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Summary

Optical modulators are key components in the design of high speed optical com-
munication systems. In particular, Electro-Optic Mach Zehnder modulators (EO
MZM) realized in LiNbO3 are a well established and reliable solution in long haul
communication, suitable to encode both analog and digital information. Even
though the operating principle is the linear electro-optic effect (Pockels Effect),
these devices are considered interferometers since they exploit the interference be-
tween two phase shifted light beams to obtain an amplitude modulation. The
appealing feature of LiNbO3 MZM is the possibility to obtain a good trade off
between the need to have low losses, low driving voltages, broad bandwidth and
low chirp, while a big drawback is the large footprint (∼ cm2) that poses a se-
vere limitation when compact and performing devices are needed [7]. In the search
of a valid alternative to LiNbO3 MZM, when very small dimensions are required,
Plasmonic POH Modulators emerged as promising devices ideally capable of pro-
viding a large bandwidth (>100GHz), small energy consumption (∼ 25fJ/b) and
a very small voltage-length product (∼ 40V µm) with a footprint of the order of
few µm2. In these structures, Metal-Insulator-Metal (MIM) waveguides are inte-
grated on SOI wafer; light propagates as surface plasmons at the metal-insulator
interfaces making possible to achieve sub-wavelength field confinement which is
main cause of the small dimensions. In this thesis work a study of a Plasmonic
Mach-Zehnder modulators is proposed. Starting from the analysis of the basic
Electro-Optic Mach Zehnder modulator structure, a block model developed in a
microwave CAD environment is proposed, it gives the possibility to design and op-
timize the driver and modulator within the same circuit environment[5]. The last
part focuses on the description of wave propagation through plasmonic structures
and shows some simulation results obtained integrating the electric characteristics
of plasmonic structures in the block model previously described.
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Chapter 1

EO Mach-Zehnder
modulator: Theoretical
Introduction

1.1 Introduction

An overview on the basic principles of the Electro-Optical Mach Zehnder modulator

is presented in this chapter.

This device performs an amplitude modulation through the recombination of two

phase-modulated beams, the input light is injected into an beam splitter, the result-

ing beams propagate in the two arms and experience a variation of their phase due

to the linear EO effect (Pockel’s Effect) or other effects leading to the modulation

of the refractive index, such as the Kerr effect or the plasma effect. When a voltage

is applied at the central electrode, the resulting electric field in the transverse direc-

tion of the arm provides a refractive index variation and so a phase variation. The

two beams are recombined at the output with a certain ratio by a beam combiner.

The analysis starts from the lumped case characterizing the overall structure and

✶✶
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its behaviour, then the travelling wave case is analysed considering the transmission

line theory applied to this specific case, the chirp model is finally described from

the result obtained in the lumped case.

1.2 Lumped Case

[2][3] In this section a description of the MZ-model is provided when the device can
be seen as lumped element, characterizing its behaviour through its fundamental
parameters, then the DC amplitude analysis and the small-signal one are discussed.

1.2.1 System Level Description

Figure 1.1. [2] Mach-Zehnder Modulator.

A MZ-EO Modulator consist of the cascade of three sections:

❼ a first beam splitter region which is an Y-junction splitter;

❼ a modulation section made of two optical waveguides (arms of the modulator),
lying between three electrodes;

❼ the last region is an optical beam combiner (Y-junction beam combiner).

The working principle exploited to obtain the shifting of the beam phases is the
electro-optic effect, in this particular case the Pockels Effect (i.e. linear electro-
optical effect) is considered in crystals like LiNbO3 or in organic electro-optic poly-
mers.

Even though the physical modulating effect exploited is a phase modulation, the
total modulation at the output comes from the interference between two optical
phase-modulated beams (i.e. at the output an amplitude modulation is exploited),

✶✷



1 – EO Mach-Zehnder modulator: Theoretical Introduction

that is why they are considered interferometric devices. Considering a single arm,
the variation of the refractive index is proportional to the applied voltage as follows:

∆n = aV = −n3
er33V

2G Γm0 (1.1)

defining

a = −n3
er33

2G Γm0

where G is the distance between the signal electrode and the ground plane, r33
is the electro-optic linear tensor element, ne is the material extraordinary refractive
index, and Γm0 is the overlap integral between the optical Eop and electrical Ez
field expressed as follows:

Γm0 = G

V

s s
ëEop(r)ë2 Ez(r)dSs s

Eop(r)dS
where λ0 is the working wavelength. The phase difference induced by the applied

voltage is evaluated integrating the variation of the refractive index over the length
of the arm

∆Φ = 2π
λ0

Ú L

0
∆ndx = −2π

λ0

n3
er33V L

2G Γm0 = −2π
λ0
aLV. (1.2)

In the overall structure, the two arms are driven by voltages equal in magnitude
but opposite in sign since the RF signal is applied at the centre electrode while
the external electrodes are grounded. Generally the two ∆Φ are opposite but they
will be denoted with the subscript U and L (referring respectively for the upper
and lower arm) since in some cases the overlap integral,and so the proportionality
factor a, are not the same in the two arms, it happens for example in Z-cut MZ
lithium niobate Modulators. Therefore the expressions of the induced phase shift
in the two arms are:

∆ΦU = −2π
λ0
aULV

∆ΦL = 2π
λ0
aLLV.

The ON−OFF behaviour of the modulator depends on the total induced phase-
shift i.e. on the difference between the upper and lower phase shift at the output

∆ΦU − ∆ΦL = −2π
λ0

(aU − aL)LV.

In the symmetric case aU = aL = a, the expression becomes:

✶✸
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∆ΦU − ∆ΦL = −4π
λ0
aLV.

The device is ON when the phase difference ∆ΦU − ∆ΦL is zero (constructive
interference) and so V = 0, in this case the optical beam experiences a constructive
interference and the characteristic mode is excited at the output; the device is in the
OFF −state when the phase difference is equal to π, the interference is destructive
and only the radiating modes can be found at the output. In the OFF − state we
obtain:

∆ΦU − ∆ΦL = −4π
λ0
aLVπ = π. (1.3)

When the modulator is symmetric ∆ΦU = ∆ΦL = π/2, instead, in the non
symmetric case, the two induced phase shifts have different values but their sum
has to be π.

From (1.3), it is possible to find the ON −OFF voltage Vπ,

Vπ = λ0

2|aU + aL|L
while in the symmetric case

Vπ = λ0

2|a|L
.

DC EO Amplitude Response

Another significant parameter to describe the behaviour of the MZ Modulator is
T (Vin) the ration between the power injected Pin and the power transmitted at the
output Pout.

The beam is injected in an input splitter described electrically considering its
scattering matrix. Considering the input port (port 1) matched, the two output
ports (port 2 and 3) isolated and supposing negligible losses ( SspS

T
sp = 1) , the

Y-junction S-matrix is expressed as follows:

Ssp =

 0
√
αejφsp

√
1 − αejφsp√

αejφsp 0 0√
1 − αejφsp 0 0


where α is a factor representing the asymmetry in the power splitting of the Y-
junction (in presence of symmetric splitters α = 1/2). From the Scattering Matrix
it is passible to estimate the two output power waves b2 and b3

Sij = bi
aj

-----
ak=0∀k /=j

,

✶✹



1 – EO Mach-Zehnder modulator: Theoretical Introduction

b2 =
√
αejφspa1,

b3 =
√

1 − αejφspa1

defining a1 as the incident optical power wave at port 1.
The splitted beams experience a phase delay due to the propagation through the

two modulator arms described by Sarms

Sarms =
A

0 e−jk0L

e−jk0L 0

B
Therefore the power waves at the combiner upper and lower inputs are:

a
Í

2 =
√
αejφspa1e

−jk0L−j∆ΦU

a
Í

3 =
√

1 − αejφspa1e
−jk0L−j∆ΦL .

The output beam combiner is described by a scattering matrix Sc ≡ Ssp and so the
optical power wave at the output (b

Í
1) is:

b
Í

1 = e2jφspe−jk0L
è
αe−j∆ΦU + (1 − α)e−j∆ΦLa1

é
. (1.4)

Supposing that the input and output optical waveguides have the same char-
acteristic impedance, it is possible to estimate the ratio between the optical input
and output power T (Vin) as follows:

T(Vin) = Pout
Pin

=
----- b

Í
1
a1

-----
2

= η{1 + 2α(1 − α)[cos(∆ΦU − ∆ΦL) − 1]} (1.5)

where

η ≈ e−α0L−Asp−Ac

is a factor that represents the optical insertion loss of the lower and upper arms,
in this case it is supposed to be voltage independent; α0 is the optical loss of the
modulator waveguides, Asp is the loss factor of the splitter and Ac is the loss factor
of the combiner. Considering symmetrical splitter and combiner (i.e. α0 = 1/2)
but with asymmetrical upper and lower branches, equation (1.5) becomes

T (Vin) = η

2 [1 + cos(∆ΦU − ∆ΦL)].

In order to evaluate the static transfer curve, T (Vin) has to be expressed as function
of the time domain voltages vinU and vinL respectively applied at the upper and
lower arms. Starting from the induced phase shifts in the two arms

✶✺
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∆ΦU = π
vinU
VπU

, ∆ΦL = π
vinL
VπL

, (1.6)

the ON −OFF voltages of the two branches can be obtained as follows

|∆ΦU,L| = 2π
λ0

|aU,L| = π

VπU,L = λ0

2|aU,L|
L.

Finally, it is possible to evaluate T (vin)

T (vin) = η

2

;
1 + cos

5
π
3 1
VπU

+ 1
VπL

4
vin

6<
= η

2

;
1 + cos

3
π
vin
Vπ

4<
where vinU = vinL = vin and Vπ (modulator ON − OFF voltage) is defined as
follows

Vπ = VπUVπL
VπU + VπL

.

Small Signal Analysis

The small signal operations are performed with respect to a DC working point, in
this case the analysis is performed around Vπ/2 since it is the optimum point for
linearity.

v(t) = VDC + v̂(t), vin(t) = Vin,DC + v̂in(t)

where v(t) is the time-varying open circuit voltage of the real generator connected
to the modulator, vin(t) is the input voltage expressed as a function of v(t) including
RG (generator resistance of the input equivalent circuit) and Cin (modulator input
capacitance).
Linearizing around the bias point, the normalized output power is obtained as:

pout(t)
Pin

= η

2

I
1 + cos

A
π
Vin,DC + v̂in(t)

Vπ

BJ
≈

≈ η

2

;
1 + cos

3
π
Vin,DC
Vπ

4<
− η

π

2Vπ

;
1 + cos

3
π
Vin,DC
Vπ

4
v̂in(t)

<
which can be also written as:

pout(t)
Pin

= Pout,DC
Pin

− p̂out(t)
Pin

At Vin,DC = Vπ/2 the previous equation becomes

✶✻



1 – EO Mach-Zehnder modulator: Theoretical Introduction

pout(t)
Pin

≈ η

2 − η
π

2
v̂in(t)
Vπ

.

