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Abstract

An anti-pinch is a safety system that senses if a motor is running against an obstacle

and prevents any injuries to people or damages to the obstacle or the motor itself.

The anti-pinch sensing is usually performed by current monitoring, hall sensors or

a combination of both. The state-of-the-art anti-pinch strategy is derivative based.

It is simple to implement, and it check continuously the variation of the current

and the variation of the velocity. Both are compared with a threshold and if they

simultaneously report the presence of an obstacle, the motor is blocked. Although

this task may look simple at first sight, many are the factor that add complexity

and uncertainty to a standard algorithm: varying system conditions, mechanical

and electrical uncertainties, mechanical wear of the motor system, etc. Moreover,

the implementation of this algorithm requires a lot of run in order to setup the anti-

pinch system correctly (e.g. for setting the thresholds). The scope of this project is

to address these issues and to propose an innovative strategy: create an automated

test-bench and integrate a machine learning approach to automatically learn what

is the best condition to trigger the anti-pinch. The project consists to build a motor

bench that simulates a situation where a motor is moving a load and where, during

the movement, a pinch can occur. In particular, the test-bench could simulate an

automatic back-seat system that works as follow: from an initial position, where

the back-seat is parallel to the ground, the motor must move the back-seat until a

certain position (expressed in degree). If there is an obstacle during the run, the

motor must stop the movement of the back-seat. For the project, it is important to

recognize the presence of an obstacle. Avoid false negative is more important than

avoid false positive, according to the level of safety. The develop of this project

is divided in different steps. Creation of a model of the system using Simulink.

Mechanically build of the test-bench. Design of an electronic circuit able to allow



Arduino to control the two motors and to acquire measures from them. Develop

the Arduino code in order to control the motors, to collect measures from sensors,

and to detect pinch. Design an HMI with Mathworks Matlab software, able to

communicate with Arduino board, sending it test parameters and receiving the data

Arduino measures. Apply machine learning training algorithm (logistic regression

is used in this project) using Matlab. Implement on the Arduino board the machine

learning algorithm to detect pinch. Finally, after several test, the machine learning

anti-pinch algorithm and the classic anti-pinch algorithm are compared in order to

evaluate if the innovative method is more convenient or not than the classic one

by analyzing advantages and disadvantages and doing considerations about these

methods.
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Chapter 1

Introduction

The main purpose of this thesis is to design an innovative algorithm, using machine

learning, for implementing the anti-pinch functionality on an automated test-bench

and comparing this new approach with the classical one. An anti-pinch is a safety

system that senses if a motor is running against an obstacle and prevents any

injuries to people or damages to the obstacle or the motor itself. The presence of

an obstacle is usually detected by monitoring current behavior, velocity behavior or

a combination of both. The state-of-the-art anti-pinch strategy is derivative based.

It is an approach easy to implement, and it checks continuously the variation of

the current and the variation of the velocity. Both measures are compared with a

threshold and if they simultaneously report the presence of an obstacle, the system

is blocked, in order to avoid any kind of damages. Although this task may look

simple at first sight, many are the factor that add complexity and uncertainty to

the standard algorithm. In fact, events due to wearing or uncertainty are very

difficult to predict. Also variations on the system conditions can cause error in

the pinch detection. Moreover, the implementation of this algorithm requires a

lot of runs in order to set-up the anti-pinch system correctly (e.g. for setting the

thresholds). The scope of this project is to address these issues and to propose

an innovative strategy: create an automated test-bench and integrate a machine
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Introduction

learning approach to automatically learn what is the best condition to trigger the

anti-pinch. The project consists to build a motor bench that simulates a situation

where a motor is moving a load and where, during the movement, a pinch can

occur. In particular, the test-bench could simulate an automatic back-seat system

that works as follow: from an initial position, where the back-seat is parallel to the

ground, the motor must move the back-seat until a certain position (expressed in

degree). If there is an obstacle during the run, the motor must stop the movement

of the back-seat. It is important to recognize the presence of an obstacle. Avoid

false negative is more important than avoid false positive, according to the level of

safety requested. The project development is structured into different steps:

• The creation of a model of the system using Simulink, in order to have an idea

of what happens to all the physical quantities involved in the system, such as

motor absorbed current, torque load generated by the seat, velocity.

• The mechanically build of the test-bench using two identical motors, provided

by Hall sensor, which rotors are physically connected. The two motors rotate

in opposite direction (one of the two motors acts as a brake, simulating a load).

• The design of an electronic circuit able to allow a control board to command

the two motors and to acquire measurements from them. In particular, it must

be able to measure, for both motors, the velocity, the number of revolute, the

absorbed current, and the supply voltage of the main motor.

• The software development, implemented on the board. The control board

tasks are: control the motors, collect measures from sensors, detect pinch.

The main motor is controlled by activating or deactivating a relay, the brake

motor is current controlled using the current profile that simulate the load

plus additive term that simulates the pinch (only after a certain time instant).

• The design of an HMI, to integrate with an automated test-bench, with Math-

works MATLAB software. The HMI must be able to communicate with control
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Introduction

board through serial communication. The HMI can send load parameters (e.g.

weight of the back-seat) and pinch simulation parameters (e.g. time instant

after that the pinch must be simulated). The HMI receives and shows also all

the measures collected and the pinch detection.

• The development of a machine learning algorithm, starting from the collected

data, using logistic regression. Logistic regression is a classification method

used to predict a binary output, in this project, the output is represented by

the presence, or not, of the pinch. The training, validation and test phase are

performed using MATLAB software.

• The implementation of the machine learning anti-pinch algorithm using the

logistic regression model, which parameters are obtained during the training

phase. Since the machine learning algorithm performs a high number of oper-

ations, much importance is given to the optimization of the software.

• The comparison, after several test, between the machine learning anti-pinch

algorithm and the classic anti-pinch algorithm in order to evaluate if the inno-

vative method is more convenient or not than the classic one. The evaluation

is done by analyzing advantages and disadvantages and doing considerations

about these methods.

Therefore, the whole system can be modeled as follows:
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Introduction

Figure 1.1 – General representation of the system

In the figure, the three main part of the system are highlighted:

1. The testbench. It is formed by the two motors connected one with each other

and the electronic interfaces. The electronic interfaces allow the measurements

the movement control and the pinch detection of the test bench

2. Electronic board. It is the board which task is to control the testbench. The

board used is an Arduino Nano v3.3 equipped with ATmega328P micropro-

cessor.

3. Computer, where it has been implemented the HMI and where the machine

learning training has been performed.

1.1 Structure of the thesis

The thesis analyzes the development of the project step by step, after a study phase.

In particular, the dissertation has the following structure: the first chapter offers a

description of the pinch problem, applied in the automotive field, and an analysis of

the advantages and disadvantages of the classical method. In the second chapter, a

description of machine learning is provided and there is also illustrated an overview

12



1.1 – Structure of the thesis

of the different kind of algorithms. Then, there is a focus on the logistic regression,

the machine learning algorithm used in this project. The third chapter is about

the test-bench. It begins from the explanation of the simulation model. Then, the

hardware used is examined, and the software development phase is described, from

the algorithm, implemented on the control board, to the MATLAB HMI. In the

fourth chapter, the machine learning method steps are illustrated starting from the

training phase, executed on MATLAB, to the anti-pinch algorithm implementation

on the control board. Fifth chapter, the conclusive one, examines the results ob-

tained by using the two different approaches and suggests the possible features and

improvements that can be implemented on the system in the future.

13
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Chapter 2

Anti-pinch system

This chapter provides a description of the Anti-pinch problem in the automotive

field, explaining the objective of an anti-pinch system, the applications field, the

general requirements and the model of the system that is considered in this project.

After that, the state-of-art implementation is described, focusing on its advantages

and its disadvantages.

2.1 Problem description

In the engineering field, and in particular, in the automotive one, safety is an

extremely important parameter to take in consideration during the development

phase. In a modern vehicle, over the 20% of the purchase price is due to the

electronic system on board.
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Anti-pinch system

Figure 2.1 – Automotive electronic cost as percentage of total car cost

Electronically controlled systems are involved in a large variety of tasks, in the auto-

motive field. Entertainment system, engine control, ADAS systems, safety systems

are only some examples of the electronic in a vehicle.

This evolution brought significant improvements in automotive functionalities and

performances, but, at the same time, it has raised the probability of safety issues

concerning malfunctions of the electronic system [2][3]. Therefore, safety, in a vehi-

cle, depends on the correct functioning of the electronic system and, consequently,

the technologies act to detect fault, or accident protection, assume a primary role

[2][4].

An anti-pinch system is a safety system that senses if a motor is running against

an obstacle and prevents any injuries to people or damages to the obstacle or the

16



2.1 – Problem description

motor itself [25]. The anti-pinch is usually applied in those mechanism where the

electronic actuation produces a movement that can be hindered by an external

obstacle.

