
POLITECNICO DI TORINO

DIPARTIMENTO DI ELETTRONICA E TELECOMUNICAZIONI (DET)

Master Degree in Electronic Engineering

Master Degree Thesis

A SIMD Application Specific
Instruction-Set Processor for

Convolutional Neural Networks

Supervisors
Prof. Maurizio Martina

Candidate
Fabrizio Frisari

October, 2019

Acknowledgements

First of all, I would like to thank Prof. Maurizio Martina at Politecnico di Torino.
Always polite and available for any doubt or question. He quickly solved any issue
with the server or the software. Truly inspirational.

A thank to the PhD candidate Riccardo Peloso, who constantly tried to help me in
any circumstances. He followed me all along this work, he gave me a lot of inspiration
for the development of the thesis and he helped me to solve many problems that
arose in these months.

Thank also to the PhD candidate Maurizio Capra: he was there, ready to help
me for any doubt (even though I did not want to annoy him too much) and he
supported me in the meetings of the work with the Professor.

A huge thank to my parents and to my brother Daniele for all the sacrifices and the
support. Surely you had a lot of patience. Now we can happily travel to Carcassonne.

Thank you Caterina, my lovely and unlimited source of strength. None of this was
possible without you by my side. You never give up with me. Last but not least,
you helped me with the dots in the image.

A thank to my friends and colleagues Angelo, Andrea and Mattia. They have been
a great source of insights and they always were available for any doubt or question
in all these years.

Thank to all my old friends, a constant part of my life, always there for me. You
were my secret source of fun and inspiration.

2

Summary

Machine Learning (ML) is one of the greatest inventions in the last decades and it
has completely changed the way of programming: with just a single program, the
machine is able to learn by itself how to perform many different tasks. Machine
Learning algorithms need a really large number of data for the learning process and
great amounts of computational power; both are accessible only in the last decades
and this is the reason why this technology has developed only in the last decades.

There is an area of ML called Neural Network (NN) that is often referred as
brain-inspired computation, since the program emulates the capability of the human
brain in learning and solving problems. Its basic block is the neuron: it receives
an input element and outputs a nonlinear function. The latter is called activation
function and, by connecting many of them in a network, it is possible to obtain
a large computational unit, able to perform a specific task. The simplest NN has
three layers: input layer, hidden layer and output layer. All those layers can have a
large amount of neurons.

Really complex structures of neural networks are called DNN (Deep Neural Net-
work) and define the DL (Deep Learning) area. Those networks have a great number
of hidden layers and reach really high performances, with respect to simple NNs.
They are used in many tasks, such as speech recognition, healthcare applications
and computer vision problems, like object detection and image recognition. There
are a lot of DNN solutions, one of the most popular is the Convolutional Neural
Network (CNN). It is a very good model for computer vision applications.

In this work, a Convolutional Neural Network is created from scratch; the code
is written in a mix of C/C++ code. Then, it is loaded in the Synopsys software
ASIP Designer : it is a tool used for designing custom processors or programmable
accelerators for different applications. Indeed, ASIP is the acronym of Application
Specific Instruction-Set Processor and with this software it is possible to exploit
this approach to realize custom processors. The tool uses its high level Hardware
Description Language (HDL), called nML, to describe the architecture of the
processor.

3

Starting from a default processor model, it is possible to modify it to realize a
custom application. Moreover, ASIP Designer provides useful instruction profiler
reports that emphasizes which instructions have the heaviest computational cost.
This information can be used to easily optimize the software code and the structure
of the hardware processor.

Starting from a simple CNN software solution, different implementations of the
network are created. A Single Instruction Multiple Data (SIMD) approach is used
to optimize and perform the convolution operation with few instructions. In the
end, all the optimizations are adopted in a more complex CNN structure, smaller
but similar to the most famous DNN models, such as VGG-16 and AlexNet. A
final comparison of power consumption and area occupation is done for the different
network implementations used in this work.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 11
1.1 General principles . 11
1.2 In the following chapters . 13

2 Neural Network overview 15
2.1 What is Machine Learning? . 15
2.2 Neural Networks . 16

2.2.1 Introduction and basic concepts 16
2.2.2 Activation functions . 18
2.2.3 Inference and Training . 21

2.3 Deep Neural Network . 22
2.4 Convolutional Neural Network . 24

2.4.1 Convolution layer . 25
2.4.2 Pooling Layer . 27
2.4.3 Fully Connected Layer . 28
2.4.4 1x1 Convolution . 29

2.5 Models of DNN . 30

3 ASIP Designer 35
3.1 Design approach . 35

3.1.1 Hardware approach . 35
3.1.2 Software approach . 36
3.1.3 ASIP approach . 36

3.2 ASIP Designer tool . 37
3.2.1 ASIP features . 38

4 ASIP Implementation 39
4.1 Tvec Processor . 39

5

4.2 Software Implementation . 43
4.2.1 Fully-Connected Layer . 43
4.2.2 Convolution Layer . 44
4.2.3 Pooling Layer . 45
4.2.4 Activation Function . 46

4.3 3D Convolutional Neural Network 47
4.3.1 First Design . 48
4.3.2 Second Design . 52
4.3.3 Third Design . 54
4.3.4 Fourth Design . 57
4.3.5 Fifth Design . 59

5 Simulation and Synthesis 63
5.1 Creation of HDL . 63

5.1.1 Simulation . 65
5.1.2 Synthesis . 65

6 Final conclusions and future work 67
6.1 Conclusions . 67
6.2 Future works . 67

A Code of the Convolutional Neural Network 69

B Instruction profiler reports 75
B.1 Convolution of the First Design . 75
B.2 Convolution of the Second Design 76
B.3 Convolution of the Third Design . 77
B.4 Convolution of the Fourth Design 78
B.5 Convolution of the Fifth Design . 79

6

List of Tables

2.1 Comparison between DNN models. 34

4.1 Report comparison between the five implementations. 62

5.1 Area and frequency of the main four designs. 66
5.2 Power consumption of the main four designs. 66

7

List of Figures

1.1 Diagram of artificial intelligence [1] 12

2.1 Representation of a neuron. [22] . 16
2.2 Connection to a neuron in the brain. [1] 17
2.3 Example of a simple neural network. [23] 17
2.4 Nonlinear activation functions. [1] 18
2.5 Linear activation function. 20
2.6 Comparison between training and inference. [24] 21
2.7 Architecture of a Convolutional Neural Network. [19] 24
2.8 Slide of a vector with stride = 2. [1] 25
2.9 Convolution with padding = 1. [19] 26
2.10 Convolutional operation in detail. [20] 27
2.11 Various forms of pooling. [1] . 28
2.12 Fully connected versus sparse. [1] 29
2.13 Example of 1x1 convolution. [3] . 29
2.14 LeNet architecture. [4] . 30
2.15 AlexNet architecture. [5] . 31
2.16 VGG-16 architecture. [6] . 31
2.17 Structure of the inception module. 32
2.18 GoogLeNet architecture. [7] . 33
2.19 Shortcut module from ResNet. (a) Without bottleneck. (b) With

bottleneck. [1] . 33
2.20 Results from the ImageNet Challenge. [1] 34

3.1 Test application structure . 36
3.2 Test application structure. [9] . 37

4.1 The instruction pipeline. [10] . 39
4.2 The ALU data path. [10] . 40
4.3 The shifter data path. [10] . 41
4.4 Execution of vector instructions. [11] 42
4.5 The data path of the vector unit. [11] 42

8

4.6 Convolutional Neural Network used for the simulations. 48
4.7 The SIMD multiplication between two vectors. [11] 48
4.8 Summation of the elements of a vword. [11] 49
4.9 Instruction report of the first design. 51
4.10 Instruction report of the second design. 53
4.11 Instruction report of the third design. 56
4.12 Structure of a circular buffer. 57
4.13 Instruction report of the fourth design. 59
4.14 Instruction report of the fifth design. 62

5.1 Schematic representation of the data path, generated by GO. Every
rectangle in solid lines represents a separate entity. [13] 63

5.2 The directory structure created by GO. [13] 64

B.1 Instruction report of the first design. 75
B.2 Instruction report of the second design. 76
B.3 Instruction report of the third design. 77
B.4 Instruction report of the fourth design. 78
B.5 Instruction report of the fifth design. 79

9

Listings

4.1 Fully Connected Layer code. 43
4.2 Convolution Layer code. 44
4.3 Pooling Layer code. 46
4.4 Description of vector multiplication in the PDG file. 49
4.5 Convolution Layer of the first design. 50
4.6 Convolution Layer of the second design. 52
4.7 Convolution Layer of the third design. 54
4.8 Convolution Layer of the fourth design. 57
4.9 Circular buffer implementation. 59
4.10 nML circular buffer description. 60
4.11 Convolution Layer of the fifth design. 60
A.1 Convolutional Neural Network. 69

10

Chapter 1

Introduction

1.1 General principles
Nowadays, Machine Learning is one of the greatest recent invention and it is already
changing the everyday life. ML is used by everyone, even without knowing it, and
its influence will constantly increase in the next decades. It is a subfield of Artificial
Intelligence (IA) and it has been defined for the first time by Arthur Samuel in 1959:
“the field of study that gives computers the ability to learn without being explicitly
programmed” [2]. This means a completely new way of programming: the single
program is able to learn by itself how to do particular tasks, starting only from few
inputs. Therefore, without being explicitly programmed, the algorithm can perform
different applications. The border between humans and machines is thinner than
ever and many researchers are exploring all the possibilities that a technology like
this can give.

Even though Machine Learning is not a recent invention, it is largely used only
in the last decades. One of the reason is the growth of technology, of the internet
and automation. Basically, there are much larger data sets to exploit than ever
before. Indeed, Machine Learning algorithms need a large amount of data for the
learning process and those are accessible only in the recent years. They also need
a huge amount of computational power that can be provided only with the recent
technologies.

In 1959, Arthur Samuel, “an American pioneer in the field of computer gaming
and artificial intelligence” [18], wrote a machine learning checkers program that
was able to learn the good and bad board positions. The program increased its
experience after playing thousands of games by itself and, in the end, it became a
better player than Arthur Samuel himself. With today’s technologies, the ML can
learn to do almost everything. Some of the most important applications are:

• Computer vision: it is possible to detect and classify objects from images and

11

1 – Introduction

videos (like video surveillance).

• Speech recognition and machine translation.

• Social media management and online advertising, like recommendations for
services, interests, and products.

• Autonomous driving.

• Gameplay.

• Medical operations: disease detectors or devices that can help with health
monitoring of the patients.

• Robotics.

In the future, ML will surely develop in more areas: for instance, it will possibly
manage the traffic control or forecast the weather with precision. It could also
improve cancer detection and have a huge impact in the world of finance [2].

Figure 1.1: Diagram of artificial intelligence [1]

In Figure 1.1, there is a complete diagram of the AI. As already mentioned,
Machine Learning is a subarea of Artificial-Intelligence; anyway, it can be observed
an area of ML that is often referred to as brain-inspired computation [1]. It refers to
programs that emulate, in some way, the human brain and its capability in learning
and solving problems. A particular example is called Neural Network (NN), also
shown in Figure 1.1. Its basic element is the neuron since it is also the principal
computational element of the brain. A network is a composition of many neurons;
thanks to this connection, the machine provides a large computation unit able to
perform the specific task.

12

1.2 – In the following chapters

A particular subarea of the NN is the Deep Learning (DL). It is a particular
case of a neural network: the basic elements of the structure are the same, but
there are a huge amount of them to create a complex network that is called Deep
Neural Network (DNN). This structure can provide very high performances and
can perform almost any task. Today, DNNs are the most advanced ML architectures.

One of the most popular DNN structure is the Convolutional Neural Network
(CNN) [3]. This architecture is the most used for computer applications, such as
object detection and image recognition. In the last decades, many CNN models
have been developed and they will be analyzed in the next chapters.

1.2 In the following chapters
The thesis will be organized in this way:

• Neural Network overview. In this chapter, the main concepts of the Machine
Learning algorithms are analyzed in detail. It is explained the structure of
a neural network and how it works. It is stressed the importance of going
deeper and why the Convolutional Neural Network is one of the best DNN
architecture. In the end, there is a comparison between the today’s most
popular Deep Neural Networks.

• ASIP Designer. This chapter is necessary to explain the Synopsys tool used in
this work. It is called ASIP Designer and there is a brief description of how it
works and what this tool can provide to the user. Since the software allows the
realization of Application Specific Instruction-Set Processors, it is explained
what this ASIP approach is; moreover, the latter compared with two other
possible approaches, such as General Purpose (GPP) and Application Specific
Integrated Circuit (ASIC).

• ASIP implementation. The starting point of the work is described here. This
chapter highlights how the ASIP Designer tool is used and which processor
core is chosen. Then, there is the description of the C/C++ code of a complete
Convolutional Neural Network and its functions. There are, in total, five
implementations of the network: exploiting the instruction reports of the
Synopsys tool, many optimizations are performed to increase efficiency.

