


Abstract

This dissertation focuses on time-optimal path-constrained trajectory planning.
Given a geometric path, the aim is to find the optimal time law λ(t) which
minimizes the time, without violating the robot kinematic and dynamic constraints.
The time law is transformed into a joint-space trajectory or open-loop torques,
according to the input required by the robot controller. The proposed optimization
algorithm is based on the dynamic programming approach, which easily handles
several types of cost functions and places few restrictions on the constraints.

The time optimal planner is deeply integrated into the available framework of
ALTEC. The existing framework offers the ROS/MoveIt! extension for redundancy
resolution, using dynamic programming. Since the underlying resolution technique
is the same, the existing architecture is refactored in order to develop a new one
to capable to allow users to apply dynamic programming on a generic constrained
optimization problems, separating problem specific details from the dynamic pro-
gramming algorithm. The specific applications are integrated through the creation
of specialized components. So, the robot-agnostic extension module responsible
for the time optimal trajectory generation is developed, able to parametrize paths
in both task and joint space.

Finally, a set of simulations are performed, using the 3D dynamic simulator
Gazebo, to analyze and test the planner. The validation of algorithm and other
aspects deriving from the design of the planner are demonstrated: in particular,
the effects of the discretization method on the result accuracy and the evaluation
of the effects of the space resolution on solution’s quality and computation time.
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Chapter 1

Introduction

1.1 Background

Robotics is spreading widely in aerospace field: explorative missions, generally,
are expensive, riskly and located in hostile environment, resulting dangerous and
not convenient to be performed by human beings. For this reasons, robotics
assumes a critical role in space exploration: robot are able to replace the human
beings or to give a substantial help in the performed activities. Space robots must
be capable to survive in harsh environments and to perform the main useful tasks,
such as manipulation, exploration on uneven terrains or service.

So, they are adopted mainly for three reasons [53]:

• Safety: some tasks could be too dangerous for humans because of the
extreme and unknown environments.

• Performance: the given tasks could be too difficult for astronauts because
of heavy payloads, precision, long duration and others.

• Cost: astronauts are very expensive in space because they need an infras-
tructure to live and they need to come back to Earth, whereas robots need
only power and could be left also in space.

Since the actual scenario is moving from the planetary exploration to a colo-
nization, more and more activities are demanded to robots, in order to study and
analyze deeply the environment, performing scientific experiments.

The main issues of space planetary robotics are the mobility and the manip-
ulation. In fact, they must be capable to rove without collision and to adapt
on different types of terrains. Besides, in order for the task to be performed,
robots must possess great capability of manipulation. For example, the drilling or
the gripping can be demanded as requirements. Planetary robots are generally
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Introduction

composed by a mobile base or platform, capable to move also autonomously, on
which a manipulator arm is mounted, to accomplish the tasks.

Robotics is used not only for planetary exploration, but is exploited to aid in
assistance and maintenance of space infrastructures. They are defined as orbital
robots and are conceived for repairing and maintain hardware, assembling, moving
payloads and others. In order to accomplish these tasks, orbital robots should
possess great capabilities of manipulation and motion.

1.2 Focus

When dealing with manipulators, the accomplishment of a task requires the
motion control of the arm in order to follow the required trajectory, avoiding
collision with external obstacles and dangerous situations for the mechanical
structure. The motion problem can be divided into two phases: the planning,
responsible for deciding the path and the time law of the motion, and trajectory
control, responsible for commanding the robot to perform a correct execution of
motion.

In some robotic applications, it is required that the execution of the task
along a prescribed path is performed as fast as possible in order to maximize the
productivity. In a space mission, in fact, it is equivalent to an increase of the
mission return and a decrease of the resources utilisation, both on earth and in
space. To perform the trajectory in the minimum time, the robot capabilities, in
particular the actuators ones, must be exploited at most, reaching the maximum
deliverable torque. The path parametrization involves the robot dynamics, since
torque constraints must be satisfied in order for a trajectory to be feasible.

The Aerospace Logistics Technology Engineering Company (ALTEC) is the
Italian center of excellence for the provision of engineering and logistics services
[3] for supporting operations on the International Space Station (ISS) and on
the future explorative missions. ALTEC is currently developing technologies
for planning and controlling robotic systems, with the aim to improve mission
operations.

1.3 Objectives

The purpose of this dissertation is to contribute to the progress of the aforemen-
tioned technologies, developing and implementing software and documentations.
Three main objectives are pursued:

• Design and implementation of a time-optimal planner.
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Introduction

• Integration with the available framework at ALTEC, based on ROS and
MoveIt!.

• Setup of 3D simulation software to support demonstration and testing of the
developed technologies.

The technology is not developed as specific for space application, but it could
be applied in several environments, such as the industry one. Indeed, the time
optimal planning could be very useful to increase the throughput of production,
justifying the need of robots to maximize the productivity.

1.4 Outline

The chapters are arranged as follows:
Chapter 2 presents an overview of the kinematic and dynamic modelling and

introduces the motion planning problem, with a presentation of some available
technologies to perform the minimum time planning.

Chapter 3 analyzes and describes the dynamic programming, which is the
proposed method to optimize the trajectory.

Chapter 4 describes the main features of the implementation and integration
of the planner on the available framework.

Chapter 5 analyzes the results obtained through the simulations on a 3D
software in order to demonstrate the validity of the planner.

Chapter 6 reviews the aims of the study and the obtained results. Finally, it
provides some suggestions for improving future works.
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Chapter 2

Time-optimal planning of
robotic systems along
prescribed paths

This chapter describes the mathematical definition of the kinematic and dy-
namic equation of a manipulator robot, considered as a series of joints and links.
Finally, the motion planning problem is described, in particular the time optimal
planning and some resolutive techniques.

2.1 Robotic manipulator modelling

2.1.1 Kinematic equations

A robotic manipulator is a kinematic chain composed by a series of links
interconnected through joints. At one end of the chain, the links are connected to
a fixed base, while at the other one there is the so-called end-effector, the tool
which performs the required task.

In order to control the movement of the end-effector, it is necessary to compute
the relationships between its position and its orientation, called pose, and the
joints configuration. These relationships are called kinematic equations.

It is possible to define two different work-spaces:

• Joint Space: It denotes the space defined by the n× 1 vector q of joint
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variables, as follows

q =


q1

q2

...

qn

 (2.1)

• Task Space: It denotes the space defined by the m× 1 vector of the robot
pose x, composed by the position and orientation of the end-effector.

x =
p
θ

 (2.2)

where p represents the position of the end-effector, while θ the orientation.

Fixed base

Revolute joint Prismatic joint

End effector

Figure 2.1 – Kinematic chain

Since a joint motion produces an end effector motion, we have to find the
equations which relate these space representations.

The kinematic functions can be divided into 4 main types:

• Direct position KF: from the joint positions to pose.

x = f(q) (2.3)

• Direct velocity KF: from the joints velocities to pose velocity.

ẋ(t) = J(q(t))q̇(t) (2.4)

• Inverse position KF: from the pose to joints configuration.

q = f−1(x) (2.5)
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Figure 2.2 – Joint and task space in a three-links manipulator [49]

• Inverse velocity KF: from the pose velocity to joints velocities.

q̇(t) = J−1(x(t))ẋ(t) (2.6)

where J is the Jacobian matrix of the function f(q) with respect to q.
While the direct kinematic equations are uniquely and always determined, the

inverse kinematic ones are more complex because the equations usually are non
linear and may not possible to write them in a closed-form. Besides, if the robot
is redundant, that is it has more degrees of freedom than those required from the
task, the solutions from the inverse kinematics are infinite. Finally, it could also
happen that a solution does not exist if the desired pose can’t be reached by the
robot. In order to handle these equations, numerical solution techniques are often
used, especially in control software. Some examples of inverse kinematic solver
are KDL [4] or IKFast [5].

Through the kinematic equations, it is also possible to find the so-called
singularities. They are particular poses in the task space in which the mobility
of the robot is reduced. When the robot is in a singular configuration, it may
happen that infinite solutions of the inverse kinematics exist; besides, in the
neighbourhood of the singularity, small desired velocities in task space could
cause very high velocities in joint space [49]. If the velocity joints limits or
torque limits are not present, the movement could provoke serious damages to
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the structure; otherwise, the limits could exclude the movement inside the space
near the singular point. These points can be found through the Jacobian function:
when det J(qs) = 0 the matrix J is not invertible and qs is called a singular
configuration. These configurations should be checked during task-space planning
phase in order to avoid dangerous situations or some techniques to make the
inversion of the Jacobian should be used, such as the singularity robust inverse
[40].

2.1.2 Dynamic equations

In order to design a time optimal planner, it is necessary to obtain and to
study the equations which represent the manipulator dynamics, describing the
relationship between the applied torques to the joints and the motion of the
structure. There are two main methods to compute the dynamic equation of a
robot: the Lagrange formulation and the Newton-Euler formulation.

Assuming to use the Lagrange formulation, the equations depend only on
energy of the system and does not depend on the reference frame considered. The
dynamic model of a robotic manipulator in the absence of viscous friction forces
and contact forces is given by:

H(q)q̈ + qTC(q)q̇ + g(q) = τ (2.7)

where H(q) is the n× n generalized inertia matrix of the robot, C(q) is the
n× 1 array of Coriolis and centrifugal forces, g(q) is the n× 1 gravitational
forces torques and τ is the vector of applied torques applied to the joints. (2.7)
yields a set of n second-order differential equations, which corresponds to a state-
space system with 2n state variables, which are the joints’ positions q and joints’
velocities q̇.

Eq. (2.7) can be rewritten in the following form:

H(q)q̈ + h(q, q̇) = τ (2.8)

where h(q, q̇) contains the remaining terms of (2.7). The coefficients H(q) and
h(q, q̇) could be computed using an Inverse Dynamics Algorithm, as described
in [30] and explained in the following section. The numerical computation of
these parameters becomes necessary in complex robotic structures, in which the
analytical model may be very arduous to obtain.
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2.1.3 Inverse Dynamics

The inverse dynamics is used to compute the forces required to obtain desired
joint accelerations. To compute the inverse dynamics, it is always possible to use
both the Lagrange formulation or the Newton-Euler one. The latter is a recursive
algorithm and is more efficient than the former. Although this algorithm doesn’t
use the H and h parameters, it can be exploited to compute them.

Taking into account (2.8), it is possible to computeH(q) e h(q, q̇), as described
in [30]. For sake of simplicity, let us call the inverse dynamic function IDA(q, q̇, q̈).

h(q, q̇) computation

If the acceleration vector is set to zero, (2.8) becomes:

τ = h(q, q̇) (2.9)

So, given position q and q̇, h(q, q̇) can be interpreted as the forces vector which
generates zero acceleration. So through the inverse dynamics function, imposing
the actual q, q̇ and q̈ = 0, h(q, q̇) is equal to the applied force and is computed
as follows:

h(q, q̇) = IDA(q, q̇, 0) (2.10)

H(q) computation

From the definition of the inverse dynamics function, the robot equation (2.8)
and the equation for h(q, q̇) (2.10), it is possible to compute H(q) as follows:

IDA(q, q̇, q̈) = H(q)q̈ + h(q, q̇) = H(q)q̈ + IDA(q, q̇, 0) (2.11)

So, it becomes:
H(q)q̈ = IDA(q, q̇, q̈)− IDA(q, q̇, 0) (2.12)

This method is not very efficient from a computational point of view. Walker et
al. proposes a more efficient method, called Composite Rigid Body Method, where
the links are treated as composite rigid bodies and the inertia of single links is
used to compute the entire joint space inertia matrix [54].

2.2 Motion planning

The motion planning resolution is a fundamental problem of robotic manipulator
control. In order to move the robot as desired, the system can be decomposed
in two levels: the higher level is the path and/or trajectory generator, while the
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lowest one is the control tracking problem . The entire system can be divided in
the following main blocks, as described in Fig. 2.3.

Path

Kinematic
constraints

Dynamic
constraints

Trajectoryplanner + Controller Actuators Transmission Robot

Sensors

-

x

Figure 2.3 – General control scheme for trajectory planning

• Path planner: it has the task to generate the sequence of points that the
robot has to reach in joint space or in task space, avoiding the obstacles.

• Trajectory planner: it has the task to generate the time law of the path,
respecting all the kinematics and dynamics constraints.

• Controller: given the desired references, the controller generates the torques
or the forces to be applied in order to follow the desired trajectory.

• Robot: it is the plant of the system.

2.2.1 Path and trajectory planner

The goal of a path and trajectory planner is to find the reference inputs for
the control system. Often the two terms are confused, but there is a substantial
difference: the path is defined as the geometrical description of the desired
waypoints in the task or joint space, while the trajectory is the path with a time
law, defining the positions and the velocities and/or the accelerations at each
instant time.

TrajectoryPath

Figure 2.4 – Path and trajectory representation
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As [34] explains, the input path can be described in both task and joint space.
Usually, the geometric path is described in the task space because the task which
has to be performed has meaning in that space. So, planning a path in task space
is equivalent to finding the waypoints, or poses, of the end effector at each time
instant. Although the task space planning is more convenient and predictable, the
joint space planning is often used. The main reason is that the robot is actuated
through the motors located at the joints. For this reason, the waypoints are given
directly in terms of joint positions or they are obtained from task space through
the inverse kinematic equations and joined through an interpolation function. The
joint space planning has the advantages that the singularities can be predicted
and the reference values can be sent directly to the controller, but the drawback
is that the resulting path of the end effector is not predictable, unless generated
from task space.

