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Summary

In recent years, the development of Systems on Chip (SoCs) is facing increasing
challenges, which are starting to expose the limitations of current design philoso-
phies. In spite of many conservative measures, often at the expense of compu-
tational efficiency, realising a functional SoC has come to require tens of Millions
USDs. Such a tendency threatens to hinder innovation and keeps away applications
that require the efficiency of ASIC. Among them, a prime example are Artificial
Neural Networks (ANNs), which have become one of the most popular research top-
ics and already see many commercial applications in countless fields. The increasing
complexity of ANNs makes them quite demanding in terms of computational power,
so the inefficient approach of modern SoCs is quickly becoming unsuited for them.
This thesis proposes a novel VLSI design framework called SiLago, which has the
potential to overcome the main architectural limitations of modern SoCs while also
cutting their engineering costs. One of the main innovations is the adoption of a
complete hardware approach, where all computation relies on a Coarse Grain Re-
configurable Array (CGRA) of custom blocks that are able to accelerate different
applications reusing the same hardware. Implementing popular algorithms such
as ANNs on a SiLago platform is a good opportunity to prove its advantages and
this is precisely the rationale behind this thesis, which is about the design of two
CGRAs compatible with SiLago and customised to support three classes of ANNs.
One CGRA targets Convolutional Neural Networks (CNN) and Long-Short Term
Memory (LSTM), while the other is suited for Self-Organizing Maps (SOM). In par-
ticular, DataPath Unit and Compression Engine for both types of SiLago blocks
have been designed from scratch. Special care has been given to obtaining versa-
tile and efficient implementation for compression algorithms and for the nonlinear
functions sigmoid, hyperbolic tangent, exponential and softmax required by ANNs.
The design flow has been carried out end-to-end, from algorithm specifications to
post place & route verification. The final results are two fully functional CGRAs,
detailed down to the physical level and accompanied by extensive reports on their
area occupation.
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Chapter 1

The SiLago Framework

SiLago is a novel VLSI design framework, conceived to solve the main problems
that the state-of-the-art SOC designs are facing. It is based on the new concept of
Synchoricity [8], the division of space in a uniform grid. Together with it, the key
proposal is raising the physical design abstraction to Register Transfer Level, by
using coarse grain reconfigurable building blocks called SiLago blocks. These com-
ponents are hardened, i.e. their physical design is already done, so they represent
the new basic element for VLSI designs. By coupling these components with the
idea of Synchoricity, it becomes possible to create arbitrarily complex systems just
by abutting SiLago blocks, without any further logic or physical synthesis. Com-
pared to modern SOCs, this new design philosophy shows the potential to increase
the system efficiency and to cut down most of the engineering costs by enabling
Application and System level synthesis [9]. In the following, Section 1.1 describes
the main problems that modern SOCs are facing, while Section 1.2 details how
SiLago proposes to solve them. Sections 1.2.3 and 1.2.4 analyze the computational
and storage fabrics that are the main interest for this work.

1.1 Modern SOCs and their issues

The increasing design complexity and low power demands of modern applications
are overcoming the improvements in performance offered by technology scaling [10].
This ever-widening architecture efficacy gap has led into the Dark Silicon era, where
power limitations result in exponentially smaller percentage of the chip that can
be active with each processor generation [11]. Since this constraint allows to turn
on only a restricted number of transistors at a given time, it becomes necessary
to use them with the highest possible silicon and computational efficiencies. It is
well established [10] that custom hardware implementations are significantly more
efficient than general purpose, software based approaches; however, it is also clear
that they come at much higher engineering and manufacturing costs. Motivated
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1 – The SiLago Framework

by these arguments, the VLSI design community has settled for a compromise, an
architectural style that achieves only partial customization at two levels. The first
one is relying on heterogeneity in processors. Powerful general purpose VLIW or
superscalar CPUs with deep pipelines and sophisticated control logic are known to
waste a significant amount of energy in overheads, so it is not advisable to use them
for all kinds of applications. Instead, functionalities that require lower performance
can be moved to simpler and smaller processors with a lower power consumption
and greater efficiency. Ultimately, heterogeneity is implemented by including sev-
eral processors with different footprints, and powering only one of them depending
on performance requirements. The second level of customization relies on map-
ping power and performance critical parts of the functionality to custom hardware
designs called accelerators. The two approaches are different, but the underlying
rationale is the same: customizing the hardware to improve computational and
silicon efficiencies. This architectural style based on two optimization levels, called
‘accelerator-rich heterogeneous multi-processor’, naturally comes at a steeper engi-
neering cost, so in order to tackle it SOCs have been based around popular general
purpose processors and their associated interconnect and peripheral systems. In
this way, platforms are built around pre-designed and pre-verified IPs that enable
rapid integration of processors and custom accelerators.
This design approach is well justified, but it is still affected by some fundamen-
tal flaws that threaten to stifle future innovation. The most evident issue is that
customization is still very limited, since it is only focused on improving arithmetic-
logic operations. Storage, interconnect, control and address generation have a far
greater impact on the overall efficiency, but are still handled by bulky centralized
processors. Customizing all elements of an SOC would be overly expensive, so the
inefficient software-centric implementation style is still preferred in spite of its dis-
advantages.
The other main issue that afflicts SOC is the ever-increasing engineering cost. In
spite of the adoption of platform-based design, the expense for designing and man-
ufacturing a SOC has reached hundreds of millions USD as reported in [12], with
around 90% of the total amount being engineering cost. There are several reasons
for this phenomenon, all boiling down to the large abstraction gap between the sys-
tem level and the basic design elements, the standard cells. This distance leads to
an overly wide design space to be searched, as can be seen in Figure 1.1: going down
from the system perspective towards the physical, the number of possible solutions
increases exponentially, making the automation process too long to be profitable.
For this reason, automatic tools are effective only up to the RTL level, with the
result that synthesis from system down to RTL is still largely a manual task. The
severe downside becomes then the introduction of a costly verification step, where
fulfilling the performance constraints is by far the most problematic aspect. The
cost metrics of a design are known with certainty only when the physical design is
finished; all abstraction levels above require the syntheses (manual or automatic) to

10



1.2 – The SiLago Solution

Figure 1.1: Digital systems design space (left). Current standard design flow (right)

make decisions based on estimates. As the abstraction gap increases, the accuracy
of these estimates further degrades, so that the design refinement has to go through
multiple tedious iterations before meeting its constraints. Ultimately, this part of
verification is the main responsible for the huge engineering cost of SOC.

1.2 The SiLago Solution
This Section is meant to provide a general overview of the fundamental concepts
behind SiLago, while a more detailed approach is taken in [12]. An in-depth,
complete explanation of SiLago is available in [13].
The key consideration to be taken from the problems analyzed in Section 1.1 is
that the standard cell-based approach is no longer scalable for modern designs
with billions of gates. The fundamental idea behind SiLago is then raising the
physical abstraction level to RTL: boolean level standard cells should be replaced
by micro-architectures called SiLago blocks as the atomic building components of
VLSI systems. In doing this, it is critical to avoid the same problem that was left
unsolved during the first change from fully custom layouts to standard-cell based
designs. Standard cells in fact only partially raised the abstraction from physical
level when they fixed the circuit level decision for logic but not for wires. Not
only data connections, but also infrastructural ones like clock tree and power lines
must be laid out as part of the physical synthesis step. This flaw has led to even
larger the design spaces and more inaccurate cost metrics. SiLago wants to take
a step forward and completely raise the physical design abstraction to RTL. Once

11



1 – The SiLago Framework

the design is refined down from system to RTL, the dimension and position of not
just every transistor but also every wire segment in the entire design is decided.
This includes all functional wires but also clock trees and power grids. Being able
to compose such regular and predictable designs naturally requires a strict physical
design discipline, and SiLago provides it in the form of Synchoricity. The word
comes from the Greek ‘σύν’, which indicates union or concurrence, and ‘χορός’,
space. It is useful to compare it to the already well known concept of synchronicity:
as a synchronous system implements complex functionality by distributing it over
uniform time frames, so a synchoros system is composed by a regular division of
space. This design philosophy is enforced by using a virtual grid, so that each
instance of a SiLago block occupies a contiguous number of cells. Synchoricity
then enables to build arbitrarily complex systems by just placing compatible types
of SiLago blocks next to each other, i.e. abutting them. Figure 1.2 provides an
example with a typical SiLago-based SOC. Now that the general rule of Synchoricity

Figure 1.2: SOC based on SiLago Framework

has been set, it is possible to explain in detail how SiLago blocks must be designed
to enable it.
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1.2 – The SiLago Solution

1.2.1 SiLago VLSI design flow

SiLago blocks implement micro-architecture level operations, they are 3 to 4 orders
larger than boolean level standard cells and they replace them as atomic building
blocks of VLSI designs. They are hardened, which means that their physical de-
sign is done, so they can be characterized with post-layout accuracy and their cost
metrics can be directly exported to higher abstraction synthesis tools. Just like
standard cells, their design is a one-time engineering effort, which in this case can
be carried out on standard EDA tools for ASIC. The abutment process enabled
by Synchoricity implies that all interconnects of neighbouring SiLago blocks must
align to create a valid VLSI design without any further logic or physical synthesis.
This property is implemented during the hardening process, and it follows essen-
tially three rules. First, no dedicated point-to-point connections are allowed. All
wires whose span goes beyond one block are divided in equal parts and absorbed
within each block. This holds for functional wires, but also for the infrastructural
ones. Second, all these interconnects are brought to the periphery on the correct
position and metal layer, so that they automatically connect when SiLago blocks
are abutted. Third, arbitrary blocks cannot be neighbours. A SiLago-based system
does not allow every block to abut to all others, because it must be still organized
in regular regions that correspond to specific functionalities. This translates into a
difference in the type and number of interconnections depending on the block spe-
cialization: only SiLago cells that are related in functionality can abut correctly.
All the rules just laid out enable rapid generation of valid VLSI design instances
just by aligning blocks on a grid. Moreover, they also ensure that SiLago cells of the
same type are all identical, so that the cost metrics are invariant to their position.
In reality, cells at the region boundaries are slightly different, but there is only a
finite number of possible corner types so they can all be characterized and included
in the model.
The final output of the SiLago physical platform design is a set of hardened SiLago
blocks, each one with its supported micro-architectural operations. From this ab-
straction level true High Level Synthesis becomes viable: tools can map algorithms
with ease, by exploring all combinations of SiLago blocks in different architecture
styles and parallelism. The set of solutions for each algorithm is grouped inside
a separate FIMP (Function Implementation) library, which has to be derived as a
one-time engineering effort. FIMPs then can act as basic blocks for higher abstrac-
tion tools like ALS (Application Level Synthesis) and SLS (System level Synthesis),
opening the possibility of an automated design flow starting from system level. Hav-
ing presented the new concepts of SiLago, it is now possible to summarize how they
overcome the limitations of modern SOC design flow. The key idea of raising the
physical abstraction level reduces the large gap between the overall system view and
the basic building blocks, so that the design space becomes exponentially smaller to
search. Synchoricity leads to functional blocks that are pre-designed, verified and
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1 – The SiLago Framework

characterized with post-layout accuracy, and that can be directly abutted to create
valid VLSI designs without any further logic and physical synthesis. Coupling these
two main innovations together takes down completely the need for costly system
verification, and opens up to the possibility of a fully automated flow from system
level specifications to timing and DRC clean GDSII physical layout. As a recap,
Figure 1.3 takes the traditional SOC flow that was previously shown, and compares
it to the newly proposed SiLago approach.