For instances, in a vehicle, it is applied to the automotive motorized window or back-

seat apparatus which closes automatically, and which involve risks for trapping,

squeezing or injury to people[5]. Indeed, an object that impedes the movement of

the back-seat that tries to close, can cause damages for the object itself, or for the

seat, or for both. Obviously, the obstacle can be represented not only by an object

but also by a person. A control system is required to handle these situations in order

to prevent damages. The requirements are usually given in terms of the force that

shall trigger the anti-pinch. The criteria to evaluate an anti-pinch implementation

can be seen as the number of false-positive and false-negative triggers. The customer

may be more sensitive to the number of false-positive or false-negative according

to the application and the level of safety and comfort required [25].

In this project, it is considered an automatic back-seat that shall move from

an initial position, parallel to the ground, to a final position, corresponding to a

certain degree movement.

Figure 2.2 – Back-seat representation
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Anti-pinch system

The control system of an electric back-seat with anti-pinch function, is composed

by a single DC motor. The sensors which the system is equipped with, consist on

a Hall sensor and a current sensor. Moreover, the DC motor is connected to the

back seat with a gear box, with an elevated gear ratio, that allows to reduce the

rotational speed of the back-seat, respect to the motor velocity. The representation

of the model is shown in the figure

Figure 2.3 – General representation

2.2 Classical methods

Pinch detection methods have been widely studied [2][7]. The anti-pinch sensing

is usually performed by current monitoring, hall sensors or a combination of both

[23][24]. The state-of-the-art anti-pinch strategy can be split in two categories:

1. History based: more complex and robust. The current measured is compared

against a nominal profile. If deviation from this maps occurs, the anti-pinch

is triggered [25].

2. Derivative based: simpler to implement. It is based on monitoring the varia-

tion of current, or variation of velocity, or both. if the obtained value is higher

than a fixed threshold, the anti-pinch is triggered [23][19][25].

18



2.3 – General troubles

In this project, a method belonging to the second category is considered. The

anti-pinch algorithm checks continuously the variation of the current and the vari-

ation of the velocity [23][24]. Both are compared with a threshold and if they

simultaneously report the presence of an obstacle, the motor is blocked [23][20].

2.3 General troubles

Although this task may look simple at first sight, many are the factor that add com-

plexity and uncertainty to a standard algorithm: variations on system conditions,

mechanical and electrical uncertainties, mechanical wear of the motor system, etc.

Moreover, the implementation of this algorithm requires a lot of run and, conse-

quently, a lot of time, in order to set-up the anti-pinch system correctly (e.g. for

setting the thresholds) [25].

The problems of the current strategies are:

• If any part of the system changes, as well as the requirements, there is the

need to reiterate the entire process of: performing many runs, manually eval-

uating the results, choosing the best strategy, implementing a new strategy

or adapting the current strategy, evaluating the implementation against the

requirements and criteria.

• It is very difficult to implement both strategies in order to have zero false-

positive and zero-false negative in every possible condition. There may be

time windows in which the anti-pinch is blind [18][19][21][23].

• It is time consuming to analyze the system, implement it, validate it and

maintain it [25].

Additionally, many algorithms consider that seat, or window, movement has

almost constant velocity, under normal operation conditions. Pinch situations have

been determined based on the variation of the object velocity [2][5]. However, it
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Anti-pinch system

could happen that these methods can cause false alarms, for example when the

velocity decreases, not for due to the presence of an obstacle but due to frictional

or load torques [1][5] . Input current, as well as the motor angular velocity, has been

considered to address this problem [2][8]. Moreover, measurement noise precludes

accurate fault detection [2].
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Chapter 3

Machine Learning

In this chapter, an introduction of what machine learning is, and its application

fields, are explained. After that, there is a focus on a particular classification

method, called logistic regression, that is used in this project.

3.1 Introduction

Nowadays, machine learning is used for a very large field of application: from med-

ical field and engineering field to statistical field and financial field [28]. "Machine

learning is the field of study that gives computers the ability to learn, without

being explicitly programmed" [9]. In fact, in a traditional program, the developer

must consider all the possible scenario that could occur, and he must write code

to handle all these scenarios. Machine learning works different, by means of an

iterative process. This process is composed by different phases:

• Model. A mathematical model of the problem is defined by the developer

• Train. A large set of data are collected from the model and they are used to

get computers to learn or rather to optimize the mathematical model.
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• Test and Validation. Another set of data, different from the train dataset, are

used to verify the correctness of the method.

According to Tom Mitchell, a definition of well-posed Learning Problem is the

follow: "a computer program is said to learn from experience E with respect to some

task T and some performance measure P, if its performance on T, as measured by

P, improves with experience E" [10].

Machine learning can be grouped into three main categories, depending on the

nature of the learning signal or response available to a learning system [11]. The

three categories are:

1. Supervised Learning: when the machine learning algorithm learns from

an example dataset and the associated target responses in order to predict

the correct response when new examples are posed. Responses can assume

a numeric values or they can be string labels, such as classes or tags. This

approach mimics the human learning approach. In fact, it is similar to the

situation where a student learns under the supervision of a teacher. The

teacher provides good examples for the students to memorize, the students

then derives the general rules from these examples, and they are able of predict

the correct result of new examples [11][22].

2. Unsupervised Learning: when the machine learning algorithm learns from

simple examples without any associated response, leaving to the algorithm

the task to determine the data pattern. This type of algorithm tends to find

all kind of unknown patterns in the data, such as new features that may

represent a class or a new series of un-correlated values. They are quite useful

in providing humans with insights into the meaning of data and new useful

inputs to supervised machine learning algorithms [11][22]. Finding similarity

to a real situations, unsupervised learning can be compared to how people

figure out that certain objects or events are from the same class, such as by
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3.1 – Introduction

observing how much they are similar with each other. Some examples of this

kind of machine learning algorithm can be found on the web in the form of

recommendation systems [11][22].

3. Reinforcement Learning: when the machine learning algorithm learns from

an examples dataset where the response is not indicated, as in unsupervised

learning. However, unlike the unsupervised learning, it is possible to accom-

pany an example with a positive or a negative feedback according to the pre-

diction that the algorithm does. Collecting errors helps the algorithm to learn,

it is just like learning by trial and error. Reinforcement learning are widely

used in the video games applications by execute actions and learn about the

consequences, in order to avoid bad choices in future decisions [11][22].

Focusing only on the supervised learning algorithms, there are also two sub-

categories:

1. Classification: when the inputs are divided into classes and the learning algo-

rithm must produce a model that will be able to assign the correct class to a

new set of inputs. Spam filtering, is an example of classification, where the

emails, which are the inputs, are classified into two classes, spam or not-spam

[17].

2. Regression: similar to the classification algorithms but the output values are

continuous rather than discrete. Estimating life expectance is an example of

regression algorithm application [17].
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Machine Learning

Figure 3.1 – Types of Machine Learning Algorithms

In this project the machine learning method used is the Logistic Regression, that

is a supervised learning algorithm, belonging to classification group.

3.2 Logistic regression

Logistic Regression is a Machine Learning algorithm which is used for the binary

classification problems, it is a predictive analysis algorithm and it is based on the

concept of probability [12]. In a classification problem, input variables are taken,

and the algorithm should try to fit the output onto a continuous expected result

function. In other words, a function that map the input data “x” into an output

data “y”, must be used. The possible output values can be only 0 or 1, because of

this method admits only binary output, usually labelled as follow:
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3.2 – Logistic regression

y = 0 negative class
y = 1 positive class

Table 3.1 – Output values for logistic regression

The logistic regression uses a particular function known as “Sigmoid function”,

or “Logistic function”, which has the following equation:

hθ(z) = 1
1 + e−z (3.1)

where z is the linear model that represents the dataset.

z = θTx (3.2)

The following graph represents the behavior of the sigmoid function.

Figure 3.2 – Sigmoid graph

As it is possible to see in the figure, the sigmoid has the following important

property:
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0 ≤ hθ(x) ≤ 1 (3.3)

The objective of the logistic regression is to find the parameters θ of the linear

model that best fit the training dataset. Then, the logistic function hθ(z) estimates

the probability that the output is true (equal to 1), or false (equal to 0), by setting

a threshold typically set equal to 0.5.

hθ(x) = P (y = 1 | x, θ) (3.4)

if hθ(x) ≥ 0.5, then y = 1 (3.5)

if hθ(x) < 0.5, then y = 0 (3.6)

3.2.1 Cost function and gradient descent

In order to set the θ values the fit the parameters, it is necessary to have a dataset

of training data. The training dataset is composed by “m” examples of input data

“x” and known output data “y”. Then, it is defined a cost function that represent

the error between the output value obtained using the logistic regression model,

and the real output data [17].

J(θ) = − 1
m

mØ
i=1

[y(i)log(hθ(x(i)) + (1− y(i))log(1− hθ(x(i))] + λ

2m

nØ
j=1

θ2
j (3.7)

λ represents the regularization term and it is added in order to prevent over-

fitting problem.