The trajectory planner generates the desired trajectory, taking as input the
path and taking into account the robot kinematic and dynamic constraints. The
trajectory can be represented by a time-varying scalar quantity λ, called profile
or curvilinear coordinate. This quantity links each waypoint to a time instant and
it varies monotonically in time as follows:

λ(t0) < λ(t) < λ(tf ) (2.13)

The kinematic and dynamic constraints of the robot can be expressed as constraints
of λ and its derivatives:

λ̇min(t) < λ̇(t) < λ̇max(t) (2.14)

− λ̈max(t) < λ̈(t) < λ̈max(t) (2.15)

where λ̇(t) and λ̈(t) are the derivatives of λ with respect to time.
The desired motion for manipulators can be described in three main ways:

• Motion in free space between two end-points, called point-to-point motion.

• Motion between two end-points in a constrained space, containing points to
be avoided.

• Full constrained motion along an assigned path.

The first is the most simple and is defined between two points, traveled in a
certain time tf . This planning is chosen when the actual path performed by the
robot is not important and only the initial and final points are useful. In order to
generate the trajectory, it is possible to adapt different methods: for example it is
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possible to choose a performance index to be optimized or a simple trapezoidal
profile. If a trapezoidal profile is chosen, the trajectory is defined as follows: a
constant acceleration in the start phase is set until a cruise velocity is reached
and finally a constant deceleration is imposed in order to reach the final point.
The resulting positions curve is composed by two parabolic segments connected
through a linear one. It is called trapezoidal, because the velocity profile assumes
a trapezoidal curve, as it is possible to see in Fig. 2.5. If the cruise velocity is not
reached, the profile becomes bang-bang: the acceleration passes immediately from
the maximum value to the minimum one and the linear segment disappears.

The second motion type is very similar to the first one, with the only difference
that the path must take into account the obstacles to avoid them.

The last motion type expects a sequence of intermediate points, enforcing the
entire path performed. It is very useful in some industrial applications, for example
in welding. The points can be joined through an interpolation function, whose
degree depends on the number of provided parameters: linear if only position is
given, cubic if positions and velocities are given, quintic if also accelerations are
provided.

Figure 2.5 – Trapezoidal profile example [49]

In this thesis, the third category of motion is considered.
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2.3 Time parametrization

The path can be defined as x(λ) in the task space or q(λ) in the joint space,
where λ(t) represents the time-law, associating each point of the path to a time.
It varies monotonically with respect to time in [0,Λ]. If Λ is defined as the length
of the path, λ is called abscissa coordinate and λ̇ and λ̈ represent the path velocity
and path accelerations. They are called pseudo-velocity and pseudo-acceleration
respectively [24].

Exploiting the λ-parametrization, the order of original dynamic equation can
be reduced from 2n to 2 state variables, expressing the joints positions q, joints
velocities q̇ and joints accelerations q̈ in terms of λ and its derivatives [48].

Defined λ, the configuration q or the pose x can be computed for each istant
time as follows:

q(t) = fq(λ(t)) (2.16)

x(t) = fx(λ(t)) (2.17)

The aim of the time optimal trajectory planning is to find the time law λ such
that the traveled time is minimum and to obtain the trajectory x(λ(t)) or q(λ(t))
or the open-loop torques, according to the input required by the robot motion
controller.

Let us consider a path in the joint space, which is parameterized with respect
to the variable λ. It is possible to compute the time derivative of q(λ(t)), as a
function of the abscissa coordinate and its time derivatives. So the joints’ velocities
and accelerations are computed as [43]:

q̇ = qÍλ̇ (2.18)

q̈ = qÍλ̈+ qÍÍλ̇2 (2.19)

where qÍ and qÍÍ are the derivatives of q with respect to λ and can be defined as
the parametric velocities and accelerations.

It is possible to compute the same parameterization also if the path is given in
the task space, using the inverse kinematic function. Assuming that the path does
not meet singularities and the jacobian matrix J is known, the parametric joints’
velocities and accelerations as function of the task space positions and velocities
are computed using the inverse kinematics:

qÍ = J−1xÍ (2.20)

qÍÍ = J−1(xÍÍ − J ÍqÍ) (2.21)
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where xÍ and xÍÍ are the derivatives of x with respect to λ and can be defined as
parametric task space velocities and accelerations, while J Í is the λ-derivative
of the jacobian matrix. Now it is possible to compute the joint velocities and
accelerations [51]:

q̇ = qÍλ̇ = J−1xÍλ̇ (2.22)

q̈ = qÍλ̈+ qÍÍλ̇2 = J−1xÍλ̈+ J−1(xÍÍ − J ÍqÍ)λ̇2 (2.23)

2.4 Dynamics parameterization

Using the parametrization, it is possible to transform the original robot dynam-
ics equations into a set of equations dependent only on the λ-parameter, reducing
the problem complexity [25].

Substituting (2.18) and (2.19) in (2.8), the parameterized set of robot dynamic
equations is obtained as follows:

a(λ)λ̈+ b(λ)λ̇2 + h(q(λ), q̇(λ, λ̇)) = τ (2.24)

where
a(λ) = H(q(λ))qÍ(λ) (2.25)

b(λ) = H(q(λ))qÍÍ(λ) (2.26)

are two n× 1 vectors. The nonlinear term h(q, q̇) depends both on joints’ positions
and velocities, so it is a function of both λ and λ̇. If a discretized state-space
system of λ and λ̇ is defined, it is possible to compute numerically the value of
h(q, q̇) for each couple (λ, λ̇).

The system of equations can be rewritten for each joint in the following way:

ai(λ)λ̈+ bi(λ)λ̇2 + hi(q(λ), q̇(λ, λ̇)) = τi (2.27)

This equation is valid for the i-th torque applied to the i-th joint.
Alternatively, the complete dynamics equation could be parametrized too.

Substituting (2.18) and (2.19) in (2.7), the set of equations yields [48]:

m(λ)λ̈+ s(λ)λ̇2 + g(λ) = τ (2.28)

where
m(λ) = H(q(λ)qÍ(λ) (2.29)

s(λ) = H(q(λ)qÍÍ(λ) + qÍTC(q(λ))qÍ(λ) (2.30)
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For each joint, it becomes:

mi(λ)λ̈+ si(λ)λ̇2 + gi(λ) = τi (2.31)

Exploiting this parametrization, the original state-space system is reduced to 2
state variables, which are λ and λ̇ [48].

2.5 Constraints parametrization

The robot constraints can be defined as function of the variable λ, such that
they can be easily included in the trajectory planning algorithm.

Torque limits

In real world, the actuators, such as the electric motors, are characterized by
maximum torque limits, which we define as τi,min and τi,max. So, for each joint,
the following constraint must be satisfied [20]:

τi,min ≤ τi ≤ τi,max (2.32)

The limited torques result in a maximum deceleration and acceleration of the
joints, which can be translated into a constraint of the second derivative of λ, as
follows [24]:

Li(λ, λ̇) ≤ λ̈ ≤ Ui(λ, λ̇) (2.33)

where Li and Ui are computed substituting (2.32) in (2.31) :

Li = τi,minδi(λ) + τi,max(1− δi(λ))− si(λ)λ̇2 − gi(λ)
mi(λ) (2.34)

Ui = τi,maxδi(λ) + τi,min(1− δi(λ))− si(λ)λ̇2 − gi(λ)
mi(λ) (2.35)

where δi depends on the sign of mi. In fact δi = 1 if mi(λ) > 0 and δi = 0 if
mi(λ) < 0. If mi = 0, it means that the i-th actuator does not contribute to
the bounds of the pseudo-accelerations and the acceleration bounds are due to
the other n − 1 actuators [48]. It is worth to underline that this actuator does
contribute to the pseudo-velocity limits. Indeed, imposing mi = 0 and assuming
gi /= 0, (2.31) becomes:

si(λ)λ̇2 + gi = τi (2.36)
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Substituting (2.32) in (2.36), the following constraint of λ̇2 is obtained [24]:

τi,min − gi(λ) ≤ si(λ)λ̇2 ≤ τi,max − gi(λ) (2.37)

τi,minβi + τi,max(1− βi)− gi(λ)
si(λ) ≤ λ̇2 ≤ τi,maxβi + τi,min(1− βi)− gi(λ)

si(λ) (2.38)

where βi depends on the sign of si(λ). In fact, βi = 1 if si(λ) > 0, while βi = 0 if
si(λ) < 0.

The same observations could be done if a reduced dynamics equation is used to
model manipulator. Substituting (2.32) in (2.27), the pseudo-acceleration bounds
are:

Li = τi,minδi(λ) + τi,max(1− δi(λ))− bi(λ)λ̇2 − hi(λ, λ̇)
ai(λ) (2.39)

Ui = τi,maxδi(λ) + τi,min(1− δi(λ))− bi(λ)λ̇2 − hi(λ, λ̇)
ai(λ) (2.40)

where δi is computed as before, substituting mi(λ) with ai(λ). Since the pseudo-
acceleration constraint must be verified for each joint, it can be rewritten in a
shorter way as follows:

L(λ, λ̇) = max
i
Li(λ, λ̇) (2.41)

U(λ, λ̇) = min
i
Ui(λ, λ̇) (2.42)

and the constraint becomes:

L(λ, λ̇) ≤ λ̈ ≤ U(λ, λ̇) (2.43)

Torque rate limits

In real actuators, the torques can not change immediately, because of the
inductive behaviour of electric motors which affects the provided current. So the
torque rate limits, or called actuator jerk, should be considered as constraints.
The actuator jerk is defined as the derivative of the torque and indicates the
rate at which it increases or decreases. A violation of the jerk constraint causes
vibration in the mechanical structure and a jerky motion [27]. For example, the
trapezoidal profile at Fig. 2.5 causes an infinite jerk when the acceleration passes
from the maximum or minimum value to zero and viceversa. In order to avoid
this problem, a s-profile for the velocity is chosen such that the acceleration does
not change immediately, but in a gradual way.

The torque rate limit can be defined as:

τ̇i,min ≤ τ̇i ≤ τ̇i,max (2.44)
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Figure 2.6 – S-curve profile [38]

The torque rate bounds can be transformed into pseudo-accelerations and pseudo-
jerk limits. Since the dynamic equations (2.7) takes into account only the torque
variables, the third-order derivative is required [27]:

H(q)...q + Ḣ(q)q̈ +C(q, q̇)q̈ + Ċ(q, q̇)q̇ +C(q, q̇)q̈ + ġ(q) = τ̇ (2.45)

It is possible to express the third derivative of q as function of λ:

...
q = qÍÍÍλ̇3 + 3qÍÍλ̇λ̈+ qÍ...

λ (2.46)

while in task space it is:

...
q = J−1(xÍÍÍ − J ÍÍqÍ − 2J ÍqÍÍ) (2.47)

where J ÍÍ is the second derivative of J with respect to λ. By substituting (2.45)
into (2.44), it is possible to translate the torque rate limits into limits of the λ
derivatives.

As [27] demonstrates, they determine a constraint on pseudo-jerk, pseudo-
acceleration and pseudo-velocity:

jmin(λ, λ̇, λ̈) ≤
...
λ ≤ jmax(λ, λ̇, λ̈) (2.48)
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aτ,min(λ, λ̇) ≤ λ̈ ≤ aτ,max(λ, λ̇) (2.49)

λ̇ ≤ vτ,max(λ) (2.50)

where jmin, jmax, aτ,min, aτ,min and vτ,max are the maximum and minimum limits
from (2.44).

Joint acceleration and velocity limits

Joints have limits on accelerations and velocities too, because of the mechanical
structure. They are defined as:

q̈i,min ≤ q̈i ≤ q̈i,max (2.51)

− q̇i,min ≤ q̇i ≤ q̇i,max (2.52)

The accelerations limits are transformed into pseudo-acceleration constraints
substituting (2.19) into (2.51) [39]:

aq,min(λ, λ̇) ≤ λ̈ ≤ aq,max(λ, λ̇) (2.53)

while the velocities constraints lead to the following limit of the pseudo-velocity,
substituting (2.18) into (2.52):

vq,min(λ, λ̇) ≤ λ̇ ≤ vq,max(λ, λ̇) (2.54)

2.6 Time optimal planning

The aim of the time optimal planning is to generate the reference inputs to
perform the path desired in the minimum time. The problem can be formalized
in the following way:

min
u(t)

Ú tf

0
1dt

s.t. L(s(t))− u(t) ≤ 0 ∀t,
u(t)− U(s(t)) ≤ 0 ∀t,

s(0) = s0,

s(tf ) = sf

(2.55)

where u(t) is the input of the system and it is equal to the pseudo-acceleration λ̈,
while s(t) is the state of the system and it is equal to s(t) = [λ(t), λ̇(t)].

So the problem can be described as:
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"Given the initial state s(0) = [λ(0), λ̇(0)], find the optimal control inputs u
that move the robot along the prescribed path to the final state s(tf ) = [λ(f), λ̇(f)]
in the minimum time, without violating the constraints."

As [24] states, thanks to to the Extended Pontryagin’s Maximum Principle,
which allows to include state-dependent constraints, it is possible to demonstrate
that, given these constraints, the optimal control input u(t) = λ̈(t) always takes
its maximum or minimum value, except for particular cases, such as singular
points. Along prescribed paths, only one actuator will be always saturated and the
others will work to keep the robot in the right position, whereas in point-to-point
motion at least one actuator is saturated. So, the optimal trajectory becomes
bang-bang in torques [25]. However, this strategy is not convenient because the
requested torques rates are not physically realizable and it would induce vibrations
in the structure [55]. In order to avoid this problem, [27] tries to obtain a smooth
trajectory, adding a constraint on the torque rate.

As Casalino et al. describes, it is possible to divide the resolution methods for
optimal time trajectory planning in three main categories [23]:

• Direct methods: They transform the optimization problem into a convex
linear programming one.

• Indirect methods: They use the phase plane plot to construct the optimal
trajectory, which is given by a sequence of maximum accelerations and
deceleration.