Moving on to the frequency domain, the normalized output power p̂out(t)/Pin
becomes:

P̂out(ω)
Pin

= η
π

2
Vin(ω)
Vπ

= η
π

2H(ω)V (ω)
Vπ

(1.7)

where the relationship between the input voltage phasor Vin(ω) and the generator
voltage phasor V (ω) is represented by a low-pass transfer function H(ω) as follows

Vin(ω) = H(ω)V (ω).

From (1.7) and considering that |H(0)| = 1, it is possible to evaluate the modulator
frequency response m(ω) as:

m(ω) =

---P̂out(ω)
------P̂out(0)
--- = |H(ω)| . (1.8)

Recalling that the modulator is composed of two sections: a linear and dispersive
system (phase modulation section) and a non-linear memoryless one (combiner), it
can be demonstrated[1] that the overall normalized frequency response coincides
with phase modulation section frequency response. Supposing that (1.6) holds for
time-varying input voltages, the phase delays associated to the upper and lower
arms are:

∆ΦU = π
Vin(ω)
VπU

= πH(ω)V (ω)
VπU

∆ΦL = −πVin(ω)
VπL

= −πH(ω)V (ω)
VπL

formulated assuming that the same voltages have been applied to the upper and
lower arms. The frequency response is obtained as follows:

∆Φα(ω)
∆Φα(0) = H(ω), α = U,L.

The modulator transfer function considering an input capacitance Cin and the
generator resistance RG is evaluated from :

Vin(ω) = V (ω) 1
1 + jωCinRG

= H(ω)V (ω). (1.9)

The modulator response is obtained substituting the expression of H(ω) in (1.8)

✶✼
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m(ω) = |H(ω)| = 1ñ
1 + ω2R2

GC
2
in

. (1.10)

To find the 3dB electrical bandwidth

m(f3dB,el)|dB = −3dB

substituting 1.10

m(f3dB,el)|dB = 20 log10[m(f3dB,el)] = 20 log10
1ñ

1 + ω2R2
GC

2
in

= −3dB

2πf3dB,elRGCin = 1

f3dB,el = 1
2πRGCin

.

Similarly, for the evaluation of the 3dB optical bandwidth

m(f3dB,op)|dB = −3dB.

Since

m(f3dB,el)|dB = 2m(f3dB,op)|dB,

the resulting f3dB,op is:

f3dB,op =
√

3f3dB,el =
√

3
2πRGCin

.

1.3 Distributed Case

[2][3] This section focuses on the description of a uniform Travelling Wave MZ
EO Modulator. A closed form model for the optical response of the modulator
is obtained through the study of the distributed interaction between the RF and
optical field both in the co-propagating and counter-propagating case, supposing
that the active area (i.e. the region where the interaction between the optical and
electrical fields takes place) is described as a uniform transmission line terminated
by a generator and a load at the ends.
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1 – EO Mach-Zehnder modulator: Theoretical Introduction

Figure 1.2. [2]Co-propagating Circuit Schematic.

1.3.1 Co-propagating RF and optical waves

The following analysis is performed taking as reference the circuit in Fig.1.2 and
supposing the optical and RF signals travelling in the same direction.

To evaluate the variation of the refractive index it is necessary to know the RF
voltage applied at each arm. Starting from the input impedance Zin, it is possible
to estimate the input voltage at the beginning of the transmission line Vin

Zin = Z0
ZL + Z0 tanh(γmL)
Z0 + ZL tanh(γmL)

where Z0 is the characteristic impedance of the line, ZL is the load impedance and
γm is the RF signal propagation constant in the metal electrode. It is defined as:

γm = αm + jβm

with αm representing the line losses and βm = ω
c
nm (nm is the microwave refractive

index). Therefore Vin is obtained as follows:

Vin = EG
Zin

Zg + Zin
.

The total input voltage can be expressed as the superposition of a progressive
(V +

in ) and a regressive i.e. reflected (V −
in ) component.

Vin = V +
in + V −

in = V +
in (1 + Γin) (1.11)

where

Γin = ZL − Z0

ZL + Z0
e−2γmL (1.12)
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From (1.11) and (1.12) it is possible to find an expression of the progressive and
regressive input voltages

V +
in = Vin

(ZL + Z0)eγmL
(ZL + Z0)eγmL + (ZL − Z0)e−γmL

V −
in = Vin

(ZL − Z0)e−γmL

(ZL + Z0)eγmL + (ZL − Z0)e−γmL

(1.13)

Remembering that the voltage in a generic point of a transmission line is given
by

V (z) = V +
in e

−γmz + V −
in e

γmz

and substituting (1.13), the result is:

V (z) = EG
Zin

Zg + Zin

(ZL + Z0)eγm(L−z) + (ZL − Z0)e−γm(L−z)

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
.

In the time domain

V (z, t) = EG
Zin

Zg + Zin

(ZL + Z0)eγm(L−z) + (ZL − Z0)e−γm(L−z)

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
ejωt = V (z)ejωt

where ω is the microwave field angular frequency and V (z) is the phasor associated
to the RF voltage.

An optical beam with field group velocity v0 is supposed to enter the active
region at z = 0 and t = t0, the expression of the resulting voltage vm(z, t(z))
applied at a generic position z of the active region (0 ≤ z ≤ L with L total length
of the active area) at the time t(z) = t0 + z/v0 is

vm(z, t(z)) = V
3
z, t0 + z

v0

4
= V (z)ejω

1
t0+ z

v0

2
= V (z)ejωtejβoz

where
βo = ω

v0
= ωno

c0

is the equivalent propagation constant of the guided mode supposing the optical
losses negligible. The local change of refractive index due to an applied RF voltage
results in a variation of βo:

∆β = π

λ0

n3rΓ
G

vm(z). (1.14)

It is possible to evaluate the induced phase shift ∆Φco integrating ∆β over [0, L].
At time t = t0 it is given by
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∆Φco(f, t0) =
Ú L

0
∆βdz = π

λ0

n3rΓ
G

EG
Zin

Zin+ ZG
·

·
Ú L

0

(ZL + Z0)eγm(L−z) + (ZL − Z0)e−γm(L−z)

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
ejωt0ejβ0z.

Defining

F (u±) = 1 − u±
u±

where

u± = (±γm − jβ0)L = j(±βm − βo)L± αmL = ±αmL+ j
ω

c0
(±nm − no)L.

It is possible to define the total phase shift as

∆Φco(f, t0) = π

λ0

n3rΓL
G

EG
Zin

Zin + ZG

(ZL + Z0)F (u+) + (ZL − Z0)F (u−)
(ZL + Z0)eu+ + (ZL − Z0)eu−

ejωt0 .

1.3.2 Counter-propagating RF and optical waves

In the case of RF and optical signals propagating in opposite directions, two dif-
ferent scenario are possible concerning the reference transmission line modulator
equivalent circuit:

❼ the input and output optical ports are swapped with respect to the co-propagating
case;

❼ the optical wave has an unchanged propagation direction while the microwave
signal is generated at the load terminal and collected at the source one.

The analysis performed is similar to the the one discussed in the co-propagating
case.
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Figure 1.3. Counter-propagating Circuit Schematic.

Referring to the first equivalent circuit Fig.1.3, the RF voltage seen at the generic
position z has to be reformulated since the phase modulated optical signal prop-
agates in an opposite direction with respect to the previous case. It is applied at
the end of the active region in position z = L and propagates towards z = 0).
vm(z, t(z)) becomes:

vm(z, t(z)) = vm(z, t0 + L− z

vo
) = V (z)ejωt0ejβo(L−z)

where the line voltage V (z) does not change. Following the same steps, it is possible
to find the total phase shift ∆Φct integrating the induced ∆β over the interval [0, L]

∆Φct(f, t0) =
Ú L

0
∆βdz = π

λ0

n3rΓ
G

EG
Zin

Zin+ ZG
·

·
Ú L

0

(ZL + Z0)eγm(L−z) + (ZL − Z0)e−γm(L−z)

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
ejωt0ejβo(L−z).

Defining

F (u±) = 1 − u±
u±

where

u± = (±γm − jβ0)L = j(±βm − βo)L± αmL = ±αmL+ j
ω

c0
(±nm − no)L.

The total phase shift becomes:
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∆Φco(f, t0) = π

λ0

n3rΓL
G

EG
Zin

Zin+ ZG
·

· (ZL + Z0)F (u+)ejγmL + (ZL − Z0)F (u−)e−jγmL

(ZL + Z0)eu+ + (ZL − Z0)eu−
ejωt0 . (1.15)

Figure 1.4. Counter-propagating Circuit Schematic.

Instead, using as reference the second equivalent circuit Fig. 1.4, the line voltage
has to be reformulated as follows:

V (z, t) = EG
Zin

Zg + Zin

(ZL + Z0)eγmz + (ZL − Z0)e−γmz

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
ejωt

and so vm(z, t(z)) becomes:

vm(z, t(z)) = EG
Zin

Zg + Zin

(ZL + Z0)eγmz + (ZL − Z0)e−γmz

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
ejωtejβoz.

Taking into account the previous expression, it is possible to evaluate the total
phase shift integrating the resulting ∆β over the total length of the phase modu-
lating arm. The resulting ∆Φct is

∆Φct(f, t0) =
Ú L

0
∆βdz = π

λ0

n3rΓ
G

EG
Zin

Zin+ ZG
·

·
Ú L

0

(ZL + Z0)eγmz + (ZL − Z0)e−γmz

(ZL + Z0)eγmL + (ZL − Z0)e−γmL
ejωt0ejβoz.

✷✸



Claudia Mazzia 235208 et al. EO Modulators using Plasmonic Waveguides

∆Φco(f, t0) = π

λ0

n3rΓL
G

EG
Zin

Zin+ ZG
·

· (ZL + Z0)F (u+)ejγmL + (ZL − Z0)F (u−)e−jγmL

(ZL + Z0)eu+ + (ZL − Z0)eu−
ejωt0 .

which coincides with the one evaluated in (1.15).

1.3.3 Frequency Response

[2][3] As already discussed in the lumped case, the frequency response can be anal-
ysed studying the behaviour of the modulator index m(ω) where

m(ω) =
-----∆Φ(ω)
∆Φ(0)

----- .
It can be mainly limited by three factors:

❼ the velocity mismatch between the optical and the RF signals (∆n = nm−no /=
0 );

❼ the RF losses of the modulator line;

❼ the impedance mismatch of the transmission line with respect to the generator
and the load.