Figure 1.3: Standard Cell-based flow compared to Synchoros SiLago flow

Up to this point, the attention has been focused on solving the large abstrac-
tion gap problem, but Section 1.1 has also pointed out the need to overcome a
software-centric implementation style and to move towards complete hardware cus-
tomization. SiLago addresses this problem as well, with a system architecture
template based on functional regions that is described in Section 1.2.2.

1.2.2 Silago Regions and Customization
SiLago regions are the enablers of design flexibility and customization. Figure 1.2
provides an overview of a complete SiLago-based SOC, where the organization in
regions is clearly visible. Each one of them is tailored for a specific type of function-
ality in all aspects of its architecture – computation, control, address generation,
interconnect, storage and access to it. The generality and completeness of the
SiLago framework lies in aggregation of the highly customized region types.
SiLago regions are split in two categories: Infrastructural and functional. For the
infrastructural, examples are clock-reset generation, power management, memory
conrol, system control and global NOC. Except for the global NOC, the system
needs only one region instance for each type. The functional regions are dedi-
cated to the execution of applications, and are implemented as two different Coarse
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1.2 – The SiLago Solution

Grain Reconfigurable Arrays (CGRA), built by abutting customized SiLago blocks.
The Dynamic Reconfigurable Resource Array (DRRA) covers computation, control
and address generation, while the Distributed Memory Architecture (DiMArch)
provides streaming scratchpad storage with local address generation. Figure 1.4
presents the two fabrics and a detailed explanation of their content is given in Sec-
tions 1.2.3 and 1.2.4.

Figure 1.4: DRRA and DiMArch structure

Different classes of algorithms require different sets of functionalities, so the
SiLago cells that form these fabrics have to be customized depending on the target
application, as a one-time engineering effort. This research work serves as a direct
example, being in fact the design of a DRRA SiLago basic block to implement three
different classes of Neural Networks. It must be pointed out that in general DRRA
and DiMArch are meant for data-parallel streaming algorithms, but they are not
purely arithmetic and storage fabrics as other CGRA fabrics tend to be. In fact,

15



1 – The SiLago Framework

they have a rich parallel distributed control to handle the necessary FSM hierar-
chy for control of streaming functions. Still, in case of control-intensive algorithms
where the address generation is compile-time dynamic, the fabrics are not suitable
and simple processors named Flexilators have to be coupled with the DRRA to
handle the more complex control loops.
Overall, in modern SOCs general purpose processors handle most of the execution,
while critical computation are left to the accelerators. Instead, in SiLago SOCs the
core functionality is implemented by dedicated hardware (the fabrics), while only
the control-intensive parts are delegated to small general purpose processors. To
customize the execution even further, ALS tools can detect the optimal number of
resources to allocate for an application in order to meet its constraints. This is pos-
sible because all SiLago blocks are characterized in throughput, latency and power
footprint with measurement-level accuracy. Such level of predictability allows then
to reserve just the optimal amount of DRRA, DiMArch cells and flexilators to exe-
cute an application. These clusters can be created and changed dynamically during
runtime and they do not share their resources: different applications employ sepa-
rate components, so the energy and performance guarantees of an application are
not violated when new ones are instantiated at the same time. In other words the
clusters are private, and that is why they are named Private Execution Partitions
(PREXEs). In essence, software-centric heterogeneous multi-processor platforms
are based on time multiplexing of its resources, while PREXes make the SiLago
platform a space division multiplexing platform which instead allows for a com-
plete hardware style implementation. This is ultimately how the SiLago framework
proposes to address and overcome the efficiency limitations in the state-of-the-art
SOCs.

1.2.3 Dynamic Reconfigurable Resource Array - DRRA
DRRA is a coarse grain reconfigurable fabric that targets the computation of data
parallel streaming functions, and is heavily oriented towards vector operations. It is
formed by specific DRRA blocks (also called cells or tiles), as shown in Figure 1.4.
Each block is composed by five main elements: Register File, Address Generation
Unit (AGUs), DataPath Unit (DPU), Sequencer and the Switchbox for the Sliding
Window Interconnect.
The Register File can have different number of locations depending on the appli-
cation, but in all cases it is equipped with two read and two write ports. Unlike
RFs inside standard ALUs that are driven by general purpose processors, the ones
inside the DRRA are provided with dedicated Address Generation Units, or AGUs.
AGUs are reconfigurable FSMs that enable streams of data with spatial and tem-
poral programmability: they support all addressing patterns described by two-level
affine functions, and allow programmable delays. For the algorithms where address
generation is predictable and run-time static, the distributed control of AGUs is
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much more efficient than a centralized processor, because it brings a smaller over-
head and saves on the cost of address transportation.
The DPU is the core of computation inside the DRRA. It offers significant freedom
in design time customization, so its supported operations heavily depend on the
target algorithms. The customization of the DPU for Neural Networks is the core
topic of this work, so it is described in detail in Section 4.
The DRRA sequencer is mainly a configuration unit but it can also handle control
of compile-time static functionalities. Unlike the traditional processor sequencer,
the DRRA sequencer has a small local store of 64 words. The fetch-decode-execute
path is single cycle, i.e. there are no pipeline stages. The main task of the se-
quencer is to setup and launch vector operations. This is done by configuring
Register Files to source and sink a stream of data in right spatio-temporal pattern,
by programming the switchboxes to connect DPU and Register Files, and by pro-
gramming the correct DPU mode. Which vector operations to perform and with
which constraints is decided by loop and/or branch instructions. DRRA is designed
to support only minimal branching and loops, so functionalities that are dominated
by control sequences are instead mapped to the Flexilators, that are tightly coupled
to the Sequencers.
The DRRA intra-regional interconnect scheme consists of a sliding window nearest
neighbor connectivity. Each DPU and RF outputs to a bus (bundle of wires) that
crosses two columns on each side. In this way, each DRRA block has a connectivity
span of five columns, and the overall scheme consists of several overlapping sliding
windows. The output busses, horizontal in their orientation, are intersected by
input busses, vertical in their orientation. Inside each DRRA cell, at the intersec-
tion of input and output bus lie two Switchboxes, one for the RF and one for the
DPU. These Switchboxes can be programmed to select the input source from any
Register File or DPU in the same column or from the two columns on each side.
The Sliding window interconnect and the programmable Switchboxes bring great
flexibility in implementing data flows and are a major contribution to the hardware
customization provided by the DRRA.

1.2.4 Distributed Memory Architecture - DiMArch
The DiMArch is a fabric dedicated to storage, which provides a large scratchpad
memory and a parallel storage access, so as to match the high computation paral-
lelism of the DRRA. DiMArch is also created by array disposition of SiLago cells;
each cell takes the space of one or two DRRA rows so that it has enough room for
an SRAM memory bank. Just like the RF, DiMArch cells are provided with AGUs
that enable flexibility in address generation. The DiMArch banks are glued together
by a circuit-switched NOC, whose switches can be programmed. In this way, differ-
ent SRAM blocks can be clustered to make them look like one larger SRAM. The
circuit switched NOC is preferrable for data transfers because it has low overhead
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1 – The SiLago Framework

when traffic patterns are deterministic. DiMArch blocks do not contain their own
sequencer for configuration, but they are handled by the ones inside the DRRA.
This connection happens by a packet-switched configuration NOC, which has been
chosen because it allows to easily reach any node in the network.
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Chapter 2

Artificial Neural Networks

The three algorithms targeted in this work all belong to the field of Artificial Neural
Networks (ANNs):

• Convolutional Neural Networks (CNN);

• Long Short-Term Memory (LSTM), a subset of Recurrent Neural Networks
(RNN);

• BioSOM, a customized Self-Organizing Map (SOM) for bacterial genome iden-
tification.

Aside from their distinctive features and fields of application, all Neural Networks
are based on a common founding theory, so it is worth to have a general overview on
the concepts that inspired their development. The goal in this introduction is not
to provide an extensive, in-depth knowledge on ANNs, but to just present their role
in the context of Artificial Intelligence and to outline the basic principles behind
their capabilities. The fundamental concepts of ANNs explained in this Chapter
are freely adapted from the two surveys [2] and [14]. According to John McCarthy,
the computer scientist who coined the term AI, this broad field of study can be
defined as "the science and engineering of creating intelligent machines that have
the ability to achieve goals like humans do". Most recently, AI has been given a
more complete definition as the ability of a system to "correctly interpret external
data, learn from such data, and to use those learnings to achieve specific goals and
tasks through flexible adaptation" [15]. Within AI lies the large domain of Machine
Learning (ML), which is defined as "the field of study that gives computers the
ability to learn without being explicitly programmed". Arthur Samuel, the inven-
tor of the term Machine Learning itself, quotes: "A computer can be programmed
so that it will learn to play a better game of checkers than can be played by the
person who wrote the program" [16]. This key consideration allows to better grasp
the difference between ML and standard programming approaches: traditionally,
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algorithms are written ad-hoc to solve specific tasks, and their quality depends di-
rectly on programmer’s skill and knowledge. On the contrary, in ML humans are
only bound to provide a good learning paradigm and data to learn on, then the
machine is capable of building its own functionalities that address the problem.
To our current knowledge, the human brain is simply the best system for learning
and decision-making and that makes it the focus of a relevant area of ML called
Brain-Inspired Computing (BIC). It must be stressed out that the aim of BIC is
not to simulate the complex biological processes that underline a brain. Instead,
BIC starts from existing theories on brain functionality provided by computational
neurobiology, and from them derives abstract, simplified models that emulate the
human learning process to solve specific tasks. A branch called Spiking Comput-
ing is based on the idea that information inside the brain travels in pulses, and
is encoded in their amplitude, width and frequency. The interest of this work lies
instead on Artificial Neural Networks, the branch that models neural processes only
considering the signal amplitudes.

2.1 General Architecture of an Artificial Neural
Network

Taking inspiration from the brain structure, all types of ANNs share a common
underlying architecture, that consists in a network of neurons and interconnections.
To our current knowledge, most of the information processing occurs inside the
neuron. Figure 2.2 shows its structure and details some naming conventions. The

(a) Physical structure of a neuron (b) Computational model of a neuron

Figure 2.1: Biological Neuron and its ANN model. Both pictures taken from [1]

input and output signals of neurons are called ‘activations’ and propagate in the
network through the ‘axons’. An intermediate connection called ‘synapse’ is found
between axons and neurons: it is believed that its task is to describe the relevance of
the incoming signal, so it is modelled as a scaling factor called ‘weight’. Neurons take
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the linear combination of all synapses, add a ‘bias’and then process the whole input.
The whole structure including a neuron and their synapses is called ‘perceptron’.
Research in computational neurobiology suggests that neurons trigger their output
axons only if the overall input crosses a certain threshold. Consequently, activation
functions are modelled in a similar, highly non-linear way. The more common
activation functions are listed in Table 2.1.

