCB

a CAM file is produced that reads and shows the Gerber file: To complete the

Figure 3.17: Top:Altium Cam file, picture of the Gerber data
Bottom: Drill drawing figure, the position of the vias hole.

board fabrication description, the "Drill Drawing" was added to the output file.
The data stored outlines the position of the holes (VIA but not only) on the board
3.17 bottom figure.
Finally, all the files in a zip folder have been updated on the Eurocircuit portal.
In this conclusive step of the PCB project, the key role is given by the correct
trade-off of information between the designer and the producer. In addition to the
aforementioned files, the data on the components (series name, value, type, etc...)
have been provided. Indeed, the soldering of the critical part of the board (an-
tenna matching network and micro-controller configuration) has been addressed to
the producer automatic machine, to avoid every kind of defects. The rest of the
components have been manually welded on the board in the laboratory with the
electronic microscope and soldering iron.
Final PCB results and features
At the end of the exchange of data with the producer, the final device presents the
following properties:

• Board definition:

– Number of layers: 2;
– PCB width (X): 91.42 mm;
– PCB height (Y): 16.82 mm;
– Top soldermask: green;
– Top legend: white;
– Bottom soldermask: green;

41

3 – Printed circuit design: PCB

– Panel outline: Routed;

• Board technology:

– Pattern class: 7 (the manufacturability of the PCB);
– Drill class: Drill B;
– Outer layer trackwidth (OL-TW): 0.125 mm;
– Outer layer isolation distance (OL-TT-TP-PP): 0.150 mm;
– Outer layer anular ring (OAR): 0.125 mm;
– Hole density: <1000/dm2;
– holes: 0.45 mm;

• Material definition:

– Board thickness: 1.55 mm;
– Base material: FR4IIMP;
– Outer layer copper foil: 18 µm (End-Cu +/−35µm;
– Board buildup: standard;
– Material Tg: 145-155 °C;

All the parameters are the results of compromise among production cost and PCB
quality, always considering the product as a laboratory prototype to test and de-
velop in view of the final device.
Once ultimate the completion of all the needed operations as the soldering of the
remaining components in the laboratory, the final device shows up:

Figure 3.18: PCB real device photo

42

Chapter 4

Micro-controller & firmware

The present chapter is completely dedicated to the discussion and description of the
micro-controller tasks and features and of the implemented firmware. This phase
of the project is, together with the hardware designed, fundamental for the device
working, it represents the "mind" of the whole system. The firmware reported is
totally developed in SEGGER Embedded Studio for ARM, a streamlined integrated
development environment, compilation tools, and libraries for building, testing, and
deploying applications on ARM and Cortex microcontrollers[22].

4.1 Device Routine
The section is dedicated to the first glance to the routine idea for the device
firmware.

The flow chart represents the sequence of the state covered by the processor
during the operation. At the power-on of the board controlled by a mechanical
switch, some configurations and set-up operations are executed, in order to make
the system ready to the use. The configuration concerns the initialization of PWM
and timer drivers, the definitions of interrupts and the BLE set-up. This operation
is done just one time at the begin and every time the system is reset. Once all the
preliminary steps have terminated the micro-controller waits for the start command
in the idle state, where only the interrupt connected to the GPIO linked to the me-
chanical button, can wake up the system. In this condition, the power is preserved.
The Idle state is called every time the user decides, always by means the pressure
of the button, to pause the operation and to lie in stand-by. When the start is
asserted, the firmware proceeds with the main loop. The operation is repeated in
an infinite loop: the electrode cell is driven cyclically by the PWM signal, and the
current response in term of event quasi-digital signal is continuous monitoring and
measurement. During the main state, the device is discoverable and connectable
by the central BLE receiver. Once the set of measure is ready, they are transmitted
through the BLE technology and protocol, this step concludes the loop cycle. The
only way to pause or stop the operations is to push again the same button (in this

43

4 – Micro-controller & firmware

Figure 4.1: Flow Chart of the device firmware routine

case it stands for stop command) or alternatively reset the device.

4.2 Micro-controller
In the chosen of the µController, important aspects have been taken into account.
The main features considered have been the presence of GPIO pin, the PWM (Pulse
Width Modulation) driver, the available counter and overall the possibility for the
BLE protocol communication. All the needed characteristics lie in the nRF52840
SoC.
The nRF52840 built around the 32-bit ARM® Cortex™-M4 CPU is the Nordic
solution, perfectly matched with the specifics required by the project. The chip
features allow for:

• ARM® Cortex®-M4 32-bit processor with FPU, 64 MHz;

• Bluetooth® 5, IEEE 802.15.4-2006, 2.4 GHz transceiver;

• 4x 4-channel pulse width modulator (PWM) unit with EasyDMA;

• 3x real-time counter (RTC);

• Up to 32 GPIO pins with configurable output drive strength; [23]

Where the listed points represent only a small cut of the possibilities, but they are
fundamental for the project.
Once defined all the peculiarity, it is possible to enter in the details of some aspect.

44

4 – Micro-controller & firmware

4.2.1 Pulse Width Modulation for electrochemical cell driven
As first, the channel pulse width modulator (PWM), it enables the generation
of pulse width modulated signals on GPIO. The module implements an up-down
counter up to 4-channels. As said for the device application, just one channel is
required, and it is necessary to drive the electrochemical cell to the established value
of voltage where the response is evaluated. The PWM driver allows a programmable
frequency, a definition of the sequence of PWM array values. To better explain the
functionality, the schematic of the PWM driver is reported

Figure 4.2: PWM module schematic nRF52840 datasheet image [23]

Dedicated Firmware
The function is implemented to configure the main aspects of the PWM driver.

1 void PWM_gen(void) {
2 NRF_PWM0->PSEL.OUT[1] = 26;
3

45

4 – Micro-controller & firmware

4 NRF_PWM0->MODE = 0x00000000;
5 NRF_PWM0->PRESCALER = 0x00000003;
6

7 NRF_PWM0->COUNTERTOP = 100;
8 NRF_PWM0->LOOP = 0x00000000;
9

10 NRF_PWM0->SEQ[0].PTR = (uint32_t)(pwm_seq);
11 NRF_PWM0->SEQ[0].CNT = 1;
12

13 NRF_PWM0->SEQ[0].REFRESH = 0;
14 NRF_PWM0->SEQ[0].ENDDELAY = 0;
15 NRF_PWM0->TASKS_SEQSTART[0] = 1;
16

17 NRF_PWM0->ENABLE = 0x00000001;
18 }

As first the output pin is defined according to the PCB layout. Then the PWM
mode, the prescaler, and the countertop are set. In the example the number three
stands for 23 that turns out in a frequency fp = 16MHz

23 = 2MHz, and the value 100
sets the maximum value for the counter that turns out in the final signal frequency
fsignal = fp

100 = 20kHZ. After that the PWM is configured to not have any loop,
to start with the only sequence(CNT=1) "pwm_seq". At the end the driver is
enabled.
The PWM sequence is then defined in the measure routine where two for-cycle are
implemented to obtain two driven sequences (see appendix B.1 for the complete
code).

4.2.2 Timer counter for event-based signal

The timer counter covers the important role in the measure of the time gap between
two consecutive events when the quasi-digital signal is received according to the
current generated in the RedOx chemical reaction.

46

4 – Micro-controller & firmware

Figure 4.3: Block schematic for timer/counter nRF52840 data sheet image[23]

The counter runs on the high-frequency clock 16MHz mounted on the custom
PCB. The register connection presents the possibility to define the number of the
counter bit, the counter mode, and finally to capture a value of the counter in the
"CC" register. Obviously, the counter can be started and stop and clear according
to the requests.

Dedicated Firmware

1 void timer_setup() {
2 NRF_TIMER1->MODE = TIMER_MODE_MODE_Timer;
3 NRF_TIMER1->TASKS_CLEAR = 1;
4 NRF_TIMER1->BITMODE = TIMER_BITMODE_BITMODE_24Bit;
5 NRF_TIMER1->PRESCALER=0x00000000;
6 NRF_TIMER2->MODE = TIMER_MODE_MODE_Timer;
7 NRF_TIMER2->TASKS_CLEAR = 1;
8 NRF_TIMER2->BITMODE = TIMER_BITMODE_BITMODE_24Bit;
9 NRF_TIMER2->PRESCALER=0x00000000;

10 }

As reported in the code snippet above, the counter is configured on 24 bit, exploited

47

4 – Micro-controller & firmware

in timer mode in order to start counting and stop only when required. The counter
exploited are three, the two sets here represent the first used for the measure of the
event-based signal and the second for the button functionality. The third counter
is set for BLE aims. The timer for the measurement starts and stops its task
according to the interrupt routine called when the high to low transition occurs at
the GPIO pin dedicated to the QD signal.

1 void qde_pin_handler(nrf_drv_gpiote_pin_t pin, ...
nrf_gpiote_polarity_t action) {

2 NRF_TIMER1->TASKS_CAPTURE[0] = 1;
3 result[i] = NRF_TIMER1->CC[0];
4 NRF_TIMER1->TASKS_CLEAR = 1;
5 NRF_TIMER1->TASKS_START = 1;
6 }

As soon as the interrupt is called the timer value is stored, and the new counting
operation started.

4.2.3 Bluetooth Low Energy BLE
The Bluetooth is standard wireless technology for short, low power and low-cost
communication developed by "Bluetooth SIG" [24]. The main difference between a
general Bluetooth and the low energy one (BLE) lies in the less power usage, indeed
it is largest used in an application where the data transfer does not compromise the
battery consumption. For this reason, the BLE results in the best communication
protocol to apply in a portable device.
The definition of communication characters is the first step for the configuration
of the correct connection. Generally speaking in the BLE protocol the roles are
divided into Peripheral-Central, Master-Slave, Client-Server. At the begin, before
the connection hold, one device starts the advertising, and the second scans, the
former works as "Peripheral", the latter is the "Central", once the connection is
stabilized, the Central takes the role of the Master and the Peripheral becomes the
Slave. After the connection is established, the role of Master and Slave are not
anymore restricted, indeed, it is better to introduce the Client and Server roles, re-
spectively the first requires to write/read commands, whereas the second response
with data required. In this phase both the devices could work as Master or Slave,
usually the Server is the Slave and the Client is the master (not always).
Clarified the main protagonists, the chosen applied to the project defines the
portable device designed to work as Peripheral, and Server-Slave during the con-
nection, whereas the receiver as Central. In particular, since the task of the device
is to send continuous data, the Server can transmit data without any request from
the Client whose role is limited to the reception. In the described case the Server
notifies the operation without any "Ack" signal from the client needed.

48

4 – Micro-controller & firmware

Figure 4.4: BLE protocol

Bluetooth Low Energy: Generic Access Profile (GAP)
The GAP is the "Generic Access Profile" and it is the guideline for the possible con-
nection kinds: broadcasting or connecting. In details in case of broadcasting, the
device advertises data packets, and the observer listens to the data sent, without
any connections needed. On the other hand, the Connecting requires the hand-
shake between peripheral and central points. The latter is the configuration chosen
in the device project, in particular, the device can connect to any peer device.
Furthermore, in order to start the advertising, some parameters have to be pro-
vided: the advertising interval and timeout, that respectively describes the distance
between each advertising and the maximum time to advertise; the slave latency,
the minimum and maximum connection interval and the device name.

Bluetooth Low Energy: Generic Attribute Profile (GATT)
The GATT is the "Generic Attribute Profile", describes the way of the two Blue-
tooth devices transfer data based on Services and Characteristics concepts. Before
to describe the GATT, the Attribute protocol (ATT) are introduced. The ATT de-
fines the relation hold between the Server and the Client. The attribute structure
includes:

• Handle: it is a 16-bit unique identifier with value in the range of 1 to ffff
hexadecimal base[25];

• UUID: it is the universally Unique Identifier, 16-BIT in Bluetooth SIG con-
vention or 128-BIT custom[25];

• Value: it holds the data that the server wants to share, it could have variable
length and format based on type[25];

• Permission: it determines what attribute can be read or written or notified
and indicated and the security[25].

49

4 – Micro-controller & firmware

The GATT exploits the ATT distributed in Services sections which group parts
of user data called Characteristics. The GATT can be divided according to the
previously discussed role of Client and Server:

• Client GATT sends the request to the server and waits for its response before
to start reading and writing server’s attribute[26].