Considering the co-propagating case, the expression of the the the total induced
phase shift with respect to a reference time t, in absence of losses (αm = 0) and
impedance mismatch (ZL = ZG = Z0) becomes:

∆Φco(ω) = − π

λ0

n3rΓL
G

EG
Z0

Z0 + ZG
sinc

5
jω

2c0
(nm − no)L

6
e
jω
2c0

(nm−no)Lejωt0 .

and so

m(ω) = |F (u+)| =
-----sin(U)

U

-----
where

U = jω

2c0
(nm − no)L. (1.16)

Imposing the following conditions

mop(f3dB,op)|dB = 10 log10[m(f3dB,op)] = −3dB (1.17)
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mel(f3dB,el)|dB = 20 log10[m(f3dB,el)] − 3dB (1.18)

it is possible to obtain U3dB,op = 1.89 and U3dB,el = 1.39 and so, from (1.16), f3dB,el
and f3dB,op which are respectively the electrical and optical 3dB Bandwidth

f3dB,opL = 1.89c0

π(nm − no)
GHz · m (1.19)

f3dB,elL = 1.39c0

π(nm − no)
GHz · m (1.20)

It can be noticed from (1.19) and (1.20) that the velocity mismatch causes a
reduction of the bandwidth.
In the case of nearly velocity matching (5% of velocity mismatch) and perfect
impedance matching (ZL = ZG = Z0), ∆Φco(ω) becomes

∆Φco(ω) = − π

λ0

n3rΓL
G

EG
Z0

Z0 + ZG

1 − e−αmL

αmL
ejωt0

and so

m(ω) = e−W
-----sinh(W )

W

-----
where

W = αm(f)L
2 = αm(f0)L

2

ó
f

f0
(1.21)

Imposing (1.17) and (1.18), it is possible to fine the electrical and optical 3dB
Bandwidth in the presence of RF losses (W3dB,el = 0.368 and W3dB,op = 0.794).
Substituting these two value in equation (1.21), it is possible to find the total line
attenuation corresponding to the optical and electrical bandwidth (αm(f3dB,op) and
αm(f3dB,el))

αm(f3dB,op)L
2 = 0.794

αm(f3dB,op)L = 1.588

αm(f3dB,op)L|dB = 13.79dB

αm(f3dB,el)L
2 = 0.368
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αm(f3dB,el)L = 0.736
αm(f3dB,el)L|dB = 6.393dB

The effect of losses are a reduction of the electrical and optical 3dB Bandwidth
and the filling of response zeros, they can be the main cause of a bandwidth re-
duction in high speed modulators which turns into a reduction of the electro-optic
interaction.
In presence of impedance mismatch but no losses or velocity mismatch

∆Φco(ω) = − π

λ0

n3rΓL
G

EG
Zin

Zin + ZG

F (u−)
e−2jβmL

and so

m(ω) = RL +RG

RL

----- Zin
Zin + ZG

F (u−)
e−2jβmL

-----
where

u− = −2jβmL.
Impedance mismatch causes multiple reflections of the microwave signal and so

the effective voltage on the electrodes changes as a function of frequency, which
results in ripple in the optical response.

Counter propagating frequency response

To understand the counter-propagating frequency response a comparison with the
results obtained in the co-propagating case is performed.

The total induced phase shift for co-propagating signals with respect to a fixed
time t0 in the case of perfectly matched load and transmission line is expressed as
follows:

∆Φco(f) = − π

λ0

n3rΓL
G

EG
Z0

Z0 + ZG

F (u+)
eu+

=

= ∆Φ(0)e
u+

2

sin
C
−j αmL2 + πf

c0
(nm − no)L

D

−j αmL2 + πf

c0
(nm − no)L

(1.22)

where

∆Φ(0) = − π

λ0

n3rΓL
G

EG
Z0

Z0 + ZG
.

In the counter propagating case instead
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∆Φct(f) = − π

λ0

n3rΓL
G

EG
Z0

Z0 + ZG

F (u+)
eu+

eγmL =

= ∆Φ(0)e
u+

2

sin
C
−j αmL2 + πf

c0
(nm + no)L

D

−j αmL2 + πf

c0
(nm + no)L

e
γm+j3βo

2 L. (1.23)

If the losses are negligible, (1.22) and (1.23) become:

∆Φco(f) = ∆Φ(0)e−j πf
c0

(nm−no)Lsinc
C
πf

c0
(nm − no)L

D

∆Φct(f) = ∆Φ(0)e−j πf
c0

(nm+3no)Lsinc
C
πf

c0
(nm + no)L

D
.

Looking at the sinc argument in the two cases, it can be noticed that for co-
propagating waves a velocity matching and so a synchronization of the RF and
optical signals can be achieved since the argument is proportional to a difference
of refractive indexes, while in the couter-propagating case a synchronization of the
two signals is impossible due to the presence of a sum of the two real and positive
values nm and no.

A further confirmation comes looking at the expression of the optical response
3dB Bandwidth

f3dB,co = 1.39c0

π(nm − no)L

f3dB,ct = 1.39c0

π(nm + no)L
in the case of counter-propagating waves the bandwidth is furtherly reduced with
respect to the one obtained for co-propagating signals and so the performances are
even worse.

1.4 Chirp Model

[2] Referring to the lumped case, in addition to the amplitude modulation per-
formed by output optical combiner, a spurious phase modulation is present at the
output of the EO Mach Zehnder Modulator due to geometrical factor rather than
physical parameters.
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To evaluate the instantaneous frequency deviation a time dependence is introduced
in (1.4)

b
Í

1 = e2jφspe−jk0L
è
αe−j∆ΦU (t) + (1 − α)e−j∆ΦL(t)a1

é
=

= K
è
αe−j∆ΦU (t) + (1 − α)e−j∆ΦL(t)a1

é
where K = a1e

2jφspe−jk0L is a time independent constant. The phase of the output
signal is obtained as

φ(t) = − tan−1
C

Im(bÍ
1/K)

Re(bÍ
1/K)

D

φ(t) = tan−1
C
α sin(∆ΦU(t)) + (1 − α) sin(∆ΦL(t))
α cos(∆ΦU(t)) + (1 − α) cos(∆ΦL(t))

D
(1.24)

∆f(t) is obtained deriving (1.24) with respect to the time

∆f(t) = 1
2π

dφ(t)
dt = 1

2π
d
dt tan−1

C
α sin(∆ΦU(t)) + (1 − α) sin(∆ΦL(t))
α cos(∆ΦU(t)) + (1 − α) cos(∆ΦL(t))

D
.

In the case of symmetrical splitter and combiner (i.e.α = 1/2) ∆f(t) becomes

∆f(t) = 1
2π

d
dt tan−1

C
sin(∆ΦU(t)) + sin(∆ΦL(t))
cos(∆ΦU(t)) + cos(∆ΦL(t))

D
=

= 1
2π

d
dt tan−1

 2 sin
1

∆ΦU+∆ΦL
2

2
cos

1
∆ΦU−∆ΦL

2

2
2 cos

1
∆ΦU+∆ΦL

2

2
cos

1
∆ΦU−∆ΦL

2

2
 =

= 1
2π

d
dt tan−1

C
tan ∆ΦU + ∆ΦL

2

D
= 1

4π
d(∆ΦU + ∆ΦL)

dt

Substituting the expressions of ∆ΦU and ∆ΦL (1.6)

∆f(t) = 1
4

C
1
VπU

dvinU
dt − 1

VπL

dvinL
dt

D
. (1.25)

While the result of the amplitude modulation is

Pout = 1
2η[1 + cos(∆ΦU(t) − ∆ΦL(t))]

deriving with respect to time
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1
Pout

dPout
dt = π

1
2η sin(∆ΦU − ∆ΦL)

1
2η[1 + cos(∆ΦU − ∆ΦL)]

C
1
VπU

dvinU
dt + 1

VπL

dvinL
dt

D

= tan
A

∆ΦU(t) − ∆ΦL(t)
2

BC
1
VπU

dvinU
dt + 1

VπL

dvinL
dt

D
. (1.26)

The instantaneous frequency deviation is described by the Henry chirp parameter
αH

αH = 4π∆f
1
Pout

dPout
dt

(1.27)

substituting (1.25) and (1.26) in (1.27)

αH =
1

VπU

dvinU
dt − 1

VπL

dvinL
dt

1
VπU

dvinU
dt + 1

VπL

dvinL
dt

cot
A

∆ΦU(t) − ∆ΦL(t)
2

B
.

It is a function of time which values might be positive or negative according
to the modulator parameters and the driving voltages. If vinU = vinL = vin, αH
becomes:

αH = VπU − VπL
VπU + VπL

cot

A
∆ΦU(t) − ∆ΦL(t)

2

B
= VπU − VπL
VπU + VπL

cot

A
π

2
vin(t)
Vπ

B
where Vπ has been defined as

Vπ = VπUVπL
VπU + VπL

.

In small signal conditions

αH = VπU − VπL
VπU + VπL

cot
A
π

2
Vin(t)
Vπ

B
(1.28)

where

vin(t) = Vin + v̂in(t) ≈ Vin.

It can be noticed from (1.28) that αH is a constant in small signal condition and
its value can be tuned by the value of cot ((π/2)(Vin(t)/Vπ)). Biasing the device at
the optimum point for linearity (i.e. Vin = Vπ/2), cot ((π/2)(Vin(t)/Vπ)) is equal to
1 and the chirp just depends on the unbalance between the modulator upper and
lower arms, while if the modulator is completely symmetrical VπU = VπL and the
chirp is null at any applied bias point.
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Chapter 2

EO Mach-Zehnder
modulator: Multi-Sectional
Model

2.1 Introduction

In the previous chapter, basic theoretical knowledge on a Mach Zehnder modulator

was proposed, the device was analysed when it is considered lumped or travelling

wave, presenting some parameters that are fundamental for the description of its

behaviour. The aim of this chapter is to propose a model that is realizable within

the framework of a microwave CAD suite allowing for the optimization of the ge-

ometrical parameters, time-domain analysis, small-signal and large signal analysis.

In order to guarantee the compatibility of the device with the CAD requirements

some solutions are adopted, the overall design is divided in blokes and the opti-

cal signals are represented as pseudo-electrical signals. Finally few implementation

details regarding the block models and their realizations are presented.
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2.2 Modelling

[2][3][5] In the previous chapter the Mach-Zehnder amplitude modulator has been
presented as a structure made of three sections:

❼ an Y-junction beam splitter;

❼ an Y-junction beam combiner;

❼ a region made of two arms providing a phase shift between the splitted signals
if required.