Activator Plot Equation

Sigmoid 1
1+e−x

Tanh ex−e−x

ex+e−x

ReLU
 x, x≥ 0

0, x < 0

Parametric
ReLU

 x, x ≥ 0
ax, x < 0

ELU
 x, x ≥ 0

a (ex − 1) , x < 0

Table 2.1: Activation functions and their equations

The similarity of Sigmoid and Hyperbolic Tangent (Tanh) with real neurons be-
havior made them a common choice in the past, but then fell out of favor due to the
stability problems that they induce during training [1]. In the past few years, the
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more modern activators Rectifier Linear Unit (ReLU) and its variants have been
found to solve the previous issues and so have quickly taken over in popularity.
To date, the ReLU activator is the most common choice for CNNs while LSTM
networks still rely on Sigmoid and Tanh.
ANN architectures are organized in neuron layers, as illustrated in Figure 2.2a.
This specific pattern has been chosen since it shows similarities with how some

X1

X2

X3

W11

W34

Layer	1 Layer	2

L1	Input	Neurons

L1	Output	Neurons

(Activations)

Output	Layer

Y1

Y2

Y3

Y4

(a) General ANN structure

Fully Connected

L1	Input	Neurons
L1	Output	Neurons
(Activations)

Output	Layer

Sparsely Connected

(b) FC and SC Layers

Figure 2.2: Typical interconnection schemes of ANNs. Both pictures adapted from [1]

parts of the brain are arranged, a well-known example being the visual cortex.
From the theoretical point of view, each network has a certain depth associated to
it. Considering the ANN as a graph, depth is defined as the longest path (measured
in number of arcs) that a signal can cross while going from the input to the output.
Given the specific network structure, the depth ends up being equivalent to the
number of neuron layers, so in the following the two features will be considered
identical.
Input data is collected by the Input layer, processed by neurons and then passed
onto the Intermediate Layers. The number and type of axons are fixed when de-
signing the network and do not change dynamically; this is a good example of
simplification from the real brain, whose connections evolve over time. Data prop-
agates through layers until it reaches the last one that provides the final outputs
(Output Layer). This procedure of giving an input and retrieving the system out-
put response is called ‘Inference’.
A layer is defined as ‘Fully Connected’ (FC) or ‘Multi-Layer Perceptron’ (MLP)
when each neuron input is connected to all neuron outputs from the preceding
layer. On the other hand, if some of the connections are missing the layer is called
Sparsely Connected (SC). Figure 2.2b gives a visual example.
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In all cases, each weighted sum xj entering the neuron is:

xl+1
j =

mØ
i=1

wl
ijy

l
i + bl ∀ j = 1, . . . , n (2.1)

Where m and n are the number of neurons in layers l and l + 1 respectively. The
relation between neuron outputs and inputs of the next layer is easily expressed as
matrix-vector product:


x1
x2
...

xn


l+1

=


w11 w12 . . . w1m
w21 w22 . . . w2m
... ... . . . ...

wn1 wn2 . . . wnm


l 

y1
y2
...

xm


l

(2.2)

Or in a more coincise form:

xl+1 = Wlyl (2.3)

Where l is the layer number, yl are the l-th neuron outputs, xl the (l+1)-th inputs,
Wl is the l-th weight matrix. The activation function is then applied to each xj to
get the neuron outputs:

yl+1 = f(xl+1) ⇐⇒


y1
y2
...

yn


l+1

=


f(x1)
f(x2)

...
f(xn)


l+1

(2.4)

ANNs that include more than three layers (i.e. more than one hidden layer) are
defined as Deep Neural Networks (DNNs). To date, DNNs can range between five
and more than a thousand layers. Their area of research within ANNs is called
Deep Learning.
Once the ANN structure has been defined, it is possible to detail the process that
enables decision-making capabilities, which is called ‘Training’. It is believed that
the natural brain learns by adjusting the influence of synapses over the signals,
so that the response to a set of inputs can change. As a consequence, ‘Training’
translates into adjusting the weights (wij) to obtain an output response that gets
closer to the ideal. The network learning capabilities are thus highly dependent on
the quality of the Training input set, which should provide an exhaustive represen-
tation of the problem. At first, all weights are initialized to random values. Then,
for each input the learning process takes place in three steps:

1. Inference: input is fed to the network and the output scores are retrieved;
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2. The distance between the ideal scores and the real ones is called Loss and is
evaluated with a Cost (Loss) Function;

3. Weights are updated depending on the Loss to get closer to the ideal behavior.

In many applications, DNNs like CNN and LSTM are faced with classification
problems: all possible outcomes are divided into a set of classes, and the network
task is to identify the one that matches the input. In practice, the final output Layer
needs a different activation function called Classifier, which turns its inputs into a
vector of scores (or probabilities); the highest result corresponds to the identified
class for the input sample. In such cases, the Loss can be related to the difference
between real and expected outcomes, as in this example of Mean Squared Error:

L1(W, y1) = 1
2ëy1 − y1,idealë2 (2.5)

For simplicity, the output layer result ynl−1
1 is just reported as y1. The subscript 1

refers to the first input vector. A prime case of classification is image recognition: a
number of classes is chosen to cover the whole set of possible inputs, then a picture
is given to the network and the output is the estimated class the image belongs to.
In these cases the technique used to train DNNs is the iterative algorithm called
Gradient Descent. The Cost function can be taken on one single input at a time,
averaged over a batch of inputs or even over the whole training set. Each solution
has a different trade-off in terms of speed and stability, but in the following the
most general case will be used. The average over all x is done to obtain a figure of
merit that accounts for all inputs at the same time. Input data is not under the
algorithm’s control, so the only free parameters that can be changed are the wij.
As a consequence, L can be considered only a function of the network weights.

L(W) = 1
N

1
L(W, x0

1) + L(W, x0
2) + · · · + L(W, x0

N)
2

(2.6)

Where W = {W0, W1, . . . , Wnl−1} is the set of all network weights and N is the
number of training inputs.
By iteration, the Gradient Descent finds a series of weight sets W0, W1, . . . , WA

such that the corresponding series of Losses L0, L1, . . . , LA converges to its global
minimum. This condition means that the network has reached the lowest error for
all inputs and so has completed its learning process. It can be proved that, for each
step a, the weight correction that decreases L the fastest is:

Wa+1 = Wa − αa∇L (W) ⇐⇒ wa+1
ij = wa

ij − αa
∂L

∂wij

∀ i, j (2.7)

Where αa is the ‘Learning Rate’, a coefficient whose value can change depending
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on the iteration step.
The most efficient method to compute all partial derivatives is Backpropagation.
Starting from the gradient of L with respect to the output values ∂L/∂ynl−1, the
derivative chain rule allows to obtain all the ∂L/∂wij of the last layer. A similar
computation also brings the ∂L/∂ynl−2, which are equivalent to the output deriva-
tives ∂L/∂ynl−1, but related to the previous neuron layer. From this point, the
same procedure can be applied to layer nl − 2 to get the values of layer nl − 3 and
so on, moving backwards along the network until all weights are covered.
Compared to Inference, Training a DNN requires a lot more computation, storage
and precision, so in most cases it is carried out on HPC (High performance Comput-
ing) systems. Since most embedded devices are driven by low power requirements,
they are restricted to the inference only. For the same reasons, the Silago platform
is limited to Inference as well.
Several types of learning approaches exist, with the main ones being:
Supervised learning: all training samples are labeled, i.e. their corresponding
output class is known and used to drive the update of weights. This is the most
common procedure.
Unsupervised learning: no training inputs are labeled, so the network has to
infer on its own groups of inputs (clusters) that share similar features.
Semi-supervised learning: It is based on the unsupervised approach, but here
a small amount of the input set is labeled so that data clusters can be associated
to actual classes.
Reinforcement Learning: a radically different method from supervised and un-
supervised learning. An agent (the software) is set to achieve a particular goal
by interacting with a given environment. There is no training data available, so
the agent must learn through a trial and error approach by taking actions within
the environment and evaluating the corresponding rewards. Over time, the agent
learns the best policy to maximize the long-term total reward. A common appli-
cation example are games: the environment is the set of game rules and the agent
is a player that tries to win. The result of learning is the optimal strategy, i.e. the
best actions to take at every possible game state that ensure victory.
This concludes the overview on the general properties of ANNs, so now it is worth
shifting the focus on Deep Neural Networks: this domain has become the most pop-
ular branch of AI to date and is also the area including CNN and LSTM networks, so
the following chapter 2.2 takes a more detailed look at its features. Self-Organizing
Maps are a distinct class of ANNs, so they are separately covered in chapter 2.3.

2.2 Deep Neural Networks

DNNs were first proposed in the 1960’s, around twenty years after the theory on
ANNs was laid out. However, the sheer lack of computational power prevented
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their use in practical applications until 1989, when the network LeNet was intro-
duced for hand-written digit recognition [17]. A greater attention towards DNNs
has risen up since the 2010’s thanks to two groundbreaking innovations: A speech
recognition system from Microsoft (2011) and AlexNet (2012) [18], a network that
outperformed all other machine learning approaches in image recognition tasks. In
the recent years, DNN have kept growing in popularity, to the point of becoming
the main research target in the whole AI. Moreover, they deliver state-of-the-art
performance in real applications for many different fields, ranging from multimedia
to genomics. A major example of the success of DNN in the field of image clas-
sification and speech recognition is the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [19]: Algorithms are trained on a common database of 1.2
million images and 1000 classes, each one corresponding to an object. In the infer-
ence phase, they are given new unseen images and they must detect their content.
As already remarked, in 2012 AlexNet (a CNN) led to a breakthrough reduction of
error rate; it can be seen on Figure 2.3 that after only three years NNs managed
to outperform human detection capabilities.

Figure 2.3: ImageNet Competition Winners until 2015. Taken from [2]

The research work in [20] goes into detail on explaining the greater learning
capabilities that are inherent to Deep Neural Networks. It is thought that humans
build their interpretation of external stimuli (like images and speech) by intuitively
decomposing the raw sensory data into multiple sub-elements at different levels
of abstractions, and then putting them all back together to gain a very high-level
representation that can be associated to a known category. This association is
what ultimately provides meaning to the stimuli from the external world. Mov-
ing to ANNs, theoretical results point towards the inherent limitations of shallow
networks in deriving complex interpretations of an input space: it is demonstrated
that the required number of computational elements to describe a given function
increases exponentially as the network depth decreases. In other words, solving AI
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tasks with a comparable degree of reliability as humans is remarkably more diffi-
cult for shallow ANNs than for DNNs. These results strongly suggest that deep
architectures are needed to build more complex functions that are able to describe
high-level abstractions in a similar way as the human brain does. It has been shown
that the initial layers of DNNs are only capable of extracting lower-level features.
By progressing through the network, these features get combined into more and
more complex abstractions, until a very high-level representation is matched to a
known category (class). Following the example of image recognition, pixels are
fed into the first layer, which detects simple elements such as lines and edges. At
subsequent layers, these features are then merged into simple shapes, which are
then further combined into sets of shapes. In the end, the network obtains complex
representations, tries to match them with particular objects or scenes (the classes)
and outputs the probabilities of detection. Ultimately, it has been established that
the deep feature hierarchy is what enables DNNs to achieve superior performance
in all tasks. This general approach to learning is universal and provides DNNs
with the ability to accomplish most kinds of AI tasks; starting from this common
ground, several types of DNNs with different kinds of layers and connectivity have
been developed to specialize on specific tasks. The most widely used variants of
DNNs are precisely the CNN and LSTM networks that are the object of this work,
so they are presented more in detail in Sections 2.2.1 and 2.2.3.

2.2.1 Convolutional Neural Networks
Convolutional Neural Networks are DNNs designed with a structure similar to the
human visual processing system, which makes them highly optimized for learning
abstractions of 2D and 3D images. For these reasons, CNNs are most suited for all
kinds of tasks in the field of Computer Vision, especially image processing.
One of the main benefits of CNNs is the reduced need for Fully Connected layers
as compared to standard DNNs. In a FC layer, each output neuron is connected
to all input neurons, requiring a higher amount of storage and computation. Such
degree of complexity is not needed in CNNs, that are instead modeled as in Figure
2.4.

