

Politecnico di Torino

Master’s Degree Thesis

Routing Congestion Tracing in High-Level Synthesis

Flow of FPGA based Systems

Supervisor Candidate

Prof. Luciano Lavagno Muhammad Tahir Rafiq

Dept of Electronics and Telecommunications Master’s Degree in Electronic Engineering

Oct 2019

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 1

Abstract

In the current electronic design, logic synthesis that starts from an RTL description of the

design has been the dominant method to implement digital systems on both FPGAs and

application specific chips. But in the recent times, High-Level Synthesis (HLS) has become a

preferred choice of hardware designers and engineers for implementing complex digital

designs. State of the art EDA flows have also incorporated HLS based design techniques.

High-Level Synthesis or HLS is an automated process that accepts synthesizable code written

using high-level languages e.g. C, C++, SystemC and OpenCL (Open Computing Language)

and transforms them to an RTL design. This design is then implemented on hardware

devices e.g. FPGAs. FPGAs have limited hardware resources in terms of logic cells, and

interconnects that contain wires that are routed to implement power supply, clock and

signal nets.

During the routing process in the design implementation flow, congestion is generated if

resource utilization is high or the design is very complex. This routing congestion forces

router to detour the tracks thus increasing the clock period and in some cases the tool is

even unable to route the design and the implementation process fails. This situation leads

to difficult timing closure of design and longer design cycles. Error messages and reports

that indicate routing congestion contain information only about the congested cells and

congestion windows. Unfortunately there is no simple traceable link available that can help

designer comprehend what section of high level code is the main source of this routing

congestion.

Design tools like Xilinx Vivado Design Suite contain some information to avoid congestion

but it is more relevant to the RTL descriptions and is focused on iterative patterns of RTL

design cycles to alleviate congestion. Congestion report generated by Vivado indicates

enormous number of complex RTL net names that are automatically assigned to the nets

during HLS and that are responsible for the congestion present in the design. Although

present in the auto-generated RTL descriptions of design, these complex net names are not

explicitly related with the high level instructions responsible for the creation of these nets.

The main aim of this research work is to analyze the routing congestion phenomena in

FPGAs and to generate a correlation between the HLS code and the congested nets and

windows information reported by Vivado Design Suite during the placement and

implementation phase of design flow. A novel technique has been devised that collects data

generated by the tools in various files during the design flow and the result is correlation

information between high-level code and the congested windows on the FPGA. This

correlation information indicates the specific high-level instructions responsible for routing

congestion in a quantitative manner, and is very useful for designers to eliminate congestion

in early design stages without digging deeply into the auto generated complex RTL

descriptions of designs. Based on this high-level congestion information, some counter

measures like modifying the source code without losing functionality and efficiency of

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 2

design and the use of some suitable HLS directives, are also proposed in the end. The

effectiveness of this technique is demonstrated using a Complex Discrete Fourier Transform

Design to eliminate congestion at the C++ source level.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 3

ACKNOWLEDGEMENTS

I am thankful for the cooperation and support from the professors and students of our

research group, particularly head of research group and my thesis supervisor Prof.

Luciano Lavagno. Without his guidance and patient supervision, this work was not

accomplishable for me.

I dedicate this work to all my teachers and professors from all stages of my academic

career; they were always there to rescue me from all the crisis and problems related to

the academia. Learning without moral character building is useless from the

perspective of contribution made towards society. I was blessed to have the mentors

who were very focused on both academic aspects and the moral uprising of their

students.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 4

Table of Contents

1 High-Level Synthesis --- 6

1.1 Introduction --- 6

1.1.1 VLSI Design of Digital Systems -- 6

1.1.2 Y-Chart Based Design Methodology--- 7

1.1.3 Drawback of Traditional RTL Approach--- 8

1.1.4 Automation of RTL Generation --- 9

1.2 Advantages of HLS --- 9

1.3 Limitations of HLS --- 11

1.4 High Level Languages used for HLS --- 11

1.5 Tools implementing High-Level Synthesis --- 12

1.5.1 Vivado HLS -- 12

1.5.2 Mentor Catapult -- 12

1.5.3 Intel HLS Compiler for Intel Quartus Prime Design Software -------------------------------- 13

1.6 HLS design Flow Description -- 13

2 Xilinx Vivado HLS based RTL design for FPGAs -- 16

2.1 Introduction -- 16

2.2 Design Flow in Vivado HLS -- 18

2.2.1 Create a New Project -- 18

2.2.2 Validate the C Source Code -- 18

2.2.3 High-Level Synthesis -- Error! Bookmark not defined.

2.2.4 RTL Verification -- 19

2.2.5 IP Block Generation -- 19

2.3 Software Compilation Process -- 20

2.3.1 Scheduling -- 20

2.3.2 Pipelining --- 20

2.3.3 Dataflow -- 20

2.4 Vivado HLS TCL Command Interface -- 21

3 Xilinx Vivado Design Suite -- 22

3.1 Introduction -- 22

3.2 Xilinx FPGA Architecture -- 22

3.2.1 Main Elements of a Xilinx FPGA --- 22

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 5

3.2.2 Advanced Resources on a Xilinx FPGA --- 23

3.3 HLS IP to Final FPGA Design -- 24

3.3.1 Generate Vivado HLS IP Block --- 24

3.3.2 Create Vivado Design Suite Project -- 24

3.3.3 Add HLS IP to IP Repository -- 25

3.3.4 Create a Block Design -- 25

3.3.5 Verification of Design -- 25

3.3.6 RTL Analysis -- 25

3.3.7 Final Steps in Design Flow -- 26

3.4 TCL Console Based Flow --- 26

4 Routing Congestion in FPGA Based Designs -- 27

4.1 Introduction -- 27

4.2 Congestion in Routing Process --- 27

4.3 Drawbacks of Routing Congestion -- 28

4.4 Routing Congestion Estimation -- 28

4.5 Diagnosing Congestion in Xilinx FPGA Based Design --- 29

4.6 Methods for Reducing Congestion --- 31

5 Tracing Congestion back to High-Level Design -- 33

5.1 Introduction -- 33

5.2 Discrete Fourier Transform Implementation --- 33

5.3 Back-Annotation Flow -- 34

5.4 High-Level Synthesis of NDFT -- 34

5.4.1 HLS Project Creation --- 34

5.4.2 HLS Project Synthesis -- 38

5.4.3 Export RTL for Vivado -- 40

5.5 Vivado HLS Database Files -- 41

5.6 Processing of .adb Files -- 41

5.7 Parsing .adb Files -- 42

5.8 Congestion Reporting in Vivado Design Suite -- 43

5.9 Reporting Nets of Congested CLBs -- 45

5.10 Correlation between High-Level Code and Congested Nets -- 47

5.11 Changes in High-Level Design -- 52

6 Conclusions and Recommendations --- 54

6.1 Comparison of Routing Congestion --- 54

6.2 Recommendations for Future Work -- 56

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 6

1 High-Level Synthesis

1.1 Introduction

High-Level Synthesis transform a high level language (C, C++ or SystemC) design

specifications into an RTL implementation that can be further synthesized for hardware

construction on ASIC or FPGA device. High-Level Synthesis is an automated design process,

to better understand this process; some basic concepts of digital design are first produced

here.

1.1.1 VLSI Design of Digital Systems

To well understand the nature and evolution of High-Level Synthesis it would be quite

advantageous to consider the VLSI design of digital systems. VLSI or very large scale

integration is a process that yields a hardware integrated chip by combining a large numbers

of transistors present on that chip. The process of VLSI began in the early 1970s when

technologies related to semiconductors were evolving. From its earliest implementation

compared with current high density chips, number of transistors on a unit area has

increased in almost an approximate order. The very first step in the VLSI Design flow is

‘Design Specifications’. In some cases Design Specifications is a simple written document but

to implement a real word digital system, most often an executable model based on C, C++ or

MATLAB is generated. SystmeC is a new addition in this list to create an executable model.

At this stage no hardware information is included and focus is mainly to validate and verify

the behavior of system. After success fully testing this model for functional accuracy, further

design flow includes multiple steps that map this basic design to the actual hardware

implementation. Now comes the architectural part, where first step before any optimization

is to implement the desired functionality. If the functionality defines "what" the system

does, the architecture defines "how" the system does it, with direct consequences on

performance, area, and power consumption.[1]

Figure 1-1 shows a typical VLSI circuit design flow with block representing different levels of

design and placed in a design flow sequence.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 7

Figure 1-1: VLSI IC Circuits Design Flow

After the formal definition of architecture, the next step in the design flow is to generate an

RTL description in Verilog or VHDL. This is a non-trivial, cyclic and extremely time consuming

process in which this manually coded piece of HDL language is tested, bugs are sorted and

fixed and ultimately verified through an HDL based test bench.

1.1.2 Y-Chart Based Design Methodology

Another interesting approach to view the VLSI design technique is Y-Chart Based Design

Methodology. Gajski and Kuhn presented a Y-chart[2] that shows three different

representations of the same system from three different angles. Y-Chart has three branches

each representing Behavioral, structural and physical views. Then there are circles crossing

each branch and shows the specific abstraction level.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 8

Figure 1-2: Gajski-Kuhn Y-chart [2]

1.1.3 Drawback of Traditional RTL Approach

With the increase in the functionality and complexity of digital designs, manually generating

RTLs from behavioral models became tedious as more bigger is the system and higher is the

complexity of application, there are more chances of errors and design cycle can have

possibly more iteration and hence larger design time. This was not a very good aspect of

modern market driven digital projects where if deadlines or not met, the only utilization of

the design and project is to dispose it into the waist bin. It is very hard to design a 5G chip

using the methods and tools that were evolved and been used in the past century.

Ever increasing complexity and more and more number of required transistors for a modern

day digital design are a harsh reality for the designers. One more aspect that has emerged as

a hurdle for the traditional VLSI approach is the low power requirement in design. Low

power design for the portable systems is a major requirement and popularity and use of low

power portable devices is increasing day by day. Low power design is also a must for the

systems implementing IOT (Internet of Things) networks.

Higher complexity of systems, dealing with billions of transistors on a very small chip area,

multi-core chip design, high frequency and low power requirements, mixed signal SOC’s

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 9

with both digital and analog parts and the use of on chip testing circuitry have been proving

a serious blow to the classic VLSI design approach of modern digital systems.

1.1.4 Automation of RTL Generation

To cope up the problems faced by designers in modern day digital design, High Level

Synthesis (HLS) has emerged as a strong alternative of traditional manual RTL generation

technique. The main task of High-Level Synthesis is to convert a high-level description of a

design to an RTL netlist in an automated way. There has been devised a large variety of tools

that accepts as input designs based on High-level languages, Behavioral hardware

description languages and state diagrams and generates structural RTLs based on the

constraints like area and delay defined by the designer.

The evolution of High-Level Synthesis can be divided into three generations, plus a

prehistoric period. Prehistoric period of HLS evolution was in 1970s, first generation spans

over 1980s and earlier 1990s, second generation covers time from mid 1990s to early 2000s,

after second generations end to current day, we are seeing the third generation of HLS.[3] In
[3] it is also forecasted that a four generation would possibly come after this third

generation. Currently the dominant HLS approach is C-based and centered on data path

oriented applications. Many recent EDA tools are using this approach.

1.2 Advantages of HLS

There is a gradual increase in the sale of HLS tools in the commercial market. It is shown in

the figure 1-3.

Figure 1-3: Sales of Electronic System-Level Synthesis Tools [Source: Gary Smith EDA statistics]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 10

HLS is gaining a market success and popularity among designers due to its various distinct

features. The main task of High-Level Synthesis is to generate error free RTL from input

abstract specifications. By using HLS, design teams greatly accelerate design time while also

reducing the overall verification effort.[1] With High-Level Synthesis, code can be relatively

easily ported from software to a hardware implementation.[4]

The main advantages of High-Level Synthesis can be summarized in the following points:

 High-level synthesis has the ability to perform significant changes in the system in

early stages of design cycle.

 A related advantage of High-level synthesis is ease of maintenance.

 Design through High-Level Synthesis offers huge savings in terms of time-to-market.

 High-level synthesis uses popular and well established high-level languages, like C

and C++.

 In many cases, design of control path is mostly implicit in the language

representation.

 High-Level Synthesis tools analyze the structures of algorithms like loops and

branches to extract and build the control path in an automated way

 Latest state of the art High-Level Synthesis tools are capable to exploit the

parallelism in high level code in the following main methods

o Pipelining can be implemented in the design to full fill the timing constraints

o Loop unrolling technique is applied

o Many parallel hard ware units are built to parallelized the iterations

 Trade-off between speed and hardware resources can be made by design space

exploration with different combinations

 In High-level synthesis domain, there are software profiling tools that are proved

helpful in identifying the bottlenecks in the design phase

 High-level synthesis tools are capable of providing the resource estimates without

actually synthesizing the resulting RTL. These estimates are reasonably accurate.

 Multiple designs are generated and simulation or verification for each design pretty

fast when using HLS tools.

 In High-Level Synthesis verification takes place at a higher level[5]

 Some High-Level Synthesis tools are capable of generating the RTL test-benches

automatically from the high level verification code.

 When code is efficiently structured, state of the art HLS tools can produce designs

that are comparable to hand-coded RTL in terms of speed and resources.

 High-level synthesis has proved to be more efficient in terms of reducing design and

verification efforts and effective reuse

 As High-Level Synthesis flows can save time in R&D effort when properly utilized, this

saving of resources can be utilized where it really matters

 Now a day, High-Level Synthesis tools are developed and equipped with the

necessary technology to make them truly production-worthy

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 11

 Earlier HLS tools were limited to data path designs but now they are capable of

dealing with designs of complete systems, with control logic and complex SoC

interconnects.

1.3 Limitations of HLS

While the advantages offered by High-Level Synthesis are quiet obvious, there is also the

other side of the picture. Unluckily High-Level Synthesis is not as simple as compiling a code

for hardware. With most tools, the algorithm must be written in a particular style to enable

the synthesis tools to identify and exploit parallelism.[1] In this case code has to be

restructured, in some cases even without this restructuring; HLS tools can yield a hardware

design but in most cases performance of this system is poor. HLS tools have some serious

limitations, use of High level languages is restricted as there are many non-synthesizable

constructs that needs to be addressed. When these are handled to make them

synthesizable, in many cases quality of the design is compromised. A single high level code

usually generates multiple RTL, so designer has to look for the optimal choice among these

designs.

When it comes to FPGA’s, the ultimate design is obviously hard ware, not a software design.

The synthesis languages, both HDLs and C based, describes a hard ware regardless of the

fact that these languages can be adopted from software design roots. Every statement in

the code yields a hardware unit that must be physically built; it is not like an instruction that

is meant to be executed on a processor. When designer has a software background, he can

treat the synthesis languages in software manner and it leads to inefficient use of hardware.

While algorithmic representation for software is mature, for hardware realization it is still in

its relative infancy in spite of ongoing research in this area.[4]

There are certain issues in hardware that is resulted through design by HLS languages.

