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Abstract

The aim of this thesis is to develop a Machine Learning algorithm for Multi-image

Super-resolution (MISR). Super-resolution is a well known image processing problem,

whose aim is to process low resolution (LR) images in order to obtain their high reso-

lution (HR) version. The super-resolution process tries to infer the possible values of

missing pixels in order to generate high frequency information as coherently as possible

with the original images. In general, we can distinguish between two di�erent super-

resolution approaches: Single-image Super-resolution (SISR) and Multi-image Super

Resolution (MISR). The former tries to build the best LR-HR mapping analysing the

features of a single LR image, while the latter takes as input multiple LR images ex-

ploiting the information derived from the small di�erences between the images such as

changes in the point of view position and orientation, in the lightening condition and

in the image exposition and contrast.

The thesis had as �rst objective to take part to the competition called �PROBA-V Super

Resolution�, organized by the Advanced Concept Team of the European Space Agency.

The goal of the challenge was to obtain High-resolution images from low resolution ones

from a dataset of pictures took from the PROBA-V satellite of the ESA. The work has

been developed under the direction of the PIC4SeR (PoliTO Interdepartmental Centre

for Service Robotics), which aims to integrate it into its agricultural related projects,

for the satellite monitoring of the �elds status.

The analysis of the state of the art for what concerns super-resolution reveals that

Machine Learning approaches outperform the classical algorithms proposed for this

problem. In particular, Neural Networks have been widely used in literature for Single-

image Super-resolution, while this approach for Multi-image Super-resolution is rela-

tively new. An original model to deal with competition problem has been studied,
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trained and tested. The obtained results show that the multi-image approach can help

in the improvement of existing algorithms for super-resolution. However, several issues

can be further addressed to increase the model e�ciency and performance, making this

particular topic interesting for future work development.
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Chapter 1

Introduction

The incessant world population growth of the last century is creating the need for a

new way to think to agriculture. Food request is constantly increasing and with it

the need of lowering costs and increase production e�ciency. A lot of technologies

are under development for the agriculture �eld and several of them involve robots and

drones. Service robotics applied to smart agriculture represent the future for food

production and will be involved in the whole process, from planting to crop monitoring

and harvesting.

One of the most promising idea is to use already available satellite images to have

a constant source of information for automatic monitoring of �elds parameters. The

development of this technology would save the costs for frequent drone �ies to collect

�eld shots, but has its principal limitation in the free satellite resolution. For most

of the available imagery sources, an entire �eld is represented by few pixels, making

the remote monitoring process impossible. The development of resolution enhancement

algorithms can be vital for this research �eld and can open the way to new commercial

solutions for smart agriculture.

This thesis studies the problem of super-resolution, that is the process of synthetically

increase the resolution of an image, trying to recreate additional pixels as coherently

as possible with the original information. The approach adopted to assess this problem

is the development of a custom Machine Learning algorithm, able to generate a high-

resolution version of multiple available low-resolution images. The proposed model is

able to take several shots of the same scene, took in di�erent times, and merge them

1



Chapter 1. Introduction 2

in order to obtain a single high-resolution image. The model is entirely based on CNN

(convolutional neural networks) and has been trained from scratch on the available

satellite images. The work has been developed under the direction of the PIC4SeR

(PoliTO Interdepartmental Centre for Service Robotics), which aims to integrate it

into its agricultural related projects, and was used to take part to the �PROBA-V

Super Resolution� challenge.

Proba-V Challenge

The �PROBA-V Super Resolution�, organized by the Advanced Concept Team of the

European Space Agency, is a challenge, whose aim is to obtain high-resolution images

from low-resolution ones from a dataset of pictures took by the PROBA-V satellite of

the ESA. The dataset consists in 1160 training scenes of the Earth surface, divided

into RED and NIR spectral bands, for which one high-resolution image and several

low-resolution images are provided. The goal of the competition is to provide the high-

resolution images for 290 testing scenes for which only the low-resolution images are

available.

How to read this work

The thesis is organized as follows. Chapter 2 presents a general view of the theoretic

concepts related to Machine Learning and, in particular, Neural Networks. Chapter 3

presents a brief review of already available super-resolution algorithms, especially the

ones with an approach based on Machine Learning. Chapter 4 gives an introduction

to the Proba-V challenge and analyses the available dataset and the scoring methods.

Chapter 5 discusses the work platform from both software and hardware point of view.

Finally, Chapter 6 presents the proposed model and the obtained results.



Chapter 2

Machine Learning

The primarily aim of Machine Learning is to program computers to learn from data. In

general, it refers to a di�erent approach to solve a problem in which we have a certain

input X and we want to �nd a correspondent output y. The general relation can be

written as

y = f(X) , (2.1)

where f is a generic function, that can be written in an analytic form or not, depending

on the addressed problem. To solve the problem, we have to program computers to

learn from available data the nearest approximation of f .

Classic approaches to this kind of issues focus on write down the best algorithm to

approximate the true function f . In practice, they create a model with a �xed struc-

ture that consists in a list of explicit rules and steps, that is able to produce an output

as close as possible to y, given the input X, for every possible (X, y) couples. This

kind of approach works well for situations in which exact algorithms have been studied,

but there are a lot of problems that are too complex to be directly addressed by an

algorithm.

Machine Learning, instead of trying to write the best algorithm, changes radically

the perspective and focuses on data. Now, instead of having a �xed model, based on

speci�c hard-coded rules, we use a really general one for almost all kind of situations

and we change the model parameters until the output data correspond to what we

expected. To do this update, we use a feedback on how good the model is currently

3



Chapter 2. Machine Learning 4

behaving, analysing the desired output y and the current output ŷ. If we are able to

tune the parameters so that the model works �ne for all the possible (X, y) couples,

we can a�rm that this system is a good approximation of the function f , even if we

haven't directly write explicit rules down. The process of modifying those parameters

is where the machine actually learns.

To provide a formal de�nition of what Machine Learning is, we can refer to the one

presented by Tom Mitchell in 1997 [4]:

"A computer program is said to learn from experience E

with respect to some task T and some performance measure

P, if its performance on T, as measured by P, improves with

experience E."

The task T referred by Mitchell is of course achieving the best algorithmic approxima-

tion of the function f ; the performance P is a score of how well the model is behaving

and is de�ned in various way, depending on the speci�c context; the experience E is

the actual training process, where we tune the parameters on the basis of the available

data.

In �gure 2.1, a schematic representation of the classical and Machine Learning ap-

proaches is presented. The main di�erence between the two graphs is that in ML,

instead of writing explicit rules, we modify the algorithm in the training process, in

order to �t the available data.
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Figure 2.1 � Traditional (a) vs Machine Learning (b) approaches
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2.1 A brief history of Machine Learning

The year of birth of Machine Learning can be considered the 1943, when a neurophys-

iologist, Warren McCulloch and a mathematician, Walter Pitts, wrote a paper on the

human brain activity, modelling a basic electrical circuit that emulated a simple neuron

[8].

In the 1950s, several applications developed after that �rst contribution arose. In

1952, Arthur Samuel created a program that made an IBM computer get better in

checkers the more it played it. In 1959, he also used for the �rst time the term Machine

Learning [9], describing it as the "�eld of study that gives computers the ability to

learn without being explicitly programmed". Other remarkable works of that period

were the perceptron (1958) by Frank Rosenblatt [10] that was the �rst feed-forward

neural network and the MADALINE � Multiple ADAptive LINear Elements (1959)

by Bernard Widrow and Marcian Ho� of Stanford, that was the �rst neural network

applied to a real problem (reducing echoes on phone lines).

Despite the big success of those works, during the the 1970s Machine Learning ap-

proach was almost abandoned, mainly due to the great success of the Von Neumann

computer architecture and the technological limitations of those years, that made mul-

tilayer models almost impossible to be realized. The book Perceptrons (1969) from

Minsky and Papert [11] shown that the perceptron of Rosenblatt was limited to only

learn linearly separable patterns, marking the end of neural network research for the

next decade.

Another fundamental step for Machine Learning development was in the 1980s, when

for the �rst time the backpropagation algorithm was presented [12], that allowed to

train multi-layered networks. After another silent period, at the end of the 1990s other

progresses were made. In 1997, the Deep Blue IBM computer beat the world chess

champion. In 1998, AT&T Bell Laboratories achieved good accuracy in recognizing

handwritten digits.

In the 2000s, Deep Learning development gave Machine Learning another boost,

allowing networks with a lot of layers to be trained and perform really complex tasks in

di�erent �elds such as speech recognition or image processing. In the last ten years, a

really huge number of Machine Learning-related researches has been published, with the

development of a lot of ML-related projects such as GoogleBrain (2012) and DeepMind
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(2014), as well as successful network architectures as AlexNet (2012) or ResNet (2015).

This �eld of research is nowadays one of the most proli�c, having gathered the attentions

of big companies and industries and is de�nitely one the frontiers of Computer and Data

Science.

2.2 Machine Learning algorithm categories

Machine Learning is a collective name that actually represents a lot of di�erent algo-

rithms, developed with di�erent approaches. Common these algorithms are divided

into the following categories:

� supervised learning : the computer is trained with labelled data, that means that

a dataset of desired input/output couples is available

� unsupervised learning : takes a set of data that contains only inputs and try to

�nd similarities and patterns in order to subdivided them in groups

� semi-supervised learning : falls in between the two previous group, having only a

part of data labelled

� reinforcement learning : focuses on take actions in order to maximize the reward

and minimize the risk and learns by observing e�ect of these decisions on the

environment

Supervised learning methods include classi�cation and regression algorithms. The

�rst focus on study the pattern of input data in order to give it a label, identifying it as

belonging to a particular class. The output is thus restricted to a speci�c set of values

that represents all the possible classes taken in consideration. Regression algorithms

can output any value and therefore are used to implement methods that want to modify

the input, still conserving its nature and main characteristics. Super-resolution falls in

the regression group, since focuses on manipulate some input images to get as output

again an image, but with higher resolution.
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2.3 Arti�cial Neural Networks

Arti�cial Neural Networks (ANN), usually simply called Neural Networks (NN), are

maybe the most popular supervised learning Machine Learning algorithm and can be

used for both classi�cation and regression problems. They were conceived, as brie�y

explained in the section 2.1, from a simple mathematical model of the human brain

functioning. They consist in a set of interconnected mathematical units, called neurons.

Those neurons are the nodes af a directed graph structure whose edges are the links

between them. ANN are organized in di�erent layers, that consist in a number of

neurons, all at the same depth. The tiniest network has two layers: the input one and

the output one. The hidden layers are all those layers in between, that cannot be seen

by the external. In a fully-connected NN, all the neurons of a layer are connected to

all the neurons of the next layer and there are no connections between non-consecutive

layers.

There exist two main types of Neural Networks: feed-forward NN and Recurrent

NN. In the �rst case, no cycles are admitted in the connections between the di�erent

neurons, and the information �ows only in a single direction, from the inputs to the

outputs. The second type of networks allows cycles, that means that the outputs of a

certain neuron can be brought back as input to a neuron of a previous layer. In this way,

the network gains an internal state and can be used to implement a temporal dynamic

behaviour, making the Recurrent NN particularly suited for tasks such as speech or

handwriting recognition. Since the work I developed is based on feed-forward NN, from

now on I will refer to them, only.

Recalling equation (2.1), the network represents f , that is the function that as-

sociates to a certain input X an output y. Figure 2.2 shows the basic scheme of a

fully-connected NN with two hidden layers. In this example, the network takes as in-

put a vector of two values and outputs a single one. If we assume that those values can

be any real number, the model represents a R2 −→ R function.

To understand how the information changes as it �ows from the input layer to the

output one, we �rst have to analyse how an arti�cial neuron works.
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Figure 2.2 � A fully-connected NN with two hidden layers

2.3.1 Neuron model

A neuron is a cell, main component of the nervous tissue. It is composed by a cell body

called soma, many branching extensions called dendrites, plus one very long extension

called the axon. At the end of the axon, there are many terminals with at the end of

them the synapses. A neuron can receive electric signals from other neurons through

these synapses and the dendrites. If it receives a certain number of signals in a given

time, the neuron transmit its own signal through the axon to other neurons. In �gure

2.3 a schematic representation of a biological neuron is presented.

First generation of arti�cial neurons

The very �rst mathematical model of a neuron was the one presented by McCulloch and

Pitts as said in section 2.1 and later called arti�cial neuron. [8] It's easy to demonstrate

that we can build any logical preposition with this model. As an example, �gure 2.4

shows the basic binaries operations, assuming that a neuron is activated when at least
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Figure 2.3 � A biological neuron

two inputs are active.