By using the gradient descent method, it is possible to find the minimum of the

cost function J(θ). Gradient descent is an iterative algorithm, that ∀j repeats the

following equation:
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3.2 – Logistic regression

θj := θj −
α

m

mØ
i=1

(hθ(x(i))− y(i))x(i)
j + λ

m
θj] (3.8)

Only for computing θ0, the regularization parameter λ must be set equal to zero

[17].

3.2.2 Validation and test

Given many models, for example with different number of features, it is possible

to use a systematic approach to identify which model is better. From the initial

dataset, only a part is used for training, typically the 60% of the entire dataset.

The remaining data are divided into “cross-validation” dataset 20% and “test error”

dataset 20% [17]. “Cross-validation” is an operation that select the best model

based on the error computed as a cost function without the regularization term λ.

It is computed on mcv values, by using the same cost function used for the training

phase, without the regularization term.

Jcv = − 1
mcv

mcvØ
i=1

[y(i)
cv log(hθ(x(i)

cv ) + (1− y(i)
cv )log(1− hθ(x(i)

cv )] (3.9)

“Test error” is another operation that indicates if the model has a good gener-

alization of the problem. Instead of computing the same cost function used for the

training phase, it is computed the misclassification error, based on mtest values

err(hθ(x), y) =


1, if hθ(x) ≥ 0.5 and y = 0 or hθ(x) < 0.5 and y = 1

0, otherwise
(3.10)

Jtest = 1
mtest

mtestØ
i=1

err(hθ(x(i)
test), y

(i)
test) (3.11)
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3.2.3 Evaluation

From all the data obtained performing test, the results obtained can be classified

as:

1. True positive TP

2. False positive FP

3. False negative FN

4. True negative TN

And it is possible to build a table like this:

Figure 3.3 – Table precision / recall

In order to evaluate the algorithm, some parameters are defined:

Precision = TP
TP + FP (3.12)

Recall = TP
TP + FN (3.13)

Accuracy = TP + FP
TP + FP + FN + TN (3.14)

The precision and the Recall can be adjusted by changing the threshold when

computing the output value. To estimate a good trade-off between Precision and

Accuracy, another parameter, known as F1 score, is defined [17].

F1 = 2 · precision · recall
precision+ recall

(3.15)
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Chapter 4

Test Bench

The test-bench overall system can be represented with the following diagram:

Figure 4.1 – Block diagram of the test-bench

In the following sections the steps for building the test-bench are presented.

Initially, in the first section, it is described the development of the simulation

model through Simulink software. Then, in the second section, it is described

the components used for building the test bench. and the hardware architecture,

that is the electronic components that allow the physical system to communicate

with the control board. In the third section, the software architecture is illustrated,

explaining how the Arduino board interacts with the bench test. The fourth section

illustrates the Arduino-HMI communication protocol and all the functionality that

the HMI has. Finally, in the fifth section, the results obtained are explained.
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4.1 Simulation model

The first part of the project consists to create a model of the system in order to

perform many simulations and to show the effect which alternative conditions have

on the system. The test-bench must simulate a real scenario, where a DC motor

moves a back-seat. So, initially, a model of the motor, which will be implemented

in the real application, is created using Simulink. The model of this motor is useful

to obtain an absorbed current profile and a load profile. that are the reference

values to use in the bench motor simulation. The referenced motor is a brushed

DC motor with an integrated Hall effect sensor, connected to different gears that

reduce the speed increasing the torque. By means of the values obtained in the

datasheet of the component and from measurements, parameters of the Motor are

obtained and they assume the values shown in the table 4.1.

Variable Description

Ra = 0.9Ω Armature resistance
La = 10−3H Armature inductance
Ke = 3.3 · 10−3 V

RPM
Back-emf constant

I0 = 2.5A No-load current
V0 = 13V DC supply voltage in no-load condition
J = 100g · cm2 Rotor inertia
gr = 724.83 Gear ratio

Table 4.1 – Reference Motor parameters

Because of in the datasheet there is not indicated, the rotor inertia has been

chosen by looking at datasheet of similar motors. The gear ratio is computed

measuring the motor velocity with and without the reduction gears, that have, re-

spectively, a value of 3240 RPM and 4.47 RPM.
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Then, the model of the seat is defined in Simulink. The seat is approximated as

a parallelepiped, with mass Ms and subject to a weight force Pload, that generates

a load torque Tload the depends on the inclination of the seat itself, according to

the following equation (where α is the angle between the horizontal axis and the

seat)

Pload = Ms · g (4.1)

Tload = Pload · a · cos(α) = Ms · g · a · cos(α) (4.2)

In the table below are shown the parameters used for the load simulation.

Variable Description

Ms = 10Kg Seat mass
a = 0.7m Distance between hinge and the seat CoG
g = 9.81m

s2 Gravity acceleration

Table 4.2 – Load model parameters

The Simulink model that represents the seat is the following:

Figure 4.2 – Simulink seat model
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Now, connecting the load generated by the model of the seat to the reference

motor, it is possible to obtain interesting graphs about the motor absorbed current

and the load generated by the seat.

Figure 4.3 – Current and load behavior of the reference motor

To better understand the behavior of the absorbed current with respect to rotor

position, it is shown as function not of the time but of the angular displacement α

of the seat:
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Figure 4.4 – Reference motor current as function of load angle

As it can notice, when the angle is zero degree (the seat is parallel to the hori-

zontal line), the value of the load is maximum and, therefore, also the value of the

current absorbed by the motor. At 90 degrees, the seat is in the vertical position

and so the distance between the center of gravity and the seat hinge is null. This

means the torque is null and the current assumes its no-load value. After 90 degree,

the torque generated by the seat has the same direction of the main motor and it

reduces the current needed to move itself.

The motor that will be used in the test-bench as a brake, must generate a torque

which behavior must be as similar as possible to the behavior represented in the

figure.

The motors used in the test bench are two identical Nidec motor (404.744), very

similar to the reference motor (brushed DC motor with an integrated 2-pins Hall

effect sensor).

Also these two motor are modeled using Simscape toolbox. The parameters are

obtained, as for the previous motor, from the datasheet and from measurements
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and they are the following:

Variable Description

ωno−load = 2700RPM No-load speed
Tnom = 0.1Nm Nominal torque
Vnom = 12V Nominal voltage
Pnom = 21.2W Nominal power
Inom = 4.5A Nominal current
I0 = 0.82A No-load current
V0 = 13V DC supply voltage in no-load condition
J = 150g · cm2 Rotor inertia
Ra = 0.17/Omega Armature resistance
Vsupply = 12V Voltage supply

Table 4.3 – Parameters Bench Motors (Nidec 404.744)

The two Nidec motors are connected but they rotate in the opposite direction

because one of them, the brake motor, works as a brake. The connection, in the

simulation, is obtained using a gearbox with a gear ratio of -1 connected to the

mechanical part (the green one) of the two motors

Figure 4.5 – Simscape model of the two motors connected

The Main motor is not controlled neither in velocity nor in current, in fact it is

only connected to a voltage supply with a constant DC voltage. On the contrary, as
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said before, the brake motor is controlled by current, in order to obtain a behavior

that simulates the presence of a back-seat as a load.

As it is expected, the velocity of the two motors are the same but opposite, as

it is shown in the figures:

Figure 4.6 – Motors velocity and angular displacement graphs

To simulate the presence of a pinch, during the execution of the simulation, the

current generated by the reference motor, and used to control the brake motor,

is summed up with another current contribution. The pinch is simulated by the

“Pinch Simulator” subsystem, based on parameters defined a priori, which are:

• Istart, that is the initial value of the current that the pinch causes;

• Imax, that is the maximum value that the current created by the pinch can

assume;

• Imin, that is the minimum value that the current created by the pinch can

assume;

• tstart, that is the time instant when the pinch occurs.
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The Simulink Model of the pinch simulator is shown in the figure:

Figure 4.7 – Pinch simulator model

In the following figures, it is shown:

• on the left, an example of current behavior generated by a pinch with these

parameters (Istart = 2A, Imax = 2.5A, Imin = 1.8A, tstart = 2s )

• on the right the overall current behavior
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Figure 4.8 – Pinch behavior (on the right) - current behavior with pinch (on the

left)

The effect that pinch causes are an increase of the torque generated by the

brake motor and, as a consequence, the decrease of the main motor velocity and an

increase of the absorbed current of the main motor. In fact, the absorbed current

and the velocity are the two parameters of the main motor that must be taken care

of, in order to apply the classical anti-pinch detection algorithm. As expected, the

results from the simulation are the following:

Figure 4.9 – Motor absorbed current and Motor velocity in the presence of a pinch

Finally, in the simulation is implemented a subsystem called “StopConditions”.