• Dynamic programming method: They are based on Bellman principle
and are able to solve a big class of optimization problems. In fact, they can
include several performance indices and constraint functions.

The indirect methods will be analyzed: their results are used as a term of
comparison for the simulations in Chapter 5. Besides, they are based on the phase
plane plot which allows an accurate analysis of the problem.

2.6.1 Analysis of phase plane plot

Any parametrized trajectory can be represented as a sequence of points in
the λ− λ̇ plane, generating a curve. Obviously, not all the curves in the phase
plane plot are feasible. The constraints on λ̈ can be translated into constraints
of the pseudo-velocity, limiting the feasible area of the phase-plane plot. In fact,
a pseudo-velocity is feasible if L(λ, λ̇) ≤ U(λ, λ̇). It is possible to represent the
constraint on the plane through a curve, called Maximum Velocity Curve (MVC),
composed by the limit values of λ̇ which do not satisfy the disequality. All the
feasible trajectories must be below this curve.
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Maximum velocity curve

Figure 2.7 – General phase plane plot and maximum velocity curve

For each point of this plane, it is possible to represent two vectors for represent-
ing the minimum and maximum applicable acceleration, e.g. L(λ, λ̇) and U(λ, λ̇)
respectively. When the scissors close and the two arrows overlap, it means that
the point is on the MVC : in fact, only one value of the acceleration is possible
[36], but some particular points, which will be described later. In order for a path
to be feasible, the tangent in every point of the phase plane trajectory, which
corresponds to pseudo-acceleration, must be included in the range defined by the
arrows.

U

L

Figure 2.8 – Representation of pseudo-acceleration limits as arrows in phase plane
plot
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It is possible to make an analysis of the feasible trajectories in a 3-D phase
space too, whose axes are λ, λ̇, λ̈, as showed in Fig. 2.9. This plot gives a
poor indication about the admissible trajectories, but explains the accelerations
capability of the manipulator at each point [43]. Besides, it becomes very useful
when jerk constraints are added to optimization problem. In fact, to avoid
violations of jerk constraints, it has been demonstrated that the time optimal
trajectory follows successive switches between maximum and minimum jerk,
instead of pseudo-acceleration, showing a bang-bang profile in jerk [52]. So, if no
singularities occurs, the profile will have a max-min-max structure, as showed in
Fig. 2.9.

Figure 2.9 – Three-dimensional phase space with jerk limits [44]

2.6.2 Analysis of λ̇2 − λ̈ plane

Taking into account the parametrized dynamics (2.28) and the constraint on
torque limits, the following inequalities yield:

mi(λ)λ̈+ si(λ)λ̇2 ≤ τi,max − gi(λ)
mi(λ)λ̈+ si(λ)λ̇2 ≥ τi,min − gi(λ)

(2.56)

For a fixed λ and for each joint, it is possible to represent these limits as two
straight lines into the λ̇2−λ̈. The intersection of these lines creates a polygon which
characterizes the feasible pseudo-accelerations. For each λ, since the parameters
ai and bi vary, the shape of polygon changes.
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Figure 2.10 – Polygon of feasible pseudo-acceleration in the λ̇2 − λ̈ plane

This plot gives useful information about the admissible pseudo-velocities and
pseudo-accelerations. Since the pseudo-accelerations take always the minimum
or maximum value, for each λ̇, it will be equal to the corresponding upper or
lower bound of the polygon along λ̈. Besides, the right bound of λ̇ represents the
maximum velocity admissible at fixed λ and it represents the conditions when
L(λ, λ̇) = U(λ, λ̇) because only one pseudo-accelerations is allowed [43]. This point
is unique unless the straight line of the bounding actuator is parallel to the λ̇-axis.
When this condition happens, the λ̈ value at maximum λ̇2 is not unique anymore,
as in Fig. 2.11. It occurs when the bounding joint is characterized by ai(λ) = 0,
which means that the torque does not contribute to the pseudo-acceleration.
Indeed, the (2.56) equation becomes:

si(λ)λ̇2 ≤ τi,max − gi(λ)
si(λ)λ̇2 ≥ τi,min − gi(λ)

(2.57)

So only λ̇2 is limited by the torque constraint, as explained in Sect. 2.5. This
point is called critical and it assumes a key role in planning, as will be explained
later.

2.6.3 Maximum velocity curve

In order to plan an optimal time trajectory through the phase-plane plot, the
maximum velocity curve is required. Under the assumption that no joint has
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Figure 2.11 – Polygon of feasible pseudo-acceleration in the λ̇2 − λ̈ plane with a
critical point

ai(λ) = 0, it is possible to compute it by looking for the λ̇2 values which satisfy
the following condition:

L(λ, λ̇max) = U(λ, λ̇max) (2.58)

where L = Li(λ, λ̇) is the lower limit corresponding to i-th joint, while U = Uj(λ, λ̇)
is the upper limit corresponding to j-th joint. If the complete dynamics equation
(2.7) is assumed, (2.41) and (2.42) can be substituted in (2.58), obtaining [48]:

λ̇2
max = min

i,j

I
max
τi,τj

A
mj(τi − gi(λ))−mi(τj − gj(λ))

mjsi −misj

BJ
(2.59)

where i and j span all the joint indices. If misj −mjsi = 0, it means that the
i-th and j-th actuators do not contribute to the maximum velocity bound. If the
bounding joint has mi(λ) = 0, the maximum velocity curve at λ is obtained as
the upper limit of (2.38).

Assuming to use the reduced dynamics equation (2.8), it is not possible to
compute the MVC using the equality (2.58) because the term h(q(λ), q̇(λ, λ̇))
depends on λ̇ itself. A solution could be transforming the search for the maximum
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velocity curve into a linear programming problem, as follows [32]:

max λ̇2

s.t. ai(λ)λ̈+ bi(λ)λ̇2 + hi(q(λ), q̇(λ, λ̇))− τi,max ≤ 0,
−ai(λ)λ̈− bi(λ)λ̇2 − hi(q(λ), q̇(λ, λ̇)) + τi,min ≤ 0

(2.60)

where λ̈ and λ̇2 are the state variables. It has to be solved for each value of λ.
The solution of the optimization problem allows to cover also the case in which
ai(λ) = 0 [31].

Another method to compute the MVC is based on the analysis of the λ̇2 − λ̈
phase. It is computed as collection of λ̇ values, which are the right bound of the
polygon on the plot λ̇2 − λ̈ for each value of λ [43].

2.6.4 Switching Points method

Thanks to Extended Pontryagin’s Maximum Principle, it has been demonstrated
the pseudo-acceleration takes always the maximum or minimum value. So, finding
the optimal time trajectory is equivalent to look for the points in which the
changes from acceleration to deceleration happen and viceversa. These points are
called switching points.

The MVC assumes an important role during the search for the switching points.
Excluding the points in which the the bounding joint has mi(λ) = 0, the pseudo-
acceleration is unique on the maximum velocity curve and can point either towards
the infeasible region, violating the velocity limit, or towards the feasible region.
The former case is called trajectory sink, while the latter one is called trajectory
source [43]. The only points in which the trajectory can touch the maximum
velocity curve are those where a switch from trajectory sink to trajectory source
happen, corresponding to a change from acceleration to deceleration. The other
switching points, corresponding to a switch from deceleration to acceleration, do
not belong to maximum velocity curve and are found through integration, as will
be explained later.

The switching points from sink to source can be divided into three main
categories [48]:

• Discontinuity point: Points where the maximum velocity curve is discon-
tinuous. It is where the path changes in a discontinuous way [51].

• Tangent point: Points where the trajectory is tangent to the maximum
velocity curve.

• Critical point: Points where the inertia of one joint is equal to zero and
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the actuator does not actually contribute to the pseudo-acceleration, which
is not uniquely determined.

The three types of switching point can be seen on the figure 2.12, respectively
as a, b and c points. The first two categories are easy to handle because the
pseudo-acceleration remains unique, while the last one needs a further analysis. In
fact, the critical points can become singular points, which means that the limits
of pseudo-acceleration point towards or comes from the infeasible region delimited
by the maximum velocity curve. So the full interval of accelerations is not really
allowed. In Fig. 2.12 it is possible to see the case when a critical point becomes a
singular one: c and d points are an example.

Maximum velocity curve

U

L
U=L

U

L

U

L

a
b

c
d

Figure 2.12 – Representation of discontinuous (a), tangent(b) and singular point
(c,d) on the MVC

So, in correspondence of a singular point, the maximum feasible pseudo-
acceleration or minimum pseudo-acceleration are chosen such that the maximum
velocity constraint is not violated, so tangent to the curve, as follows [48]:

λ̈max,f = λ̇max
dλ̇max(λ+)

dλ
(2.61)

if U points to the infeasible region, as in point d, while

λ̈min,f = λ̇max
dλ̇max(λ−)

dλ
(2.62)

if L enters into the feasible region from the infeasible one, as in point c.
Once defined the types of the possible switching points, an algorithm to find

them has to be designed. First, let us consider a simple problem with only one
switching [20]. At the beginning, the manipulator starts with the maximum
acceleration, so λ̈ = U . After a while, it will meet a switching point and it
will pass to the maximum deceleration, so λ̈ = L. In order to find this point,
it is possible to integrate forward the trajectory from the beginning with the
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maximum acceleration and to integrate backward from the end with the maximum
deceleration. The two curves will intersect at a certain point, which becomes the
switching point. In the figure 2.13, λa is the switching point.

a

Figure 2.13 – Optimal trajectory with single switching point

When there are multiple switching points, the problem becomes more complex.
The method is showed in Fig. 2.14. It is necessary when the switching point
found in the previous example lies in the infeasible region of phase plane plot. So,
to not overcome the feasible region, more switches are needed. [20] proposes the
following algorithm: starting from the initial point, integrate forward with the
maximum acceleration until the MVC is met. From this point, the velocity is
decreased on a vertical line: from a generic point integrate forward until the MVC
or the λ-axis is found. The aim is to find a point where the integration curve
meets tangentially the MVC, by using a trial and error approach. When this
point (point d) is found, it is integrated backward to meet the first curve. The
crossing point is the first switching point (point a). Then, from the point tangent
to the MVC (point b), it is integrated forward until the MVC is met again (point
c) or until the backward integration curve from the final point is crossed. The
method is iterative until the last switching point is found and the final state is
reached. In fig. 2.14, λa, λb and λc are the three switching points.

Other algorithms are proposed by several authors. For example, [48] uses the
maximum velocity curve and the critical points to find the switching point, instead
of the iterative approach.

It is worth to underline that these integration methods could present some
troubles in the neighbourhood of the switching point. In fact, at a switching point,
the trajectory in phase plane will present a discontinuity. In general, this does
not present an issue, but in the critical points.
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a

b

c

Figure 2.14 – Resolution with multiple switching points: a, b and c are the three
switching points, the red curve is the MVC and the blue curves are those obtained
through integration during the trial and error phase.

Since the phase plane trajectory is obtained through integration, it is possible
to analyze the possible trends using the fields generated by the maximum and
minimum pseudo-accelerations, as it is possible to see in Fig. 2.15. In fact, the
optimal trajectory will follow these profiles. In the neighbourhood of the critical
points, these fields diverge: so theoretically the trajectory would unlikely reach it.
The issue is generated because the described integration methods start from this
point to generate the phase plane trajectory, enforcing the passage. This could
generate a jitter in the torque profile [45].

(a) (b)

Figure 2.15 – (a) fields of the pseudo-acceleration L (green curves) and U (red
curves) in the neighbourhood of the switching points; (b) zoom of the black box of
(a) [45]
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Chapter 3

Resolution with dynamic
programming

One among the proposed resolutive techniques for the time optimal planning is
the dynamic programming. It has been demonstrated that dynamic programming,
or DP, easily handles several types of cost functions, allowing also the inclusion
of more performance indices, and places few restrictions on the constraints. The
aforementioned characteristics makes it flexible and advantageous for the time
optimal planning problem. The drawback is that DP demands more memory
occupancy and computational effort with respect to the other proposed methods.

Because of its versatility, it covers an extended class of optimization problems,
also in the robotic field: an application example is the redundancy resolution.
A DP-inspired algorithm for the redundancy resolution has been designed and
implemented in ALTEC framework and represents the starting point of the work:
indeed, the two modules, i.e. the redundancy resolution and the time optimal
planning one, have several features in common, which can be joined to create
a single component, representing the high level algorithm, applicable to several
semantics.

In this chapter the DP method and the underlying theory will be described,
then the redundancy resolution application is analyzed and, finally, the design of
the time-optimal planner is described.

3.1 Dynamic programming method

Dynamic programming is an optimization method. It is based on the Bellman
principle, called "principle of optimality” [19], and it states that:

An optimal policy has the property that whatever the initial state and
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initial decisions are, the remaining decision must constitute an optimal
policy with regard to the state resulting from the first decisions.

Let’s explain this principle in a simple graphical and practical way:

a
b

c

Figure 3.1 – Example of optimal path

The principle of optimality states that if the path from point a to point c is
optimal, also the subpath from point b to point c will be optimal. This is the
core of the dynamic programming approach: the original problem is divided into
subproblems and the local optimal solutions for each subproblem are found in
order to obtain the global one. In fact, the local solutions can be combined to
find the one of the original problem due to the principle of optimality.

The dynamic programming method is characterized by three elements [21]:

• Stage: The subproblem defined earlier represents the so-called stage. Each
stage is characterized by a policy decision [35] and it can be solved as an
independent optimization problem. In fact, one stage at a time is solved
sequentially.

• State: Each stage is associated to a group of states. Each state is the set
of parameters needed to solve the optimization problem and represents a
possible condition in which the system can be at the corresponding stage.
The number of states should be as low as possible in order to decrease the
computational effort and complexity, but, at the same time, it should be as
high as possible to increase the quality of the solution. In fact, the optimality
condition depends on the resolution of states. The specification of the states
and the state variables resolution is one of the most critical step of the
dynamic programming, since a trade-off between complexity and solution
quality has to be found.