• Server GATT receives a request from the client and it responds back with the
information[26].

Dedicated Firmware
The salient parts of the BLE configuration and operation are here examined in-
depth, the full code is postponed to the appendix section B.1.
As first the BLE parameters are defined:

1 #define APP_BLE_CONN_CFG_TAG 1
2 #define DEVICE_NAME "Anesthetic_device"
3 #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN
4 #define APP_BLE_OBSERVER_PRIO 3
5 #define APP_ADV_INTERVAL 64
6 #define APP_ADV_DURATION 18000
7 #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS)
8 #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS)
9 #define SLAVE_LATENCY 0

10 #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(8000, UNIT_10_MS)
11 #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000)

The snippet code reports some define the BLE protocol. The first line indicates
the Softdevice configuration mode (the only available), then the visible name for
the discovery of the device is set up and the UUID type. From line five up to the
eighth are initialized the advertising interval and duration in unit of 0.625 ms; the
advertising minimum and maximum connection interval in unit of 1.25 ms. The
latency defined is zero whereas the last two lines indicate the connection timeout,
the time about the start notification.
Several functions are exploited to initialize the BLE stack, the GAP and GATT
parameters and the advertising and connection parameter. Going beyond these
functions, however, commented in the appendix, the transmission routine is here
discussed:

1 static void nus_data_handler() {
2 uint32_t err_code;
3 if (stop == 0)
4 {
5 char data[12] = {0};
6 for (ind = 0; ind ≤ Ndata; ind++) {

50

4 – Micro-controller & firmware

7 uint16_t length = snprintf(data, sizeof(data), "%d,", ...
result[ind]);

8 do {
9 err_code = ble_nus_data_send(&m_nus, data, &length, ...

m_conn_handle);
10 if ((err_code != NRF_ERROR_INVALID_STATE) &&
11 (err_code != NRF_ERROR_RESOURCES) &&
12 (err_code != NRF_ERROR_NOT_FOUND)) {
13 APP_ERROR_CHECK(err_code);
14 }
15 } while (err_code == NRF_ERROR_RESOURCES);
16 }
17 uint16_t length = snprintf(data, sizeof(data), "\n");
18 do {
19 err_code = ble_nus_data_send(&m_nus, data, &length, ...

m_conn_handle);
20 if ((err_code != NRF_ERROR_INVALID_STATE) &&
21 (err_code != NRF_ERROR_RESOURCES) &&
22 (err_code != NRF_ERROR_NOT_FOUND)) {
23 APP_ERROR_CHECK(err_code);
24 }
25 } while (err_code == NRF_ERROR_RESOURCES);
26 }
27 }

The function called "nus_data_hander" is the one designed for the transmission
of data. After the measuring step, this code is executed, all the stored results
in the namesake variable are converted in the sting format through the C snprintf
function. The integer number is digit by digit inserted in the output data char type
and the results divided by the comma divisor (for Matlab elaboration reasons). The
dimension of data is chosen equal to 12 to guarantee the cover of all the possible
case with an integer 32bit value. At this point, the timer measure is ready to send
thanks to the "ble_nus_data_send", during the transmission some conditions are
verified err_code in order to avoid the stop of the firmware in case of unwanted
cases (line 10th to 15th). Finally, each dispatch is followed by the new line character
to flush the buffer. According to the BLE configuration the maximum length of
attribute data is "BLE_GATT_ATT_MTU", 20 bytes, the master physical layer
data rate is set to the auto-configuration in order to impose always the maximum
supported rate.

4.2.4 Receiver dongle Firmware description
To complete the project, separately to the device design, a receiver system has
been implemented. In order to receive the sent data from the device, the Nordic
nRF52840 Development Kit has been exploited. The system idea is based to es-
tablish a connection with the device through the BLE protocol and then the trans-
mission to the final terminal (computer) of the data by means of USB serial link.

51

4 – Micro-controller & firmware

At this aim, the DK micro-controller has been programmed with the implemented
firmware. The latter includes all the initialization of the BLE as well as done for
the transmission firmware, with the difference that this time the data have to be
received and transmit by serial communication. The dongle receiver simply con-
tinuously scan the BLE device and hold the connection as soon as the device is
discoverable and connectable. In the following the piece of code about the recep-
tion and serial communication is highlighted:

1 static void nus_data_handler(ble_nus_evt_t * p_evt)
2 {
3

4 if (p_evt->type == BLE_NUS_EVT_RX_DATA)
5 {
6 uint32_t err_code;
7

8 printf("Received data from BLE NUS. Writing data on ...
UART.");

9 NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, ...
p_evt->params.rx_data.length);

10

11 for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
12 {
13 do
14 {
15 err_code = ...

app_uart_put(p_evt->params.rx_data.p_data[i]);
16 if ((err_code != NRF_SUCCESS) && (err_code != ...

NRF_ERROR_BUSY))
17 {
18 printf("Failed receiving NUS message. Error ...

0x%x. ", err_code);
19 APP_ERROR_CHECK(err_code);
20 }
21 } while (err_code == NRF_ERROR_BUSY);
22 }
23 if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.
24 length - 1] == '\r')
25 {
26 while (app_uart_put('\n') == NRF_ERROR_BUSY);
27 }
28 }
29

30 }

As observable by the code, this function is called every time a BLE event occurs
and in particular when the receiving of data (if condition line 4). Once the data
arrived it is placed inside the UART buffer (app_uart_out) and then sends to the
terminal computer.

52

Chapter 5

User Interface

In this chapter, the design of the user interface has been described. The aim of the
development of the graphical user interface lies in the tentative to provide to the
final user, not necessarily with specific technological knowledge, (as health worker
nurses and similar) a tool able to manage the main tasks of the final device.
The IDE exploited for the realization has been Microsoft Visual Studio and the
code in which it has been written C#. The IDE and the code have been chosen
in order to realize a classical executable program in Windows, the most common
operative system adopted.

5.1 User interface description
To better introduce the graphic interface, the images in the different situation of
the operation is reported. The complete description is postponed in the appendix
C where the whole code and some comments are added.

Figure 5.1: User interface at the start

53

5 – User Interface

The application, reported in picture, presents on the left in the "Serial box"
some tools to manage the connection with the device, whereas the rest of the in-
terface is dedicated to the device response: in the "Device box" the data collected
were available in text format and primarily in graphical one (white space).
As first, on the right top corner, the "Start connection" button lies. Obviously, at
the click action, it opens the communication with the receiver. The communication
in the specific is serial, as explained in the firmware section, the data send via Blue-
tooth are received by a further device connected by USB to the terminal. To define
the correct data transfer, the Baud rate and the COM to open have to be properly
selected. The two combo-box, respectively, allow for the selection between different
COM port of the computer from one to seven and the definition of the correct
baud-rate, obviously according to the set-up of the serial transmitter. In the case
in which is not possible to start the communication, a window message appears on
the screen, to help the user, reporting the possible mistake as the incorrect port
choice.
The last button before to introduce the "state" indicator of the device, is the "Stop
connection", in figure 5.1, it is disabled because at the begin no-connection is still
hold. The button will remain to deactivate up to the establishment of a working
transmission see figure 5.2.
Finally, in the "Serial box" the state text-box is reported. According to the state
of operation, the possible indication is: no operation (as in figure 5.1), connec-
tion, transmission and stop transmission; each of them highlighted with the proper
colour.
The bottom left corner is dedicated to the management of the data: all the received
values could be exported as text file in a custom folder thanks to the "Export data"
button, moreover it is possible to run through the button "Matlab" the external
Matlab software in order to elaborate and analyze more in deep the data. Ob-
viously, by code modification, whatever external program can be run, according
to the user request. Next to the Matlab button, the clear button allows for the
removal of all the data transmitted by the device.

54

5 – User Interface

Figure 5.2: User interface working condition

In the second figure 5.2, it is the possible focus the attention on the main differ-
ence in the graphic. First of all the device state is changed, from "No Connection"
to "Transmission" (the other case as said are "Stop" and "Connection"). As an-
nounced before, the white space, during the transmission, reports the data trend:
on the vertical axis the "kEvent per second" and on the horizontal one, the cur-
rent expresses in µA. The plot, automatically, updates at each data reception, and
finally on the top, it is possible to note the numerical received value that repre-
sents the time between two events measured (in µs). For the sake of completeness,
other two picture are reported where are shown the other two possible state 5.3,
the "stop" case occurs when the "Stop Connection" button is pushed, whereas the
"Connection" case is a transition between the "No connection" and the first data
received.

55

5 – User Interface

Figure 5.3: User interface working condition

56

Chapter 6

Test and Validation

The last step of the thesis work and thus of the project has seen the testing of
the board. The testing has involved all the main aspects of the device, from the
firmware stability, passing through the electric and power control to end with the
functional features. During the testing and evaluation, the whole system has been
taken in mind.

Figure 6.1: Final design system: In the bottom part there is the custom PCB
connected to the electrode. In the top part, there is the receiver and terminal PC

57

6 – Test and Validation

6.1 Firmware Test
The firmware developed in Segger Embedded studio has been tested as first. Indeed
during the production of the board, the Nordic DK and the Nordic dongle devices
have been exploited. Of course, during the test of the firmware on the develop-
ment kit, the slight differences with the custom board are all taken into account,
the firmware has been evaluated thanks to the light indicator LED on the board
and the oscilloscope, by what all the main signal generated have been investigated.
Moreover, in order to verify the behaviour in the measuring task, the signal genera-
tor has been connected and a square wave, with different duty cycle and frequency,
has been measured, observing the correct time gap between two consecutive high
shapes of the wave acts to simulate the quasi digital signal. In this preliminary
test, the BLE operation has been verified exploiting commercial available Android
app that simulates the terminal and where the correctness of the connection and
data sent has been checked. Once everything has resulted exact, the code firmware
for the receiver has been flashed on the dongle device. And finally, the receiving
of the data has been checked by means the personal computer terminal, verifying
that also this last part of the system works well as expected.
The final step to verify the goodness of the firmware, the code has been adapted
to the board. Through the J-link connector, it has been possible to program the
custom board exploiting the debug connector.

Figure 6.2: J-Link connector to flash and debug the custom PCB

As observable by 6.2, apart for the power reference pin (VDD and GND), the
two main connections are the SWDIO and SWCLK. The serial wire debug (SWD)
is a two pin SWDIO/SWCLK (it has the same JTAG protocol exploited in the DK
programming) bi-directional wire protocol, defined in the ARM Debug interface.

58

6 – Test and Validation

In details, SWCLK is the clock signal to target CPU and the SWDIO is the input-
output bi-directional data pin[27].

6.2 Electrical Test & Functional Test
Once executed all the previous operation to set-up the board from the hardware
components point of view and the firmware configuration, the electrical test has
been performed. The testing acts to control that in predefined points and pin of
the circuit, the voltage expected reference values are correct. At this purpose, the
testing header as described in the previous chapter plays an important role 6.3.