Algorithms based strongly on pointers and pointer arithmetic do not synthesize well to

hardware.[6] Recursion, a well-established technique in software design, is not well

interpreted into hardware designs. High-Level Synthesis tools yields RTL that are not well

readable by humans except is case of very simple designs. Although HLS alleviates the need

of RTL programming but HLS generated RTL needs to be verified. If verification fails it is hard

to settle this issue. Routing congestion in FPGA based designs, when resulted using High-

Level Synthesis design tools, is extremely hard to address at the High-level code. Addressing

this issue is the overall topic of this thesis work.

1.4 High Level Languages used for HLS

Most prominent feature of High-Level Synthesis is that it enables the designer to program

hardware systems like FPGAs using high level languages. Tools from different EDA vendors

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 12

use different high level languages to generate RTL. Following are the high level languages

that are currently being used by EDA tools.

 C

 C++

 SystemC

 OpenCL

 C#

 Matlab

 Java

Output of the tools using above languages is mostly based on Verilog, VHDL, SystemVerilog

or bitstream.

1.5 Tools implementing High-Level Synthesis

In the field of digital design, HLS design is turning to be a big success, that’s why all major

players of EDA arena have introduced their HLS tools to get the chunk of their market share.

Some of these tools are Vivado HLS by Xilinx, Catapult by Mentor, HercuLeS by Ajax

Compilers, Synphony-C by Synopsis, Stratus by Cadence, HLS Compiler for Intel Quartus

Prime Design Software by Intel and the list continues. Three of these tools are briefly

described below.

1.5.1 Vivado HLS

Vivado HLS tool by Xilinx is currently the most used High-Level Synthesis tools for FPGA

based designs. High-Level Synthesis transforms a C, C++ or SystemC design specification into

a Register Transfer Level (RTL) implementation which in turn can be synthesized into a Xilinx

Field Programmable Gate Array (FPGA).[7] Vivado HLS helps designer in focusing only the

design functionality while RTL design is automatically created by tool using this functional

specification. This feature of Vivado HLS is extremely beneficial in terms of design

optimization and verification.

1.5.2 Mentor Catapult

Mentor has introduced its high level tool as ‘Catapult C Synthesis tool’. This tool generates

control based algorithm based RTL designs using C++ and SystemC source codes. These RTL

can then be used for the designs meant for both FPGAs and ASICs and the verification of

designs. Catapult is also equipped with High-Level Verification (HLV) tools that help

designers in verification process at higher abstract level of design phase. Catapult High-Level

Synthesis Platform is depicted in figure 1-4.[8]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 13

Figure 1-4: Catapult High-Level Synthesis Platform [8]

1.5.3 Intel HLS Compiler for Intel Quartus Prime Design Software

Altera has been the major competitor of Xilinx in FPGA based design market until recent

past. In 2015, Intel Corporation acquired Altera. Intel design Suite ‘Intel Quartus Prime

Design Software’ contains a High-Level Synthesis tool ‘Intel HLS Compiler’. This tool receives

untimed C++ source code on its input and produces an RTL code that is of production-

quality and is fully optimized for Intel FPGA based designs. This tool also reduces verification

time needed for RTL verification by taking the abstraction level for verification at a higher

level for FPGA hardware design.

1.6 HLS design Flow Description

High-Level Synthesis generates RTL implementation from high-level language source code.

Control and data flow is extracted from the source code and the implementation of design is

carried on hardware based on defaults and on directives used by the designer. This is a very

generic description of High-level synthesis. While general design flow is quite similar,

commercial tools from different EDA vendors implement HLS design flow in different

patterns. In figure 1-5[7] High-Level Synthesis overview of Vivado-HLS is shown.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 14

Figure 1-5: High-Level Synthesis Use Model [7]

Using Catapult HLS simplifies the traditional design flow by automating the RTL generation

based on a higher level functional description and architectural constraints. Using

C++/SystemC, compared to RTL, reduces the number of lines of code up to 80%, making HLS

code significantly easier to write and debug.[8] The HLS technique adopted by Mentor

Catapult is bit different and is summarized in the following figure 1-6.[9]

Figure 1-6: HLS Technique adopted by Mentor Catapult

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 15

Catapult has the distinct capability of native support for both ANSI C++ and SystemC, this

feature gives designers the freedom for choosing their preferred high-level language. The

database and smart caching techniques provide at least a 10X capacity improvement,

making the synthesis of large subsystems possible.[8] Catapult has micro-architectural

exploration, which enables the designers to quickly produce higher quality designs through

continuous refinement.[9]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 16

2 Xilinx Vivado HLS based RTL design for FPGAs

2.1 Introduction

Programming model is of paramount importance for designs based on a hardware platform.

Software algorithms are generally described through C/C++ or any other high level language.

These algorithms are mainly used for the development of processor based systems using

software compilers. There is a huge line of processors available in the market, both general

purpose and specialized processors. Specialized processors include digital signal processor

(DSP) and graphics processing unit (GPU). These processors execute codes from high level

languages that are based on algorithms with required functional requirements. Increasing

the clock frequency has remained the key parameter to enhance the speed of software

executing in these processors. Then we saw a regime shift from increasing clock frequency

to adding more processing cores per chip to achieve high performance from software

designs. To get full benefits from multicore processors, designer needs to be capable of

efficiently using the parallelization techniques.

Historically, the programming model of an FPGA was centered on register-transfer level

(RTL) descriptions instead of C/C++. Although this model of design capture is completely

compatible with ASIC design, it is analogous to assembly language programming in software

engineering.[10]

At earlier times, design effort to implement designs based on FPGAs was well above the

typical software based systems. So FPGAs were used to implement high performance

designs, which were hard to implement on traditional processors. Xilinx now claims to level

this difference by the use of Xilinx Vivado High-Level Synthesis (HLS) compiler, which uses

C/C++ programs to implement design on FPGAs. The comparison of RTL based FPGA design

time and HLS based design time with their counterpart processor is depicted in following

two figures 2-1 and 2-2.[10]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 17

Figure 2-1: Design Time vs. Application Performance with RTL Design Entry

Figure 2-2: Design Time vs. Application Performance with Vivado HLS Compiler

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 18

2.2 Design Flow in Vivado HLS
[11]

Vivado HLS flow starts with creation of a project with a source C/C++ file or files, and/or any

header files and a test bench top level file. Test bench is not synthesized but used for the

verification of design. Following are the design steps in Vivado HLS project design.

2.2.1 Create a New Project

 Open tool in GUI mode and create a new project and enter some suitable name

 Create/select the directory where project files are to be placed; A directly can be

selected that is already having C/C++ files

 Add source/test bench/data files to the project that are present in the project

directory, all header files present in the directory are automatically added to the

project

 Specify the top-level function that is the main function of the synthesizable C/C++

file

 Each design can have different solutions, so select a solution name and set

parameters like clock period and uncertainty. Select target Xilinx FPGA device/board

2.2.2 Validate the C Source Code

Next step in the design flow is to validate the C source code so that any error present is to

be detected at the earliest stage. An advantage of Vivado HLS tool is that it can use high

level test bench to verify the RTL. There is no need to specifically create a test bench at RTL

level.

 Open test bench folder from explorer and double-click the top level test bench file, it

is opened in the information pane

 Select the main() function in the test bench file that subsequently calls the other files

to be synthesized at the end, for simulation/verification.

 Run C Simulation through button or menu.

 Result of simulation is shown on the screen

The main () function in the test bench must return some value in case of Vivado HLS. In case

of successful verification of C code, the return value by test bench is zero. If any other value

or no value is returned, this indicates that simulation has failed. In this case debugging of

source code can be carried out. If return value is zero and simulation is successful, design is

ready for high-level synthesis.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 19

2.2.3 High-level synthesis

At this step, the design in C/C++ is synthesized to RTL design and a synthesis report is

generated. This is done through Run C Synthesis tool button or from menu. On this code is

synthesized and the generated report states parameters like Timing, Latency and usage of

resources in full detail. Point to be noted here is that, these parameters are only

approximations although very close to the final values that are obtained after place and

route in the further design steps. During synthesis, functions/instructions of C code are

transformed to hard ware units like Block RAMs, DSPs, FFs and LUTs. Total available hard

ware resources in the device and approximated used by the synthesized design is also

reported at this stage. It is helpful in selecting a device with requisite resources. As now

design is at RTL level and not a mere C/C++ code, so interfaces are created and

singles/control ports like clock, reset, idle, ready, start, stop, valid etc. are added

automatically to the design. Based on the reported parameters, design optimizations can be

incorporated in the design at this stage and design can be re-synthesized to get the

optimum version.

2.2.4 RTL Verification

This is the step where advantages of HLS are more apparent. As mentioned earlier, Vivado

HLS re-use the test bench that was for C/C++ design also for generated RTL design

verification. C test bench also generates input vectors for the generated RTL design. RTL

design is simulated during this verification step. Output vectors from RTL design are then

fed back again to test bench to verify the functionality of design if there exist such signals.

Otherwise again the return value of test bench main function is evaluated for verification of

RTL design. If the returned value by test bench is zero, RTL design is verified and evaluated

positively, otherwise verification fails. Test bench should be carefully written, so that it

returns zero value only in the case when all the functionality of the design is verified

successfully and all the results are correct. To execute RTL verification, use toolbar button or

menu bar.

2.2.5 IP Block Generation

The end result of Vivado HLS flow is to convert the design (RTLs) into an IP block that can be

further used with other tools available in the Vivado Design Suite. To accomplish this task

use Export RTL button or menu bar from solution menu. IP packager generates a package

that is then included and used with Vivado IP Catalog. Some other options are also available

at this step. Here project can also be finished along with incorporating ‘place and route’

option in this step. IP and project files are generated in the ‘impl folder’ containing ‘IP

folder’ and .zip file for IP block and Verilog or VHDL folder with project.xpr file to be used as

a project. Vivado HLS can generate RTLs in both Verilog and VHDL as per the choice of

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 20

designer. After this, project can be exported to other tools like Vivado Design Suite for

placing this design on a physical FPGA device.

2.3 Software Compilation Process [10]

The FPGA is an inherently parallel processing fabric capable of implementing any logical and

arithmetic function that can run on a processor.[10] While considering throughput device of

an FPGA device and the memory bandwidth, to fully explore the capabilities of the device,

Vivado HLS uses three distinct processes. To get best optimized hardware level solution of

software based design, these three processes are the integral stages of compilation process.

Subsequent are these three processes.

2.3.1 Scheduling

In scheduling, different control and data dependencies between different operations are

explored. Vivado HLS explores dependencies among the operations based on their

relevance in time and space. Through scheduling, compiler groups multiple operations to be

executed in a single clock cycle. This allows the overlapping of function calls. This overlap is

also termed as pipeline.

2.3.2 Pipelining

Theoretically, Pipelining is a subject of digital design, through which data dependencies are

avoided and the level of parallelism is increased while performing a hardware

implementation of an algorithm. During pipelining, hardware design is divided into

independent stages, and all these stages run in parallel in one single clock cycle. Data

received by each stage is computed from the results of preceding stage in the previous clock

cycle.

2.3.3 Dataflow

Data flow is another technique to explore parallelisms, conceptually it is closer to pipelining,

but dataflow exploits the parallelism present at coarse-grain level. It is linked with functions

executing in parallel within a single clock cycle in terms of software execution. Interactions

between different functions of a program are evaluated to get parallelism by Vivado HLS.

Simple example to understand this concept is parallelism present between functions that

work individually on different data sets and there is no communication between them.

FPGA resources are allocated to each function distinctly and then these hardware blocks run

with having any dependency among them.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 21

2.4 Vivado HLS TCL Command Interface

The above procedure was based on GUI of Vivado HLS. For quick iterations and for the

purpose of optimization of a design, TCL command file can be used. This TCL command file is

generated for all projects created in Vivado HLS and can be further modified and used with

TCL interface. This file contains all commands corresponding to the design steps performed

in the above discussion for the creation of a Vivado HLS project. Parameters and commands

can be added/removed and parameters can be varied and this file can be executed on

command line interface of Vivado HLS to generate IP blocks or HLS design projects that are

exactly the same as generated in the GUI version. During GUI based design, this file is

generated automatically by tool and is placed in the solution directory with the name

‘script.tcl’.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 22

3 Xilinx Vivado Design Suite

3.1 Introduction

Xilinx Vivado Design Suite is the next tool to finish an FPGA based design started from

Vivado HLS, although not limited to only HLS based designs. In Vivado HLS, high-Level

Synthesis was carried out from C/C++ code while in Vivado Design Suite, logical synthesis is

carried out and the actual numbers of resources are reported, in case of Vivado HLS, the

reported resources were just a good approximation. This is the place where the final design

is integrated, we can make a larger design using IP generated through Vivado HLS and

integrating it with custom IPs provided by Xilinx, third party IPs and IPs created by tools

other than Vivado HLS. A common use of High-Level Synthesis design is to create an

accelerator for a CPU – to move code that executes on the CPU into the FPGA programmable

logic to improve performance.[11] In this design scheme, SoC design is implemented on Xilinx

Zynq series FPGAs. HLS based IP generated by Vivado HLS can also be used inside, for

system generator of DSP applications.

3.2 Xilinx FPGA Architecture [10]

Before going for implementation of a design on a Xilinx based FPGA, some information

about the architecture and available resources on an FPGA is essential. An FPGA is a specific

type of Integrated Circuits that can be used for multiple designs and different algorithms can

be implemented on it. Capacity of FPGAs in terms of number of logic cells has increased

tremendously with the improvement in semiconductor technologies and currently an FPGA

can contain logics cells as high as two millions. FPGA is a cost effective solution for different

designs as compared to developing a specific IC for that design. Another major advantage of

FPGAs over conventional ICs is that it can be configured dynamically. This process is quite

similar to loading an embedded software code on a general purpose processor.

3.2.1 Main Elements of a Xilinx FPGA

FPGA consists of following main components:

 Look-up table (LUT): For logic operations

 Flip-Flop (FF): Store data to be used by LUT

 Wires: To provide interconnections

 Input/Output (I/O) pads: Physically available ports to the exchange of Data

A basic FPGA architecture consisting of these elements is shown figure 3-1.[10]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 23

Figure 3-1: Basic FPGA Architecture

3.2.2 Advanced Resources on a Xilinx FPGA

FPGA with only basic elements is not that efficient in terms of throughput and high clock

frequency. To address these limitations, some other computational and data storage blocks

are introduce on FPGAs to enhance the efficiency and computational power. These blocks

are:

 Embedded memories for distributed data storage

 Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

 High-speed serial transceivers

 Off-chip memory controllers

 Multiply-accumulate blocks

FPGA having these elements is termed as contemporary architecture FPGA and is more

flexible and capable of implementing any software algorithm. This contemporary

architecture is shown in figure 3-2.[10]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 24

Figure 3-2: Contemporary FPGA Architecture

3.3 HLS IP to Final FPGA Design [11]

As discussed above, Vivado Design Suite can use HLS IPs in multiple ways to implement the

final design on an FPGA. To address the congestion problem in the design, two methods can

be used. First one is to use HLS IP created by Vivado HLS in IP Integrator in Vivado Design

Suite. The other way is to directly open the design by selecting project.xpr file in Vivado that

was created by Vivado HLS. In the first case, other IPs blocks can be integrated to get a

larger design along with HLS IP created in Vivado HLS. Remaining process is same for both

cases when dealing with the congestion problem in the designs created by Vivado HLS.