The phase delay in the inbetween region is given by the interaction between the
optical signal travelling in the two arms of the modulator and a microwave signal
guided by an RF transmission line. Its magnitude depends mainly on three factors:
the line length, the mismatch between the optical and the RF signal velocities
and the microwave electric field. In the development of this kind of devices in an
RF CAD environment some issues have to be considered. First of all, the overall
structure is dispersive and non-linear, it cannot be directly handled by a RF circuit
or system simulators which supports only linear and dispersive or memoryless and
non-linear devices. In order to overcome this problem, the modulator has been
divided in two blocks:

❼ the Phase-Modulator Block (PM block) representing the phase shifting arms;

❼ the Interference Block (AM block) representing the Y-combiner.

Another concern is to find a way to describe optical signals in a microwave
CAD environment since optical components does not exist in this kind of tool.
The adopted solution associates electrical variables (ports) to optical signals. For
instance, in the frequency domain, the optical signal power and slowly varying phase
are expressed as RF currents having the same frequency as the input RF signal.

Finally, the electro-optical phase shift has to be described no more in term of
generator and load impedances but as a function of the voltage at the input and
output sections of the interaction region. This requirement comes from the need
to have a model compatible with a circuit simulator based, for example, on nodal
analysis.
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Figure 2.1. [5]Schematic of a Mach-Zehnder Amplitude Modulator.

2.3 Phase-Modulation Block

[2][3][5]The PM block is a four port block model with two electrical ports and two
optical ones. The driving measures are the electrical voltages applied at the RF
ports while an input phase delay (Φin) coming from other circuit elements and
the total phase modulation (Φout) are the optical measures expressed as currents
(respectively Iin and Iout).
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Figure 2.2. [3]Phase-Modulation Block.

The quantity to measure is the electro-optical phase shift ∆Φout expressed as a
function of the voltage at the input section of the interaction region between the
optical and the RF signals (V1 = V (z1) where z1 = 0) and the voltage at the output
one (V2 = V (z2) where z2 = L).

2.3.1 Mathematical Formulation

[3] The first step to begin the development of the corresponding CAD model is
the study of a more general mathematical reformulation of the previously used
formalism. The model implemented has to be stand alone i.e. independent from
any assumption on external conditions imposed by the circuit network connected
to it.
As already seen, the interaction region between the optical and microwave signal
can be modelled simply as a transmission line of length L and it is analysed in term
of active device electrode voltage distribution but, due to the previous statement,
the co-propagating and counter-propagating operating conditions are unified and
do not require a separate discussion any more.

Starting from the expression of the voltage at a generic section z of a homoge-
neous transmission line,

V (z) = V +
1 e

−γmz + V −
1 e

γmz (2.1)

where V +
1 and V −

1 , respectively, the progressive and regressive voltage measured at
z = 0, it is possible to find the input and output voltagesI

V1 = V +
1 + V −

1
V2 = V +

1 exp(−γmL) + V −
1 exp(γmL)
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where L is the line length.

To obtain the line voltage V (z) as a function of V1 and V2 this system has to
be inverted so that it is possible to find V +

1 and V −
1 , the solution in matrix form is:C

V +
1
V −

1

D
= 1

exp(γmL) − exp(−γmL)

C
exp(γmL) −1

exp(−γmL) 1

D C
V1
V2

D
and then considering also the effect of the propagation in time domain

V (z, t) = V (z)ejωt = (V1e
γmL − V2)e−γmz + (V2 − V1e

−γmL)eγmz
eγmL − e−γmL

ejωt.

From this is possible to measure the line voltage seen by the optical field at
section z at t (reference time). This voltage is:

Vµ(z, t(z)) = V
3
z, t0 + z

vo

4
= V (z)ejω

1
t0− z

v0

2
= V (z)ejωtejβ0z (2.2)

where t0 = 0 is the reference time and vo = n0/c (c is the speed of light and no the
optical refractive index).

Substituting the voltage in (2.2) in (1.1), the electro-optic induced change in the
refractive index is obtained as follows:

∆n = −1
2
n3rΓ
G

V (z)ejωtejβ0z. (2.3)

Following the same procedure done in Ch.1, the global induced phase shift is
obtained integrating the variation of the refractive index along the active region as

∆Φ(f, t0) = 2π
λ0

Ú L

0
∆n(z)dz

Substituting (2.3) and (2.1) the result is

∆Φ(f, t0) = − π

λ0

n3rΓ
G

ejωt0
Ú L

0
V (z)ejβ0zdz =

= − π

λ0

n3rΓ
G

ejωt0
Ú L

0
(V +

1 e
−γmz+jβ0z + V −

1 e
γmz+jβ0z)dz

Finally, defining

ν± = (±γm + jβ0)L

and

Ψ(ν±) = 1
L

Ú L

0
eν±

z
Ldz = 1

ν±
(1 − eν±).
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the phase shift in term of progressive and regressive wave is obtained as:

∆Φ(f, t0) = − π

λ0

n3rΓL
G

ejωt0(V +
1 Ψ(ν−) + V −

1 Ψ(ν+)).

In order to find the phase shift as a function of the line input and output voltages
an additional step is required. Considering the functions

ζ1(f) = Ψ(ν−)eγmL − Ψ(ν+)e−γmL

eγmL − e−γmL

ζ1(f) = −Ψ(ν−) + Ψ(ν+)
eγmL − e−γmL

which are a linear combination of the Ψ function, ∆Φ(f, t0) becomes:

∆Φ(f, t0) = − π

λ0

n3rΓL
G

ejωt0(V1ζ1(f) + V2ζ2(f)).

DC finite resitance

Even though the transmission line model used to describe the behaviour of the metal
electrodes supposes that their conductivity is infinite (i.e. they can be seen as short
circuits), the active region is characterized by a small parasitic resistance which
may influence the value of Vπ,DC (i.e. the optimum bias point for linearity when
a small signal analysis is performed). Generally this resistance can be neglected if
an accurate analysis in not required but in low power structures, in order to reduce
the ON − OFF voltage, the active region length L is increased and it turns in an
increase of the active region resistance due to its linear dependence on the length.
The result is that the parasitic resistance RDC cannot be neglected anymore.

The strategy adopted to implement the presence of RDC and its influence on the
overall performance is simply to replace the transmission line with its series resistor
at DC which does not require to modify the transmission line model developed so
far or the introduction of an ad hoc frequency-independent attenuation constant.
The value of RDC is obtained as

RDC = R · L

where R is the resistance per unit of length. In order to formulate the optical
response in a way consistent with the formalism developed so far, the voltage dis-
tribution along the resistor has to be evaluated. Considering an ohmic conductor
of length L

V (z) = V1 − V1 − V2

L
z (2.4)
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2 – EO Mach-Zehnder modulator: Multi-Sectional Model

where z ∈ [0, L], V1 and V2 are the resistor port voltages such that

V1 − V2 = RDCI.

I as the current flowing in the resistor.
It is possible to evaluate the induced phase shift at DC substituting (2.4) in the
expression of ∆Φ(0, t0)

∆Φ(0, t0) = lim
f→0

− π

λ0

n3rΓ
G

ejωt0
Ú L

0
V (z)ejβ0zdz =

= − π

λ0

n3rΓ
G

Ú L

0
(V1 − V1 − V2

L
z)dz =

∆Φ(0, t0) = − π

λ0

n3rΓ
2G (V1 − V2)L. (2.5)

Eqaution (2.5) becomes equal to the induced phase shift of a lumped ideal mod-
ulator (1.2) when RDC ≈ 0 (i.e. V1 = V2 = V )

∆Φ(0, t0) = − π

λ0

n3rΓ
G

LV

.

2.3.2 Modelling

[2][3][5] Starting from the model just explained, the PM block has been developed
in the CAD environment It is in turn divided in two sub-component:

❼ a modulating core which provides the undelayed (i.e. referring to the input of
the interaction section) electro-optical phase modulation (PM Kernel);

❼ an optical delay line which adjust the optical phase shift according to the
multisectional requirement of the device.

Phase Modulating Kernel

The PM Modulating Kernel is a linear three-port device characterized by two elec-
trical input and one optical output. At the optical port (port 3) is present the
undelayed optical phase shift (∆Φ0) as a function of the RF signal (i.e. the volt-
ages at port 1 V1 and 2 V 2). The whole admittance matrix in the frequency domain
is:  I1

I2
I3

 =

 Y11 Y12 0
Y21 Y22 0
ζ1 ζ2 0


 V1
V2
V3
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where

YRF =
C
Y11 Y12
Y21 Y22

D
is the admittance matrix of the transmission line section and

Y∆Φ = [ζ1ζ2]
is the sub-matrix related to the optical phase shift. It can be noticed the presence

of the zero column in the admittance matrix Y represents the impossibility of the
voltage at port 3 (the optical one) to influence the electrical circuit part. Since
the interaction region is modelled as a lossy transmission line, the RF admittance
matrix can be evaluated as:

YRF = Y0(I − S) · (I + S)−1

where Y0 is the characteristic admittance and

S =
C

0 e−γmL

eγmL 0

D
and so

YRF = Y0

1 − e−2γmL

C
1 + e−2γmL −2e−2γmL

−2e−2γmL 1 + e−2γmL

D
(2.6)

valid for f /= 0. When the frequency is zero, YRF is equal to

YRF =


1

RDC

− 1
RDC

− 1
RDC

1
RDC


Y∆Φ instead represents an ideal linear controlled current generator (V CCS)

where Y33 = 0 has been imposed. It generates the current I3 which is the elec-
trical variable corresponding to the undelayed phase shift. Starting from:

I3 = [ζ1ζ2]
C
V1
V2

D
where 

ζ1(f) = Ψ(ν−)eγmL − Ψ(ν+)e−γmL

eγmL − e−γmL

ζ1(f) = −Ψ(ν−) + Ψ(ν+)
eγmL − e−γmL

✸✽



2 – EO Mach-Zehnder modulator: Multi-Sectional Model

Ψ(ν±) = 1
ν±

(1 − eν±),

ν± = (±γm + jβ0)L

neglecting the dependence at the reference time t0, the phase shift is obtained as:

I3 = ∆Φ0(f, t0) = − π

λ0

n3rΓL
G

(V1ζ1(f) + V2ζ2(f))

Substituting the value of the ON −OFF voltage Vπ, the final result is:

Y∆φ0 = π

Vπ
[ζ1ζ2]

.

Optical Phase line

It is a two-port device modelled as an ideal lossless transmission line terminated on
matched loads to avoid back reflection, an output controlled current source guaran-
tees complete decoupling from subsequent stages and makes the line unidirectional.
Since the phase signal is not a real phase signal but a current, this device can be
connected to those elements that are contained in other modulation blocks like ideal
current generators, current meters or other optical lines.

Figure 2.3. [3]Optical Phase Line.
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The physical phenomenon modelled is the delay of the induced phase shift due
to the finite velocity of the optical beam. The input and output phase modulation
are related as follow

Φout = (Φin + ∆Φ0)e−jω no
c
L = Φine

−jω no
c
L + ∆Φ

The corresponding electrical formulation is

Iout = I Í
oute

−jβ0L = (−Iin + I3)e−jβ0L

where β0 = ω no
c
.