Figure 6.3: PCB header for the testing

As first, the mechanical switch, reported in figure 6.3 on the right, is controlled

59

6 – Test and Validation

to verify the ON-OFF operation. Successively the output-pin of the voltage reg-
ulator is tested with various input voltage level, in order to guarantee the correct
voltage reference to the whole afterwards circuit for the safeness of the compo-
nents. Then the header pin highlighted in the figure is exploited to control as
first the known voltage value V DD/2 in a known circuit point. Furthermore, the
voltage value provided by the voltage regulator is investigated in other points of
the board as vias, components pin and debugger header where the ground and 3.3
V have to be stable. Once obtained positive feedback from the electrical point of
view, the attention is moved to the verification of the two main signals. As notable
from the 6.3 two pins are dedicated to the Pulse Width Modulation, the output
of the micro-controller and Quasi-Digital events input of this latter. To check the
PWM, different situations are tested just changing the firmware sequence of PWM
cycle. As an example some cases measured with the oscilloscope are reported:

Figure 6.4: Oscilloscope image for various PWM duty-cycle

In all the cases the frequency generated and the expected duty-cycle are mea-
sured on the oscilloscope to obtain the double comparison and check. Strictly linked
to the duty-cycle is the further pin "OUT-filter". This point of the circuit represents
the output of the filter and the voltage ramp that drives the electrode cell. The

60

6 – Test and Validation

staircase output is verified by the oscilloscope and a part of the signal zoomed to
observe the stair behaviour:

Figure 6.5: Output filter signal: at each duty-cycle value corresponds to a voltage
reference level holds for few milliseconds. The staircase is obtained observing the
signal with large time scale

At this point, the final verification about the driven electrode circuit is obtained
exploiting two-channel of the oscilloscope, one connected to the WE output pin of
the board for the reference value at V DD/2 and the other linked to the CE and
RE shorted pins. The results as expected show a triangular curve that crosses
the reference WE voltage value. The point where the two value overlap stands for
the zero for the Cyclic Voltammetry graphic. In the verification an unexpected
constant offset has been observed, however this not represents a problem because
the important point is the difference between the voltage triangular value and
the reference one and not the former absolute value, the offset implicates just a
different selection in the PWM sequence of duty-cycle, easily configurable in the
firmware, the aforementioned consideration are verifiable in the figure below 6.6
The last signal to verify consist in the micro-controller input quasi-digital event-
based wave. The final shape, as described, is the front-end circuit result of the
electrode current response. To check the correct behaviour and time-evaluation by
the micro-controller a comparison among the time measured on the oscilloscope and
the one reported in the final BLE data of the processor are done. In all the cases

61

6 – Test and Validation

Figure 6.6: Driven electrode voltage signals. The yellow line represents the reference
voltage value at WE. The blue line changes with respect to the duty-cycle sequence
in the PWM generated. The oscilloscope picture is obtained with a large time scale

positive feedback has demonstrated the goodness of the system measuring. In the
following (figure 6.7) the shape of the quasi-digital wave is reported in some example
cases: To conclude the testing section, some test measurements are performed
before to move on the drug’s evaluation. The method exploited in this verification
has consisted in the replacing of the electrode with a simple resistor model. In other
words, in place of the sensor, it is connected to a resistor and the current response
evaluated at each step of the staircase voltage. With this approach, knowing the
value of the applied voltage and the resistance it has been possible to obtain the
time-current relation.

62

6 – Test and Validation

Figure 6.7: Four different cases of the quasi digital signal. The time gap between
two events is proportional to the input current

6.3 Final Result
To conclude the thesis project the data obtained from the measure are summarized
in this chapter. First of all, a brief table is reported to focus the attention on the
electric and features of the device.

Min Max
Voltage supply 3.3 V 7 V
Idle Current 9 mA 13 mA
On Current 19 mA 24 mA
Idle Power 29.7 mW 42.9 mW
On Power 62.7 mW 79.2 mW
BLE RSSI -95 dBm @ 18 m -51 dBm @ 0 m

Table 6.1: Electric and communication features of the device

As disclosed, the first set of validation measures are collected exploiting a re-
sistor. In this phase by means of Matlab support, the fitting of the data and the
circuital model are computed. The measurements are done exploiting the different
value of resistance and the final preliminary results reported in the following Mat-
lab plot (figure 6.8). From figure 6.8 is observable as for the different value of
resistance the relation between time-event and current measured remains more or

63

6 – Test and Validation

Figure 6.8: Fitting data measured with the resistor model at different values and
circuital model curve

less constant. The data in this data are elaborate in order to obtain a fitting model
to link in any case the time and the current.
The final experimental data and measuring are obtained exploiting one of the most
common anaesthetic substance: the paracetamol. This last validation step of the
device is dedicated to the direct measure of drug concentration in a solution. For
the experiment, four different solutions are prepared with respectively no presence
of paracetamol, 100 µM, 200 µM and 300 µM of paracetamol. These tests are de-
signed to cover the therapeutic range of paracetamol and prove the capability of
the system [28]. For all the cases several measurements are done. As a sensor, it is
connected to the Screen-printed electrodes based on carbon, gold, platinum, silver
or carbon nanotubes inks[29]. This kind of electrode, largest exploited for electro-
chemical analysis, presents 3.4 x 1.0 x 0.05 cm dimensions and it is mounted on the
board employing adapter connector. The set-up of the firmware has consisted in
the generation of a PWM sequence that guarantees the voltage drop between the
CE (in short circuit with RE) and WE from, more or less, 0 to - 1 V and return
up to 0.2 V. The whole sequence duration is configured in ten seconds at frequency
of 16 kHz with 313 equidistant points in order to increase the duty-cycle of the
0.2% per time, to obtain an accurate curve. The described curve takes in literature
the name of voltammogram and is the final result of the cycle voltammetry. The
data collected and elaborated in Matlab have shown the expected behaviour. As
first the immediate time quantity returned by the processor measurement is plotted
versus the PWM duty-cycle. The exploiting the previous fitting the time between
two successive events is converted in current physical quantity.

64

6 – Test and Validation

Figure 6.9: ELectrode DropSens DRP-110, image from [29]. In the picture are
indicated the position of the three electrodes.

Figure 6.10: Matlab data elaboration: events rate vs. PWM duty-cycle

In the picture is possible to observe for each curve two peaks. One is the
Reduction response and the other of the oxidation, the RedOx chemical reaction
indeed is at the base of electron flow in the solution turns out in the current signal.
The peaks show different maximum value according to the concentration, and this is
the proof of the goodness of the customs system: investigating the peak response it
is possible in conclusion to extrapolate all the information needed for the continuous
monitoring of the anaesthetic drugs.

65

6 – Test and Validation

Figure 6.11: Matlab data elaboration: Voltammogram with current response vs.
driven electrode voltage.

66

Chapter 7

Conclusion & Future works

The obtained results concern the evaluation of the paracetamol concentration and
the linked voltammogram testify to the device’s correct operation and function.
The project mirrored the indications analyzed and studied in the state of art about
the continuous monitoring of quantity, like drugs, for biomedical application. More-
over, the design of custom board provides the possibility to obtain a compact and
low-cost dedicated device. The added of the on-board microcontroller permits to
integrate into a unique board solution the front-end circuit acquisition and the
driven electrochemical signal with the "mind controller". The decision in the not
employing of AD/DA converters have allowed the reduction of power consumption
fostering quasi digital solution, as the event-based signal and the pulse width mod-
ulation to directly interact with the processor with a square wave. The exploiting of
the Bluetooth Low Energy 5 protocol to transmit the collected data constitutes an
innovative solution being a communication low power solution and wireless allowing
the application of the device with certain range respect to the terminal computer.
Therefore, the latter solution is not only good in terms of power but also in terms of
effective employment of the device making it portable and independent from wire
constraints. The flexible firmware and design make the device easily usable for
future development but also and overall ready for the effective application thanks
also to the dedicated graphic user interface comfortable for the development phase
but overall for the final actual user.
Possible future developments of the device consist of the integration of the board
with the electrode sensor to obtain a more compact solution including the design of
a comfortable case to protect also the electronic circuit. Furthermore, to completely
characterized and validate the board project, the laboratory test with other kinds
of opioids and drugs should be performed in other to guarantee an across-the-board
application of the device.

67

Appendix A

Bill of material of PCB

Components Producer Code Components Producer Code
C1 GRM1555C1H120GA01D C2 GRM155C81C105KE11J
C3 GRM155R71E473KA88D L1 HK100515NJ-T
C5 GRM1555C1H120GA01D L2 LBMF1608T100K
C6 GCM155R71A104KA55D L3 LQP03TN3N9B02D
C7 GCM155R71A104KA55D LVR1 LK10051R5K-TV
C8 GRM155C81C105KE11J P1 FTSH-105-01-L-DV-K-TR
C9 GRM1555C1H101JA01D P2 FTSH-105-01-L-DV-K-TR
C10 GRM1555C1H120GA01D ROP, ROQ CRCW06030000Z0EAC
C12 GRM1555C1H120GA01D R1 CRCW0603100RFKEAC
C13 GJM0335C1H1R0WB01D R2 CRCW0603100RFKEAC
C14 GJM0335C1H1R0WB01D R3 RC0201FR-070RL
C16 GJM0335C1E1R5CB01D R6 CRCW060310K0FKEAC
C17 GRM1555C1H821JA01D RD1 CRCW0603470KFKEAC
C18 GRM155R61A475MEAAD RF1, RF2, RF3, RF5, RF6, RD2 CRCW0603100KFKEAC
C21 GRM155R61A475MEAAD RF4 CRCW060322K0JNEAC
C22 GCM155R71A104KA55D RF5 CRCW040222K0FKEDC
C23 GCM155R71A104KA55D RPD CRCW06031K00FKEAC
C24 GCM155R71A104KA55D RR1 RCS06036K80FKEA
CD1 GRM155R71E473KA88D RR2 CRCW060347K0FKEAC
CF1 GRM155C81C105KE11J RR3 CRCW040210K0FKEDC
CF2 GRM155C81C105KE11J RR4 CRCW060310K0FKEAC
CF3 GRM155C81C105KE11J S1 SS312SAH4-R
CR1 GCM1555C1H102JA16J SW1 PTS840 GK SMTR LFS

CRR1, CD2 GCM155R71H103KA55J SW2 PTS810 SJK 250 SMTR LFS
CVR1, CVR3, CVR4 ZRB15XC80J106ME05D T1 2N7002DW-TP

CVR2 GCG155R71C104KA01D U1 LTC6085CGN#PBF
D1, D2 SML-P12U2TT86R U2 ADA4807-4ARUZ-R7
IC1 TPS63031DSKT U3 NRF52840-QIAA-R

J1, J2 503763-0391 X1 XRCGB32M000F1H01R0
J1, J2 503764-0301 X2 LFXTAL062558Reel

Table A.1: Bill of materiale

68

Appendix B

Firmware code

B.1 Device firmware

1 #include "app_timer.h"
2 #include "app_uart.h"
3 #include "app_util_platform.h"
4 #include "ble_advdata.h"
5 #include "ble_advertising.h"
6 #include "ble_conn_params.h"
7 #include "ble_hci.h"
8 #include "ble_nus.h"
9 #include "bsp_btn_ble.h"

10 #include "nordic_common.h"
11 #include "nrf.h"
12 #include "nrf_ble_gatt.h"
13 #include "nrf_ble_qwr.h"
14 #include "nrf_pwr_mgmt.h"
15 #include "nrf_sdh.h"
16 #include "nrf_sdh_ble.h"
17 #include "nrf_sdh_soc.h"
18 #include <stdint.h>
19 #include <stdio.h>
20 #include <string.h>
21 #if defined(UART_PRESENT)
22 #include "nrf_uart.h"
23 #endif
24 #if defined(UARTE_PRESENT)
25 #include "nrf_uarte.h"
26 #endif
27 #include "nrf_log.h"
28 #include "nrf_log_ctrl.h"
29 #include "nrf_log_default_backends.h"
30 #define APP_BLE_CONN_CFG_TAG 1 // ...

A tag identifying the SoftDevice BLE configuration

69

B – Firmware code

31 #define DEVICE_NAME "Anhestetic_device" // ...
Name of device. Will be included in the advertising data.

32 #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN // ...
UUID type for the Nordic UART Service (vendor specific).

33 #define APP_BLE_OBSERVER_PRIO 3 // ...
Application's BLE observer priority. You shouldn't need to ...
modify this value.

34 #define APP_ADV_INTERVAL 64 // ...
The advertising interval (in units of 0.625 ms. This value ...
corresponds to 40 ms).

35 #define APP_ADV_DURATION 18000 // ...
The advertising duration (180 seconds) in units of 10 ...
milliseconds.

36 #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) // ...
Minimum acceptable connection interval (20 ms), Connection ...
interval uses 1.25 ms units.

37 #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) // ...
Maximum acceptable connection interval (75 ms), Connection ...
interval uses 1.25 ms units.

38 #define SLAVE_LATENCY 0 // ...
Slave latency. */

39 #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(8000, UNIT_10_MS) // ...
Connection supervisory timeout (4 seconds), Supervision ...
Timeout uses 10 ms units.

40 #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) // ...
Time from initiating event (connect or start of notification).

41 #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) // ...
Time between each call to sd_ble_gap_conn_param_update after ...
the first call (30 seconds).