Inside this subsystem there is a switch block that check if the motor reaches the

end-of the run, set to a certain angular displacement, and there is also implemented

the classic anti-pinch algorithm. The classical anti-pinch algorithm works as follow:

it checks at every time step the value of the main motor current and the value of

the main motor velocity, it computes the derivative of the two signal and, if the

derivatives of the current is higher than a positive threshold and, simultaneously,
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the derivative of the velocity (the acceleration) is lower than a negative threshold,

the presence of the pinch is reported. The two thresholds are obtained by watching

the behavior of the two derivatives in the presence, or not, of the pinch.

If the anti-pinch algorithm reports a pinch or the main motor reaches the end

of the run, both motors are switched-off.

Another element is added in the simulation that has the only task to show when

the pinch is effectively simulated. In fact, it is important comparing it with the

anti-pinch detection algorithm and checking if the pinch is correctly detected or if

it is a false positive.

In the figure below is shown an example of execution of the algorithm:

Figure 4.10 – Classic anti-pinch algorithm on the simulation

In the first image, the yellow line represents the absorbed current, while the blue

line represents the pinch detection. In the second image, the yellow line represents

the motor velocity and, as before, the blue line represents the pinch detection.

Putting together all the parts described, the complete simulink model is the

following:
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Figure 4.11 – Complete Simulink model of the system

4.2 Hardware interfaces

4.2.1 Hardware components

Aduino

The board used to control the whole system is an Arduino Nano v3.3 board.

Figure 4.12 – Arduino Nano v3.3 board
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Arduino is an open-source electronics prototyping platform based on flexible

hardware and software. Arduino can sense the environment by receiving input from

a variety of sensors and can affect its surroundings by controlling actuators, like

motors. The microcontroller on the board is programmed using the Arduino pro-

gramming language and the Arduino development environment. Arduino projects

can be stand-alone, or they can communicate with software on running on a com-

puter (e.g. MATLAB, LabVIEW). Arduino Nano is a surface mount breadboard

embedded version with integrated USB. It is a smallest, complete, and breadboard

friendly [26][27]. The microcontroller mounted on the Arduino Nano board is an

ATmega328P, with the following technical specification: Features:

Microcontroller Atmel ATmega328
Operating Voltage (logic level) 5 V
Input Voltage (recommended) 7-12 V
Input Voltage (limits) 6-20 V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 8
DC Current per I/O Pin 40 mA
Flash Memory 32 KB (of which 2KB used by bootloader)
SRAM 2 KB
EEPROM 1 KB
Clock Speed 16 MHz
Dimensions 0.70” x 1.70”

Table 4.4 – Arduino Nano technical specification
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Figure 4.13 – Arduino Nano pin-out scheme

The main features are summarized in the table below:

Automatic reset during program download
Power OK blue LED
Green (TX), red (RX) and orange (L) LED
Auto sensing/switching power input
Small mini-B USB for programming and serial monitor
ICSP header for direct program download
Standard 0.1” spacing DIP (breadboard friendly)
Manual reset switch

Table 4.5 – Arduino Nano features

For this project, it is used this particular board because of its low power, that is

comparable with the board implemented in a real anti-pinch system in the automo-

tive application. Arduino is connected to a computer running MATLAB software

through the serial bus. The HMI allows the user:
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1. To see the graph of all the sensors measurements;

2. To change pinch and load parameters

3. To save a .csv file with all data

4. To switch on and switch off the system

5. To clear all data collected

6. To choose if an anti-pinch algorithm must be used and which one must be used

(between classic algorithm and machine learning algorithm)

7. To connect or disconnect Arduino and the serial bus

DC motors

The brushed DC motors used in this project are Nidec 404.744.

Figure 4.14 – Nidec 404.744 Motor

Brushed DC motor are rotary electrical machines, power supplied by electrical

direct current. The mechanical commutation occurs internally by means of sta-

tionary magnets and rotating magnets. DC motors are widely used thanks to their

low initial cost, their high reliability, and because they are easy to control. The

drawbacks are the high maintenance and low life for high intensity uses, especially

due to the presence of the brushed. Moreover, the mechanical commutation leads
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to a phenomenon known as current ripple [29]. For this project, it is used this kind

of electrical machine because it is the same kind of motor used in a real automotive

application. The two motors are mechanically connected. And the Arduino Nano

board controls both motors. The main motor is switched-on and switched-off by

Arduino using a relay, connected to a power supply. The brake motor is current-

controlled through a PWM signal, from the Arduino board, using a voltage-current

transducer circuit with a RC low pass filter. The Hall sensor of the two motors

are measured using a sensing resistance plus a voltage divider (to convert the input

voltage into the range [0, 5]V , readable by Arduino) and a protection diode. There

are implemented also two current sensors, one for each motor, and a voltage sensor

only for the main motor, obtained using a voltage divider.

4.2.2 Input interfaces

Since the Arduino Nano board output pins span from 0 to 5 Volts, it is necessary to

design an electronic board that handle the output interface and the input interface.

The input interface must get the data that come from the sensors installed on

the system and make them readable by Arduino. It is composed by 5 parts:

• Two identical circuits able to correctly measure the square wave generated by

the two Hall sensors and to reduce the voltage of the signal into the interval

[0, 5V]. The circuit must attenuate the voltage output of the hall sensor to a

range from 0V to 5V. A simple Voltage divider circuit is used, with a protection

diode. The maximum input value is 15.8V, the resistances are dimensioned to

obtain 5V from 15.8V. The sensor is modelled as a current generator.
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Figure 4.15 – Input interface model (using LTspice)

• Two identical current sensors ACS712x05B that measures the current absorbed

by the two motors. The sensor has the following characteristics:
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Figure 4.16 – Datasheet of the ACS712x05B

• One voltage divider that convert the supply voltage of the main motor in a

voltage signal that belongs to the interval [0, 5V].

4.2.3 Output interfaces

The output interface must control the two motors. The main motor can be simply

controlled by activating or de-activating a relay, while the brake motor must be

controlled by current. Thus, the output interface is composed by:

• A relay that, based on the Arduino output voltage signal, can switch-on or

switch-off the main motor. The relay is controlled by a PNP transistor con-

nected to the output port of the board.

• A voltage-to-current transducer that converts the voltage generated by Ar-

duino output pin into a current value that control the brake motor. This

45



Test Bench

circuit must convert a voltage, that span from 0V to 5V, to a current value.

The transducer is composed by a Darlington transistor, since we need high

level of current, and by a low pass passive filter. The circuit is the following:

Figure 4.17 – Output interface model (using LTspice)

V1 is the signal that comes from Arduino and R3 represent the motor. To

dimension the value of the resistor R1, the following constraints are considered:

– Vin ∈ [0, 5]V , the voltage interval that Arduino can provide

– Il ∈ [0, 7]A , the maximum absorbed current by the motor

– Vce · Il < P , the constraint about the power of the transistor

– Vce ≥ 2V , the constraint about the collector-emitter voltage

– R = Ve

Il
Ω , the constraint about the value that the resistance can have

The resistance, that satisfy the constraints, has a value of R = 0.48Ω rounded

to R = 0.48Ω.

The schematic of the complete circuit is the following:
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Figure 4.18 – Main motor schematic

Figure 4.19 – Brake motor schematic

47



Test Bench

In the figures are also highlighted some parts that are shown in the block diagram

represented in figure 4.1.

4.3 Software architecture

The software architecture, developed for the Arduino board, has three main tasks:

• The first one is to collect all the data provided by the sensors implemented in

the system.

• The second one is to control the test-bench, switching-on and switching-off the

two motors, and detecting pinch.

• The third one is to establish a communication channel with the HMI, created

using MATLAB, in order to receive and send data.

The scheme of the software architecture implemented is the following:
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Figure 4.20 – Software architecture scheme

The main block is called "BencHMI.ino" and it calls all the other function

that are categorized into different blocks. The blocks with blue names, represents

the structure where parameters and measurements are stored. "paramPinch" and

"paramLoad", that stores the system parameters, are filled by MATLAB through

serial communication. While, "MotorData" and "BrakeData" structures are read by

MATLAB. All the other blocks contain all the function used, categorized by their

functionalities.

In this section, only the implementation of the classical anti-pinch algorithm will

be treated, while the machine learning algorithm implementation will be explained

in the next chapter.

Because of, in this project, it is used Arduino Nano board as a controller, which is

not a so fast board, it is important to optimize the code and to reduce its complexity

in order to do not require a great effort to the board.

4.3.1 Measurements

Arduino must acquire all the data provided by the five sensors of the system. For

each sensor, there is the relative function that get the raw data and that convert

it into a meaningful value. For measuring the voltage, Arduino read a raw value

that span in the interval [0, 1023] (the maximum resolution of Arduino) and it

must be converted into the correspondent voltage value. The conversion values

are obtained by trying different configuration and adjusting the value according to

measurements obtained from the oscilloscopes. In the figure below is represented

the conversion gain of the current sensor.
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Figure 4.21 – Current sensor gain

The same approach used to convert the raw value of the voltage sensor, it is

used also for the current sensor, that has the following gain values:

Figure 4.22 – Voltage sensor gain

But, different from the measure of the voltage sensor, this signal is filtered when

it is acquired by the board. In fact, the DC motor are a source of noise because

of the presence of the commutator and the brushes. For filtering the current, it

is used a library, called ResponsiveAnalogRead [13], that provides an acceptable

filtering value without increasing too much the complexity of the code, that slows

down the system.