Figure 2.4: CNN Neuron Layer
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In standard 2-D image recognition algorithms, the presence of a characteristic
feature (for example, a line or an edge) is detected by scanning the picture with
a filter, i.e. performing a convolution. Each output pixel is only associated to a
limited input region, and its magnitude tells whether the feature has been found
or not in that area. The very same concept has been applied to CNN, but in this
case pixels are replaced by neurons and filters are made of weights. Inputs and
outputs of each layer are called Input Feature Maps (IFMs) and Output Feature
Maps (OFMs) respectively. Each OFM neuron only depends on a restricted window
of IFM neurons (called the Receptive Field) through a fixed set of weights. The
same weight values can be shared to compute all OFM elements, introducing a
deep level of structured sparsity that drops down the storage requirements. On the
other hand, CNNs generally require convolutions on a higher dimensionality than
standard 2-D image processing. Figure 2.5 is included as a visual reference. The raw

Figure 2.5: Extended dimensionality of CNN convolutions

input sensory data can be split into C different IFMs, each one called a channel.
A stack of C filters (called a 3-D filter) is applied to each input channel, and
convolution results on the same area across all channels are summed up to become
one entry in the Output Feature Map. The use of M different 3-D filters on the same
IFM stack gives rise to M different OFM channels. Just as in standard techniques,
filters allow to detect specific features, so in CNN the presence of multiple cascaded
convolutional layers allows to combine feature maps towards higher and higher levels
of abstraction. The other big novelty introduced by CNN is that programmers do
not need to design filters and the way of combining them to detect more complex
objects, because the network is capable of learning the parameters on its own
through training.
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2.2.2 CNN structure
A typical CNN requires the presence of several convolutional layers, nonlinear ac-
tivations and 1-3 FC layers in the end that are linked to the final classifier activa-
tion. In addition to those, it may also include some optional layers like Pooling and
Normalization. Normalization is introduced to keep a balanced value distribution
for the neuron layers inputs, which improves the training process and the accuracy
during inference. The current state-of-the-art method is Batch Normalization (BN)
[21]. Each neuron input xl is rescaled to a distribution of mean µ = 0 and variance
σ = 1 with:

xlBN = xl − µ√
σ2 − Ô

γ + β (2.8)

During training the values γ and β are learned, while µ and σ2 are computed for
each batch of inputs xl1, . . . , xlm. For the inference, mean and variance are instead
pre-computed for each layer basing on the whole input data set. This way, all coef-
ficients involved in BN for inference are known a priori, so the operation becomes a
simple linear transformation. It must be stressed out that BN must be performed
just before the nonlinear activators to have effect; if it gets placed after the neurons,
it can be folded into the weight matrices of convolutional/FC layers and result in
no additional computation.
Pooling, also known as sub-sampling, introduces invariance to shifts and distor-
tion of features and also reduces the OFMs size. The OFM is divided into non-
overlapping blocks (receptive fields), and all values within each block are combined
together into a single output value. The more common operations are maximum
extraction or average.
The classifier function that is used for CNN is the Softmax. Given the input to the
final layer xnl−1 = [x1, x2, . . . , xn], the output scores are computed as in Equation
2.9.

yi = SM(xi) = exiqn
j exj

i = 1, . . . , n (2.9)

Softmax turns all inputs into positive values ranging from 0 to 1. Considering also
the property: Ø

yi =
qn
i exiqn
j exj

= 1 (2.10)

Softmax can be seen as an operator that normalizes its inputs into a probability
distribution; output classes are then associated to probabilities, and the highest
score is matched with the winning class. The non-linearity of the exponentials
tends to saturate the highest scores towards 1 and to squish the lowest towards 0,
so that the function acts like a "softened" version of the Max function (hence the
name Softmax).
Figure 2.6 resumes all basic components of a CNN along with their main function-
alities.
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Figure 2.6: Typical CNN Architecture

2.2.3 Recurrent Neural Networks and LSTM

This class of DNN is defined by its peculiar structure that makes it particularly
suited for the world of audio and text processing: RNNs are applied with good
success in speech and audio recognition, as well as machine translation, natural
language processing and audio generation.
The main intuition behind RNNs is that the understanding of written or spoken
language is a process that lasts over time. While having a conversation or reading
a text, the meaning of each word and sentence depends on the understanding of all
previous ones. In other terms, the human language inherently requires memory to
combine past information with the present. Due to their limited structure in which
one output exclusively depends on one single input, standard DNNs cannot provide
this functionality. This led to the creation of Recurrent Neural Networks, in which
the results of an activation layer are fed back to its input. The looped structure
can also be unrolled in multiple copies of the same activation layer, each taking as
input a different xt and the result from a predecessor. Each output sample is fed
to a classifier (e.g. Softmax) just like in all other DNNs. Both the standard and
unrolled structures are pictured in Figure 2.7.

Figure 2.7: Rolled and Unrolled RNN basic blocks
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The inside of a layer also becomes more complex. The so-called Jordan version
of RNN activators loops the output yt back to the input, while the Elman version
reuses the hidden output ht. The whole RNN activator structure is expressed in
Equation 2.11:

ht = σh (whxt + uhft−1 + bh)
yt = σy (wyht + by)

ft−1 =
ht−1, Elman

yt−1, Jordan
(2.11)

Where the subscripts t and t − 1 denote the present and the previous time instant
respectively. Independently on the chosen model, the feedback loop allows the
network to retain information from the past sequence frames in order to understand
the meaning of the current one. Standard RNNs however are affected by a relatively
short context window, which prevents them from learning long-term dependencies.
Long Short-Term Memory networks have been designed in order to overcome this
limitation, at the cost of a more complex internal structure, reported in Figure 2.8.
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Figure 2.8: Elman LSTM Activation Block

Its constituting equations are:

ft = σ (Wfxxt + Wfhht−1 + bf )
it = σ (Wixxt + Wihht−1 + bi)
ot = σ (Woxxt + Wohht−1 + bo)åCt = tanh (Whxxt + Wohht−1 + bo)
Ct = ft ◦ Ct−1 + it ◦ åCt

ht = ot ◦ tanh(Ct)

(2.12)
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The behavior of an LSTM block is ruled by the four activation gates (yellow oper-
ators in the picture): the output values of sigmoid and tanh can decide if a certain
state information is allowed to propagate or is filtered out. The vector Ct retains
information on the Cell t, so it is named Cell state. The Forget Gate ft is used to
control how much of the previous Cell state Ct−1 must be remembered. Adding new
information to Ct−1 requires two components: the Candidate Gate åCt proposes new
values to add, and the Input Gate it decides which of them should be actually used.
In the end, the previous state Ct−1 receives the new information and becomes the
Current State Ct that is propagated to the next block. Finally, the Output Gate
ot acts on a filtered version of Ct to decide the block output ht.
The standard LSTM structure comes with two small variations, the ‘Peephole
LSTM’ [22] and the Gated Recurrent Unit (GRU) in [23]. Since they share the
same working principles as basic LSTM, they are not further detailed.

2.3 Self Organizing Maps and BioSOM network
The Self Organizing Map is an approach introduced by Teuvo Kohonen in 1990
[24], and it constitutes a completely different approach from other ANNs. The
basic computational nodes are still neurons, but instead of being arranged in layers,
they form a 2-D grid of hexagonal or rectangular shape called ‘Map’. The working
principle takes inspiration from the fact that different functionalities of the brain
(such as vision, hearing, speech) are mapped to different spatial locations in the
cerebral cortex. Accordingly, SOM learn over the training data by mapping common
input features to localized areas within the map. In this way, the spatial location
of cells corresponds to a particular domain (or cluster) of input signal patterns.
A visual representation of a SOM array and the data clusters it creates is given in
Figure 2.9:

Figure 2.9: Left: Models of acoustic spectra of Finnish phonemes. Right: clustering of
models into phonemic classes. Picture taken from [3]

The name Self Organizing Map follows from the type of unsupervised learning
that SOM have adopted, that is called Competitive Learning. In the standard

32



2.3 – Self Organizing Maps and BioSOM network

training techniques employed for DNNs, all synapses (weights) "cooperate" by ad-
justing their values to minimize a given Loss function. In SOM instead neurons
compete in the right to respond to a subset of the input data, increasing their spe-
cialization. This ultimately leads to localized groups of neurons that corresponds
to clusters of similar features in the input. Each node (neuron) is associated with
a weight vector of the same size as each input sequence. The map topology is
fixed, so training consists in adjusting the weight vectors to the input data without
spoiling their positioning. Thus, the self-organizing map describes a mapping from
a higher-dimensional input space to a lower-dimensional map space. Once trained,
the map can classify a vector by finding the node with the closest (smallest dis-
tance metric) weight vector to the input space. An example of SOM behavior can
be shown directly by explaining the target algorithm BioSOM.

2.3.1 BioSOM
BioSOM is an SOM-based neural network that targets bacterial genome identifi-
cation. This algorithm retains all main features of standard SOM, but inlcudes
some minor customisations. All the content provided in this chapter is based on a
previous mapping of BioSOM on Silago [25].
The main element that distinguishes BioSOM is the structure, which is not a 2-D
grid but a circular array: this choice is motivated by the nature of genomic data,
which are a continuous circular stream with no start nor end. Since the input
stream is split in multiple portions, only a closed-loop structure can prevent edge
effects. The whole bacterial genome to analyze is divided into an Input Sequence IS,
and each sequence element is a small DNA portion modelled as a vector containing
M nucleotides. Each nucleotide can take a value among the set {A, T, C, G}. N
neurons are arranged in the circle and each of them is assigned a specific position
and a set of M weights matching in size with the inputs. Effectively, BioSOM can
be represented as a N · M weight matrix.
Before the training starts, all neuron weights are initialized to random values. An
input vector I from the IS is then correlated to all neurons. The set {A, T, C, G} is
mapped into couples of coordinates (X, Y ) with equal distance from the origin, so
that a distance function like the sum-of-squared-difference can be used to determine
how "close" each neuron is to I. The neuron with the strongest correlation wins:
this means that the weights of all neighboring neurons are updated to get closer to
the winner and create competition. The update factor β decreases exponentially
with the distance from the winner, to restrict the specialization process only to a
small region around the winning neuron. All inputs I inside the IS are processed in
the same way, and at the end the SOM contains a spatial map of the salient DNA
features. The training process is reported in Algorithm 1.
In practical uses, a separate BioSOM is used for each bacterial strain of interest.
For inference, an unknown genome is extracted and the corresponding new IS is
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correlated to all networks. Tthe BioSOM network that provides the minimum over-
all distance corresponds to the inferred strain.

Algorithm 1: Pseudo code SOM learning and inference for genome iden-
tification

1 Algorithm part 1 SOM training for one bacterial genome;
2 Input N: number of neurons initialization;
3 Input I = [i1, i2, . . . , im]: Input Vector;
4 Input IS = {I1, I2, . . . , IS}: Sequence of Input-Vectors, Each IS represents

one bacterial genome;
5 Input Wi,j = M × N :Weight Matrix for one bacterial genome;
6 βmin = 0.01; decay_factor = 0.99; β = 1.0
7 for Ik ∈ IS do
8 distmin = min

j=1...N

1qM
i=1 |Ik,i − Wi,j|

2
9 jmin = j where distj = distmin

10 for j ∈ {1 . . . N} do
11 dist = N

2 − ||j − jmin| − N
2 |; //toroid distance

12 Wj = Wj − β
2dist (Wj − Ik) ;

13 end
14 β = min(β · decay_factor, βmin);// decay β

15 end
16 Algorithm part 2 SOM inference;
17 Input TIS = {I1, I2, . . . , IS}: Test Input Sequence of Input Vectors for

which the bacterial genome is to be identified;
18 Input Wr,j,i = R × N × M : Weight Matrices for R bacterial genomes;
19 Inferred_r is r with:
20 score = min

r=1...R

5qS
k=1 min

j=1...N

1qM
i=1 |Ik,j − Wr,i,j|

26
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Chapter 3

Related Work

This Chapter is dedicated to a review of previous researches on the implementation
of Sigmoid, Hyperbolic Tangent, Exponential and the Data Compression Engine
for CNN. All the proposed methods are shortly resumed and evaluated basing on
the needs and constraints of the DRRA cell. The final design decisions for the
DRRA implementation are reported in Chapter 4.