42 #define MAX_CONN_PARAMS_UPDATE_COUNT 3 // ...
Number of attempts before giving up the connection parameter ...
negotiation.

43 #define DEAD_BEEF 0xDEADBEEF // ...
Value used as error code on stack dump, can be used to ...
identify stack location on stack unwind.

44 BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); ...
// BLE NUS service instance.

45 NRF_BLE_GATT_DEF(m_gatt); ...
//GATT module ...

instance.
46 NRF_BLE_QWR_DEF(m_qwr); ...

// Context ...
for the Queued Write module.

47 BLE_ADVERTISING_DEF(m_advertising); ...
// Advertising module ...

instance.
48 static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; ...

// Handle of the current connection.

70

B – Firmware code

49 static uint16_t m_ble_nus_max_data_len = ...
BLE_GATT_ATT_MTU_DEFAULT - 3; // Maximum length of data (in ...
bytes) that can be transmitted to the peer by the Nordic ...
UART service module.

50 static ble_uuid_t m_adv_uuids[] = ...
//Universally unique ...

service identifier.
51 {
52 {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}};
53

54 #include "app_error.h"
55 #include "app_util_platform.h"
56 #include "boards.h"
57 #include "bsp.h"
58 #include "nrf.h"
59 #include "nrf_delay.h"
60 #include "nrf_drv_clock.h"
61 #include "nrf_drv_gpiote.h"
62 #include "nrf_drv_pwm.h"
63 #include <stdio.h>
64 #include <string.h>
65 #define QDE_IN NRF_GPIO_PIN_MAP(1, 9) // QD signal input
66 #define button_IN NRF_GPIO_PIN_MAP(1, 15) // Button_in
67 #define led_1 10 // LED1
68 #define led_2 9 // LED2
69 #define idle_front_end 12 // Move in sleep ...

the analog circuit
70 uint16_t pwm_seq[1] = {71}; // Duty Cycle ...

start point
71 int i;
72 int ind;
73 int result[163] = {0}; // Output sensor ...

measurement
74 volatile bool stop = 1;
75 volatile bool flag = 0;
76 volatile bool wait;
77 volatile bool flag_connection = 0;
78

79 // Idle state
80 void idle_state() {
81 nrf_gpio_pin_clear(led_1);
82 nrf_gpio_pin_clear(led_2);
83

84 flag = 0;
85 stop = 0;
86 wait = 0;
87 if (flag_connection == 1) {
88 sd_ble_gap_disconnect(m_conn_handle, ...

BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
89 sd_ble_gap_adv_stop(m_conn_handle);

71

B – Firmware code

90 nrf_drv_gpiote_in_event_disable(QDE_IN);
91 nrf_drv_gpiote_in_event_enable(button_IN, true);
92 nrf_gpio_pin_set(idle_front_end);
93

94 int contatore = 0;
95 do {
96

97 __WFI();
98 } while (wait == 0);
99 } else {

100 __disable_irq();
101 uint32_t icer0;
102 uint32_t icer1;
103 icer0 = NVIC->ICER[0];
104 icer1 = NVIC->ICER[1];
105 NVIC->ICER[0] = 0xffffffff;
106 NVIC->ICER[1] = 0xffffffff;
107 NVIC->ICPR[0] = 0xffffffff;
108 NVIC->ICPR[1] = 0xffffffff;
109 NVIC->ISER[0] = 0x00000040;
110 nrf_drv_gpiote_in_event_disable(QDE_IN);
111 nrf_drv_gpiote_in_event_enable(button_IN, true);
112 nrf_gpio_pin_set(idle_front_end);
113 __enable_irq();
114 __WFI();
115 __disable_irq();
116 NVIC->ISER[0] = icer0;
117 NVIC->ISER[1] = icer1;
118 NVIC->ICPR[0] = 0xffffffff;
119 NVIC->ICPR[1] = 0xffffffff;
120 __enable_irq();
121 }
122 }
123 // Interrupt routine
124 void qde_pin_handler(nrf_drv_gpiote_pin_t pin, ...

nrf_gpiote_polarity_t action) {
125 NRF_TIMER1->TASKS_CAPTURE[0] = 1;
126 result[i] = NRF_TIMER1->CC[0];
127 NRF_TIMER1->TASKS_CLEAR = 1;
128 NRF_TIMER1->TASKS_START = 1;
129 }
130 static void advertising_stop(void) {
131 uint32_t err_code = ble_advertising_start(&m_advertising, ...

BLE_ADV_MODE_IDLE);
132 APP_ERROR_CHECK(err_code);
133 }
134 void reset() {
135 NRF_TIMER2->TASKS_CLEAR = 1;
136 NRF_TIMER2->TASKS_START = 1;
137 while (nrf_gpio_pin_read(button_IN) ≤ 0.5)

72

B – Firmware code

138 ;
139 NRF_TIMER2->TASKS_STOP = 1;
140 NRF_TIMER2->TASKS_CAPTURE[0] = 1;
141 int reset_cond = NRF_TIMER2->CC[0];
142 if (reset_cond ≥ 3000000) {
143 flag_connection = 0;
144 stop = 1;
145 uint32_t err_code = sd_power_system_off();
146 APP_ERROR_CHECK(err_code);
147 }
148 }
149 void button_in_pin_handler(nrf_drv_gpiote_pin_t pin, ...

nrf_gpiote_polarity_t action) {
150 wait = 1;
151 if (flag == 1) {
152 stop = 1;
153 }
154 reset();
155 }
156

157 void timer_setup() {
158 NRF_TIMER1->MODE = TIMER_MODE_MODE_Timer;
159 NRF_TIMER1->TASKS_CLEAR = 1;
160 NRF_TIMER1->BITMODE = TIMER_BITMODE_BITMODE_24Bit;
161 NRF_TIMER2->MODE = TIMER_MODE_MODE_Timer;
162 NRF_TIMER2->TASKS_CLEAR = 1;
163 NRF_TIMER2->BITMODE = TIMER_BITMODE_BITMODE_24Bit;
164 }
165

166 // interrupt initialization
167 static void interrupt_init(void) {
168 ret_code_t err_code;
169 err_code = nrf_drv_gpiote_init();
170 APP_ERROR_CHECK(err_code);
171 nrf_drv_gpiote_in_config_t in_config = ...

GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
172 in_config.pull = NRF_GPIO_PIN_PULLUP;
173 err_code = nrf_drv_gpiote_in_init(QDE_IN, &in_config, ...

qde_pin_handler);
174 APP_ERROR_CHECK(err_code);
175 nrf_drv_gpiote_in_event_enable(QDE_IN, true);
176 }
177

178 // wake-up init
179 static void wake_up_init(void) {
180 ret_code_t err_code;
181

182 //Configure sense input pin to enable wakeup and interrupt on ...
button press.

73

B – Firmware code

183 nrf_drv_gpiote_in_config_t in_config2 = ...
GPIOTE_CONFIG_IN_SENSE_HITOLO(false); //Configure to ...
generate interrupt and wakeup on pin signal low.

184 in_config2.pull = NRF_GPIO_PIN_PULLUP; ...
//Configure ...

pullup for input pin to prevent it from floting.
185 err_code = nrf_drv_gpiote_in_init(button_IN, &in_config2, ...

button_in_pin_handler); //Initialize the pin with ...
interrupt handler in_pin_handler

186 APP_ERROR_CHECK(err_code); ...
...

//Check potential error
187 nrf_drv_gpiote_in_event_enable(button_IN, true); ...

//Enable event and ...
interrupt for the wakeup pin

188 }
189

190 // PWM initilization
191 void PWM_gen(void) {
192 NRF_PWM0->PSEL.OUT[1] = 26; // PWM out pin
193

194 NRF_PWM0->ENABLE = 0x00000001;
195 NRF_PWM0->MODE = 0x00000000;
196 NRF_PWM0->PRESCALER = 0x00000003; // 16MHz/2^3=2Mhz
197

198 NRF_PWM0->COUNTERTOP = 100; // PWM_Freq = 20kHz
199 NRF_PWM0->LOOP = 0x00000000;
200

201 NRF_PWM0->SEQ[0].PTR = (uint32_t)(pwm_seq);
202 NRF_PWM0->SEQ[0].CNT = 1;
203

204 NRF_PWM0->SEQ[0].REFRESH = 0;
205 NRF_PWM0->SEQ[0].ENDDELAY = 0;
206 NRF_PWM0->TASKS_SEQSTART[0] = 1;
207

208 NRF_PWM0->ENABLE = 0x00000001;
209 }
210

211 void meas_state() {
212

213 nrf_drv_gpiote_in_event_enable(QDE_IN, true); // enable QDE ...
interrupt

214 // Start DC ...
variation ...
for PWM from ...
10% to 80% ...
of period

215 pwm_seq[0]=71;
216 for (i = 0; i ≤ 60; i++) // up Duty cycle
217 {

74

B – Firmware code

218 pwm_seq[0] -=1; // 1% at time
219 NRF_PWM0->TASKS_SEQSTART[0] = 1;
220 nrf_delay_ms(50); // 1000 period ...

before switch Duty cycle
221

222 }
223 for (i = 61; i ≤ 120; i++) // down Duty cycle
224 {
225 pwm_seq[0] +=1; // 1% at time
226 NRF_PWM0->TASKS_SEQSTART[0] = 1;
227 nrf_delay_ms(50); // 1000 period ...

before switch Duty cycle
228 nrf_gpio_pin_toggle(led_1);
229 }
230 nrf_drv_gpiote_in_event_disable(QDE_IN); // disable QDE ...

interrupt
231 }
232

233

234 // This function will be called in case of an assert in the ...
SoftDevice.

235

236

237 void assert_nrf_callback(uint16_t line_num, const uint8_t ...

*p_file_name) {
238 app_error_handler(DEAD_BEEF, line_num, p_file_name);
239 }
240

241 //Initializing the timer module.
242

243 static void timers_init(void) {
244 ret_code_t err_code = app_timer_init();
245 APP_ERROR_CHECK(err_code);
246 }
247

248 //Function for the GAP initialization.
249 //This function will set up all the necessary GAP (Generic ...

Access Profile) parameters of
250 // the device. It also sets the permissions and appearance.
251

252 static void gap_params_init(void) {
253 uint32_t err_code;
254 ble_gap_conn_params_t gap_conn_params;
255 ble_gap_conn_sec_mode_t sec_mode; // security mode 0
256

257 BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
258

259 err_code = sd_ble_gap_device_name_set(&sec_mode, // set del nome
260 (const uint8_t *)DEVICE_NAME,
261 strlen(DEVICE_NAME));

75

B – Firmware code

262 APP_ERROR_CHECK(err_code);
263

264 memset(&gap_conn_params, 0, sizeof(gap_conn_params));
265

266 gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; // ...
intervalli di connessione

267 gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
268 gap_conn_params.slave_latency = SLAVE_LATENCY;
269 gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;
270

271 err_code = sd_ble_gap_ppcp_set(&gap_conn_params); //set the ...
packet 8bytes

272 APP_ERROR_CHECK(err_code);
273 }
274

275 //Function for handling Queued Write Module errors.
276 // A pointer to this function will be passed to each service ...

which may need to inform the
277 // application about an error.
278

279

280 static void nrf_qwr_error_handler(uint32_t nrf_error) {
281 APP_ERROR_HANDLER(nrf_error);
282 }
283

284 //Function for handling the data from the Nordic UART Service.
285 //This function will process the data received from the Nordic ...