To acquire data from the Hall sensor is a bit more complicated. In fact, the

hall sensor integrated in the motors produces a square wave. Because of the sensor

has only one magnet, at every rotor revolute, the square wave has a rising edge. A

counter is used to store how many revolute the motor does. Moreover, the function,

that has the task to acquire the data from the Hall sensor, is able to capture the

time interval between two consecutive rising edge, by checking the derivate of the

square wave signal. From this interval, it can compute the velocity, expressed in

RPM, of the motor. Since the mean value of the square wave is variable with the

50



4.3 – Software architecture

voltage supply, it is necessary to check the presence of the rising edge using the

derivative and not a fixed threshold (at different value of motor voltage supply the

threshold changes).

Figure 4.23 – Square wave generated by the Hall sensor

Some of the data measured have more importance than the others. In fact, the

measurements required by the control functions must get within a short time period.

In particular, that measurements necessary to generate the reference current for the

brake motor and to check when the system must switch-off because of a pinch or

an end-of-run. These measurements are the absorbed current, the velocity and

number of revolute of the main motor. In order to give more or less importance

to the function that acquire data from the sensors, different timer structures are

implemented: setting a time parameter, every function inside the timer is executed,

periodically, only when the time parameter is elapsed. The counter time that

compare the elapsed time with the time parameter is reset to zero at every timer
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execution.

Measurements optimization

In order to optimize the code, few expedients are applied. Firstly, every measured

value is defined not as a float data type but as an unsigned int, by reducing the

order of magnitude (for example converting the current value of 1.5 A into 1500

mA). In fact, mathematical operations done on floating point variable are more

computationally complex than the same operations performed on integer values.

Secondly, not all the measurements are performed. In fact, because of the two

motors are mechanically connected, it is useless to measure, for both, velocity and

number of revolute because they are the same values. In such way, it is possible to

avoid doing complex and slow computation like floating-point division and product

(for getting the derivative) or AnalogRead calls. Moreover, the current absorbed by

the brake motor is not measured. In fact, this value is imposed by the code and the

value measured is the same with the presence of noise. But the absorbed current

measured from the brake motor is not useful for the control function and it is not

relevant. Avoiding this measurement, it is possible to not execute an AnalogRead

calls and the filtering operation on that signal.

4.3.2 Control

The control function has the tasks to switch-on the system, by giving supply to the

two motors, and to switch-off, if the end-of-the-run is reached or a pinch is detected.

The control function that power-on the main motor is simply a digitalWrite that

close the relay connected to the main motor.

The control function that power-on the brake motor is more complex. Getting the

reference current, it multiplies to it a gain value, obtained by measurements and

trials, that converts that current in a PWM signal that control the brake motor.
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Figure 4.24 – PWM to current gain

The desired current value is obtained by a function that create a current behavior

starting from the mathematical model of the seat. In order to compute the cor-

respondence value of current, it is necessary the angular position of the back-seat,

that can be easily computed using the number of revolute of the motor.

To the desired current obtained by the function described before, it is added

another signal that has the goal to simulate the presence of a pinch. This signal

has a behavior that can be chosen by the user by setting four parameters: initial

time instant, start value of current, maximum value of current, minimum value

of current. As for what described in the section 4.1, about the Simulink model,

the pinch starts with a defined current Istart after a certain time tstart and the it

maintains a value between a minimum Imin and a maximum Imax value.

In the following figure is shown the current behavior that is imposed to Arduino in

presence of a pinch.
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Figure 4.25 – Control current of the brake motor

To switch off the system, Arduino call a function that simply impose to zero

the PWM that control the brake motor and turn off the relay connected to the

main motor. Furthermore, it stops the while loop of the main part of the code

until another run will be performed. This function can be called in two different

situations: when the motor reaches its end of run and when the pinch is detected.

The end of run is reached when the hypothetical back-seat reaches its final position.

It is determined by counting the number of revolute of the motor and converting it

to the angular displacement of the back-seat. The conversion value is obtained by

choosing a reasonable number. In this case, it is set that 200 revolute of the motor

corresponds to an angular displacement of 120° degrees of the back-seat.

The pinch is detected by using the classical method. The function that has this
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task, checks the value of absorbed current by the main motor and its velocity. It

computes the derivative of the two value and compare these new values with their

respective thresholds. If the derivative of the current is greater than a fixed value,

means that the main motor increases its effort, so it reports the presence of a pos-

sible pinch. If, simultaneously, the deceleration is less than a fixed value, means

that the main motor slow down, reporting the presence of the pinch and calling the

function that power off the system.

The control to the deceleration is necessary because of the current measurement is

not very reliable. In fact, as explained before, the DC motors are a large source of

noise. Moreover, during the starting phase, the current is very high, but this is not

due to the presence of a pinch. By checking also the deceleration, the algorithm

does not confuse the starting phase as a pinch because the motor is accelerating.

The choice of the two thresholds are obtained in the following way: First of all, data

about the derivative of the current and the derivative of the velocity are collected

performing a system run without simulate a pinch.

In the figure below, there is shown the current derivative (the first graph) and

the velocity derivative (the second graph) and a possible threshold choice

0 100 200 300 400 500 600 700 800 900 1000
-0.2

-0.1

0

0.1

0.2

C
ur

re
nt

 D
er

iv
at

iv
e

threshold

0 100 200 300 400 500 600 700 800 900 1000
-0.05

0

0.05

Ve
lo

ci
ty

 D
er

iv
at

iv
e

threshold

55



Test Bench

Figure 4.26 – Current derivative and velocity derivative

While the threshold on the velocity derivative must be simply smaller than

the minimum value obtained by the data collected, the threshold on the current

derivative must be greater than the maximum value but excluding the starting

phase, where there are current peaks. Moreover, the current sensing is more afflicted

by noise, so it is necessary to perform different tests to obtain the correct value of

the threshold. After that, the value obtained are adjusted by performing many tests

on different pinch and load condition. The final threshold values are the following:

ThresholdIder
= 0.02 Threshold for current derivative

ThresholdVder
= −0.02 Threshold for velocity derivative

Table 4.6 – Reference Motor parameters

4.3.3 Communication

Arduino hardware has a serial port, also known as UARTs, that can communicate

with a personal computer through serial interface, like the USB port. Each serial

port supports one Serial Transmit and one Serial Receive block [14]. The function

that have the task to communicate with the MATLAB HMI are essentially two:

one for receiving data from the HMI, the other for sending. The function that

reads the data Matlab HMI sends, is executed at the beginning of the code, at

the end of the Arduino setup phase. It remains in a waiting state until all the

data are received and only then, it executes the main loop of the code. All the

different information are integer number and they are separated by a comma, in

order to distinguish them using the primitive function Serial.parseInt(). Using a

final control bit, Arduino knows if all the data are received. More precisely, if the

last information received has a decimal value of 5, the system stops to read from
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the serial buffer. The final bit value is chosen as an integer number that can not

be confused with the other parameters because it is too low: in fact, the other

parameters, in order to have a reasonable value, are always greater than 50. The

function that sends data to Matlab HMI, by writing on the serial buffer, is called

periodically, from the motors start until they are turned off. The data sent are

basically the measurements collected, such as the velocity, the number of revolute,

the current absorbed and the voltage supply. However, another data is sent: the

detection of the pinch. It is a binary value that advises if the anti-pinch algorithm

has detected the pinch. This function is called, using a timer structure, every 10

milliseconds, that is a reasonable value in order to evaluate the obtaining results

and to have sufficiently data to develop a machine learning anti-pinch algorithm.

Communication optimization

The simplest way to write information on serial buffer is to use the function “Se-

rial.print()”. But this kind of operation is very slow, because it converts every

number digit into the correspondent ASCII value of 1-byte size [15]. Hence, it is

important to minimize the quantity of data sent, in order to make faster the code

execution. Firstly, to optimize the performance on the measurements, it is not

necessary to send velocity and number of revolute for both motors, it is sufficient

send information for only one of them (for example the main motor). Furthermore,

instead of sending the brake motor absorbed current, it is sent the desired current

imposed to the brake motor, in order to have a clean information (i.e. without

noise) of the current behavior that simulates the load and the pinch. Secondly,

always to minimize the quantity of bytes sent, “Serial.print()” has been substituted

with another function called “Serial.write()”. This function writes binary data to

the serial port. This data is sent as a byte or series of bytes [15]. To convert a

number into single bytes in order to be able to use “Serial.write()” function, it is
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defined and implemented a communication protocol. Except for the pinch detec-

tion, all the other data sent are defined as unsigned int, which dimension is 2 bytes.

Then, these data are converted into hexadecimal value and split into single byte.