3.1 Exponential Implementation
Three implementations for the Exponential have been reviewed. The work in [4]
proposes a Taylor expansion of the sixth order, that follows Equation 3.1 and the
block scheme in Figure 3.1.

ex Ä ea(d0 + x(d1 + x(d2 + x(d3 + x(d4 + xd5))))) (3.1)

Figure 3.1: Block scheme of Taylor expansion for exponential. Taken from [4]

This approach has not been considered suitable for the DRRA cell, because the
dataflow paradigm of the fabric provides the best performance with pipelined op-
erations: a chain of several MAC stages inside each DPU would entail too much
overhead in area, power and latency. The other research in [5] compares two dif-
ferent methods: parabolic synthesis and CORDIC-based. Results from this work
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prove that the parabolic approach is better performing both in area and frequency,
so the CORDIC implementation has not been taken in consideration from the
start. Parabolic synthesis is a general method that approximates a function by
multiplying a series of parabolic functions si(x), as in Equation 3.2. The proposed
implementation reaches the fourth order, i.e. uses all the subfunctions up to s4(x).

f(x) = s1(x) · s2(x) . . . sn(x) (3.2)

As can be seen from the block scheme in Figure 3.2, too many adders and multi-
pliers would be needed for the implementation, which would cause the same issues
as in Taylor expansion methods. For this reason, the parabolic synthesis has been
excluded as well.

Figure 3.2: Block scheme of parabolic functions for exponential. Taken from [5]

A completely different method is presented in [6]. The exponential is approxi-
mated as in Equation 3.3:

ex = 2log2ex = 2(log2e)·x Ä 21.44x (3.3)

A further simplification comes from 21.44x Ä 21.5x, which allows to avoid a mul-
tiplier since 1.5x = x + x/2. Once 1.5x has been derived, it is possible to split the
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power of two as shown in Equation :

2y = 2

ib−1q
j=−fb

2j ·bj
= 2

ib−1q
j=0

2j ·bj
· 2

−1q
j=−fb

2j ·bj
= 2(integer part) · 2(fractional part) (3.4)

Since the first term is an integer power of two, the Equation can simply be
interpreted as a bit shift on the fractional power of two. On the interval [0,1],
the power of two can just be approximated as 2x Ä 1 + x, so the exponential is
ultimately derived by computing 1 + (fractional part) and then by shifting it with
a barrel shifter driven by the integer part. If x is positive, the input is left-shifted,
otherwise it is right-shifted. The overall scheme is the one in Figure 3.3. This
implementation is surely promising because it requires the least amount of hardware
among the reviewed options and especially because it avoids the multipliers, but it
is still less efficient than the final adopted method presented in Section 4.6, which
reuses all the hardware already included in the DPU.

Figure 3.3: Block scheme of 2-power based exponential. Taken from [6]

3.2 Sigmoid and Tanh Implementation
In the recent literature, different approaches to the implementation of sigmoid have
been presented: [26] Proposes a Taylor expansion-based approach that, coupled
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with the Lagrange form of the error, allows to control the maximum error. The
same DSP core that computes the input to neurons (matrix-vector multiplication)
is reused for the nonlinear activation. To obtain the first n orders of the Taylor
expansion, the same multiplier-adder chain is reused n times in a loop. Since the
chain has input and output registers and a 1-stage pipeline, the overall latency is
equal to 3n.
Just like for the Taylor-based exponential, the chain of multiple MAC stages brings
too much overhead, so this option must be discarded. On the other hand, the pro-
posed idea of reusing the same components used in MAC also for the activations is
particularly suited for SiLago, since the DPU is designed to execute only one type
of operation at a time.
The Sigmoid implementation in [7] is derived by directly applying the function
definition: first the term 1 + e−x is computed, and then it is divided by 1. The
exponential is implemented with the same method from [6] that has already been
analyzed in Section 3.1. The RTL scheme is given in Figure 3.4.

Figure 3.4: Block scheme of Exp-based Sigmoid and Tanh. Taken from [7]

This solution would be viable because the DPU has to contain a pipelined divider
for the Softmax layer. However, each neuron activation would require a division,
which is quite costly in terms of power. Considering that activations are required
within each hidden layer of a network and that there is an ongoing trend of DNNs
becoming deeper and deeper, the high power cost of division would simply not be
affordable.
Other methods for approximating sigmoid-like functions are reviewed in [27].
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Lookup Table (LUT): From the set of all inputs, a subset of uniformly spaced
points is selected, and then each one of them is directly associated to a correspond-
ing output value. LUTs can be obtained by storing the outputs inside a memory
and addressing it with the inputs, or by combinatorial logic (a decoder). The lat-
ter approach is generally better because logic optimizations can be carried out on
inputs that share the same output values. Either way, higher accuracy requires a
higher number of bits Nb, but the number of LUT entries depends exponentially
on Nb. As a result, area increases exponentially with the accuracy, and this makes
the approach practical only for low-quality approximations.
Range addressable LUT (RALUT): a RALUT is a LUT in which one output value
can be associated to an arbitrary range of inputs. This means that RALUTs allow
to define non-uniform partition intervals: output sections with higher slopes can
be better approximated by smaller intervals, while flatter parts can be covered by
broader ones. For these reasons, RALUTs are able to provide higher precision and
to potentially reduce the number of entries, but at the cost of an additional layer
of comparators that assign inputs to their predefined range.
Piece-Wise Linear Interpolation (PWL): A function is approximated by a set of
straight lines, instead of constant values. Each line is obtained by linear interpola-
tion of the output over predefined intervals. Two tables store the values of slope and
offset for each interval. If these intervals are all equal, then PWL is based on stan-
dard LUTs and is called Uniform PWL, UPWL. If intervals are non-uniform, PWL
are instead based on RALUTs and are defined as Non-Uniform PWL, NUPWL.
These solutions yield the best precision compared to LUT/RALUT, since two de-
grees of freedom (slope and offset) are available instead of just one (offset):

PWL : y(x) = m(x) · x + q(x) LUT based : y(x) = q(x) (3.5)

As visible from Equation 3.5, PWL approaches have the downside of requiring two
LUTs/RALUTs plus a multiplier and an adder to build the straight line, so they
have a considerably higher area footprint.
Piece-Wise Nonlinear Interpolation: the core idea is the same as PWL, but instead
of straight lines polynomials of degree n > 1 are used.

y(x) = mn · xn + ... + m2 · x2 + m1(x) · x + q (3.6)

The key problem is the same as Taylor expansions, several chained multiply-add
units are too costly in terms of area, power and delay.

3.3 Compression Engine
Data compression in CNNs is a hardware technique that aims at reducing mem-
ory bandwidth and number of computations by exploiting statistics on network
parameters and intermediate results (feature maps).
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The possibility of using compression for feature maps has opened up with the
introduction of the Linear Rectifier ReLU (Equation 4.1) as a neuron activator: the
function replaces negative values with zeros, and in doing so it introduces sparsity
inside Output Feature Maps (OFMs). This advantage has been one of the main
reasons for popularity of ReLU over the more traditional activators as Sigmoid and
Tanh. As OFMs move through the network and cross neuron activation layers,
more and more entries are flattened out: [28] reports that the average OFM spar-
sity in AlexNet increases from almost 40% of Layer 2 to around 75% of Layer 5; in
the case of VGG-16, it ranges from 48% up to 88% . Several encoding techniques
can exploit this widespread sparsity to reduce the effective information content in
OFMs.
Compression is also viable for network weights. It is well established that DNNs are
usually oversized [29], with a prime example being AlexNet. While this allows an
easier training, it also causes unnecessary overheads in memory footprint and com-
putation cost for inference, which is a considerable problem for resource-limited
embedded platforms. A solution has been found in a technique called Network
Pruning [30]: identifying and removing the set of redundant parameters that con-
tribute less to the accuracy. Its result is the introduction of sparsity in weight
matrices as well.

0 0 15 32 0 0 0 0 1 3 0 5 5 0 8 0

0 0 1 1 0 0 0 0 1 1 0 1 1 0 1 0

15 32 1 3 5 5 8

Segment

Compressed
Segment

Non-Zero Values Vector

Non-Zero Index Values, each entry is 1 bit

Figure 3.5: NZIV Example

In both cases of OFMs and network weights, compression mechanisms are only
aimed at exploiting sparsity in matrices, so in the field of CNNs it is more appro-
priate to talk about Zero Compression.
As resumed in [14], The most common CNNs have a total number of weights that
ranges from hundreds of thousands (LeNet-5, 431k) to around a hundred million
(VGG-16, 146M, Overfeat 138M). The number of MAC operations can reach several
billions. Such large networks certainly require considerable energy for computation,
but the overall consumption is dominated by memory: the large amounts of param-
eters can never fit on-chip, so they require an external DRAM along with its costly
accesses. Interconnects are a concurrent cause for the power overhead. This is
especially true for DRAM connections that travel off-chip, but also for the on-chip
wires between memory L1 and L0, whose consumption is getting more and more
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relevant with the scaling of technological processes.
ASIC architectures for CNNs like MIT Eyeriss [31] have focused on reducing DRAM
data transfers as they still constitute the main source of power overhead, and in
fact they make use of compression/decompression engines at the interface between
L2 and L1 memories. The data stored in DRAM and travelling through the off-chip
wires is always compressed, in order to reduce bandwidth and number of memory
accesses, while it is decompressed when kept inside the SRAM, so it is ready to be
sent to register files and then used for computation.