UART BLE Service and send
286 // the sensor result
287

288 static void tx_ready_handler(ble_nus_evt_t *p_ble_evt) {
289 if (p_ble_evt->type == BLE_NUS_EVT_TX_RDY) {
290 }
291 }
292

293 static void nus_data_handler() {
294 uint32_t err_code;
295 if (stop == 0)
296

297 {
298

299 char data[120] = {0};
300 for (ind = 0; ind ≤ 120; ind++) {
301 uint16_t length = snprintf(data, sizeof(data), "%d,", ...

result[ind]);//
302 do {
303 err_code = ble_nus_data_send(&m_nus, data, &length, ...

m_conn_handle);
304 if ((err_code != NRF_ERROR_INVALID_STATE) &&
305 (err_code != NRF_ERROR_RESOURCES) &&

76

B – Firmware code

306 (err_code != NRF_ERROR_NOT_FOUND)) {
307 APP_ERROR_CHECK(err_code);
308 }
309 } while (err_code == NRF_ERROR_RESOURCES);
310 }
311 uint16_t length = snprintf(data, sizeof(data), "\n");
312 do {
313 err_code = ble_nus_data_send(&m_nus, data, &length, ...

m_conn_handle);
314 if ((err_code != NRF_ERROR_INVALID_STATE) &&
315 (err_code != NRF_ERROR_RESOURCES) &&
316 (err_code != NRF_ERROR_NOT_FOUND)) {
317 APP_ERROR_CHECK(err_code);
318 }
319 } while (err_code == NRF_ERROR_RESOURCES);
320 }
321 }
322

323 //Function for initializing services that will be used by the ...
application.

324

325 static void services_init(void) {
326 uint32_t err_code;
327 ble_nus_init_t nus_init;
328 nrf_ble_qwr_init_t qwr_init = {0};
329

330 // Initialize Queued Write Module.
331 qwr_init.error_handler = nrf_qwr_error_handler;
332

333 err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init);
334 APP_ERROR_CHECK(err_code);
335

336 // Initialize NUS.
337 memset(&nus_init, 0, sizeof(nus_init));
338

339 //nus_init.data_handler = nus_data_handler;
340 nus_init.data_handler = tx_ready_handler;
341 err_code = ble_nus_init(&m_nus, &nus_init);
342 APP_ERROR_CHECK(err_code);
343 }
344

345 //Function for handling an event from the Connection Parameters ...
Module.

346

347 static void on_conn_params_evt(ble_conn_params_evt_t *p_evt) {
348 uint32_t err_code;
349

350 if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) {
351 err_code = sd_ble_gap_disconnect(m_conn_handle, ...

BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);

77

B – Firmware code

352 APP_ERROR_CHECK(err_code);
353 }
354 }
355

356 //Function for handling errors from the Connection Parameters ...
module.

357

358

359 static void conn_params_error_handler(uint32_t nrf_error) {
360 APP_ERROR_HANDLER(nrf_error);
361 }
362

363 //Function for initializing the Connection Parameters module.
364 static void conn_params_init(void) {
365 uint32_t err_code;
366 ble_conn_params_init_t cp_init;
367

368 memset(&cp_init, 0, sizeof(cp_init));
369

370 cp_init.p_conn_params = NULL;
371 cp_init.first_conn_params_update_delay = ...

FIRST_CONN_PARAMS_UPDATE_DELAY; // Time from initiating ...
event (connect or start of notification).

372 cp_init.next_conn_params_update_delay = ...
NEXT_CONN_PARAMS_UPDATE_DELAY;

373 cp_init.max_conn_params_update_count = ...
MAX_CONN_PARAMS_UPDATE_COUNT;

374 cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
375 cp_init.disconnect_on_fail = false;
376 cp_init.evt_handler = on_conn_params_evt;
377 cp_init.error_handler = conn_params_error_handler;
378 err_code = ble_conn_params_init(&cp_init);
379 APP_ERROR_CHECK(err_code);
380 }
381

382 //Function for putting the chip into sleep mode.
383 //This function will not return.
384

385 static void sleep_mode_enter(void) {
386 uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE);
387 APP_ERROR_CHECK(err_code);
388

389 // Prepare wakeup buttons.
390 err_code = bsp_btn_ble_sleep_mode_prepare();
391 APP_ERROR_CHECK(err_code);
392

393 //Go to system-off mode (this function will not return; ...
wakeup will cause a reset).

394 //nrf_gpio_cfg_sense_input(button_IN, NRF_GPIO_PIN_PULLUP, ...
NRF_GPIO_PIN_SENSE_HIGH);

78

B – Firmware code

395 err_code = sd_power_system_off();
396 APP_ERROR_CHECK(err_code);
397 }
398

399 //Function for handling advertising events.
400

401 static void on_adv_evt(ble_adv_evt_t ble_adv_evt) {
402 uint32_t err_code;
403

404 switch (ble_adv_evt) {
405 case BLE_ADV_EVT_FAST:
406 err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
407 APP_ERROR_CHECK(err_code);
408 break;
409 case BLE_ADV_EVT_IDLE:
410 sleep_mode_enter();
411 break;
412 default:
413 break;
414 }
415 }
416

417 // Function for handling BLE events.
418

419 static void ble_evt_handler(ble_evt_t const *p_ble_evt, void ...

*p_context) {
420 uint32_t err_code;
421

422 switch (p_ble_evt->header.evt_id) {
423 case BLE_GAP_EVT_CONNECTED:
424 NRF_LOG_INFO("Connected");
425 err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
426 APP_ERROR_CHECK(err_code);
427 m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
428 err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, ...

m_conn_handle);
429 APP_ERROR_CHECK(err_code);
430 break;
431

432 case BLE_GAP_EVT_DISCONNECTED:
433 NRF_LOG_INFO("Disconnected");
434 // LED indication will be changed when advertising starts.
435 m_conn_handle = BLE_CONN_HANDLE_INVALID;
436 break;
437 // PHY = Physical layer
438 case BLE_GAP_EVT_PHY_UPDATE_REQUEST: {
439 NRF_LOG_DEBUG("PHY update request.");
440 ble_gap_phys_t const phys =
441 {
442 .rx_phys = BLE_GAP_PHY_AUTO,

79

B – Firmware code

443 .tx_phys = BLE_GAP_PHY_AUTO,
444 };
445 err_code = ...

sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, ...
&phys);

446 APP_ERROR_CHECK(err_code);
447 } break;
448

449 case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
450 err_code = sd_ble_gap_sec_params_reply(m_conn_handle, ...

BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
451 APP_ERROR_CHECK(err_code);
452 break;
453

454 case BLE_GATTS_EVT_SYS_ATTR_MISSING:
455 // No system attributes have been stored.
456 err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, ...

0, 0);
457 APP_ERROR_CHECK(err_code);
458 break;
459

460 case BLE_GATTC_EVT_TIMEOUT:
461 // Disconnect on GATT Client timeout event.
462 err_code = ...

sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
463 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
464 APP_ERROR_CHECK(err_code);
465 break;
466

467 case BLE_GATTS_EVT_TIMEOUT:
468 // Disconnect on GATT Server timeout event.
469 err_code = ...

sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
470 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
471 APP_ERROR_CHECK(err_code);
472 break;
473

474 default:
475 // No implementation needed.
476 break;
477 }
478 }
479

480 //Function for the SoftDevice initialization.
481 //This function initializes the SoftDevice and the BLE event ...

interrupt.
482

483 static void ble_stack_init(void) {
484 ret_code_t err_code;
485

80

B – Firmware code

486 err_code = nrf_sdh_enable_request();
487 APP_ERROR_CHECK(err_code);
488

489 // Configure the BLE stack using the default settings.
490 // Fetch the start address of the application RAM.
491 uint32_t ram_start = 0;
492 err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, ...

&ram_start);
493 APP_ERROR_CHECK(err_code);
494

495 // Enable BLE stack.
496 err_code = nrf_sdh_ble_enable(&ram_start);
497 APP_ERROR_CHECK(err_code);
498

499 // Register a handler for BLE events.
500 NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ...

ble_evt_handler, NULL);
501 }
502

503 //Module for negotiating and keeping track of GATT connection ...
parameters and updating the data length

504 //Function for handling events from the GATT library.
505 void gatt_evt_handler(nrf_ble_gatt_t *p_gatt, ...

nrf_ble_gatt_evt_t const *p_evt) {
506 if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id ...

== NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) {
507 m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - ...

OPCODE_LENGTH - HANDLE_LENGTH; // MAX transmission unit
508 NRF_LOG_INFO("Data len is set to 0x%X(%d)", ...

m_ble_nus_max_data_len, m_ble_nus_max_data_len);
509 }
510 NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x ...

peripheral 0x%x",
511 p_gatt->att_mtu_desired_central,
512 p_gatt->att_mtu_desired_periph);
513 }
514

515 //Function for initializing the GATT library.
516 void gatt_init(void) {
517 ret_code_t err_code;
518

519 err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
520 APP_ERROR_CHECK(err_code);
521

522 err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, ...
NRF_SDH_BLE_GATT_MAX_MTU_SIZE);

523 APP_ERROR_CHECK(err_code);
524 }
525

526 //Function for initializing the Advertising functionality.

81

B – Firmware code

527

528 static void advertising_init(void) {
529 uint32_t err_code;
530 ble_advertising_init_t init;
531

532 memset(&init, 0, sizeof(init));
533

534 init.advdata.name_type = BLE_ADVDATA_FULL_NAME;
535 init.advdata.include_appearance = false;
536 init.advdata.flags = ...

BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; // limited ...
discoverable mode for certain time

537 //Unique Identifier
538 init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / ...

sizeof(m_adv_uuids[0]);
539 init.srdata.uuids_complete.p_uuids = m_adv_uuids;
540

541 init.config.ble_adv_fast_enabled = true;
542 init.config.ble_adv_fast_interval = APP_ADV_INTERVAL;
543 init.config.ble_adv_fast_timeout = APP_ADV_DURATION;
544 init.evt_handler = on_adv_evt;
545

546 err_code = ble_advertising_init(&m_advertising, &init);
547 APP_ERROR_CHECK(err_code);
548

549 ble_advertising_conn_cfg_tag_set(&m_advertising, ...
APP_BLE_CONN_CFG_TAG);

550 }
551

552 //Function for initializing the nrf log module.
553

554 static void log_init(void) {
555 ret_code_t err_code = NRF_LOG_INIT(NULL);
556 APP_ERROR_CHECK(err_code);
557

558 NRF_LOG_DEFAULT_BACKENDS_INIT();
559 }
560

561 //brief Function for starting advertising.
562

563 static void advertising_start(void) {
564 uint32_t err_code = ble_advertising_start(&m_advertising, ...

BLE_ADV_MODE_FAST);
565 APP_ERROR_CHECK(err_code);
566 }
567

568 int main(void) {
569 nrf_gpio_cfg_output(led_1);
570 nrf_gpio_cfg_output(led_2);
571

82

B – Firmware code

572 nrf_gpio_pin_set(led_1);
573 nrf_gpio_pin_set(led_2);
574 NRF_CLOCK->TASKS_HFCLKSTART = 1;
575 // Wait for clock to start
576 while (NRF_CLOCK->EVENTS_HFCLKSTARTED == 0)
577 ;
578 NRF_CLOCK->TASKS_LFCLKSTART = 1;
579 // Wait for clock to start
580 while (NRF_CLOCK->EVENTS_LFCLKSTARTED == 0)
581 ;
582 nrf_gpio_cfg_output(idle_front_end);
583 // Initialize BLE connection
584

585 log_init();
586 timers_init();
587 ble_stack_init();
588 gap_params_init();
589 gatt_init();
590 services_init();
591 advertising_init();
592 conn_params_init();
593 // Call timer set
594

595

596 timer_setup();
597 // Call interrupt set
598 interrupt_init();
599 wake_up_init();
600 // Call PWM set
601 PWM_gen();
602 stop = 1; // idle condition
603 for (;;) {
604 if (stop == 1) {
605 idle_state();
606 nrf_gpio_pin_clear(idle_front_end);
607 stop = 0;
608 if (flag_connection == 0) {
609 advertising_start();
610 flag_connection = 1;
611 }
612 }
613 nrf_gpio_pin_clear(led_1);
614 nrf_gpio_pin_set(led_2);
615

616 meas_state();
617 nus_data_handler();
618 flag = 1;
619 }
620 return (0);
621 }

83

B – Firmware code

B.2 Receiver firmware

1 #include <stdio.h>
2 #include <stdint.h>
3 #include <stdbool.h>
4 #include "nordic_common.h"
5 #include "app_error.h"
6 #include "app_uart.h"
7 #include "ble_db_discovery.h"
8 #include "app_timer.h"
9 #include "app_util.h"