2.4 AM Block

[2][3][5] The interference block is a five port device that models the behaviour of an
output optical combiner.

Figure 2.4. [3]Interferometer.

There are three input ports and two output ones where two of the optical inputs
are ∆ΦU and ∆ΦL, respectively the total phase shift coming from the lower and
upper Mach-Zehnder modulator arm and are represented as currents, the remaining
optical input represents the input optical power Pin as a current. The two optical
outputs represent the output optical power resulting from the amplitude modulation
i.e. interference of the the signals coming from the two arms and the instantaneous
frequency deviation (chirp) ∆f(t), they are as well described as currents.

The aim of this section is to provide a mathematical formulation of the output
optical power intensity and the instantaneous frequency chirping as a function of
the splitting ratios of the Y-junctions and of the interferometer arms asymmetry.

✹✵
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The amplitude of the output optical field aout is defined as follows:

aout =
ain

√
η√

2
[
√
αej∆ΦU +

√
1 − αej∆ΦL ] (2.7)

where η = Pin/Pout is the overall power efficiency in absence of modulation and
α = PU/PT is the asymmetry factor equal to the power flowing in the upper (PU)
arm and the transmitted power (PT = ηPin), these two parameters make possible
to take into account the splitting ratio effect.
It is possible to find the normalized output power from (2.7) as:

P =
....aoutain

....2
= η

2 [
√
αej∆ΦU +

√
1 − αej∆ΦL ][

√
αe−j∆ΦU +

√
1 − αe−j∆ΦL ]

= η

2 + 2η
√
α− α2 e

j(∆ΦU−∆ΦL)

2

P = η
1 + 2

√
α− α2 cos(∆ΦU − ∆ΦL)

2 . (2.8)

In case of η = 1, α = 0.5 and ∆ΦU = −∆ΦL = ∆Φ, (2.8) simplifies as

P = 1 + cos(2∆Φ)
2 .

Defining θ as the parasitic phase modulation of the AM signal, it is possible to
obtain the instantaneous frequency chirping ∆f(t) as

∆f(t) = 1
2π tan−1

C
α sin(∆ΦU) + (1 − α) sin(∆ΦL)
α cos(∆ΦU) + (1 − α) cos(∆ΦL)

D

where the time derivative is implemented by an internal component DVDT.

2.5 Implementation

[3]The implementation of the two blocks just described has been realized exploit-
ing the Model Wizard Tool provided by AWR MWOFFICE. The source codes
describing the behaviour of the devices are written in C++, then compiled into a
Dynamic-Linked Library (DLL) using Microsoft Visual Studio. Once the DLL is
installed a library containing all the devices implemented is available in the AWR
environment.

Standard base class supplied by AWR are provided in order to describe properly
the behaviour of the devices. The one exploited in this particular project are:
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❼ KNoCacheElectModel class, in order to provide a description of linear mod-
els through their frequency domain admittance matrix;

❼ KCacheElectModel class, in order to provide a description of multiport el-
ements through their Y −Matrix;

❼ KNoAggregateModel class, in order to characterize a linear model with an
equivalent network using a user defined netlist;

❼ KNL3BranchModel class, in order to provide a description of a generic
three-port nonlinear VCCS that has an output current controlled by its three
branch voltages.

2.5.1 Phase Modulator Implementation

A Top-Down implementation strategy is exploited to build the Phase Modulation
Block. The top level structures are described as an aggregate models of all the
bottom level components until the last level is reached i.e. the one that has com-
ponents which must be described by their Y-matrix, or which have an equivalent
circuit made of standard elements.
Once in the working space, a model interface makes it possible for the user to set
the following parameters

❼ VπL [V ·m] (product between the ON −OFF driving voltage and the length
of the active region);

❼ L [m] (active region length);

❼ no (effective refractive index for the optical field);

❼ nm (effective refractive index for the RF field);

❼ R [Ω/m] ( DC substrate/electrode resistance per unit of length);

❼ α0 [Np/m] (conductor skin effect attenuation);

❼ α1 [Np/m] (dielectric loss attenuation factor);

❼ f0 [Hz] (attenuation frequency reference);

❼ Z0 [Ω] (line characteristic impedance);

❼ PhaseReversal (flag which alters the sign of Vπ).

✹✷
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It has to be noticed that the transmission line complex propagating constant γm
is computed taking into account both the dielectric and the conductor attenuation
factors, the formula adopted in the model is:

γm = α0

ó
f

f0
+ α1

f

f0
+ j

2π
c0
nmf.

A further version of the PM block has been developed making it possible to
import the frequency-dependent microwave propagation characteristics computed
through external EM models as user-defined files of frequency samples. It is ex-
ploited when a more accurate analysis is needed or the waveguide structures under
test are more complex or unconventional.

2.5.2 Interferometer Implementation

The AM block is a non-linear four port device described by the following equation

Pout = Pinη
1 + 2

√
α− α2 cos(∆ΦU(t) − ∆ΦL(t))

2 (2.9)

It is implemented cascading a non linear controlled current source (VCCS) with
a network of linear components where the optical quantities are represented by
electrical ones. Therefore, (2.9) is represented as:

Iout = Vinη
1 + 2

√
α− α2 cos(V∆φ)

2 (2.10)

where

❼ Pout → Iout;

❼ Pin → Vin;

❼ ∆ΦU(t) − ∆ΦL(t) → V∆φ.

and

❼ η (overall power efficiency 0 ≤ η ≤ 1);

❼ α (beam splitter asymmetry factor 0 ≤ α ≤ 1);

are the input variable that can be set by the user.
The presence of the linear network is necessary to fulfil three functions:

1. the need to convert the current representing the phase shift of a single arm
coming from the PM block into a voltage of the same amplitude (using unitary
resistors) to interface it properly with the non-linear controlled current source;
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2. the need to compute the phase difference ∆ΦU(t) − ∆ΦL(t);

3. the need to introduce small additional elements used to overcome the restric-
tion that does not allow non linear elements to be connected in parallel. There-
fore, the VCCS has not direct access to the external ports, and so the whole
component can be freely linked to other non-linear elements.

✹✹



Chapter 3

Plasmonic Waveguides

3.1 Introduction

Differently from the previous chapters, the analysis moves on the characterization

of plasmonic waveguides, these particular structures will be exploited as active

areas when the plasmonic electro-optical modulator will be discussed, their main

feature is the capability to highly confine the RF electric field at the interface be-

tween the metal and the electro-optic material. The chapter starts with a general

characterization of the surface plasmons, then the study of the plasmonic waveg-

uide field distribution is carried out, with particular care in the description of the

simple propagation at the dielectric-Metal interface and then the propagation in

metal-dielectric-metal structures. In particular, it will be demonstrated that this

last configuration supports both oscillatory modes (common TE and TM modes)

characterized by real propagation constants, and plasmonic modes characterized

by imaginary propagation constants, they can propagate as TM waves only in a

certain wavelength range, precisely the one corresponding to a negative real part
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of the metal permittivity (NIR to visible range).

3.2 Characterization

[6]Surface plasmons or polaritons are waves propagating along the interface between
a dielectric material and a metal but attenuating exponentially in both media, they
exist when the metal permittivity has a negative real part. In order to introduce
a first generic characterization, a basic structure made of three layers is defined
thaking as reference Fig.3.1:

Figure 3.1. [6]Plasmonic Waveguide.

❼ the cladding and substrate (characterized respectively by their relative permit-
tivities Ôc and Ôs ) are the two external layers;

❼ the in-between region is named film (characterized by its relative permittivity
Ôf ).

In the following analysis, the two side regions are supposed to have infinite extension
along the y-direction while the film is thick 2a. The propagation takes place in the
z -direction while the transverse confinement direction is along x ; the overall field
solution has a dependence from time t and the propagation direction z of the kind:

ej(ωt−βz).

Starting from the study of the field propagation in the side regions along the x -
direction, it can be noticed that the attenuation coefficients real part corresponding
to the cladding αc and substrate αs have to be positive since the field behaviour
is exponentially decaying away from the interface, therefore, the field shape for
x < −a (substrate) and x > a (cladding) is:

✹✻
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e−αc,s|x|

with

α2
s = β2 − k2

0Ôs
α2
c = β2 − k2

0Ôc
(3.1)

where k0 = 2π/λ0 is the vacuum wavenumber and λ0 is the wavelength correspond-
ing to the operating frequency f0 = c0/λ0.
In the z direction, the solutions (β) that guarantee the exponential attenuation of
the electric field while propagating in the z -directions are the ones with negative
imaginary parts

β = βR − jβI with βI ≥ 0. (3.2)

.
and so

e−jβz = e−j(βR−jβI)z = e−jβRze−βIz.

In the film region, the solutions in the x -direction are a linear combination of
hyperbolic terms (sinh(γx) and cosh(γx) ),they are denoted as Plasmonic Solutions
where γ has been defined as an ”attenuation” coefficient. In order to find γ the
following relation is imposed

k2
f = k2

0Ôf − β2

where kf is the transverse cutoff wavenumber.
Finally γ is defined as:

γ2 = −k2
f or γ = jkf . . (3.3)

Relation (3.3) holds especially in case the film region is a metal with a negative
real part of the dielectric constant (i.e. k2

f < 0).
In order to find plasmonic solutions (TM mode solutions) the following equations
have to be solved in each region:

∂2Ez
∂x2 + (k2

0Ôi − β2)Ez = 0

Ex = −j β

−γ2
∂Ez
∂x

(3.4)

Hy = ωÔ0Ôi
β

Ex
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where i corresponds to c, f , s. The following field distributions are obtained:

Hy(x) =



jωÔ0E0
Ôf
γ

cosh(γx+ ψ) |x| ≤ a

−jωÔ0E0
Ôc
αc

sinh(γa+ ψ)e−αc(x−a) x ≥ a

−jωÔ0E0
Ôs
αs

sinh(γa− ψ)eαs(x+a) x ≤ −a

(3.5)

imposing Ez = j 1
ωÔ0Ôi

∂Hy

∂x
it is possible to obtain Ez(x)

Ez(x) =



E0 sinh(γx+ ψ) |x| ≤ a

E0 sinh(γa+ ψ)e−αc(x−a) x ≥ a

E0 sinh(γa− ψ)eαs(x+a) x ≤ −a

(3.6)

imposing Ex = − β

ωÔ0Ôi
Hy it is possible to obtain Ex(x)

Ex(x) =



E0
jβ
γ

cosh(γx+ ψ) |x| ≤ a

−E0
jβ
αc

sinh(γa+ ψ)e−αc(x−a) x ≥ a

−E0
jβ
αs

sinh(γa− ψ)eαs(x+a) x ≤ −a

.(3.7)

It can be noticed that imposing the continuity of the tangential H -field at the
interfaces (x = ±a) is equivalent to impose the continuity of the normal D-field
(ÔEx), it results in:

Ôf
γ

cosh(γa+ ψ) = − Ôc
αc

sinh(γa+ ψ)

Ôf
γ

cosh(γa− ψ) = − Ôs
αs

sinh(γa− ψ)

which becomes

tanh(γa+ ψ) = −ρcαc
γ

tanh(γa− ψ) = −ρsαs
γ

.