• Result and analysis. In this chapter, it is described how to stem the HDL of
the processor from ASIP Designer and how to use it to simulate and synthesize
the code. A brief comparison among the implementations is made.

• Final conclusion and future works. This chapter summarizes the obtained
results and explains how the best implementation can be furtherly upgraded
in future works.

13

Chapter 2

Neural Network overview

2.1 What is Machine Learning?
Machine learning develops computer programs that make use of several accessible
data to learn for themselves. Another definition of ML is made by Tom Mitchell in
1998: “a computer program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as measured by
P, improves with experience E” [2]. For instance, in the checkers playing program
described in the chapter 1.1:

• the experience E represents the thousands of games that the machine played
against itself, growing its experience;

• the task T is the task of playing the game;

• the performance measure P is the probability of winning a checkers match
against new opponents.

There are a lot of different types of learning algorithms; the main two are the
supervised and the unsupervised learning [3]. In the first case, the user teaches the
system how to do a function, having some input data. In the latter, the machine
finds previously unknown patterns in data set; basically, it learns by itself.

As regards supervised learning, the machine tries to predict the right output
starting from a privuded labeled data. This means that the machine, after some
training, analyzing a set of correct input-output pairs, learns to produce the correct
outputs given new input data. Some examples of these algorithms are the housing
price prediction application, the speech recognition, and the online advertisement.

The mapping between input and output can be made with many functions, such
as logistic and linear regression. However, nowadays Neural Networks are much
better than ML algorithms since they can be used for more complex structures.

15

2 – Neural Network overview

NNs can afford a large number of non-linear input and parameters and thus they
offer a larger computation [3].

2.2 Neural Networks

2.2.1 Introduction and basic concepts
The neural network emulates the behavior of the human brain. Scientists are still
researching new information about how the brain works but is commonly known
that its main element is the neuron. In Figure 2.1 there is a representation of a
single neuron [22].

Figure 2.1: Representation of a neuron. [22]

There are billions of them in the brain, all connected together with the so-called
dendrites, that are the neuron inputs. Instead, the output is the axon. The latter
is connected with the dendrite of another neuron, forming the synapse. Therefore,
the neuron receives the input signal entering via the dendrites, makes the compu-
tation and produces the output signal on the axon. Both signals are called activation.

One important feature to take into account is the capability of the synapse to
scale the signal, as can be seen in Figure 2.2. That scaling parameter is called weight
wi and the network provides different outputs, for the same input, by changing this
value [1]. Therefore, the structure of the machine is always the same, what changes
is the response to the input stimulus. A scheme of the neural network is shown in
Figure 2.3.

16

2.2 – Neural Networks

Figure 2.2: Connection to a neuron in the brain. [1]

Figure 2.3: Example of a simple neural network. [23]

In this case, there are three input units that form the input layer. Then there
is also the final layer, also called the output layer since it generates the final value
of the network; between input and output, there are the hidden layers. They are
so-called because the values of inputs and output of a neuron cannot be observed in
that layer [3].

In Figure 2.2, inside the red circle, it is highlighted what normally a single neuron
computes:

yj = f

(︄∑︂
i

wixi + b

)︄
(2.1)

where wi are the weights, xi are the input activations, while yi are the output

17

2 – Neural Network overview

activations. There is a bias factor b as well and usually its value is set to 1.
f(·) represent a non-linear function that is called activation function.

2.2.2 Activation functions
In Figure 2.4 there are some examples of non-linear activation functions.

Figure 2.4: Nonlinear activation functions. [1]

First of all, the two traditional activation functions will be analyzed:

1. Sigmoid function:

y = 1
1 + e−x

(2.2)

It is one of the first functions used in literature. Indeed, it was used for the
LeNet architecture [4], as described in the chapter 2.5. However, nowadays
it is rarely used, especially for hidden layers. Indeed, this model is not really
good for the training of the network: the gradient of the function can be small
if x is large or small. This problem is called vanishing gradient and causes the
gradient descent algorithm to be very slow [3].

18

2.2 – Neural Networks

Anyway, one peculiarity of the sigmoid function is that exists between 0 and 1:
it can still be useful for probability predictions in the output layer.

2. Hyperbolic tangent:

y = ex − e−x

ex + e−x
(2.3)

This function has a range between -1 and 1. It can be seen as a shifted version
of the previous algorithm that now it crosses the zero, indeed:

tanh(x) = 2 sigmoid (2x) − 1 (2.4)

This model is better for the training of the machine with respect to the sigmoid
function: the derivatives are steeper and the vanishing problem is partially
reduced (but still present) [3].

In the recent years, many nonlinear function has become popular and replaced the
sigmoid and tangent functions in a lot of applications. Some of them are:

• Rectified Linear Unit (ReLU):

y = max (0 , x) (2.5)

Nowadays, this is one of the most diffused activation function in the world,
thanks to its simplicity and lower computational cost.
In particular, the derivative of the rectifier linear unit (ReLU function) is equal
to 1 when x is positive; it is equal to 0 when negative. This allows a faster
training than the two traditional algorithms. One disadvantage of this model
is its behavior with negative values: it is impossible to fit or train the negative
inputs properly since those values are all immediately set to zero [3].

• Leaky ReLU :

y = max (αx , x) (2.6)

where α is a small constant, usually set to 0.01. This function solves the main
disadvantage of the ReLU since it has a better behavior when x is negative.

• Exponential LU :

y =

⎧⎨⎩x if x ≥ 0
a(ex − 1) if x < 0

(2.7)

19

2 – Neural Network overview

where a is a hyperparameter and has to be greater than zero. This function is
used in the most recent works, such as a Deep Neural Network in 2016, and
it results more accurate, less complex and faster than the previous ReLUs. It
furtherly reduces the vanishing gradient problem and has mean activation close
to zero [25].

All those activation functions are nonlinear. But what happens if a linear function,
like the one in Figure 2.5, is used?

Figure 2.5: Linear activation function.

The range of the linear activation function, also called identity activation function,
is not limited; it just outputs any input. There are two main problems: first, the
learning algorithm would work with a constant gradient, since the derivative does
not change. Second, even if the network is composed of a huge number of linear
layers, the output would still be a linear function. Therefore, there is no reason to
stack many layers, one is sufficient; in this way, without a deep network mechanism,
it is impossible to detect some interesting features. The only application for a linear
activation function is at the output layer of a machine that works on a regression
problem. In the hidden layer, a nonlinear function is strictly necessary [3].

As can be seen, there is not always one activation function more valid than
the others. For this reason, different functions can be adopted in different layers,
depending on the requirement of a certain step.

An artificial neural network has an output that is a combination of all those
activation functions by which every layer is composed, starting from the input layer
towards the output layer. This is also known as forward-propagation.

20

2.2 – Neural Networks

2.2.3 Inference and Training

The best thing of a neural network is its straightforward implementation; usually, if
a machine has to do thousand of things, as normally a human brain does, about
the same number of different programs and algorithms have to be implemented to
perform all those applications. However, in a NN, one single learning program is
enough to execute the required tasks. It perfectly behaves like a brain and learns
by itself how to process all the input data. This means that the program is always
the same, even if the machine learns how to do thousand of new things.

There are two main processes to realize a NN:

1. Training.

2. Inference.

In the image recognition example, the machine can be taught with a training
data set. Once it is ready, it can receive new input data, never analyzed before, and
classify the object. In Figure 2.6 there is the comparison between the two processes.

Figure 2.6: Comparison between training and inference. [24]

First of all, to learn, a machine has to determine the value of some important
parameters, like weights and bias. This process is referred to as training of a
network. In particular, the machine can be efficiently trained with the gradient
descent algorithm [26].

To train the parameters w and b, a cost function is defined: it measures how
well the algorithm is working on an entire training set. Then, the gradient descent
algorithm runs iteratively and finds the value of the weights and of the bias that

21

2 – Neural Network overview

minimizes the cost function. In every iteration, the value of the weights are updated:

W := W − α · dW

b := b − α · db
(2.8)

where α is the learning rate parameter (default value at 0.1), one of the hyper-
parameters of a neural network. Its value determines how fast the model learns
[3].

The parameters are updated with a value determined by the partial derivatives.
Their value is evaluated with the back-propagation algorithm [26]. After all this
process, the parameters are computed and the neural network is ready to receive
new inputs and performs many tasks.

When the programs run with those defined optimal parameters, the process is
called inference. In this case, the machine, starting from input data, performs a
forward-propagation and evaluates the output, exploiting the trained weights. The
forward-propagation is not so different from the back-propagation used for the
training. Therefore, the techniques used for the inference can be useful to improve
the training.

However, there main difference among the inference and training is the much
more storage required by the training process. Indeed, with the back-propagation
algorithm, the training needs the transitional outputs of the NN in order to make
all the computations. Therefore, all the memory optimizations are welcome but
they, of course, will have much more impact in the training.

2.3 Deep Neural Network
After looking at the basic blocks of a simple neural network with a single or few
hidden layers, a Deep Neural Network can be now analyzed. All the characteristics
of the previous chapters are still valid, the main difference is the number of hidden
layers: in this case, it is really high. The direct consequence is the greater number
of functions that the machine can learn.

Indeed, there are tons of neurons that now can be connected during the inference
and with this great amount of activation functions it possible to extract a lot of
high-level features. Starting from low-level ones, they are then recombined on the
next layers to form higher-level features. In the end, all those information are useful
to observe a particular and important aspect of the function [1]. Without DNNs,
such performances cannot be achieved.

Today, in Deep Learning the number of network layers stays between five and
a thousand. The hidden layer number has become a fundamental hyperparameter

22

2.3 – Deep Neural Network

for the machine. These hyperparameters are important to characterize the learning
algorithm [3]. Some of them are:

• The number of hidden layers, as just seen.

• The learning rate. It has been analyzed in the chapter 2.2.2; it is useful for
the back-propagation in the training phase and determines how fast the main
parameters change.

• The amount of iterations in the gradient descent algorithm.

• The number of neurons for each layer of the network.

• The activation function, seen in the chapter 2.2.2.

There are many other hyperparameters, depending on how complex is it the network,
but those are the most important. They are so-called because they determine the
value of the real parameters, such as weight and bias.

Nowadays, there are many applications for DL, like speech recognition, computer
vision, and robotic tasks. The value of hyperparameters may change for any of
them, there is not a universal solution that is always valid. Moreover, with the
technological progress and innovation, the hyperparameters that today are perfectly
tuned may change their optimal value in the future. Therefore, some form of
flexibility in their use is required to avoid any problem and to adapt to the new
technologies and applications.

Today, the development of DNNs is very fast thanks also to the Deep Learning
frameworks available on the web [1]. Those are open-source libraries that can be
exploited to realize a neural network without starting from scratch. The main
frameworks are:

• Caffe, that supports MATLAB, C++, C and python;

• Tensorflow, that supports python and C++;

• Torch and PyTorch: the first supports Lua, C and C++; the latter is the
evolution of Torch and it uses python.

• Theano and Keras, both support python.

The availability of such frameworks is beneficial for researchers, designers but also
for hardware engineers. Moreover, they can exploit optimized software or hardware
accelerators. Besides, there are some data sets, useful for image classification and
computer vision applications, that are available. In this way, it is possible to estimate
the accuracy of a DNN and to compare with other models and approaches.

23

2 – Neural Network overview

2.4 Convolutional Neural Network
One of the most popular algorithms of a Deep Neural Network is the CNN (Convo-
lutional Neural Network), also called ConvNet.

Figure 2.7: Architecture of a Convolutional Neural Network. [19]

In Figure 2.7 there is an example of CNN architecture and, as can be seen, it is
generally made by these layers [19]:

• The Convolution Layer (CONV).

• The ReLu Layer (RELU), seen in the chapter 2.2.2.

• The Pooling Layer (POOL).

• The Fully Connected Layer (FC).

• The Softmax Layer, for classification problems. It is a generalized version
of the logistic regression and it is used when the task is the classification of
various classes, not just binary.

It is really used in computer vision problems, such as image classification, also called
image recognition, and object detection. When the input of a computer vision
is a colored image, it can get really big: indeed, three color channels are needed
and their dimension become too large to deal with. Starting from a 1000x1000
pixel image, it is a megapixel; when colored it is 1000x1000x3, because of the RGB
channels. Thus, the dimension of the input features is three million; if the first
hidden layer has just 1000 units, the dimension of the weight matrix would be too
big for a standard or Fully Connected Network. With that many parameters, it is
difficult to prevent a neural network from overfitting [3]. Besides, computational

24

2.4 – Convolutional Neural Network

and memory problems may arise in the training process of the machine. The con-
volution operation solves many of these problems, that is why the CNN is so popular.

In CNN there are more hyperparameters to take into account, such as:

• The size of the filter.

• The padding.

• The stride, to perform stridden convolutions.

• The depth, it represents the number of filters used in a certain stage of the
network.