Figure 2.4 � Boolean operations with arti�cial neuron model

A generalization of the neuron model presented so far is the LTU (linear thresh-

old unit). Instead of having only on/o� values, we now have N numbers as inputs

(x1, ..., xN). Each connection (the synapses in the biological neuron) has an associated

weight (w1, ..., wN). The unit performs the weighted sum of all the inputs and applies

a certain activation function ϕ to the result.
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Therefore, the output can be written as:

y = ϕ
( N∑

i=1

wi xi

)
= ϕ(w · x) , (2.2)

where w and x are respectively a row vector with the connections weights and a

column vector with the input values. The applied activation function is usually the

Heaviside step, the sign function or generically a threshold gate, that outputs 1 if the

weighted sum of the inputs is above a certain value:

H(z) =

0 if z < 0

1 if z ≥ 0

sgn(z) =


−1 if z < 0

0 if z = 0

1 if z > 0

thr(z) =

0 if z < θ

1 if z ≥ θ

(2.3)

This model of a neuron, with an added bias term obtained with an additional input

x0 with �xed value equal to 1, was used for the Perceptron of Frank Rosenblatt in

1958 (see section 2.1). That �rst type of Arti�cial Neural Network was used for a

classi�cation problem and simply used one layer of LTUs (the output layer). The

network was fully-connected, meaning that each input was connected to every neuron.

Figure 2.5 shows a LTU representation with bias input. The actual bias b is the weight

w0. The function implemented by the model is:

y = ϕ
( N∑

i=1

wi xi + w0

)
= ϕ(w · x+ b) (2.4)

The Perceptron, having simply one layer of neurons, has the intrinsic limit of being
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Figure 2.5 � Linear Threshold Unit with bias input

able to correctly classify only linearly separable features. As an example, using the

Heaviside step as activation function, it's easy to perform simple boolean operations

between two inputs as shown in �gure 2.6. The two problems (and/or boolean func-

tions) have linearly separable inputs, so they can be implemented by means of a single

neuron. More complex functions, such as the xor, don't have linearly separable inputs

and cannot be implemented with a single layer (see �gure 2.7). To cope with these

more complex situations, we have to add at least one hidden layer. This type of neuron

model was the basic unit of the so-called �rst generation of neural networks, that

were able to implement every binary (discrete) function with a single hidden layer.

x1 x2 z = w0 + w1 x1 + w2 x2 ϕ(z)
0 0 -0.75 0
0 1 -0.25 0
1 0 -0.25 0
1 1 0.25 1

x1 x2 z = w0 + w1 x1 + w2 x2 ϕ(z)
0 0 -1 0
0 1 0.5 1
1 0 0.5 1
1 1 2 1

Figure 2.6 � and/or operations with LTU
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0 1

1

x1

x2

(a) AND

0 1

1

x1

x2

(b) OR

0 1

1

x1

x2

(c) XOR

Figure 2.7 � AND and OR operations have linearly separable input data, while XOR
needs at least two lines

Second generation of arti�cial neurons

To further generalize the model of the arti�cial neuron, we can change the activation

function ϕ. Instead of using a binary function as the threshold gate (equation 2.3), that

outputs either 0 or 1, it's possible to use a continuous function. In this way, we can

build a network that can implement every continuous function with as single hidden

layer.

One of the most used continuous activation is the sigmoid, also called logistic function:

σ(z) =
1

1 + e−z
=

1

1 + e−(
∑N
i=1 wi xi+ b)

(2.5)

−6 −4 −2 0 2 4 6

0.5

1

z

σ(z)

Figure 2.8 � Sigmoid activation function
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Figure 2.8 shows the sigmoid output for the input z equal to the weighted sum of

the neuron inputs. This function can be seen as a generalization of the step activation

of the LTU. E�ects of changes to weights and bias, considering a single input x, are

shown in �gure 2.9.

−6 −4 −2 0 2 4 6

1

x

σ(wx)
w = 1
w = 10
w = 2
w = 0.5
w = 0.1

(a) E�ect of changes to weight w

−6 −4 −2 0 2 4 6

1

x

σ(x+ b)
b = 0
b = −2
b = −1
b = 1
b = 3

(b) E�ect of changes to bias b

Figure 2.9 � Sigmoid activation function: e�ect of changes to weights and bias

The great advantage of using this type of activations is the fact that the arti�cial

neuron can now handle analog value, since every value between 0 and 1 is possible.

Furthermore, the function is now di�erentiable in each point of the domain, fact that

helps the learning process, that is based on computing the gradient. The symbol of

second generation neurons is shown in �gure 2.10.

Figure 2.10 � Second generation arti�cial neuron symbol
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Other activations

Linear The linear activation is simply a straight line with unitary slope. It's basically

a situation when no activation at all is applied, and the output is exactly the weighted

sum of the input plus the bias.

ϕ(z) = z =
N∑
i=1

wi xi + b (2.6)

Tanh The tanh function is quite similar to the sigmoid, but with output ranging from

-1 to 1. It has been proved that in certain conditions that activation behaves better

than the sigmoid, mainly because it has higher gradient (ranging from 0 to 1) and is

symmetric with respect to 0.

tanh(z) =
ez − e−z

ez + e−z
= 2 · σ(2z)− 1 (2.7)

Softmax The softmax activation is usually used in classi�cation problems as last

layer. It basically applies a sigmoid-like activation to each neuron of the layer, nor-

malizing all the outputs such that their sum is always 1. It's particularly useful for

classi�cation since the output vector can be used to represent the probability of that

particular instance of belonging to the various classes. Considering a layer with F

neurons, each component yi of the output vector is equal to:

ai =
ezi∑
k e

zk
k = 1, ..., F (2.8)

From that, it holds:
F∑
i=1

ai = 1 (2.9)

Thus, it is possible to consider the outputs as a discrete probability distribution among

F di�erent classes.

ReLU The ReLU (recti�ed linear unit) activation is a function de�ned as the positive

part of its argument:

ReLU(z) = z+ = max(0, z) (2.10)
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When z is below 0, the unit is said to be inactive, since it outputs 0. When z is higher

than 0, the unit behaves as a linear activation. The ReLU is widely used for deep neural

networks, since it has been proved to be better for training deep structures with respect

to classical activations as the sigmoid or the tanh.

Leaky ReLU The Leaky ReLU is a variation of the ReLU that allows a small gradient

even when the unit is not active.

LReLU(z) =

z if z > 0

α z otherwise
(2.11)

α is a parameter to be chosen by the network designer.

Parametric ReLU The Parametric ReLU is a Leaky ReLU in which α is not chosen

a priori but can be optimized during the learning process.

ELU The ELU (exponential linear unit) is a particular ReLU in which the non-active

part of the characteristic is neither constant nor linear but exponentially decreasing.

ELU(z) =

z if z > 0

α (ez − 1) otherwise
(2.12)



17 2.3. Arti�cial Neural Networks

-5 -2.5 0 2.5 5

−1

1

z

ϕ(z)

(a) tanh

-1 -0.5 0 0.5 1

−1

1

z

ϕ(z)

(b) ReLU

0 0.5 1

−1

1

−1 −0.5
z

ϕ(z)

(c) Leaky ReLU: α = 0.25

0 2.5 5

−5

5

−5 −2.5
z

ϕ(z)

(d) ELU: α = 1

Figure 2.11 � Di�erent activation functions

2.3.2 Training an Arti�cial Neural Network

After analysing the mathematical model of a neuron, we should focus on how to make

a network learn. To do this, we should have a dataset composed of input-output (X, y)

couples. During the training, we will use those known couples, to change the network

parameters until it is capable of predict the desired outputs.

The training process takes place in two consecutive steps. First, a certain input X is

propagated across the network until we get the predicted output ŷ. Then, we should
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compute the error between the desired output y and the predicted ŷ and update weights

and biases in order to minimize it. Basically, the training process is a minimization

problem, and the function to be minimized is called loss or cost function. It is a

Rn −→ R function, where n is the number of trainable parameters of the network, that

are all the weights and biases of the neurons:

C(w11, ..., wij, ..., wKN , b1, ..., bj, ..., bN) = C(p) , (2.13)

where i is the index over the neuron inputs, j the index over the di�erent neurons, K is

the maximum number of inputs per neuron, N is the total number of neurons,and p is

the set of all the networks parameters. The cost function associates to these parameter

a real number, representing the error of the network predictions on a given set of (X, y)

couples.

A typical loss function is the MSE (mean squared error), also called L2 loss:

MSE(y, ŷ) =

∑B
i=1(ŷi − yi)2

B
(2.14)

The loss function takes as input the predicted ŷ and the real y for a batch (vector) of

inputs. The number B of di�erent inputs in the batch is called batch size. The value of

the error computed with the MSE is clearly dependent on the parameters values. Since

the training phase is done over a certain �xed dataset, we can consider the MSE as a

cost function that associate an error to the actual values of the networks parameters for

the given batch. Figure 2.12 shows the MSE for a given batch in function of a generic

single weight w. The cost function presents a minimum for a certain value w∗ of the

parameter: the aim of the training phase is to update w to make it assume the value

w∗.

Gradient Descent

Since the actual cost function has a number of dimension equal to the number of

parameters, it's clearly impossible to compute its value for each possible situation. An

algorithm to update the parameters in order to move towards the minimum direction

should be use. These algorithms are called optimizers. The simplest optimizer is the

gradient descent (GD), and is based on the computation of the gradient of the loss
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w∗
w

Figure 2.12 � Cost function for a single parameter w

function. Considering small variations of the parameters p = (p1, ..., pn), where n is the

total number of parameters, we can approximate the correspondent change in the cost

function:

∆C ≈ ∂C

∂p1
∆p1 +

∂C

∂p2
∆p2 + ...+

∂C

∂pn
∆pn = ∇C ·∆p , (2.15)

where ∇C ≡
(
∂C
∂p1
, ∂C
∂p2
, ..., ∂C

∂pn

)
is the gradient of the cost function with respect to the

parameters in the current point.

Given the relation 2.15, we can derive what should be the update to the parameter in

order to decrease the cost function.

∇C ·∆p < 0 ⇒ ∆C < 0 (2.16)

Thus, a possible good choice of ∆p is:

∆p = −η∇C ⇒ ∇C ·∆p = −η ‖∇C‖2 < 0 if η > 0 (2.17)

The quantity η is called learning rate and is always positive. The choice of a good

learning rate is vital, since a too small value causes a really slow convergence, while a

too large value can cause an unstable behaviour. Usually the learning rate is decreased

during the training process when the loss tends to stagnate, in order to allow a more

�ne search for local minima.

Figure 2.13 shows gradient descent in a unidimensional case: updating w as in equation



Chapter 2. Machine Learning 20

2.17 allows to slowly shift from the actual point towards the minimum w∗.

wk wk+1 w∗
w

Figure 2.13 � Gradient descent: since in the current point the derivative is negative,
the update will be positive

At this point, we have a rule to update the weights and the biases of the neurons

at each iteration of the algorithm. Since the cost function is computed for a batch of

inputs as said before, the single update to the parameters will usually derive only from a

part of the training dataset. Once the training process has been repeated for the whole

dataset (i.e for all the di�erent batches), a training epoch is said to be completed. The

process is then repeated for many epochs, until it gets convergence to a minimum loss

point.

Backpropagation

Since we have a lot of neurons, each with a lot of parameters, to apply gradient descent

we have to compute the partial derivative with respect to each of the n parameters.

This operation would require a big computational e�ort if we have many layers with

a high number of neurons, but the backpropagation algorithm comes in help to speed

up the process. This procedure was applied to Neural Networks for the �rst time in
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the 1980s and allows to reuse computations performed in the last layers to obtain the

derivatives of the previous layers through an iterative algorithm.