All these bytes are sent, and they will be reconstructed by MATLAB HMI. In the

following table, the execution time of the methods are compared:

tprintData = 1204µs Execution time before optimization
tprintDataHex = 104µs Execution time after optimization

Table 4.7 – Execution time comparison between different serial communication pro-
tocol

The execution time is reduced by 91.36% using Serial.write() instead of Se-

rial.print(). All the data are sent in real time.

Storing all the information in arrays could have been a good optimization strategy

because, only at the end of the system execution, the data are sent, and it would

have saved a lot time avoiding real time serial communication. However, it is not

possible to implement this solution on Arduino because it has a low size memory

that is not able to store all the variables collected.

4.3.4 Algorithm

The complete functionality of the algorithm is described by the following flow chart:
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Figure 4.27 – Algorithm flow chart

After receiving the data from the serial bus, the main loop starts. At every loop

cycle, Hall sensor measures are computed in order to have the right position value

to generate the reference current of the brake motor. The absorbed motor current

is measured not as fast as possible, but it is regulated by a timer. Because of the

anti-pinch algorithm needs the value of the current, it is also inserted in the same

timer of the current sense function. If the pinch is detected, at the next loop cycle

the system is turned off. The function that sends all the information to the serial

bus is executed at the end of the loop, inside a timer, because it is the function

with the lowest priority.

4.4 HMI

In order to be able to perform many test changing configuration parameters and to

collect data from all these tests, an HMI (Human Machine Interface) is necessary.

In particular, a GUI (Graphical User Interface) has been created. A Gui is a kind

of HMI that simplify the control of software applications. It is an intuitive interface

that avoid the user to learn a language or the commands defined for that specific

application. GUIDE is a MATLAB toolbox that allows the developer to create a

front ends interface that automate tasks using elements such as buttons, sliders,

graphs, menu [30].

The HMI functionality must:

• Send data, through the serial port, the parameters of the test

• Read data, from the serial bus, all the data collected by Arduino and catalog

them into a structure

• Show the graph of measurements behavior

60



4.4 – HMI

• Save data into a comma-separated values (csv) files all the data read

• Turn on and turn off the system

• Connect and disconnect the communication with Arduino

This figure 4.28 shows the HMI graphical interface:

Figure 4.28 – MATLAB HMI

MATLAB HMI works by means of callback function. Every callback function is

associated to an element of the GUI. For example, by pushing a button, the code

inside its callback function is executed. In the same way, all the other elements

work. Obviously, a callback function can be called from another function. So, it

is possible to set up only one button to execute all the HMI command instead of

pushing all the other buttons.

The START/STOP button is that one that perform a complete test on the bench.

The callback function, associated to this button, reads all the value inside the

“Pinch parameters”, “Load parameters” fields and the value from the selector menu,

where it is indicated the anti-pinch method. It establishes a communication channel

with Arduino, and it sends all these information to the board. Then, it sends
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another signal to run the test bench. During the run, the HMI continuously read

the information sent by Arduino from the serial bus by using a function, called

ReadSerial.m. When the run has finished, all the data received are plotted on the

corresponding graphs. When the system is not in execution phase, it is possible to

clear and re-draw the single graph by pressing the corresponding buttons on the

GUI. It is also possible to specify a file name and save a csv file, with that file name,

that contains all the data collected during the run. If the START/STOP button

is pressed again, another run is performed, with the new parameters, if they are

changed.

The ReadSerial.m function is used to read data from the serial bus and to convert

it into the correct decimal values. After it reads the eleven bytes Arduino sends,

the function separates the first ten bytes and the last one. in fact, the last one is

the binary value that represent the presence of a pinch and it no needs conversion.

While the others must be merged and converted into a decimal value. In fact, as it

is described in the previous chapter, Arduino sends data split in single byte and in

hexadecimal. If all the data, except for the pinch detection information, are zero,

it means that the system has been switch off and the ReadSerial function is not

anymore called until the next run.

Automated test

To compare results obtained from the different anti-pinch methodology, it is impor-

tant to create an automated test function, which allows HMI to be automatically

executed with a set of different parameters.

Using a Matlab script, the load and pinch parameters are randomly defined but

within a certain interval, as follows:

Istart ∈ [1500− 2500] (4.3)

tstart ∈ [1200− 5000] (4.4)
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DCGload ∈ [450− 750] (4.5)

Mload ∈ [7000− 12000] (4.6)

Aload ∈ [80− 120] (4.7)

The pinch parameters that corresponds to the maximum and minimum value

that pinch current can have, are defined as a function of the starting pinch current.

Imin = Istart − 100 (4.8)

Imax = Istart + 100 (4.9)

Fifty set of parameters has been generated, and they are used to perform the

automated test.

Moreover, finished every run, a CSV file is saved with the name that indicates

which algorithm has been used and at which test is referred to.

Figure 4.29 – Example of a log csv file

Also, a PNG file is created, for every test, in order to show easily a screenshot

of the GUI with all the graphs of the measurements and the parameters applied.

4.5 Results

After several tests, the implemented classic anti-pinch algorithm has obtained good

results. The main problem encountered during this phase, is the choice of a suitable

timer value for measuring the main motor velocity and the main motor absorbed
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current. Choosing a timer value too low bring to the increases of the number of

operation that the board executed at every loop. In this way, Arduino board, that

is not so fast, is not able to measure correctly the velocity that is a variable that

anti-pinch classic algorithm must control. Choosing a timer value too high bring

to an increase of the anti-pinch algorithm latency. The timer value found that is

able to correctly measure the velocity but maintaining the latency low, is 5ms.

An HMI image of an example run is shown in the figure below:

Figure 4.30 – HMI with data taken with a test using classic anti-pinch algorithm

As it is possible to notice:

• The motors velocity increases due to the simultaneous load torque decreasing.

At a certain time instant, the pinch is simulated and the load torque sharply

increases. The velocity falling down and then it continues to follow the load

torque with the contribution of the pinch current. When the system reaches

the end-of-the-run, the velocity goes to zero because both motors are turned

off.

• The motors counter, that indicates the number of revolute the motors do,
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increases as a ramp. Only in the time instant when pinch occurs, there is a

little change of the ramp slope.

• The main motor current measured (the red line in the graph), shows the

expected behavior, after the peak due to the starting phase. After that, the

value decreases because of the load also decrease. When the pinch occurs,

there is a peak of the current measures. At the end the absorbed current goes

to zero because the system is turned off.

• The brake current shown in the graph (blue line) is not the current absorbed

by the brake motor but it is the current that the control board imposed. So,

it is an ideal value, not afflicted by noise. It has been chosen to show the

desired current behavior instead of the measured one because, in this way, it

is possible to see exactly the pinch simulation.

• The main motor voltage graph shows simply the measured supply voltage of

the main motor, that it is maintained constant during all the system run by

the power supply.

• The Pinch graph shows if the algorithm detects pinch, when the value is one,

or not, when the value is zero. As expected, it reports the presence of the

pinch a bit after the pinch simulation. This delay is due to the computational

time of the algorithm (it must perform derivative operations) and due to the

sampling time of the velocity and current measure.

After the execution of 50 experiments, using the random parameters explained

in the previous section, give the following results:

• Precision P = 100%. All the simulated pinches are correctly detected by

the algorithm, also varying not only the pinch parameters but also the load

parameters.

• Recall R = 100%. The algorithm never detects false negatives.
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• Accuracy A = 100%. Since the recall and the precision are maximum, also the

Accuracy is maximum.

• F1 score F1 = 100%. As for the accuracy, also the F1 score is maximum due

to the precision and recall values obtained.

• Maximum latency Lmax = 40ms. The latency is computed by seeing the log

file. From when the pinch is simulated to the time the pinch is reported. The

latency is quite low because the detection algorithm is not computationally

complex, and it also because it is executed as soon as the new current and

velocity measures are available.

The result obtained with these tests are very good. However, as explained in the

second chapter, external condition such as wearing or different ambient condition,

could cause a not perfect functioning of the algorithm. In fact, in presence of

these different conditions, the design phase must be repeated, especially for the

acceleration and current derivative thresholds.
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Chapter 5

Machine learning

implementation

The main purpose of this thesis is to compare the classical approach to an anti-pinch

problem with an innovative approach such as the application of machine learning.

As said in the third chapter, there are lots of different machine learning algorithm.

The method used in this project is a supervised classification algorithm called logis-

tic regression. Logistic regression is particularly suitable for an anti-pinch system.

In fact, it is a two-class classification method, the two classes are: “presence of

pinch” and “absence of pinch”. Moreover, it is a fast algorithm and simple to im-

plement, compared to the others. These characteristics make the logistic regression

an appropriate choice to implement on a low power board such as Arduino Nano.