• The channels.

2.4.1 Convolution layer
The convolution is made between the input image and a filter, also called kernel. It
is used because this operation may be useful to find some important features: for
instance, it can be used as an edge detector. If an image has multiple channels, the
filter has the same depth.

The stride is a fundamental hyperparameter in CNNs since it determines how
the kernel convolves around the input feature map [1]. This hyperparameter defines
the amount of cells by which the kernel has to shift in each iteration. An example
is in Figure 2.8.

Figure 2.8: Slide of a vector with stride = 2. [1]

The stride is chosen in such a way that the output is an integer and not a fraction;
if that is not the case, the output is rounded to the nearest integer. If the stride is
greater than one, a shrink of the size of the feature map occurs [3].

As regards padding, it is another basic block of a Deep Neural Network. Choosing
its value determines the dimension of the output matrix and it is critical in CNNs:
indeed, after many steps of convolutions, the output feature map could get really
small. In this case, detecting a new feature by using another kernel is very difficult.
After few convolution steps, any information of the original input would be lost.

25

2 – Neural Network overview

Besides, there is also a huge loss of information due to the pixels on the edge and
the corner of the matrix: those values are just used once, and surely much less than
the pixels in the middle, and thus they are not so relevant in the final computation
of the output.

The padding can fix both of these problems, just by using a pad image.

There are mainly two choices for padding [3]:
• Valid convolution: no padding is applied (p = 0), so still there is a shrink of

the image and thus of information.

• Same convolution: the input feature map is surrounded by zeros in all the
borders (or some of them). The padding is done in such a way that the output
dimension matches the input one (p > 0).

Usually, the size of the filter is odd, so that asymmetric padding is not required.
In Figure 2.9 there is an example of Same padding convolution with p > 0.

Figure 2.9: Convolution with padding = 1. [19]

As regards the convolution operation, an example is shown in Figure 2.10.
The operation is made between the 6x6 original input image and a 3x3 filter.

An element-wise matrix multiplication is performed between the kernel and a 3x3
portion of the digital image; the sum of the result is saved in one element of the
output matrix. Of course, to perform this operation, the size of the two matrices
must match. Therefore, for a complete convolution operation, the kernel must shift,
in this case, sixteen times. The output is a 4x4 matrix [20].

The general formula, for evaluating the dimension of the final output, is the
following [3]:

O = (W − f + 2p)
s

+ 1 (2.9)

26

2.4 – Convolutional Neural Network

Figure 2.10: Convolutional operation in detail. [20]

where:

• O is the output size (height/weight);

• W is the input size (height/weight);

• f is the filter size;

• p is the padding;

• s is the stride.

2.4.2 Pooling Layer
The Pooling Layer is largely used in a CNN to reduce the spatial dimensions (but
not the number of channels) of the convolved feature map. This operation is really
important since it allows to reduce the computational power and thus increases
efficiency. Moreover, it reduces the overfitting problem and simplifies the extraction
of important features. There are mainly two types of pooling [3]:

• Max pooling.

• Average pooling

In Figure 2.11 there is an example. In this case, starting from a 4x4 image, a
kernel of size 2x2, with stride 2, is used to perform the pooling. It divides the
input in different regions of the kernel size. The Max pooling returns the maximum

27

2 – Neural Network overview

Figure 2.11: Various forms of pooling. [1]

value from every region. The Average pooling, instead, takes the average of all the
values and returns it in the output matrix. As can be seen, the pooling performs a
downsampling of the feature map, reducing its height and width. The depth of the
input matrix is still the same [1]. Besides, the pooling operation does not increase
the number of parameters to be learned by the machine: it is a fixed computation
[3].

2.4.3 Fully Connected Layer

The last layer of a CNN is the Fully Connected one. It is a standard neural network
composed of a certain number of hidden layers. So, it is a feed-forward neural
network and the learning process is done with the back-propagation algorithm, as
seen in the chapter 2.2.3. It is a cheap way to learn non-linear functions.

The input of this layer is the output of a CONV or POOL layer, but it must be
a vector; since that output is a 3D matrix, it has to be flattened before entering in
the final layer [3]. An example of Fully Connected Layer is shown in Figure 2.12.

In the FC layer, all the neurons of two different layers are connected together. This
means that the output is composed of a weighted sum of the input activations. This
can be very expensive in terms of computation and memory occupation. However,
there are also the so-called sparsely-connected layer, in which not all the neurons are
connected. Indeed, some weights are set to zero and there is no effect on accuracy [1].

Moreover, there is a technique in which only a limited number of weights con-
tribute to the computation of the output. A particular case is the weight sharing
approach, in which always the same set of weights contribute to the evaluation of the
outputs [1]. Having these kind of structured sparsity can increase the performances
of the network.

28

2.4 – Convolutional Neural Network

Figure 2.12: Fully connected versus sparse. [1]

2.4.4 1x1 Convolution
In complex architectures, the 1x1 Convolution block is heavily used. If the input
image is, for instance, a single channel 6x6 matrix and it is multiplied by 1x1 filter
of a certain value, the final result will be just a multiplication of the input for that
value. However, this operation becomes useful when the input image has multiple
channels.

Figure 2.13: Example of 1x1 convolution. [3]

In the example in Figure 2.13, the input is a 28x28x192 volume. If the size of
height and weight is too high, a Pooling Layer can be used to reduce their dimension.
If instead, the aim is to shrink the number of channels, the 1x1 convolution is the
best solution. The output depth dimension will be set by choosing the number of
filters to be applied to the input [3].

This operation is also called Network in network and it is used in many DNN
models, such as GoogLeNet architecture [7].

29

2 – Neural Network overview

2.5 Models of DNN
The layers just described in the chapter 2.4 are the starting point for the creation of a
complete neural network. Many CNN models have been created and understanding
some of them is a good starting point to realize a new flexible network that works
well for a certain task.

Some of these models are analyzed in this section, such as:

• LeNet [4]: it is one of the first CNNs, realized in 1989. Its purpose is digit
classification of grayscale images, indeed the inputs have only one channel. The
architecture of the LeNet-5 is shown in Figure 2.14.

Figure 2.14: LeNet architecture. [4]

The LeNet-5 has two CONV layers and, after both of them, there are 2x2
POOL layers. In the end, there are two FC layers and the Softmax layer for
the classification. Since it is a really old structure, average pooling is used;
moreover, the activation function is the sigmoid one. However, more modern
and complex designs share these types of layers: alternation of convolution and
pooling, fully-connected at the end.

• AlexNet [5]: it is similar to the LeNet architecture but much bigger. Its name
stems from one of its author, Alex Krizhevsky, who also wrote the paper of
this design. This architecture won the ImageNet contest in 2012 and it is a
milestone for computer vision applications.
As shown in Figure 2.15, the input is a 3D image and the network is composed
of five CONV layers and three max-pooling layers. It is important to notice
that at the first step, there is a high value of stride, equal to four, that shrinks
the input image and reduces the computation. Moreover, ReLU nonlinearity is
used in this design as an active function. In the end, there are three FC layers,
then the classification is performed.

30

2.5 – Models of DNN

Figure 2.15: AlexNet architecture. [5]

• VGG-16 [6]: this structure has a greater number of layers with respect to the
first two solutions: sixteen layers, as can be seen in Figure 2.16. It has been
realized in 2014 by K. Simonyan and A. Zisserman. It has a large amount of
total parameters, even for today standards, and it is hard to train all of them.

Figure 2.16: VGG-16 architecture. [6]

The reason why this model is so important is because, a few years ago, the cost
of going deeper was increasing too much. The two authors proposed a new
solution to realize 5x5 filters with a composition of smaller ones, containing

31

2 – Neural Network overview

fewer weights.
Therefore, even if this structure is really big, it is affordable and quite attractive
because of its simplicity: there is an optimization in terms of hyperparameters.
Indeed, all the CONV layers have the same stride, equal to one, the same 3x3
filters and the same padding as well. Moreover, the POOL layers, that are five
in this model, are of the maximum type and use a 2x2 kernel with the stride
equal to two. In the end, there are three fully-connected layers.

• GoogLeNet [7]: this structure has been proposed in 2014 and has 22 layers,
greater than the VGG-16. This design is worth considering because of the
inception module, represented in Figure 2.17.

Figure 2.17: Structure of the inception module.

This structure reduces the number of parameters thanks to the parallel connec-
tions: there is the 3x3 max-pooling and also the convolutions with filter sizes
1x1, 3x3 and 5x5. At the output, all these modules are concatenated. In this
way, the computation cost is reduced by one order of magnitude.
The total structure of the GoogleNet is in Figure 2.18.
The architecture is composed of nine inception layers, three CONV layers, and
a final FC layer.

• ResNet [8]: also called Residual network, it realized in 2015. It took part
in the ImageNet contest and it has been the first machine to overcome the
human-level accuracy. This network exploits the residual blocks, that allows to
do a skip connection (a shortcut): the activation, instead of being computed in
a certain layer, can be postponed in a deeper layer in the network. This block
is shown in Figure 2.19.

32

2.5 – Models of DNN

Figure 2.18: GoogLeNet architecture. [7]

Figure 2.19: Shortcut module from ResNet. (a) Without bottleneck. (b) With
bottleneck. [1]

Moreover, to reduce the number of weights, the bottleneck approach is used. In
this case, instead of two CONV layers in the shortcut module, there are three
layers (1x1, 3x3, 1x1).
The ResNet architecture is composed of one CONV layer, 16 residual blocks
and then one FC layer.

In the Figure 2.20, a comparison between all the models just analyzed is shown.
It is a diagram representing the results of the ImageNet Challenge from 2010 up to
2015. The best architecture, able to classify perfectly the images, even better than
the human level, is the ResNet one.

Another important aspect to take into account is the increase of accuracy, between
2011 and 2012, thanks to one of the first deep learning algorithm used by AlexNet.

In Table 2.1, there are some interesting data to analyze the different DNN models.

33

2 – Neural Network overview

Figure 2.20: Results from the ImageNet Challenge. [1]

Table 2.1: Comparison between DNN models.

LeNet 5 AlexNet VGG-16 GoogLeNet ResNet 50
Input Size 28x28 227x227 224x224 224x224 224x224

of CONV layers 2 5 13 57 53
Filter sizes 2 5 13 57 53

Weights 2.6k 2.3M 14.7M 6.0M 23.5M
of FC layers 2 3 3 1 1

Filter sizes 2 5 13 57 53
Weights 58k 58.6M 124M 1M 2M

Total weights 60k 61M 138M 7M 25.5M

First of all, the size of the filters changes on every layer, even in modern architectures.
Therefore, the flexibility remains a priority [1].

As regards the number of total weights, the most modern DNNs are really deep
networks and can afford many of them. In this way, they can provide a large amount
of nonlinear function for the learning algorithm and can detect lots of features.

Moreover, in recent years the number and the importance of convolution layers
is constantly increasing; it is the opposite for the FC layers. Therefore, nowadays
the optimizations are made to improve the CONV operation [1].

34

Chapter 3

ASIP Designer

ASIP Designer is a Synopsys tool used for designing custom processors or pro-
grammable accelerators for different applications [9]. It is language-based and,
starting from the description of the processor as input, it provides a Software
Development Kit (SDK), that will be analyzed in the next paragraphs. Moreover,
it is possible to make fast changes in the description of the processor model: it is
quite simple to optimize the design for achieving a certain requirement.

The tool can be used for many applications, such as image and vision processors,
wireless modem and medical devices: all systems where there are lots of signal
processing but also strict low power requirements [9].

3.1 Design approach
In this section, three kinds of processor design will be analyzed. Starting from a pure
hardware (HW) solution, up to a pure software (SW) approach, all the advantages
and disadvantages of those will be investigated. In the end, the ASIP approach will
be discussed. ASIP is the acronym of Application Specific Instruction-Set Processor
and it is the starting point for the use of the Synopsys’s tool ASIP Designer.

In Figure 3.1, there is the comparison between the three approaches in terms of
efficiency (power, area and performance) and flexibility.

3.1.1 Hardware approach
The general hardware approach is the ASIC (Application Specific Integrated Circuit)
design. It is a hardware solution in which the algorithms are described at RTL
level, then made in silicon. ASIC is the best solution in terms of efficiency, power
consumption and area occupation since it is a custom system made specifically for a
certain function. However, it has really high complexity and also quite high design
time; therefore, the realization cost is extremely high.

35

3 – ASIP Designer

Figure 3.1: Test application structure

Another huge disadvantage is the lack of flexibility: once the custom function is
realized, it is not feasible to change the algorithm; it would be necessary to design a
new whole integrated circuit.

Therefore, the ASIC system is not always a possible solution: it is used only
when there are few constraints for the specific applications and when there is a
massive production that limit its costs.

3.1.2 Software approach
The general purpose microprocessor solution is the opposite of the ASIC approach.
In this case, the design is not made for a single custom function but it is suitable for
a large number of applications. It is a pure software solution in which the algorithms
are implemented at a high level, in languages like C or Assembly.