Following is a quick overview of implementation of Vivado HLS IP based design on an FPGA

using Vivado Design Suite.

3.3.1 Generate Vivado HLS IP Block

Create HLS IP block of the design using RTLs generated by Vivado HLS using C/C++ codes as

described in chapter no.2 of this document.

3.3.2 Create Vivado Design Suite Project

When HLS IP block is ready, open Vivado Design Suite and create new project using new

project wizard, select directory for project files, which is already containing HLS IP block to

be implemented. Select project type as RTL in this case and then select the target

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 25

device/board, the same one that was used in Vivado HLS. Click finish to complete the setup

of the program.

3.3.3 Add HLS IP to IP Repository

This can be done in the project manager area by clicking IP catalog, IP settings and add

repository. Next browse to directory containing IP block created by Vivado HLS and select

the IP from that folder. Now the added IP should be visible in the IP catalog block.

3.3.4 Create a Block Design

Create the block design using IP integrator. At this point other IP blocks can be added within

this block to create an integrated Vivado design. The added customized IP blocks can be

configured at this stage as per the design requirements. Then IP block are connected as per

the design using external IO ports of IP blocks. External connectors are places that are to be

used for the communication of this integrated design with outside word and internally these

are connected the IP block ports. These connectors are very similar to physical connectors

used on a hard ware design. Connect control signals within the modules and with the

external connectors. When block design is complete is complete, save this design and create

output products of this design by Generate option of .bd file options in the Project Manager

Window.

3.3.5 Verification of Design

At this stage the integrated design can be verified by the use of an HDL test bench. Unlike

the verification process in Vivado HLS, here an RTL level test bench is needed. For this

verification step an HDL wrapper is created and the integrated design is enclosed within this

wrapper. The HDL test bench can be included in the design by using Add or Create

Simulation Sources option. After this Run Simulation option can be used to verify the

integrated design that contains IP Block imported from Vivado HLS and other IPs block

added with it.

3.3.6 RTL Analysis

Next step in design flow is the RTL analysis of the design. At this stage, the schematic of

design is generated and can be viewed along with some reports like DRC report and Noise

Report. The schematic generated for a DFT module is shown in figure 3-3.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 26

Figure 3-3: Schematic generated by Vivado

3.3.7 Final Steps in Design Flow

When the project in Vivado Design Suite is simulated, analyzed and verified, next steps in

the design flow are Synthesis, Implementation, Program and Debug. Synthesis here is logical

synthesis and not the HLS synthesis that was carried out in Vivado HLS. Here the actual

resource usage is reported the utilization report. Next step is implementation; at the end

design analysis report is generated that contains parameter like Timing, Complexity and

Congestion. For addressing congestion problem it is the final step needed. Final step in

design flow is the Program and Debug in which Bitstream is generated that is used to

construct the design on the physical FPGA device.

3.4 TCL Console Based Flow

The Tool Command Language (Tcl) is the scripting language integrated in the Vivado® tool

environment. TCL is a standard language in the semiconductor industry for application

programming interfaces, and is used by Synopsys® Design Constraints (SDC).[12] All the

design steps, tools, menus and icons present in Vivado Design Suite GUI, like the ones

described above can also be used in the command line mode using TCL commands. A TCL

console is available in the Vivado Design Suite GUI where these commands can be inserted

for execution. In case command is generated using any menu, tool etc. TCL console

automatically generates the corresponding command and the corresponding processing is

also reported on the console containing operations performed, errors, warnings and

creation of files reports etc.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 27

4 Routing Congestion in FPGA Based Designs

4.1 Introduction

High-Level Synthesis is becoming industry standard for VLSI design but it also have some

limitations. One of these issues is congestion during the routing process of custom chips and

FPGA based designs. Routing congestion is not a new concept specific to VLSI design. It has

been a problem with the traditional HDL based designs but the level of severity of problem

is case of High-Level Synthesis is very high. Although routing congestion manifests itself only

at the very end of the typical synthesis-to-layout flow, it can lead to unacceptable design

quality and lack of design closure.[13] In this scenario, the best choice is to predict this issue

of congestion at higher levels in design flow. In case of a congested design, automated

router is left with a very few choices to route the design while minimizing the large wire

delays in congested nets and achieving the stringent timing constraints. Routing congestion

can lead to very long automated routing process durations, degradations in the

performance of the systems, decrease in the yield of the final products and failure of routing

process in designs where routing congestion of very high degree is present. On one side the

negative impact of routing congestion is on the shoot due to the increase in the complexity

of digital designs and technology scaling, on the other hand modern state of the art EDA

tools are unable to fully address this problem.

4.2 Congestion in Routing Process

As explained in the introduction of architecture of FPGA, standard cells are present on the

chips for the implementation of synthesized designs generated through RTLs or High Level

based designs. In a standard cell there are wires present to implement clocks, signal tracks,

and power supply lines. To route all these signals, only a limited set of wire resources is

available. With improvements in technologies, number of standard cells on a unit area is

increasing but on the other hand electrical characteristics of metals used for wires are not

coming up to the same level. In FPGAs, standard tracks are available for the global clock

signals and power supply lines. In a full custom design, clock and supply tracks are routed

first and then signal nets are routed, that’s why signal nets are more prone to routing

congestion. A design is said to exhibit routing congestion when the demand for the routing

resources in some region within the design exceeds their supply.[3]

There are routing tracks grouped together and contained in a bin. Routing congestion can

be avoided if the signals to be routed through a bin do not exceed the number of tracks

available in the bin for routing. Normally is routing is carried out in two stages, a global

routing, that is applicable to the entire design and this stage is followed by detailed routing

that deals with small regions having few bins within its jurisdiction at a time. In this process,

https://link.springer.com/book/10.1007/0-387-48550-3

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 28

 nets of design are assigned to tracks in the bins. During the routing process, router tries to

accommodate wires on the tracks available in the bins. During this process, if there arises a

situation when router has to accommodate more wires than the available tracks in the bins,

it attempts to find alternate bin with some free tracks available to route these excessive

wires. If router fails to accommodate all wires even after trying to fit them on alternate bins,

the routing of all wires may not be completed and not all nets are connected as per the

design. The occurrence of this situation is termed as routing congestion. This is the

indication of limitation of tracks in some regions to successfully route the all signal nets in

those blocks.

4.3 Drawbacks of Routing Congestion

During a design, effort is put to minimize the routing congestion for the successful

implementation of design. Routing Congestion in a design can lead to following problems.

 Decrease in the performance of the design

 Increase in the uncertainty in the closure procedure of design

 Decrease in the yield of IC manufacturing process in terms of functions and

parameters

 Failure of router in the final routing process

 Difficult assignment of memory interfaces in FPGAs

 Degradation in optimal quality of results (QoR)

 Tight floorplan constraints

 Incorrect estimation of net delays

 Reduction in slack available

 Clock skew and uncertainty issues

 Sub-optimal Placement

4.4 Routing Congestion Estimation

The accurate measurement of routing congestion can only be computed after the routing

process has finished. The congestion reported at this final step of routing is problematic as

now there would be a need of new design iteration with the necessary changes to cater the

problem of routing. Even at this stage, for the designer to be sure that the modified version

of design is capable of addressing the congestion issue of previous design, he requires some

information before hand to make things working in the desired way. To fulfill this

requirement, several congestion estimation metrics and schemes applicable to different

stages of the design flow have been developed over the years.[14] These metrics are very

handy for the designer to make a prediction of final routing beforehand and helps him in a

routing-congestion free design flow. These metrics are generated by the EDA tools on the

different stages of design cycle. During optimization stage of a design cycle, these metrics

are very useful for the designer in making decisions.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 29

Following is a list of contents of a congestion report generated by Vivado v.2018.2.1

1. Placed Maximum Level Congestion Reporting

2. Initial Estimated Router Congestion Reporting

3. Routed Maximum Level Congestion Reporting

4. SLR Net Crossing Reporting

5. Placed Tile Based Congestion Metric (Vertical)

6. Placed Tile Based Congestion Metric (Horizontal)

4.5 Diagnosing Congestion in Xilinx FPGA Based Design [14]

During the routing process, if critical paths are to be routed in a congested region or even

near to it, it becomes difficult to meet the timing constraints. This issue also flags when

device resources are used up to a higher level and thus after placement, it is really difficult

for the user to route the device. Placement and routing are the most critical steps in a

design implementation of an FPGA after successful synthesis process. Another problem is

the time it takes router to finish the routing process in case of a high level of congestion is

present in an FPGA based design. If a path shows routed delays that are longer than

expected, Xilinx recommends analyzing the congestion of the design and identifying the best

congestion alleviation technique.[14]

The architecture of a Xilinx FPGA device contains interconnects that are of various lengths

and are spanned in each direction; East, West, North, South. Congestion is flagged for an

area defined in a square shape that consist of interconnect tiles (INT_XnYm) that are

adjacent or CLB tiles (CLE_M_XnYm) where the usage of interconnect resources is near or

above 100% in some particular direction. Vivado reports a congestion parameter that is

called congestion level; it is always a positive integer that indicates the side length of the

congested square. In figure 4-1[14] sizes of congested areas are reported on a Xilinx

UltraScale device against clock regions.

Figure 4-1: Congestion Levels and Areas in an UltraScale Device View [14]

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 30

Congestion level is defined above and Xilinx tools report congestion pattern based on a

specific pattern, this pattern is reported in figure 4-2

If the reported congestion level is 5 or higher then, QoR would always be degraded and

router would take longer times to finish its job.

Figure 4-2: Congestion Patterns [14]

During design implementation process, routing congestion per CLB is also reported, but this

is based on estimation and not on the actual routing process. This congestion parameter is

reported is Vertical and Horizontal Routing Congestion per CLB. This parameter provides a

quick graphical view of congested spots on the device layout. For a specific design with a

high level of utilization of resources and net-list complexity, after placement it contains

many congested areas and these are shown in figure 4-3. [14]

This congestion parameter of Vertical and Horizontal Routing Congestion per CLB is

reported as a device metric and was a part of congestion report generated by Vivado Design

Suite versions up till 2018 but in 2019 version this parameter is not reported in the

congestion report.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 31

Figure 4-3: Example of Congestion in the Device Window [14]

4.6 Methods for Reducing Congestion [14]

Congestion is the routing process is generated due to multiple factors and it is a complex

issue that does not always have a trivial solution. In case of Xilinx FPGA based designs,

routing can be addressed using the same techniques that are applied to resolve the

complexity issue. This issue becomes more difficult to address when complex modules are

placed in the congested windows. Xilinx tools recommend various techniques to address the

issue of congested coupled with complexity of the designs implemented on FPGAs.

To improve congestion issue, it is recommended to have well defined and observed

constraints in the design. Over lapping of Pblocks, which results during floor planning if

same region of chip is used for multiple components e.g DSPs, can be a source of congestion

and must be avoided. Excessive hold time failures or negative hold slack causes the router

to detour and can be resulting to congestion. When resource utilization is of higher level like

75% or above, the placement becomes more difficult if the complexity if netlist is also at

higher level. Placement of high performance design is also a challenging task. In this case,

recommended strategy is to review the design features and remove the modules that are

not critical until the resource utilization is reduced to a suitable level. If this process of logic

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 32

reduction is not possible, a larger FPGA can be selected, or other congestion alleviation

techniques mentioned at the end of this section, can be used in this scenario.

High fanout nets are a major source of congestion and tracing them can be helpful for

fighting congestion. Particularly control signals other than clocks with high fan-out can cause

congestion. Some other techniques that are applicable in some specific situations are

suggested in UltraFast Design Methodology Guide [14] and are reported below. Further detail

can be found in this Xilinx guide.

 Use Alternate Placer and Router Directives

 Turn Off Cross-Boundary Optimization

 Reduce MUXF Mapping

 Disable LUT Combining

 Limit High-Fanout Nets in Congested Areas

 Use Cell Bloating

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 33

5 Tracing Congestion back to High-Level Design

5.1 Introduction

Up-till now a brief introduction of a complete HLS design flow is presented, taking HLS based

design implementation on a Xilinx FPGAs as a templetae using tools like Vivado HLS and

Vivado Design Suit. In this chapter the complete flow is reiterated based on a practical HLS

design example that results in a final congested implementation on the selected FPGA. Then

the congestion in the implemented design is discussed and a practical approach is presented

that traces back this congestion in the design to the high-level code in a quantitative way.

The technique that is used to evaluate this linkage is in evolution phase and it is applicable

to designs with only one high-level code file to be synthesized and without any external

library functions to be used in this code file. The second condition can be relaxed with the

use of Vivado HLS pragmas.

5.2 Discrete Fourier Transform Implementation

Test example design that is used for the demonstration of the back tracing of congestion to

HLS level is based on implementation of a two dimensional Discrete Fourier Transform

(DFT). Discrete Fourier Transform is extensively used in digital signal processing systems and

scientific computing designs. More specifically, multidimensional (MD) DFT is used in

imaging applications which need frequency-domain analysis, such as image watermarking,

finger print recognition, synthetic aperture radar (SAR) processing and medical imaging.[15] A

very basic and simple implementation of 2-D DFT [15]algorithm is implemented in HLS and its

code, NDFT.cpp is attached as Appendix A in this document. The letter N in the file name

indicates Numerical DFT. During processing for DFT calculation of a complex sampled signal,

sin and cosine functions are required to be calculated. For finding these functions, generally

libraries like math.h of C++ and hls_math.h of Vivado_HLS are used. In this case custom

functions are written based on the numerical evaluation of sin and cosine functions using

Maclaurin Expansion these functions. Results obtained using these functions are not very

accurate but the major aim of this design implementation is to obtain correlation between

implemented congested design and its high-level code, for this task the used functions are

reasonably accurate. An in-depth analysis of DFT algorithm and its implementation can be

found in the book Parallel Programming for FPGAs.[16]

NDFT.cpp is the base for this congestion analysis. The method that is reported in this section

can be applied to any high-level design for getting the linkage between high-level code and

the routing congestion in the final design after synthesis, placement and routing. In

NDFT.cpp three HLS pragmas are used. #pragma HLS PIPELINE and #pragma HLS UNROLL

generate pipelined and unrolled synthesized design at RTL level corresponding to code

blocks where they are used to get higher level of parallelism and resource sharing. #pragma

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 34

HLS INLINE is used to remove a function as a separate entity in the hierarchy. After inlining,

the function is dissolved into the calling function and no longer appears as a separate level of

hierarchy in the register transfer level (RTL). In some cases, inlining a function allows

operations within the function to be shared and optimized more effectively with surrounding

operations. An inlined function cannot be shared. This can increase area required for

implementing the RTL.[17] Some redundant code is also a part of this example to obtain the

required level of utilization of resources available on the selected FPGA, to get a congested

implementation of synthesized design.