For each decision at each stage, the state is updated, becoming the state
for the next stage. Finally, each state is independent from the older ones;
so each decision is made without taking account the previous decisions and
stages. This is a result of principle of optimality.

• Recursion: The solutions of stages are linked through a recursive relation:
in fact each optimization problem can be independently solved, but the global
solution must include the optimal decisions taken previously. In fact the
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global cost of the n-th stage includes all the optimal costs of the i = 0, ..., n−1
stages.

Figure 3.2 – Stage transition process [21]

So the dynamic programming method can be described in the following way.
The aim is to minimize or to maximize a defined cost function I: it represents
the cost of the sequence of the stages, as the sum of local costs. Let us define si
as the i − th state and di as the i − th decision, or input. The return, or local
cost, determined by the di decision at si stage is given by fi(di, si); while the next
state is given by ti(di, si). The transition process is showed in Fig. 3.2.

Assuming we want to reach the n-th state, passing n stages, the optimization
problem is equivalent to find the n decisions dn−1, dn−2, ..., d0 to maximize (or
minimize) a cost function I at stage n [21]:

I(n) = max(f(dn, sn) + f(dn−1, sn−1) + ...+ f(d0, s0)) (3.1)

Since f(dn, sn) depends only on (dn, sn) and not on the previous variables, (3.1)
can be rewritten as:

I(n) = max(f(dn, sn) + max(f(dn−1, sn−1) + ...+ f(d0, s0))) (3.2)

The second term is equal to the cost function I(n− 1) evaluated at n− 1-th stage.
So the following recursive relation is obtained:

I(n) = max(f(dn, sn) + I(n− 1)) (3.3)

This equation is the expression of the principle of optimality.
In order to handle the complexity of the problem, a discretization of the state

space system is advised, although generally it is not a requirement. This approach
transforms the Bellman principle into a search on a graph: the optimal solution

33



Resolution with dynamic programming

is found through a search of the consecutive states in a grid which brings to the
best cost [31]. Each cell of the grid is characterized by a state; the cost between
two cells at consecutive stages has to be computed if the transition satisfies the
defined constraints. The globally-optimal solution can be found evaluating the
path, i.e. the sequence of cells, with maximum or minimum cost, depending on
the type of optimization problem.

State

Stage

Feasible
transition 

Optimal path

Figure 3.3 – Example of a grid explored by dynamic programming

It is worth to underline that in order for the dynamic programming to be
applicable, the problem must be decomposable in sub-problems, whose solutions
can be summed to find the global one.

3.2 Redundancy resolution with dynamic pro-
gramming

The redundancy resolution is defined as the optimization of the inverse kine-
matic solutions for a redundant robot. Recently, the dynamic programming
approach has been preferred among other methods in performing the redundancy
resolution, because of the proven flexibility. Indeed, the possibility to optimize
several performance indices and the accommodation of generic constraints is an
useful characteristic also in redundancy resolution.
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3.2.1 Redundancy kinematics

A manipulator is said redundant if it has more degrees of freedom than those
requested by the task [49]. It is equivalent to say that, if the robot has n degrees
of freedom and the task requires m degrees of freedom, the robot is redundant if
n > m and r = n−m is said the degree of redundancy. So, the redundancy is not
an intrinsic property of the robot, but it is related to the task required. In fact,
even a robot with three revolute joints can be redundant if the task is defined
only in position in a plane, while it becomes non redundant if the orientation is
added to the task. If a robot has 7 or more joints, it is intrinsically redundant for
a Cartesian pose.

Figure 3.4 – Example of 7-DOF manipulator [22]: Panda by Franka-Emika [1]

The redundancy is useful because it improves the dexterity and the maneu-
verability. In fact, a redundant robot can reach the same point in the task space
in infinite joints configurations, exploiting the additional redundant joints. In
this way it becomes easier to avoid near obstacles or joint kinematic limits. It
has also drawbacks: the algorithms for inverse kinematics functions and motion
control are more complex. Researches have widely studied techniques to solve the
redundancy problem.

Let us analyze the dynamic programming approach to redundancy resolution
[31, 22].

3.2.2 Problem formulation

Assuming a trajectory x(t) is given in the task space with t belonging to
an interval from 0 to T, it is possible to discretize the trajectory in x(i) with
i = 0, . . . , Ni where Ni = T

τ
. The joint positions of the trajectory are computed
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through the inverse kinematics function f(q, u), obtaining the following discrete
time system:

q(i+ 1) = f(q(i),u(i)), q(0) = q0; (3.4)

where q is the joint vector and u is the input vector. In general, the control
inputs are limited: it possible to define the domains Ai and Bi, where u(i) and
its derivative u̇(i) must belong to respectively, as follows:

u(i) ∈ Ai
u̇(i) ∈ Bi(u(i))

(3.5)

The input u can be chosen as the position of one or more joints, which are
called redundant joints, such that, fixed these values, the other joints positions
can be exactly computed at each waypoint i. So the Ai and Bi domains represent
respectively the feasible redundant joints positions and velocities.

At each i, it is possible to compute the admissible control input u(i) to
reach q(i + 1) from q(i), as the inputs belonging to Ai domain plus those ones
which satisfy the velocity constraint. If u̇ is computed through the forward finite
differences, the admissible control inputs must belong to a domain Ci, as follows:

u(i) ∈ Ci (3.6)

Ci = Ai ∩
I
u̇(i) = u(i+ 1)− u(i)

τ
∈ Bi,u(i+ 1) ∈ Ai+1

J
(3.7)

The aim is to find the optimal sequence of inputs that minimizes or maximizes a
defined cost function, using the dynamic programming method. The cost function
is assumed to be [31]:

I(0) = ψ(q(Ni)) +
Ni−1Ø
j=0

l(q(j), q̇(j),u(j), u̇(j)) (3.8)

where ψ(q(Ni)) is the final cost. Using the forward finite differences method, the
dependence on u̇ and q̇ is substituted by u(i+ 1) and q(i+ 1). The cost function
can be set in a recursive way as follows:

I(i) = I(i+ 1) + l(q(i),q(i+ 1),u(i),u(i+ 1)) (3.9)

This cost function can be used in dynamic programming. Assuming that the
objective is to minimize the cost, the cost function becomes:

I(i) = min
u∈Ci

(I(i+ 1) + l(q(i),q(i+ 1),u(i),u(i+ 1))) (3.10)
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where I(Ni) = ψ(q(Ni)) is the initial cost.

In order to transform the dynamic programming approach into a grid search
problem, a discretization of the control input and the constraint set is performed,
obtaining a discrete state space. The result of such a discretization process is that
the optimal solution corresponds to the sequence u(j) which carries the minimum
cost from the initial state to the final one [31].

For the sake of simplicity, let us assume to have only one redundancy parameter,
that is r = n−m = 1. Each stage corresponds to a waypoint of the trajectory,
whereas the state is the joint configuration corresponding to the redundant joint
position, which is the control input. So each cell of the grid is related to a joint
positions vector:

q(i, j) = f−1(x(i), u(j)) =


q1(i, j)
q2(i, j)
...

qn(i, j)

 (3.11)

where i is the index for the stage, while j is the index for the state at the
corresponding stage. A transition between two states can be done if the constraints
are satisfied and the local cost can be computed.

In a redundant robot, once the redundant joints positions are set, the inverse
kinematic function (3.11) admits a finite set of solutions. Each solution of the
kinematic functions belongs to a subspace of the joint configuration space: the
joint subspace in which it is possible to find one and only one solution of the
inverse kinematics, fixed the redundant joint positions, is called extended aspect
[42]. The number of extended aspects depends on the mechanical structure of the
robot and it is fixed: 2 for planar, 2 for spherical, 4 for regional, 16 for spatial
[31].

In order to find a globally optimal solution, which considers the total configu-
ration space of the robot, each inverse kinematics solution of the corresponding
extended aspect has to be included in the problem. So, multiple grids must be
built and each grid deals with one extended aspect. Now the transitions could
happen also between states of different grids; the constraints to be respected are
not changed. So, the globally-optimal solution is found looking for the best path
from the initial state to the final one across the entire set of grids. The globally-
optimal solution corresponds to the sequence of joint positions which minimizes
or maximizes a cost function along the desired trajectory. The explanation of the
entire algorithm can be found in [31].
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3.3 Design of a time-optimal planner using dy-
namic programming

The dynamic programming approach for time optimal planning has been already
dealt by different authors [37, 50, 28].

The great advantage of DP approach is its versatility: in fact it can deal with
different performance indices in planning, such as energy, time or also an union,
and it can cover a big class of constraints, such as the jerk ones. Besides, if the
path is parametrized, the dimension of the problem passes from 2n for a n-links
manipulator, to 2, avoiding the so-called curse of dimensionality, which affects
systems with high number of states, increasing exponentially the computational
effort [37].

It is not necessary to use the parametrized path as state variable: [50] proposes
an algorithm which uses joint positions instead of λ, starting from the assumption
that for each waypoint of the trajectory, given the value of one non-stationary
joint, it is possible to obtain the entire joints configuration through the inverse
kinematics function. In this way it is possible to apply the method also to
paths which may not be parametrized and at the same moment the curse of
dimensionality is avoided. [37] proposes a method in which the state variables are
(λ, λ̇), the same of the switching point method. Our algorithm is inspired to that
one described in [37].

3.3.1 Grid representation

Let us consider (λ, λ̇) as the state variable. In order to apply the DP as a
grid-search, a discretization of state space is required.

The maximum value of the pseudo-velocity λ̇MAX is defined as the maximum
value in the Maximum Velocity Curve or the upper limit of any feasible trajectory,
as follows:

λ̇MAX = max
λ

λ̇max(λ) (3.12)

The MVC often assumes relevant peaks, so the λ̇MAX could be very high with
respect to the optimal time trajectory. Therefore, the resolution of the λ̇-domain
could be not dense enough in the interested interval [32]. The λ̇MAX could be
taken to a lower value than the true maximum one and it could be increased if,
after planning, the limit is hit one or more times. The same could be done if the
MVC is not known a priori: using a trial-and-error approach, an adequate value
of λ̇MAX could be found.

Assuming that:
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• λ is comprised in the interval λ ∈ [0,Λ] and ∆λ is the sampling size for
λ-domain. So Ni is the total number of λ samples:

Ni = Λ
∆λ

• λ̇ is comprised in the interval λ̇ ∈ [0, λ̇MAX ] and ∆λ is the sampling size for
λ̇-domain. So Nj is the total number of λ̇ samples:

Nj = λ̇MAX

∆λ̇

It is possible to define the λ and λ̇ samples as:

λ(i) = i∆λ with i = 0,1,2, . . . , Ni

λ̇(j) = j∆λ̇ with i = 0,1,2, . . . , Nj

(3.13)

So the grid for the dynamic programming is composed by Ni columns and Nj

rows and each cell is characterized by the state (λ(i), λ̇(j)).
The input control of our system is the pseudo-acceleration λ̈, which corresponds

to the so-called decision. The transitions between states are limited by constraints
on λ̈. In fact, for each cell of the grid, defined λ(i) and λ̇(j), it is possible to
identify the lower limit L(λ(i), λ̇(j)) and upper limit U(λ(i), λ̇(j)) of the pseudo-
acceleration from (2.39) and (2.40).

The set of constraints on states and input controls have to be defined. The
stage-dependent domains Ai and Bi, where the admissible pseudo-velocities λ̇(i)
and admissible the pseudo-accelerations λ̈(i, j) must belong to, respectively, can
be defined as follows:

λ̇(i) ∈ Ai
λ̈(i, j) ∈ Bi(λ̇(j))

(3.14)

The domain Ai is composed by the λ̇ values below the MVC for each λ, while
the domain Bi is composed by the λ̈ values inside the interval of feasible pseudo-
accelerations, defined as [L(i, j), U(i, j)]. It is worth to underline that the maximum
velocity curve condition can be checked through the following condition:

L(i, j) ≤ U(i, j) (3.15)

It derives from the definition of maximum velocity curve, explained in Sec. 2.6.3.
If the inequality is true, λ̇(i, j) is below the MVC and belongs to Ai domain.
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As it is done for redundancy resolution, using an approximation to compute λ̈
from λ̇, it is possible to define a domain Ci, which includes both the constraints
and λ̇(i) must belong to. In fact, it represents the domain of states that can
be reached from at least one state of the previous stage without violating the
constraint of pseudo-acceleration. It will be defined later, when the approximations
will be analyzed.

Assuming to use the forward recursive procedure and defining s as the state,
the general cost function is defined as:

I(Ni) = ψ(s0) +
NiØ
k=1

l(s(k − 1), s(k))) (3.16)

where ψ(s0) is the cost associated to the initial state and l(s(k − 1), s(k))) is
the local cost computed between the states s(k − 1) and s(k) of two consecutive
stages.

Since the aim is to minimize the time, the local cost is defined as the time
traveled between the states, called ∆t(k). It can be defined as function of λ and
λ̇, as we will define later. Besides, we assume that the initial state is equal to the
rest condition, so λ̇(0).

So the cost function is equal to:

t(Ni) = t(0) +
NiØ
k=1

∆t(k − 1) where ∆t(k − 1) = t(k)− t(k − 1) (3.17)

which can be rewritten in the following recursive way:

t(0) = 0
t(i) = t(i− 1) + ∆t(i− 1)

(3.18)

It is worth to say that the backward recursive procedure could be used too.
At each stage of the algorithm, the optimal cost at stage i is found as:

t(0) = 0
topt(i) = min

λ̇(i)∈Ci

(t(i− 1) + ∆t(i− 1)) (3.19)

The globally optimized function will be topt(Ni).