There are no optimizations at hardware level: the design of this solution is not
as expensive as the hardware one. This means also that the great advantage of
the general-purpose system is the flexibility: the algorithm can be modified many
times, without extra costs. However, this leads to lower performances, greater power
consumption, and larger area occupation.

3.1.3 ASIP approach
The ASIP approach is the midway solution between the software and hardware
ones. In this case, the designer is free to choose what to implement in hardware and
what in software. This is important because sometimes the system has to be more
efficient than a general-purpose processor, but still more flexible than the ASIC

36

3.2 – ASIP Designer tool

solution. Therefore, the idea is to start from a general-purpose processor and then
modify it, adding custom instructions and removing the unused ones.

Besides, a key part of the implementation of an ASIP is to map the most
complicated instructions to the hardware modules, while the less time-consuming
functions to the software parts. In this way, the system can achieve much better
performance.

3.2 ASIP Designer tool
ASIP Designer is a brand new Synopsys tool that allows the design of an ASIP
system. In particular, it exploits the high-level hardware description language nML
to describe the architecture of the processor [9].

The nML code defines the instruction set of the architecture and describes its
instruction pipeline. Besides, it shows the bit-accurate behavior of the operations
of the processor [9]. Since all the tools of ASIP Designer use the nML code,
there is a full compatibility among the hardware implementation and the Software
Development Kit (SDK).

Figure 3.2: Test application structure. [9]

The aim of ASIP Designer is to describes ASIPs and hardware accelerators.
Both share the most common techniques that accomplish high performance and low

37

3 – ASIP Designer

power: for instance, they exploit a “heavy use of specialized datapath elements and
parallelism” [9]. These architectures are C/C++ processors and accelerators that
exploit the software programmability of their applications.

3.2.1 ASIP features
ASIP Designer’s technology supports many features [9], some of them are:

• It describes and modifies the ASIP architectures in the nML language.

• It has a unique Compiler-In-The-Loop technology that generates the SDK,
which contains the following components:

– An optimized compiler that has high-level code optimization and automat-
ically adapts to the processor architecture. The compiler can support a
wide range of them: from general-purpose processors to highly specialized
ASIPs. Moreover, it supports these programming languages: C (that can
be expanded with C++ classes and functions and exploit other data types),
C++ and OpenCL C (that is the OpenCL kernel language).

– A Linker that creates executable files from various object files.
– An Assembler and Disassembler that converts the machine code from binary

format to assembly and vice-versa. The assembly language is specified in
the nML model of the processor.

– An Instruction-Set Simulator (ISS) that gives both fast cycle-accurate and
fast instruction-accurate simulations, using just-in-time compilation tech-
niques. Both models are generated from the nML code of the architecture.

– A Debugger that can be adopted simultaneously for the on-chip debugging
(using JTAG) and for the instruction-set simulators.

• It has an RTL hardware generator that automatically translates the nML
description of the processor into a synthesizable Verilog or VHDL code. The
tool that performs this operation is called Go [13]. The HW implementation of
the ASIP is efficient in terms of power consumption and area.

• It provides a support to verify the ASIP designs, such as some automatic test
programs, created to analyze and diagnose certain ASIP’s ability. Those are in
C and assembly language.

38

Chapter 4

ASIP Implementation

The Synopsys tool ASIP Designer provides a large number of processors that can
be used for any application. In this work, the Tvec core is used.

4.1 Tvec Processor
The Tvec processor is a more sophisticated version of the Tmicro core, also provided
by the tool. The latter is a 16-bit microcontroller that is exploited by the software
to show many concepts of processor modeling and tool capabilities, such as chip
debugging and processor verification [10]. Moreover, it can be used as a basic
element that may be developed to realize an application specific instruction-set
processor.

Tmicro executes all the instructions in a pipelined architecture composed of three
stages, as shown in Figure 4.1:

Figure 4.1: The instruction pipeline. [10]

1. Instruction Fetch (IF): in this stage, there is the fetch of a new instruction,
taken from the program memory.

2. Instruction Decode (ID): the instruction, previously fetched, is now decoded.

39

4 – ASIP Implementation

3. Execute 1 (E1): during this stage, all the mathematical operations are per-
formed.

The instructions of this processor are 16 bit wide and the core allows multi-word
multi-cycle instructions [10]. The main features of the Tmicro architecture are:

• 16 bit ALU, that allows to perform different operations, such as integer arith-
metic, bitwise logical and compare instructions. The data path of the ALU is
shown in Figure 4.2.

Figure 4.2: The ALU data path. [10]

• 16 bit shift unit. It supports the arithmetic shift right and the logical shift
right and left. The shifter data path is in Figure 4.3.

• Register file with 8 registers.

• Register move instructions.

• Multiplier-Accumulator (MAC) unit.

• Many control instructions: jumps, subroutine calls and returns. It supports
interrupts as well.

• 16 bit integer multiplier: 16-bit operands and the output on 32 bit.

• 16 bit division.

Besides, there are load and store instructions, also with indirect addressing. The
Tmicro architecture provides two different memories: the Data Memory (DM) and

40

4.1 – Tvec Processor

Figure 4.3: The shifter data path. [10]

the Program Memory (PM).

Those are just some of the default characteristics. The user can modify, add or
remove any number of instructions to realize an application specific instruction-set.
Indeed, this is exactly what it is done to realize the Tvec core, used during this
work.

The main addition to the Tmicro core is the SIMD kind of operations. It stands
for “Single Instruction Streams, Multiple Data Streams” [3]. The implementation
of those types of instructions, also known as vector instructions, allows to operate
with all the elements of a vector simultaneously. In this way, a faster and more
efficient computation is given, when dealing with large amounts of data.

In the default configuration of the Tvec core, the vector type is 128 bit wide
[11]. In particular, it contains 8 times the width of the 16-bit type word. Moreover,
to perform SIMD instructions, it has been added, to the Tmicro core, a vector
data-path, a vector register and a vector data memory (DMv). In fact, the new
types of data are stored in the vector registers. In Figure 4.4, there is an example
of a SIMD program.

Two vectors are loaded, at the same time, from the DM to the vector registers.
Then, an element-wise addition is performed and the result is stored back in the
memory. The addition is not the only allowed operation between two vectors. It is
possible to perform:

• Element-wise bitwise vector operations, such as OR, AND, XOR and comple-
ment.

• Element-wise addition and subtraction of vectors;

41

4 – ASIP Implementation

Figure 4.4: Execution of vector instructions. [11]

• Element-wise computation of maximum and minimum.

• Inter-element vector operations.

The data path of the vector unit, that computes all the previous operations, is
shown in Figure 4.5.

Figure 4.5: The data path of the vector unit. [11]

In Figure 4.5, vecr and vecs are the input transitories, while vect is the output
computation transitory. Those transitories are used to connect the functional unit,

42

4.2 – Software Implementation

called vec, to the vector registers.
There are two other transitories, that are vecu and vecw. The first is used when

the operation has a scalar operand; the second when the computed output is a
scalar [11].

4.2 Software Implementation
Once decided which processor core to use for the CNN, the next primary step is the
description of a simple bi-dimensional neural network in a mixture of C/C++ code.
This software implementation is parametric, therefore it is possible to modify every
aspect of the network easily. Besides, the code covers only the inference process and
not the training.

Eventually, this code will be executed in the Synopsys tool ASIP Designer. Since
the Tvec core, used in this work, does not support many of the C and C++ libraries,
the code is written in a simple way to avoid compiling problems. For this reason,
the available frameworks, discussed in chapter 2.5, are not taken into account.

4.2.1 Fully-Connected Layer
First of all, a Fully-Connected layer function is created: it receives as input the
matrix X and the weight matrix W . The other two inputs are the number of input
and output neurons. With the latter values, it is possible to create a single FC layer
having a variable number of neurons.

1 void Fully_Connected_Layer (Image A [] , int B [] [SIZE] , int D [] [SIZE] , int channel , int
input_neuron , int output_neuron)

2 {
3 int product = 0 , f i n a l _ r e s u l t = 0 , a=0, b=0;
4 for (int i =0; i<output_neuron ; i ++)
5 {
6 for (int j =0; j<input_neuron ; j++)
7 {
8 for (int k=0; k<channel ; k++)
9 product += dot_product ((v i n t ∗)A[k] . image [j] , (v i n t ∗)B[j]) ;

10 }
11 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (product +1) ;
12 D[i] [b] = f i n a l _ r e s u l t ; /
13 f i n a l _ r e s u l t = 0 ;
14 product = 0 ;
15 b++;
16 }
17 }

Listing 4.1: Fully Connected Layer code.

Each row of the matrix W contains the weights of a single neuron, that are
multiplied by the input image afterwards. In particular, there is a dot product
between the two; the bias is added to the output and then the ReLU activation
function is performed. The final result is stored in an output matrix, whose size
depends on the number of neurons.

It is possible to recall this function many times, in order to create as many hidden
layers as the user desires.

43

4 – ASIP Implementation

4.2.2 Convolution Layer
The convolution layer is the most important part of the code. Indeed, the aim is to
create a Convolutional Neural Network and the CONV layer is the most used layer
in the whole network. This is the reason why multiple implementations of the same
layer will be shown: since it is the layer that requires the largest computational
unit, all the optimizations are done to improve this function.

The convolution function receives the input image and the filter. Moreover, there
are a lot of parameters and hyperparameters that are necessary for a complete
operation:

• Stride: by setting this value, it is possible to change the value of the stride and
decide how to shrink the image.

• Padding: it is possible to choose between Same padding and Value padding.

• Kernel size: the CONV function supports 3x3 and 4x4 filters; it is possible to
choose one of the two with a flag.

• Image size: it is possible to receive an image of any dimension.

The CONV function returns an integer value that represents the size of the
output feature map, evaluated with the formula:

O = (W − f + 2p)
s

+ 1 (4.1)

1 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
2 int Convolution (int conv_size , int k e r n e l , int s t r i d e , int padding , Image &A, Image &B, Image &D)
3 {
4 int c o n v o l u t e = 0 , r e s u l t , f i n a l _ r e s u l t ;
5 int x , y , a=0, b=0, z =0;
6 int output = (conv_size − k e r n e l + 2∗ padding) / s t r i d e + 1 ;
7 int pad_size = conv_size +2;
8 int temp_size = k e r n e l ∗ k e r n e l ;
9

10 i f (padding == 1)
11 {
12 int Pad [SIZE +2] [SIZE +2] ;
13 for (int i =0; i<pad_size ; i ++)
14 {
15 Pad [i] [0] = 0 ;
16 Pad [0] [i]=0;
17 Pad [i] [pad_size −1]=0;
18 Pad [pad_size −1] [i]=0;
19 }
20 for (int i =1; i<pad_size −1; i ++)
21 {
22 for (int j =1; j<pad_size −1; j++)
23 Pad [i] [j]=A. getValue (i −1, j −1) ; //A[i −1][j −1];
24 }
25
26 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
27 {
28 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
29 {
30 x = i ;
31 y = j ;
32 for (int k = 0 ; k < k e r n e l ; k++)
33 {
34 for (int l = 0 ; l < k e r n e l ; l ++)
35 {

44

4.2 – Software Implementation

36 c o n v o l u t e += Pad [x] [y] ∗ B. getValue (k , l) ;
37 y++;
38 }
39 x++;
40 y = j ;
41 }
42 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
43 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
44 c o n v o l u t e = 0 ;
45 b++;
46 }
47 b=0;
48 a++;
49 }
50 }
51 i f (padding == 0)
52 {
53 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
54 {
55 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
56 {
57 x = i ;
58 y = j ;
59 for (int k = 0 ; k < k e r n e l ; k++)
60 {
61 for (int l = 0 ; l < k e r n e l ; l ++)
62 {
63 c o n v o l u t e += A. getValue (x , y) ∗ B. getValue (k , l) ;
64 y++;
65 }
66 x++;
67 y = j ;
68 }
69 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
70 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
71 c o n v o l u t e = 0 ;
72 b++;
73 }
74 b=0;
75 a++;
76 }
77 }
78 return output ;
79 }

Listing 4.2: Convolution Layer code.

4.2.3 Pooling Layer
The pooling layer is another important block of the network and it receives the
convolved feature map from the CONV layer. Besides, there are some parameters
to exploit also in this case:

• Stride.

• Image size.

• Kernel size.

To support the pooling function, two operations are defined: findMean and
findMax. Both receive a 2x2 portion of the input feature map. In the first case, the
average pooling is computed; in the latter, the maximum value is extracted. Next,
The output feature map is stored in a new matrix, ready to be sent in the next
layer.