10 #include "bsp_btn_ble.h"
11 #include "ble.h"
12 #include "ble_gap.h"
13 #include "ble_hci.h"
14 #include "nrf_sdh.h"
15 #include "nrf_sdh_ble.h"
16 #include "nrf_sdh_soc.h"
17 #include "ble_nus_c.h"
18 #include "nrf_ble_gatt.h"
19 #include "nrf_pwr_mgmt.h"
20 #include "nrf_ble_scan.h"
21 #include "nrf_log_ctrl.h"
22 #include "nrf_log_default_backends.h"
23 #include "nordic_common.h"
24 #include "nrf.h"
25 #include "ble_hci.h"
26 #include "ble_advdata.h"
27 #include "ble_advertising.h"
28 #include "ble_conn_params.h"
29 #include "nrf_sdh.h"
30 #include "nrf_sdh_soc.h"
31 #include "nrf_sdh_ble.h"
32 #include "nrf_ble_gatt.h"
33 #include "nrf_ble_qwr.h"
34 #include "app_timer.h"
35 #include "ble_nus.h"
36 #include "app_uart.h"
37 #include "app_util_platform.h"
38 #include "bsp_btn_ble.h"
39 #include "nrf_pwr_mgmt.h"
40

41 #if defined (UART_PRESENT)
42 #include "nrf_uart.h"
43 #endif
44 #if defined (UARTE_PRESENT)
45 #include "nrf_uarte.h"
46 #endif
47 #include "nrf_log.h"

84

B – Firmware code

48

49 #define APP_BLE_CONN_CFG_TAG 1 ...
/**< Tag that refers ...

to the BLE stack configuration set with @ref sd_ble_cfg_set. ...
The default tag is @ref BLE_CONN_CFG_TAG_DEFAULT. */

50 #define APP_BLE_OBSERVER_PRIO 3 ...
/**< BLE observer ...

priority of the application. */
51 #define COMMON_CONFIG_LOG_LEVEL 4
52 #define NRF_LOG_BACKEND_SERIAL_USES_RTT 3
53

54 #define UART_TX_BUF_SIZE 256 ...
/**< UART TX buffer ...

size. */
55 #define UART_RX_BUF_SIZE 256 ...

/**< UART RX buffer ...
size. */

56

57 #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN ...
/**< UUID type for the Nordic UART Service ...

(vendor specific). */
58

59 #define ECHOBACK_BLE_UART_DATA 1 ...
/**< Echo the UART ...

data that is received over the Nordic UART Service (NUS) ...
back to the sender. */

60

61

62 BLE_NUS_C_DEF(m_ble_nus_c); ...
/**< BLE Nordic ...

UART Service (NUS) client instance. */
63 NRF_BLE_GATT_DEF(m_gatt); ...

/**< GATT ...
module instance. */

64 BLE_DB_DISCOVERY_DEF(m_db_disc); ...
/**< Database ...

discovery module instance. */
65 NRF_BLE_SCAN_DEF(m_scan); ...

/**< Scanning ...
Module instance. */

66

67 static uint16_t m_ble_nus_max_data_len = ...
BLE_GATT_ATT_MTU_DEFAULT - OPCODE_LENGTH - HANDLE_LENGTH; ...
/**< Maximum length of data (in bytes) that can be ...
transmitted to the peer by the Nordic UART service module. */

68

69 // NUS UUID.
70 static ble_uuid_t const m_nus_uuid =
71 {
72 .uuid = BLE_UUID_NUS_SERVICE,

85

B – Firmware code

73 .type = NUS_SERVICE_UUID_TYPE
74 };
75

76

77 //Function for handling asserts in the SoftDevice.
78

79 void assert_nrf_callback(uint16_t line_num, const uint8_t * ...
p_file_name)

80 {
81 app_error_handler(0xDEADBEEF, line_num, p_file_name);
82 }
83

84

85 //Function for starting scanning.
86 static void scan_start(void)
87 {
88 ret_code_t ret;
89

90 ret = nrf_ble_scan_start(&m_scan);
91 APP_ERROR_CHECK(ret);
92

93 ret = bsp_indication_set(BSP_INDICATE_SCANNING);
94 APP_ERROR_CHECK(ret);
95 }
96

97

98 //Function for handling Scanning Module events.
99

100 static void scan_evt_handler(scan_evt_t const * p_scan_evt)
101 {
102 ret_code_t err_code;
103

104 switch(p_scan_evt->scan_evt_id)
105 {
106 case NRF_BLE_SCAN_EVT_CONNECTING_ERROR:
107 {
108 err_code = ...

p_scan_evt->params.connecting_err.err_code;
109 APP_ERROR_CHECK(err_code);
110 } break;
111

112 case NRF_BLE_SCAN_EVT_CONNECTED:
113 {
114 ble_gap_evt_connected_t const * p_connected =
115 p_scan_evt->params.connected.p_connected;
116 // Scan is automatically stopped by the connection.
117 printf("Connecting to target ...

%02x%02x%02x%02x%02x%02x",
118 p_connected->peer_addr.addr[0],
119 p_connected->peer_addr.addr[1],

86

B – Firmware code

120 p_connected->peer_addr.addr[2],
121 p_connected->peer_addr.addr[3],
122 p_connected->peer_addr.addr[4],
123 p_connected->peer_addr.addr[5]
124);
125 } break;
126

127 case NRF_BLE_SCAN_EVT_SCAN_TIMEOUT:
128 {
129 printf("Scan timed out.");
130 scan_start();
131 } break;
132

133 default:
134 break;
135 }
136 }
137

138

139

140 //This function will process the data received from the Nordic ...
UART BLE Service and send it to the UART .

141

142 static void nus_data_handler(ble_nus_evt_t * p_evt)
143 {
144

145 if (p_evt->type == BLE_NUS_EVT_RX_DATA)
146 {
147 uint32_t err_code;
148

149 printf("Received data from BLE NUS. Writing data on UART.");
150 NRF_LOG_HEXDUMP_DEBUG(p_evt->params.rx_data.p_data, ...

p_evt->params.rx_data.length);
151

152 for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++)
153 {
154 do
155 {
156 err_code = ...

app_uart_put(p_evt->params.rx_data.p_data[i]);
157 if ((err_code != NRF_SUCCESS) && (err_code != ...

NRF_ERROR_BUSY))
158 {
159 printf("Failed receiving NUS message. Error ...

0x%x. ", err_code);
160 APP_ERROR_CHECK(err_code);
161 }
162 } while (err_code == NRF_ERROR_BUSY);
163 }

87

B – Firmware code

164 if ...
(p_evt->params.rx_data.p_data[p_evt->params.rx_data.length ...
- 1] == '\r')

165 {
166 while (app_uart_put('\n') == NRF_ERROR_BUSY);
167 }
168 }
169

170 }
171

172 //initializing the scanning and setting the filters.
173

174 static void scan_init(void)
175 {
176 ret_code_t err_code;
177 nrf_ble_scan_init_t init_scan;
178

179 memset(&init_scan, 0, sizeof(init_scan));
180

181 init_scan.connect_if_match = true;
182 init_scan.conn_cfg_tag = APP_BLE_CONN_CFG_TAG;
183

184 err_code = nrf_ble_scan_init(&m_scan, &init_scan, ...
scan_evt_handler);

185 APP_ERROR_CHECK(err_code);
186

187 err_code = nrf_ble_scan_filter_set(&m_scan, ...
SCAN_UUID_FILTER, &m_nus_uuid);

188 APP_ERROR_CHECK(err_code);
189

190 err_code = nrf_ble_scan_filters_enable(&m_scan, ...
NRF_BLE_SCAN_UUID_FILTER, false);

191 APP_ERROR_CHECK(err_code);
192 }
193

194

195 // Function for handling database discovery events. Depending ...
on the UUIDs that are discovered

196 static void db_disc_handler(ble_db_discovery_evt_t * p_evt)
197 {
198 ble_nus_c_on_db_disc_evt(&m_ble_nus_c, p_evt);
199 }
200

201

202 //Function for handling characters received by the Nordic UART ...
Service (NUS).

203 //This function takes a list of characters of length data_len ...
and prints the characters out on UART.

204

205

88

B – Firmware code

206 static void ble_nus_chars_received_uart_print(uint8_t * p_data, ...
uint16_t data_len)

207 {
208 ret_code_t ret_val;
209

210 NRF_LOG_HEXDUMP_DEBUG(p_data, data_len);
211

212 for (uint32_t i = 0; i < data_len; i++)
213 {
214 do
215 {
216 ret_val = app_uart_put(p_data[i]);
217 if ((ret_val != NRF_SUCCESS) && (ret_val != ...

NRF_ERROR_BUSY))
218 {
219 printf("app_uart_put failed for index 0x%04x.", i);
220 APP_ERROR_CHECK(ret_val);
221 }
222 } while (ret_val == NRF_ERROR_BUSY);
223 }
224 if (data_len && p_data[data_len-1] == '\r')
225 {
226 while (app_uart_put('\n') == NRF_ERROR_BUSY);
227 }
228 #if 0
229 if (ECHOBACK_BLE_UART_DATA)
230 {
231 // Send data back to the peripheral.
232 do
233 {
234 ret_val = ble_nus_c_string_send(&m_ble_nus_c, ...

p_data, data_len);
235 if ((ret_val != NRF_SUCCESS) && (ret_val != ...

NRF_ERROR_BUSY))
236 {
237 printf("Failed sending NUS message. Error 0x%x. ...

", ret_val);
238 APP_ERROR_CHECK(ret_val);
239 }
240 } while (ret_val == NRF_ERROR_BUSY);
241 }
242 #endif
243 }
244

245 //Function for handling app_uart events.
246 This function receives a single character from the app_uart ...

module and appends it to
247 // a string. The string is sent over BLE when the last ...

character received is a

89

B – Firmware code

248 // 'new line' '\n' (hex 0x0A) or if the string reaches ...
the maximum data length.

249

250 void uart_event_handle(app_uart_evt_t * p_event)
251 {
252 static uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
253 static uint16_t index = 0;
254 uint32_t ret_val;
255

256 switch (p_event->evt_type)
257 {
258 //Handling data from UART
259 case APP_UART_DATA_READY:
260 UNUSED_VARIABLE(app_uart_get(&data_array[index]));
261 index++;
262

263 if ((data_array[index - 1] == '\n') || (index ≥ ...
(m_ble_nus_max_data_len)))

264 {
265 printf("Ready to send data over BLE NUS");
266 NRF_LOG_HEXDUMP_DEBUG(data_array, index);
267

268 do
269 {
270 ret_val = ...

ble_nus_c_string_send(&m_ble_nus_c, ...
data_array, index);

271 if ((ret_val != NRF_ERROR_INVALID_STATE) ...
&& (ret_val != NRF_ERROR_RESOURCES))

272 {
273 APP_ERROR_CHECK(ret_val);
274 }
275 } while (ret_val == NRF_ERROR_RESOURCES);
276

277 index = 0;
278 }
279 break;
280

281 case APP_UART_COMMUNICATION_ERROR:
282 printf("Communication error occurred while handling ...

UART.");
283 APP_ERROR_HANDLER(p_event->data.error_communication);
284 break;
285

286 case APP_UART_FIFO_ERROR:
287 printf("Error occurred in FIFO module used by UART.");
288 APP_ERROR_HANDLER(p_event->data.error_code);
289 break;
290

291 default:

90

B – Firmware code

292 break;
293 }
294 }
295

296

297

298 //This function is called to notify the application of NUS ...
client events.