The intuition of the algorithm can be understood referring to the simple situation

represented in �gure 2.14 with two layers and three neurons.

w11

w12

w21

w22

x ŷ

b11

b12

b2

x21

x22

Figure 2.14 � Simple Neural Network to apply the backpropagation algorithm

To update a generic weight wij (where i is the layer and j is the neuron), we apply

equation 2.17:

∆wij = −η ∂C

∂wij

(2.18)

Starting from the last layer, we �rst recall equation 2.4 to compute the second layer

output:

ŷ = ϕ2

( 2∑
j=1

w2j x2j + b2

)
(2.19)

We can compute the derivatives with respect the two weights w21 and w22 nad the bias

b2 applying the chain rule:

∂C

∂w2j

=
∂C

∂ϕ2

∂ϕ2

∂w2j

∂C

∂b2
=
∂C

∂ϕ2

∂ϕ2

∂b2
(2.20)
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The �rst term of the equations depends on the chosen loss and activation and we can

call it δ2, while the second terms can be rewritten as:

∂ϕ2

∂w2j

= x2j
∂ϕ2

∂b2
= 1 (2.21)

Thus, the derivatives with respect to the last layer parameters are:

∂C

∂w21

= δ2 x1
∂C

∂w22

= δ2 x2
∂C

∂b2
= δ2 (2.22)

Now we should obtain the derivatives for the �rst layer. The output of the �rst

neuron is the input x1 of the second layer:

x1 = ϕ1(w11 x + b11) (2.23)

With the same reasoning, we can compute the derivative:

∂C

∂w11

=
∂C

∂ϕ1

∂ϕ1

∂w11

=
∂C

∂ϕ2

∂ϕ2

∂ϕ1

∂ϕ1

∂w11

δ11 =
∂C

∂ϕ2

∂ϕ2

∂ϕ1

= δ2
∂ϕ2

∂ϕ1

∂C

∂w11

= δ11 x (2.24)

Thus, we can use the computation of δ2 performed for the second layer, also for the

derivatives of the �rst layer. Iterating this reasoning for all the parameters, also for

more complex networks, the complete backpropagation algorithm can be derived.

Other loss functions

Together with the MSE (equation 2.14), other losses are commonly used when dealing

with Arti�cial Neural Networks training.
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Mean absolute error The MAE, also called L1 loss, is similar to the MSE, but

is based on the simple di�erence between desired output y and predicted output ŷ.

Considering B as the batch size, the loss is de�ned as:

MAE(y, ŷ) =

∑B
i=1(ŷi − yi)

B
(2.25)

Cross entropy The cross entropy loss is the most used loss for classi�cation problems,

since is particularly suitable to deal with probability distribution outputs. Considering

C as the number of possible classes (and so the dimension of the output vector), the

loss is de�ned as:

CE = −
C∑
i=1

yi log(ŷi) (2.26)

Categorical cross entropy It's a particular case of the cross entropy loss, used for

multi-class classi�cation problems, when the last layer has a softmax activation. Since

the real output y is a vector with a single entry equal to 1, and all the others equal to

0, considering equation 2.8 and 2.26 together, we get:

CE = − log(ŷreal) = − log
( ezreal∑C

i e
zi

)
, (2.27)

where ŷreal is the value of the predicted vector that corresponds to the real class (the 1

in the real vector y).

Binary cross entropy It's another particular case of the cross entropy loss, used

for multi-label classi�cation problems (when the element can belong to more than one

class). The last layer has usually a sigmoid activation, since each output value represents

a probability independent from the others (we can get more than a single 1). In this case

the problem is usually subdivided in C binary problems, where the value ŷi represent

the network con�dence of that element belonging to class i, while 1− ŷi represents the
con�dence of non-belonging. Applying the cross entropy loss (equation 2.26) to each

(ŷi, 1 − ŷi) couple as if it was a dual class classi�cation problem (with ŷi1 = ŷi and
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ŷi2 = 1− ŷi), we get:

CEi = −
2∑

j=1

yij log(ŷij) = −yi log(ŷi)− (1− yi) log(1− ŷi) (2.28)

Since the ground-truths yi are either equal to 1 or equal to 0, the loss can be written

as:

CEi =

− log(ŷi) if yi = 1

− log(1− ŷi) if yi = 0
(2.29)

Then the di�erent CEi are simply summed up:

CE =
C∑
i=1

CEi (2.30)

Other optimizers

Also for the optimizer there exist a lot of di�erent algorithms. Here we will brie�y

analyse the most used ones.

Batch Gradient Descent It's simply gradient descent applied to the whole training

dataset at the same time, thus when the batch size is the size of the training dataset.

Since a lot of data is evaluated in just one update, batch gradient descent is usually

slow and can create memory problem.

Stochastic Gradient Descent I't gradient descent when the batch size is 1, thus

each training point is propagated through the network singularly and the optimization

is done on it alone. Contrary to batch gradient descent, it's usually fast, since it uses

really few data at a time. The main problem related to stochastic gradient descent is

that the objective function tends to heavily oscillate in consequent updates, since the

optimization is local and not global.

Mini-batch Gradient Descent It's the intermediate condition between the previ-

ous: batch size is �xed to a certain value higher than 1 but lower than the dataset size.

In this way it reduces oscillations typical of stochastic GD, but always keeping updating
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speed and memory usage acceptable. Common values for batch size are between 32 and

256, but it can change depending on the speci�c problem.

Momentum It's a method that helps accelerate GD in the relevant direction, damp-

ing oscillations in the others. This method slightly change the update equation, keeping

memory of the direction of the previous updates. The update vector of the current step

mt is built with the current gradient and with a fraction γ of the previous step update

vector mt−1.

mt = γmt−1 + η∇C

∆p = −mt

(2.31)

The parameter γ, called momentum term, is always positive and lower than 1.

RMSprop This algorithm, together with others like Adagrad or Adadelta, adapts

the learning rate to the di�erent parameters performing updates proportional to the

associated features frequency. The principle of the algorithm is to divide the learning

rate by a quantity that is di�erent for each parameter and is related on the previous

updates. A running average Et at time step t is de�ned recursively as:

Et = γEt−1 + (1− γ)(∇C)2 (2.32)

The term γ is similar to the momentum term and is always lower than 1. The running

average accumulates a fraction of the previous squared value of the gradients. If a

particular parameter pi has been updated a lot in the past steps (i.e had high gradient),

the correspondent running average value Et,i will be high. After some steps with small

updates, Et,i will then start to decrease.

The update vector is computed dividing the learning rate by the square root of Et plus

a little value ε, to avoid dividing by 0. In this way, a frequently updated parameter will

have a lower learning rate, while a rarer one will have a higher learning rate.

∆p = − η√
Et + ε

∇C (2.33)
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Adam Adaptive Moment Estimation algorithm, called Adam, computes adaptive

learning rates like RMSprop, considering also a sort of momentum. In addition to

a running average of the squared gradients Et, Adam keeps also a running average

of the gradients mt, that can be seen as a sort of momentum with friction. The two

averages at each time step t are de�ned as:

mt = β1mt−1 + (1− β1)(∇C)

Et = β2Et−1 + (1− β2)(∇C)2
(2.34)

Since the two vectors are initialized with zeros, they are biased towards 0, especially

during the �rst steps and if the two parameters β1 and β2 are close to 1. To decrease

the e�ects of these bias, the two values are corrected as:

m̂t =
mt

1− βt
1

Êt =
Et

1− βt
2

(2.35)

In this way, when t is small, so in the �rst steps, if the values starts from 0, almost the

entire value of te gradient is used to compute the two averages. When t increases the

denominators tends to 0, making the bias correction irrelevant.

The parameter update is then computed as:

∆p = − η√
Êt + ε

m̂t (2.36)
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2.4 Convolutional Neural Networks

A particular type of feed-forward Arti�cial Neural Networks are the Convolutional

Neural Networks (CNNs). This type of networks has emerged since the 1980s and

has been developed starting from the study of particular neuron cells present in the

visual cortex of animals. These neurons reacts to informations coming only from a

speci�c region of the visual �eld and to particular geometric shapes like horizontal or

vertical lines. On the following levels, there are, then, other neurons that have a bigger

receptive �eld and can react to more complex patterns, starting from the informations

of the previous level. Building a network with a similar architecture led to the discovery

of CNNs and started the proli�c �eld of Machine Learning applied to image processing.

2.4.1 2D convolutions

The basic element of a CNN is the convolutional layer. Since we're now referring to

an image, the inputs are now organized as a 2D vector (i.e. a matrix) with shape of

W ×H pixels. The �rst big di�erence of CNNs with respect to fully-connected NNs is

that neurons have now a receptive �eld, meaning that elaborates only the information

coming from some part of the input matrix. Usually this receptive �eld is a squared area

of K ×K pixels. The operation implemented by a neuron is the same described in the

previous sections, so it's a weighted sum of the inputs, then fed to an activation function

ϕ (see equation 2.4). Since we have a receptive �eld of K ×K pixels, each neuron will

have a correspondent number of weights. That matrix of weights is called convolutional

kernel and is applied to the entire input image. This means that in a convolutional

layer di�erent neurons are set up with shared weights in order to cover all the input

pixels. The outputs of all the neurons are again organized in a 2D vector, and the result

is a new image. The kernel is also called filter, since the operation is assimilable to

the application of �lters as in classical image processing. A single convolutional layer

can have as output several images and therefore learn di�erent kernels.

Figure 2.15 represents a convolutional layer that takes as input a 4× 4 image and has

4 neurons with 3× 3 kernel that together output the green image. The output matrix

is reduced in dimensions since from a 4 × 4 square we can only consider four 3 × 3

sub-squares.
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Figure 2.15 � Convolutional layer: W = H = 4, K = 3

Figure 2.16 represents a numerical example of a convolution with linear activation

ϕ(z) = z and with kernel: 0 1 2

2 2 0

0 1 2


The �lter is shifted along the input image (in blue) and the weighted sum between

the pixel values and the kernel values is computed. The result is the value of the

correspondent pixel in the output image (in green).

An important set of hyper-parameters 1 of a convolutional operation are the strides.

These numbers represent the distances in pixels along each axis between two consecutive

positions of the kernel. This means that when non-unitary strides are considered the

kernel is shifted of more than one pixels and less neuron are implemented (i.e. the

output image is smaller). If the same stride is used for all the axes , a single number S

is used to represent that value.

Figure 2.17 represents a convolutional layer that takes as input a 5× 5 image and uses

a 3 × 3 kernel with strides 2 for both the axes. The output image is again a 4 × 4

image, even though the input image is bigger than the previous example: this is due to

the fact that now the receptive �elds of the di�erent neurons are not shifted of a single

pixel, but two.

Until now we saw always get an output matrix smaller with respect to the input

and this come from the fact that a convolution aggregates the information coming from

1A hyper-parameter is a variable set by the network designer that is not changed during the opti-
mization phase. A good choice of the hyper-parameters of a network is crucial during the design of a
network and can vary sensibly the performance of a model.
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Figure 2.16 � Convolutional numerical layer: W = H = 4, K = 3

its receptive �eld into a single value, decreasing the complexity. However, especially

when dealing with regression problems, in which we want to modify an input image

remaining in the same information space, there can be situations in which we want to

get as output matrices with the same shape of the input. To do so, the input image

must be arti�cially increase with the so called zero padding : the image is �lled with

zeros at the beginning and at the end of the di�erent axes. These added values are

used when the kernel goes outside the image boundaries. The number of added values

can di�er depending on the axis. Non-zero padding is also possible, where di�erent

strategies are used to select the values to be added.

Figure 2.18 represents the corner operations of a convolutional layer that takes as input

a 5× 5 image with a zero padding of one pixel. The output image is now a 5× 5 image

and has indeed the same dimension of the input.

If we consider a square input image of dimension Di = Hi = Wi and symmetric

padding P , strides S and kernel dimension K, we can compute the output dimension
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Figure 2.17 � Convolutional layer: W = H = 5, K = 3, S = 2

Figure 2.18 � Convolutional layer: W = H = 5, K = 3, with zero padding (corner
operations)

Do as:

Do =
Di −K + 2P

S
+ 1 (2.37)

2.4.2 CNN architecture

As said before, a convolutional layer can implement a lot of di�erent kernels and outputs

the correspondent pack of images, called features maps. Each kernel learned during the

training phase represents indeed a feature and when it is shifted along the input image

gives high outputs when it recognize that feature in the considered part of the image.

The usual shape of the considered tensors is then B×H ×W ×F , where B represents

the batch dimension, H and W height and weight in pixels and F the feature maps.

When another 2D convolutional layer is applied to a pack of F di�erent feature maps,

a number of kernels equal to F is considered and the results are then summed up in

the output matrix. This means that having more channels in the input image means

increasing the number of parameter of the 2D convolutional layer.

Typical CNN architectures has a lot of convolutional layers stacked one after the
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other. In classi�cation problems, the input space is usually quickly reduced by avoiding

padding and adding average layers such as Max Pooling. After the convolutional part is

then usually added some fully connected layers with a �nal softmax layer that interpret

the features maps and classi�es the image from them. In regression problems, the whole

structure is usually entirely convolutional and padding is widely used to keep the same

image dimensions.

Figure 2.19 represents the architecture of one of the �rst convolutional networks

LeNet-5 developed by Yann LeCun et al. in 1998 [16], that was used to automatically

recognize handwritten digits on checks. The network presents two convolutional-pooling

sequences, then followed by two fully connected layers and the output softmax layer

with ten classes (one per possible digit).