5.3 Back-Annotation Flow

Before starting the practical work on tools, here is a high-level brief descrioption of what we

are going to do next in this section to achieve out task. First the design is synthesized in the

Vivado HLS and source level correlation information is extracted from Vivado HLS database.

A list of all nets is formulated based on this extracted information and is termed as

HLS_Nets. Then design is exported and physically synthesized and implemented and routing

congestion profile is reported. Based on this congestion information, CLBs above to a certain

congestion threshold are selected and the nets corresponding to these CLBs are extracted

and termed as Congested_Nets. Then a correlation is made between these two lists of nets

and back-annotation information is formulated, describing the high-level source code

responsible for congestion. Finally the design is modified based on this information and the

process is repeated on the modified design to analyze the effectiveness of this routing

congestion estimation technique.

5.4 High-Level Synthesis of NDFT

In the following, complete step by step procedure for the High-Level Synthesis is described

for the DFT design using “Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC

v2019.1 (64-bit)” which is a tool for high-level synthesis in Xilinx “Vivado v2019.1 (64-

bit)”design suite. The Xilinx FPGA that is selected for this congestion analysis is

xc7z020clg484-1 that is a part of Zynq-7000 series. This description is based on a system

equipped with Linux version of Vivado v2019.1 but it is equally applicable to Windows

version of Vivado with some minor step modifications related to launching the tool. For

further help in this regard, Vivado User Guide High-Level Synthesis, UG871[11] can be

consulted.

5.4.1 HLS Project Creation

Create a directory named DFT in the Home directory of a Linux based system having Vivado

v2019.1 installed with relevant licenses. In the directory DFT, place the file NDFT.cpp or

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 35

create a new text file there, paste the code and save that file as NDFT.cpp. Then open a

Linux terminal in the same directory by right click mouse and select “Open in Terminal”.

Terminal opens with bash prompt.

In the terminal issue following command;

bash-4.2$ source /tools/xilinx/Vivado/2019.1/.settings64-Vivado.sh

Consider the path of Vivado directory as per the location of Vivado setup in the system. This

command initializes the Vivado v2019.1 design suite in the system. Next step is to launch

the GUI of Vivado HLS. This is done by issuing the following command in the terminal.

bash-4.2$ vivado_hls

Launch message of initialization of Vivado HLS GUI is displayed in the terminal as shown in

figure 5-1.

Figure 5-1: Launching of Vivado HLS

A new window opens with Vivao HLS Welcome Page that also contains a list of previous

recent projects; this window is shown in figure 5-2.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 36

Figure 5-2: Vivado HLS Welcome Page

Click the icon “Create New Project”, a new window pops up for project configuration. Write

‘DFT_prj’ in the project name field and set the location same as the location of DFT directory

and click next. A new window opens that is used to add files in the design project. Press

‘Add Files’ and the DFT directory opens. Click NDFT.cpp and press OK. If some other

directory is opened due to opening terminal in any other directory or due to any previous

project that was opened in Vivado HLS, browse to directory DFT and select file NDFT.cpp

and press OK. Add/Remove Files window is displayed again with NDFT.cpp included in the

Design Files section. Now click Browse button in front of Top Function field and select

NDFT(NDFT.cpp) as top function and press OK. Add/Remove Files window contains now

NDFT as top function and NDFT.cpp under Design Files. This is shown in figure 5-3. For larger

designs having multiple files, all files can be added in the project in this way. The design

under consideration contains only one design file. Header files with extension .h are not

required to be added as design files here but needed to be placed in the same directory

where other design files to be synthesized are located.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 37

Figure 5-3: Add/Remove Files Window

Click next to move to next window that asks for C-based test bench file to be used for design

test. For the current case no files needed to be added as the main task of this work is to

evaluate the routing congestion of design and its correlation with the HLS code. If the design

is to be tested before and after synthesis, than C-based test bench files can be added here.

These files are not synthesized in the final design, and are sufficient for testing at high-level

code and RTL level code. Click next to move to solution configuration window. Here solution

name can be assigned to the design, default is soution1 and for the current case leave it as it

is. Next field is the Clock Period, where this parameter is to be inserted for the design, in our

case, set it to 5. There is also a field of Clock Uncertainty, leave it blank (default). Then there

is the option of part selection, a default device is pre-selected, click button next to it and

from the ‘Device Selection Dialog’ select device xc7z020clg484-1 by scrolling the list or by

using the search option for device selection. Click OK and Solution Configuration is complete

and as shown in the figure 5-4. Press finish and the HLS project creation is complete.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 38

Figure 5-4: Solution Configuration

5.4.2 HLS Project Synthesis

After completing the setup for HLS project creation, the project window opens with the

project name and its path on top. On the left side of window, there is Explorer section, in

that, double click on Source and under it, file NDFT.cpp appears. On the file name double

click and the file opens in the middle section for any possible changes. Make sure that on

the top right side, Synthesis option is selected among the modes Debug, Synthesis and

Analysis. In the outline section on the right of project window, click on the NDFT(), i.e. on

the top level selection function. At this stage C Simulation can be run for the verification of

HLS code but this step needs test bench file with a main() function and is not applicable to

our case. Project window with the stated configuration is shown in figure 5-5.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 39

Figure 5-5: Vivado HLS Project Window

Click Solution menu, select ‘Run C Synthesis’ under its options and select ‘Active Solution’ to

start C Synthesis of the design. This can also be run using tool button for ‘Run C Synthesis’. C

synthesis of HLS code is started and its progress can be shown in the Vivado HLS Console in

the lower middle end of the project window. When synthesis is completed, Synthesis Report

for ‘NDFT’ opens in the new window as shown in figure 5-6. If there are errors/warnings in

the design, they are also reported next to Vivado HLS Console. This file is also present in the

DFT directory in DFT_prj/solution1/syn/report, as NDFT_csynth.rpt. This report is included

as Appendix B in this document.

Figure 5-6: Synthesis Report

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 40

5.4.3 Export RTL for Vivado

Next step in design flow is to export RTL generated by High-Level Synthesis for further

processing in Vivado Design Suite. Design could be exported as Xilinx IP or it can be directly

opened in Vivado. Here the second approach is adopted and placement and routing of the

design is also carried out during this Export RTL step, it can also be done later in Vivado. To

start exporting RTL, click menu ‘Solution’ and press Export RTL, it can also be accomplished

by clicking the tool button for Export RTL. Export RTL dialogue opens, select options as

shown in figure 5-7 and press OK. Export RTL process is initialized and the progress of flow is

displayed in the Vivado HLS Console. As synthesis, place and route are all carried out in this

step so this step takes some time to complete. When export is complete, Export Report for

‘NDFT’ is shown containing post-implementation resource usage and final timing

information as shown in figure 5-8. This report can also be found in directory path

DFT/DFT_prj/solution1/impl/report/Verilog as NDFT_export.rpt. This is all what is required

to be done in Vivaod HLS. At this stage, Vivado HLS can be exited. As described earlier, this

complete Vivado HLS flow can also be run in command line mode using a script written in tcl

format containing all the commands executed for the high-level flow. Vivado HLS also

creates a script.tcl file that can be used to run complete flow as explained above in

command line mode. This file can be found in the solution1 directory in the project space.

Figure 5-7: Export RTL Dialogue

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 41

Figure 5-8: Export Report

5.5 Vivado HLS Database Files

During High-Level Synthesis flow, Vivado HLS generates many intermediate files. Database

or .adb files are also generated during this process. The .adb files contain a control flow

graph (CFG) that describes the design at high level, close to the source code. Vivado HLS

provides debugging information for every CFG node, representing an LLVM instruction

producing a value flowing through the data path, and hence closely associated with RTL nets

and registers. The high level source code information in the .adb file is further linked with

hard ware resource level information that is present in a .rpt file of the same name. One

.adb and .rpt file is created for every distinct function present in the high-level source code.

5.6 Processing of .adb Files

Vivado HLS generates RTL of the design using high-level code. In the RTL design different net

names are created corresponding to the high-level code. These net names are linked to

high-level code lines and this information is present in .adb files generated by Vivado HLS in

a very crude form. These files contain information regarding source code line number, bit

width and delay related to each RTL net created during high-level synthesis flow. A hidden

directory is created by Vivado HLS named .autopilot that contains a directory named ‘db’

and it contains files containing information related to net names in the synthesized RTL

design and their correlation with the line numbers of NDFT.cpp file. Path of this directory

can be traced as DFT/DFT_prj/solution1/.autopilot/db. Sometimes hidden directories are

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 42

not accessible in graphical mode, command line mode can be used to access db directory

and the concerned .adb files in that directory. A Parser is used to extract the requisite

information from these .adb files present in the db directory.

5.7 Parsing .adb Files

A parser has been developed by Christos Sotiriou and Yorgos Floros from EECE Department,

University of Thessaly, Greece. This parser, named ‘adb_parser’ is a customized piece of

software that is developed to get net names that Vivado HLS assigns to nets in the

generated RTLs during High-Level Synthesis process corresponding to line numbers of high-

level code file, in this case NDFT.cpp. It takes .adb files as input, process them for the

requisite data and generates some files at the end of the process that are then used for the

purpose of obtaining the net names that are responsible for the routing congestion at the

end of Vivado design flow. The process to get files corresponding to this parsing process is

following.

Create a directory in the project folder and assign it a suitable name, in this a directory

named Parser_DFT is created in the DFT directory. Copy ‘adb_parser’ in this directory. Open

a Linux terminal in this directory and run following command.

bash-4.2$./adb_parser ../DFT_prj/solution1/.autopilot/db/

During running this type of commands, set the correct paths for relevant directories/files, as

the commands that are reported here are specific to DFT project and the structure of its

subdirectories/files. At the end of parsing process, there are many files generated in

Parser_DFT directory as shown in figure 5-9.

Figure 5-9: Files generated after Parsing

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 43

Among all these files, NDFT.adb.out is of our interest for the movement. Some part of this

file is shown in figure 5-10.

 Figure 5-10: NDFT.adb.out

In this file, column ‘lineNo’ contains line numbers of NDFT.cpp that are responsible for the

creation of RTL nets, reported in the column ‘name’. Every net name is part of RTLs that are

generated by Vivado HLS during High-Level Synthesis process and are the results of

statements of high-level code. At this step it is useful to convert NDFT.adb.out file into a

more useful form for further processing. Open this file in some text editor and save it as .txt

file. Import this file into some spreadsheet software like MS Excel and keep only two

columns with line numbers and corresponding net names. Delete rows with line numbers as

0 or 99999, that are logically incorrect. Save this file as HLS_nets in a CSV format or tab

delimited text format. Adb_parser is yet in evolving phase so these changes are to be

incorporated manually. Later these modifications can be automated.

5.8 Congestion Reporting in Vivado Design Suite

Next we import the RTLs generated by Vivado HLS in to Vivado Design Suit V.2019 and

analyze the design for any possible routing congestion present in the design at the end of

design flow. Open terminal in project directory and issue following two commands to start

Vivado v2019.1 (64-bit) in GUI mode.

bash-4.2$ source /tools/xilinx/Vivado/2019.1/.settings64-Vivado.sh

bash-4.2$ vivado

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 44

Vivado starts and Quick Start window is displayed. Click Open Project and select project.xpr

file present in Verilog directory as shown in figure 5-11 and press OK.

Figure 5-11: Vivado Open Project Window

Now project opens in Vivado 2019.1 with Synthesis and Implementation steps already done

during export RTL process in Vivado HLS. Click on Open Implemented Design in Flow

Navigator pan on left side of project window. Implemented design opens in Device Window

next to Project Summary.

Vivado gives two types of congestion information; one describes congestion windows having

multiple tiles and the other type states the congested tiles in horizontal and vertical

direction. This has been already described in the congestion topic. Both congestion windows

information and congested tiles information can be used to further analyze congestion in

design and its correlation to high-level code. In this work, the analysis is based on the

congested tiles. To view and report congested tiles, right-click on device view, select Metric

and click Vertical routing congestion per CLB and Horizontal routing congestion per CLB one

by one. Congested tiles are highlighted in the device view in the colors as per the level of

congestion and in the lower side of window, Metric Results tab opens, that contains the tile

names, their position and vertical and horizontal congestion per CLB in % form, as shown in

figure 5-12.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 45

Figure 5-12: Routing Congestion per CLB

Metric results with congestion information can be exported to spreadsheet for further

processing. Right click on Metric Results view and press Export to Spreadsheet. Give file

name and path of project directory, in this case file name is congested_CLBs.xlsx

5.9 Reporting Nets of Congested CLBs

Selection of percentage congestion present in CLBs for further analysis is an optimization

problem. In literature, generally congestion above 80% present in CLBs is suggested to be

leading to issues in design. For this particular case, CLBs with congestion percentage above

85% are selected for further analysis. So next step, in this analysis is to extract CLBs with

congestion above 85% from both horizontal and vertical direction. For this purpose, create a

directory named ‘Results’ in the project space and copy and copy files ‘congested_CLBs.xlsx’

and ‘HLS_nets.csv’ in this directory. Open file ‘congested_CLBs.xlsx’ and copy only names of

CLBs with congestion above 85% and write them in a separate file and save it as

high_cong_CLB.csv in the Results directory.

We have now CLBs with required level of congestion written in a separate file. Now we need

the net name corresponding to these CLBs. For this we need to run Vivado in batch script

mode. Write the following small piece of code in a text file and save it as ‘clb_to_net.tcl’ in

Results directory. This file is used to run Vivado in batch script mode, it reads CLBs from

‘high_cong_CLB.csv’ and writes the all corresponding nets in a newly created file

‘Congested_nets.csv’, when completed, Vivado exits and the file is printed in Reults

directory.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 46

open_project /home/tahir/DFT/DFT_prj/solution1/impl/verilog/project.xpr

update_compile_order -fileset sources_1

open_run impl_1

set fp [open /home/tahir/DFT/Results/Congested_nets.csv w]

set fpr [open /home/tahir/DFT/Results/high_cong_CLB.csv r]

fconfigure $fpr -buffering line

gets $fpr data

while {$data != ""} {

 set all_nets [get_nets -of_objects [get_tiles $data]]

 foreach net $all_nets {puts $fp $net}

 gets $fpr data

 }

close $fp

close $fpr

Now open a terminal in the Results directory and issue the following commands to run

Vivado and execute clb_to_net.tcl script to get requisite net names. Make necessary

changes in the directory names and file paths accordingly.

bash-4.2$ source /tools/xilinx/Vivado/2019.1/.settings64-Vivado.sh

bash-4.2$ vivado -mode batch -source clb_to_net.tcl

Vivado runs in background and the progress of process is shown on the terminal as shown in

figure 5-13.

Figure 5-13: Vivado in Batch Script Mode

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 47

5.10 Correlation between High-Level Code and Congested Nets

At this stage we have obtained net names of RTL generated as a result of high-level

synthesis, corresponding to high-level code of file NDFT.cpp along with line numbers in file

‘HLS_nts.csv’ using adb_parser and net names extracted from congested CLBs from Vivado

after physical synthesis, placement and routing is completed and congestion is reported, in

file ‘Congested_nets.csv’ in the results folder. Top results of both these two files are shown

in figure 5-14 side by side. Next step is to trace out HLS reported nets in the total congested

nets and the corresponding code lines to get the precise information that what lines of code

in the high-level code are responsible for the nets in the congested CLBs and make a

qualitative analysis about the nets reported after High-Level Synthesis and the ones that

belongs to congested CLBs.