299

300

301 static void ble_nus_c_evt_handler(ble_nus_c_t * p_ble_nus_c, ...
ble_nus_c_evt_t const * p_ble_nus_evt)

302 {
303 ret_code_t err_code;
304

305 switch (p_ble_nus_evt->evt_type)
306 {
307 case BLE_NUS_C_EVT_DISCOVERY_COMPLETE:
308 printf("Discovery complete.");
309 err_code = ble_nus_c_handles_assign(p_ble_nus_c, ...

p_ble_nus_evt->conn_handle, &p_ble_nus_evt->handles);
310 APP_ERROR_CHECK(err_code);
311

312 err_code = ble_nus_c_tx_notif_enable(p_ble_nus_c);
313 APP_ERROR_CHECK(err_code);
314 printf("Connected to device with Nordic UART Service.");
315 break;
316

317 case BLE_NUS_C_EVT_NUS_TX_EVT:
318 ble_nus_chars_received_uart_print(p_ble_nus_evt->p_data, ...

p_ble_nus_evt->data_len);
319 break;
320

321 case BLE_NUS_C_EVT_DISCONNECTED:
322 printf("Disconnected.");
323 scan_start();
324 break;
325 }
326 }
327

328

329 // Function for handling shutdown events.
330

331 static bool shutdown_handler(nrf_pwr_mgmt_evt_t event)
332 {
333 ret_code_t err_code;
334

335 err_code = bsp_indication_set(BSP_INDICATE_IDLE);
336 APP_ERROR_CHECK(err_code);
337

91

B – Firmware code

338 switch (event)
339 {
340 case NRF_PWR_MGMT_EVT_PREPARE_WAKEUP:
341 // Prepare wakeup buttons.
342 err_code = bsp_btn_ble_sleep_mode_prepare();
343 APP_ERROR_CHECK(err_code);
344 break;
345

346 default:
347 break;
348 }
349

350 return true;
351 }
352

353 NRF_PWR_MGMT_HANDLER_REGISTER(shutdown_handler, ...
APP_SHUTDOWN_HANDLER_PRIORITY);

354

355

356 //Function for handling BLE events.
357

358 static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * ...
p_context)

359 {
360 ret_code_t err_code;
361 ble_gap_evt_t const * p_gap_evt = &p_ble_evt->evt.gap_evt;
362

363 switch (p_ble_evt->header.evt_id)
364 {
365 case BLE_GAP_EVT_CONNECTED:
366 err_code = ble_nus_c_handles_assign(&m_ble_nus_c, ...

p_ble_evt->evt.gap_evt.conn_handle, NULL);
367 APP_ERROR_CHECK(err_code);
368

369 err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
370 APP_ERROR_CHECK(err_code);
371

372 // start discovery of services. The NUS Client waits ...
for a discovery result

373 err_code = ble_db_discovery_start(&m_db_disc, ...
p_ble_evt->evt.gap_evt.conn_handle);

374 APP_ERROR_CHECK(err_code);
375 break;
376

377 case BLE_GAP_EVT_DISCONNECTED:
378

379 printf("Disconnected. conn_handle: 0x%x, reason: 0x%x",
380 p_gap_evt->conn_handle,
381 p_gap_evt->params.disconnected.reason);
382 break;

92

B – Firmware code

383

384 case BLE_GAP_EVT_TIMEOUT:
385 if (p_gap_evt->params.timeout.src == ...

BLE_GAP_TIMEOUT_SRC_CONN)
386 {
387 printf("Connection Request timed out.");
388 }
389 break;
390

391 case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
392 // Pairing not supported.
393 err_code = ...

sd_ble_gap_sec_params_reply(p_ble_evt->evt.gap_evt.
394 conn_handle,
395 BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
396 APP_ERROR_CHECK(err_code);
397 break;
398

399 case BLE_GAP_EVT_CONN_PARAM_UPDATE_REQUEST:
400 // Accepting parameters requested by peer.
401 err_code = ...

sd_ble_gap_conn_param_update(p_gap_evt->conn_handle, ...
&p_gap_evt->

402 params.conn_param_update_request.conn_params);
403 APP_ERROR_CHECK(err_code);
404 break;
405

406 case BLE_GAP_EVT_PHY_UPDATE_REQUEST:
407 {
408 printf("PHY update request.");
409 ble_gap_phys_t const phys =
410 {
411 .rx_phys = BLE_GAP_PHY_AUTO,
412 .tx_phys = BLE_GAP_PHY_AUTO,
413 };
414 err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.
415 conn_handle, &phys);
416 APP_ERROR_CHECK(err_code);
417 } break;
418

419 case BLE_GATTC_EVT_TIMEOUT:
420 // Disconnect on GATT Client timeout event.
421 printf("GATT Client Timeout.");
422 err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.
423 conn_handle,
424 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
425 APP_ERROR_CHECK(err_code);
426 break;
427

428 case BLE_GATTS_EVT_TIMEOUT:

93

B – Firmware code

429 // Disconnect on GATT Server timeout event.
430 printf("GATT Server Timeout.");
431 err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.
432 conn_handle,
433 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
434 APP_ERROR_CHECK(err_code);
435 break;
436

437 default:
438 break;
439 }
440 }
441

442

443 //Function for initializing the BLE stack.
444 //Initializes the SoftDevice and the BLE event interrupt.
445

446 static void ble_stack_init(void)
447 {
448 ret_code_t err_code;
449

450 err_code = nrf_sdh_enable_request();
451 APP_ERROR_CHECK(err_code);
452

453 // Configure the BLE stack using the default settings.
454 // Fetch the start address of the application RAM.
455 uint32_t ram_start = 0;
456 err_code = ...

nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, ...
&ram_start);

457 APP_ERROR_CHECK(err_code);
458

459 // Enable BLE stack.
460 err_code = nrf_sdh_ble_enable(&ram_start);
461 APP_ERROR_CHECK(err_code);
462

463 // Register a handler for BLE events.
464 NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ...

ble_evt_handler, NULL);
465 }
466

467

468 //Function for handling events from the GATT library.
469 void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, ...

nrf_ble_gatt_evt_t const * p_evt)
470 {
471 if (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)
472 {
473 printf("ATT MTU exchange completed.");
474

94

B – Firmware code

475 m_ble_nus_max_data_len = ...
p_evt->params.att_mtu_effective - OPCODE_LENGTH - ...
HANDLE_LENGTH;

476 printf("Ble NUS max data length set to 0x%X(%d)", ...
m_ble_nus_max_data_len, m_ble_nus_max_data_len);

477 }
478 }
479

480

481 //Function for initializing the GATT library.
482 void gatt_init(void)
483 {
484 ret_code_t err_code;
485

486 err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
487 APP_ERROR_CHECK(err_code);
488

489 err_code = nrf_ble_gatt_att_mtu_central_set(&m_gatt, ...
NRF_SDH_BLE_GATT_MAX_MTU_SIZE);

490 APP_ERROR_CHECK(err_code);
491 }
492

493

494

495 void bsp_event_handler(bsp_event_t event)
496 {
497 ret_code_t err_code;
498

499 switch (event)
500 {
501 case BSP_EVENT_SLEEP:
502 nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_GOTO_SYSOFF);
503 break;
504

505 case BSP_EVENT_DISCONNECT:
506 err_code = ...

sd_ble_gap_disconnect(m_ble_nus_c.conn_handle,
507 BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
508 if (err_code != NRF_ERROR_INVALID_STATE)
509 {
510 APP_ERROR_CHECK(err_code);
511 }
512 break;
513

514 default:
515 break;
516 }
517 }
518

519 // Initializing the UART.

95

B – Firmware code

520 static void uart_init(void)
521 {
522 ret_code_t err_code;
523

524 app_uart_comm_params_t const comm_params =
525 {
526 .rx_pin_no = RX_PIN_NUMBER,
527 .tx_pin_no = TX_PIN_NUMBER,
528 .rts_pin_no = RTS_PIN_NUMBER,
529 .cts_pin_no = CTS_PIN_NUMBER,
530 .flow_control = APP_UART_FLOW_CONTROL_DISABLED,
531 .use_parity = false,
532 .baud_rate = UART_BAUDRATE_BAUDRATE_Baud9600
533 };
534

535 APP_UART_FIFO_INIT(&comm_params,
536 UART_RX_BUF_SIZE,
537 UART_TX_BUF_SIZE,
538 uart_event_handle,
539 APP_IRQ_PRIORITY_LOWEST,
540 err_code);
541

542 APP_ERROR_CHECK(err_code);
543 }
544

545 // Initializing the Nordic UART Service (NUS) client.
546 static void nus_c_init(void)
547 {
548 ret_code_t err_code;
549 ble_nus_c_init_t init;
550

551 init.evt_handler = ble_nus_c_evt_handler;
552

553 err_code = ble_nus_c_init(&m_ble_nus_c, &init);
554 APP_ERROR_CHECK(err_code);
555 }
556

557

558

559 static void buttons_leds_init(void)
560 {
561 ret_code_t err_code;
562 bsp_event_t startup_event;
563

564 err_code = bsp_init(BSP_INIT_LEDS, bsp_event_handler);
565 APP_ERROR_CHECK(err_code);
566

567 err_code = bsp_btn_ble_init(NULL, &startup_event);
568 APP_ERROR_CHECK(err_code);
569 }

96

B – Firmware code

570

571

572

573 static void timer_init(void)
574 {
575 ret_code_t err_code = app_timer_init();
576 APP_ERROR_CHECK(err_code);
577 }
578

579

580 //Function for initializing the nrf log module.
581 static void log_init(void)
582 {
583 ret_code_t err_code = NRF_LOG_INIT(NULL);
584 APP_ERROR_CHECK(err_code);
585

586 NRF_LOG_DEFAULT_BACKENDS_INIT();
587 }
588

589

590 //Function for initializing power management.
591

592 static void power_management_init(void)
593 {
594 ret_code_t err_code;
595 err_code = nrf_pwr_mgmt_init();
596 APP_ERROR_CHECK(err_code);
597 }
598

599

600 // Function for initializing the database discovery module.
601 static void db_discovery_init(void)
602 {
603 ret_code_t err_code = ble_db_discovery_init(db_disc_handler);
604 APP_ERROR_CHECK(err_code);
605 }
606

607

608 //Function for handling the idle state (main loop). Then sleeps ...
until the next event occurs.

609

610 static void idle_state_handle(void)
611 {
612 if (NRF_LOG_PROCESS() == false)
613 {
614 nrf_pwr_mgmt_run();
615 }
616 }
617

618

97

B – Firmware code

619 int main(void)
620 {
621 // Initialize.
622 log_init();
623 timer_init();
624 uart_init();
625 buttons_leds_init();
626 db_discovery_init();
627 power_management_init();
628 ble_stack_init();
629 gatt_init();
630 nus_c_init();
631 scan_init();
632

633 // Start execution.
634

635 printf("BLE UART central example started.\r\n");
636 printf("BLE UART central example started.");
637 scan_start();
638

639 // Enter main loop.
640 for (;;)
641 {
642 idle_state_handle();
643 }
644 }

98

Appendix C

User interface code

1 using System;
2 using System.Collections.Generic;
3 using System.ComponentModel;
4 using System.Data;
5 using System.Drawing;
6 using System.Linq;
7 using System.Text;
8 using System.Threading.Tasks;
9 using System.Windows.Forms;

10 using System.IO.Ports;
11 using System.Windows.Forms.DataVisualization.Charting;
12 using System.Diagnostics;
13

14

15 namespace WindowsFormsApplication1
16 {
17 public partial class Form1 : Form
18 {
19 private SerialPort myport;
20 private string in_data;
21 private string Data;
22 private int[] Xinput ;
23 private int flag = 0;
24

25 public Form1()
26 {
27

28 InitializeComponent();
29 this.stop.Enabled = false;
30 this.Start.Enabled = true;
31 }
32

33 private void comboBox1_SelectedIndexChanged(object ...
sender, EventArgs e)

99

C – User interface code

34 {
35 COM.Text = COM.SelectedText;
36 }
37

38 private void Baud_rate_SelectedIndexChanged(object ...
sender, EventArgs e)

39 {
40 Baud_rate.Text = Baud_rate.SelectedText;
41 }
42

43 void myport_DataReceived(object sender, ...
SerialDataReceivedEventArgs e)

44 {
45

46

47 in_data = myport.ReadLine();
48 Data = in_data;
49 if (in_data[0] == ',')
50 {
51 Data = in_data.Remove(0, 1);
52 }
53 else if (in_data[in_data.Length-1] == ',')
54 {
55 Data = in_data.Remove(in_data.Length-1, 1);
56 }
57 else
58 {
59 Data = in_data;
60 }
61 try {
62 Xinput = Array.ConvertAll(Data.Split(','), int.Parse);
63 }
64 catch (FormatException)
65 {
66 }
67 flag = 2;
68 this.Invoke(new EventHandler(acquisition_event));
69 this.Invoke(new EventHandler(Form1_Load));
70 flag = 1;
71

72 }
73 private void acquisition_event(object sender, EventArgs e)
74 {
75 textBox2.Text += in_data + "TX:\n";
76

77 switch (flag) {
78

79 case 1:
80 textBox1.BackColor = Color.LightYellow;
81 textBox1.Text = "Connection";

100

C – User interface code

82 break;
83 case 2:
84 textBox1.BackColor = Color.LightGreen;
85 textBox1.Text = "Transmission";
86

87 break;
88 case 3:
89 textBox1.BackColor = Color.Red;
90 textBox1.Text = "Stop";
91 break;
92 default:
93 textBox1.BackColor = Color.Empty;
94 textBox1.Text = "No Operation";
95 break;
96 }
97 }
98

99 private void Start_Click(object sender, EventArgs e)
100 {
101

102 myport = new SerialPort();
103 if (!myport.IsOpen)
104 {
105 myport.PortName = COM.Text;
106 myport.DataBits = 8;
107 myport.StopBits = StopBits.One;
108 try
109 {
110 myport.BaudRate = ...