45

4 – ASIP Implementation

In the end, also the pooling function returns the integer value of the output size
of the matrix. In this case, it is evaluated with the formula 4.2:

O = W

s
(4.2)

1 int findMax (int mat [] [N])
2 {
3 int maxElement = 0 ;
4 for (int i = 0 ; i < N; i ++)
5 {
6 for (int j = 0 ; j < N; j++)
7 {
8 i f (mat [i] [j] > maxElement)
9 maxElement = mat [i] [j] ;

10 }
11 }
12 return maxElement ;
13 }
14
15 int findMean (int mat [] [N])
16 {
17 int sum = 0 ;
18 for (int i =0; i<N; i ++)
19 for (int j =0; j<N; j++)
20 sum += mata [i] [j] ;
21 return sum/(N∗N) ;
22 }
23
24 // P o o l i n g f u n c t i o n .
25 int Pool ing (Image &pool_H , Image &pool_D , int s i z e , int k e r n e l , int s t r i d e)
26 {
27 int H_temp [2] [2] ;
28 int x , y , max , a=0, b=0;
29 int output = s i z e / s t r i d e ;
30 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
31 {
32 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
33 {
34 x = i ;
35 y = j ;
36 for (int k = 0 ; k < k e r n e l ; k++)
37 {
38 for (int l = 0 ; l < k e r n e l ; l ++)
39 {
40 H_temp [k] [l]=pool_H . getValue (x , y) ;
41 y++;
42 }
43 max = findMax (H_temp) ;
44 x++;
45 y = j ;
46 }
47 pool_D . s e t V a l u e s (max , a , b) ;
48 max = 0 ;
49 b++;
50 }
51 b=0;
52 a++;
53 }
54 return output ;
55 }

Listing 4.3: Pooling Layer code.

In the code 4.3, there are also the functions findMax and findMean. In the
simulated CNN, the findMax function is used.

4.2.4 Activation Function
The proposed CNN supports four different activation functions:

• ReLU gradient.

46

4.3 – 3D Convolutional Neural Network

• Leaky ReLU.

• Hyperbolic tangent.

• Sigmoid function.

All these functions are described in the chapter 2.2.2. Having those different
types of activation gives more flexibility to the neural network.

4.3 3D Convolutional Neural Network
In the next step of the CNN implementation, two other hyperparameters are added
to the structure:

• Number of channels.

• Number of filters.

By using the two parameters above, it is possible to realize a 3D Convolutional
Neural Network. First of all, an Image class is defined; it is used to increase the
depth of the feature maps and of the kernels. The input image can now be colored,
having the three RGB channels. The number of channels of the filter and of the
image must match, otherwise, the convolution operation is not feasible.

Moreover, by choosing a number of filters greater than one, it is possible to detect
more important features of the input image, in the same layer. The output image
has as many channels as the number of input filters.

A new Layer functionis created. It receives as input two Image classes, one for
the input image and the other one for the filters, and then performs the convolution
and the pooling. In the main function, it is possible to create a layer of the network
just by calling the Layer function.

In the end, it is possible to have multiple layers and the final FC layers. However,
due to stack memory problems with the Tvec architecture, it is not possible to show
a CNN with as many channels and filters as the most modern network models. The
created CNN is a much smaller version of the VGG-16 network.

The simulations and the analysis are made on a CNN with two CONV-POOL
layers and a final FC layer. The network is shown in Figure 4.6.

The input image is 18x18 large and has just one channel. In the first layer, the
number of filters is 2; in the second layer is equal to 4. In the convolution layer,
the padding is zero and the stride is equal to one. As regards the pooling layer,
2x2 portions of the matrix are considered and a max-pooling operation with stride
s = 2 is performed.

47

4 – ASIP Implementation

Figure 4.6: Convolutional Neural Network used for the simulations.

4.3.1 First Design
To realize the convolution operation, the Tvec architecture needs some new instruc-
tions. Indeed, the starting processor does not support the SIMD multiplication
between two vectors, that is shown in Figure 4.7.

Figure 4.7: The SIMD multiplication between two vectors. [11]

The operands are two 8 bit vectors and the multiplication is saved in a final 8
bit vector [11]. It is possible to add this operation in the Tvec core by modifying
three processor files:

• tvec.h: it is the primitive processor header file. It is a C++ file in which
are declared all the data types and the functions that are used in the nML
processor description. The data types are modeled as C++ classes and are used
to declare storage in nML, while the functions are modeled as C++ functions.

• tvec.p: it is the primitive definition file. The user describes the behavior of
the primitive functions using the Primitives Definition and Generation (PDG)
language, based on the C language. This file is really important because the
PDG tool exploits it to generate the C++ and the Verilog/VHDL files. The
first is used by the compiler ISS, while the latter is used in the model created
by the tool Go.

48

4.3 – 3D Convolutional Neural Network

• tvec.n: in this file, there is the description of the whole processor architecture,
written in the hardware description language nML.

The vector multiplier is declared in the primitive processor header file: it has
two vword operands and a vword output. Its description is written in the tvec.p
file, as shown below.

1 vword mul (vword a , vword b)
2 {
3 word y ;
4 vword rv ;
5 for (int32_t i =0; i<VSIZE ; i ++)
6 mulss (a [i] , b [i] , rv [i] , y) ;
7 return rv ;
8 }

Listing 4.4: Description of vector multiplication in the PDG file.

There is a for loop where the basic multiplication mulss, already implemented
in the Tvec core, is performed between the elements of the input vectors. Each
multiplication is stored in the output vector. Therefore, the latter has the same size
of the two input operands.

However, this is only the first step of the convolution; as a second step, a sum of
all the elements of the output vector is needed [11]. This operation is performed as
shown in Figure 4.8.

Figure 4.8: Summation of the elements of a vword. [11]

Those steps are repeated for every portion of the input image taken, while the
filter remains the same. Then, depending on the number of channels and filters,
other convolutions are performed in the same way. The output feature map will go
through the next layers, as described in the previous chapters.

The first design of the convolutional layer is shown below.

49

4 – ASIP Implementation

1 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
2 int Convolution (int conv_size , int k e r n e l , int s t r i d e , int padding , Image &A, Image &B, Image &D)
3 {
4 int X_temp [4] ;
5 int W_temp [4] ;
6 int c o n v o l u t e = 0 , r e s u l t , f i n a l _ r e s u l t ;
7 int x , y , a=0, b=0, z =0;
8 int output = (conv_size − k e r n e l + 2∗ padding) / s t r i d e + 1 ;
9 int pad_size = conv_size +2;

10
11 i f (padding == 0)
12 {
13 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
14 {
15 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
16 {
17 x = i ;
18 y = j ;
19 for (int k = 0 ; k < k e r n e l ; k++)
20 {
21 for (int l = 0 ; l < k e r n e l ; l ++)
22 {
23 W_temp[l]=B. getValue (k , l) ;
24 X_temp [l]=A. getValue (x , y) ;
25 y++;
26 }
27 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
28 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
29 x++;
30 y = j ;
31 }
32 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
33 c o n v o l u t e = 0 ;
34 b++;
35 }
36 b=0;
37 a++;
38 }
39 }
40 return output ;
41 }

Listing 4.5: Convolution Layer of the first design.

In this case, the whole convolution is not a SIMD operation. Indeed, the max-
imum dimension of the vector type, defined in the Tvec core, is 8. Therefore,
the convolution cannot be performed in a single step, with either 3x3 and 4x4
filters. The easiest solution is to temporarily store the rows of the input image and
the filter in two different registers. The dot product is then performed between
the two rows, with a SIMD multiplication, and saved in a variable. This step is
repeated for each row and the value of the output variable is updated, summing
up the previous values. Next, the activation function is applied to the result and
the output value saved in the output feature map. At this point, a new portion
of the image is taken, depending on the stride value, and the same steps are repeated.

The whole C/C++ code of the Convolutional Neural Network, with the first
design of the convolution layer, is then imported in the tool ASIP Designer. After
choosing the proper processor core (Tvec in this case), it is possible to compile
the entire project and run the simulation. The tool provides an instruction report,
shown in Figure 4.9.

The report gives information about the amount of memory and instructions used
during the simulation. In particular, the simulated program requires a total number
of instructions equals to 158535 and those occupy 719 bytes of the program memory.

50

4.3 – 3D Convolutional Neural Network

Figure 4.9: Instruction report of the first design.

Moreover, the total number of cycles is 172505.
The report also gives information about the computational cost, in terms of

cycles and instructions, for every function of the program. The convolution is the
most expensive function: it uses the 70% of the total instructions and cycles. Then,
below the 10% there are the Pooling and dot_product functions as the second and
third most expensive.

One of the best features of ASIP Designer is the possibility to analyze, in detail,
the computational cost of each assembly instruction. Their total number is 719.
The report, for each function of the code, provides a list of assembly instructions
associated to their cost in terms of cycles and execution. For instance, the pooling
function is performed in 93 assembly instructions, while the convolution in 148.

In the Appendix B there is the assembly instruction report of the convolution
function. That report shows that the if statement, for padding p = 0, starts at the
instruction 144 (of the total 719), which is a conditional jump. The loops, instead,
start at 147. Inside the for loops, there are the most expensive instructions of the
CNN. In particular, the load and store instructions, that prepare the operands of
the dot product, sometimes require 7200 cycles to be executed. Right before the dot

51

4 – ASIP Implementation

product operation, the compiler can insert a nop operation, because there are no
other instructions to schedule at that time. Aftwerwards, the dot product function is
called, with a move immediate and a clid instruction. Then, it requires the loading
of the two operands and the data previously stored in the convolute variable.

To realize the dot product, four assembly instructions are enough: the load
operation of the operands, the vector multiplication (vmul) and the final sum of the
vector to a scalar variable (vsum).

4.3.2 Second Design
In this second design, the aim is to execute the convolution between the kernel and
a portion of the image (of the same size of the kernel) with a single instruction, per-
forming a complete SIMD operation. In this case, both the operands are temporary
stored in two different vectors; their size depend on the dimension of the filter (that
can be 3x3 or 4x4, in this algorithm).

As seen in the previous design, in the standard configuration of the Tvec core
the SIMD operations can be made between two vectors whose dimension is not
greater than eight. Therefore, the hardware of the processor is modified, in order to
increase the size of the vectors. The new dimension is sixteen, the double of the
original, and in this way, it is possible to execute the convolution with either size of
the filters. The C code of this design is shown below.

1 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
2 int Convolution (int conv_size , int k e r n e l , int s t r i d e , int padding , Image &A, Image &B, Image &D)
3 {
4 int X_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
5 int W_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
6 int c o n v o l u t e = 0 , r e s u l t , f i n a l _ r e s u l t ;
7 int x , y , a=0, b=0, z =0;
8 int output = (conv_size − k e r n e l + 2∗ padding) / s t r i d e + 1 ;
9 int pad_size = conv_size +2;

10 int temp_size = k e r n e l ∗ k e r n e l ;
11
12 i f (padding == 0)
13 {
14 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
15 {
16 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
17 {
18 x = i ;
19 y = j ;
20 for (int k = 0 ; k < k e r n e l ; k++)
21 {
22 for (int l = 0 ; l < k e r n e l ; l ++)
23 {
24 i f (i==0 && j ==0)
25 W_temp[z]=B. getValue (x , y) ;
26 X_temp [z]=A. getValue (x , y) ;
27 z++;
28 y++;
29 }
30 x++;
31 y = j ;
32 }
33 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
34 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
35 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
36 c o n v o l u t e = 0 ;
37 b++;
38 z =0;
39 }
40 b=0;

52

4.3 – 3D Convolutional Neural Network

41 a++;
42 }
43 }
44 return output ;
45 }

Listing 4.6: Convolution Layer of the second design.

It is similar to the first design, but instead of temporarily store just a row of
the operands, the whole matrices are stored in two vectors. In this way, it is fast
and simple to perform the dot product between the two operands, to sum all the
elements of the output vector in a single variable and to store it in the output
feature map. The remaining part of the function is unchanged.

In Figure 4.10 there is the instruction report of the second design.

Figure 4.10: Instruction report of the second design.

In this case, the convolution is still the most expensive function of the program.
Anyway, the number of total instructions is lower of about 20k, while the total cycle
count is reduced of 10k cycles. This is an important result: with a complete SIMD
convolution, the program is optimized with respect to the first design.

However, by looking in details at the instructions of the CONV function, it is
clear that the biggest contribution is still given by the load and store operations.
At every iteration, the amount of data to load and store is really high. This can be
the starting point for further improvements.

53

4 – ASIP Implementation

4.3.3 Third Design
The third design is made to reduce the number of store and load operations that
the program has to perform for every dot product in the convolution function. This
is crucial because, in a neural network with a large number of channels and filters,
there are thousands of vectors to temporary store in the memory.

The proposed approach can be fully exploited when the stride is equal to one.
In fact, in this case, considering a 3x3 filter (but the approach still works for a
4x4 kernel), each portion of the input image has six over nine elements in common
with the previous one. Therefore, instead of saving the whole new matrix at each
iteration, only three new values are stored.