Figure 2.19 � LeNet-5 architecture as presented by Yann LeCun in 1998 [16].

2.4.3 3D convolutions

As said, when the input is a multidimensional image (H ×W × F ) a 2D convolutional

operation considers one kernel per channel (last dimension) and then sums up all the

results to get a 2D output matrix. The kernel dimension is then set to K1 ×K2 × F
(K = K1 = K2 in case of a square kernel) and the convolution is done along all

the channels at the same time. Another possible operation is the 3D convolution: in

this case the designer set a three dimensional kernel with shape K1 × K2 × K3 that

is shifted along the 3D input tensor generating a 3D output. Usually K3 < F , to

generate a volume tensor; the case K3 = F coincides with the 2D convolution of a

multi-channel input image and indeed outputs a 2D matrix. A 3D convolution can also
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be used to manage a 3D image with more channels, so it can get as input 4D tensors

(H ×W × F × C) similarly to 2D convolutions with 3D tensors.

Hyper-parameters like strides and padding are possible also for 3D convolutions, but

this time they are expressed as lists of 3 numbers, specifying the desired value for each

axis.



Chapter 3

SR State of the Art

Super-resolution (SR) are techniques that construct high resolution (HR) images

from low resolution (LR) images. These techniques are popular in the �eld of image

processing due to the importance of having good quality images for applications of

di�erent areas, such as medical imaging, satellite imaging and security imaging [17].

This chapter will present some basic concepts on image resolution and how it can be

enhanced through SR; then some key Machine Learning approaches will be presented

for both single-image super resolution (SISR) and multi-image super resolution (MISR).

3.1 General concepts

3.1.1 Image resolution

Resolution is a key concept for a digital image as it represents the quantity and the

quality of information the image holds. There exist di�erent de�nitions of image reso-

lution, depending on the physic quantity we are focusing on, but each of them refers to

the ability of the image to represent �ne details.

Pixel resolution

It refers to the number of pixels used to cover the visual space captured by the image,

usually expressed as column by row pixel dimensions C × R. This is the common

33



Chapter 3. SR State of the Art 34

meaning associated to the term image resolution, though it actually refers to the image

size. CIPA1 DCG-001 guideline [19] explicitly states that "the term resolution shall

not be used for the number of recorded pixel". Image 3.1 represents the same image in

di�erent pixel sizes. The number of available pixels limits the image quality: from that

comes the misinterpretation of the term resolution as pixel count.

1× 1 5× 5 20× 20 50× 50 100× 100

Figure 3.1 � Comparison between di�erent pixel resolutions of the same image of the
letter A

Spatial resolution

It refers to the details represented by the image with respect to space. The spatial

resolution measured the smallest object that can be resolved by the sensor or the linear

dimension on the ground represented by each pixel [20]. For satellite applications is

often measured in meters per pixel and represents the amount of the original space

contained in a single pixel.

It is important to underline that spatial resolution is limited by both the number of

pixels used to represent the original space and the hardware ability to resolve di�erent

points. To account for the possible hardware limitation, the spatial resolution can be

referred as the number of independent pixels used for unit length. That means that

if 100 pixels are used to represent 100 meters, but they have all the same value, the

actual spatial resolution is 100m per pixel. The information is hold by a single pixel

only, while the others are merely copies of it. Figure 3.2 represents an example of this

kind. The �rst image has 256× 256 pixels, while the second 1024× 1024. Even though

1Camera & Imaging Products Association (CIPA) is an international industry association consisting
of members engaged in the development, production or sale of imaging related devices including digital
cameras.
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(b) has a higher pixel resolution, its quality is worse since most of its pixels have the

same value. We can then say that the spatial resolution of (a) is better.

(a) (b)

Figure 3.2 � Comparison between di�erent spatial resolutions of the same image taken
from the Set-5 dataset [21]. (b) has a higher pixel resolution but lower spatial resolution
with respect to (a)

Spectral resolution

It describes the number and width of spectral bands in a sensor system [20]. It ac-

counts in the frequency range of the light captured by the hardware system and it is

fundamental to be considered when managing multi-bands images.

Temporal resolution

It refers to the details represented by a set of images with respect to time. It represents

the number of scenes captured by a camera system in a given time period. For video

signals, it is commonly measured in frames per seconds (fps).

For remote sensing, the temporal resolution is de�ned as a measure of the repeat cycle

or frequency with which a sensor revisits the same part of the Earth's surface [20].
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Radiometric resolution

It's also called bit resolution. It refers to the details represented by an image in terms

of intensity value. It is determined by the number of bits used to represent the pixel

values and therefore relates to the signal quantization. With N bits, the intensity

level can range from 0 to 2N − 1. This range of possible values a pixel may assume

is also referred as the dynamic range or color depth. Figure 3.3 represents an image

in di�erent radiometric resolutions. The ability of understanding an image content is

strongly related to the number of bits used for it's representation.

1 bit 2 bits 4 bits 8 bits

Figure 3.3 � Comparison between di�erent radiometric resolutions of the same image
taken from the Set-5 dataset [21]. The image has 3 channels (RGB), thus the actual
number of used bits is three times the radiometric resolution.

3.1.2 Super-resolution concepts

As said, super-resolution techniques aims at restoring HR details starting from LR input

images and thus focus on trying to improve spatial resolution. For our applications we

will work with images that always have independent pixels, so an improvement of spatial

resolution will cause a correspondent increase in pixel resolution. For this reason, from

now on when we will talk about HR images, we will refer to images that represent

the same scene of LR but with more pixels and thus higher spatial resolution. As an

example, the LR scenes of the Proba-V dataset (see chapter 4) have 300m per pixel

spatial resolution and are stored in 128 × 128 pixels PNG �les, while HR have 100m

per pixel resolution and thus are 3 times bigger (384× 384 pixels).

SR algorithms can be classi�ed into two main approaches:
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� SISR: single-image super-resolution tries to reconstruct a HR image from a single

LR image. It is a ill-posed2 problem because a speci�c low-resolution (LR) input

can correspond to a crop of possible high-resolution (HR) images [17].

� MISR: multi-image super-resolution uses several images of the same scene and

is based on data fusion techniques. The basic idea behind MISR is to exploit

the non-redundant information that comes from the subpixel shifts between the

di�erent LR images. These shifts make theoretically possible to extract high

frequency information, making the SR problem more constrained and then less

ill-posed.

One of the key aspect to be mentioned when dealing with multi-image condition,

is for sure image registration. This is the process in which the set of available images

is transformed in a common coordinate system, so that corresponding pixels represent

the same physical point. This is a very important step for fusing together di�erent

frames, since it ensure that the data manipulation is done coherently. Due to its

importance, image registration is the �rst step in a lot of algorithms for MISR that rely

on interpolation between the pixel values.

3.1.3 Super-resolution history

Classical approaches to SR, developed mainly for MISR in the last decades of the 20th

century, were divided in di�erent categories:

� non-uniform interpolation: after image registration, a non-uniformly spaced sam-

pling grid is obtained; then these points are interpolated and resampled on the

HR pixels grid; �nally a restoration algorithm is used for blur and noise removal

� frequency domain methods : relate the LR aliased discrete Fourier transform coef-

�cients to the sampled continuous Fourier transform of the unknown HR image

2A problem is well-posed in the sense of Hadamar sense [26] if:

1. a solution exist

2. the solution is unique

3. the solution's behaviour depends continuously on the initial data

Problems that are not well-posed are de�ned as ill-posed.
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� regularization: the ill-posedness of the SR problem can be limited by imposing

additional constraints as a smoothness constraint, Bayesian stochastic a-priori

probability density function

� projection onto convex sets : iterative approach that starts from an estimation of

the HR image from an arbitrary initialization and then projects it to a consistency

set derived from a priori constraints

� generative methods : use strong class based a priori assumptions that force the

reconstruction of certain features in the HR image

SISR algorithms were then developed in later years as well analysed by [27], mainly

with these kind of approaches:

� prediction models : generate HR images from LR inputs through a prede�ned

mathematical formula without training data; interpolation methods such as bicu-

bic interpolation belong to this category

� edge based methods : algorithms focused on edge features analysis and learning

� image statistical methods : use di�erent image properties to build priors, such as

heavy-tailed gradient distribution or sparsity property of large gradients

� patch based methods : learn mapping functions from cropped patches of paired LR

and HR training images; examples of training methods are weighted average, ker-

nel regression, support vector regression, sparse dictionary representation, Markov

Random Fields.

The latter category already exploited Machine Learning algorithms to learn LR-

HR mapping from a dataset. These approaches lead to the �rst Convolutional Neural

Network method for SISR in 2015 [28]. After that date, CNN and Deep Learning has

been the most used approach to asses super-resolution problems.
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3.2 Deep Learning for SISR

This section will present the bicubic interpolation algorithm, considered the baseline

method for super-resolve an image and then the most relevant deep learning architec-

tures for single-image super-resolution that have been analysed for the development of

this work. For performance comparison of the di�erent models, the PSNR metric has

been used. For a detailed explanation of the mathematical properties of this criterion,

see section 4.3.

3.2.1 Bicubic interpolation

Bicubic interpolation is one the most used algorithms to upscale an image, and is

considered as baseline reference to compare other algorithms results in the literature.

That method is an extension of cubic interpolation splines for values on a 2D equally

spaced grid.

The method considers a 16 pixels square (4 × 4), with indexes ranging from -1 to 2.

The interpolated values can be written as:

f(x, y) =
2∑

i=−1

2∑
j=−1

aijx
iyj , (3.1)

where aij are coe�cients to be determined imposing constraints on the values of f and

its derivatives fx, fy and fxy. The interpolation is made on the unit square [0, 1]× [0, 1]

to add values in between the pixels in the corners point (0, 0), (0, 1), (1, 0), (1, 1).

The constraints are written such that:

� f(x, y) match the pixels values p(x, y) in the data points → 4 equations

� the derivatives fx, fy and fxy match the pixels values derivatives px, py and pxy

in the data points → 12 equations

To approximate the derivatives the pixel values outside the unit square are considered

and that is why the algorithm works on a 4× 4 pixels grid. As an example, to compute

px(0, 0) we consider the slope between the two adjacent points on the x axis p(−1, 0)

and p(1, 0):

px(0, 0) =
p(−1, 0)− p(1, 0)

2
(3.2)
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In this way, all the derivatives can be approximated, then the system can be solved to

obtain all the 16 coe�cients aij. Depending on the rescale factor, new pixel values in

the unit square can be found with equation 3.1 choosing appropriate values for x and y

in the range (0, 1). Figure 3.4 represents the bicubic upscaling with scale 4 of an image.

(a) LR (64× 64) (b) bicubic upscaling (256× 256)

Figure 3.4 � Low resolution (a) vs bicubic upscaling with scale 4 (b) of an image taken
from the Set-5 dataset [21]

3.2.2 SRCNN

The �rst proposed Convolutional Neural Network architecture for super-resolution is

the SRCNN (super resolution convolutional neural network) developed by Dong et al.

[28]. The model has a very tiny architecture, with only 3 convolutional layers. As input

image, SRCNN uses an upscaled version of the images through bicubic interpolation.

The images are then fed to the network that transforms the pixel values to improve

them. The three convolutional layers are:

1. 64 feature maps with 9× 9 kernel

2. 32 feature maps with 5× 5 kernel

3. output layer with 5× 5 kernel

The �rst two layers are followed by ReLU activation, while the last one has no activation

(linear). All the layers use zero padding to ensure that the pixel dimension of the
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image remain the same. Training has been done with the MSE as loss function and the

PSNR as metric. The network outperforms all the previous methods for SR in terms

of obtained PSNR for both single channel and RGB images.

With some experiments, the authors came to the conclusion that adding more layers

the performance drops and thus that "the deeper the better" doesn't not work for SR.

However, successive works proved that it was just due to training problems, and that

going deep still can help to improve the performance.

Figure 3.5 shows a schematic representation of the SRCNN architecture.

Figure 3.5 � Schematic representation of SRCNN architecture [28].

3.2.3 VDSR

VDSR (very deep super-resolution) [29] is the �rst very deep model used in SISR. It is

a 20-layer network with 3 convolution kernels and with a residual learning architecture.

With this type of architecture, the network doesn't learn the direct mapping from

the bicubic input to the HR output, but it learns the residual, i.e. the di�erence,

between the two. This means that the networks computes what should be added to the

bicubic to obtain the HR image. The residual learning helps convergence and improves

performance with respect to the direct mapping.