3.3.2 Discrete approximation of local cost function

The local cost corresponds to the traveled time between two consecutive states,
defined as ∆t. Different methods could be used to approximate it.
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Forward finite differences approximation

Using the forward finite differences approximation to compute λ(i+ 1):

λ(i+ 1) = λ(i) + ∆tλ̇(i) (3.20)

the traveled time ∆t can be computed as:

∆t = λ(i+ 1)− λ(i)
λ̇(i)

(3.21)

The cost would be infinite when λ̇(i) = 0. The same would happen if the backward
finite differences approximation was used.

Trapezoidal approximation or Crank-Nicholson Method

Using the trapezoidal approximation to compute λ(i+ 1):

λ(i+ 1) = λ(i) + ∆t

2 (λ̇(i+ 1) + λ̇(i)) (3.22)

the traveled time ∆t can be computed as:

∆t = 2λ(i+ 1)− λ(i)
λ̇(i) + λ̇(i+ 1)

(3.23)

In this way, ∆t is always a finite value, even when λ̇(i) = 0.
This approximation is used in planning.

3.3.3 Discrete approximation of pseudo-accelerations

In order to verify the constraints on pseudo-accelerations, λ̈ must be computed.
Different methods could be used to approximate λ̈.

Chain derivative rule

The pseudo-acceleration λ̈ is the derivative of λ̇ with respect to time. It is
defined as:

λ̈ = dλ̇

dt
(3.24)

Using the chain derivative rule, it can be rewritten as:

λ̈ = dλ̇

dt
= dλ̇

dt

dλ

dλ
= λ̇

dλ

dλ

dt
= dλ̇

dλ
λ̇ (3.25)
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Using the forward finite differences approximation, it becomes:

λ̈(i) = λ̇(i+ 1)− λ̇(i)
λ(i+ 1)− λ(i) λ̇(i) (3.26)

It would become equal to zero when λ̇(i) = 0. To avoid this condition, it could be
applied the approximation proposed by [20], which is:

λ̈ = dλ̇

dλ
(3.27)

which becomes:
λ̈(i) = λ̇(i+ 1)− λ̇(i)

λ(i+ 1)− λ(i) (3.28)

It is possible to demonstrate that this approximation could generate additional
inaccuracies during planning.

Forward finite differences with time computation

Using the forward finite differences approximation and (3.23), it is possible to
compute λ̈(i) as:

λ̈(i) = λ̇(i+ 1)− λ̇(i)
∆t

=

= λ̇(i+ 1)− λ̇(i)
2(λ(i+1)−λ(i))
λ̇(i)+λ̇(i+1)

=

= λ̇2(i+ 1)− λ̇2(i)
2(λ(i+ 1)− λ(i))

(3.29)

It is possible to demonstrate that, using this approximation, more accurate results
in planning phase are obtained.

This approximation is used in planning. So, the Ci domain becomes:

Ci+1 = Ai+1 ∩
I
λ̇(i) : λ̈(i+ 1) = λ̇(i+ 1)− λ̇(i)

∆t

∈ Bi+1(λ̇(i)), λ̇(i) ∈ Ai
J

(3.30)

3.3.4 Time discretization of joint variables

Since the algorithm is based on a discrete formulation of the problem, the joint
variable discretization assumes an important role in the design of the planner.
Indeed, it could affect drastically the planning results. This problem occurs since,
at the beginning of the planning, the joints’ velocities q̇(i) and accelerations q̈(i)
are computed through the discrete values of the parametric variables, which are
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the inputs of the problem: if a wrong expression is used to compute q̈(i), it
may happen that the velocity at the next sample q̇(i+ 1), given as integration
of q̈(i) from initial condition q̇(i), does not correspond to the same assumed
expression. This difference could have negative effects on the validation of the
planning, because the joints’ velocities and accelerations used in planning are
not longer related through a derivative/integrative relationship. Since the joints’
velocities and accelerations values are used to compute the parametrized dynamics,
on which the algorithm is based, errors are generated affecting the correctness of
the results. This concept will be explained better in the following paragraphs.

Two different formulations to compute the discrete joints’ velocities and accel-
erations are described.

First formulation

A natural choice to discretize Eqs. (2.18) and (2.19) would be the following:

q̇(i) = qÍ(i)λ̇(i)
q̈(i) = qÍ(i)λ̈(i) + qÍÍ(i)λ̇2(i)

(3.31)

where the joints’ velocities and accelerations at sample i are directly computed from
the related variables evaluated at the same sample. The vectors of parametrized
dynamics are:

a(i) = qÍ(i)H(i)
b(i) = qÍÍ(i)H(i)

(3.32)

If we compute the velocity at the sample i+ 1:

q̇(i+ 1) = q̇(i) + ∆tq̈(i)
= q̇(i) + ∆t(qÍ(i)λ̈(i) + qÍÍ(i)λ̇2(i)) =

= q̇(i) + ∆t

1
qÍ(i)

1 λ̇(i+ 1)− λ̇(i)
∆t

2
+
1qÍ(i+ 1)− qÍ(i)
λ(i+ 1)− λ(i)

λ̇(i+ 1)− λ̇(i)
∆t

2
λ̇(i)

2
=

= q̇(i) + qÍ(i)λ̇(i+ 1)− qÍ(i+ 1)λ̇(i) + qÍ(i+ 1)λ̇(i)− qÍ(i)λ̇(i) =
= q̇(i) + qÍ(i)λ̇(i+ 1)− qÍ(i+ 1)λ̇+ qÍ(i+ 1)λ̇(i)− qÍ(i)λ̇(i) =
= qÍ(i)λ̇(i+ 1)

(3.33)

which is incoherent with the expression computed previously in (3.31). So, the
velocity sample at i+ 1 will be not equal to the pre-computed velocity sample.

The discretized variables from this formulation are very simple to obtain, but it
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has been demonstrated that they don’t return the right expressions of parametric
velocity in (3.33). It could possibly be used when this inaccuracy is negligible for
the final purpose of the computation. Since the dynamical model of a manipulator
is very complex and nonlinear, this formulation should not be used for this task.

Second formulation

The joints’ velocities and acceleration could be computed using the forward
finite differences: in this way the discretization is implicitly included in the
derivative.

The following discrete variables are the input of the planning:

• q(i) with i = 0, ..., n

• λ(i) with i = 0, ..., n

• λ̇(i) with i = 0, ...,m

where n represents the number of waypoints, or equivalently the resolution of
λ-domain, and m the number of the samples of λ̇. The forward finite differences
method is defined as follows:

ẋ(k) = x(k + 1)− x(k)
t(k + 1)− t(k) (3.34)

Therefore, the derivative q̇ at sample i can be computed as the derivative of q
with respect to time, using the forward finite differences, as follows:

q̇(i) = q(i+ 1)− q(i)
t(i+ 1)− t(i) = q(i+ 1)− q(i)

t(i+ 1)− t(i)
λ(i+ 1)− λ(i)
λ(i+ 1)− λ(i) = qÍ(i)λ̇(i) (3.35)

where qÍ(i) = q(i+1)−q(i)
λ(i+1)−λ(i) is the partial derivative of q with respect to λ.

The same considerations could be done for q̈(i):

q̈(i) = q̇(i+ 1)− q̇(i)
t(i+ 1)− t(i) = qÍ(i+ 1)λ̇(i+ 1)− qÍ(i)λ̇(i)

t(i+ 1)− t(i) =

=q
Í(i+ 1)λ̇(i+ 1)− qÍ(i)λ̇(i) + qÍ(i+ 1)λ̇(i)− qÍ(i+ 1)λ̇(i)

t(i+ 1)− t(i) =

=q
Í(i+ 1)(λ̇(i+ 1)− λ̇(i))

t(i+ 1)− t(i) + λ̇(i)(qÍ(i+ 1)− qÍ(i))
t(i+ 1)− t(i) =

=qÍ(i+ 1)λ̈(i) + qÍÍ(i)λ̇(i)2

(3.36)
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Now the parametrized dynamics becomes:

a(i) = qÍ(i+ 1)H(q(λ(i))
b(i) = qÍÍ(i)H(q(λ(i))

(3.37)

If we compute the velocity at the sample i+ 1:

q̇(i+ 1) = q̇(i) + ∆tq̈(i)
= q̇(i) + ∆t(qÍ(i+ 1)λ̈(i) + qÍÍ(i)λ̇2(i)) =

= q̇(i) + ∆t

1
qÍ(i+ 1) λ̇((i+ 1)− λ̇(i)

∆t

+ qÍ(i+ 1)− qÍ(i)
λ(i+ 1)− λ(i)

λ̇(i+ 1)− λ̇(i)
∆t

λ̇(i))
2

=

= q̇(i) + qÍ(i+ 1)λ̇(i+ 1)− qÍ(i+ 1)λ̇(i) + qÍ(i+ 1)λ̇(i)− qÍ(i)λ̇(i) =
= q̇(i) + qÍ(i+ 1)λ̇(i+ 1)− qÍ(i+ 1)λ̇+ qÍ(i+ 1)λ̇(i)− qÍ(i)λ̇(i) =
= qÍ(i+ 1)λ̇(i+ 1)

(3.38)

which is coherent with the parametric velocity computed previously in (3.35). So,
using this formulation, the expected errors are due to the numerical ones derived
from the use of approximated expressions for derivatives and integrals and not
from a wrong expression of the discretization.

Since the dynamic equations have parameters (H and h) which depend non-
linearly on the position and velocity of joints, the number of samples chosen
for discretization changes the accuracy of the planning. The higher the num-
ber of samples is, more accurate the planning is because the dynamics of these
intermediate waypoints is included in the planning.

This formulation will be used in the design of the planner.

3.3.5 Algorithm design

Let’s describe the algorithm to find the optimal time trajectory using the DP
approach.

The aim is to build a grid in which the optimal path is found through a research
of the best sequence of cells with the lower cost, from the initial to the final one.

The algorithm could be divided in the following steps:

1. Given the path input parametrized in λ, discretize the state-space in Ni λ

samples and in Nj λ̇ samples, creating a grid with Ni ×Nj cells.

2. Compute the parametrized dynamics variables a(i) and b(i), as (3.37), for
each sample of λ and λ̇ in domains. In order to compute the parametrized
dynamics, the joint space matrix H(i) and the non-linear coefficients h(i, j)
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for each state are needed: it is possible to compute them from the analytic
formulas of robot dynamics or using some inverse dynamics algorithm, as
explained in Sect. 2.1.3.

3. Compute the pseudo-acceleration limits for each cell of the grid and the
maximum velocity curve for each stage. Finally, build the sets Ai and Bi

which satisfy the constraints.

4. Initialize the cost of the entire grid to infinite, but for the initial state, which
is set to zero.

5. Starting from the initial state, analyze sequentially each stage at a time, in
the following way: for each feasible state j at stage i, if the constraints are
respected, compute the local cost for each state k at stage i+1 which belongs
to Ai+1 domain. A state at stage i is said feasible if it is belongs to Ci.

For each next state, we have to store the information about the best cost and
the correspondent predecessor. This passage deserves a detailed explanation.
Let us take into account a generic feasible state k at stage i+ 1. At the end
of iterations for the stage i, we will have analyzed the local costs between
the cell in consideration and the cells at the stage i. Since we are using a
forward procedure, we have to store the best cost and the correspondent
predecessor among all the computed costs. So, at each iteration, if the new
computed cost is lower than the previous one, it is saved and substitute the
old one. The predecessor must be saved in order to build the final optimal
path. When the stage i is concluded, we will have that, for each feasible
state at stage i+ 1, a cost and a predecessor pointer are saved. If one state
does not have a cost or a predecessor, it means that no states at previous
stage can’t reach it and it will not be taken in account at the next iterations.
Instead, if the state is reached, it is added to domain Ci+1, such that at the
next step it is taken into account.

6. Once all the stages are analyzed, it is possible to obtain the best path, starting
from the last desired state and retracing the path given by all the predecessor
pointers of each state.
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Implementation in ROS

One of the aims of this thesis is to implement a time optimal planner in ROS
and MoveIt! architecture and integrate it in the robotic framework available in
ALTEC.

The proposed integration does not consist of a basic insertion of a new module.
The aim is to refactor the existing architecture to develop a new one capable to
offer users the potentialities of the dynamic programming.

The idea is to develop an independent component, encapsulating the algorithm,
and an abstract layer, representing the underlying generic structure in which the
optimal solution is found. The specific applications are integrated through the
creation of specialized components, which define the context and the semantic
of the optimization problem. Currently, two specific components are present in
the framework: the redundancy resolution module, refactored from the already
existing one, and the time optimal trajectory generation modules, the purpose of
the presented work.

The user-friendliness is a requirement of the new architecture: users must
easily employ the algorithm exploiting the application interface offered by the
aforementioned components.

Finally, the environment of simulation available in ALTEC is expanded: the
setup of a 3D dynamic simulator is performed in order to support demonstration,
testing and validation of the developed technologies.

4.1 ROS and MoveIt!

ROS, which means Robot Operating System, is defined as meta-operating system
and provides a software platform to develop robotic applications [6]. It offers a
collection of tools, such as hardware abstraction, low-level control, navigation,
planning and others, all intended to simplify and to help the creation of programs to

47



Implementation in ROS

control robots. It is open source, so users can freely contribute to its development
and to analyze the source code in order to understand and to improve it.

Figure 4.1 – Message communication scheme [46]

It is organized in basic units, called packages, which constitute the applications.
Each package contains nodes, which run in dedicated processes. The packages are
created in order to provide a specific functionality. Besides, they are created such
a way that they can be reused to develop some user-defined functionalities.