However, in this way the order of the rows of the matrix changes; therefore, the
kernel cannot just be saved once: it is stored in three different vectors (four, in the
4x4 case) and at each iteration, the right vector is taken for the dot product.

Another possible solution is to exploit shift operations to use only two vectors to
store the matrices, one for the input feature map and the other one for the filter.
In this way, at each iteration, the vector is updated by shifting left the old values
that are still valid for the next computations, while the useless ones are removed.
Then, the new values are added in the most right cells and the dot product can be
performed. However, this implementation is not so efficient and thus it is discarded.

The C code of the convolution function is shown below.
1 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
2 int Convolution (int conv_size , int k e r n e l , int s t r i d e , int padding , Image &A, Image &B, Image &D)
3 {
4 int X_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
5 int X_final [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
6 int W_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
7 int W_temp_2 [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
8 int W_temp_3 [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
9 int W_temp_4 [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;

10 int c o n v o l u t e = 0 , r e s u l t , p a r t i a l , f i n a l _ r e s u l t ;
11 int x , y , a=0, b=0, z =0, c=k e r n e l , d=2∗ k e r n e l , e=3∗ k e r n e l ;
12 int output = (conv_size − k e r n e l + 2∗ padding) / s t r i d e + 1 ;
13 int pad_size = conv_size +2;
14 int temp_size = k e r n e l ∗ k e r n e l ;
15
16 i f (padding == 0)
17 {
18 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
19 {
20 x=0;
21 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
22 {
23 y = j ;
24 for (int k = 0 ; k < k e r n e l ; k++)
25 {
26 i f (i ==0)
27 {
28 for (int l = 0 ; l < k e r n e l ; l ++)
29 {
30 i f (j ==0)
31 {
32 W_temp[z]=B. getValue (x , y) ;
33 W_temp_2[c]=B. getValue (x , y) ;
34 W_temp_3[d]=B. getValue (x , y) ;
35 i f (k e r n e l == 4)
36 {
37 W_temp_4[e]=B. getValue (x , y) ;

54

4.3 – 3D Convolutional Neural Network

38 e++;
39 }
40 c++;
41 d++;
42
43 i f (c==temp_size)
44 c =0;
45 i f (d==temp_size)
46 d=0;
47 i f (e==temp_size)
48 e =0;
49 }
50 i f (z==temp_size)
51 z =0;
52 X_temp [z]=A. getValue (x , y) ;
53 z++;
54 y++;
55 }
56 x++;
57 y = j ;
58 }
59
60 i f (i >0)
61 {
62 i f (z==temp_size)
63 z =0;
64 X_temp [z]=A. getValue (x , y) ;
65 y++;
66 z++;
67 }
68 }
69 i f (i >0)
70 x++;
71 i f (i==0 | | i==k e r n e l | | i ==2∗k e r n e l | | i ==3∗k e r n e l)
72 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
73
74 i f (i==1 | | i==k e r n e l+1 | | i ==2∗k e r n e l +1)
75 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp_2) ;
76 i f (i==2 | | i==k e r n e l+2 | | i ==2∗k e r n e l +2)
77 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp_3) ;
78 i f (k e r n e l == 4)
79 i f (i==3 | | i==k e r n e l+3 | | i ==2∗k e r n e l +3)
80 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp_4) ;
81
82 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
83 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
84 c o n v o l u t e = 0 ;
85 b++;
86 }
87 b=0;
88 a++;
89 }
90 }
91 return output ;
92 }

Listing 4.7: Convolution Layer of the third design.

As can be seen, it is necessary to create four W_temp vectors that store the
kernel in different orders. To perform the correct dot product, some if conditions are
needed. Those can reduce the efficiency of the code by increasing the computational
cost. Unfortunately, they are necessary in the software approach.

The instruction report of the third design is presented in Figure 4.11. The
convolution function increases its cost in terms of cycles and instructions: it is about
80% of the total amount. However, the total cycle count is now increased with
respect to the second design and it is similar to the first one. This is due to the if
statements used in this configuration. Indeed, by looking at the assembly of the
convolution function, it shows that the conditional jump instruction jcr, useful for
choosing the right operand, needs 2400 cycles and 6720 instructions to be executed:

55

4 – ASIP Implementation

Figure 4.11: Instruction report of the third design.

more than any other operation of the convolution function. Moreover, the load and
store operations still have a huge impact on the overall cost.

56

4.3 – 3D Convolutional Neural Network

4.3.4 Fourth Design
One way to improve the third design is to reduce the number of temporary vectors
that are used to store the filter matrices. An efficient way to accomplish that result
is to implement a structure called circular buffer. It also known as ring buffer and
an example is shown in Figure 4.12.

Figure 4.12: Structure of a circular buffer.

It is a data structure that exploits a single buffer of a fixed dimension that is
treated as circular, even though it is a linear structure.

The circular buffer is organized in a FIFO (First In First Out) manner and uses
a pointer to its inner locations: starting from an empty buffer, it is possible to fill
it with new values, updating the pointer to the next element. If the FIFO is full
and a writing operation is performed, the oldest value is removed and the pointer
incremented.

The most efficient way to realize the ring buffer, in the convolution function, is
probably a hardware implementation. Anyway, in this fourth design, a software
version is realized. It is a simpler solution and it is worth checking if a good result
is obtained without using the hardware accelerator. Indeed, the latter is solution is
more invasive since requires another change to the Tvec architecture. In this way, it
can be proved if the hardware accelerator solves the problems that may arise with
the software solution and a comparison can be made.

The software solution is shown below.
1 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
2 int Convolution (int conv_size , int k e r n e l , int s t r i d e , int padding , Image &A, Image &B, Image &D)
3 {
4 int X_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
5 int X_final [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
6 int W_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
7 int c o n v o l u t e = 0 , r e s u l t , p a r t i a l , f i n a l _ r e s u l t ;
8 int x , y , a=0, b=0, z =0;
9 int output = (conv_size − k e r n e l + 2∗ padding) / s t r i d e + 1 ;

10 int pad_size = conv_size +2;
11 int temp_size = k e r n e l ∗ k e r n e l ;
12

57

4 – ASIP Implementation

13 i f (padding == 0)
14 {
15 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
16 {
17 x=0;
18 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
19 {
20 y = j ;
21 for (int k = 0 ; k < k e r n e l ; k++)
22 {
23 i f (i ==0)
24 {
25 for (int l = 0 ; l < k e r n e l ; l ++)
26 {
27 i f (j ==0)
28 W_temp[z] = B. getValue (x , y) ;
29 i f (z==temp_size)
30 z =0;
31 X_temp [z] = A. getValue (x , y) ;
32 z++;
33 y++;
34 }
35 x++;
36 y = j ;
37 }
38
39 i f (i >0)
40 {
41 i f (z==temp_size)
42 z =0;
43 X_temp [z] = A. getValue (x , y) ;
44 y++;
45 z++;
46 }
47 }
48
49 i f (i >0)
50 {
51 x++;
52 for (int r = 0 ; r < temp_size ; r++)
53 {
54 i f (z == temp_size)
55 z =0;
56 X_final [r] = X_temp [z] ;
57 z++;
58 }
59 }
60 i f (i ==0)
61 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
62 e l s e
63 c o n v o l u t e += dot_product ((v i n t ∗) X_final , (v i n t ∗)W_temp) ;
64 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
65 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
66 c o n v o l u t e = 0 ;
67 b++;
68 }
69 b=0;
70 a++;
71 }
72 }
73 return output ;
74 }

Listing 4.8: Convolution Layer of the fourth design.

The X_final vector is added in the code to realize a circular buffer. The image
operand is eventually stored in that vector; then, it is performed, as usual, the dot
product between the latter and the filter. When the operand of the dot product is
the first portion of the input feature map, the circular buffer is not used.

In Figure 4.13 there is the report for this implementation.
The total cycle count is the largest among the considered designs. Therefore, a

pure software implementation of the circular buffer is not a good solution. The de-
tailed report of the convolution function shows a reduced impact of the if statements
because of a larger contribution of the store and load instructions.

58

4.3 – 3D Convolutional Neural Network

Figure 4.13: Instruction report of the fourth design.

A hardware solution is necessary to accelerate the computation and to increase
efficiency, as is shown in the next chapter.

4.3.5 Fifth Design
Although the software ring buffer did not bring interesting results, it is possible to
exploit the feature of ASIP Designer to realize a hardware accelerator.

In this way, the functions with the largest computational cost can be mitigated
and the machine will have better performances.

To realize a hardware circular buffer, the Tvec core is modified one more time.
First of all, the primitive function of the ring buffer, called barrel, is declared in the
primitive header file. Then, it is described in the tvec.p file, as shown below.

1 vword b a r r e l (vword a , word z , word c)
2 {
3 vword rv ;
4 word s=z ;
5 i f (c==9)
6 {
7 for (int32_t i =0; i <9; i ++)
8 {
9 i f (s==9)

10 s =0;
11 rv [i]=a [s] ;
12 s=s +1;
13 }
14 }

59

4 – ASIP Implementation

15 e l s e
16 {
17 for (int32_t i =0; i <16; i ++)
18 {
19 i f (s==16)
20 s =0;
21 rv [i]=a [s] ;
22 s=s +1;
23 }
24 }
25 return rv ;
26 }

Listing 4.9: Circular buffer implementation.

The code above shows two different loops: the first is for 3x3 kernels, while
the second for 4x4 ones. Then, the nML description of the processor is modified.
In particular, the new function is added in the vector.n file, where there is the
description of the vector operations supported by the Tvec architecture. The barrel
function needs one vector and two variables as input and outputs a vector. The
description is shown below:

1 opn vec_v (t : vt , u : ru , r : rr , s : vs)
2 {
3 a c t i o n {
4 s t a g e E1 :
5 v e c s = s ;
6 temp_size = u ;
7 z = r ;
8 v e c t = b a r r e l (vecs , z , temp_size) @vec ;
9 t = v e c t ;

10 }
11 syntax : t " , " u " , " r " , " s ;
12 image : " 011 " : : t : : u : : r : : s ;
13 }

Listing 4.10: nML circular buffer description.

The operation is performed by the vec functional unit (discussed in the chapter
4.1) in the E1 stage of the pipeline. The source and destination vector registers
are vs and vt, respectively, and these will store the input and output vectors of the
function.

Then, there are the syntax and image attributes to consider. The first represents
the assembly syntax for the instructions, while the second specifies the binary
encoding for the corresponding instruction [12]. The barrel instruction is now fully
described and it can be used in the final implementation of the convolution function,
as shown below.

1 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
2 int Convolution (int conv_size , int k e r n e l , int s t r i d e , int padding , Image &A, Image &B, Image &D)
3 {
4 int X_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
5 int X_final [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
6 int c o n v o l u t e = 0 , r e s u l t , p a r t i a l , f i n a l _ r e s u l t ;
7 int x , y , a=0, b=0, z =0;
8 int output = (conv_size − k e r n e l + 2∗ padding) / s t r i d e + 1 ;
9 int pad_size = conv_size +2;

10 int temp_size = k e r n e l ∗ k e r n e l ;
11
12 i f (padding == 0)
13 {
14 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
15 {
16 x=0;
17 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
18 {
19 y = j ;
20 for (int k = 0 ; k < k e r n e l ; k++)

60

4.3 – 3D Convolutional Neural Network

21 {
22 i f (i ==0)
23 {
24 for (int l = 0 ; l < k e r n e l ; l ++)
25 {
26 i f (j ==0)
27 W_temp[z] = B. getValue (x , y) ;
28 i f (z==temp_size)
29 z =0;
30 X_temp [z] = A. getValue (x , y) ;
31 z++;
32 y++;
33 }
34 x++;
35 y = j ;
36 }
37
38 i f (i >0)
39 {
40 i f (z==temp_size)
41 z =0;
42 X_temp [z] = A. getValue (x , y) ;
43 y++;
44 z++;
45 }
46 }
47
48 i f (i >0)
49 {
50 x++;
51 barrel_op ((v i n t ∗)X_temp , z , temp_size , (v i n t ∗) X_final) ;
52 }
53 i f (i ==0)
54 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
55 e l s e
56 c o n v o l u t e += dot_product ((v i n t ∗) X_final , (v i n t ∗)W_temp) ;
57
58 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
59 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
60 c o n v o l u t e = 0 ;
61 b++;
62 }
63 b=0;
64 a++;
65 }
66 }
67 return output ;
68 }

Listing 4.11: Convolution Layer of the fifth design.

The code is simpler because it is enough to call the new barrel function to exploit
the ring buffer architecture.

As can be seen, inside the for loop, when the index i is equal to zero, the barrel
function is not called. In that case, the first row portions of the input feature are
taken: the image matrix is in perfect order and can be multiplied with the kernel.
Therefore, there is no need to use the circular buffer and some instructions can be
saved. In all the other cases, the ring buffer speeds up the execution, as can be
noticed in the instruction report in Figure 4.14.