The authors trained VDSR with a MSE loss and mini-batch gradient descent with

momentum as optimization algorithm. They used high learning rates to speed up the

training procedure with gradient clipping to avoid diverging issues. The results obtained

by the authors show that "the deeper the better" works for super-resolution, since they
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outperform SRCNN. Figure 3.6 presents a schematic representation of VDSR. All the

layers have ReLU activation and 64 �lters with the exception of the last one before the

residual adding, that has no activation and outputs a single image.

Figure 3.6 � Schematic representation of VDSR architecture [29].

3.2.4 DRRN

DRRN (deep recursive residual network) [30] instead of using a global residual branch,

proposes multiple local residual blocks organized in a recursive fashion. Recursion for

Deep Learning models stands for multiple blocks that shares the weights. In particular,

the authors of DRRN proposes a network made of B recursive blocks, each made of a

starting convolution and U residual units. A residual unit computes the local di�erence

between the output of the starting convolution and the output of the previous residual

unit passed through two convolutional layers made up of a batch normalization layer,

a ReLU pre-activation and the actual convolution �lter. Each �lter in the di�erent

residual units shares the weights with the corresponding others, so that only two sets

of weights are needed per recursive block. Figure 3.7 shows the DRRN architecture.

The authors �nd out that the best values for the parameters are B = 1, U = 25, since

it gets good results with fewer parameters, having only one recursive block with shared

weights.
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The training is done with mini-batch SGD and, as for VDSR, with a high initial

learning rate and gradient clipping.

Figure 3.7 � Schematic representation of DRRN architecture [30]. Each Recursive
Block (RB) is composed of U local residual units. Each Convolutional Block (CB)
is composed of a Batch Normalization (BN) layer, a ReLU pre-activation and a 2D
convolution. Weights are shared between green and red layers in the same recursive
block.

3.2.5 EDSR

EDSR (enhanced deep residual network) [31] represents the current state of the art for

SISR according to [17]. It follows the intuition of Ledig et al. with their SRResNet

[32] to use an architecture similar to the ResNet [33], originally used for classi�cation

problems.
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EDSR exploits both global and local residual learning. The local residual units are

made of a lighter structure with respect to the original ResNet, with a simple chain

of 2D convolution/ReLU/2D convolution and a scaling factor. The networks has 32

residual blocks and 256 feature maps per convolution. The multiplication factor is

set to 0.1 and is used to stabilize the training procedure. The proposed architecture is

really deep and uses a massive number of parameters, making it not suitable for low-end

hardware.

A big innovation with respect to previously mentioned models, is that EDSR doesn't

use the bicubic of the image as input, but uses directly the LR version, making all the

feature extractions and manipulation at the lower resolution. The actual upsampling

is only done in the last layers, after the adding of the residual to the original LR

image. The upsampling is done using the subpixel convolutional layer proposed in [34].

This block consist in a convolutional layer that outputs s2 channels, where s is the

upsampling scaling factor; these channels are then reshaped in a single high resolution

image, as shown in image 3.8. EDSR has a pre-upsample convolution that actually

uses s2 ·256 �lters. The output feature maps are then reshaped into 256 high resolution

feature maps and then fed to a �nal convolutional layer that outputs the �nal SR image.

Figure 3.8 � The sub-pixel convolutional layer for upsampling [34]. In this case the
scale factor is s = 2, thus 4 channels are used for the upsampling

Another feature of EDSR is the use of the geometric self-ensemble method proposed

by [35]. This strategy is adopted after training, during the test phase. Each image is

�ipped and rotated in orer to generate 8 possible variations of it (LRi), including the
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original one.

LRi = Ti(LR) , i = 0, ..., 7 (3.3)

All the obtained images are then passed through the network to obtain their super-

resolved versions {SR0, ..., SR1}. The inverse transformations are then applied and the

obtained images are averaged to get the �nal SR output.

SR =
1

8

7∑
i=0

T−1i (SRi) (3.4)

The application of this method on average results in a boost of the network perfor-

mance without adding parameters.

EDSR has been trained with Adam optimizer and mini-batches of 16 images. Instead

of using MSE as loss, the authors chose the L1 loss or mean absolute error, stating that

it provides better convergence. EDSR authors also proposed a multi-scale version of

the network, that is able to provide several scaling factor at once, called MDSR.

Figure 3.9 shows the EDSR architecture.

Figure 3.9 � Schematic representation of EDSR architecture [31].
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3.2.6 SRDenseNet

Another popular network used for classi�cation is the DenseNet [36]. In this architecture

each layer is connected with all the preceding feature maps, allowing a strong feature

exploration. Inspired from this architecture, another super-resolution model has been

developed, called SRDenseNet [37]. This architecture uses several Dense Block (DB)

and concatenates all the output features to �nally reconstruct the output image. A DB

has 8 convolution, each with 16 �lters. All the feature maps are concatenated instead

of being summed up, and this leads to 8 · 16 = 128 features maps per DB. The number

16 is called growth rate of the network.

The upsampling is done in the output with a deconvolution layer, also called trans-

posed convolution layer. This layer can be seen as an inverse operation of a convolution

that is able to have as output a bigger image starting from a smaller one. This type of

operation is equivalent to a direct convolution with the same kernel dimension K and

stride S, but P = K − 1 pad. The output dimension can be computed with equation

2.37:

Do =
Di −K + 2P

S
+ 1

Figure 3.10 shows a transposed convolution that has a 2 × 2 input, S = 1, K = 3

and a zero-padding of the input equal to P = 2. Applying equation 2.37, we get an

output dimension of 4.

Figure 3.10 � Transposed convolutional layer: Di = 2, K = 3, S = 1, with zero padding
P = 2 (corner operations)

The deconvolution layer can be used in alternative to the sub-pixel convolution layer

to upsample the image feature in the networks. However, since the deconvolution uses
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a lot of padding zeros, that are arti�cially added to the image and are not coherent

with the image content, it's preferable to use the sub-pixel method.

Figure 3.11 presents a schematic representation of the SRDenseNet architecture. All

the output features of the di�erent dense blocks are concatenated and fed to the �nal

1x1 convolution called bottleneck layer that decrease the complexity merging the infor-

mation from the di�erent features before the upsampling block composed of transposed

convolution layers. All the convolutional layers are followed bu ReLU activation with

the exception of the last reconstruction �lter.

Figure 3.11 � Schematic representation of SRDenseNet architecture [37].

3.2.7 SISR models benchmark

Yang et al. [17] propose a review of the deep learning models for single-image super-

resolution in which they analyse all the presented networks as well as other solutions to

the SR problem. They found that there is a strong relation between model performances

and the training dataset adopted. In particular, they identify two types of datasets:

� G200 [38] and Yang91 [39], characterized by, in total, 291 small images (on average

150× 150)
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� ImageNet [40] selections and DIV2K [41], characterized by much more numerous

and large images

In general, models trained on the larger and higher-quality databases perform much

better with respect to the others.

Another trend that Yang et al. �nd is that, generally, the performance improves as

depth and the number of parameters grow. This de�nitely con�rms that "the deeper

the better" for deep learning based super-resolution, even if a strong limitation has

to be underlined: the growth rate of performance decreases the more we increase the

depth of the model. This means that adding parameters can help in the task, but

also increase the model ine�ciency, since the complexity increase is not proportional to

the performance improvement. They also underline how a big challenge in the super-

resolution future research will be the design of lighter and more e�cient models with

low performance degradation. This is particularly important since, although today

adopted models can reach high accuracy levels, they are characterized by millions of

parameters and are therefore di�cult to be deployed and used for real world scenarios

when the hardware and the operation timing have to be limited.

Table 3.1 shows PSNR results for x4 upscaling of di�erent models as presented in

Yang et al.'s review [17].

Model PSNR (x4) Dataset Parameters

SRCNN [28] 30.49 ImageNet subset 57K

VDSR [29] 31.35 G200+Yang91 665K

DRRN [30] 31.68 G200+Yang91 297K

SRResNet [32] 32.05 ImageNet subset 1.5M
EDSR [31] 32.62 DIV2K 43M

Table 3.1 � Comparisons among di�erent super-resolution models

How can be evinced by the table, EDSR currently represents the state of the art in

term of PSNR results for single-image suer-resolution. However, the authors underline

that MSE only has been used as optimization criterion for the benchmark evaluation,

but it has been proved to be a poor criterion in some application, e.g. when the human
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perception of the image quality is more important with respect to the pixels value

adherence to the original.

Another big issue is the image degradation considered in the model. All the previous

mentioned networks focus on bicubic degraded images. The authors show how EDSR

performance drastically decreases when there's a degradation mismatch with respect to

that of training.

3.3 Deep Learning for MISR

As said at the beginning of this chapter, multi-image super-resolution (MISR) uses

several images of the same scene taken at di�erent times and aims at building a high

resolution version of the image exploiting the information coming from the intrinsic

di�erences between the di�erent frames, such as sub-pixel shifts. When the super-

resolution problem was initially addressed, in the last decades of the 20th century,

algorithms were developed mainly for MISR, following di�erent approaches, as men-

tioned in section 3.1.3. On the other hand, deep learning models, that have their focus

on feature analysis of images, has been until now almost exclusively adopted in the

context of SISR. The very few deep learning approaches to the problem will be brie�y

resumed in the following.

Restoration methods Both Li [42] and Wu [43] propose methods that use a deep

learning network during a MISR process. However, analysing their algorithms, deep

learning is actually used in a single-image fashion, since their convolutional networks

are both preceded by other methods that �rst fuse the di�erent images in a single one.

The result of this �rst step is then fed to a CNN that takes care of further increase the

quality of the output.

EvoNet EvoNet [44] is an algorithm that uses a CNN model inspired to SRResNet

[32] to enhance multiple images. However, even in this case the actual super-resolution

is done in a SISR way, since each image is independently enhanced by the network. The

authors then use a fusion algorithm called EvoIM based on an optimization problem.

Image registration is done as an intermediate step: the shifts are computed on the



Chapter 3. SR State of the Art 50

original LR images, while the actual shift is done after the CNN. Later, the same

authors proposed an evolution of the same architecture [45] that slightly changes the

deep learning network, but always performing an independent process for each image.

Proba-V CNN The organizers of the Proba-V Challenge (see chapter 4) provided

themselves a model [46] for the speci�c dataset after the competition end. Their paper

has not been source of inspiration for the development of my model, since it was not

yet available, but it has then been useful in understanding the obtained results and

in writing this thesis. Their solution is strongly inspired by the SRCNN of Dong et

al. [28] as well as by their revised version FSRCNN [47]. Their solution is actually a

deep learning model for MISR, since it takes as input 5 LR images as di�erent channels

and perform a convolution on them together. The CNN has three convolutional layers

followed by a transposed convolution that performs a x3 upscaling. The obtained HR

feature maps are then averaged to obtain the output image. The CNN is trained with

Adam optimizer, MSE loss and mini-batches of size 4. As metric they used a slightly

modi�ed version of the PSNR called cPSNR (see section 4.3). Their model performs

on average better than the bicubic of the best available image and speci�cally they

actually improve the condition of 251 out of 290 scenes (87%).
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Proba-V Challenge

Proba-V Super Resolution Challenge is a competition announced on the Kelvins

website by the Advanced Concepts Team team of the ESA (European Space Agency)

[48]. The purpose of the website is to promote space related competitions. Particular

attention is devoted to Machine Learning in the resolutions of the problems.

The scope of the Proba-V challenge is to study strategies to super-resolve images of 78

Earth locations taken from the Proba-V satellite. The data was released in October

2018 and the competition ended on 1st June 2019. The o�cial website presented the

dataset and allowed submissions of results to be scored.

4.1 Proba-V satellite

The Proba-V is a satellite launched in May 2013 by the ESA. As stated on the o�cial

website [49], the `V' stands for Vegetation, since that is the main focus of the satellite.

It is designed to map land cover and vegetation growth across the entire globe every two

day. It is equipped with instruments speci�cally thought for vegetation monitoring and

produces images on di�erent bands (blue, red, near-infrared and short wave infrared).

The satellite is able to provide almost daily 300m per pixel resolution images, while

roughly every 5 days 100m per pixel high resolution images. The goal of the challenge

was to construct the HR images manipulating several LR images of the same scene,

taken at di�erent times. This process is called Multi-image Super-resolution (MISR)

51
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and has already been applied before to satellite imagery.