Figure 5-14: HLS RTL and Congested Nets

To trace out HLS nets in congested nets, a small script written in python is used. Create a

directory named Python and copy files HLS_nts.csv and Congested_nets.csv in it. Write

following python code in a file and save it as correlate.py in the ‘Python’ directory.

import csv

reading csv to list [['code_lineNo', 'hls_net_name'] e.g. ['0', 'X_R']]

with open('HLS_nts.csv', 'r') as f:

 reader = csv.reader(f)

 net_names = list(reader)

#print HLS_Nets info on console

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 48

print("line_No , hls_net_name : ",net_names[1])

print("total hls_net_names : ",len(net_names))

reading all congested net names to list

with open('Congested_nets.csv', 'r') as f:

 lines = f.read().splitlines()

#print Congested_Nets info on console

print("congested_net_1: ",lines[0])

print("total congested_net_names : ",len(lines))

#count for each HLS_net, occuring how many times in congested nets

for i in range(len(net_names)):

 word = net_names[i][1] # get name of single HLS_Net

 count = (sum(word in line for line in lines))

 net_names[i].append(count)

#print all hls_nets and line number with total no of match in all congested nets

for i in range(len(net_names)):

 print("line No,hls_net,congested_nets count",net_names[i])

#filter out HLS_nets with zero match in congested nets

net_names_filter = []

sum = 0

already_present = False;

for word in net_names:

 if(word[2]!=0): # filter for value not 0

 already_present = False # check for already existing in net_names_filter array

 for o in net_names_filter: # if already present in net_names_filter, then add in same

row

 if o[0] == word[0] and o[1] == word[1]:

 o[2] = o[2]+word[2]

 already_present = True

 break

 if not already_present:

 net_names_filter.append(word)

 sum = sum + word[2]

#print and write in file cumulative sum of all HLS_net found in Congested_nets

print("cumulative sum of all hls_nets found in congested_nets : " + str(sum))

net_names_filter.append(["Total Number of ","HLS_Nets",len(net_names)]) # write in file

net_names_filter.append(["Total Number of ","Congested_Nets",len(lines)]) # write in file

net_names_filter.append(["Total Number of ","Match Found",sum]) # write in file

saving results in csv file name Match

#with open("Match.csv", 'w', newline="") as myfile:

with open("Match.csv", 'wb') as myfile:

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 49

 wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)

 wr.writerows(net_names_filter)

Open terminal in the same directory and run correlate.py using following command:

bash-4.2$ python correlate.py

On the console, HLS net names along with line numbers of HLS code from file NDFT.cpp are

reported along with total number of these HLS_net names matched in the file containing list

of all congested nets, as shown in figure 5-15.

Figure 5-15: HLS Nets matched in Congested Nets

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 50

This script also creates a file named Match.csv containing similar results reported in the

above figure with the HLS nets not reported in congested nets filtered out. This file

Match.csv is written here with each row having one HLS net found in congested nets, along

with its line number and number of ‘hits’ in congested nets. In the final three rows, total

number of nets and cumulative hits found are printed.

"76","_ln76","528"

"76","i_0_i_0","6"

"87","X_fact_0_i_0","20"

"40","X_pow_0_i_0","6"

"76","icmp_ln76","20"

"76","add_ln76","2"

"87","add_ln87","77"

"87","mul_ln87","132"

"88","X_pow","79"

"40","c","481"

"121","_ln121","1992"

"121","i_0_i1_0","15"

"130","X_fact_0_i3_0","128"

"131","X_pow_0_i4_0","3"

"121","icmp_ln121","40"

"121","add_ln121","43"

"130","add_ln130","144"

"130","mul_ln130","173"

"41","s","3230"

"76","i_0_i_1","1"

"40","X_pow_0_i_1","2"

"131","X_pow_0_i4_1","4"

"121","add_ln121_1","1"

"40","X_pow_0_i_2","6"

"130","X_fact_0_i3_2","1"

"131","X_pow_0_i4_2","8"

"40","X_pow_0_i_3","5"

"130","X_fact_0_i3_3","32"

"131","X_pow_0_i4_3","2"

"130","add_ln130_3","18"

"76","i_0_i_4","13"

"87","X_fact_0_i_4","84"

"40","X_pow_0_i_4","10"

"76","icmp_ln76_4","19"

"87","add_ln87_4","47"

"87","mul_ln87_4","67"

"121","i_0_i1_4","10"

"130","X_fact_0_i3_4","42"

"131","X_pow_0_i4_4","1"

"121","icmp_ln121_4","13"

"121","add_ln121_4","22"

"130","add_ln130_4","9"

"130","mul_ln130_4","24"

"76","i_0_i_5","1"

"87","X_fact_0_i_5","33"

"40","X_pow_0_i_5","3"

"87","add_ln87_5","17"

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 51

"87","mul_ln87_5","40"

"130","X_fact_0_i3_5","1"

"131","X_pow_0_i4_5","7"

"121","icmp_ln121_5","1"

"87","X_fact_0_i_6","28"

"40","X_pow_0_i_6","9"

"76","icmp_ln76_6","1"

"87","add_ln87_6","13"

"87","mul_ln87_6","4"

"131","X_pow_0_i4_6","3"

"41","s_6","1979"

"40","X_pow_0_i_7","5"

"131","X_pow_0_i4_7","5"

"121","add_ln121_7","1"

"54","b","3230"

"Total Number of ","HLS_Nets","605"

"Total Number of ","Congested_Nets","3230"

"Total Number of ","Match Found","12941"

After this above written python script is modified to get total number of hits found

corresponding to each line of code with all HLS_net names written along with the code line

number and in the third column cumulative sum of all hits corresponding to the line number

and it’s all HLS_nets in a newly created file ‘Match_cumulated.csv’. Code lines with

maximum number hits are reported in ascending order. The content of this file is shown in

figure 5-16. Python script file is attached as correlate_cumulated.py in Appendix C.

Figure 5-16: HLS Nets matched per Line of Code

Now in place of net names in figure 5-16 we can put the actual lines of code to observe that

what high-level line of code is responsible for creating these RTL nets after High-Level

Synthesis that are causing congestion in the design. The resultant congestion creating lines

from NDFT.cpp are shown in figure 5-17. Care must be taken during all this flow that the

high-level design file is not modified after it has been synthesized by Vivado HLS otherwise

there could be some difference in the actual congestion responsible lines and the lines

reported by the analysis.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 52

Figure 5-17: HLS Lines of Code with Congested Nets

5.11 Changes in High-Level Design

Now the design is modified based on the results reported in figure 5-17. The usefulness of

these changes would be described in the next conclusive section. The design file NDFT.cpp

is saved as MDFT.cpp in a new directory, where letter ‘M’ is used to indicate that it is a

modified version of original file. From figure 5-17 we observe that line 40 and line 41 are

sources of congestion. These lines are:

40. s = SIN(j * w);

41. c = COS(j * w);

Here SIN and COS functions are called and pragma HLS INLINE are used that creates a new

instance for each call to these functions in the hardware, so this pragma is commented in

the MDFT.cpp file.

Next we observe that line 76 and 121 contributes to congestion in the design. These lines

are:

76. for (i = 0; i < N; i++) {

121. for (i = 0; i < N; i++) {

These two lines are for loops and in the top of for loop body pragma HLS PIPELINE is used to

pipeline the design corresponding to these loops to get higher level of parallelism, we also

comment this pragma for both the for loops.

Next code lines 87, 88, 130 and 131 are mathematical statements that are synthesized to a

design containing adder and multipliers implemented using DSPs. To retain the functionality

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 53

of the design, we are not making any changes in these lines. Line 54 is again a ‘for’ loop

statement with ‘b’ as loop variable and this ‘b’ is a part of lot of net names that are

presented in the congested nets, as it is not itself a physical RTL net so we can ignore it.

After making all these changes in the MDFT.cpp, we save it in a new directory ‘MDFT’ and

apply the complete design flow as reported in the previous chapter to obtain the modified

implement design on the same FPGA device, report congestion CLBs and windows and

compare the congestion profile of both the original and modified design.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 54

6 Conclusions and Recommendations

As reported in figure 5-17, this work is very useful for designer in case of High-Level design

which results in a congested implementation. At the final stage of design flow, when

significant routing congestion is found in the design, the procedure described in chapter 5

can be consulted to trace out the exact statements in the High-Level code that are

responsible for the congestion issue in the implemented design. Then this information can

be used to modify the High-Level code and other changes like use of high resources device

for design, can be incorporated in the design flow to reduce the routing congestion up to an

acceptable level.

To prove the useful of this technique, the example design is modified based on the

correlation between high-level code of NDFT.cpp and routing congestion reported for the

original basic design. First the complete design flow is repeated after making necessary

changes in the High-Level code based on modified statements responsible for congestion as

done in the last section of previous chapter and then here a comparison is made between

the congestion profile of original design and modified design.

6.1 Comparison of Routing Congestion

After implementing modified design of DFT we analyze metric results with congestion

information in vertical and horizontal direction as described in section 5-6. Comparison for

the congestion in CLBs for the case of original and modified design is reported in table 6-1.

Congestion Parameter Original Design Modified Design

CLBs with Horizontal Routing Congestion above 85% 1 0

CLBs with Vertical Routing Congestion above 85% 37 0

Maximum Horizontal Routing Congestion per CLB 85.045% 67.987

Maximum Vertical Routing Congestion per CLB 104.580% 73.265%

Table 6-1: Comparison of Routing Congestion per CLB

Device views with heat maps corresponding to routing congestion per CLBs are shown in

figure 6-1 and 6-2 for the original design implementation and for its modified version

respectively.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 55

Figure 6-1: Device view of Original Design Figure 6-2: Device view of Modified Design

Next we analyze the Congestion Report generated by Vivado v.2019.1 as a part of ‘Report

Design Analysis’ feature. Issue following command, in the Vivado Tcl Console to print

congestion report in a text file in project directory.

report_design_analysis -congestion -min_congestion_level 3 -file

/home/tahir/DFT/Congestion_Report.txt

Repeat the above command for the case of congestion report for the modified design of

DFT. Congestion report for the original design contains three congestion windows of level-3

in ‘Placer Final Level Congestion Reporting’ and two congestion windows of level 3 and 4 in

‘Initial Estimated Router Congestion Reporting’. Placer Final Level Congestion Reporting and

Initial Estimated Router Congestion Reporting by Vivado are shown in figures 6-3 and 6-4

respectively.

Figure 6-3: Place Final Congestion

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 56

Figure 6-4: Initial Estimated Router Congestion

In case of modified design, congestion report states that “No effective congestion windows

are found above level 3” as shown in figure 6-5. This result can also be anticipated from the

routing congestion reporting per CLBs.

 Figure 6-5: Congestion Report for Modified Design

Above comparison suggests the effectiveness of technique for routing congestion tracing in

High-Level Synthesis flow devised in this research work in a quantitative manner.

6.2 Recommendations for Future Work

While High-Level Synthesis has become the preferred choice for digital designs, there is a

lake of availability of information that can correlate the issues that arise at the end of design

flow and high-level code, routing congestion is one of these issues that can in severe cases

adversely affects the design flow. The research work presented above can be further

improved to include designs with multiple synthesizable high-level code files. This technique

can be automated in a way that all the suggested tools are applied to the congested design

in a sequence with one single command and the results are reported to the designer at the

end of congestion analysis in a form similar to figure 5-17 describing lines of high-level code

responsible for congestion. For extracting congested nets from the implemented design,

nets corresponding to all tiles present in the congested windows can also be considered

along with the nets of CLBs with congestion above a certain level. A further step towards the

automation of above suggested routing congestion tracing technique could be that at the

final step, some processing be carried on the high-level code based on the information

related to the lines of code responsible for the congestion in the final stages to minimize this

congestion. Some suggestions could also be reported to the designer at the end of

congestion tracing analysis on how to improve the high-level design for lowering routing

congestion in the implemented design at the final stages of design flow.

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 57

APPENDIX A

NDFT.cpp

//DFT Function Implementation using Numerical Sin and Cosine Functions

//Device and Timing//

//clk 05

//xc7z020clg484-1

#define SIZE 8 // Size of Array

#define N 20 // Number of numerical iterations to get sin/cos values for Maclaurin Srs

#define SIZEA 8

float SIN (double X);

float COS (double X);

void NDFT (double X_R[SIZEA], double X_I[SIZEA])

{

 double X_Real [2000];

 double X_Imag [2000];

 double X_Temp [2000];

 double w;

 double c,s;

 double dummy;

 int i,j;

 for (i = 0; i < SIZE; i++) {

#pragma HLS UNROLL

 X_Real [i] = 0.0;

 X_Imag [i] = 0.0;

 w = -(((2.0 * 3.141592653589) / SIZE) * (i));

 for (j=0; j< SIZE; j++) {

 s = SIN(j * w);

 c = COS(j * w);

 X_Real[i] += (X_R[j] * c - X_I[j] * s);

 X_Imag[i] += (X_R[j] * s + X_I[j] * c);

 dummy = c * s;

 X_Temp[i] = (dummy * i * j);

 }

 }

 for (int b =0; b<SIZE; b++) {

 X_R[b] = X_Real[b];

 X_I[b] = X_Imag[b];

 }

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 58

}

float SIN (double X)

{

#pragma HLS INLINE

 double X_pow;

 long X_fact;

 float sum;

 X_pow = X;

 X_fact = 1;

 sum = 0;

 int i;

 int count = 0;

 int dummy;

 for (i = 0; i < N; i++) {

#pragma HLS PIPELINE

 if(i%2==0)

 sum += X_pow/X_fact;

 else

 sum -= X_pow/X_fact;

 X_fact = X_fact * (X_fact+1);

 X_pow = X_pow * X * X;

 count = count+i*2;

 dummy = count-i/2;

 if(i%2==0)

 count = count+i*2;

 else

 dummy = count-i/2;

 }

return sum;

}

float COS (double X)

{

#pragma HLS INLINE

 double X_pow;

 long X_fact;

 float sum;

 X_pow = 1;

 X_fact = 1;

 sum = 0;

 int i;

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 59

 int count = 0;

 int dummy ;

 for (i = 0; i < N; i++) {

#pragma HLS PIPELINE

 if(i%2==0)

 sum -= X_pow/X_fact;

 else

 sum += X_pow/X_fact;

 X_fact = X_fact * (X_fact+1);

 X_pow = X_pow * X * X;

 count = count+i/2;

 dummy = count-i*2;

 if(i%2==0)

 count = count+i/2;

 else

 dummy = count-i*2;

 }

return sum;

}

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 60

APPENDIX B

NDFT_csynth.rpt

==

== Vivado HLS Report for 'NDFT'