(3.8)
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where

ρc = Ôf
Ôc

and ρs = Ôf
Ôs

(3.9)

Substituting (3.8), the system of solutions (3.5) can be rewritten as

Hy(x) =



H0 sinh(γx+ ψ) |x| ≤ a

H0 sinh(γa+ ψ)e−αc(x−a) x ≥ a

H0 sinh(γa− ψ)eαs(x+a) x ≤ −a

(3.10)

where

H0 = jωÔ0E0
Ôf
γ
.

Equations (3.8) can be decoupled in

tanh(2γa) = −γ(ρcαc + ρsαs)
γ2 + ρcαcρsαs

(3.11)

and

tanh(2ψ) = −γ(ρcαc − ρsαs)
γ2 − ρcαcρsαs

. (3.12)

It is possible to find β, γ, αc and αs (complex quantities when the media are
lossy) from (3.11) and from the following expression:

γ2 = k2
0Ôf − β2

α2
c = k2

0Ôc − β2 (3.13)

α2
s = k2

0Ôs − β2.

Then ψ can be found, it is defined up to an integer multiple of jπ/2 since the
following relation holds

tanh(2ψ ± jmπ) = tanh(2ψ)

where the introduction of m is necessary to denote particular modes. It is possible
to write the inverse of (3.8) as:

γa+ ψ = tanh−1
A

−ρcαc
γ

B
✹✾
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and

γa− ψ = tanh−1
A

−ρsαs
γ

B
− jmπ

leading to

γa = 1
2 tanh−1

A
−ρcαc

γ

B
+ 1

2 tanh−1
A

−ρsαs
γ

B
− 1

2jmπ (3.14)

and

ψ = 1
2 tanh−1

A
−ρcαc

γ

B
− 1

2 tanh−1
A

−ρsαs
γ

B
+ 1

2jmπ. (3.15)

As it will be discussed, the modes of interest are the TM0 and TM1 corresponding
to m = 0 and m = 1. If an additional jπ/2 term is present, depending on the value
of the parameter, (3.14) and (3.15) becomes

γa = 1
2 tanh−1

A
− γ

ρcαc

B
+ 1

2 tanh−1
A

− γ

ρsαs

B
− 1

2j(m) − 1π (3.16)

ψ = 1
2 tanh−1

A
− γ

ρcαc

B
− 1

2 tanh−1
A

− γ

ρsαs

B
+ 1

2jmπ (3.17)

where the following relation has been used

tanh−1(x) = tanh−1
31
x

4
+ sign(x)jπ2

valid for x real and |x| < 1.

It can be noticed that (3.12) is equal to zero in case of a symmetric structure (i.e.
Ôc = Ôs and αc = αs) leading to two possible solutions ψ = 0 and ψ = j(π/2). The
first solution is denoted as even or symmetric due to the fact that the corresponding
transverse electric filed Ex(x) and magnetic field Hy(x) are symmetric within the
film region (they are proportional to cosh(γx) which is an even function of x). In
case of even modes, (3.11) becomes:

tanh(γa) = −ρcαc
γ

. (3.18)

The second solution is instead denoted as odd or antisymmetric due to the
antisymmetry of the transverse electric filed Ex(x) and magnetic field Hy(x) that
are proportional to cosh(γx+ jπ/2) = j sinh(γx) odd function of x. In the odd case
equation (3.11) becomes:
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coth(γa) = −ρcαc
γ

(3.19)

where the identity

tanh
3
x± jπ2

4
= coth(x)

has been exploited.

The notation even/symmetric and odd/antisymmetric also holds for non sym-
metric structures, corresponding respectively to solutions that have value of ψ
mostly real (even) or with imaginary part close to jπ/2 (odd).

3.2.1 Oscillatory Modes

Plasmonic waveguides support not only plasmonic modes but also oscillatory ones,
where the peak of the field instead of being at the interfaces is at the centre of
the film region (as happens in common waveguides). In this case the waves are
characterized by γ = jkf which is predominantly imaginary, kf is defined as:

kf =
ñ
k2

0Ôf − β2.

Substituting jkf it in (3.11), the result is:

tanh(2kfa) = kf (ρcαc + ρsαs)
k2
f + ρcαcρsαs

(3.20)

where the identity

tanh(jx) = j tanh(x)

has been exploited.
If kf is predominantly real, both TE and TM modes exist and the TE solutions are
the ones obtained setting ρc = ρs = 1. Imposing ψ = jφ, (3.8) becomes:

tanh(kfa+ φ) = −ρcαc
kf

tanh(kfa− φ) = −ρsαs
kf

(3.21)

while (3.14) and (3.15) become:

kfa = 1
2 tanh−1

A
ρcαc
kf

B
+ 1

2 tanh−1
A

−ρsαs
kf

B
+ 1

2mπ (3.22)

and

✺✶



Claudia Mazzia 235208 et al. EO Modulators using Plasmonic Waveguides

ψ = 1
2 tanh−1

A
−ρcαc

kf

B
− 1

2atanh
A

−ρsαs
kf

B
+ 1

2mπ (3.23)

that are valid both for TE and TM modes.
In the following sections, the procedure just described will be applied in order to find
the plasmonic solutions for the simple case of propagation in a single Dielectric-
Metal interface and in case of propagation in a Metal-Dielectric-Metal structure.

3.3 Metal-Dielectric Interface

Figure 3.2. [6] Metal Dielectric Structure.

[6]As it can be seen in Fig.3.2, the guiding structure is composed of two semi-
infinite section, the metal film (where a has been considered infinite) and the di-
electric cladding, with the interface placed at x = 0.

Considering a dependency from the propagation direction z and from time t of
the kind

ejωt−βz

the field components for TM modes can be obtained from (3.4) as:

Hy(x) =


−jωÔ0E0

Ôd
αd
e−αdx x ≥ 0

jωÔ0E0
Ôm
γ
e−γ|x| x ≤ 0

(3.24)

Ex(x) =


−E0

jβ
αd
e−αdx x ≥ 0

E0
jβ
γ
e−γ|x| x ≤ 0

(3.25)
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Figure 3.3. Field Components for TM modes.

Ez(x) =


E0e

−αdx x ≥ 0

E0e
−γ|x| x ≤ 0

(3.26)

where the subscript m and d respectively identify the metal and the dielectric.
Due to the continuity of the transverse component of the magnetic field (Hy) at
the interface (x = 0) the following condition is obtained:

γ = −Ôm
αd
Ôd

(3.27)

leading to

β2 − k2
0Ôm = Ô2m

Ô2d
= (β2 − k2

0Ôd).

Equation (3.27) can be solved in order to find β, γ and αd, the results are:

β = k0

ó
ÔmÔd
Ôm + Ôd

(3.28)

γ = − k0Ôm√
−Ôm − Ôd

(3.29)

αd = k0Ôd√
−Ôm − Ôd

(3.30)
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where the imaginary part of β (βI) is negative and the real part of β (βR), αd and
γ are positive. Defining

Ôm = −ÔR − jÔI

it is possible to rewrite (3.28), (3.30) and (3.29) as follows:

β = k0

ó
ÔRÔd
ÔR − Ôd

C
1 − j ÔIÔd

2ÔR(ÔR − Ôd)

D
(3.31)

γ = k0ÔR√
ÔR − Ôd

C
1 + j ÔI(ÔR − 2Ôd)

2ÔR(ÔR − Ôd)

D
(3.32)

αd = k0Ôd√
ÔR − Ôd

C
1 − j ÔI

2(ÔR − Ôd)

D
(3.33)

which shows that in order to have βR > 0 and βI < 0 and to guarantee the existence
of plasmonic waves it is necessary to have ÔR > Ôd. Considering ÔR º Ôd, from (3.33)
and (3.32) it results:

Re(γ)
Re(αd)

= ÔR
Ôd

º 1

therefore

1
Re(γ) ¹ 1

Re(αd)
(3.34)

where 1/Re(γ) and 1/Re(αd) are the attenuation lengths. Equation (3.34) high-
lights that the field penetrates more in the dielectric than in the metal since the
attenuation length within the metal is shorter.

3.4 Metal-Dielectric-Metal waveguide

[6] In this section the propagation trough the MDM structure is analysed taking
into account the lossless case for sake of simplicity.
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3.4.1 Lossless Media

Figure 3.4. [6]Field Components for TM modes.

The structure under analysis is made of three region, a dielectric lossless film char-
acterized by Ôf real and positive and metal substrate and cladding respectively
characterized by Ôs and Ôc real and negative. Defining Ôs = −|Ôs| and Ôc = −|Ôc|
with |Ôs| ≤ |Ôc|, there are three possible working regions:

1. |Ôs| ≤ Ôf ≤ |Ôc|;

2. |Ôs| ≤ |Ôc| ≤ Ôf ;

3. Ôf ≤ |Ôs| ≤ |Ôc|;

where the region of interest for typical metals at optical frequency is the third.
In the MDM configuration, (3.8) and (3.11) become:

tanh(γa+ ψ) = −ρcαc
γ

= |ρc|αc
γ

tanh(γa− ψ) = −ρsαs
γ

= |ρs|αs
γ

.

(3.35)

tanh(2γa) = −γ(ρcαc + ρsαs)
γ2 + ρcαcρsαs

= γ(|ρc|αc + |ρs|αs)
γ2 + |ρc|αc|ρs|αs

(3.36)

while β, αc and αs can be rewritten as:

γ =
ñ
β2 − k2

0Ôf

αc =
ñ
β2 − k2

0Ôc =
ñ
γ2 + k2

0(Ôf + |Ôc|)

αs =
ñ
β2 − k2

0Ôs =
ñ
γ2 + k2

0(Ôf + |Ôs|)

. (3.37)

where β ≥ k0
√
Ôf and γ ≥ 0 to allow the existence of plasmonic solutions.
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From (3.36) it is possible to find the cutoff thickness of the dielectric acutoff
taking the limit as γ → 0. In this case it is possible to exploit the Taylor series
approximation:

tanh(x) ≈ x x → 0;

therefore

tanh(2γa) ≈ 2γa = −γ(ρcαc + ρsαs)
γ2 + ρcαcρsαs

= γ(|ρc|αc + |ρs|αs)
γ2 + |ρc|αc|ρs|αs

(3.38)

2a = 1
|ρc|αc

+ 1
|ρs|αs

when γ = 0

2k0acutoff = |Ôc|
Ôf
ñ
Ôf + |Ôc|

+ |Ôs|
Ôf
ñ
Ôf + |Ôs|

. (3.39)

Region 1 is defined by

|Ôs| ≤ Ôf ≤ |Ôc| (3.40)

leading to

αs > γ

and

|ρs|αs
γ

≥ 1

therefore

tanh(γa− ψ) = |ρs|αs
γ

≥ 1

where ψ = χ+ jπ2 with real χ. Substituting in the previous equation

tanh(γa− ψ) = tanh
3
γa− ξ − jπ2

4
= coth(γa− χ) = |ρs|αs

γ
≥ 1.