As said, Proba-V provides images in di�erent spectral bands. Among them, the two

most important for vegetation monitoring are the RED and the NIR (near-infrared)

bands due to their usage in computing the NDVI (normalized di�erence vegetation

index). That is a widely used indicator for vegetation health that is computed as the

normalized di�erence of the red and near-infrared re�ectance measurements:

NDVI =
(NIR− RED)

(NIR + RED)
(4.1)

This formulation is justi�ed by the fact that green plants absorbs solar light in the

so-called photosynthetically active radiation (PAR) spectral region. The red band is

part of the PAR region and is particularly photosynthetically active, thus live plants

appear relatively dark in that band. On the contrary, leafs tend to re�ect near-infrared

radiation that is not useful for photosynthesis, appearing bright in that band. Thus,

for healthy plants the NIR/RED ratio is expected to be big. By contrast, clouds, snow

and urban areas tend to be bright in the red radiation and dark in NIR, and thus have

small NIR/RED ratio. The NDVI is nothing more than a normalization of the NIR/RED

ratio, since it tends to 1 when the ratio is big and to -1 when the it is small.

Figure 4.1 � Artist's view of the Proba-V satellite as presented on the ESA website [49]



53 4.2. Dataset

4.2 Dataset

Due to the importance of the NVDI, the RED and NIR bands have been selected to

be part of the challenge dataset. As said, the satellite provides frequent (almost daily)

300 m resolution images (de�ned from now on as low resolution LR) and roughly every

5 days 100 m resolution images (de�ned as high resolution HR). The dataset is split

into two main parts: the train and the test parts. The �rst provides both LR and HR

images, while the second provides LR only and the challengers are supposed to submit

their super-resolved version of the HR. For both the parts, RED and NIR scenes are

present.

The images are provided as 128x128 pixels greyscale patches for LR and 384x384

pixels for HR, thus giving a scaling factor 3. Given the satellite resolution, each patch

represents a land surface of (0.3 km/pixel ∗ 128 pixels)2 ' 1475 km2. Figure 4.2 presents

two images of the same region in the two resolutions. It is important to underline that

the a time window of 30 days has been used to select the images, so di�erences due to

cloud coverage and small land changes are possible.

(a) LR (b) HR

Figure 4.2 � LR and HR images from the RED band

The creators of the dataset manually selected 74 regions of interest (ROIs) guided by

analyses of annual global cloud coverage, in order to minimize the pixels that represent

clouds instead of actual land. Figure 4.3 shows a global map with the 74 ROIs marked
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in red. Each ROI, consist in a 16 patches size region (approximately 23600 km2) in the

two spectral bands (RED and NIR), leading to 2368 possible scenes.

Figure 4.3 � Map of the dataset ROIs manually selected around the entire globe as
presented in the challenge organizers' paper [46]

Out of the total 2368 scenes, quality selection based on cloud covered pixels has

been made: LR images are accepted only if more than 60% of pixels are unconcealed,

while HR images need at least 75%. The authors explain that this di�erent threshold

is justi�ed by the fact that each scene would present multiple LR images, meaning that

a particular bad pixel can be good in another image, while for HR only one image is

provided. At the end of this selection, 1450 scenes were included in the dataset, about

61% of the total. Each scene includes at least 9 and up to 30 LR images. Binary maps

are also provided for both LR and HR images, that mark with a 1 good pixels and with

a 0 cloud covered pixels. These maps will be denoted from now on as quality maps

(QM) for LR images and status maps (SM) for HR. Image 4.4 shows a LR image with

its QM and the correspondent HR image with the SM. As can be seen, cloud coverage

varies a lot between images of the same scene, since they refer to di�erent times.

For what concerns bit-depth, all the images are generated with re�ectance values

ranging on 14 bits, but they are stored in a 16-bit png �le. This makes them look

relatively dark if directly opened with image viewers programs. Thus, only when visu-
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alized, the white/black scale has been automatically rescaled with matplotlib package to

match to the images minimum and maximum value, so that the contrast is maximized.

Figure 4.5 shows the same image with and without rescaling.

(a) LR (b) QM: 87% of pixels are unconcealed

(c) HR (d) SM: 94% of pixels are unconcealed

Figure 4.4 � Quality and status maps of LR and HR images (NIR band)
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Figure 4.5 � The same image as visualized with the full 16-bit scale and with the scale
reduced to its min/max values.

Out of the 1540 total scenes, 1160 (594 for RED and 566 for NIR) are for the train

part, while the remaining 290 (146 for RED and 144 for NIR) are for the test part.

Each train scene consists in:

� 9 to 30 LR 16-bit images

� 9 to 30 LR binary quality maps (QM)

� 1 HR 16-bit image

� 1 HR binary status map (SM)

Each test scene consists in:

� 9 to 30 LR 16-bit images

� 9 to 30 LR binary quality maps (QM)

� 1 HR binary status map (SM)

The missing HR image has to be constructed and submitted as part of the challenge.
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4.3 Scoring methods

4.3.1 PSNR

The most used metric for image quality is the peak signal-to-noise ratio, denoted as

PSNR. It is de�ned as the ratio between the maximum power of a signal and the power

of noise that a�ects it, expressed in decibel. Having a target image (the real HR image)

and its constructed version (the super-resolved one), it's possible to compute the PSNR,

starting from the MSE (mean squared error).

Starting from the de�nition of equation 2.14, we can compute the MSE between a tar-

get image HR and its super-resolved approximation SR, both of size H ×W pixels, as:

MSE =
1

H ·W

H∑
i=1

W∑
j=1

(HR(i, j)− SR(i, j))2 (4.2)

The PSNR (in dB) is then computed as:

PSNR = 10 · log10

(
I2max

MSE

)
, (4.3)

where Imax is the maximum value of intensity for a pixel. In the case of a digital image

represented on N bits, Imax is usually equal to 2N−1. The term Imax squared represents

the maximum power of the signal, that is compared with the error power (the MSE).

When the error is so large to be compared with the maximum signal power Imax, the

PSNR tends to 0, since the ratio tends to 1; on the contrary, when the error tends to

be null, the ratio and the PSNR tends to in�nity. It's important to underline that the

PSNR is a good index to measure the similarity between two images in their pixels

intensity values and not for what concerns human perception. Other metrics perform

better on measuring how similar two images appear to a person, but since the aim of

the challenge is to try to get the exact HR image and not one that looks like that, the

PSNR is the most suitable choice.
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4.3.2 Bias corrected PSNR

One problem of the classic formulation of PSNR is that it doesn't take in consideration

a possible bias in the pixels intensities. The problem can be easily shown with the

following example. Suppose to have a perfect representation of the target HR with only

an added constant value K to each of the pixels so that SR1 = HR + K and a second

super-resolved image that is the superposition of the HR image and a Gaussian noise

with 0 mean so that SR2 = HR + n.

Gaussian noise has a normal distribution as probability density function pn:

pn(z) =
1

σ
√

2π
e

(z−µ)2

2σ2 ,

where z is the noise intensity level, µ is the noise mean value and σ the standard

deviation. Figure 4.6 shows the generation of SR2 adding a noise with zero mean and

0.03 standard deviation.

+ =

Figure 4.6 � Generation of a noisy image with added Gaussian noise (µ = 0, σ = 0.03)

If we compare the two images with the original HR, as in �gure 4.7 , SR2 has

a really degraded content, while SR1 is simply more bright, but with all the details

intact. However if we compare the PSNR computed as in equation 4.3, we get better

results for SR2 instead of SR1. To take account of this problem, we can compute a bias

component b between two images as follows:

b =
1

H ·W

H∑
i=1

W∑
j=1

(HR(i, j)− SR(i, j)) (4.4)
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(a) SR1 (b) HR (c) SR2

Figure 4.7 � Comparison between a biased image SR1, the original HR and a noisy
version SR2. Parameters : K = 0.1, µ = 0, σ = 0.03

This value, is nothing more than the mean absolute error between the pixel values

of the two images. A slightly modi�ed version of the MSE can be de�ned :

bMSE =
1

H ·W

H∑
i=1

W∑
j=1

(HR(i, j)− (SR(i, j) + b))2 (4.5)

Now we can compute the PSNR with bias correction as in equation 4.3, using the

just computed bMSE instead of the classic mean squared error.

Table 4.1 shows the PSNR with and without bias correction on the images of the

example. As can be seen, the correction is negligible for SR2, since its pixel mean value

is almost the same of the original (due to the zero mean of the Gaussian noise); on the

contrary, the PSNR changes drastically for SR1 and this demonstrates the importance

of doing such a correction.

Image HR mean value Image mean value PSNR corrected PSNR

SR1 0.1158 0.2158 19.99 322.72

SR2 0.1158 0.1157 30.46 30.46

Table 4.1 � E�ect of bias corrected PSNR
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4.3.3 cPSNR

Due to speci�c characteristics of the available data, the competition rules present the

bias corrected PSNR, but with a further modi�cation. Since some HR pixels are con-

cealed and not meaningful, it's useless to score the similarity of the correspondent SR

pixels. Furthermore, instead of considering the entire 384x384 pixels HR image, a

cropped part is used to take account of possible pixel shifts between the SR image and

the target HR. Pixel shift is a big problem when dealing on satellite multiple shots of

the same region: even the most accurate source can always have some sub-pixel shift

between images took at di�erent times or in di�erent channels. The process of trying

to realign multiple measurements, transforming them in a common coordinate system,

is called image registration. There exist numbers of classical and machine learning in-

spired algorithms to deal with this problem, but the challenge authors [46] decided to

use this simple criteria that takes into account discrete pixel shift in the HR domain

and cloud coverage:

� crop the SR image of 3 pixels at each border, obtaining a 378x378 patch

� consider all the possible 378x378 patches from the HR target: for all u, v ∈ 0, ..., 6,

HRu, v is the subimage of HR with its upper left corner at coordinates (u, v) and

its lower right corner at (378 + u, 378 + v)

� extract the correspondent subimages SMu, v from the status map SM

� compute bias correction bu,v and bMSEu,v, considering the clear pixels only (those

with a 1 in the SM)

� proceed in the computation of the bias corrected PSNR for each (u, v) couple

The �nal metric, called cPSNR, is then computed as the maximum between all the

di�erent PSNRu,v.

Denoting as clear(x) the set of clear pixels for image x, the following equations are used

to compute the cPSNR:

bu,v =
1

| clear(HRu,v) |
∑

{i,j}∈ clear(HRu,v)

(HRu,v(i, j)− SR(i, j)) (4.6)
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bMSEu,v =
1

| clear(HRu,v) |
∑

{i,j}∈ clear(HRu,v)

(HRu,v(i, j)− (SR(i, j) + b))2 (4.7)

PSNRu,v = 10 · log10

(
I2max

bMSEu,v

)
(4.8)

cPSNR = max
u,v∈{0,...,6}

(
PSNRu,v

)
(4.9)

4.3.4 Submission score

Given the di�erent scenes present in the dataset, on average some output will have

higher PSNR than others, even if generated with the same model. Since the challenge

objective is to submit a super-resolved version of all the 290 test images, to normaliza-

tion each scene contribution a �le containing the cPSNR of the baseline solution is part

of the download folder.

After having computed the cPSNR of all the images, the normalization values are used

as reference to compute a score zi for each scene:

zi =
Ni

cPSNRi

, (4.10)

where Ni is the normalized value (cPSNR of the baseline solution) of the particular

image. A certain image receives a score below 1 if the solution submitted has higher

cPSNR than the baseline. The overall score of a submission is then the average of the

individual scores.

Z(submission) =
1

290

290∑
i=1

zi (4.11)

A submission with score below 1 performs better on average than the baseline. Thus,

the objective of the challenge is to get the lowest score possible.
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4.3.5 Baseline solution

As said, the baseline solution is considered the starting point for super-resolution and

indeed uses a very simple algorithm. It is based on the bicubic interpolation of the best

images for each scene. As presented in section 3.2.1, the bicubic interpolation can be

seen as the easiest algorithm for image resampling and thus for super-resolution.

The baseline algorithm is the following:

for each test image do

compute LR clearances;

create a subset with LR images with maximum clearance;

for each image of the subset do

compute the bicubic upscaling of LR;

end

SR = average of the upscaled images;

end

In this way the best LR images (those with highest percentage of clear pixels) are

upscaled and averaged to get the SR approximation of the target image. The cPSNR

of the solutions generated with this algorithm are stored for normalization in a dataset

�le called norm.csv.
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Work Platform

In this chapter the experimental platform is presented with a brief explanation of

the chosen programming language and libraries as well as the hardware setup.