In order to create a general method to implement the machine learning anti-pinch

algorithm, the data-set is not taken from the measurements performed on the test-

bench, but they are taken from the values obtained from the Simulink model sim-

ulation. In this way, changing the hardware component, such as the motors, could

not affect the reliability of the algorithm.
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5.1 Prepare dataset

A classification algorithm dataset is composed by the features and by the output

variables. In the case of anti-pinch system, the output variables are represented by

a binary value the indicates if pinch is occurred or not. The features are represented

by the main motor absorbed current values, and they are also the variables that

machine learning algorithm must continuously check to detect pinch.

To implement the logistic regression algorithm, it is necessary to prepare a dataset

which contains the information that are important for the scope of the algorithm.

For the aim of the project, the dataset contains different windows of many cur-

rent behavior, each of them with different pinch conditions. Firstly, to obtain the

dataset, the main motor current behavior, without the presence of the pinch, is

taken performing a simulation using the Simulink model. To better represents the

real current, it is added noise to the simulation measure.

Figure 5.1 – current simulated with noise

The load parameters of the simulation are:

• Mload = 10000g
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• dCoG = 700mm

• αmax = 120°

The current signal has a sampling time of 10 milliseconds and the entire simu-

lation last after 7 seconds, so the number of samples are 7000. After that, many

other simulations are performed, varying only the pinch parameters. The following

table represent the different model configuration used to collect the current data:

Figure 5.2 – 15 example parameters

Now the current matrix contains 232 different system runs with 7000 samples.

At every simulation, another vector is stored in memory: the vector of pinch. This

vector contains zeros except when pinch occurs, in that moment, it has a value

equal to one. If pinch is not present during the simulation, the relative output

error contains all zeros.

69



Machine learning implementation

Figure 5.3 – All current runs for training

All the output vectors are concatenated into a matrix with the same dimension

of the dataset.

Then, all the runs must be divided into windows, not overlapped, of n features,

obtaining the input matrix of the dataset. It has been chosen different value of n

in order to test all of them on the test bench.
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Figure 5.4 – Current divided into windows

Pinch matrix must be converted into a vector with the same length of the number

of examples obtained by dividing into windows the current matrix. In fact, every

window of the input must correspond to a single output value. The output value

can be

• 1, if in the corresponding window, there is a pinch

• 0, if in the corresponding windows, there is not a pinch

Finally, all the examples of the dataset are shuffled in order to not have a corre-

lation between consecutive examples. The dataset, composed by the input matrix

and the output vector, is completed and the training, cross-validation and test-error

are performed.
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5.2 Training

The objective of the training is to find the n values of θ that minimize the cost

function

J(θ) = 1
m

mØ
i=1

[−y(i)log(hθ(x(i)))− (1− y(i))log(1− hθ(x(i)))] + λ

2m

nØ
j=1

θ2
j (5.1)

The θ values are the parameters of the linear model

z = θTx (5.2)

in the logistic function

hθ(z) = 1
1 + e−z (5.3)

The dataset used for the training phase is not the entire dataset but only the

60% of it. The trainining is performed using a MATLAB function, called fminunc.

“fminunc” function finds minimum of unconstrained multivariable function, that is

the logistic regression cost function. It is a nonlinear programming solver and it

returns the values of the theta vector.

θ has dimension equal to the number of features plus one. In fact, the first term

is the intercept term θ0.

To evaluate the results obtained, test and validation are performed. The 40% of

the dataset not used for training, are divided into two equal parts. The test error

procedure is done on one group while the cross validation on the other.

The results are very good also with a small number of features, as it illustrated

in the table 5.1.
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Number of features Test Accuracy Precision Recall F1 score

n = 20 A = 99.68% P = 88.97% R = 37.54% F1 = 52.80%
n = 70 A = 100% P = 98.46% R = 98.84% F1 = 9.65%
n = 100 A = 99.97% P = 99.57% R = 100% F1 = 99.78%
n = 200 A = 100% P = 100% R = 100% F1 = 100%

Table 5.1 – Training and test results, changing the number of features

On the real test bench, the results will be probably different because of the

non-idealities that does not afflict the Simulink model.

5.3 Arduino implementation

After founding different set of θ vector, the machine learning control algorithm

is implemented on Arduino board. The machine learning algorithm computes the

logistic function and perform a prediction about the result. To compute the logistic

function, the linear model must be computed before. By means of a for cycle, the

values of θ are multiplied with the current value inside the window considered. At

the result, it is added the intercept term. Then the logistic function is computed.

If the logistic function has a value greater or equal a threshold, fixed to 0.5, the

presence of the pinch is reported, and the system is turned off. While, if the logistic

function is lower than the threshold, no pinch is reported.

Machine learning algorithm optimization

Due to the presence of a for cycle that must multiply a lot of parameters, that

corresponds to the number of features, the machine learning anti-pinch algorithm

is quite slow. Moreover, also the computation of the sigmoid function, that is a

division between float numbers plus an exponential operation, has a slow execution.
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The table 5.2 shows how much time the machine learning anti-pinch algorithm take

on, varying the number of features:

Number of features Linear model Sigmoid function Total algorithm

n = 20 tlm = 388µs tsig = 217µs ttot = 606µs
n = 50 tlm = 1029µs tsig = 217µs ttot = 606µs
n = 70 tlm = 1387µs tsig = 217µs ttot = 606µs
n = 100 tlm = 2092µs tsig = 217µs ttot = 606µs
n = 200 tlm = 4128µs tsig = 217µs ttot = 606µs

Table 5.2 – Computing execution time of the machine learning algorithm

For the computation of the linear model nothing can be done in order to optimize

it, while the sigmoid function can be optimized by substituting it with another

function that does not include exponential operator, but it maintains the same

properties. The new function is the following:

hθ(x) = 1
2 ·

x

1 + |x| + 1
2; (5.4)

As it is shown in the figure below, the properties, that are important for machine

learning applications, are maintained. In fact, with the same random vector, it is

possible to see their similarity in the following graph:
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Figure 5.5 – Comparison between sigmoid and its approximation using a random

vector

The number of values that are greater than 0.5 are almost the same for both

functions: the sigmoid function has 506 points out of 1000 that are greater than

0.5, and also the approximated function has 506 point out of 1000. Also changing

the threshold, which must be within the interval [0, 1], the results are very similar.

Thanks to this optimization, the computation of the approximated function

allows to save the 79.26% of the time respect the real sigmoid function, as it is

possible to see in the table below.

Sigmoid Approximation

t = 217µs t = 45µs

Table 5.3 – Computing execution time comparison

Hence, the total execution time of the machine learning algorithm is reduced as

follows:
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Number of features Sigmoid execution time Approximated function execution time

n = 20 tsig = 606µs tapp = 434µs
n = 50 tsig = 1238µs tapp = 1067µs
n = 70 tsig = 1563µs tapp = 1419µs
n = 100 tsig = 2287µs tapp = 2116µs
n = 200 tsig = 4288µs tapp = 4161µs

Table 5.4 – Computing execution time of machine learning algorithm comparison

To create the current buffer, necessary for the computation of the linear model,

two different methods are used: the first one consists to consider not overlapped

windows of absorbed current, the second one to consider overlapped windows. After

the implementation descriptions, advantages and disadvantages of the two methods

are described.

Not Overlapped Windows

In the not overlapped windows method, a buffer of fixed dimension n, that corre-

sponds to the number of features, is defined. Whenever Arduino collect the measure

about the main-motor absorbed current, that value is fill in the buffer. When the

buffer is full, the machine learning anti-pinch algorithm is executed. Then, the cy-

cle is repeated and only after other n elements are fill in the buffer, the anti-pinch

algorithm repeats its execution.

Overlapped Windows

In the overlapped windows method, a “First In First Out” (FIFO) buffer, or circular

buffer, is defined. The FIFO buffer, and the operations associate to it, is imple-

mented by integrating the library “CircularBuffer.h”. This library allows to define

the dimension of the buffer and to insert the element in the first empty position
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through the function “push”. If the buffer is full, that can be checked through the

function “isFull”, and an element must be inserted into the buffer, the first element

of the queue is deleted and the new element is added as last element, maintaining

the buffer dimension constant [16]. Only when the buffer is full, the anti-pinch

algorithm is executed.

The first method is very simple to implement, and it calls the anti-pinch algo-

rithm less time respect to the second method. In fact, only every “n” measurement,

it checks the presence of the pinch. The drawback is due to its reliability: if the

pinch occurs near the start, or near the end, of the current window, pinch is not

detected.

The second method is a bit more complicated to implement. It calls the anti-

pinch algorithm much more times than the other. In fact, once the buffer is full, it

checks the presence of the pinch at every new measure, slowing down all the code

execution. The great advantage is due to its reliability, and it does not suffer the

problem that the first method has.

To obtain a trade-off between the two methods, it is added a new parameter “WIN-

DOWS_SHIFT” that, using the Overlapped windows method, call the anti-pinch

algorithm not at every new current measurement, but at every m measurements. If

“WINDOWS_SHIFT” is equal to the number of features, the overlapped windows

method corresponds to the not overlapped method.