0 0 15 32 0 0 0 0 1 3 0 5 5 0 8 0

15 32 1 3 5 5 8

Segment

Compressed
Segment

Non-Zero Values Vector

3 1 5 1 2 1 2
Zero Interval Vector

Figure 3.6: ZI Example

Among the many available encoding algorithms for compressing zeros, all recent
CNN architectures have adopted the Zero Run Length Encoding (ZRLE), since it
provides the best tradeoff between compression efficiency and power consumption.
A previous research on a custom fabric for CNNs that is quite close to the DRRA
[32] contains a detailed analysis on various algorithms and proves that ZRLE is the
most efficient, making it the natural choice for the current iteration of the platform.
Three different variants for implementing ZRLE have been found in [28] and [31].
NZIV: The original data stream is split into two vectors: Non-Zero Values (NZV)
and Non-Zero Index Value (NZIV). NZV has variable length and holds all non-zero
values from the input. NZIV is a Nw-bit vector, where Nw is the number of entries
of the original sequence. A 0 is placed in position i if the i − th element of the
input data stream is zero, 1 otherwise. Figure 3.5 shows an example.
ZI: this variant uses the NZV as well, but stores positions of non-zero values inside
a Zero Interval vector (ZI). Each ZI entry contains the distance between a non-zero
value and the following one, so NZV and ZI always have the same size. The ZI
encoding is illustrated in Figure 3.6.
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Figure 3.7: RLC Example

RLC: this approach differs from the previous ones since it outputs multiple
data vectors of fixed size. The input vector is turned into many 64-bit output
sequences, each one alternating 5-bit Runs to 16-bit Levels and ending with a
Term, as portraited in Figure 3.7. A Run contains the number of consecutive
zeros, a Level stores a non-zero value, while Term indicates if the last word is the
end of the stream.
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Chapter 4

DataPath Unit
implementation

The DataPath Unit is the element of the DRRA basic block that is in charge of
performing all arithmetic and logic operations. Due to the architectural paradigm of
the DRRA, that allows a wide reconfigurability of data streams within the fabric,
each DRRA cell (and so each DPU) must be able to implement all operations
needed by the target applications. The great variability in size and shape of DNNs
requires to change the computation pattern depending on the specific layer, in
order to achieve the best efficiency. Finding a general algorithm to map the target
DNNs on the DRRA is beyond the scope of this work. Instead, the goal has been
providing a set of basic operations that is wide enough to satisfy the needs of
whichever mapping is going to be implemented. The three target ANNs of this
work (Convolutional Neural Networks, Long Short-Term Memory networks and
Self-Organizing Maps) have been broken down into the following basic operations:

• Sum/subtraction

• Multiplication

• Multiply And Accumulate (MAC)

• SOM distance function

• Division

• Maximum/Minimum detection

• Bit shifts

• Non-linear Activation functions: Sigmoid, Tanh, ReLU, Leaky ReLU and ELU

• Exponential
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It follows that the DPU must include all basic algebraic operations, which con-
stitute its core functionality, together with several non-linear functions that are
specific to ANNs and thus have to be designed ad-hoc.
Section 4.1 lists the general features of the DPU. Sections 4.2, 4.3 and 4.4 present
the hardware implementation for basic operations such as addition, multiplication,
max/min and their combinations. Section 4.5 details the implementation of Sigmoid
and Tanh, while Sections 4.6 and 4.7 cover the Exponential and Softmax functions.
Once all the individual operations have been described, Section 4.8 explains how
they have been merged within the same hardware block.

4.1 General DPU Features
The DPU has been designed at RTL in VHDL language. In previous versions,
the optimal number of input and output ports had already been determined as a
trade-off between degree of parallelism and the size of DRRA interconnect system.
The values have been set to:

• Number of Inputs: 4

• Number of Outputs: 2

While the DPU interface has been fixed at design time, the number of basic com-
putational units has been made compile time dynamic by means of VHDL generics.
In principle, their value can be set to any number, but it doesn’t make sense to use
more components than the maximum number of output ports. In practice, there
cannot be more than 2 components of the same type. The following list shows all
generics together with their default value:

• Adders - default: 2

• Multipliers - default: 2

• Squash Units - default: 2

• Max/Min Units - default: 2

• Shift Units - default: 2

• Dividers - default: 1

The first component of a kind is bound to work with the first couple of Inputs 0
and 1 and sends results only to Output 0, while the second component of the same
type works with Inputs 2 and 3 and outputs to port 1. To clarify, let us take the
MAC operation as an example: Multiplier 0 can only take Inputs 0 and 1, while
Multiplier 1 can only take Inputs 2 and 3. Adder 0 then gets the result of Multi-
plier 0 and Accumulator 0 and updates Accumulator 0. The final results is sent to

44



4.2 – Adders and Multipliers

Output 0. In the same way, Adder 1 uses data from Multiplier 1 and Accumulator
1 to update Accumulator 1, which Outputs to port 1. If there are two adders but
just one multiplier, then only one MAC is supported and is always restricted to use
Inputs 0 and 1. In general, with this kind of approach the parallelism of composite
operations such as MAC or Exponential depends on the number of basic blocks that
form them. This setup allows all possible combinations of generics, which result in
many variations of the DPU with different parallelism for each type of operation.
Such degree of flexibility has been introduced to allow the reuse of the same DPU
block for future iterations of the DRRA fabric.
The current version of the DPU only targets fixed point operations. Nb, The num-
ber of bits for data words, is kept fixed at 16. At first, the possibility for the DPU
to change the fixed-point format at runtime was explored. This flexibility was avail-
able at the cost of several extra multiplexers to select the right data representation,
so in the end the fixed-point format has been turned to a generic in order to save
as much area as possible. With Nb = 16, the optimal fractional point format has
been determined to be Q4.11: 1 sign bit, 4 integer bits and 11 fractional bits. This
choice is based on the sigmoid activation function, so it is discussed in Section 4.5.
The DPU has input and output registers for data, with the latter ones also acting
as accumulators. Every output data that is represented on more than Nb bits is
saturated back to Nb bits before being registered. A Saturation Unit is dedicated
to each output port, a multiplexer driven by the operation code determines which
data has to be saturated and passed at the output.
In the following and in Chapter 8, several variable names and acronyms have been
employed, so all of them have been resumed in Table 4.1 for a quick reference.

4.2 Adders and Multipliers

In CNN and LSTM networks computation is dominated by matrix-vector products,
which involve MAC operations (Multiply-Add-Accumulate). DPU has to support
MAC but also simple additions and multiplications. Since stand-alone adders and
multipliers have to be used anyway, it becomes more efficient to implement MAC by
reusing them, instead of employing dedicated MAC units. Behavioral descriptions
for multipliers and adders have been used, allowing synthesis tools to infer the
optimal implementation. With Nb bits data, multipliers are simply Nb − bits,
while adders have to be 2Nb as required by Softmax function (chapter 4.7). This
size for the adders also has the upside of allowing more precise MAC: the multiplier
outputs can be directly fed to the adder input without saturation. A pipeline stage
after multipliers is needed to ensure timing constraints are met.
Figure 4.1 displays the basic adder and multiplier, and how they are connected to
form a MAC unit.
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ib Number of integer bits
fb Number of fractional bits
Nb Total number of bits: Nb = ib + fb + 1

Q(ib).(fb) Q notation for fixed point
ai integer bits with i ∈ [0, ib]
bj fractional bits with j ∈ [0, fb]
I Input range

Ni Number of intervals in Input range
m Slope of straight line
q Offset of straight line

LUT Uniform Look-Up Table
RALUT Range-Addressable Look-Up Table
PWL Piece-wise Linear Interpolation
UPWL Uniform Piece-wise Linear Interpolation
NUPWL Non-Uniform Piece-wise Linear Interpolation

Table 4.1: Summary of variables and acronyms for DPU implementation

4.3 Max/Min, Shift Units
Bit Shifts are simply done by barrel shifters, which get two inputs: data and num-
ber of bits to shift. Since the DPU is always working on signed numbers, the unit
performs arithmetic shifts. Left and right shifts are given separate opcodes, making
them two distinct operations.
Maximum and minimum detection are performed by Max/Min Units. They can
simply compute the result between two inputs or between one input and the accu-
mulator register, allowing to map the max/min vector operations that are needed
in SOM (Algorithm 1) and in Softmax (Section 4.7).

4.4 Rectifiers: ReLU, Parametric ReLU, ELU
The definitions of rectifiers from Table 2.1 are recalled in Equation 4.1.

ReLU = max(0, x)
Parametric ReLU = max(ax, x) where 0 < a < 1

ELU =
x, x > 0,

a(ex − 1), x < 0

(4.1)
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*
2Nb

Cut

Input 0 Input 1

2Nb

2Nb-fb

Resize

+

2Nb+1

Nb Nb

from other
DPU blocks

opcode

Saturation Unit

from other
DPU blocks

Output Reg/
Accumulator

Nb

to other DPU
blocks

q_format
(fixed/runtime

dynamic)

opcode

Pipe Reg

Figure 4.1: MAC Unit connected to the first two inputs

All of them consist of a selection between x, the input data to the neuron, and some
transformation f(x) applied to it. In the case of ReLU and Parametric ReLU, f(x)
and the max operation can fit inside one DPU. On the other hand, the exponential
for the ELU occupies more resources, so it requires to chain two DRRA blocks: the
first one computes the exponential, the other applies the function f(x) = max(a(y−
1), x) (where y = ex) and uses the ELU unit, i.e. a multiplexer driven by sign(x),
to complete the computation.

4.5 Sigmoid and Tanh
Sigmoid and Tanh functions are described by the following equations, recalled from
Table 2.1:

σ(x) = 1
1 + e−x Tanh(x) = ex − e−x

ex + e−x (4.2)
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The research in [7] points out that the two functions are closely linked with Equation
4.3.

Tanh(x) = ex − e−x + e−x − e−x

ex + e−x = 1 − 2 e−x

ex + e−x =

= 1 − 2 e−x

ex + e−x
ex

ex
= 1 − 2 1

1 + e2x =

= 1 − 2σ(−2x)

(4.3)

However a simpler expression for Tanh has been found as in Equation 4.4.

Tanh(x) = ex

ex + e−x − e−x

ex + e−x = 1
1 + e−2x − 1

1 + e2x = σ(2x) − σ(−2x) (4.4)

By exploiting the symmetry of sigmoid, the equality can be further simplified as
done in Equation 4.5.

σ(−x) = 1 − σ(x) =⇒ Tanh(x) = 2σ(2x) − 1 (4.5)

Equation 4.5 is equivalent to 4.3, but slightly more efficient to map in hardware
since it contains one less minus sign, which in fixed-point format means one less
2’s complement. Obviously, the equation could be turned the other way around,
expressing σ(x) = f(Tanh(x)), but in the end the sigmoid has been used as a base
because it has a smaller image of [0,1] (compared to the [−1,1] of Tanh), and also
smaller slopes (dσ

dx
= 1

2
d(Tanh)

dx
for all x). It follows that if two LUTs would implement

Sigmoid and Tanh with the same accuracy, the Sigmoid one would require fewer
entries. Further advantages of using Sigmoid as a base are some optimizations to
its hardware mapping (Equations 4.11, 4.13, 4.15 in Section 4.5.1).
Equation 4.5 shows that the Hyperbolic Tangent is nothing but a stretched and
translated version of the sigmoid. Conveniently, both scaling factors are equal to
2, which in fixed-point corresponds to a simple 1-bit left shift. In practice, the
operation 2x also needs saturation to keep the input from overflowing, but overall
Equation 4.5 allows to derive the Tanh directly from the sigmoid with minimal
overhead.

4.5.1 Adopted Sigmoid Implementation
Among all options presented in Section 3.2, the suitable ones have been narrowed
down to the LUT-based approaches: LUT, RALUT, UPWL and NUPWL. The
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main drawback of PWL approaches is that they require a multiplier-adder chain,
but these components are already included in the DPU for the MAC operation.
Adopting PWL would require two LUTs for slope and offset instead of just one, an
extra cost in area that would be far outweighed by the increase in accuracy. By
comparing the four different LUT-based approaches, Section 8.1 provides evidence
for this statement.
It must be pointed out that not all fixed point formats are suitable for representing
the sigmoid correctly: the reason is that with too few integer bits, the number
representation range would not be broad enough to cover the tails of the function.
The goal is to find the most precise Q format that still covers the Sigmoid tails.
The focus must be only on the portion reached by positive inputs, because the
Sigmoid for negative inputs is derived from it. The condition of Sigmoid saturation
translates into Equation 4.6.