==

* Date: Tue Oct 8 14:11:58 2019

* Version: 2019.1 (Build 2552052 on Fri May 24 15:28:33 MDT 2019)

* Project: DFT_prj

* Solution: solution1

* Product family: zynq

* Target device: xc7z020-clg484-1

==

== Performance Estimates

==

+ Timing (ns):

 * Summary:

 +--------+-------+----------+------------+

 | Clock | Target| Estimated| Uncertainty|

 +--------+-------+----------+------------+

 |ap_clk | 5.00| 6.562| 0.62|

 +--------+-------+----------+------------+

+ Latency (clock cycles):

 * Summary:

 +-------+-------+-------+-------+---------+

 | Latency | Interval | Pipeline|

 | min | max | min | max | Type |

 +-------+-------+-------+-------+---------+

 | 66081| 66081| 66081| 66081| none |

 +-------+-------+-------+-------+---------+

 + Detail:

 * Instance:

 N/A

 * Loop:

 +-------------+------+------+----------+-----------+-----------+------+----------+

 | | Latency | Iteration| Initiation Interval | Trip | |

 | Loop Name | min | max | Latency | achieved | target | Count| Pipelined|

 +-------------+------+------+----------+-----------+-----------+------+----------+

 |- Loop 1 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 1.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 1.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 2 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 2.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 2.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 3 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 3.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 3.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 4 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 4.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 4.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 5 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 5.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 5.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 6 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 6.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 6.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 7 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 7.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 7.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 8 | 8256| 8256| 1032| -| -| 8| no |

 | + Loop 8.1 | 483| 483| 85| 21| 1| 20| yes |

 | + Loop 8.2 | 483| 483| 85| 21| 1| 20| yes |

 |- Loop 9 | 24| 24| 3| -| -| 8| no |

 +-------------+------+------+----------+-----------+-----------+------+----------+

==

== Utilization Estimates

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 61

==

* Summary:

+-----------------+---------+-------+--------+-------+-----+

| Name | BRAM_18K| DSP48E| FF | LUT | URAM|

+-----------------+---------+-------+--------+-------+-----+

|DSP | -| -| -| -| -|

|Expression | -| -| 0| 2824| -|

|FIFO | -| -| -| -| -|

|Instance | -| 210| 25607| 11687| -|

|Memory | 16| -| 0| 0| 0|

|Multiplexer | -| -| -| 4599| -|

|Register | 0| -| 11120| 1024| -|

+-----------------+---------+-------+--------+-------+-----+

|Total | 16| 210| 36727| 20134| 0|

+-----------------+---------+-------+--------+-------+-----+

|Available | 280| 220| 106400| 53200| 0|

+-----------------+---------+-------+--------+-------+-----+

|Utilization (%) | 5| 95| 34| 37| 0|

+-----------------+---------+-------+--------+-------+-----+

+ Detail:

 * Instance:

 +---+--+------

---+-------+------+------+-----+

 | Instance | Module |

BRAM_18K| DSP48E| FF | LUT | URAM|

 +---+--+------

---+-------+------+------+-----+

 |NDFT_dadd_64ns_64ns_64_14_full_dsp_1_U4 |NDFT_dadd_64ns_64ns_64_14_full_dsp_1 |

0| 3| 1047| 1102| 0|

 |NDFT_dadddsub_64ns_64ns_64_14_full_dsp_1_U3 |NDFT_dadddsub_64ns_64ns_64_14_full_dsp_1 |

0| 3| 1047| 1102| 0|

 |NDFT_ddiv_64ns_64ns_64_59_1_U9 |NDFT_ddiv_64ns_64ns_64_59_1 |

0| 0| 6160| 3871| 0|

 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1_U5 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1 |

0| 11| 456| 603| 0|

 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1_U6 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1 |

0| 11| 456| 603| 0|

 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1_U7 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1 |

0| 11| 456| 603| 0|

 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1_U8 |NDFT_dmul_64ns_64ns_64_10_max_dsp_1 |

0| 11| 456| 603| 0|

 |NDFT_fpext_32ns_64_3_1_U2 |NDFT_fpext_32ns_64_3_1 |

0| 0| 100| 138| 0|

 |NDFT_fptrunc_64ns_32_3_1_U1 |NDFT_fptrunc_64ns_32_3_1 |

0| 0| 128| 277| 0|

 |NDFT_mul_64s_64s_64_12_1_U11 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U12 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U13 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U14 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U15 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U16 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U17 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U18 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U19 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U20 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U21 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U22 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U23 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U24 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U25 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_mul_64s_64s_64_12_1_U26 |NDFT_mul_64s_64s_64_12_1 |

0| 10| 922| 135| 0|

 |NDFT_sitodp_64ns_64_8_1_U10 |NDFT_sitodp_64ns_64_8_1 |

0| 0| 549| 625| 0|

 +---+--+------

---+-------+------+------+-----+

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 62

 |Total | |

0| 210| 25607| 11687| 0|

 +---+--+------

---+-------+------+------+-----+

 * DSP48E:

 N/A

 * Memory:

 +----------+-------------+---------+---+----+-----+------+-----+------+-------------+

 | Memory | Module | BRAM_18K| FF| LUT| URAM| Words| Bits| Banks| W*Bits*Banks|

 +----------+-------------+---------+---+----+-----+------+-----+------+-------------+

 |X_Real_U |NDFT_X_Real | 8| 0| 0| 0| 2000| 64| 1| 128000|

 |X_Imag_U |NDFT_X_Real | 8| 0| 0| 0| 2000| 64| 1| 128000|

 +----------+-------------+---------+---+----+-----+------+-----+------+-------------+

 |Total | | 16| 0| 0| 0| 4000| 128| 2| 256000|

 +----------+-------------+---------+---+----+-----+------+-----+------+-------------+

 * FIFO:

 N/A

 * Expression:

 +---------------------------+----------+-------+---+----+------------+------------+

 | Variable Name | Operation| DSP48E| FF| LUT| Bitwidth P0| Bitwidth P1|

 +---------------------------+----------+-------+---+----+------------+------------+

 |add_ln121_1_fu_1866_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_2_fu_1957_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_3_fu_2048_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_4_fu_2139_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_5_fu_2230_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_6_fu_2321_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_7_fu_2412_p2 | + | 0| 0| 15| 5| 1|

 |add_ln121_fu_1775_p2 | + | 0| 0| 15| 5| 1|

 |add_ln130_1_fu_1876_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_2_fu_1967_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_3_fu_2058_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_4_fu_2149_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_5_fu_2240_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_6_fu_2331_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_7_fu_2422_p2 | + | 0| 0| 71| 1| 64|

 |add_ln130_fu_1785_p2 | + | 0| 0| 71| 1| 64|

 |add_ln38_1_fu_1815_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_2_fu_1906_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_3_fu_1997_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_4_fu_2088_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_5_fu_2179_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_6_fu_2270_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_7_fu_2361_p2 | + | 0| 0| 13| 4| 1|

 |add_ln38_fu_1724_p2 | + | 0| 0| 13| 4| 1|

 |add_ln76_1_fu_1832_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_2_fu_1923_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_3_fu_2014_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_4_fu_2105_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_5_fu_2196_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_6_fu_2287_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_7_fu_2378_p2 | + | 0| 0| 15| 5| 1|

 |add_ln76_fu_1741_p2 | + | 0| 0| 15| 5| 1|

 |add_ln87_1_fu_1842_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_2_fu_1933_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_3_fu_2024_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_4_fu_2115_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_5_fu_2206_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_6_fu_2297_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_7_fu_2388_p2 | + | 0| 0| 71| 1| 64|

 |add_ln87_fu_1751_p2 | + | 0| 0| 71| 1| 64|

 |b_fu_2452_p2 | + | 0| 0| 13| 4| 1|

 |icmp_ln121_1_fu_1860_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_2_fu_1951_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_3_fu_2042_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_4_fu_2133_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_5_fu_2224_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_6_fu_2315_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_7_fu_2406_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln121_fu_1769_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln38_1_fu_1809_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_2_fu_1900_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_3_fu_1991_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_4_fu_2082_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_5_fu_2173_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_6_fu_2264_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_7_fu_2355_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln38_fu_1718_p2 | icmp | 0| 0| 11| 4| 5|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 63

 |icmp_ln54_fu_2446_p2 | icmp | 0| 0| 11| 4| 5|

 |icmp_ln76_1_fu_1826_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_2_fu_1917_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_3_fu_2008_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_4_fu_2099_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_5_fu_2190_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_6_fu_2281_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_7_fu_2372_p2 | icmp | 0| 0| 11| 5| 5|

 |icmp_ln76_fu_1735_p2 | icmp | 0| 0| 11| 5| 5|

 |select_ln124_1_fu_1887_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_2_fu_1978_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_3_fu_2069_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_4_fu_2160_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_5_fu_2251_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_6_fu_2342_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_7_fu_2433_p3 | select | 0| 0| 64| 1| 64|

 |select_ln124_fu_1796_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_1_fu_1853_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_2_fu_1944_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_3_fu_2035_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_4_fu_2126_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_5_fu_2217_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_6_fu_2308_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_7_fu_2399_p3 | select | 0| 0| 64| 1| 64|

 |select_ln81_fu_1762_p3 | select | 0| 0| 64| 1| 64|

 |ap_enable_pp0 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp1 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp10 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp11 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp12 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp13 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp14 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp15 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp2 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp3 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp4 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp5 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp6 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp7 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp8 | xor | 0| 0| 2| 1| 2|

 |ap_enable_pp9 | xor | 0| 0| 2| 1| 2|

 +---------------------------+----------+-------+---+----+------------+------------+

 |Total | | 0| 0|2824| 280| 2230|

 +---------------------------+----------+-------+---+----+------------+------------+

 * Multiplexer:

 +---+------+-----------+-----+-----------+

 | Name | LUT | Input Size| Bits| Total Bits|

 +---+------+-----------+-----+-----------+

 |X_I_address0 | 47| 10| 3| 30|

 |X_Imag_address0 | 47| 10| 11| 110|

 |X_Imag_d0 | 44| 9| 64| 576|

 |X_R_address0 | 47| 10| 3| 30|

 |X_Real_address0 | 89| 18| 11| 198|

 |X_Real_d0 | 21| 4| 64| 256|

 |X_fact_0_i3_0_reg_500 | 9| 2| 64| 128|

 |X_fact_0_i3_1_reg_629 | 9| 2| 64| 128|

 |X_fact_0_i3_2_reg_758 | 9| 2| 64| 128|

 |X_fact_0_i3_3_reg_887 | 9| 2| 64| 128|

 |X_fact_0_i3_4_reg_1016 | 9| 2| 64| 128|

 |X_fact_0_i3_5_reg_1145 | 9| 2| 64| 128|

 |X_fact_0_i3_6_reg_1274 | 9| 2| 64| 128|

 |X_fact_0_i3_7_reg_1403 | 9| 2| 64| 128|

 |X_fact_0_i_0_reg_455 | 9| 2| 64| 128|

 |X_fact_0_i_1_reg_584 | 9| 2| 64| 128|

 |X_fact_0_i_2_reg_713 | 9| 2| 64| 128|

 |X_fact_0_i_3_reg_842 | 9| 2| 64| 128|

 |X_fact_0_i_4_reg_971 | 9| 2| 64| 128|

 |X_fact_0_i_5_reg_1100 | 9| 2| 64| 128|

 |X_fact_0_i_6_reg_1229 | 9| 2| 64| 128|

 |X_fact_0_i_7_reg_1358 | 9| 2| 64| 128|

 |X_pow_0_i4_0_reg_512 | 9| 2| 64| 128|

 |X_pow_0_i4_1_reg_641 | 9| 2| 64| 128|

 |X_pow_0_i4_2_reg_770 | 9| 2| 64| 128|

 |X_pow_0_i4_3_reg_899 | 9| 2| 64| 128|

 |X_pow_0_i4_4_reg_1028 | 9| 2| 64| 128|

 |X_pow_0_i4_5_reg_1157 | 9| 2| 64| 128|

 |X_pow_0_i4_6_reg_1286 | 9| 2| 64| 128|

 |X_pow_0_i4_7_reg_1415 | 9| 2| 64| 128|

 |X_pow_0_i_0_reg_467 | 9| 2| 64| 128|

 |X_pow_0_i_1_reg_596 | 9| 2| 64| 128|

 |X_pow_0_i_2_reg_725 | 9| 2| 64| 128|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 64

 |X_pow_0_i_3_reg_854 | 9| 2| 64| 128|

 |X_pow_0_i_4_reg_983 | 9| 2| 64| 128|

 |X_pow_0_i_5_reg_1112 | 9| 2| 64| 128|

 |X_pow_0_i_6_reg_1241 | 9| 2| 64| 128|

 |X_pow_0_i_7_reg_1370 | 9| 2| 64| 128|

 |ap_NS_fsm | 2193| 853| 1| 853|

 |ap_enable_reg_pp0_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp10_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp11_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp12_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp13_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp14_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp15_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp1_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp2_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp3_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp4_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp5_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp6_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp7_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp8_iter4 | 9| 2| 1| 2|

 |ap_enable_reg_pp9_iter4 | 9| 2| 1| 2|

 |ap_phi_mux_X_fact_0_i3_0_phi_fu_504_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_1_phi_fu_633_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_2_phi_fu_762_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_3_phi_fu_891_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_4_phi_fu_1020_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_5_phi_fu_1149_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_6_phi_fu_1278_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i3_7_phi_fu_1407_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_0_phi_fu_459_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_1_phi_fu_588_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_2_phi_fu_717_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_3_phi_fu_846_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_4_phi_fu_975_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_5_phi_fu_1104_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_6_phi_fu_1233_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_fact_0_i_7_phi_fu_1362_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_0_phi_fu_516_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_1_phi_fu_645_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_2_phi_fu_774_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_3_phi_fu_903_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_4_phi_fu_1032_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_5_phi_fu_1161_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_6_phi_fu_1290_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i4_7_phi_fu_1419_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_0_phi_fu_470_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_1_phi_fu_599_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_2_phi_fu_728_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_3_phi_fu_857_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_4_phi_fu_986_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_5_phi_fu_1115_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_6_phi_fu_1244_p4 | 9| 2| 64| 128|

 |ap_phi_mux_X_pow_0_i_7_phi_fu_1373_p4 | 9| 2| 64| 128|

 |ap_phi_mux_i_0_i1_0_phi_fu_481_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_1_phi_fu_610_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_2_phi_fu_739_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_3_phi_fu_868_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_4_phi_fu_997_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_5_phi_fu_1126_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_6_phi_fu_1255_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i1_7_phi_fu_1384_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_0_phi_fu_436_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_1_phi_fu_565_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_2_phi_fu_694_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_3_phi_fu_823_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_4_phi_fu_952_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_5_phi_fu_1081_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_6_phi_fu_1210_p4 | 9| 2| 5| 10|