5.4 Results

Some tests are performed for both machine learning anti-pinch algorithms in order

to

77



Machine learning implementation

1. choose the number of features that returned the best results

2. compare the two approaches.

During the training phase, good results are obtained also with a small number of

features: with 50 features, a 99.89% of precision is reached. But the training has

been executed on a current behavior taken from the simulation model. In fact, in

the real system, the results are not so good. to reach a good level of precision and

accuracy, the number of features is set to 200. Tests with 70, 100, 150 number of

features are tried with not acceptable results (precision always less than 60%).

Moreover, by testing, it is highlighted that the execution time is hardly depen-

dent on number of features used. In particular, the measurements of the velocity

are not always correct because the machine learning algorithm slows down the exe-

cution of the main loop and retards the measure of the hall sensor, that miss some

rising edge of the square wave. In fact, as it is possible to see in the figure below,

in some points the velocity error is about the half of the real value.

Figure 5.6 – Velocity measurements with wrong values
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This is not a great problem because, in the anti-pinch algorithm implemented

with the machine learning approach, the value of the velocity is never used.

Another important parameter to set up is the value of the timer that runs the

current measurement and the pinch detection algorithm. the timeout value can be

chosen in two ways:

1. Low value, such as 700µs. In this way the algorithm works well only when

sample windows are not overlapped because the buffer is not always full, and

the machine learning algorithm is executed less times. The hall sensor mea-

surements are good, the latency is good, but, as explained before, this method

is not so reliable. Instead, using the overlapped sample windows method, the

anti-pinch algorithm is executed at every loop cycle, once the buffer is full and

Arduino Nano does not have the ability to perform correctly all the operations

requested. In this case, all the measures are no correct, included the motor

current, which is a necessary value to detect the presence of the pinch.

2. High value, such as 6000µs. In this way, the method that uses overlapped

sample windows, works with a high reliability, but the latency is increased

because of the current measurement occurs every 6000µs, that is the minimum

value that the latency can have. Using the not overlapped sample windows

method, the algorithm has too high latency. In fact, to completely fill a buffer

of 200 elements, 1.2 seconds are necessary. This value is not acceptable for a

safety application like anti-pinch.

From this consideration, the timer timeout has a different value in accordance with

the kind of buffer used. An HMI image of an example run is shown in the figure

below:
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Figure 5.7 – Results using machine learning algorithm with no-overlapped windows

In this figure, the first method is used (not overlapped windows) with 200 number

of features. The general behavior of the system is the same obtained with the classic

anti-pinch implementation, as explain in chapter 4.5. The difference that can be

notice are only few.

• The motors velocity graphs mark the errors have on the measure of the square

wave generated by the hall sensor. It possible to see that, at some time instant,

the velocity measure drops about an half of its real value.

• Also in the motors counter graph, it is possible to notice the wrong the Hall

sensor. In fact, there are few slopes changing in correspondence of velocity

decrease.

• The Pinch graph shows if the algorithm detects pinch. Now, the presence of

the pinch is reported as a window, because it is restored to zero after a new

set of 200 samples are fill in the buffer.

After the execution of the 50 experiments, using the always the same parameters

used for testing the classic approach, the following results are obtained:
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• Precision P = 80%. Not all the pinches are detected, probably due to the

fact that the simulated pinch was in correspondence of the board of sample

window.

• Recall R = 100%. The algorithm never detects false negatives.

• Accuracy A = 99%. Accuracy is quite high only due to the absence of false

negatives, but this in not the most important parameter to evaluate the algo-

rithm.

• F1 score F1 = 88.90%.

• Maximum latency Lmax = 70ms. The latency is not so high because the

sampling time of current measure is very low.

In the following test, the second machine learning method is used, always with

200 number of features.

Figure 5.8 – Results using machine learning algorithm with overlapped windows

The general behavior of the system is the same as explain for the not overlapped

windows method. The differences that can be notice are only on the measure from

the Hall sensor.
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1. The number of errors on the velocity measure is a bit higher, because the

anti-pinch algorithm is executed more times than before.

Also there, the last graph represents the the pinch not as an impulse but as a win-

dow. In fact, the algorithm detects many times the pinch, since it is in the buffer

controlled for many loop cycles.

After the execution of the 50 experiments, using the always the same parameters

used for testing the classic approach, the following results are obtained

• Precision P = 100%. With this method, all the pinches are detected.

• Recall R = 100%. The algorithm never detects false negatives.

• Accuracy A = 100%. Accuracy is maximum.

• F1 score F1 = 100%. F1 score is also maximum

• Maximum Latency Lmax = 170ms. The latency is bit higher than the previous

tested method because the sampling time of current measure is higher (6000µs

versus 700µs).

To obtain a latency value as low as possible, and to not decrease the precision,

the anti-pinch control is executed ever new 20 current measures. In the following

table the results comparison is summarized.

Method Accuracy Precision Recall F1score Latencymax

NOL 99% 80% 100% 88.90% 70ms
OL 100% 100% 100% 100% 170ms
∆% +1.01% +25% 0% +12.49% +142.86%

Table 5.5 – Comparison between not overlapped (NOL) windows method and over-
lapped (OL) windows method
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5.4 – Results

From the obtained results, the second method is more reliable than the first

one, and it is used for the comparison with the classic anti-pinch algorithm. In

fact, the precision, that is the most important characteristic for the project, is

maximum. Although the latency is higher than before, it is however acceptable for

the application.
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Chapter 6

Conclusion and future

implementations

Performing the same fifty run, the classic anti-pinch method is compared with

the anti-pinch algorithm obtained using the machine learning method. The test

parameters are chosen in a random way, as explained in the section 4.4. The saved

data of all the runs allow to evaluate the performance and the precision of the two

methods.

The selected machine learning algorithm is that one that uses the overlapped sample

current windows as input. In fact, this method was already evaluated as more

reliable and without significant drawbacks respect to the other (section 5.4).

The results obtained for the classical pinch detection, are summarized in the table

6.1.

The data are the same described in the section 4.5, for classic anti-pinch algo-

rithm, and in the section 5.4, for machine learning anti-pinch implementation. As

it is possible to see from the test executed, the results are very good in both cases,

even though both methods have their disadvantages.
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The classic anti-pinch works very well, it always detects the pinch and it has

a low value of latency. However, it needs two kind of measure to work correctly

(motor absorbed current and motor angular velocity). Moreover, the setup of the

algorithm is different from every kind of motor and is dependent on external factors,

like ambient condition, and requires a lot of run to obtain good results. Whereas,

using the machine learning approach, the results are anyway very good. Only the

latency is a bit higher due to the facts that the algorithm needs to have, not only

the single value, but a set of current values. The other drawbacks found, such as

the wrong measure of the motor velocity, are not so relevant because they happen

sporadically, and they are not necessary for the anti-pinch correct functioning.

Method Accuracy Precision Recall F1score Latencymax

CL 100% 100% 100% 100% 40ms
ML 100% 100% 100% 100% 170ms
∆% 0% 0% 0% 0% +325%

Table 6.1 – Comparison between classic anti-pinch algorithm (CL) and machine
learning anti-pinch (ML) algorithm

The figure belows shows the differences between velocity and current measure-

ments using the different methods. In the last graph, the latency of pinch detection

could be noticed.
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Conclusion and future implementations

Figure 6.1 – Test results of the two algorithms

The great advantage that this innovative strategy has, respect to the classical

one, is the simplicity of its integration also with new systems. In fact, the dataset

collected are not taken from the real motor but from the simulation. Designing a

good simulation model of a system, and taking the motor absorbed current data

from it, is much faster than performing a lot of runs on a real motor, trying to test

all the different situations. Moreover, the same training, validation and test algo-

rithms of the logistic regression, are valid to every kind of problem. Thus, it is not

necessary to develop a new algorithm to find the parameters of the logistic function.

Many different improvements of the system can be implemented. Future work

concerns deeper analysis of the machine learning algorithm, new proposals to try

different methods, system improvements by changing the control board with one

faster or use two motors that act as brake, simulating the load. It could be interest-

ing to find a way to reduce the number of features, in order to decrease the latency

of the machine learning algorithm. For instance, using as input vector of the logistic

regression model, formed by not only the current but also the velocity of the motor,
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Conclusion and future implementations

could improve the precision of the anti-pinch algorithm also with a small number of

features. To try this implementation, it is necessary that the velocity measurement

is correct, hence, it is a more powerful control board able to execute all the tasks

is needed. Changing the behavior of pinch, could be another interesting improve-

ment. In this project, the presence of an obstacle is simulated by using a step

function. In the future the pinch could have another kind of waveform, such as a

ramp or a sinusoid, and checking the reliability of the machine learning anti-pinch

algorithm, compared to the classical one, could be interesting. Also the test-bench

can be changed in order to obtain a better model of a real application system. For

instance, two motors instead of one, can be used to simulate two adjacent seats,

which may influence their behavior. In this way, it is possible to simulate a more

realistic situation, that are impossible to try with only one motor.
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