It can be demonstrated that also |ρc|αc
γ

≥ 1 holds because:

tanh(γa+ ψ) = tanh
3
γa+ χ+ jπ2

4
= coth(γa+ χ) = |ρc|αc

γ
.

If γ and χ are real
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| coth(γa+ χ)| = |ρc|αc
γ

≥ 1.

Not all the values of beta satisfy the previous expression that imposes an upper
limit on β

γ2 ≤ |ρc|2α2
c

substituting (3.37)

β2 − k2
0Ôf ≤ ρ2

c(β2 − k2
0|Ôc|)

β2 ≤ k2
0
ρ2
c |Ôc| + Ôf
1 − ρ2

c

= k2
0

|Ôc|Ôf
|Ôc| − Ôf

β ≤ k0

öõõô |Ôc|Ôf
|Ôc| − Ôf

= k0

ó
ÔcÔf
Ôc − Ôf

≡ βc,∞

therefore the range of β in region 1 is

k0Ôf ≤ β ≤ βc,∞.

The thickness of the film region a results to be an increasing function of beta
with

acutoff ≤ a < ∞

where acutoff is a lower cutoff. As a → ∞, the structure tends to the one studied in
the case of a single interface and the magnetic field tends to be more confined at
the film-cladding interface. Plasmonic solutions are found at the interface between
film and cladding since the condition |Ôm| ≤ Ôd at the film-substrate interface does
not allow their existence. To find γa and ψ the starting point is:

coth(γa+ χ) = |ρc|αc
γ

(3.41)

coth(γa− χ) = |ρs|αs
γ

. (3.42)

Inverting the last two equations, the following expression are obtained:

tanh(γa+ χ) = γ

|ρc|αc
≤ 1 (3.43)

γa+ χ = tanh−1
A

γ

|ρc|αc

B
(3.44)
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and

tanh(γa− χ) = γ

|ρs|αs
≤ 1 (3.45)

γa− χ = tanh−1
A

γ

|ρs|αs

B
. (3.46)

Finally

γa = 1
2 tanh−1

A
γ

|ρc|αc

B
+ 1

2 tanh−1
A

γ

|ρs|αs

B
(3.47)

2ψ = 1
2 tanh−1

A
γ

|ρc|αc

B
− 1

2 tanh−1
A

γ

|ρs|αs

B
+ jπ2 . (3.48)

The propagating modes are the TM1 ones (i.e. antisymmetric-like), in this case
the magnetic field results to be:

Hy(x) =



H0 cosh(γx+ ψ) |x| ≤ a

H0 cosh(γa+ ψ)e−αc(x−a) x ≥ a

H0 cosh(γa− ψ)eαs(x+a) x ≤ −a

.(3.49)

For small values of χ it results

cosh(γa+ ψ) = cosh
3
γa+ χ+ j

π

2

4
= j sinh(γa+ χ)

that is an odd function of x (i.e. the mode is antisymmetric-like).
Region 2 is characterized by:

|Ôs| ≤ Ôf ≤ |Ôc|. (3.50)

In this case

k0
√
Ôf ≤ β ≤ ∞ (3.51)

and

0 ≤ a ≤ acutoff (3.52)

where a is a decreasing function of β. In this region separate surface plasmons can-
not exist at the two interfaces since the condition for their existence is not satisfied
(|Ôm| > Ôd).

✺✽



3 – Plasmonic Waveguides

The third region is the one of interest for the desired applications (i.e. the de-
velopment of a plasmonic electro-optical modulator). It is characterized by

Ôf ≤ |Ôs| ≤ |Ôc| (3.53)

and it is the only region that guarantees the existence of the two plasmonic modes
(the symmetric-like TM0 and the antisymmetric-like TM1) at both interfaces since
the condition to have real values of β is satisfied (i.e. |Ôm| ≥ Ôd), moreover also TE
and TM oscillatory modes propagate.

The two interfaces can support separate surface plasmons since |Ôc,s| ≥ Ôf holds
when a → ∞ (limit of infinite thickness), the corresponding wavenumbers are:

βc,∞ =
ó

ÔcÔf
Ôc + Ôf

and βs,∞ =
ó

ÔsÔf
Ôs + Ôf

(3.54)

where

k0
√
Ôf < βc,∞ ≤ βs,∞. (3.55)

The condition (3.53) implies that both the ratios

|ρc|αc
γ

and |ρs|αs
γ

can be greater or lower than one, corresponding respectively to the TM1 mode
and the TM0. If

|ρc,s|αc,s ≤ γ

and considering

ρ2
cα

2
c − γ2 = (1 − ρ2

c)(β2
c − β2)

ρ2
sα

2
s − γ2 = (1 − ρ2

s)(β2
s − β2)

(3.56)

it is possible to obtain the range of βs for the TM0 plasmonic mode

βs,∞ ≤ β < ∞ (3.57)

and

0 ≤ a ≤ ∞ (3.58)

where a is a decreasing function of β, therefore, β = βs,∞ corresponds to a = ∞. If

|ρc,s|αc,s ≥ γ

and considering the (3.56), it is possible to obtain the range of βs for the TM1
plasmonic mode:
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Figure 3.5. Hy(x) field component for the propagating modes.
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k0
√
Ôf ≤ β < βc,∞ (3.59)

and

acutoff ≤ a ≤ ∞ (3.60)

is an increasing function of β, therefore, β = βc,∞ corresponds to a = ∞ and
β = k0

√
Ôf corresponds to a = acutoff .

Equations (3.47) and (3.48) hold for the TM1 case instead, inverting the following
equations, it is possible to obtain γa and ψ for the TM0 mode

tanh(γa+ ψ) = |ρc|αc
γ

≤ 1 (3.61)

tanh(γa− ψ) = |ρs|αs
γ

≤ 1. (3.62)

The results are:

γa = 1
2 tanh−1

A
−|ρc|αc

γ

B
+ 1

2 tanh−1
A

−|ρs|αs
γ

B
(3.63)

2ψ = 1
2 tanh−1

A
−|ρc|αc

γ

B
− 1

2 tanh−1
A

−|ρs|αs
γ

B
. (3.64)

For imaginary values of γ oscillatory TE and TM modes propagate, where

γ = jkf
and

kf =
ñ
k2

0Ôf − β2.

In order to have γ imaginary and so kf real, the condition β ≤ k0
√
Ôf has to be

satisfied, it imposes an upper limit to the possible values of β. The lower limit of
β is imposed by the positivity of αc and αs but in this case since Ôc,s < 0

αc,s =
ñ
β2 − k2

0Ôc,s =
ñ
β2 + k2

0|Ôc,s|

the only requirement is that β ≥ 0 and so the range of βs is

0 ≤ β ≤ k0
√
Ôf . (3.65)

To find the TEm modes, ρc and ρs are set equal to 1 in (3.22) and (3.23), the
resulting equations are:
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kfa = 1
2 tan−1

A
αc
kf

B
+ 1

2 tan−1
A
αs
kf

B
+ 1

2mπ (3.66)

2ψ = 1
2 tan−1

A
αc
kf

B
− 1

2 tan−1
A
αs
kf

B
+ 1

2mπ. (3.67)

where m = 0,1,2,3, ....
The TMm modes are characterized by negative values of ρc and ρs, therefore the

identity

tan−1(x) = π
2 + tan−1

1
− 1
x

2
, x > 0

can be applied to rewrite (3.22) and (3.23) in the form:

kfa = 1
2 tan−1

A
− kf
ρcαc

B
+ 1

2 tan−1
A

− kf
ρsαs

B
+ 1

2(m− 1)π (3.68)

and

ψ = 1
2 tan−1

A
− kf
ρcαc

B
− 1

2 tan−1
A

− kf
ρsαs

B
+ 1

2mπ. (3.69)

It is possible to find the lower limit for the thickness of the film region (lower
cutoff thickness amin) imposing the condition β = 0 in (3.66) and (3.68), where
kf = k0

√
Ôf and αc,s = k0

√−Ôc,s. The final expressions are:

2k0amin = 1
√
Ôf

C
tan−1

ó
−Ôc
Ôf

+ tan−1
ó

−Ôs
Ôf

+mπ

D
(3.70)

for the TEm modes and

2k0amin = 1
√
Ôf

C
tan−1

ó
−Ôc
Ôf

+ tan−1
ó

−Ôs
Ôf

+ (m− 1)π
D

(3.71)

for the TMm modes. The only oscillatory mode that has an upper cutoff thickness (
amax ) is the TM1. Setting β = k0

√
Ôf and so αc,s = k0

√
Ôf − Ôc,s amax, the resulting

expression is:

amax = − 1
2k0

C
1

ρc
√
Ôf − Ôc

+ 1
ρs

√
Ôf − Ôs

D
(3.72)

The peculiarity is that amax is the upper cutoff limit for the oscillatory TM1
mode which exist for 0 ≤ β ≤ k0

√
Ôf but, at the same time, it is the lower cutoff

limit for the plasmonic TM1 mode which exist for k0
√
Ôf ≤ β ≤ βc,∞.
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Figure 3.6. effective index for the oscillatory TE and TM modes

Figure 3.7. effective index TM0 and TM1 plasmonic and modes and fot
the TM1 oscillatory one.
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Chapter 4

EO Plasmonic
Mach-Zehnder modulator

4.1 Introduction

In this final chapter the EO Plasmonic Mach-Zehnder modulator is introduced

exploiting all the knowledge presented is the previous chapters. These devices

represent a valid alternative to LiNbO3 modulators when the need of very small

dimensions has to be accomplished. The small footprint is a key feature that allows

to have acceptable losses even though metal layers are present, its cost is the heavy

influence of electrical parasitics (strongly layout and realization dependent) on the

frequency response. The main characteristics are the possibility to have high speed

operation with low power consumption, large electro-optic bandwidth (ideally >100

GHz) and a small voltage-length product. The chapter starts with a preliminary

description of the device under analysis then the simulation results obtained com-

bining the characteristic of plasmonic structures and the model developed in the

CAD environment are proposed.