The entire framework is based on communication: in fact, nodes can work
together through the use of messages. There are three message communication
methods [46, 6]:

• Topic: it is an unidirectional communication and is used to exchange data
in a continuous way between a publisher node and a subscriber one. The
former writes a message on a topic, while the latter receives the information
published in the topic which it is connected to. When a subscriber receives a
message, it usually performs an action, called CallbackFunction.

• Service: it is a bidirectional communication and is used to exchange re-
quest/response messages between a service server node and a service client
node. The former offers a service under a string name, which can be called
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by the latter using a request message. When the service is concluded, the
server sends a response message to the client.

• Action: it is a bidirectional communication and is used to exchange goal/result
/feedback messages between an action server node and an action client node.
The former offers an action, which can be called by the latter through a goal
message. During the action, the server sends periodically feedbacks to the
client. When the action is finished, the server sends a result message to the
client.

The message communication is described in Figure 4.1.
In order to store some data and retrieve them at runtime, nodes can use

the parameter server. It is a centralized server which stores data identified in
a key-value store with keys of type strings [41]. It is often used to store some
configuration parameters which do not change at runtime.

MoveIt! is the motion planning framework of ROS and collects libraries to
mainly control manipulators [7]. It provides several functions for motion planning,
manipulation, navigation, control and others. Besides, it allows the visualization
and the simulation on RViz [8] and Gazebo [2] platforms. The former is a
3D visualizer able to display the robot model, the sensor data or robot state
information from ROS; the latter is a 3D dynamic simulator and will be described
in detail in Sec. 4.2.

The main node provided by MoveIt! is the MoveGroup node which interacts
with the user through ROS services and messages. It is a ROS node and can be
configured by using the parameter server, from which receives some important
information, such as the structure of robot, the dynamic and kinematic limits or
the type of planner which is desired by the user. It can communicate with the
robot through ROS actions and topics, in order to get some information, such as
the current state or actual positions of joints from sensors.

The MoveGroup node offers several features, such as planning, inverse kinemat-
ics, execution of trajectories, through capabilities. They are basic functionalities
of the MoveGroup node and are also extensible through a plugin architecture, by
using the pluginlib library of ROS [9]. Generally, the MoveIt! framework is based
on the plugin architecture because it allows to avoid recompiling without core
modifications as well [7].

MoveIt! basically works with position kinematic planning: it plans only joint
or end effector positions, without taking into account the velocity and acceleration
values. There are several planners already available in MoveIt!, such as OMPL
[10] and STOMP [11], which are tipically used in a point-to-point planning.
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In order to parameterize the trajectory, adding the planning of velocity, acceler-
ation and timestamps, the framework offers a post-processing of the path. In fact,
if a trajectory with some constraints is desired, the Motion Plan Request is used:
it essentially specifies what the motion planner has to do. In order to provide
additional motion planning functionalities, MoveIt! allows the user to configure
the motion planning capability via the definition of a pipeline, called planning
pipeline which includes a planner and optionally a list of Plan Request Adapters,
which precede or follow the default planner. These adapters aim to make planner
more robust and to add some features.

MoveIt! already provides some tools to execute the time parametrization of a
path. There are three available algorithms implemented in MoveIt!:

• Iterative Parabolic Time Parameterization

• Iterative Spline Parameterization

• Time-optimal Trajectory Generation

The last algorithm produces a time optimal trajectory, as in the aim of this thesis.

4.1.1 Time optimal trajectory generation in MoveIt!

MoveIt! already provides an algorithm which generates a time-optimal trajec-
tory. A brief description of the algorithm is given.

Introduction

It is developed by Humanoid Robotics Lab of Georgia Institute of Technology.
[39] explains their work: an integration method is used to find the switching
points with a pre-processing of the trajectory in order to make it differentiable
in every point. In fact, in a non-differentiable trajectory, at a waypoint, the
direction changes immediately, forcing the robot to stop. The result is that the
robot movement results slow and unnatural. To avoid this behaviour, they process
the trajectory, adding circular blends in correspondence of waypoints, as showed
in Fig. 4.2. In this way, the trajectory is continuous and differentiable and the
robot has a smooth movement. It is worth to underline that the points where the
path switches between a circular segment and linear ones represent discontinuous
switching points. A detailed explanation of the algorithm could be found at [39].

They assume only acceleration and velocity joint limits, resulting in a simpler
problem than the derived one from the torque limits. In fact, if only these bounds
are assumed, the robot dynamic equations are not taken into account during the
planning. So, the proposed algorithm is limited and not suitable to our problem
formulation. For this reason, it is not used as term of comparison of our results.
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Figure 4.2 – Circular blends at waypoint qi. [39]

Architecture

The software architecture is composed mainly by three components:

• Path: it performs the pre-processing, adding the circular blends. So, the
path is actually composed by a sequence of linear and circular segments and
the conjunction points are saved as switching points candidates.

• Trajectory: it is responsible for executing the integration algorithm. In fact,
it receives as input the pre-processed path and performs the forward and
backward integration, the search for the switching points, the computation
of the pseudo-accelerations and others.

• TimeOptimalTrajectoryGeneration: it represents the interface with the
external architecture. It is responsible for creating the needed structures for
generating the optimal trajectory and it controls and commands the entire
process, from the pre-processing to the creation of the output variable.

If the generation is successful, it clears the input trajectory and fills it again
using the values obtained by the algorithm, adding positions, velocities and
acceleration for each sample.

This trajectory processing could be added to the motion planning as a Planning
Request Adapter, which is called AddTimeOptimalParameterization.

4.2 Gazebo and ROS control

Gazebo is a 3D dynamics simulator and provides models, worlds and tools
to test and simulate robots in a realistic way through a physics engine [46, 2].
Several physics engines are available, depending on the user requirements: ODE,
Symbody, DART and Bullet. It is characterized by a 3D graphics environment,
which provides high quality simulations in indoor and outdoor simulations.
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Gazebo is completely compatible with ROS. To obtain a complete integration,
the set of packages gazebo_ros_pkgs are added to the framework. They provide the
interface to communicate between ROS and Gazebo, through topics and services,
and provide other functionalities. For example, in order to spawn the model in
the simulator, it translates the URDF (Unified Robot Description Format) [12],
a configuration file to describe robots adopted by ROS, to the SDF (Simulation
Description Format) [13], the configuration file used by Gazebo.

In order to a simulate a robot in Gazebo using ROS, it is necessary to add two
interfaces: an hardware interface, which represents the bridge with the simulated
or real robot, and a controller, which is responsible for communicating with the
hardware and sends the commands. Let us describe in detail the two components,
defined both in ros_control packages [14].

In order to communicate with a real robot, ROS uses an Hardware Abstraction
Layer, represented by the RobotHW interface, which has the aim to send commands
to the real embedded controller and to read the state from the encoders on the
robot [26]. This interface should be inherited for specific robot implementations.
Besides, the RobotHW configures the specific hardware interfaces for joint, defining
how the joint is commanded. The most common default hardware interfaces are:

• EffortJointInterface: used for commanding effort-based joints.

• PositionJointInterface: used for commanding position-based joints.

• VelocityJointInterface: used for commanding velocity-based joints.

If the robot is simulated, the Hardware Abstract Layer is defined by RobotHWSim,
representing the simulated RobotHW. It has the same tasks: in fact, it provides
functions to read states and command joints in Gazebo simulator.

The communication between the hardware interfaces and the ROS interface is
handled by the controllers. Controllers in ROS have a more extended meaning
than the classical one: they do not necessarily implement a feedback loop or act to
minimize the error between the reference and the actual values. In general, their
task is to receive a desired reference and to send the command to the hardware
interface. This process can be done either in a forward way or using a feedback
loop, receiving the actual joint state from the hardware interface. The controllers
are characterized by two features: the type of command, which has to correspond
to the hardware interface type, and the type of reference. If the reference type is
equal to the command one, the signal is forwardly sent to the joint; otherwise,
a feedback loop is implemented. For example, the effort_controllers collect
the controllers which send effort commands to an EffortJointInterface. They
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can accept several types of reference, defining different types of controller; some
examples are:

• effort_controllers::JointEffortController: it forwards the command ref-
erence to joints.

• effort_controller:JointPositionController: it receives as input the de-
sired position and implements a PID loop to compute the effort.

• effort_controllers::JointTrajectoryController: it adds extra function-
alities for splining an entire trajectory as reference. It will be further analyzed
later.

In general, the namespace indicates the type of command, while the name
represents the type of reference used. A particular type of controller is the
joint_state_controller: it is has the task to read and publish the joint state.

Since ROS does not support a real-time communication natively, ROS control
adds also the realtime_tools package, which contains a set of tools that could be
used from a hard realtime thread, necessary to control real robots.

The entire system is shown in Figure 4.3.

4.3 Software architecture

The aim of the planner is to compute the time-optimal trajectory as follows:
it receives a task space or joint space path input, composed by a sequence
of intermediate poses or joints configurations respectively, and computes the
best sequence of pseudo-velocities using a search algorithm based on dynamic
programming, as explained in Sect. 3.3. The best pseudo-velocities return the
minimum time. Then, in order to simulate the robot behaviour, the optimal
solution is translated and sent to controllers as a series of optimal efforts or as an
optimal trajectory, composed by the vector of optimal joints positions, velocities
and accelerations at each time instant. The entire planner is integrated in ROS
and MoveIt! framework and uses Gazebo as simulator.

The developing planner has to be completely integrated in the framework
available in ALTEC [29]. The existing software architecture is dedicated to the
redundancy resolution, using dynamic programming [33].

Our starting point consists of extending the existing architecture in order to
generalize the grids for dynamic programming and to create a module to integrate
the algorithm for time-optimal planning.

First, the existing redundancy resolution module is introduced, summarizing its
characteristics, in particular the common features with the time optimal planning
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Figure 4.3 – Scheme representing the architecture overview on the simulated robot
in Gazebo, the real robot and the controllers in ROS [2]

algorithm, then the final software architecture is described.

4.3.1 Redundancy resolution module

The redundancy resolution module has the task to find the globally-optimal
joint-space solution of a redundant robot along a a prescribed path using a
search algorithm based on dynamic programming, as described in Sec. 3.2. The
aim is to extend the MoveGroup capabilities with a planner able to optimize
a given performance index in an integral way, thus achieving globally-optimal
inverse kinematics. The module has been already integrated in the framework
and tested on a variety of robots, including the Panda [1], the Mico6 [15] and
mobile manipulators (arms mounted on mobile bases for space applications).

Architecture

It is mainly composed by three parts:
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• Generation of grids: The StateSpaceGrid is the class which represents
all the discretized joint space solutions along the trajectory. Each cell of the
grid, in fact, contains information about the joint vector solution of the IK.
The code supports also the generation of a set of grids, in order to take into
account the multiple solutions of IK and to generate a global solution.

• Execution of algorithm: The DynamicProgrammingSolver class is respon-
sible for finding the optimal solution. When the solver is called, it computes
all the costs in the grids and it stores, for each cell, the best cost and the
best predecessor. The cost function can be defined by the user through the
ObjectiveFunction class. At the end of the process, it is able to compute the
minimum path, starting from the last node and going backward until the
first one.

• The MoveGroup capability: The MoveGroupDPRedundancyResolution-
Service is the additional MoveGroup capability. It can be called through
the ros::ServiceServer and it performs the entire planning process. It
recovers the inputs from the parameter server and the request message, such
as the robot type, the trajectory and the objective function and, depending
on the type of robot, it creates an appropriate number of grids, computing
the inverse kinematics solutions. Finally, it calls the dynamic programming
solver function, which computes the optimal trajectory and sends it to Rviz
visualizer.

4.3.2 Architecture design

Since the underlying resolution technique of redundancy resolution module is
the same of the time optimal trajectory planning one and there are commonalities
between the state space representation, the software architecture can be generalized
to build a complete independent interface which could be used by the dynamic
programming solver, moving all the specific characteristics of the semantics into
specialized components.

The system are both discretized in order to create a state space, such that the
dynamic programming can be exploited as a search algorithm in a grid. Although
the states, the stages and the control inputs are represented by different quantities,
the decision process underlying the transitions is not modified. For both, it is
possible to define the set of constraints for the control input and for the states,
limiting the feasible transitions. In order for the solver to find the best solution,
each cell, or node, of the grid must store the cost and predecessor cell. Only
the local decision depends on the semantics and the chosen cost function. Once
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defined the cost and the predecessor, the semantics does not longer matter because
the solver can build the final sequence of best nodes through the pointers of
predecessors.

The cell represents the most critical component of the architecture: it is the
bridge between the abstract layer and the semantics. It has to contain both
the generic information for the solver, such as the cost and predecessor, and the
specific data, i.e. the actual state and other, for checking the constraints and for
computing the local cost. Nodes are given the autonomy to check the constraints
and to compute the cost between their neighbours, but they are not able to
self-compute, i.e. computing the semantics-specific state. They needs an external
component, called manager, which knows the problem definition: it handles all the
operations related to the problem, but not strictly to the optimization algorithm.
These are the contour operations which could be required to accomplish the entire
process. One example could be the generation of the robot trajectory variable,
starting from the output of the optimization process.

In order for the manager to work correctly, it needs to be contextualized and
to have access some robot and semantics specific information: a component,
representing the context, is created for this purpose. It contains all the useful
information needed by the manager and the other components of the architecture.
It has to be created externally and allows to maintain the user-friendliness of the
software, because it encloses all the needed information. Finally, it allows also to
reduce the memory occupation: indeed, through the context, some information
has not be replicated in the several components.

So, both the DP-inspired algorithms can be divided in the following common
five phases:

1. Construction of the grid: It represents the structure of state space, on
which the algorithm works and looks for the optimal solution. The grid is
composed by a set of cells, representing the states of the system.

2. Computation of cells: Each cell has to contain the information relative to
the state.

3. Check of constraints: In order for a transition to be feasible, the constraints
must be satisfied.

4. Computation of local costs: If the constraints are satisfied, the local cost
can be computed. The cost and the precessors are stored in this phase.