 |ap_phi_mux_i_0_i_7_phi_fu_1339_p4 | 9| 2| 5| 10|

 |b_0_reg_1427 | 9| 2| 4| 8|

 |empty_10_reg_537 | 9| 2| 64| 128|

 |empty_17_reg_666 | 9| 2| 64| 128|

 |empty_24_reg_795 | 9| 2| 64| 128|

 |empty_31_reg_924 | 9| 2| 64| 128|

 |empty_38_reg_1053 | 9| 2| 64| 128|

 |empty_3_reg_408 | 9| 2| 64| 128|

 |empty_45_reg_1182 | 9| 2| 64| 128|

 |empty_52_reg_1311 | 9| 2| 64| 128|

 |grp_fu_1438_p0 | 85| 17| 64| 1088|

 |grp_fu_1441_p0 | 149| 33| 32| 1056|

 |grp_fu_1460_opcode | 15| 3| 2| 6|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 65

 |grp_fu_1460_p0 | 53| 12| 64| 768|

 |grp_fu_1460_p1 | 21| 4| 64| 256|

 |grp_fu_1464_p0 | 47| 10| 64| 640|

 |grp_fu_1464_p1 | 15| 3| 64| 192|

 |grp_fu_1484_p0 | 97| 20| 64| 1280|

 |grp_fu_1484_p1 | 50| 11| 64| 704|

 |grp_fu_1524_p0 | 85| 17| 64| 1088|

 |grp_fu_1544_p0 | 117| 25| 64| 1600|

 |i_0_i1_0_reg_477 | 9| 2| 5| 10|

 |i_0_i1_1_reg_606 | 9| 2| 5| 10|

 |i_0_i1_2_reg_735 | 9| 2| 5| 10|

 |i_0_i1_3_reg_864 | 9| 2| 5| 10|

 |i_0_i1_4_reg_993 | 9| 2| 5| 10|

 |i_0_i1_5_reg_1122 | 9| 2| 5| 10|

 |i_0_i1_6_reg_1251 | 9| 2| 5| 10|

 |i_0_i1_7_reg_1380 | 9| 2| 5| 10|

 |i_0_i_0_reg_432 | 9| 2| 5| 10|

 |i_0_i_1_reg_561 | 9| 2| 5| 10|

 |i_0_i_2_reg_690 | 9| 2| 5| 10|

 |i_0_i_3_reg_819 | 9| 2| 5| 10|

 |i_0_i_4_reg_948 | 9| 2| 5| 10|

 |i_0_i_5_reg_1077 | 9| 2| 5| 10|

 |i_0_i_6_reg_1206 | 9| 2| 5| 10|

 |i_0_i_7_reg_1335 | 9| 2| 5| 10|

 |j_0_0_reg_420 | 9| 2| 4| 8|

 |j_0_1_reg_549 | 9| 2| 4| 8|

 |j_0_2_reg_678 | 9| 2| 4| 8|

 |j_0_3_reg_807 | 9| 2| 4| 8|

 |j_0_4_reg_936 | 9| 2| 4| 8|

 |j_0_5_reg_1065 | 9| 2| 4| 8|

 |j_0_6_reg_1194 | 9| 2| 4| 8|

 |j_0_7_reg_1323 | 9| 2| 4| 8|

 |storemerge1_reg_524 | 9| 2| 64| 128|

 |storemerge2_reg_653 | 9| 2| 64| 128|

 |storemerge3_reg_782 | 9| 2| 64| 128|

 |storemerge4_reg_911 | 9| 2| 64| 128|

 |storemerge5_reg_1040 | 9| 2| 64| 128|

 |storemerge6_reg_1169 | 9| 2| 64| 128|

 |storemerge7_reg_1298 | 9| 2| 64| 128|

 |storemerge_reg_395 | 9| 2| 64| 128|

 |sum_0_i2_0_reg_488 | 9| 2| 32| 64|

 |sum_0_i2_1_reg_617 | 9| 2| 32| 64|

 |sum_0_i2_2_reg_746 | 9| 2| 32| 64|

 |sum_0_i2_3_reg_875 | 9| 2| 32| 64|

 |sum_0_i2_4_reg_1004 | 9| 2| 32| 64|

 |sum_0_i2_5_reg_1133 | 9| 2| 32| 64|

 |sum_0_i2_6_reg_1262 | 9| 2| 32| 64|

 |sum_0_i2_7_reg_1391 | 9| 2| 32| 64|

 |sum_0_i_0_reg_443 | 9| 2| 32| 64|

 |sum_0_i_1_reg_572 | 9| 2| 32| 64|

 |sum_0_i_2_reg_701 | 9| 2| 32| 64|

 |sum_0_i_3_reg_830 | 9| 2| 32| 64|

 |sum_0_i_4_reg_959 | 9| 2| 32| 64|

 |sum_0_i_5_reg_1088 | 9| 2| 32| 64|

 |sum_0_i_6_reg_1217 | 9| 2| 32| 64|

 |sum_0_i_7_reg_1346 | 9| 2| 32| 64|

 +---+------+-----------+-----+-----------+

 |Total | 4599| 1375| 6611| 22419|

 +---+------+-----------+-----+-----------+

 * Register:

 +--------------------------+-----+----+-----+-----------+

 | Name | FF | LUT| Bits| Const Bits|

 +--------------------------+-----+----+-----+-----------+

 |X_Imag_load_reg_3221 | 64| 0| 64| 0|

 |X_Real_load_reg_3216 | 64| 0| 64| 0|

 |X_fact_0_i3_0_reg_500 | 64| 0| 64| 0|

 |X_fact_0_i3_1_reg_629 | 64| 0| 64| 0|

 |X_fact_0_i3_2_reg_758 | 64| 0| 64| 0|

 |X_fact_0_i3_3_reg_887 | 64| 0| 64| 0|

 |X_fact_0_i3_4_reg_1016 | 64| 0| 64| 0|

 |X_fact_0_i3_5_reg_1145 | 64| 0| 64| 0|

 |X_fact_0_i3_6_reg_1274 | 64| 0| 64| 0|

 |X_fact_0_i3_7_reg_1403 | 64| 0| 64| 0|

 |X_fact_0_i_0_reg_455 | 64| 0| 64| 0|

 |X_fact_0_i_1_reg_584 | 64| 0| 64| 0|

 |X_fact_0_i_2_reg_713 | 64| 0| 64| 0|

 |X_fact_0_i_3_reg_842 | 64| 0| 64| 0|

 |X_fact_0_i_4_reg_971 | 64| 0| 64| 0|

 |X_fact_0_i_5_reg_1100 | 64| 0| 64| 0|

 |X_fact_0_i_6_reg_1229 | 64| 0| 64| 0|

 |X_fact_0_i_7_reg_1358 | 64| 0| 64| 0|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 66

 |X_pow_0_i4_0_reg_512 | 64| 0| 64| 0|

 |X_pow_0_i4_1_reg_641 | 64| 0| 64| 0|

 |X_pow_0_i4_2_reg_770 | 64| 0| 64| 0|

 |X_pow_0_i4_3_reg_899 | 64| 0| 64| 0|

 |X_pow_0_i4_4_reg_1028 | 64| 0| 64| 0|

 |X_pow_0_i4_5_reg_1157 | 64| 0| 64| 0|

 |X_pow_0_i4_6_reg_1286 | 64| 0| 64| 0|

 |X_pow_0_i4_7_reg_1415 | 64| 0| 64| 0|

 |X_pow_0_i_0_reg_467 | 64| 0| 64| 0|

 |X_pow_0_i_1_reg_596 | 64| 0| 64| 0|

 |X_pow_0_i_2_reg_725 | 64| 0| 64| 0|

 |X_pow_0_i_3_reg_854 | 64| 0| 64| 0|

 |X_pow_0_i_4_reg_983 | 64| 0| 64| 0|

 |X_pow_0_i_5_reg_1112 | 64| 0| 64| 0|

 |X_pow_0_i_6_reg_1241 | 64| 0| 64| 0|

 |X_pow_0_i_7_reg_1370 | 64| 0| 64| 0|

 |add_ln121_1_reg_2621 | 5| 0| 5| 0|

 |add_ln121_2_reg_2712 | 5| 0| 5| 0|

 |add_ln121_3_reg_2803 | 5| 0| 5| 0|

 |add_ln121_4_reg_2894 | 5| 0| 5| 0|

 |add_ln121_5_reg_2985 | 5| 0| 5| 0|

 |add_ln121_6_reg_3076 | 5| 0| 5| 0|

 |add_ln121_7_reg_3157 | 5| 0| 5| 0|

 |add_ln121_reg_2530 | 5| 0| 5| 0|

 |add_ln130_1_reg_2631 | 64| 0| 64| 0|

 |add_ln130_2_reg_2722 | 64| 0| 64| 0|

 |add_ln130_3_reg_2813 | 64| 0| 64| 0|

 |add_ln130_4_reg_2904 | 64| 0| 64| 0|

 |add_ln130_5_reg_2995 | 64| 0| 64| 0|

 |add_ln130_6_reg_3086 | 64| 0| 64| 0|

 |add_ln130_7_reg_3167 | 64| 0| 64| 0|

 |add_ln130_reg_2540 | 64| 0| 64| 0|

 |add_ln38_1_reg_2568 | 4| 0| 4| 0|

 |add_ln38_2_reg_2659 | 4| 0| 4| 0|

 |add_ln38_3_reg_2750 | 4| 0| 4| 0|

 |add_ln38_4_reg_2841 | 4| 0| 4| 0|

 |add_ln38_5_reg_2932 | 4| 0| 4| 0|

 |add_ln38_6_reg_3023 | 4| 0| 4| 0|

 |add_ln38_7_reg_3114 | 4| 0| 4| 0|

 |add_ln38_reg_2477 | 4| 0| 4| 0|

 |add_ln76_1_reg_2592 | 5| 0| 5| 0|

 |add_ln76_2_reg_2683 | 5| 0| 5| 0|

 |add_ln76_3_reg_2774 | 5| 0| 5| 0|

 |add_ln76_4_reg_2865 | 5| 0| 5| 0|

 |add_ln76_5_reg_2956 | 5| 0| 5| 0|

 |add_ln76_6_reg_3047 | 5| 0| 5| 0|

 |add_ln76_7_reg_3128 | 5| 0| 5| 0|

 |add_ln76_reg_2501 | 5| 0| 5| 0|

 |add_ln87_1_reg_2602 | 64| 0| 64| 0|

 |add_ln87_2_reg_2693 | 64| 0| 64| 0|

 |add_ln87_3_reg_2784 | 64| 0| 64| 0|

 |add_ln87_4_reg_2875 | 64| 0| 64| 0|

 |add_ln87_5_reg_2966 | 64| 0| 64| 0|

 |add_ln87_6_reg_3057 | 64| 0| 64| 0|

 |add_ln87_7_reg_3138 | 64| 0| 64| 0|

 |add_ln87_reg_2511 | 64| 0| 64| 0|

 |ap_CS_fsm | 852| 0| 852| 0|

 |ap_enable_reg_pp0_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp0_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp0_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp0_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp0_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp10_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp10_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp10_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp10_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp10_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp11_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp11_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp11_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp11_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp11_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp12_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp12_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp12_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp12_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp12_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp13_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp13_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp13_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp13_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp13_iter4 | 1| 0| 1| 0|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 67

 |ap_enable_reg_pp14_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp14_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp14_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp14_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp14_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp15_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp15_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp15_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp15_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp15_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp1_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp1_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp1_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp1_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp1_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp2_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp2_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp2_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp2_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp2_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp3_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp3_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp3_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp3_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp3_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp4_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp4_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp4_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp4_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp4_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp5_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp5_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp5_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp5_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp5_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp6_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp6_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp6_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp6_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp6_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp7_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp7_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp7_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp7_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp7_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp8_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp8_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp8_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp8_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp8_iter4 | 1| 0| 1| 0|

 |ap_enable_reg_pp9_iter0 | 1| 0| 1| 0|

 |ap_enable_reg_pp9_iter1 | 1| 0| 1| 0|

 |ap_enable_reg_pp9_iter2 | 1| 0| 1| 0|

 |ap_enable_reg_pp9_iter3 | 1| 0| 1| 0|

 |ap_enable_reg_pp9_iter4 | 1| 0| 1| 0|

 |b_0_reg_1427 | 4| 0| 4| 0|

 |b_reg_3195 | 4| 0| 4| 0|

 |empty_10_reg_537 | 64| 0| 64| 0|

 |empty_17_reg_666 | 64| 0| 64| 0|

 |empty_24_reg_795 | 64| 0| 64| 0|

 |empty_31_reg_924 | 64| 0| 64| 0|

 |empty_38_reg_1053 | 64| 0| 64| 0|

 |empty_3_reg_408 | 64| 0| 64| 0|

 |empty_45_reg_1182 | 64| 0| 64| 0|

 |empty_52_reg_1311 | 64| 0| 64| 0|

 |i_0_i1_0_reg_477 | 5| 0| 5| 0|

 |i_0_i1_1_reg_606 | 5| 0| 5| 0|

 |i_0_i1_2_reg_735 | 5| 0| 5| 0|

 |i_0_i1_3_reg_864 | 5| 0| 5| 0|

 |i_0_i1_4_reg_993 | 5| 0| 5| 0|

 |i_0_i1_5_reg_1122 | 5| 0| 5| 0|

 |i_0_i1_6_reg_1251 | 5| 0| 5| 0|

 |i_0_i1_7_reg_1380 | 5| 0| 5| 0|

 |i_0_i_0_reg_432 | 5| 0| 5| 0|

 |i_0_i_1_reg_561 | 5| 0| 5| 0|

 |i_0_i_2_reg_690 | 5| 0| 5| 0|

 |i_0_i_3_reg_819 | 5| 0| 5| 0|

 |i_0_i_4_reg_948 | 5| 0| 5| 0|

 |i_0_i_5_reg_1077 | 5| 0| 5| 0|

 |i_0_i_6_reg_1206 | 5| 0| 5| 0|

 |i_0_i_7_reg_1335 | 5| 0| 5| 0|

 |icmp_ln121_1_reg_2617 | 1| 0| 1| 0|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 68