σ(A) = 1
1 + e−A = 1 A = 2ib − 2−fb (4.6)

Where A is the biggest positive number on a fixed-point format.
The equation solves for e−A = 0, which for fixed-point numbers corresponds to the
condition e−A < 2−fb: if the exponential value is lower than the smallest number
available at the output, then it is approximated to 0. Recalling that ib+fb+1 = Nb
it is possible to find the minimum value of ib that allows to represent the Sigmoid
correctly. The proof is given in Equation 4.7.

e−(2ib−2−fb) < 2−fb =⇒ −(2ib − 2−fb) < (ln2) · (−fb) =⇒

(2ib − 2−fb) > (ln2) · fb =⇒ 2ib > (ln2) · (Nb − ib − 1)
(1 − 2(1−Nb))

(4.7)

Equation 4.7 cannot be expressed in closed form, so it has to be solved case by case
with Nb and ib as parameters. For Nb = 16, the smallest valid ib is 4 so the data
format must have at least 4 integer bits. The final choice on the Q format is decided
basing on the general features of the target ANN, such as the maximum value that
a number can reach within the network or the desired precision. Since this work
targets general DNN architectures, neuron activators have to provide flexibility for
the Q format and separated LUTs have been dedicated for each suitable fixed-point
format.
Once the Q format has been discussed, it is possible to describe the hardware
implementation. As already explained in Section 3.2 PWL requires two LUTs, one
for the slope m(x) and one for the offset q(x). A remarkable optimization comes
from the Sigmoid symmetry (Equation 4.5), which allows to halve the LUT at the
cost of some extra logic. Thanks to this, the LUT contains the slope m(x) and the
offset q(x) only for positive x, so it must be combined with other logic to obtain the
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full Sigmoid and Tanh functions. Equations 4.5 and 3.5 are resumed in Equation
4.8. Their combination yields the set of Equations 4.9.

σ(−x) = 1 − σ(x) Tanh(x) = 2σ(2x) − 1 σ(x) = m(x) · x + q(x) (4.8)

σ(x) = m · x + q
σ(−x) = 1 − m · x − q = m · (−x) + (1-q)
Tanh(x) = 2(m · 2x + q) − 1 = 4m · x + (2q-1)
Tanh(−x) = 2(1 − σ(2x)) − 1 = −2(m · 2x + q) + 1 = 4m · (−x) + (1-2q)

(4.9)

Formulas in 4.9 mean that slope and offset for σ(−x) and for Tanh can be directly
derived from the original LUT. Table 4.2 resumes all coefficients.

Slope offset
σ(x) m q

σ(−x) m 1 − q
Tanh(x) 4m 2q − 1

Tanh(−x) 4m 1 − 2q

Table 4.2: Summary of slopes and offset for Squash Unit

A straightforward mapping of these coefficients would require an adder and
some multiplexers to select its inputs, a potentially relevant cost. Instead, the use
of sigmoid as a base for deriving the Tanh allows for significant optimizations. If
the linear interpolation is properly performed, the slope m will never exceed the
maximum derivative which is 0.25, and similarly the offset will never be greater than
1. Under these assumptions, the hardware implementations for slopes and offsets
can be greatly simplified. The final results are the optimised mappings summarised
in Equations 4.11, 4.13, 4.15. It is worth noting that these Equations are valid for all
data widths and fixed-point formats that allow a correct representation of Sigmoid,
so they can be used for any PWL implementation.
In case of σ(−x), m does not have to change, while for q there are two cases.
In the first one, 1

2 ≤ q < 1 so it holds:

1 − q = 20 −
−1Ø

j=−fb
cj · 2j = 2−fb ·

2fb −
fb−1Ø
j=0

cj · 2j


= (scale factor) · (2Ís complement of fractional bits)

(4.10)

In the other case q = 1, the result of subtraction is 0. All cj are 0, so their 2’s
complement yields 0 and Equation 4.10 is still valid. The integer part of the result
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is 0 in all cases. Overall, the optimized implementation for (1 − q) is performed by
setting the whole integer part to 0 and by performing the 2’s complement of the
fractional part only. The resulting Equation is 4.11.

(1 − q) = 00· · · 0. (2Ís(c−1 c−2· · · c−fb)) (4.11)

In case of Tanh(x), (2q) ∈ [1,2]. Equation 4.12 shows the subtraction computations
for the two cases 2q < 2 and 2q = 2.

If (2q) < 2 :
2q 000· · · 01. ∗ ∗ · · · ∗ −
1 000· · · 01.000 · · · 0 =

000· · · 00. ∗ ∗ · · · ∗

If (2q) = 2 :
2q 000· · · 10.000 · · · 0 −
1 000· · · 01.000 · · · 0 =

000· · · 01.000 · · · 0

(4.12)

So the result of 2q − 1 follows these rules:

• The fractional bits of the result are same as the ones from −2q

• The result bits ai with i > 0 are always going to be 0

• The result bit a0 = c0 where ci are the bits of 2q

Overall the operation only requires one inverter gate as shown in Equation 4.13.

(2q − 1) = 000· · · 0 c0. ∗ ∗ · · · ∗ (4.13)

In case of Tanh(-x), (−2q) ∈ [−2, −1]. Also here two cases 2q < −1 and 2q = −1
can be isolated and Equation 4.14 shows the subtraction computations.

If −2 ≤ 2q < −1 :
1 000· · · 01.000 · · · 0 +

−2q 111· · · 10. ∗ ∗ · · · ∗ =
111· · · 11. ∗ ∗ · · · ∗

If 2q = −1 :
1 000· · · 01.000 · · · 0 +

−2q 111· · · 11.000 · · · 0 =
000· · · 00.000 · · · 0

(4.14)

These rules apply to compute the result of 1 − 2q:

• The fractional bits of the result are same as the ones from 2q

• All integer bits of result are equal to c0, the least significant integer bit of −2q

Overall the computation of 1 − 2q is reduced to Equation 4.15.

(1 − 2q) = c0 c0· · · c0 c0. ∗ ∗ · · · ∗ (4.15)

So the same inverter from the Tanh(x) case can be reused.
Figure 4.2 illustrates the Squash Unit design and its use with the MAC chain to
implement Piece-wise Linear Interpolation.
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Figure 4.2: Block scheme of Squash Unit. Example for format Q4.11.

The ‘change_offset’ block inside the Squash Unit contains no adders, but only
requires one 2’s complement unit, one inverter gate and one multiplexer to derive
1−q, 1−2q and 2q −1. Moreover, many inputs of the multiplexer are constant and
equal, so logic optimizations can be carried out by synthesizers to further reduce
the area.
The multiplier-adder chain has one pipeline stage in between, so one extra register
is needed for the offset to maintain data synchronization. The operation has one
clock cycle latency, but inputs and outputs of the DPU are registered so the overall
latency is 3 cycles.
The last element to be analyzed is the LUT. In general, a LUT is created by
partitioning the whole input range into intervals, and then by associating one output
value, i.e. one LUT entry, to each interval. In standard LUTs interval widths are
uniform, while in RALUTs they are non-uniform.
All LUTs used for this design have been obtained by means of Matlab scripts.
The employed algorithms are generalized for Nb bits and for any Q format that is
suitable for representing the Sigmoid on that bitwidth.
It is worth mentioning that only powers of two have been used for Ni, the number
of input range intervals. A choice of this kind gives up flexibility for the number of
entries but allows to reduce the area footprint of the LUT. In order to prove this,
let us consider a complete input range on Nb unsigned bits. Naming x0 as the first
element and xNi as the last, the interval is [x0, xNi] = [0, 2Nb − 1]. Its width is
2Nb−1 which is not a power of two. This makes more convenient to set xNi = 2Nb−1
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in order to obtain a width of 2Nb. The consequence is that all partition intervals
will be equal except the last one, which will be short of one value. This asymmetry
causes no problems for the hardware implementation but as already mentioned it
enables area optimizations that will be described in the following. By hypothesis,
Ni can only be a power of two, so the interval width is finally 2Nb/Ni which is still
a power of two. The key point is that all interval thresholds differ by 2Nb/Ni, so to
detect them is sufficient to look at a reduced number of bits of the input instead of
the full Nb bits. As a result, the logic inside the decoder is simplified and its area
reduced.
Algorithm 2 shows how to derive the Uniform LUT for Sigmoid with lowest error.
In the case of RALUTs, the two steps of the previous algorithm cannot be separated:

Algorithm 2: LUT for Sigmoid
1 Input Ni = power of 2: # of intervals; Nb: # of bits; fb: # of fractional

bits;
2 Input σ(x) : targetfunction; mf : range multiplication factor
3 Input I = [I0, I1, . . . , INi]; // Partition
4 max_num = 2Nb−fb−1; // Instead of 2Nb−fb−1 − 2−fb to get uniform

intervals
5 step = max_num/Ni;
6 min_step = 2−fb;
7 X = [I0 : min_step : INi]; // Input Interval derived from I
8 for k = 0 : 1 : Ni − 1 do
9 inrp = X values between Ik and Ik+1; // Positive Input Range

10 inrn = X values between −Ik+1 and −Ik; // Negative Input Range
11 range_ctr = (Ik + Ik+1)/2; //Positive Range center
12 qb = quantize(σ(range_ctr), fb) //Output at range center
13 qr = [qb − mf · min_step : min_step : qb + mf · min_step] //Output

Range
14 for all q in qr do
15 err_plus = q

inrp
|qr_plus(j) − σ(inrp)|;

16 err_minus = q
inrm

|(1 − qr_plus(j)) − σ(inrm)|; // Use of σ(x)
symmetry

17 error(q) = err_plus + err_minus;
18 end
19 best_q = q such that error(q) = min(error);
20 best_q(k) = qr_plus(best_j);
21 end
22 Output best_q; // Sigmoid quantization with lowest error over partition I
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the interval widths adapt to the function derivative, and the factor that determines
the right interval size is the resulting error on the function. The specific properties
of the Sigmoid allow to simplify the adaptive partition algorithm. The subportion
of the Sigmoid with positive inputs is a monotonically increasing function, with a
derivative that fades to zero as the function plateaus at one. These characteristics
determine a partition with intervals that increase in size, moving from the origin
towards the end. The whole algorithm is based on this expected behavior, so it
is easier to implement but also restricted to Sigmoid or similar functions. The
RALUT generation for Sigmoid is reported in Algorithm 3.
Given a partition of the input interval, slope and offset for the sigmoid PWL inter-
polation have been derived by means of a Matlab script. Its pseudocode is reported
in Algorithm 4. The algorithms for input partitions and for PWL have been run
for all suitable fb ∈ [0,11] and for a number of partition intervals following the
powers of two from 25 to 214. The optimal partitions for each fb, along with all
other relevant figures of merit, are reported in chapter 8.1.