In this last design of the Convolutional Neural Network, the total cycle count is
135026 and the total instruction count is 120457.

In table 4.1 there is a comparison between the five implementation used in this
work. A Figure of merit (FoM) that represents the total computational cost of the
design is used. It is evaluated by multiplying the total cycle count, the total size in
the program memory and the total instruction count; the result is normalized to
the value obtained in the first design. This FoM is useful to compare the designs
used in this work.

61

4 – ASIP Implementation

Figure 4.14: Instruction report of the fifth design.

Table 4.1: Report comparison between the five implementations.

Design Total Cycle Total Instruction Total Size FoM
Count Count in Program Memory

First 172505 158535 719 1
Second 162445 137455 727 0.82
Third 173225 152249 974 1.31
Fourth 186215 169755 810 1.30
Fifth 135026 120457 807 0.68

The fifth design, that uses a complete SIMD convolution function and exploits a
hardware circular buffer, is the most efficient solution. Indeed, it has the lowest FoM,
equal to 0.6. If a deeper CNN is used, the differences between these implementation
can be even larger.

62

Chapter 5

Simulation and Synthesis

5.1 Creation of HDL
In this section, another tool of ASIP Designer, called Go, is exploited. It is a
hardware description language (HDL) generator and it is a powerful tool that
translates the description of the processor architecture into a synthesizable HDL:
in fact, starting from the nML code, it is possible to obtain a Verilog or VHDL
description, at the RTL (Register Transfer Level) [13].

Figure 5.1: Schematic representation of the data path, generated by GO. Every
rectangle in solid lines represents a separate entity. [13]

In Figure 5.1 there is a schematic of the data path generated by Go. As can be

63

5 – Simulation and Synthesis

seen, it translates every single hardware unit and the final HDL code is complete.
In the hdl directory, following the steps in Figure 5.2, it is possible to the read all
the generated files.

Figure 5.2: The directory structure created by GO. [13]

First of all, in the Tvec subdirectory, it is possible to find the tvec.v file. It is the
most important Verilog file, since it is the highest level module that describes the
whole architecture and how all the blocks are connected [13]. Then, as can be seen
in Figure 5.2, there are many folders:

• mux: in this subdirectory, the multiplexers of the nML description are imple-
mented.

• mem: it has the implementation of a memory interface for every memory
defined in the core. In the Tvec case, there are three memories: Program
Memory (PM), Data Memory (DM) and Vector Data Memory (DMv).

• pipe: in this section, there are all the pipeline registers.

• prim: in this folder there are the functional units of the architecture.

• reg: it contains the register files and the physical registers of the Tvec processor.

• controller: this folder contains some important modules, such as the instruction
set decoder and the hazard unit. The latter is important to prevent pipeline
hazards, that are dangerous for the machine. Moreover, there is another

64

5.1 – Creation of HDL

important file, named controller.v, that sets the new value of the program
counter.

In the end, there is also the testbench directory that can be used for the simulation
of the Verilog files.

5.1.1 Simulation
As seen in the paragraph 5.1, the Go tool of ASIP Designer generates the HDL of
the Tvec processor. Besides, it provides the test-bench and a Makefile as well. Those
are useful to simulate the HDL (Verilog, in this case) of the Tvec core. In particular,
with the default settings of the Makefile, the tool allows to analyze, elaborate and
simulate the RTL [13].

It is also possible to change some commands to simulate the architecture with
Synopsy VCS(-MX), Mentor/Modelsim or Cadence. Those simulations can be
compared with the ones performed by ASIP Designer in the instruction set simulator
(ISS).

5.1.2 Synthesis
After the simulation, the last step of this thesis is the synthesis of the processor with
Synopsys Design Compiler. The aim is to find the area, the power consumption and
the maximum operating frequency of the implementation used in this work.

The Verilog HDL of the Tvec processor is loaded in Design Compiler; then all
the files are analyzed and the top level module is elaborated. It is possible to apply
some constraints to the design, such as the uncertainty of the clock signal. The
memories are not synthesized. In the end, it is possible to compile the whole design
and to read the reports of area, timing and power consumption.

These steps are repeated for the implementation used in this work:

1. The original Tvec processor provided by Synopsys.

2. The Tvec core with the addition of the vector multiplication

3. The processor with the double size of the vector types used in the third
implementation.

4. The complete architecture used in the final design, with the implementation of
the barrel function that realizes the hardware ring buffer.

The comparison between these four designs is in Table 5.1 and Table 5.2.
The maximum frequency operation is 243.90 MHz for all the four architectures used
in this work. As regards the area, the final solution gives the minimum value.

65

5 – Simulation and Synthesis

Table 5.1: Area and frequency of the main four designs.

Design Area [µm2] Frequency [MHz]
First 21736.99 243.90

Second 25925.42 243.90
Third 21694.96 243.90
Fourth 21102.31 243.90

Table 5.2: Power consumption of the main four designs.

Internal Switching Leakage Total
Architecture Power Power Power Power

[mW] [µW] [µW] [mW]
First 2.2013 81.8891 444.00 2.7272

Second 2.2012 82.0578 535.94 2.8192
Third 3.0892 97.0377 647.45 3.8337
Fourth 2.1992 82.8041 417.56 2.6995

In Table 5.2 there is the power report provided by Synopsys Design Compiler. It
gives information about the static and dynamic power, where the latter gives the
greatest contribution in all the implementations.

The final Convolutional Neural Network, used in the last implementation of the
previous chapter, is the best solution also in terms of power consumption.

66

Chapter 6

Final conclusions and future
work

6.1 Conclusions
This work showed how the Deep Learning algorithms may be created from scratch,
in a C/C++ code, and used in the tool ASIP Designer. Among the possible archi-
tectures, the Tvec core is the best solution because it provides the SIMD operations,
really useful when dealing with large amounts of data. In fact, Convolutional Neural
Network may need lots of storage to save the feature maps and the kernels. The tiny
CNN used in this work is not as deep as the most recent learning machines, but the ob-
tained result are still valid and can be taken into account for future implementations.

Thanks to the reports provided by ASIP Designer, it was possible to perform
on-going optimizations on both the hardware and software models. In the end, the
best solution, in terms of required computational cost, is obtained with hardware
accelerators that can execute vector operations and modules, such as the circular
buffer, that reduce the total count of instructions.

Another advantage of this tool is the automatic generation of the HDL of the
processor, with the Go tool. In this way, the architecture can be easily simulated
and synthesized. The final design of the Tvec core requires less area and it is more
efficient in terms of power and maximum operating frequency.

6.2 Future works
Future works may exploit or create more advanced architectures and optimize them
with the help of ASIP Designer. In particular, Multiple Instructions Multiple Data
(MIMD) type of cores may be used, instead of just SIMD processors. Besides, there

67

6 – Final conclusions and future work

will be more information about the features of Synopsys tool: it would become a
standard approach for software and hardware engineers.

Moreover, in future it will be possible to use architectures compatible with more
C/C++ libraries. In this way, more optimized descriptions of the architecture can
be performed, in terms of total cycles and instructions count.

As regards the optimizations of a Convolutional Neural Network, by using more
complicated architectures and with larger stack areas, it will be possible to analyze
and improve deeper networks, similar to the most popular.

Exploiting ASIP Designer for Machine Learning algorithms can be a powerful tool
to improve their efficiency and to increase the Deep Learning area of application.

68

Appendix A

Code of the Convolutional
Neural Network

1 #define N 2
2 #define SIZE VSIZE
3 #define f i l t e r _ 1 2
4 #define f i l t e r _ 2 4
5 #define channel_1 1
6 #define channel_2 2
7
8 v i n t P [SIZE] ;
9 int W_FC[SIZE] [SIZE] ;

10 int Y_FC[SIZE] [SIZE] ;
11 int W_1[SIZE] [SIZE] ;
12 int W_2[SIZE] [SIZE] ;
13 int W_3[SIZE] [SIZE] ;
14 int X_prova [SIZE] [SIZE] [SIZE] ;
15
16 // Funct ion t o i n i t i a l i z e i n p u t and w e i g h t s
17 void i n i t (int image_size , int num_hidden_neuron , int v e c t o r _ e l e m e n t _ f i r s t)
18 {
19 for (int i = 0 ; i < image_size ; i ++)
20 P [i] = (i) ;
21 int r = 0 ;
22 // Weight f o r F u l l y c o n n e c t e d l a y e r
23 for (int i = 0 ; i < num_hidden_neuron ; i ++)
24 {
25 for (int j = 0 ; j < v e c t o r _ e l e m e n t _ f i r s t ; j++)
26 W_FC[i] [j] = (i+j −1) ;
27 }
28 }
29
30 // S c a l a r p r o d u c t be tween 2 v e c t o r s
31 int dot_product (v i n t ∗pa , v i n t ∗pb)
32 {
33 int product = 0 ;
34 v i n t va = ∗pa ;
35 v i n t vb = ∗pb ;
36 v i n t dot_ab = mul (va , vb) ;
37 product = sum(dot_ab) ;
38 return product ;
39 }
40
41 // C i r c u l a r b u f f e r
42 void barrel_op (v i n t ∗pa , int z , int temp_size , v i n t ∗ pc)
43 {
44 v i n t va = ∗pa ;
45 ∗ pc = b a r r e l (va , z , temp_size) ;
46 }
47
48 // A c t i v a t i o n f u n c t i o n s
49 int r e l u _ g r a d i e n t (int x)
50 {
51 i f (x > 0) return x ;
52 e l s e return 0 ;
53 }

69

A – Code of the Convolutional Neural Network

54
55 int l e a k _ r e l u (int x)
56 {
57 i f (x > 0) return x ;
58 e l s e return (int) 0 . 0 1 ∗ x ;
59 }
60
61 int s igmoid (int x)
62 {
63 i f (x > 1) return 1 ;
64 e l s e i f (x < −1) return 0 ;
65 e l s e return x ;
66 }
67
68 int tanh (int x)
69 {
70 return tanh (x) ;
71 }
72
73
74 c l a s s Image
75 {
76 public :
77 Image () ;
78 void in it_image (int k e r n e l , int t) ;
79
80 void s e t V a l u e s (int value , int i , int k)
81 {
82 image [i] [k] += value ;
83 }
84 int getValue (int a , int b)
85 {
86 return image [a] [b] ;
87 }
88
89 private :
90 int image [SIZE] [SIZE] ;
91 } ;
92
93 Image : : Image ()
94 {
95
96 image [0] [0] = 0 ;
97 }
98
99 void Image : : in it_image (int k e r n e l , int t)

100 {
101 for (int i =0; i<k e r n e l ; i ++)
102 {
103 for (int j =0; j<k e r n e l ; j++)
104 {
105 image [i] [j] = j +2∗ i−t −1;
106 }
107 }
108 }
109
110 // R e g u l a r c o n v o l u t i o n f u n c t i o n .
111 int Convolution (int c o n v o l u t i o n _ s i z e , int k e r n e l , int s t r i d e , int padding , // i n t channel , i n t

f i l t e r ,
112 Image &A, Image &B, Image &D) // i n t D [] [SIZE]) // i n t A [] [SIZE] , i n t B [] [SIZE] ,

// i n t T [] [SIZE] [SIZE] [SIZE] , i n t S [] [SIZE] [SIZE] ,
113 {
114 int X_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
115 int X_final [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
116 int W_temp [1 6] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
117 int c o n v o l u t e = 0 , r e s u l t , p a r t i a l , f i n a l _ r e s u l t ;
118 int x , y , a=0, b=0, z =0;
119 int output = (c o n v o l u t i o n _ s i z e − k e r n e l + 2∗ padding) / s t r i d e + 1 ;
120 int pad_size = c o n v o l u t i o n _ s i z e +2;
121 int temp_size = k e r n e l ∗ k e r n e l ;
122
123 i f (padding == 1)
124 {
125 int Pad [SIZE +2] [SIZE +2] ;
126 for (int i =0; i<pad_size ; i ++)
127 {
128 Pad [i] [0] = 0 ;
129 Pad [0] [i]=0;
130 Pad [i] [pad_size −1]=0;
131 Pad [pad_size −1] [i]=0;
132 }
133 for (int i =1; i<pad_size −1; i ++)
134 {