5.1 Software setup

A lot of programming languages are used for Machine Learning development. A non

exhaustive list of possible choice is the following:

� Python: the most used one due to its �exibility and library richness

� R: used principally for statistical analysis and data manipulation

� Matlab: used with its Deep Learning Toolbox

� C/C++: widely used due to its execution e�ciency

Python was chosen for the development of this work mainly due to previous experience

with it and since it is the most used programming language for Machine Learning didac-

tics. The development was made with the 3.5.2 release of the programming language

and using the following libraries:

� NumPy [50]: numerical computation and data manipulation

� Matplotlib [51]: image and graph visualization

63
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� Scikit-Learn [52]: data analysis

� OpenCV [53] and Scikit-Image [54]: image processing algorithms

� Jupyter Notebook [55]: development platform

� TensorFlow [56]: Machine Learning library

� Keras [57]: high level library for TensorFlow algorithms implementation

All the code was written in Python with the development platform Jupyter Note-

book, a web-based interactive computational environment that allows to create docu-

ments with code that can be modularly executed and markdown comments for docu-

mentation. A notebook can be visualized and used simply with an internet browser and

therefore is completely cross-platform and allows remote access to the work stored in the

main machine. Jupyter Notebook supports di�erent kernels (Python, R, C, C++ and

others) to interpret the code and allows to work in virtual environments with di�erent

libraries installed.

5.1.1 TensorFlow and Keras

TensorFlow, developed by the Google Brain team, is one of the most used libraries for

Machine Learning and provides APIs for Python, C/C++, Java and other programming

languages. The library implements modules, classes and functions speci�cally designed

to easily build, train and test machine learning models. The present work was developed

using TensorFlow as Keras backend.

Keras is a model-level library that provides high-level building blocks for developing

deep learning models and relies on low-level software, called backend, to perform the

actual computations and tensor manipulations. Three backends are available for Keras:

TensorFlow by Google, Theano by LISA Lab at Université de Montréal and CNTK by

Microsoft. Keras and TensorFlow are perfectly integrated, allowing to use backend code

for complex operations for which there is no a Keras implementation.
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5.2 Hardware Setup

The hardware setup for the development of the thesis was provided by the PIC4SeR

Centre at Politecnico di Torino. Since the speci�c problem was quite resource de-

manding, having to manipulate thousands of images, all the work was developed on a

dedicated computer with Ubuntu 16.04 operating system. The machine mounted an

i7-9700K Intel CPU, 32 GB of RAM memory and 32 GB of swap memory. The most

important hardware components of the system were the available GPUs:

� one NVIDIA GeForce RTX 2080 Ti with 11 GB GDDR6 memory

� one NVIDIA GeForce RTX 2080 with 8 GB GDDR6 memory

Having a workstation with powerful GPUs available is crucial for Machine Learning

projects, since computations are much more fast and e�cient if done on speci�c high

level chips as graphic cards are. In particular, Nvidia provides the Compute Uni�ed

Device Architecture (CUDA) to allow the so called GPGPU (General-Purpose comput-

ing on Graphics Processing Units) on its top-of-the-line products. The CUDA platform

can be installed on a system providing direct access to the GPU virtual instruction set,

allowing to treat the graphic card basically as a general purpose CPU. TensorFlow pro-

vides a speci�c library to support CUDA and GPU computations called tensor�ow-cpu.

If a system is provided with an updated version of CUDA and the TensorFlow library,

Keras can be used on the GPUs as well, allowing very e�cient computations.

Despite the very e�ective hardware provided, some limitations were experienced during

the thesis development. The amount of RAM memory available caused some training

problems:

� the number of channels (di�erent time frames) per each image was limited to 9,

even if some scene have up to 30 di�erent channels

� the data augmentation (rotations and �ip) couldn't be performed o�-line, but it

was executed during the training phase slowing down the execution

� all the CPU related operations were slightly slowed down due to the usage of the

swap memory, that is stored on the hard drive, when RAM memory saturated
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The available GPUs had good performance for computation but were limited in mem-

ory, too. The only 11 GB available on the best graphic card imposed the following

restrictions:

� the number of layers for the model was limited to avoid memory over�ow when

instantiating all the needed tensors

� for the same reason, the number of feature maps generated in the convolutional

layers were limited too

� the batch size used during training was strongly reduced due to memory over�ow

errors, leading to the extreme case of a stochastic condition (unitary batch size)

for some models
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Proposed Model and Results

This chapter will brie�y describe the main steps that led to the design of the model

and will present the obtained results.

6.1 Pyhton framework

The �rst step in the model development has been the coding of a suitable python

framework. The library, called SRNet, provides all the needed functions to easily

manage the dataset and perform model evaluation and submission. SRNet is organized

as follows:

� download_dataset.py allows to automatically download and extract the dataset

from the ESA website

� preprocessing.py implements functions to select images from the dataset

and open them as numpy arrays; the �le also de�nes the ProbaVDataSet class,

that automatically read the dataset folders to create an object that stores the

images

� submit.py creates the submission �le with the super-resolved test images that

will be uploaded to the competition website

67
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� transformation.py implements useful image processing functions to �ip, ro-

tate, upscale (with a bicubic interpolation) the images; it also allow to compute

the pixel average between di�erent images or create patches of a certain size

� visualization.py provides functions to easily show images from the dataset

� scoring.py implements functions to score the SR images accordingly to the

scoring method exploited by the challenge organizers (see section 4.3)

� training.py provides implementation of the ESA loss, as well as functions for

patch generation and the geometric self-ensemble method (see section 3.2.5)

� models.py is the �le in which all the tested models have been implemented

6.2 Data preprocessing

In order to perform a model training, the available dataset has to be imported and

preprocessed. In this section, all the preprocessing steps will be analyzed.

Data selection

As mentioned in section 4.2, the dataset is composed of 1160 training scenes and 290

test scenes. A single model has been designed for both NIR and RED bands, so all the

images are treated in the same way, independently on their spectral property. Since

the number of available LR images per scene is variable, we should choice the number

of image to be used as channel width. To avoid selecting too poor quality images, a

criterion based on the clear pixels is used. For each scene, the clear pixel of the high

resolution image is computed from the sum of the pixel values of the SM (status map).

A LR image is good if the number of its clear pixels (computed from the quality map

QM) is as close as possible, in percentage, to the clearance of the HR image. Having

a higher percentage of clear pixels with respect to the HR is good, but not required,

since it will be useless to reconstruct pixels that are concealed in the target image. For
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this reason, a threshold thr relative to the clearance of the HR image is used, leading

the following criterion:mean(QMi) < thr ·mean(SM) ⇒ LRi excluded

mean(QMi) ≥ thr ·mean(SM) ⇒ LRi accepted
(6.1)

Several values for thr have been tested and the results are proposed in table 6.1

thr Dataset section Admitted Excluded Mean clearance

0.8
train 20116 2178 (9.77%) 0.9565
test 5062 440 (8.00%) 0.9561

0.9
train 18342 3952 (17.73%) 0.9705
test 4628 874 (15.89%) 0.9703

0.95
train 16923 5371 (24.09%) 0.9773
test 4225 1277 (23.21%) 0.9781

0.98
train 15384 6910 (30.99%) 0.9815
test 3835 1667 (30.30%) 0.9825

1
train 12750 9544 (42.81%) 0.9830
test 3285 2220 (40.35%) 0.9838

Table 6.1 � Data selection whit di�erent thr

As de�nitive value, thr = 0.98 is selected, to avoid excluding a too large part of

the dataset, and at the same time guarantee a mean clearance over 0.98. The mean

number of images per scene, after the exclusion of the worst images, is about 13. Since

the width should be constant for all the scenes, the value of 9 is selected, that is a good

trade-o� between model complexity and dataset richness. For all the scenes in which

more than 9 LR images are available, the best 9 are selected; for those in which less

than 9 are available, the best image is replicated to �ll the empty spaces.

Data rescaling

As mentioned in section 4.2, the images are provided as 16-bit png �les, so their pixel

values range between 0 and 216−1 = 65535. In fact, the original images are represented

over 14 bits, so the real intensity range is [0, 214 − 1]. When loaded in memory, the

images are automatically converted in a �oat numpy array and rescaled so that they



Chapter 6. Proposed Model and Results 70

assume values between 0 and 1.

Data augmentation

Data augmentation is a well used technique used to both arti�cially enlarge the dataset

and increase the model generalization. Data augmentation consists in applying some

image transformations to the existing dataset, in order to generate new training in-

stances that should be realistic and coherent with the real data. This technique, in

addition to increase the number of data points, can really help the generalization of

the model, since can avoid the condition in which the network simply memorizes the

existing data points (over�tting) by slightly changing them.

Typical image transformations used for data augmentation are rotations, �ip, resiz-

ing, crop, shifts. In the proposed model data augmentation has been performed with

rotations of angles multiple of 90° and horizontal and vertical �ips. The limitation to

these two transformations is due to the speci�c characteristic of the super-resolution

problem: the actual value of the pixel is fundamental to correctly learn the LR/HR

relation, so false void pixel introduction should be avoided. Figure 6.1 shows how ro-

tations of non 90° multiples can create areas in the image with missing pixels and thus

should be avoided. The same applies to image shifts.

Figure 6.1 � Image rotation of 37° counter-clockwise. In the corners void pixels are
obtained with the transformation.
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Due to memory limitations, data augmentation is performed during the training

phase using a generator that computes the transformation when needed. The trans-

formations are applied to both LR and HR to preserve coherence between the pixel

mapping. A random rotation is applied between (0°, 90°, 180°, 270°) , while �ip is

randomly selected between no �ip, horizontal and vertical. Figure 6.2 shows an image

and three possible transformations applied to it.

(a) Original (b) Rotated 180°

(c) Flipped horizontally (d) Rotated 90° ccw, then �ipped vertically

Figure 6.2 � Data augmentation on an image
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6.3 Model architecture

To design the model architecture, inspiration was taken from the networks found in the

literature. The main part of the network should extract features from the input images

and merge them together to extract the output SR image. Several models proposed

for SISR perform the whole computation in the HR space, having as input the bicubic

interpolation of the input images; others do the upscaling process in the last part of

the network, performing the feature extraction in the LR space.

The proposed architecture is divided in two parts:

1. the �rst block performs a SISR upscaling of the input images independently

2. the second block merges together the upscaled images to reconstruct a single HR

output

The idea behind this choice is to use an input for the merging part of the network

that is better than the bicubic, in order to improve the �nal result. Figure 6.3 shows a

schematic representation of the proposed architecture.

Figure 6.3 � Schematic representation of the proposed architecture
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6.3.1 First block: Multi SISR

As mentioned, �rst part of the model performs independent image upscaling for the 9

LR images of a certain scene. Thus, that block implements a multi-image independent

single-image super-resolution process. In fact, for e�ciency reasons, the real imple-

mentation simply uses a single SISR network applied to the LR images organized in a

batch, instead of actually implementing 9 times the same network.

For this �rst part of the model, EDSR [31] has been chosen as architecture, since

it represents the SISR state of the art, according to [17]. It is composed of 32 local

residual blocks, made of a chain of Conv2D, ReLU, Conv2D and a scaling factor equal

to 0.1 for training stability reasons. All the convolutions have 3 × 3 kernel, 256 �lters

and have zero padding in order to keep the tensor dimensions. A global residual is

performed and then the upsampling is made with the sub-pixel convolutional layer [34].

Since the scale for Proba-V Challenge is 3 (from 128×128 to 384×384), the convolution

before the reshaping operation generates 256 · 32 feature maps, that are then reshaped

into 256 HR feature maps. The last convolution outputs the super-resolved image.

Figure 6.4 shows the EDSR architecture as has been used for the proposed model. For

a detailed description of the network and the up-sampling layer functionalities, refer to

section 3.2.5.

Figure 6.4 � Multi SISR architecture: EDSR
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6.3.2 Second block: MergeNet

The second part of the model has the aim of merging the 9 SR images in order to

further improve the super-resolution process. This block has basically to perform three

main operations:

� extract cross-features between the various input images

� aggregate and reduce the extracted features

� fuse the results to get a single output image

Each of this operations has an associated sub-network part that will be analysed in the

following sections.

The input of the second block is organized in a �ve dimensions tensor of shape B ×
W ×H × C × F , where:

� B is the batch dimension

� W is the image width (384)

� H is the image height (384)

� C is the channel dimension (9)

� F is the feature dimension, that is 1 in the input and will contain the various

feature maps extracted in the 3D convolutional layers

Thus, the 9 images coming from the SISR process are concatenated along the fourth

axis before being fed to the MergeNet block.

Dense3D

Inspired by the DenseNet [36] and its super-resolution counterpart SRDenseNet [37],

feature extraction from the SR images is performed by a densely connected network.