Convert.ToInt32(Baud_rate.Text);
111 } catch(Exception ex)
112 {
113 MessageBox.Show(ex.Message, "SELECT CORRECT ...

BAUD RATE");
114 }
115 myport.DataReceived += myport_DataReceived;
116 try
117 {
118 myport.DtrEnable = true;
119 myport.Handshake = Handshake.None;
120 myport.ReceivedBytesThreshold = 1;
121 myport.Open();
122 flag = 1;
123 this.Invoke(new ...

EventHandler(acquisition_event));
124 this.stop.Enabled = true;
125 this.Start.Enabled = false;
126 }
127 catch (Exception ex)
128 {

101

C – User interface code

129

130 MessageBox.Show(ex.Message, "Port not ...
available");

131

132 }
133

134 }
135

136 }
137 private double current(int i)
138 {
139 double R1 = 6800;
140 double R2 = 47000;
141 double C1 = 2;
142 double VDD = 3.3;
143 double Vref = 1;
144 double Vlow = 0.4;
145 double i0 = 0;
146 double f1;
147 try
148 { //0.0093 -3.1877 185.7801
149

150 f1 = (double)0.0093 * Xinput[i] * Xinput[i] + ...
Xinput[i] * -3.1877 + 185.7801;// ...
(double)Xinput[i] * 0.909756526727153 - ...
51.122722625016756; //(1/R1 ...

*(-R2*C1*0.5*VDD/Xinput[i]*1000000 + ...
Vref-Vlow)+i0);

151 }
152 catch (NullReferenceException)
153 {
154 f1 = 0;
155 }
156 return f1;
157 }
158

159

160 private void Form1_Load(object sender, EventArgs e)
161 {
162 chart1.Series.Clear();
163 var series1 = new ...

System.Windows.Forms.DataVisualization.Charting.Series
164 {
165 Name = "Data",
166 Color = System.Drawing.Color.Green,
167 IsVisibleInLegend = false,
168 IsXValueIndexed = true,
169 ChartType = SeriesChartType.Line
170

171 };

102

C – User interface code

172 chart1.ChartAreas[0].AxisX.Title = "Current uA";
173 chart1.ChartAreas[0].AxisY.Title = "Kevent/s";
174 this.chart1.Series.Add(series1);
175

176 for (int i = 0; i <120 ; i++)
177 {
178 try {
179 series1.Points.AddXY((double)current(i), ...

(double)1000/Xinput[i]);
180 }
181 catch(NullReferenceException) { }
182 }
183 chart1.Invalidate();
184 }
185

186

187

188 private void stop_Click(object sender, EventArgs e)
189 {
190

191 myport.Close();
192 flag = 3;
193 this.Invoke(new EventHandler(acquisition_event));
194 this.stop.Enabled = false;
195 this.Start.Enabled = true;
196 }
197

198 private void Clear_Click(object sender, EventArgs e)
199 {
200 textBox2.Clear();
201 }
202

203

204

205 private void button2_Click(object sender, EventArgs e)
206 {
207 string pathfile = textBox3.Text;
208 string filename = "Anaesthetic_dev_data.txt";
209 string imagename = "Anaesthetic_dev_data.png";
210

211 System.IO.File.WriteAllText(pathfile + filename, ...
textBox2.Text);

212 chart1.SaveImage(pathfile + imagename, ...
ChartImageFormat.Png);

213 }
214

215 private void button1_Click(object sender, EventArgs e)
216 {
217

218

103

C – User interface code

219 System.Diagnostics.Process.Start(@"C:\Program ...
Files\MATLAB\R2018b\bin\matlab.exe");

220

221

222 }
223 }
224 }

104

Bibliography

[1] (). Definition of Anesthesia, [Online]. Available: https://en.wikipedia.
org/wiki/Anesthesia.

[2] L. A. Tafur-Betancourt, «El mundo oculto de las interacciones farmacológicas
en anestesia», Revista Colombiana de Anestesiologìa, vol. 45, no. 3, pp. 216–
223, 2017.

[3] (). The American Society of Health-System Pharmacists. Archived from the
original on 9 October 2016. Retrieved 21 January 2017., [Online]. Available:
https://www.drugs.com/monograph/propofol.html.

[4] (). The American Society of Health-System Pharmacists.Archived from the
original on 2015-09-05. Retrieved Aug 1, 2015., [Online]. Available: https:
//www.drugs.com/mtm/midazolam.html.

[5] (). Acetaminophen, [Online]. Available: https://www.ncbi.nlm.nih.gov/
books/NBK482369/.

[6] (). Opioid Anesthesia, [Online]. Available: https://www.ncbi.nlm.nih.
gov/books/NBK532956/.

[7] (). Newman, Tim. What to know about general anesthesia. Medical News To-
day. MediLexicon, Intl., 5 Jan. 2018. Web. 19 Sep. 2019., [Online]. Available:
https://www.medicalnewstoday.com/articles/265592.php.

[8] J. Cranshaw, K. Gupta, and T. Cook, «Litigation related to drug errors in
anaesthesia: an analysis of claims against the NHS in England 1995–2007»,
Anaesthesia, vol. 64, no. 12, pp. 1317–1323, 2009.

[9] S. Aiassa, F. Stradolini, A. Tuoheti, S. Carrara, and D. Demarchi, «Quasi-
Digital Biosensor-Interface for a Portable Pen to Monitor Anaesthetics De-
livery», 2019.

[10] F. Stradolini, T. Elboshra, A. Biscontini, G. De Micheli, and S. Carrara,
«Simultaneous monitoring of anesthetics and therapeutic compounds with a
portable multichannel potentiostat», in 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), IEEE, 2016, pp. 834–837.

105

https://en.wikipedia.org/wiki/Anesthesia
https://en.wikipedia.org/wiki/Anesthesia
https://www.drugs.com/monograph/propofol.html
https://www.drugs.com/mtm/midazolam.html
https://www.drugs.com/mtm/midazolam.html
https://www.ncbi.nlm.nih.gov/books/NBK482369/
https://www.ncbi.nlm.nih.gov/books/NBK482369/
https://www.ncbi.nlm.nih.gov/books/NBK532956/
https://www.ncbi.nlm.nih.gov/books/NBK532956/
https://www.medicalnewstoday.com/articles/265592.php

BIBLIOGRAPHY

[11] F. Stradolini, A. Tuoheti, P. M. Ros, D. Demarchi, and S. Carrara, «Rasp-
berry pi based system for portable and simultaneous monitoring of anesthet-
ics and therapeutic compounds», in 2017 New Generation of CAS (NGCAS),
IEEE, 2017, pp. 101–104.

[12] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, «Potential Sweep
Method», in Electrochemical methods: fundamentals and applications, 2nd ed.,
New York: Wiley, 1980, pp. 226–260.

[13] S. Aiassa, S. Carrara, and D. Demarchi, «Optimized Sampling Rate for
Voltammetry-Based Electrochemical Sensing in Wearable and IoT Applica-
tions», IEEE Sensors Letters, vol. 3, no. 6, pp. 1–4, Jun. 2019.

[14] (). Definition of Potentiostat, [Online]. Available: https://en.wikipedia.
org/wiki/Potentiostat.

[15] S. Aiassa, P. Motto Ros, G. Masera, and M. Martina, «A low power archi-
tecture for AER event-processing microcontroller», in 2017 IEEE Biomedical
Circuits and Systems Conference (BioCAS), Oct. 2017, pp. 1–4.

[16] (). Definition of Altium Designer, [Online]. Available: https://en.wikipedia.
org/wiki/Altium_Designer.

[17] LinearTechnology, «LTC6085 Datasheet»,
[18] AnalogDevices, «ADA4807 Datasheet»,
[19] (). Definition of Buck–boost converter, [Online]. Available: https : / / en .

wikipedia.org/wiki/Buck-boost_converter.
[20] TexasInstrument, «TPS6303x High Efficiency Single Inductor Buck-Boost

Converter With 1-A Switches Datasheet»,
[21] (). Documentation for Altium Designer, [Online]. Available: https://www.

altium.com/documentation/.
[22] (). SEGGER Embedded Studio for ARM, [Online]. Available: https : / /

studio.segger.com/index.htm?https://studio.segger.com/home.htm.
[23] Nordic, «nRF52840 product specification datasheet»,
[24] P. McDermott-Wells, «What is Bluetooth?», IEEE Potentials, vol. 23, no. 5,

pp. 33–35, Dec. 2005. doi: 10.1109/MP.2005.1368913.
[25] (). Bluetooth Low Energy, [Online]. Available: https://www.bluetooth.

com/.
[26] (). Bluetooth Low Energy2, [Online]. Available: https://www.oreilly.com/

library/view/getting-started-with/9781491900550/ch04.html.
[27] (). Serial Wire Debug, [Online]. Available: https://wiki.segger.com/SWD.

106

https://en.wikipedia.org/wiki/Potentiostat
https://en.wikipedia.org/wiki/Potentiostat
https://en.wikipedia.org/wiki/Altium_Designer
https://en.wikipedia.org/wiki/Altium_Designer
https://en.wikipedia.org/wiki/Buck-boost_converter
https://en.wikipedia.org/wiki/Buck-boost_converter
https://www.altium.com/documentation/
https://www.altium.com/documentation/
https://studio.segger.com/index.htm?https://studio.segger.com/home.htm
https://studio.segger.com/index.htm?https://studio.segger.com/home.htm
https://doi.org/10.1109/MP.2005.1368913
https://www.bluetooth.com/
https://www.bluetooth.com/
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://wiki.segger.com/SWD

BIBLIOGRAPHY

[28] S. Aiassa, F. Grassi, R. Terracciano, S. Carrara, and D. Demarchi, «Live
Demonstration: Quasi-Digital Portable Pen to Monitor Anaesthetics Deliv-
ery», in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS),
2019, pp. 1–4.

[29] (). Screen-printed electrodes, [Online]. Available: http://www.dropsens.
com/en/screen_printed_electrodes_pag.html.

107

http://www.dropsens.com/en/screen_printed_electrodes_pag.html
http://www.dropsens.com/en/screen_printed_electrodes_pag.html

	List of Figures
	Introduction
	Anaesthesia Drugs Composition and Interaction
	Anesthetic compound
	Interaction classification
	Risk and side effect

	Drug Monitoring - State of the art
	Electrochemical sensor

	Circuit design
	Analog driver
	Pulse width modulation and Voltage converter
	Design proposal and LTspice Simulation

	Analog Read-out
	Trans-Impedance Amplifier (TIA)
	Integrator and Edge Trigger stage
	Design proposal and LTSPisce Simulation

	Printed circuit design: PCB
	Analog driver & Read-out layout
	Voltage regulator layout
	Micro-controller layout
	Connection and Test layout
	PCB Description
	Top Layer
	Bottom Layer

	PCB Production
	Components
	Production

	Micro-controller & firmware
	Device Routine
	Micro-controller
	Pulse Width Modulation for electrochemical cell driven
	Timer counter for event-based signal
	Bluetooth Low Energy BLE
	Receiver dongle Firmware description

	User Interface
	User interface description

	Test and Validation
	Firmware Test
	Electrical Test & Functional Test
	Final Result

	Conclusion & Future works
	Bill of material of PCB
	Firmware code
	Device firmware
	Receiver firmware

	User interface code