70

A – Code of the Convolutional Neural Network

135 for (int j =1; j<pad_size −1; j++)
136 Pad [i] [j]=A. getValue (i −1, j −1) ; //A[i −1][j −1];
137 }
138
139 // F i l l o u t p u t m a t r i x : rows and columns are i and j r e s p e c t i v e l y
140 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
141 {
142 x=0;
143 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
144 {
145 y = j ;
146 for (int k = 0 ; k < k e r n e l ; k++)
147 {
148 i f (i ==0)
149 {
150 for (int l = 0 ; l < k e r n e l ; l ++)
151 {
152 i f (j ==0)
153 W_temp[z]=B. getValue (x , y) ;
154 i f (z==temp_size)
155 z =0;
156 X_temp [z]=Pad [x] [y] ; ;
157 z++;
158 y++;
159 }
160 x++;
161 y = j ;
162 }
163 i f (i >0)
164 {
165 i f (z==temp_size)
166 z =0;
167 X_temp [z]=Pad [x] [y] ; ;
168 y++;
169 z++;
170 }
171 }
172 i f (i >0)
173 {
174 x++;
175 barrel_op ((v i n t ∗)X_temp , z , temp_size , (v i n t ∗) X_final) ;
176 }
177 i f (i ==0)
178 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
179 e l s e
180 c o n v o l u t e += dot_product ((v i n t ∗) X_final , (v i n t ∗)W_temp) ;
181 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
182 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
183 c o n v o l u t e = 0 ;
184 b++;
185 }
186 b=0;
187 a++;
188 }
189 }
190
191 i f (padding == 0)
192 {
193 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
194 {
195 x=0;
196 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
197 {
198 y = j ;
199 for (int k = 0 ; k < k e r n e l ; k++)
200 {
201 i f (i ==0)
202 {
203 for (int l = 0 ; l < k e r n e l ; l ++)
204 {
205 i f (j ==0)
206 W_temp[z] = B. getValue (x , y) ;
207 i f (z==temp_size)
208 z =0;
209 X_temp [z] = A. getValue (x , y) ;
210 z++;
211 y++;
212 }
213 x++;
214 y = j ;
215 }
216 i f (i >0)
217 {

71

A – Code of the Convolutional Neural Network

218 i f (z==temp_size)
219 z =0;
220 X_temp [z] = A. getValue (x , y) ;
221 y++;
222 z++;
223 }
224 }
225 i f (i >0)
226 {
227 x++;
228 barrel_op ((v i n t ∗)X_temp , z , temp_size , (v i n t ∗) X_final) ;
229 }
230 i f (i ==0)
231 c o n v o l u t e += dot_product ((v i n t ∗)X_temp , (v i n t ∗)W_temp) ;
232 e l s e
233 c o n v o l u t e += dot_product ((v i n t ∗) X_final , (v i n t ∗)W_temp) ;
234 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (c o n v o l u t e) ;
235 D. s e t V a l u e s (f i n a l _ r e s u l t , b , a) ;
236 c o n v o l u t e = 0 ;
237 b++;
238 }
239 b=0;
240 a++;
241 }
242 }
243 return output ;
244 }
245
246 // Max P o o l i n g
247 int findMax (int mat [] [N])
248 {
249 int maxElement = 0 ;
250 for (int i = 0 ; i < N; i ++)
251 {
252 for (int j = 0 ; j < N; j++)
253 {
254 i f (mat [i] [j] > maxElement)
255 maxElement = mat [i] [j] ;
256 }
257 }
258 return maxElement ;
259 }
260
261 // Average P o o l i n g
262 int findMean (int mat [] [N])
263 {
264 int sum = 0 ;
265 for (int i =0; i<N; i ++)
266 for (int j =0; j<N; j++)
267 sum += mata [i] [j] ;
268 return sum/(N∗N) ;
269 }
270
271 // P o o l i n g f u n c t i o n .
272 int Pool ing (Image &pool_H , Image &pool_D , int s i z e , int k e r n e l , int s t r i d e)
273 {
274 int H_temp [2] [2] ;
275 int x , y , max , a=0, b=0;
276 int output = s i z e / s t r i d e ;
277 for (int i = 0 ; i < s t r i d e ∗ output ; i+=s t r i d e)
278 {
279 for (int j = 0 ; j < s t r i d e ∗ output ; j+=s t r i d e)
280 {
281 x = i ;
282 y = j ;
283 for (int k = 0 ; k < k e r n e l ; k++)
284 {
285 for (int l = 0 ; l < k e r n e l ; l ++)
286 {
287 H_temp [k] [l]=pool_H . getValue (x , y) ;
288 y++;
289 }
290 max = findMax (H_temp) ;
291 x++;
292 y = j ;
293 }
294 pool_D . s e t V a l u e s (max , a , b) ;
295 max = 0 ;
296 b++;
297 }
298 b=0;
299 a++;
300 }

72

A – Code of the Convolutional Neural Network

301 return output ;
302 }
303
304 // F u l l y Connected Layer
305 void Fully_Connected_Layer (Image A [] , int B [] [SIZE] , int D [] [SIZE] , int channel , int

input_neuron , int output_neuron)
306 {
307 int product = 0 , f i n a l _ r e s u l t = 0 , a=0, b=0;
308 for (int i =0; i<output_neuron ; i ++)
309 {
310 for (int j =0; j<input_neuron ; j++)
311 {
312 for (int k=0; k<channel ; k++)
313 product += dot_product ((v i n t ∗)A[k] . image [j] , (v i n t ∗)B[j]) ;
314 }
315 f i n a l _ r e s u l t = r e l u _ g r a d i e n t (product +1) ;
316 D[i] [b] = f i n a l _ r e s u l t ;
317 f i n a l _ r e s u l t = 0 ;
318 product = 0 ;
319 b++;
320 }
321 }
322
323 void Layer (Image A [] , Image B [] , Image C [] , Image D[] , int channel , int f i l t e r , int &image_size ,

int conv_kernel , int conv_stride , int conv_padding , int pool_kernel , int p o o l _ s t r i d e , int
num_layer)

324 {
325 int conv_size = 0 ;
326 i f (num_layer == 1)
327 {
328 for (int p = 0 ; p < channel ; p++)
329 A[p] . in it_image (image_size , p) ;
330 }
331 for (int p = 0 ; p < channel ; p++)
332 {
333 for (int t = 0 ; t < f i l t e r ; t++)
334 B[t] . in it_image (conv_kernel , t) ;
335 }
336 //CONVOLUTION
337 for (int i = 0 ; i < channel ; i ++)
338 {
339 for (int j = 0 ; j < f i l t e r ; j++)
340 conv_size = Convolution (image_size , conv_kernel , conv_stride , conv_padding , A[i] , B[

j] , C[j]) ;
341 }
342 //POOLING
343 for (int j = 0 ; j < f i l t e r ; j++)
344 image_size = Pool ing (C[j] , D[j] , conv_size , pool_kernel , p o o l _ s t r i d e) ;
345 }
346
347
348
349 int main ()
350 {
351 Image H[f i l t e r _ 1] ;
352 Image Y[f i l t e r _ 1] ;
353 Image X[channel_1] ;
354 Image W[f i l t e r _ 1] ;
355
356 // Defs f o r c o n v o l u t i o n
357 int image_size = 1 8 ;
358 int conv_str ide = 1 , conv_kernel = 3 , conv_padding = 0 ;
359
360 // Defs f o r p o o l i n g
361 int p o o l _ s t r i d e = 2 , pool_kerne l = 2 ;
362
363 // Defs f o r f u l l y c o n n e c t e d
364 int k e r n e l _ s i z e = 3 ;
365 int num_hidden_neuron = 1 , num_output_neuron = 1 ;
366 int v e c t o r _ e l e m e n t _ f i r s t = 3 , vector_element_second = 3 ;
367
368 // I n i t i a l i z a t i o n o f X and w e i g h t s
369 i n i t (image_size , 3 , v e c t o r _ e l e m e n t _ f i r s t) ;
370
371 // LAYER 1
372 Layer (X, W, H, Y, channel_1 , f i l t e r _ 1 , image_size , conv_kernel , conv_stride , conv_padding ,

p o o l _ s t r i d e , pool_kernel , 1) ;
373
374 //LAYER 2
375 Image Y_2[f i l t e r _ 2] ;
376 Image H_2[f i l t e r _ 2] ;
377 Image W_2[f i l t e r _ 2] ;
378

73

A – Code of the Convolutional Neural Network

379 Layer (Y, W_2, H_2, Y_2, channel_2 , f i l t e r _ 2 , image_size , conv_kernel ,
380 conv_stride , conv_padding , p o o l _ s t r i d e , pool_kernel , 0) ;
381
382 Fully_Connected_Layer (Y_2, W_FC, Y_FC, f i l t e r _ 2 , 2 , num_hidden_neuron) ;
383
384 return 0 ;
385 }

Listing A.1: Convolutional Neural Network.

74

Appendix B

Instruction profiler reports

B.1 Convolution of the First Design

Figure B.1: Instruction report of the first design.

75

B – Instruction profiler reports

B.2 Convolution of the Second Design

Figure B.2: Instruction report of the second design.

76

B.3 – Convolution of the Third Design

B.3 Convolution of the Third Design

Figure B.3: Instruction report of the third design.

77

B – Instruction profiler reports

B.4 Convolution of the Fourth Design

Figure B.4: Instruction report of the fourth design.

78

B.5 – Convolution of the Fifth Design

B.5 Convolution of the Fifth Design

Figure B.5: Instruction report of the fifth design.

79

Bibliography

[1] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neu-
ral networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, pp.
2295–2329, Dec 2017.

[2] A. Ng, “Machine learning on coursera.”

[3] A. Ng, “Deep learning on coursera.”

[4] Y. LeCun, et al., “Handwritten digit recognition: Applications of neural network
chips and automatic learning,” IEEE Commun. Mag., vol. 27, no. 11, pp. 41–46,
Nov. 1989.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Neural Information Processing Systems,
vol. 25, 01 2012. W

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” in Proc. ICLR, 2015.

[7] C. Szegedy, et al., “Going deeper with convolutions,” in Proc. CVPR, 2015, pp.
1–9.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” in Proc. CVPR, 2016, pp. 770–778.

[9] “ASIP Designer: Design Tool for Application-Specific Instruction-Set Processors”,
Synopsys https://www.synopsys.com/dw/ipdir.php?ds=asip-designer/

[10] “Tmicro Core Processor Manual-ASIP Designer.” Synopsys, Version M-2017.03.

[11] “Tvec core-ASIP Designer.” Synopsys, Version L-2016.03.

[12] “The nML Processor Description Language.” Synopsys, Version N-2017.09

[13] “Go User Manual nML to synthesizable HDL translation-ASIP Designer.” Syn-
opsys, Version N-2017.09.

81

https://www.synopsys.com/dw/ipdir.php?ds=asip-designer/

BIBLIOGRAPHY

[14] “Target Tmotion core-ASIP Designer.” Synopsys, K-2015.12.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[16] “Convolutional Neural Networks for Visual Recognition”, http://cs231n.
github.io/convolutional-networks/

[17] Wikipedia, “Artificial neural network.”

[18] Wikipedia, “Arthur Samuel.”

[19] Matlab, “Introduction to deep learning: What are convolutional neural net-
works?.”

[20] S. Barter, “Convolutional neural net in tensorflow.”

[21] Tiny-dnn, free deep learning library written in C++. https://github.com/
tiny-dnn/tiny-dnn

[22] “Biological and artificial neurons.” https://www.sciencedirect.com/topics/
engineering/neurons

[23] “Applied Deep Learning: Artificial Neural Networks.” https:
//towardsdatascience.com/applied-deep-learning-artificial-neural-
networks

[24] “Inference: The Next Step in GPU-Accelerated Deep Learning.”
https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-
deep-learning/

[25] Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” Nov 2015.

[26] Robert Hecht - Nielsen, “Neural Networks for Perception,” 1992.

82

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://github.com/tiny-dnn/tiny-dnn
https://github.com/tiny-dnn/tiny-dnn
https://www.sciencedirect.com/topics/engineering/neurons
https://www.sciencedirect.com/topics/engineering/neurons
https://towardsdatascience.com/applied-deep-learning-artificial-neural-networks
https://towardsdatascience.com/applied-deep-learning-artificial-neural-networks
https://towardsdatascience.com/applied-deep-learning-artificial-neural-networks
https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-deep-learning/
https://devblogs.nvidia.com/inference-next-step-gpu-accelerated-deep-learning/

	List of Tables
	List of Figures
	Introduction
	General principles
	In the following chapters

	Neural Network overview
	What is Machine Learning?
	Neural Networks
	Introduction and basic concepts
	Activation functions
	Inference and Training

	Deep Neural Network
	Convolutional Neural Network
	Convolution layer
	Pooling Layer
	Fully Connected Layer
	1x1 Convolution

	Models of DNN

	ASIP Designer
	Design approach
	Hardware approach
	Software approach
	ASIP approach

	ASIP Designer tool
	ASIP features

	ASIP Implementation
	Tvec Processor
	Software Implementation
	Fully-Connected Layer
	Convolution Layer
	Pooling Layer
	Activation Function

	3D Convolutional Neural Network
	First Design
	Second Design
	Third Design
	Fourth Design
	Fifth Design

	Simulation and Synthesis
	Creation of HDL
	Simulation
	Synthesis

	Final conclusions and future work
	Conclusions
	Future works

	Code of the Convolutional Neural Network
	Instruction profiler reports
	Convolution of the First Design
	Convolution of the Second Design
	Convolution of the Third Design
	Convolution of the Fourth Design
	Convolution of the Fifth Design