5. Construction of the sequence of best cells: Through the pointers of
predecessors, it i possible to rebuild the sequence of states with minimum or
maximum cost.
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Once defined the main commonalities and differences, the software architecture
can be described.

4.3.3 Context

As it is done in redundancy resolution module, the time-optimal trajec-
tory planning is performed through an additional MoveGroup capability, called
MoveGroupDPTimeOptimalParametrizationService. To execute the capability,
a service interface is implemented: a ROS node calls a ros::serviceClient and
exchanges a GetTimeOptimalTrajectory message with the ros::serviceServer
executed in the MoveGroup node context. The former will send a request mes-
sage, whereas the latter will send a response message at the end of the time
parametrization process.

The capability accepts either a task-space path or a joint-space path, which are
stored in the the GetOptimalTimeTrajectoryRequest message. If a task-space
is given, the capability has also the task to perform the inverse kinematics in
order to obtain the joints configurations corresponding to the input task poses.
As explained in Sec. 3.3, this is necessary in order to compute the parametrized
dynamics.

In order to simulate and visualize the optimal trajectory, the results are
published through a ros::Publisher or a ros::ServiceClient, depending on
the type of controller implemented, as will be explained later. Then, these
controllers communicate with Gazebo in order to send the commands to the
simulated joints. Finally, to analyze the results and plots, the solution can
be exported to bag files through the rosbag package. These files can be then
interpreted by MATLAB software [16].

The context is explained in the Fig. 4.4, through the UML component diagram.

4.3.4 Grid generalization and dynamic programming solver

The redundancy resolution module is taken as starting point to create a
component which implements the dynamic programming without any connection
to semantics and the context in which it is used.

The first step is to analyze and identify all the functions of the StateSpaceNode,
StateSpaceGrid andDynamicProgrammingSolver classes that could be suitable
to perform the operations described in Sec. 4.3.2. These functions are refactored
in order to extract the semantics-specific features, which will be collected in the
specialized components, and to adapt the generic features to realize the abstract
layer. Finally, the novel components, i.e. the manager and the context, as
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Figure 4.4 – UML component diagram representing the connections between the
capability and the other components. The link with Gazebo is better explained in
Fig. 4.3.

described in Sec. 4.3.2, are created. So, the new architecture will be composed as
follows:

1. The components which realize the dynamic programming;

2. The abstract layer which interacts with the dynamic programming compo-
nents. It has to be specialized to define the specific semantics.

It is worth to underline that the dynamic programming components communicates
only with the abstract layer and never know the problem definition.

Let us describe the main components of the architecture:

• StateSpaceNode: it is the smallest unit of the architecture and it represents
one grid cell, or, equivalently, one state of the system. It stores basic
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information such as the cost and the predecessor, useful to build the final
sequence of best nodes.

• StateSpaceGrid: it is the entity representing the grid and contains the
collections of StateSpaceNode.

• DynamicProgrammingSolver: it is the entity responsible for executing
the search algorithm along the set of StateSpaceNode of the grid and for
building the sequence of best states.

• StateSpaceManager: it is the entity which manages the grids, such that
they can be generated and computed, and handles some utility functions,
such as the export to bags or the creation of trajectory variable.

• StateSpaceContext: it is a data structure which contains all the useful
information to perform the algorithm.

The StateSpaceNode, StateSpaceManager and StateSpaceContext are the
entities of the abstract layer and must be specialized to apply the dynamic
programming to different problems, whereas the StateSpaceGrid and
DynamicProgrammingSolver are completely independent from the semantic, since
they represent the components to realize the search algorithm.

The specialized components have to define all the semantics-specific functions
and attributes, which are necessary for the execution of the algorithm. First, the
StateSpaceNode must be able to check the fulfilment of the constraints and to
compute the local cost of the transition towards an adjacent node. So, it has to
own all the needed information to execute these operations. The nodes are not
able to compute autonomously these information: this is an high-level operation
which would require too effort and too much knowledge for a single node. The
computation of the node is the main task of the StateSpaceManager, which has
the capability to access to all the needed information. So, it has to know perfectly
the problem definition and how to compute the data of nodes.

The architecture of the entire module can be analyzed on the UML decomposi-
tion diagram in Fig. 4.5.

4.3.5 Implementation of time optimal trajectory genera-
tion module

The module for optimal trajectory generations needs to inherit the abstract
classes previously defined.

The StateSpaceNodeTimeOptimalTrajectory is the class which represents
the state of the problem, composed by the pair (λ, λ̇). Besides, in order to check
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Figure 4.5 – UML decomposition/class diagram representing the classes which
compose the time optimal trajectory generation module.

constraints during transitions, it contains the information about the pseudo-
acceleration limits, or rather the couple (L,U).

In order to compute the data of StateSpaceNodeTimeOptimalTrajectory, the
StateSpaceManagerTimeOptimalTrajectory has to compute the parametrized
dynamics. So it has access to all the robot characteristics, through the kdl_parser
library which allows to parse the URDF [17]. Then, it is able to compute the
parameters of dynamics equation for each state of system, again through the
KDL library [4]. Once the parametrized dynamics is obtained, the limits of
pseudo-accelerations of the entire grid can be computed from Eqs. 2.39, 2.40.

Now the grid is ready and the DynamicProgrammingSolver can be called. As
described in Sec. 3.3, it is assumed that the initial state is the rest condition. So,
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the DP solver starts from the initial state, the only one which is actually active
and belonging to C0, and, in an iterative way, it begins to compute the local costs
for each couple of states at successive stages. At each iteration, it checks if the
next stage and the transition are feasible and, if successful, it computes the cost
and compares it with the previous one. If it is lower, it saves the new cost and
the new predecessor. When all the stages are analyzed, it builds the sequence of
best StateSpaceNodeTimeOptimalTrajectory instances.

The sequence of nodes represents the best trajectory in (λ, λ̇) plane. It can be
translated into a sequence of efforts through Eq. (2.27) or into a sequence of joint
positions, velocities and accelerations through (3.35) and (3.36).

The software behaviour is illustrated in the UML sequence diagram in Fig. 4.6.

4.3.6 Trajectory control

As explained in Sec. 4.2, in order to simulate a robot in Gazebo, the hard-
ware interface and the controllers must be defined. First, we assume that the
joints are torque-driven, so the EffortJointInterface is chosen. As far as con-
cerns the controllers, we use two types: the JointTrajectoryController, which
is a default one and it is often used in combination with MoveIt!, and the
ForwardJointEffortController, a custom controller, created to forward di-
rectly sampled efforts to joints.

Let us describe these controllers and how it is possible to communicate with
them.

Joint Trajectory Controller

It is a default controller provided by ROS control [18], whose aim is to execute
joint-space trajectories on a group of joints. The trajectories are specified as a
sequence of waypoints, which consist of positions and possibly of velocities and
accelerations at each time instant. Depending on the type of parameters provided,
it executes respectively a linear, cubic or quintic interpolation between given points.
The desired trajectory is specified in the trajectory_msgs::JointTrajectory.

The controller can work with different hardware types: effort, position and
velocity - controlled joints. If the joints are actuated in position, or equivalently
they have a PositionJointInterface, the desired positions from trajectory
are forwarded directly to the joints. While if the joints are actuated in veloc-
ity or in effort, a PID feedback control is implemented. Since we assume an
EffortJointInterface, a PID is added to the control loop.

In order to communicate with the controller, there are two available mechanisms:
the topic interface or action interface. We use the action interface, because it
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allows to monitor the execution. For example, it is possible to know if the goal is
reached, under some pre-defined tolerances.

So, the capability MoveGroupTimeOptimalDPTrajectoryService has the task
to send the filled trajectory_msgs::JointTrajectory message to the con-
troller. When the DynamicProgrammingSolver has terminated its work, the
StateSpaceManagerTimeOptimalTrajectory translates the sequence of best nodes
into a sequence of joints positions, velocities and acceleration with a defined time
instant. Each waypoint is saved into a JointTrajectoryPoint variable, which
fills the trajectory_msgs::JointTrajectory message. When the message is
ready, the capability uses the ActionClient to send the trajectory message. The
controller receives it and executes the control action on the robot.

Forward Joint Effort Controller

It is a custom controller created for this specific application. In fact, when the
robot model is perfectly known, it is expected that the torques directly computed
from the planning and dynamics equation, are sufficient to move the robot as
desired. Obviously, the actual path performed by the robot will be not perfectly
coincident with the desired one because of the numerical and discretization errors,
but it is possible to demonstrate that they can be very similar choosing an high
number of samples.

Starting from these considerations, we have created a custom controller, whose
task is to receive the optimal efforts vector and to forward it to joints. In order to
make move robot as desired, it is necessary to send efforts at the specific time
instant required by the planning. Since ROS is not a real-time architecture, the
classical JointEffortController provided by ROS control is not adequate for
our application. Indeed, it receives one message at a time, containing the efforts
to be sent to joints, but it is not ensured that the published messages are received
and executed at the same moment. So, to avoid this problem, we have created a
controller which receives as input a vector of efforts for the entire trajectory. It
stores them in a buffer and at each cycle update, it sends a sequence of efforts to
joints. Besides, since the frequency loop is fixed, the efforts are sampled with the
same frequency of the controller with a kind of zero-order hold model. In this way,
the probability that the effort is not sent at the right time instant is decreased a
lot and depends only on the execution of the controller in time. The higher the
frequency is, the smaller the error due to this problem is.

The ForwardJointEffortController receives an EffortJointTrajectory
message, which contains the vector of sampled joint efforts.

The capability MoveGroupTimeOptimalDPTrajectoryService has the task to
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send the filled EffortJointTrajectory message to the controller. When the
DynamicProgrammingSolver has terminated its work, the
StateSpaceManagerTimeOptimalTrajectory translates the sequence of best nodes
into a sequence of joints efforts. Then it re-sample them at the desired control
loop frequency.

When the message is ready, the capability uses a ros::Publisher to send the
efforts. The controller receives it and at each cycle update it sends the sequence
of efforts to joints, which must have an EffortJointInterface.

63



Implementation in ROS

Figure 4.6 – UML sequence diagram illustrating the high level sequence to perform
the planning.
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Chapter 5

Simulation and results

In order to validate the algorithm, the generated references from the dynamic
programming planner are tested through several simulations on Gazebo, using a
two revolute joints planar manipulator, which is the same of the use case proposed
by Shiller in [47]. It is also used to give proof of some expected behaviours derived
from the algorithm design.

5.1 Application to a 2R planar robot

Shiller proposes the application of the switching points method on a 2R planar
manipulator [47]. In order to validate the results of the DP-inspired algorithm,
the same robot and desired path are used.

Shiller supposes to have monodimensional links, so only the lengths of links
and the inertia around z-axis are defined. Unfortunately, this kind of description
is not enough for a dynamic simulation in Gazebo, thus it is necessary to extend
it to the three-dimensional case. It is modeled with 3D links and the inertia on all
the principal axes and is showed in Fig. 5.1. The main mechanical characteristics
of the robot are described in Table 5.1.

Dimensions [m] Mass [kg] Inertia [kg ·m2]
Maximum
torque
[N ·m]

l1 = 1× 0.05× 0.01 m1 = 1
I1,{xx,yy,zz} = 0.08
I1,{xy,xz,yz} = 0

τ1 = ±20

l2 = 1× 0.05× 0.01 m2 = 1
I2,{xx,yy,zz} = 0.08
I2,{xy,xz,uz} = 0

τ2 = ±10

Table 5.1 – Mechanical characteristics of 2R planar manipulator

The trajectory is supposed to be the same as [47] and it is shown in Fig. 5.1.
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Figure 5.1 – Shiller robot model and desired trajectory

The following aspects will be demonstrated:

1. The validity of the algorithm, comparing the obtained optimal trajectory
in phase plane with the one obtained through the switching points method,
described in [47] and available in the framework of ALTEC.

2. The errors caused by the discretization, as explained in Sect. 3.3, comparing
the simulated joints positions and velocities with the ideal ones obtained
from planning.

3. The effects on the solution quality and computational time when the grid
resolution increases.

In order to show these aspects, various simulations with different configuration
parameters are performed.

5.1.1 First simulation: comparison with the switching point
method

The aim is to validate the algorithm, comparing the optimal trajectory in
phase plane obtained using dynamic programming with the one obtained using the
switching points method described by Shiller [47]. The results of the switching
point method were available in the framework of ALTEC.

The following parameters are set for the planner:

• Number of samples for λ domain: Ni = 150

• Number of samples for λ̇ domain: Nu = 1000
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• 2nd formulation, as explained in Par. 3.3.4.

It is worth to underline that the choice of the grid resolution, e.g. the number of
samples of λ and λ̇ domains, is a relevant aspect during the design of the planner
because it affects both the quality of solution and the computational effort. This
aspect will be analyzed in the third simulation, with some examples to give proof
of this statement.

The algorithm is executed in ~11 s on an Intel Core i7-6700 CPU @ 3.40GHz
x 8, without parallel execution. The optimal trajectory time obtained from the
algorithm is equal to 0.8487 s.

In Fig. 5.2 both the optimal trajectories are reported. In addition, the
MVC is showed too, in order to verify that the trajectories do not violate the
constraints. In general, the trend of the two trajectories is very similar, but in
the neighbourhood of the critical point. In fact, it is worth to underline that the
dynamic programming solution behave better near to the critical point; in fact,
as explained in Sec. 2.6.4 the integration method presents a torque jitter in the
neighbourhood of the critical point. In dynamic programming optimal trajectory,
this may not happen because the phase plane trajectory does not depend on the
integration fields of the pseudo-acceleration.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

Figure 5.2 – First simulation. The optimal trajectories in phase plane: in red
the trajectory obtained through dynamic programming, in yellow the trajectory
obtained through switching points method and in blue the MVC.