✻✺



Claudia Mazzia 235208 et al. EO Modulators using Plasmonic Waveguides

4.2 POH Modulator

It is possible to design a Mach-Zehnder modulator using plasmonic interferometers
as phase modulator sections, in particular plasmonic-organic hybrid phase shifters
are employed. These devices are composed of two MIM (metal-insulator-metal)
slot waveguides fabricated on standard SOI wafer (POH structure) where the RF
signal is applied at the central electrode through the use of a suspended bridge. The
structure is filled with a second order nonlinear optical material (NLO) DLD-164
characterized by linear electro-optic effect (Pokels effect) [7][8][9].

Figure 4.1. [7]Plasmonic Mach-Zehnder Modulator.

As discussed in Ch.3, light propagates as surface plasmons at the metal-insulator
interface, the signal is applied at the central electrode inducing between the ”island”
and the ground electrodes a voltage drop that controls the output phase of the
surface plasmons. When the difference between the phase of two arms is π, the
modulator is in the off state and the anti-symmetric mode is excited at the output
of the phase shifting arms, when it is 0 (i.e. opposite voltage drop is induced) the
symmetric one is instead excited.

Many are the advantages offered by the use of NLO materials:

❼ ultrafast speed (since the only limitation on the electro-optical bandwidth is
induced by the RC time constant due to the electrodes and their wires);

❼ incredibly high value of the r coefficient (increased non linear interaction)
which defines the strength of the light-matter interaction and leads to reduced
Voltage-lengths products;

❼ low energy consumption due to the low permittivity at radio frequency and so
the reduced capacitance.

In particular, in POH structures, the propagation of surface plasmons at the
gold-NLO interface makes possible to achieve additional benefits:
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❼ reduced dimension (few ∼ µm2) without bandwidth restrictions (BW> 100
GHz);

❼ subdiffraction confinement of light due to the high confinement possible at the
metal-insulator interface;

❼ enhanced light-matter interaction which makes possible to design devices with
dimension of the order of micrometers;

❼ even smaller RC constants thanks to the use of highly conductive metal as
electrodes;

❼ reduced plasmonic losses due to the low plasmonic losses of noble metals;

❼ possibility to implement stacked modulators (e.g. compact IQ modulators)
employing POH modulator due to their small footprint.

Even though other technologies have been investigated as optical modulator, these
properties make plasmonic modulators an appealing alternative to LiNbO3 modu-
lators when small compact devices are required.

4.3 Implementation Details

The behaviour of a Mach-Zhender POH modulator has been simulated in AWR
MWOFFICE exploiting the model described in Ch.2 but, instead of using the com-
mon phase modulator block, a version that gives the possibility to describe the
device behaviour through frequency varying parameters has been used. In particu-
lar it is possible to import a txt file in the project that contains the required data
cascaded in the following order:

❼ frequency [Hz];

❼ real part of the characteristic impedance [Ω];

❼ imaginary part of the characteristic impedance [Ω];

❼ microwave loss [dB/cm];

❼ microwave effective index;

❼ optical effective index.

These quantities have been evaluated for a structure where the thickness of the
electrodes is hAu = 22 nm, the width of the ”island” is Wisland = 410 nm, the width
of the ground electrodes is Wslot = 100 nm, the spacing between the electrodes is
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Figure 4.2. RF Effective Refractive Index, Loss, Real and Imaginary
Characteristic Impedance.

✻✽



4 – EO Plasmonic Mach-Zehnder modulator

Wrail = 520 nm, the dielectric layer is hDLD−164 = 22 nm thick and the substrate
thickness is hSiO2 = 3 µm[9].

Figure 4.3. [9]Plasmonic Mach-Zehnder Modulator: reference structure.

Concerning the physical characteristics, the DLD-164 has an electro-optic linear
coefficient estimated r33 = 180 pm/V and a refractive index n = 1.83, in order to
evaluate the permittivity and so the refractive index at the desired frequency, the
dispersive nature of the SiO2 substrate is described by the model from Malitson
(Fig. 4.5), while the dispersive nature of gold is described by the Drude model
(Fig.4.4).

✻✾



Claudia Mazzia 235208 et al. EO Modulators using Plasmonic Waveguides

Figure 4.4. Real and Imaginary Permittivity of Gold.
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Figure 4.5. Dielectric Permittivity of SiO2.
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As starting point, the phase at the output of the phase shifting arm with respect
to a variation of the frequency was obtained. The reference circuit is shown in Fig.
4.6

Figure 4.6. Circuit Schematic.

where

parameter
Length L 5 µm

ON-OFF voltage Vπ 14 V
Bias Point VDC 7 V
Input Power Pin 1 A

As stated in Ch.2, the optical variables are represented by electrical voltages and
currents, in particular the input power Pin and the output phase Φout correspond
respectively to two currents: Iin (current generated by the current generator) and
Iout (current at the output of the phase modulator block). The simulation has been
conduct for a device loaded with different impedance values in order to show its
behaviour in various cases.

Following, simulations in large signal condition and small signal one have been
taken. Starting from the small signal simulation, in Fig. 4.8 can be seen the
reference circuit, where the setting parameters are the one proposed in Fig. 4.3.
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Figure 4.7. Output Phase Shift.
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Figure 4.8. Small Signal Circuit Schematic.

✼✹



4 – EO Plasmonic Mach-Zehnder modulator

Figure 4.9. Small Signal Response.
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The simulations have been performed around the bias point (∼ Vπ/2) in order to
be in the optimum conditions for linearity at 10GHz. The input signal is a sinusoid
whose peak to peak voltage is 1mV, it is generated by a voltage generator and
loaded with 50 Ω impedance.

Figure 4.10. Frequency Response.

Since the parasitics have been neglected, it is possible to notice that the 3dB
bandwidth is in the range of THz.

When simulating in small signal condition (and large signal one), an anomaly
has been noticed: the working point is not maintained when the short circuit load
is simulated with a zero resistance or value lower than 10 Ω.

Finally a large signal simulation is performed in order to show how the signal is
distorted. The input signal is a square wave with a peak to peak voltage V = 14V
(Fig.4.13). It can be noticed a variation of the excursion of the power amplitude
(Fig.4.14). It is caused by a reduction of the peak to peak voltage at the input of
phase block due to the resistive division between the input port impedance and the
load. It will not affect significantly the overall performances since the device has
shown good results even when it works not precisely in the ON or OFF states [8].
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Figure 4.11. Small Signal Response:anomaly.
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Figure 4.12. Circuit Schematic for Distortion.
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Figure 4.13. Input Signals.

Figure 4.14. Distortion.

The presence of distortion, noticed in the large signal simulations, has a double
nature, a linear one caused by the modulation itself and a nonliear distortion due
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to non-linear electro-optic response: the shape of the transfer function T (Vin) is a
raised cosine.

✽✵



Bibliography

[1] G. Ghione, Semiconductor devices for high-speed optoelectronic. Cambridge Uni-
versity Press,2009.

[2] G. Ghione, TCAD and system-level modelling of Mach Zehnder electro-optic
modulators Draft V1.0..

[3] P. Zandano, Electrical and electro-optic simulations of high-speed LiNb03 mod-
ulators..

[4] National Instruments. Microwave Office RF Design Software. National Instru-
ment, 2018.

[5] Marco Pirola, Federica Cappelluti, Giovanni Giarola and Giovanni Ghione. Mul-
tisectional Modeling of high-speed electroptic modulators integrated in a mi-
crowave circuit CAD environment. Journal of lightwave technology, 21(12):2989-
2996,2003.

[6] Sophocles J Orfanidis, Fioriti M., Electromagnetic waves and antennas, 2016,
Unpublished, available: http://eceweb1.rutgers.edu/ orfanidi/ewa/ewa-1up.pdf

[7] Christian Haffner, Wolfgang Heni, Yuriy Fedoryshyn, Jens Niegemann, Argishti
Melikyan, Delwin L Elder, Benedikt Baeuerle, Yannick Salamin, Arne Josten,
Ueli Koch, et al. All-plasmonicMach–Zehnder modulator enabling optical high-
speed communication at the microscale. Nature Photonics, 9(8):525, 2015.

[8] Wolfgang Heni, C. Haffner, Benedikt Baeuerle, Y Fedoryshyn, Arne Josten,
David Hillerkuss, J Niegemann, A Melikyan, M Kohl, DL Elder, et al. Plasmonic
organic hybrid modulators-scaling highest speed photonics to the microscale.
Proceedings of the IEEE, 104(12):2362–2379, 2016.

[9] Christian Haffner, Wolfgang Heni, Yuriy Fedoryshyn, Jens Niegemann, Argishti
Melikyan, Delwin L Elder, Benedikt Baeuerle, Yannick Salamin, Arne Josten,
Ueli Koch, et al. All-plasmonicMach–Zehnder modulator enabling optical high-
speed communication at the microscale - Supplementary material. Nature Pho-
tonics, 9(8):525, 2015.

[10] Wolfgang Heni, C. Haffner, Benedikt Baeuerle, Y Fedoryshyn, Arne Josten,
David Hillerkuss, J Niegemann, A Melikyan, M Kohl, DL Elder, et al. 108
Gbit/s plasmonic Mach–Zehnder modulator with¿ 70-GHz electrical bandwidth.
Journal of Lightwave Technology, 34(2):393–400, 2016.

[11] Benedikt Baeuerle, Claudia Hoessbacher, Wolfgang Heni, Yuriy Fedoryshyn,

✽✶



Claudia Mazzia 235208 et al. EO Modulators using Plasmonic Waveguides

Arne Josten, Christian Haffner, Tatsuhiko Watanabe, Delwin L Elder, Larry R
Dalton, and Juerg Leuthold. 1Driver-Less Sub 1 Vpp Operation of a Plasmonic-
Organic Hybrid Modulator at 100 GBd NRZ. In 2018 Optical Fiber Communi-
cations Conference and Exposition (OFC), pages 1–3. IEEE, 2018.

✽✷


	List of Figures
	EO Mach-Zehnder modulator: Theoretical Introduction
	Introduction
	Lumped Case
	System Level Description

	Distributed Case
	Co-propagating RF and optical waves
	Counter-propagating RF and optical waves
	Frequency Response

	Chirp Model

	EO Mach-Zehnder modulator: Multi-Sectional Model
	Introduction
	Modelling
	Phase-Modulation Block
	Mathematical Formulation
	Modelling

	AM Block
	Implementation
	Phase Modulator Implementation
	Interferometer Implementation


	Plasmonic Waveguides
	Introduction
	Characterization
	Oscillatory Modes

	Metal-Dielectric Interface
	Metal-Dielectric-Metal waveguide 
	Lossless Media


	EO Plasmonic Mach-Zehnder modulator
	Introduction
	POH Modulator
	Implementation Details

	Bibliography