This type of architecture concatenates all the features coming from previous convolu-

tions increasing more and more the features entering in future layers. Since the new

extracted maps are concatenated to the input, the �lters number per convolutional



75 6.3. Model architecture

layer, called growth rate, is kept small, to avoid reaching an excessive number of fea-

tures at the end of the Dense3D. Since we're not dealing with a 2D image, but with a

set of 9 images, 3D convolutions are used instead of 2D, allowing the extraction of 3D

cross-feature maps of shape B × 384× 384× 9× F . Instead of a single convolution, a

chain of ReLU, 1 × 1 × 1 Conv3D (48 �lters), ReLU, 3 × 3 × 3 Conv3D (12 �lters) is

used as basic layer. This means that only the features after the second convolution are

concatenated to the input: thus, the growth rate is actually 12, that is the number of

the �lters of the second convolution.

9 dense block are stacked one after the other, that leads to a total of 1 + 12 · 9 = 109

features in the output of this �rst sub-network. One thing to be underlined is that the

set of 9 SR images, that composes the input to the MergeNet, is also present as output

of the Dense3D, allowing to directly combine extracted features to the original images.

Figure 6.5 shows the structure of the Dense3D.

Figure 6.5 � MergeNet architecture: Dense3D

ReduceNet

After having extracted all the features with the Dense3D, the information should be

aggregated and reduced to get a more compressed representation. To do so, a speci�c

sub-network is used, characterized by 3D convolutions organized in a Inception-like

fashion. The Inception block is an architecture proposed by [58] and is at the basis of

the GoogleLeNet network. It applies 2D convolutions with di�erent kernels to the same
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input and then concatenates the output features, in order to simultaneously being able

to explore di�erent receptive �eld. The ReduceNet takes inspiration from that Inception

block but applies with 3D Convolutions.

To all the features coming from the previous sub-networks are applied the following

convolutions:

� a 1× 1× 1 Conv3D with k �lters

� a 1× 1× 1 Conv3D with 3k �lters followed by a 3× 3× 3 Conv3D with k �lters

� a 3× 3× 3 Conv3D with k �lters

All the 3D convolutions in this block have ReLU activation. 2 blocks of that kind are

stacked one after the other respectively with k = 16, k = 8. After the last block two

additional Conv3D are added, respectively with 1×1×1 kernel and 24 �lters and 3×3×3

kernel and 1 �lter. This means that the output of the ReduceNet is similar to the input

of the MergeNet, that is a �ve-dimensional tensor with shape B × 384 × 384 × 9 × 1.

This tensor represents a set of compacted extracted cross-features that should be fused

together to get the e�ective output.

Figure 6.6 shows the architecture of the ReduceNet sub-network.

Figure 6.6 � MergeNet architecture: ReduceNet
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FusionNet

The last part of the MergeNet should fuse the compacted cross-features together. First

the last dimension of the tensor is deleted to get a four-dimensional data with shape

B × 384 × 384 × 9. These are considered as compact features of the target image, so

2D convolutions will be used from now on. This last sub-network has as input a special

inception-inspired block that performs simultaneous Conv2D with 1 × 1, 3 × 3, 5 × 5

and 9×9 kernels, all with ReLU activation and 128 �lters. Then a simple chain of three

Conv2D with 3× 3 kernel is used to compute the residual with respect to the average

of the input features. The output is a B× 384× 384× 1 tensor, which contains the SR

images for the batch. FusionNet architecture is represented in �gure 6.7.

Figure 6.7 � MergeNet architecture: FusionNet

MergeNet overall architecture

Resuming, the MergeNet aggregates the SR images coming from the Multi SISR block

and is composed of three sub-networks: Dense3D, ReduceNet and FusionNet. The

�rst two are characterized by features extraction and manipulation of the 3D block

of images, thus use 3D convolutions as main operation; the latter fuses the extracted

features to get to the output SR image, thus uses 2D convolutions. The activation used

for almost all the convolutional layers is the ReLU and zero padding is always used to
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keep constant the tensor dimensions.

The total number of the network parameters is around 600K. It's important to underline

that this value has to be kept low, since due to GPU memory limitations. Several

experiments has been done with di�erent values for the Dense3D grow rate k, di�erent

number of Dense Blocks or Incept Blocks, di�erent quantity of �lters per layer. Most

of this set-ups ended in memory over�ow error due to the huge amount of tensors and

gradients to be instantiated during the training process.

One important aspect to be underlined is that in this model no image registration

procedure is taken in account to avoid further complicating the network. This is done

considering the fact that the Proba-V dataset contains subpixel shifts between the dif-

ferent LR images, that means a maximum shift of only 3 pixels in the HR domain. The

error coming from the misalignment of the LR images is therefore negligible, also con-

sidering that the competition scoring method (see section 4.3) uses the best three-pixel

SR/HR alignment for each submitted image.

An overall scheme of the architecture of the second block is represented in �gure 6.8.

Figure 6.8 � Overall MergeNet architecture
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6.4 Training

The training process of the model has been split in two sessions: �rstly the Multi SISR

network has been trained alone, then the MergeNet.

Multi SISR

Since this is a SISR problem in which we want to improve the resolution of each LR

image without considering any possible relation with the other images, the training of

that �rst block is done without using the LR images. Instead, a downscaled version

of the HR image has been used as input, in order to not create problems with image

registration or temporal di�erences such as di�erent cloud coverage. Thus, the HR

images (384 × 384 shape) are locally averaged at blocks of 3 × 3 pixels, resulting in

images of dimension 128× 128.

To better allow the learning of local features, the network has been trained with

patches derived from the selection of part of the downscaled images, similarly to what

found in literature for SISR . In particular, square sub-images of dimension d = 48

pixels with stride s = 16 has been generated. The stride is the number of pixels that

separate two subsequent patches: if s 6= d, the patches are overlapping. Denoting the

side dimension of the original image as do, the number of total patches edges that �t

into an image side is:

n =
do − d
s

+ 1 (6.2)

If do − d is divisible by s, n is integer and all the patches has exactly side dimension d.

With the selected values, we get n = 6. Since the same reasoning can be done on both

the image sides, the total number of patches generated by a single image is n2 = 36.

The HR image has to be coherently patched with scaled (3x) d and s to preserve the

LR/HR matching.

Since the original LR images are not used for training the EDSR, there is no possible

pixel shift or intensity bias between the input and the HR target, therefore, there is

no need to use the challenge scoring method. L1 loss (mean absolute value) has been

selected, instead of MSE, since the authors of EDSR suggest it to increase convergence.

Adam has been chosen as optimizer, with learning rate set to 0.0001. A Keras callback

is used to halve the learning rate if no loss improvements are achieved for more than 5
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epochs until the minimum of 1× 10−6 is reached. The network has been trained with

mini-batch size of 16 patches for 90 epochs.

MergeNet

To generate the input images for the second block of the model, the dataset is selected

with the threshold on clear pixels as described in section 6.2. The dataset LR images

are then fed to the �rst block using the geometric self-ensemble described in the EDSR

paper [31] (see section 3.2.5). The obtained SR images are then organized in a �ve-

dimensional numpy array with shape 1160×384×384×9×1. Unlike the �rst block, the

MergeNet is trained with the entire images and not patches. This is due to the nature

of the selected loss function, that is the criteria chosen by the challenge organizers (see

section 4.3). This function performs a 3 pixels crop on each side of the SR image and

then check for the HR sub-image that leads to the best cPSNR value. Due to this pixel

crop, it is better to work on the e�ective image to avoid excluding pixels that are within

the image and not at the borders.

Data augmentation is used as described in section 6.2, generating random rotations

(90°, 180°, 270° or no rotation) and �ip (horizontal, vertical or no �ip) for each SR/HR

couple. As in the previous training, the Adam optimizer is used, with initial learning

rate equal to 0.0001 and the decay Keras callback that helps to boost the learning in

case of a loss plateau. Among the several mini-batch sizes tested, the only that doesn't

lead to GPU memory over�ow error is 1, therefore stochastic descent is performed, with

a single scene handled at a time.

Due to time limitations for the competition, the training is performed for a total number

of 130 epochs, with an epoch mean time of 33.5 minutes, thus resulting in a total training

time of almost three days. After the end of the challenge, the training has been resumed

for a total of 227 epochs until convergence has been reached.
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6.5 Results

Figure 6.9 shows the curve of the evolution of mean cPSNR for the whole dataset over

the training epochs. The mean cPSNR obtained for epoch 130 (48.19 dB) is highlighted,

since it is the value reached at the time of the �nal submission. The test images has

been fed to the network and submitted and received the �nal score of 0.97219 (com-

puted with the method described in section 4.3), that corresponds to the �fth place

among the challenge participants.

A �nal mean cPSNR of 48.55 dB is reached at the end of the additional training epochs,

performed after the end of the challenge. Is important to notice the two cPSNR spikes

at epochs 169 and 213. These are due to the learning rate halving performed by the

Keras decay callback. This function checks loss trend and, in case of 5 subsequent

epochs with no improvements, halves the learning rate, to allow exploring smaller local

minima. This process can help pushing further a training that is starts to converge.

Since learning rate has been halved two times, its �nal value reaches 0.00025.

Figure 6.9 � Training curve of mean cPSNR vs epochs

A comparison between bicubic cPSNR and model cPSNR is performed for each im-

age. Bicubic cPSNR is computed considering the average of the 9 LR images after being
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upscaled with bicubic interpolation. The same process is performed with the images

after the �rst block, considering the average of the 9 images coming from the Multi

SISR block (EDSR). Results are shown in �gure 6.10. Each cross represents a dataset

image: being in the upper part of the graph means that cPSNR is higher for the left

model. As can be seen, the proposed model achieves better results with respect to both

bicubic and Multi SISR only. Table 6.2 presents some statistical information about

cPSNR results on the train dataset with respect to the baseline solution presented in

section 4.3.5. Figures 6.11 and 6.12 present some examples on training images.

(a) Proposed model

vs mean bicubic

(b) Mean Multi SISR

vs mean bicubic

(c) Proposed model

vs Mean Multi SISR

Figure 6.10 � cPSNR comparison for di�erent models. Multi SISR performs better than
bicubic and the proposed model further improves almost all the images.

Index Model Baseline

Mean 48.55 46.49

Standard deviation 3.71 3.80

Minimum 35.36 31.45

Maximum 62.32 59.72

25th percentile 46.07 44.11

50th percentile 48.39 46.46

75th percentile 50.76 48.76

Table 6.2 � cPSNR results statistics
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(a) Mean bicubic (b) SR (c) HR

Figure 6.11 � cPSNR mean bicubic: 46.74 dB, cPSNR SR: 49.53 dB

(a) Mean bicubic (b) SR (c) HR

Figure 6.12 � cPSNR mean bicubic: 43.57 dB, cPSNR SR: 46.75 dB
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6.6 Conclusions and Future Work

As demonstrated with the study of the state of the art, Deep Learning applied to super-

resolution is a very proli�c �eld of study. In particular, Deep Learning for Multi-image

Super-resolution is a relatively new approach, with few proposed applications and that

can be further analysed and developed.

The proposed model shows good results for the submitted dataset and has resulted in

the �fth place in the competition. The results obtained, compared with the bicubic and

SISR only predictions, show how using more images can help in reconstructing missing

pixels and therefore can push super-resolution application beyond what has done until

done, especially for satellite imagery, that is characterized by frequent reshots of the

same scenes. That can be vital to improve performance of remote imaging applications

for agriculture and environmental monitoring and land coverage study.

6.6.1 Future work

Further study can be performed to try to address the following problems emerged during

the development of this project:

� reduce the model resource demand, in particular trying to simplify the network,

still obtaining good results in term of PSNR;

� implement a registration deep learning method to try to further increase pixel

coherence among the di�erent images and thus improve performance;

� fuse the two model blocks in order to get a single compact network that can be

trained end-to-end;

� try to remain in the LR domain for the most part of the feature extraction and

manipulation, performing the upscaling process at the end of the network in order

to reduce computational complexity and memory demand;

� perform separate trainings for the two available bands (NIR and RED) to verify

it this improves results;
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� try to reuse the same model in other contexts with respect to the one provided

for the challenge.

All this aspects can be studied in order to develop a better model that can actually

reach MISR state-of-the-art performance. One key aspect will be the study of the

challenge winners solution [59], in order to understand similarities and di�erences with

their approach.

One similar context to try continuing super-resolution research can be a satellite/drone

image mapping, trying to re�ne freely available satellite images (such as those provided

by Sentinel-2) using drone images of a certain area as HR reference. This would show

that super-resolution can be successfully applied also for images obtained with very

di�erent technologies.
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