In Fig. 5.3, the comparison between planned torques of DP solution and
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switching point one are reported. The bang-bang profile of torques is proven:
in fact, one actuator is always saturated in both cases. In DP torques, during
saturation, the torques present some jitters. They are caused by the resolution of
the grid, which affects the resolution of feasible pseudo-accelerations. The jitter
could be decreased if an higher grid resolution is chosen. Besides, at 0.12 s s, it is
possible to notice the torque jitter of the switching point method: it presents a
very fast variation. As previously said, the same behaviour is not present in the
DP-torques.
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Figure 5.3 – First simulation. Comparison between planned torques obtained
through dynamic programming (blue) and switching points method (red).

5.1.2 Second simulation: comparison between different
discretization formulations

The objective is to compare the results between the different types of discretiza-
tion explained in Sect. 3.3 and to show how the choice could affect the solution
quality.

The following parameters are set for the planner:

• Number of samples for λ domain: Ni = 300

• Number of samples for λ̇ domain: Nu = 3000

The main characteristics of the two formulations are defined as follows:
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1. First formulation: The pseudo-acceleration is computed through the chain
derivative rule and considering the approximation (3.28) when λ̇(i) = 0, as
explained in Par. 3.3.3. The joints’ velocities and accelerations are computed
using the first formulation explained in Par. 3.3.4.

2. Second formulation: The pseudo-acceleration is computed through the
expression of the traveled time between two points, as in (3.29). The joints’
velocities and accelerations are computed using the second formulation ex-
plained in Par. 3.3.4.

The algorithms for both formulations are executed in ~2.4 min on Intel Core
i7-6700 CPU @ 3.40GHz x 8, without parallel execution. The optimal trajectory
time obtained from the first formulation algorithm is equal to 0.8862 s, while it is
equal to 0.8448 s for the second formulation.

In Fig. 5.4 the optimal trajectories in phase plane are reported with the MVC
curve and the switching point trajectory.
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Figure 5.4 – Second simulation. The optimal trajectories in phase plane: in red
the trajectory obtained through dynamic programming with 1st formulation, in
yellow the trajectory with 2nd formulation and in blue the MVC, corresponding to
Ni = 300.

In order to show the different results, the simulations on Gazebo are per-
formed. The ForwardJointEffortController is chosen such that to analyze the
robot behaviour in response to the planned torques. In fact, let us recall that the
ForwardJointEffortController sends the planned torques in open loop.
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In Fig. 5.5, the sampled planned torques are reported for both formulation.
They are sampled with a frequency of 10 KHz. So, the controller sends joints
commands every 0.1 ms. It is possible to see a temporal shift between the curves,
which is due to the different discretization: recalling Eq. (2.27), the joint torque
depends directly on a(i) and b(i) which are computed differently for the two
formulation, from Eq. (3.32) for 1st formulation and from Eq. (3.37) for the 2nd

formulation. Besides, the planning results are different too, again due to the
chosen discretization.
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Figure 5.5 – Second simulation: The comparison between planned torques in 1st
formulation (blue) and 2nd formulation (red).

In Fig. 5.6 and 5.7, the simulated joints’ positions and velocities are showed.
They are compared with the ideal joints’ positions, derived from the IK, and
velocities, from Eq. 3.31 for 1st formulation and from Eq. 3.35 for 2nd formulation.
It is evident that, in first formulation, the model is ill-defined: in fact, the ideal
and simulated curves are distant since the initial time instants. Whereas, in second
formulation, the curves are coincident at the beginning and they detach along the
trajectory due to the numerical errors. It is worth to underline that the sampled
planned torques are able to move the robot as desired, unless small errors.

5.1.3 Third simulation: increase of grid resolution

The aim is to demonstrate that an higher grid resolution determines a better
solution. As already said in the previous paragraphs, the grid resolution affects

70



Simulation and results

0 0.2 0.4 0.6 0.8
-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8
-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8
0

1

2

3

0 0.2 0.4 0.6 0.8
0

1

2

3

Figure 5.6 – Second simulation. The comparison between simulated joints’ position
(blue) and ideal ones (red), obtained from planning. On the left, the results from
1st formulation, on the right from 2nd formulation.

both the computational effort and the solution quality. A trade-off has to be
found: the grid has to be dense enough to obtain more accurate results, but not
too much because the computational time increases very fast. The number of
columns, or Ni samples of λ domain, determines the accuracy of the dynamic
model at waypoint, while the number of rows, or Nu samples of λ̇ domain, affects
the accuracy of cost computation [37]. Besides, also the ratio between Ni and Nu

affects the quality: in fact, in the worst case, if Nu is very small and Ni is very
big, it may happen that no pseudo-acceleration exists to reach the next stage [37].
In general, the ratio affects the resolution of the allowable pseudo-accelerations.

To prove these statements, two simulations are performed: one with a low
resolution grid and one with an high resolution grid. For the first simulation, the
following parameters are set:

• Number of samples for λ domain: Ni = 150

• Number of samples for λ̇ domain: Nu = 1000

• 2nd formulation.

while for the second one:
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Figure 5.7 – Second simulation: The comparison between simulated joints’ veloci-
ties (blue), and ideal ones (red) obtained from planning. On the left, the results
from 1st formulation, on the right from 2nd formulation.

• Number of samples for λ domain: Ni = 300

• Number of samples for λ̇ domain: Nu = 10000

• 2nd formulation.

The algorithm with the first set of parameters is executed in ~11 s, while
the second is executed in ~30 min on Intel Core i7-6700 CPU @ 3.40GHz x 8,
without parallel execution. For the high resolution grid, the computational time
has drastically increased. The optimal trajectory time obtained from the first
simulation algorithm is equal to 0.8487 s, while it is equal to 0.8409 s for the
second simulation. In the second simulation, the optimal cost is slightly decreased,
so the solution quality is improved.

In Fig. 5.8 the optimal trajectories in phase plane are reported with the MVC
curve. It is possible to notice that in the 2nd simulation optimal phase plane
trajectory, the red curve, is above the 1st one, the yellow curve; this is equivalent
to a faster trajectory. Besides, the red curve is nearer to the critical point than
the blue one: this is due to the increased resolution of the pseudo-accelerations.
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Figure 5.8 – Third simulation. The comparison between phase plane trajectories:
in yellow the trajectory from 1st simulation with low grid resolution, in red from
2nd simulation with high grid resolution.

In order to show the different results, the simulations on Gazebo are per-
formed. The ForwardJointEffortController is chosen such that to analyze the
robot behaviours in response to the planned torques.

In Fig 5.9, the sampled planned torques are reported. They are sampled with
a frequency of 10 KHz. So, the controller sends joints command every 0.1ms.
The trend is very similar, but it is possible to notice that in the 2nd simulation,
i.e. the blue curve, the torque jitter at saturation is decreased. Besides, in the
neighbourhood of the critical point, the red curve presents a bigger torque jitter:
this is due to the vicinity of the curve to the critical point, as happens in the
switching point method and explained in Sec. 2.6.4.

In Fig. 5.10 and 5.11 the simulated joints’ positions and velocities are showed,
compared with the respective ideal joints’ positions and velocities, computed
during planning phase. In the second simulation the error between ideal and
simulated curves for both positions and velocities is lower. This improvement is
due to the decrease of numerical errors caused by the discretization. In particular,
the higher the number of intermediate waypoints is, the more accurate the dynamic
model is.
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Figure 5.9 – Third simulation. The comparison between planned torques in
1st simulation with low grid resolution (blue) and 2nd simulation with high grid
resolution (red).

5.1.4 Fourth simulation: JointTrajectoryController

The aim is to test the JointTrajectoryController and to analyze the results
that could be obtained if a feedback controller is used.

Using a forward controller, such as the JointForwardEffortController, the
error cannot be controlled. In fact, it is interesting to notice that, in previous
simulations, the final joints’ velocities are not equal to zero, so it would continue
to move, even if the desired trajectory is concluded. So, the errors accumulated
during planning will affect the simulation, also in the case the robot model is very
simple and perfectly known; besides, in real robots, the models becomes much
more complex and very difficult to obtain, so the errors drastically increase. If
the model is perfectly known, it is expected that an infinite grid resolution, which
corresponds to a continuous one, could solve the problem. Another solution is to
add a feedback loop in the system: so the actual state of the robot is compared to
the desired one and the torques are generated by controller to minimize this error.

The set of parameters for planner is:

• Number of samples for λ domain: Ni = 150

• Number of samples for λ̇ domain: Nu = 1000

• 2nd formulation.
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Figure 5.10 – Third simulation. The comparison between simulated joints’ posi-
tions (blue) and ideal ones (red) obtained from planning. On the left, the results
from 1st simulation with low grid resolution, on the right from 2nd simulation with
high grid resolution.

• PID gains: Kp = 200, Kd = 200, Ki = 50

The computational time, trajectories in phase plane and optimal time solution
are the same as the previous simulation because the chosen parameters are equal.

The JointTrajectoryController receives as input a message containing the
positions, velocities and acceleration desired at each time instant. Once received
the desired trajectory, it applies a quintic interpolation in order to guarantee the
continuity at acceleration order and, finally, the interpolated values of positions
and velocities are used as references during the simulation. It is interesting to
notice how the planning velocities and accelerations are modified because of the
interpolation process in Fig. 5.12. The acceleration are so oscillating in order
to guarantee the continuity at all the three levels, e.g. positions, velocities and
accelerations, while the velocities are affected by minor oscillations. The positions
are not really altered from the interpolation; for this reason, they are not reported.
These effects are caused by the chosen approximation to discretize the system, i.e.
the forward finite differences.
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Figure 5.11 – Third simulation. The comparison between simulated joints’ veloci-
ties (blue) and ideal ones (red) obtained from planning. On the left, the results
from 1st simulation with low grid resolution, on the right from 2nd simulation with
high grid resolution.

In Fig. 5.13 and 5.14 it is possible to compare the results obtained with JointEf-
fortController, showing the simulated joints’ positions and velocities, compared to
the reference ones. It is worth to notice that the robot tracks the desired trajectory,
unless small errors mostly in velocities, although the oscillations introduced by
interpolation. The errors are due also to the planned bang-bang trajectory: it may
be incompatible to a controller because of the actuators’ saturation, which could
have negative effects on controller performances. A solution could be to scale a
bit the desired velocity, such that the actuators does not saturate, or to consider
in planning a torque limit lower than the true one, but losing the globally-optimal
solution. Also in this case, a trade-off should be found.

In Fig. 5.15 the planned and applied torques are reported. It is interesting to
notice that applied torques are very oscillating because the controller needs to
be very reactive in order to act so fast and to follow the trajectory. So, it is very
sensible to small error variations. Since the desired velocity reference is not linear,
but oscillating because of the interpolation, the showed behaviour is caused. In
order to solve this problem, a better interpolation should be provided.
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Figure 5.12 – Fourth simulation. The comparison between planned (red) and
interpolated (blue) joints’ velocities and accelerations.
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Figure 5.13 – Fourth simulation. The comparison between simulated (red) joints’
positions and planned ones (blue).
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Figure 5.14 – Fourth simulation. The comparison between simulated (red) joints’
velocities and planned ones (blue).
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Figure 5.15 – Fourth simulation. The comparison between planned torques (red)
and the applied one (blue).
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Chapter 6

Conclusions

6.1 Results

Recently robotics is assuming a key role in space missions: it is capable
to replace humans in dangerous and complex activities. In order for a robot
to perform the required tasks, complex and advanced control architectures are
required. One of the main issues in robotics is the motion planning: the robot
must be capable to move to accomplish the desired activities. In some specific
applications, it could be required to optimize the time execution of the motion in
order to maximize the productivity and to minimize the spent resources.

The aim of this dissertation is to contribute to the development of technologies
to implement the minimum time parametrization of trajectories. The following
objectives has been defined:

• To design and to implement a time optimal planner.

• To integrate the planner in the available framework at ALTEC.

• To demonstrate the validity and to show the obtained results through the
setup of a 3D dynamic simulator.

The predefined objectives has been reached, with the following contributions:

1. the development of a time optimal planner based on the dynamic programming
approach and the definition of a new formulation for variables discretization.

2. The refactoring of the available framework separating problem specific de-
tails from the dynamic programming algorithm, effectively allowing to use
dynamic programming for a generic constrained optimization problem via
the implementation of a problem specific extension module.
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3. the development of the robot-agnostic extension module responsible for the
time optimal trajectory generation, able to parametrize path in both task
and joint space.

4. the setup of the interface for communicating with the 3D dynamic simu-
lator and the experimental validation and analysis of the planner through
simulations.

6.2 Future works

The presented work offers several starting points for future researches, both to
improve the efficiency of the algorithm and to develop new technologies.

Some suggestions for future works are:

• In order to improve the planning results, a more accurate approximation could
be used to discretize the state space and the related variables. This could
decrease the numerical errors affecting the planning variables. Besides, a
different approximation could be most suitable to a continuous interpolation,
such that the controller action is not affected by the injected oscillations.

• In order to speed up the execution of algorithm, some optimization factors
could be found, such that the grid is not entirely explored, but only the more
probable sections. Besides, the computational time could be decreased if
parallel processing is used.

• A conjunction of the switching point method and the dynamic programming
one could be used in order to exploit their advantages. In particular the
dynamic programming could be used in the neighbourhood of the switching
point, in order to avoid the jitter of the torque profile.

• Additional constraints could be considered in the planning algorithm. For
example, the jerk constraints could allow to obtain torque profile more
suitable to hardware implementations.

• New extension modules could be created to expand the capabilities of the
dynamic programming algorithm. For example it could be used for generating
time optimal trajectories for redundant manipulators.
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