 |icmp_ln121_2_reg_2708 | 1| 0| 1| 0|

 |icmp_ln121_3_reg_2799 | 1| 0| 1| 0|

 |icmp_ln121_4_reg_2890 | 1| 0| 1| 0|

 |icmp_ln121_5_reg_2981 | 1| 0| 1| 0|

 |icmp_ln121_6_reg_3072 | 1| 0| 1| 0|

 |icmp_ln121_7_reg_3153 | 1| 0| 1| 0|

 |icmp_ln121_reg_2526 | 1| 0| 1| 0|

 |icmp_ln76_1_reg_2588 | 1| 0| 1| 0|

 |icmp_ln76_2_reg_2679 | 1| 0| 1| 0|

 |icmp_ln76_3_reg_2770 | 1| 0| 1| 0|

 |icmp_ln76_4_reg_2861 | 1| 0| 1| 0|

 |icmp_ln76_5_reg_2952 | 1| 0| 1| 0|

 |icmp_ln76_6_reg_3043 | 1| 0| 1| 0|

 |icmp_ln76_7_reg_3124 | 1| 0| 1| 0|

 |icmp_ln76_reg_2497 | 1| 0| 1| 0|

 |j_0_0_reg_420 | 4| 0| 4| 0|

 |j_0_1_reg_549 | 4| 0| 4| 0|

 |j_0_2_reg_678 | 4| 0| 4| 0|

 |j_0_3_reg_807 | 4| 0| 4| 0|

 |j_0_4_reg_936 | 4| 0| 4| 0|

 |j_0_5_reg_1065 | 4| 0| 4| 0|

 |j_0_6_reg_1194 | 4| 0| 4| 0|

 |j_0_7_reg_1323 | 4| 0| 4| 0|

 |mul_ln130_1_reg_2636 | 64| 0| 64| 0|

 |mul_ln130_2_reg_2727 | 64| 0| 64| 0|

 |mul_ln130_3_reg_2818 | 64| 0| 64| 0|

 |mul_ln130_4_reg_2909 | 64| 0| 64| 0|

 |mul_ln130_5_reg_3000 | 64| 0| 64| 0|

 |mul_ln130_6_reg_3091 | 64| 0| 64| 0|

 |mul_ln130_7_reg_3172 | 64| 0| 64| 0|

 |mul_ln130_reg_2545 | 64| 0| 64| 0|

 |mul_ln87_1_reg_2607 | 64| 0| 64| 0|

 |mul_ln87_2_reg_2698 | 64| 0| 64| 0|

 |mul_ln87_3_reg_2789 | 64| 0| 64| 0|

 |mul_ln87_4_reg_2880 | 64| 0| 64| 0|

 |mul_ln87_5_reg_2971 | 64| 0| 64| 0|

 |mul_ln87_6_reg_3062 | 64| 0| 64| 0|

 |mul_ln87_7_reg_3143 | 64| 0| 64| 0|

 |mul_ln87_reg_2516 | 64| 0| 64| 0|

 |reg_1563 | 64| 0| 64| 0|

 |reg_1569 | 64| 0| 64| 0|

 |reg_1583 | 64| 0| 64| 0|

 |reg_1588 | 64| 0| 64| 0|

 |reg_1600 | 64| 0| 64| 0|

 |reg_1605 | 64| 0| 64| 0|

 |reg_1612 | 64| 0| 64| 0|

 |reg_1634 | 64| 0| 64| 0|

 |reg_1646 | 64| 0| 64| 0|

 |reg_1665 | 64| 0| 64| 0|

 |reg_1671 | 64| 0| 64| 0|

 |reg_1677 | 64| 0| 64| 0|

 |reg_1682 | 64| 0| 64| 0|

 |reg_1687 | 64| 0| 64| 0|

 |reg_1692 | 64| 0| 64| 0|

 |reg_1701 | 64| 0| 64| 0|

 |reg_1710 | 64| 0| 64| 0|

 |select_ln124_1_reg_2641 | 64| 0| 64| 0|

 |select_ln124_2_reg_2732 | 64| 0| 64| 0|

 |select_ln124_3_reg_2823 | 64| 0| 64| 0|

 |select_ln124_4_reg_2914 | 64| 0| 64| 0|

 |select_ln124_5_reg_3005 | 64| 0| 64| 0|

 |select_ln124_6_reg_3096 | 64| 0| 64| 0|

 |select_ln124_7_reg_3177 | 64| 0| 64| 0|

 |select_ln124_reg_2550 | 64| 0| 64| 0|

 |select_ln81_1_reg_2612 | 64| 0| 64| 0|

 |select_ln81_2_reg_2703 | 64| 0| 64| 0|

 |select_ln81_3_reg_2794 | 64| 0| 64| 0|

 |select_ln81_4_reg_2885 | 64| 0| 64| 0|

 |select_ln81_5_reg_2976 | 64| 0| 64| 0|

 |select_ln81_6_reg_3067 | 64| 0| 64| 0|

 |select_ln81_7_reg_3148 | 64| 0| 64| 0|

 |select_ln81_reg_2521 | 64| 0| 64| 0|

 |storemerge1_reg_524 | 64| 0| 64| 0|

 |storemerge2_reg_653 | 64| 0| 64| 0|

 |storemerge3_reg_782 | 64| 0| 64| 0|

 |storemerge4_reg_911 | 64| 0| 64| 0|

 |storemerge5_reg_1040 | 64| 0| 64| 0|

 |storemerge6_reg_1169 | 64| 0| 64| 0|

 |storemerge7_reg_1298 | 64| 0| 64| 0|

 |storemerge_reg_395 | 64| 0| 64| 0|

 |sum_0_i2_0_reg_488 | 32| 0| 32| 0|

 |sum_0_i2_1_reg_617 | 32| 0| 32| 0|

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 69

 |sum_0_i2_2_reg_746 | 32| 0| 32| 0|

 |sum_0_i2_3_reg_875 | 32| 0| 32| 0|

 |sum_0_i2_4_reg_1004 | 32| 0| 32| 0|

 |sum_0_i2_5_reg_1133 | 32| 0| 32| 0|

 |sum_0_i2_6_reg_1262 | 32| 0| 32| 0|

 |sum_0_i2_7_reg_1391 | 32| 0| 32| 0|

 |sum_0_i_0_reg_443 | 32| 0| 32| 0|

 |sum_0_i_1_reg_572 | 32| 0| 32| 0|

 |sum_0_i_2_reg_701 | 32| 0| 32| 0|

 |sum_0_i_3_reg_830 | 32| 0| 32| 0|

 |sum_0_i_4_reg_959 | 32| 0| 32| 0|

 |sum_0_i_5_reg_1088 | 32| 0| 32| 0|

 |sum_0_i_6_reg_1217 | 32| 0| 32| 0|

 |sum_0_i_7_reg_1346 | 32| 0| 32| 0|

 |trunc_ln121_1_reg_2626 | 1| 0| 1| 0|

 |trunc_ln121_2_reg_2717 | 1| 0| 1| 0|

 |trunc_ln121_3_reg_2808 | 1| 0| 1| 0|

 |trunc_ln121_4_reg_2899 | 1| 0| 1| 0|

 |trunc_ln121_5_reg_2990 | 1| 0| 1| 0|

 |trunc_ln121_6_reg_3081 | 1| 0| 1| 0|

 |trunc_ln121_7_reg_3162 | 1| 0| 1| 0|

 |trunc_ln121_reg_2535 | 1| 0| 1| 0|

 |trunc_ln76_1_reg_2597 | 1| 0| 1| 0|

 |trunc_ln76_2_reg_2688 | 1| 0| 1| 0|

 |trunc_ln76_3_reg_2779 | 1| 0| 1| 0|

 |trunc_ln76_4_reg_2870 | 1| 0| 1| 0|

 |trunc_ln76_5_reg_2961 | 1| 0| 1| 0|

 |trunc_ln76_6_reg_3052 | 1| 0| 1| 0|

 |trunc_ln76_7_reg_3133 | 1| 0| 1| 0|

 |trunc_ln76_reg_2506 | 1| 0| 1| 0|

 |zext_ln56_reg_3200 | 4| 0| 64| 60|

 |icmp_ln121_1_reg_2617 | 64| 32| 1| 0|

 |icmp_ln121_2_reg_2708 | 64| 32| 1| 0|

 |icmp_ln121_3_reg_2799 | 64| 32| 1| 0|

 |icmp_ln121_4_reg_2890 | 64| 32| 1| 0|

 |icmp_ln121_5_reg_2981 | 64| 32| 1| 0|

 |icmp_ln121_6_reg_3072 | 64| 32| 1| 0|

 |icmp_ln121_7_reg_3153 | 64| 32| 1| 0|

 |icmp_ln121_reg_2526 | 64| 32| 1| 0|

 |icmp_ln76_1_reg_2588 | 64| 32| 1| 0|

 |icmp_ln76_2_reg_2679 | 64| 32| 1| 0|

 |icmp_ln76_3_reg_2770 | 64| 32| 1| 0|

 |icmp_ln76_4_reg_2861 | 64| 32| 1| 0|

 |icmp_ln76_5_reg_2952 | 64| 32| 1| 0|

 |icmp_ln76_6_reg_3043 | 64| 32| 1| 0|

 |icmp_ln76_7_reg_3124 | 64| 32| 1| 0|

 |icmp_ln76_reg_2497 | 64| 32| 1| 0|

 |trunc_ln121_1_reg_2626 | 64| 32| 1| 0|

 |trunc_ln121_2_reg_2717 | 64| 32| 1| 0|

 |trunc_ln121_3_reg_2808 | 64| 32| 1| 0|

 |trunc_ln121_4_reg_2899 | 64| 32| 1| 0|

 |trunc_ln121_5_reg_2990 | 64| 32| 1| 0|

 |trunc_ln121_6_reg_3081 | 64| 32| 1| 0|

 |trunc_ln121_7_reg_3162 | 64| 32| 1| 0|

 |trunc_ln121_reg_2535 | 64| 32| 1| 0|

 |trunc_ln76_1_reg_2597 | 64| 32| 1| 0|

 |trunc_ln76_2_reg_2688 | 64| 32| 1| 0|

 |trunc_ln76_3_reg_2779 | 64| 32| 1| 0|

 |trunc_ln76_4_reg_2870 | 64| 32| 1| 0|

 |trunc_ln76_5_reg_2961 | 64| 32| 1| 0|

 |trunc_ln76_6_reg_3052 | 64| 32| 1| 0|

 |trunc_ln76_7_reg_3133 | 64| 32| 1| 0|

 |trunc_ln76_reg_2506 | 64| 32| 1| 0|

 +--------------------------+-----+----+-----+-----------+

 |Total |11120|1024| 9164| 60|

 +--------------------------+-----+----+-----+-----------+

==

== Interface

==

* Summary:

+--------------+-----+-----+------------+--------------+--------------+

| RTL Ports | Dir | Bits| Protocol | Source Object| C Type |

+--------------+-----+-----+------------+--------------+--------------+

|ap_clk | in | 1| ap_ctrl_hs | NDFT | return value |

|ap_rst | in | 1| ap_ctrl_hs | NDFT | return value |

|ap_start | in | 1| ap_ctrl_hs | NDFT | return value |

|ap_done | out | 1| ap_ctrl_hs | NDFT | return value |

|ap_idle | out | 1| ap_ctrl_hs | NDFT | return value |

|ap_ready | out | 1| ap_ctrl_hs | NDFT | return value |

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 70

|X_R_address0 | out | 3| ap_memory | X_R | array |

|X_R_ce0 | out | 1| ap_memory | X_R | array |

|X_R_we0 | out | 1| ap_memory | X_R | array |

|X_R_d0 | out | 64| ap_memory | X_R | array |

|X_R_q0 | in | 64| ap_memory | X_R | array |

|X_I_address0 | out | 3| ap_memory | X_I | array |

|X_I_ce0 | out | 1| ap_memory | X_I | array |

|X_I_we0 | out | 1| ap_memory | X_I | array |

|X_I_d0 | out | 64| ap_memory | X_I | array |

|X_I_q0 | in | 64| ap_memory | X_I | array |

+--------------+-----+-----+------------+--------------+--------------+

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 71

APPENDIX C

correlate_cumulated.py

import csv

reading csv to list [['code_lineNo', 'hls_net_name'] e.g. ['0', 'X_R']]

with open('HLS_nts.csv', 'r') as f:

 reader = csv.reader(f)

 net_names = list(reader)

reading all congested net names to list

with open('Congested_nets.csv', 'r') as f:

 lines = f.read().splitlines()

#count for each HLS_net, occuring how many times in congested nets

for i in range(len(net_names)):

 word = net_names[i][1] # get name of single HLS_Net

 count = (sum(word in line for line in lines))

 net_names[i].append(count)

#filter out HLS_nets with zero match in congested nets

net_names_filter = []

sum = 0

already_present = False;

for word in net_names:

 if(word[2]!=0): # filter for value not 0

 already_present = False # check for already existing in net_names_filter array

 for o in net_names_filter: # if already present in net_names_filter, then add in same row

 if o[0] == word[0] and o[1] == word[1]:

 o[2] = o[2]+word[2]

 already_present = True

 break

 if not already_present:

 net_names_filter.append(word)

 sum = sum + word[2]

already_present = False

concatenate row number and sum

words_filter_v1 = []

for word in net_names_filter:

 already_present = False

 for o in words_filter_v1: # if already present in words_filter, then add in same row

 if o[0] == word[0]: # if row number already present in words_filter, then add in same row

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 72

 o[1] = o[1] + "," + word[1]

 o[2] = o[2] + word[2]

 already_present = True

 break

 if not already_present:

 words_filter_v1.append(word)

words_filter_v1.sort(key=lambda x: x[2], reverse=True)

saving to csv

with open("Match_cumulated.csv", 'wb') as myfile:

 wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)

 wr.writerows(words_filter_v1)

Routing Congestion Tracing in High-Level Synthesis Flow of FPGA based Systems 73

Bibliography

[1] M. Fingeroff and T. Bollaert. High-Level Synthesis Blue Book. Mentor Graphics Corporation, 2010

[2] D. D. Gajski and R. H. Kuhn. Guest Editor’s Introduction: New VLSI Tools. IEEE Computer,

December 1983

[3] Grant Martin, Gary Smith. High-Level Synthesis: Past, Present, and Future, IEEE Design & Test of

Computers, July/August 2009

[4] Donald G. Bailey School of Engineering and Advanced Technology Massey University Palmerston

North, New Zealand. The Advantages and Limitations of High-level synthesis for FPGA Based Image

Processing

[5] J. Sanguinetti. Understanding high-level synthesis design’s advantages. EE Times Asia, 26 April

2010

[6] F. Winterstein, S. Bayliss, and G. A. Constantinides. High-level synthesis of dynamic data

structures: A case study using Vivado HLS. In International Conference on Field Programmable

Technology, 2013

[7] Vivado Design Suite, User Guide. High-Level Synthesis, UG902 (v2012.4). Xilinx, Inc. December 18,

2012

[8] Catapult® High-Level Synthesis data sheet. Mentor

[9] https://www.mentor.com/hls-lp/success/bosch-visiontec

[10] Introduction to FPGA Design with Vivado HLS, UG998 (v1.1). Xilinx, Inc. January 22, 2019

[11] High-Level Synthesis, UG871 (v2017.1). Xilinx, Inc. May 5, 2017

[12] Vivado Design Suite Tcl Command Reference Guide UG835 (v2017.3). Xilinx, Inc. October 04,

2017

[13] Prashant Saxena, Rupesh S. Shelar, Sachin S. Sapatnekar. Routing Congestion in VLSI Circuits:

Estimation and Optimization. Springer, Boston, MA

[14] UltraFast Design Methodology Guide, UG949 (v2018.2). Xilinx, Inc. June 7, 2017

[15] Chi-Li Yu, Kevin Irick. Multidimensional DFT IP Generator for FPGA Platforms. IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. 58, NO. 4, APRIL 2011

 [16] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. Parallel Programming for FPGAs.

http://hlsbook.ucsd.edu. Copyright 2011-2018.

 [17] https://www.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas (SDSoC Development

Environment Help)

https://www.mentor.com/hls-lp/success/bosch-visiontec