4.6 Exponential
Recalling from Section 3.2, it is possible to obtain Sigmoid from the Exponential,
but the use of division for neuron activations would be too inefficient. Instead, that
idea can be turned around by deriving the Exponential from the Sigmoid:

σ(x) = 1
1 + e−x =⇒ ex = 1

σ(−x) − 1 (4.16)

This newly proposed solution brings several advantages. The linear interpolation
LUTs for the Sigmoid are smaller than the Exponential Units in [6] and [7]. More-
over, no new components have to be added to the DPU for the Exponential, since
multipliers, adders and the divider are already included. Lastly, implementing the
sigmoid in a simpler way is much more scalable with the increasing depth of ANNs.
In CNN and LSTM networks, neuron activations are needed for each intermediate
layer, while the exponential is only used in classification, the very last processing
step. Moving greater latency and power consumption to the exponential is the most
sustainable solution, because it is only needed for one layer, independently on the
network depth. These features comply with the policy of hardware reuse adopted
for the DPU, so implementing Exponential through the Sigmoid has been deemed
as the best approach. Multipliers and adders are the same ones being reused for
other DPU modes, so they are already dimensioned. Choosing the correct size for
the divider is mainly dependent on the Softmax Layer implementation, so it is dis-
cussed in its related Section 4.7.
Differently from Sigmoid and Tanh, Exponential always needs a Saturation Unit
to limit its output values. The current DPU implementation retains the same Q
format for both inputs and outputs of Exponential, and under this condition it can
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Algorithm 3: Range Addressable LUT for Sigmoid
1 Input Ni =power of 2: # of intervals; Nb: # of bits; fb: # of fractional

bits;
2 Input σ(x) : targetfunction;
3 Input I = [I0, I1, . . . , INi]; //Uniform Partition
4 max_num = 2Nb−fb−1; // Instead of 2Nb−fb−1 − 2−fb to get uniform

intervals
5 min_step = 2−fb;
6 X = [I0 : min_step : INi]; // Input Interval derived from I
7 lut_sigm = lut_sigmoid(Ni, Nb, fb, σ(x), I); //lut_sigmoid=Algorithm 2
8 prev_err = q

X
|lut_sigm − σ(X)| //Initial total error

9 prev_width = max_num;
10 // For all partition points except the extremes
11 for k = (Ni − 2) : −1 : 1 do
12 lower_err = 1;
13 while lower_err = 1 do
14 Ik = Ik − min_step; // Decrease partition point by 1 LSB
15 width = Ik − Ik−1;
16 if (width >= min_step) AND (width <= prev_width) then
17 //LUT algorithm on a non-uniform interval yields RALUT
18 ralut_sigm = lut_sigmoid(Ni, Nb, fb, σ(x), I);
19 err_ralut_sigm = q

X
|ralut_sigm − σ(X)| //New total error

20 if err_ralut_sigm <= prev_err then
21 prev_err = err_ralut_sigm;
22 ∗Save current partition∗
23 else
24 ∗Restore previous partition∗
25 lower_err = 0;
26 end
27 else
28 ∗Restore previous partition∗
29 end
30 end
31 end
32 best_ralut_sigm = lut_sigmoid(Ni, Nb, fb, σ(x), I); //Final Sigmoid

RALUT
33 Output I; // Non-uniform partition
34 Output best_ralut_sigm; // Lowest error Sigmoid RALUT
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Algorithm 4: Piece-Wise Linear Interpolation for Sigmoid
1 Input Ni = power of 2: # of intervals; Nb: # of bits; fb: # of fractional

bits;
2 Input σ(x) : targetfunction; σÍ(x): function derivative;
3 Input mf : range multiplication factor;
4 Input I = [I0, I1, . . . , INi]; // Partition
5 max_num = 2Nb−fb−1; // Instead of 2Nb−fb−1 − 2−fb to get uniform

intervals
6 step = max_num/Ni;
7 min_step = 2−fb;
8 X = [I0 : min_step : INi]; // Input Interval derived from I
9 for k = 0 : 1 : Ni − 1 do

10 inrp = X values between Ik and Ik+1; // Positive Input Range
11 inrn = X values between −Ik+1 and −Ik; // Negative Input Range
12 range_ctr = (Ik + Ik+1)/2; // Range center
13 qb = quantize((σ(range_ctr), fb) //Offset at range center
14 mb = quantize(σÍ(range_ctr), fb); //Slope at range center
15 qr = [qb − mf · min_step : min_step : qb + mf · min_step]; //Offset

range
16 mr = [mb − mf · min_step : min_step : mb + mf · min_step; //Slope

range
17 for all q in qr do
18 for all m in mr do
19 sigm_p = m · (inrp − range_ctr) + q; //Piece-wise line at +

range
20 sigm_n = m · (inrn − range_ctr) + (1 − q); //Piece-wise line at

- range
21 err_plus = q

inrp
|sigm_p − σ(inrp)|;

22 err_minus = q
inrm

|sigm_n − σ(inrm)|;
23 error(q, m) = err_plus + err_minus;
24 end
25 end
26 best_q(k), best_m(k) = q, m such that error (q, m) = min(error);
27 end
28 Output best_q; // Offset LUT
29 Output best_m; // Slope LUT
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be proven that saturation is necessary for every possible bit width and Q format.
Assuming that x∗ is the input value for which the Exponential reaches saturation
and that A = 2ib − 2−fb is the value cap, Equation 4.17 holds.

ex
∗ = A =⇒ x∗ = ln(A) < A , ∀ A (4.17)

It is interesting to note that the data format for A has not been specified, so
the result is not only valid for fixed-point formats but for floating-point as well.
The consequence is that there will always be a set of input values for which the
exponential has to be saturated. In the DPU Saturation Units are already allocated
for each output, so they can be used by the Exponential as well.

4.7 Softmax
The Softmax is a vector-valued function: given a vector of N inputs xi with i =
1 . . . N , the N outputs SMi are computed according to Equation 4.18.

SMi = exiqN
j=1 exj

i = 1 . . . N (4.18)

Softmax can be implemented in a straightforward way with the same compo-
nents that are already employed for the Exponential function, thus requiring no
additional hardware. DRRA blocks can first be programmed to compute the Ex-
ponentials and then to accumulate the Softmax denominator. At last, they can
perform one division for each input to obtain all Softmax outputs. The procedure
just described is theoretically correct, but faces numerical stability problems when
ported in hardware due to the Exponential saturation. A simple example is best
suited to clarify: Let X be a vector of inputs, Y the 64-bit floating point output
while Yf is the 16-bit fixed-point output on Q4.11. All of them are reported in
Table 4.3.

X 0.5 1 4 8 0.5 2
Y 5.407E-4 8.9154E-4 0.0179 0.9777 5.4075E-4 2.4234E-3
Yf 0.0363 0.0599 0.3524 0.3524 0.0363 0.1627

Table 4.3: Example of Softmax saturation

For the chosen format, the Exponential saturation threshold is x∗ = ln(A) =
2.773, so X contains two different inputs that cause the output to max out (under-
lined values in Yf ). Two major numerical issues due to saturation are evident from
the example in Table 4.3. The two outputs that in theory are very different (0.0179
and 0.9777) both become equal to 0.3524. In order to score a correct classification,
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Softmax is expected to yield just one output with the highest probability while all
others fade to zero. This means that saturation invalidates the very classification
purpose of Softmax.
The second issue is evident from Equation 4.18 and from the results in the example:
each output value depends on the value of all other outputs, so saturation ends up
altering the whole result vector in a significant way.
In light of these considerations, Softmax needs to be numerically stabilized. [33]
suggests this can be done thanks to the property in Equation 4.19.

SMi(x + c) = e(xi+c)qN
j=1 e(xj+c)

= ec

ec
exiqN
j=1 exj

= SMi(x) ∀c ∈ R (4.19)

Equation ?? states that the Softmax is invariant to translation of inputs. It is
always possible to choose c = −xmax, so that the input vector becomes the one in
Equation 4.20.

X = [x0, x1, . . . , xN ] =⇒ [x0 − xmax, x1 − xmax, . . . , xN − xmax] (4.20)

All inputs are shifted to values less than or equal to 0. Exponentials will then be
shifted to 0 ≤ ex−xmax ≤ 1, which corresponds to the tail of the function. In this way
saturation is always prevented and the Softmax is stabilized. Another fundamental
advantage of restricting the Exponentials to the tail is related to the accuracy, and
is described in Section 8.2. The input translation brings the downside that Softmax
outputs that were already small before translation are now underflowing to 0. This
flaw is due to the unavoidable limits of fixed point format when representing small
numbers. It is possible to find the input for which ex is approximated to 0 with
Equation 4.21.

ex = 0 ⇐⇒ ex < 2−fb =⇒ x < −ln2 · fb (4.21)

For the fb so that −ln2 · fb > −2ib, there exists an interval where the exponential
tail is approximated to 0. After the translation xi − xmax, a bigger portion of the
inputs falls into the interval where eX = 0, causing the Softmax to underflow as
well. The accuracy loss is anyway expected to be negligible because it is related to
the least relevant values and most importantly because it doesn’t affect the very
functionality of Softmax.
Once the final model for the Softmax is determined, it is possible to find the cor-
rect data width for its operands and thus dimension the required hardware com-
ponents. The numerator of Softmax is a normal Exponential, so it retains the
same format as the inputs. The denominator needs a more detailed analysis: given
X = [x0, x1, . . . , xN ] as the input vector, with N its number of elements, a
worst-case bound for the denominator value is given by Equation 4.22.

NØ
j=1

e(xj−xmax) ≤
NØ
j=1

1 = N (4.22)
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Depending on the employed data format, N could be greater than the upper bound
2ib − 2−fb and this could lead the denominator to saturate, compromising the func-
tionality of Softmax. A solution to ensure a correct behavior could be posing a
limitation on the number of Softmax inputs and thus on the number of output
classes. However, especially in higher precision formats, 2ib − 2−fb would be too
small of a number when compared to the thousands of classes that are supported
by the state of the art ANNs. The only viable option becomes then providing all
Q formats with a minimum number of integer bits by increasing the data width for
the denominator. Since one 16-bit word is not enough and the DPU has two 16-bit
output ports, the most efficient option is to exploit both of them. All fixed point
formats are then provided with 16 extra integer bits, so that at least 216 classes are
always supported. It must be stressed out that the additional 16 bits only expand
the integer part, while the range of possible fb remains the same as in the regular
data width. The adders are already set to 32 bits inputs so they naturally support
the denominator computation. As for the divider, this size can be used as a de-
sign constraint. The divider width is determined by the operand that requires the
biggest number of bits, so upper bounds must be found for dividend, divisor and
quotient. The divisor worst-case is already established to 32 bits from the Softmax
denominator. In order to study the dividend, it is useful to think of division as
the inverse of multiplication: if multiplication doubles the fractional bits of the
inputs, then division halves them. In other words, if the divisor has fb bits and the
quotient is required to be on fb bits as well, then the dividend fractional part must
be extended on 2fb bits. Since the integer part does not have to change in size, the
dividend must have format Q(ib).(2fb). The new bit width is Nbnew = ib + 2fb + 1
and it gets the highest value when fb = Nb − 1. Equation 4.23 calculates the
worst-case Nbnew.

Nbnew = ib + 2fb + 1 = (Nb − fb − 1) + 2fb + 1 =
= (Nb − (Nb − 1) − 1) + 2 ∗ Nb − 1 = 2Nb − 1

(4.23)

Nbnew corresponds to 31 bits. It is interesting to note that the final result 2Nb − 1
is completely independent on the number of fractional bits, so this dividend size is
valid for all fixed-point data formats.
As for the quotient, the required number of bits can be derived by considering the
biggest possible outcome of division. This is done in Equation 4.24.

−2Nb−fb−1

−2−fb = 2Nb−1 (4.24)

The number of integer bits NI (sign excluded) that is able to represent this value
is given by Equation 4.25.

2NI − 1 ≥ 2Nb−1 =⇒ NI = çlog2(1 + 2Nb−1)è = Nb (4.25)
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By adding the worst-case number of fractional bits Nb − 1 and the sign, the final
number of bits becomes 2Nb. Ultimately, the divider can be set to 32 bits for all
operands. The quotient is always contained in the least significant 16 bits in the
case of Softmax, but for a normal division the 32 bit result must be sent to the
Saturation Unit to saturate it back to the standard size of 16 bit.
The most straightforward Softmax implementation involves one division for each
input. A more efficient approach would be obtaining the reciprocal of the denom-
inator with just one division, and then multiplying it to all inputs. With this
method, N divisions would be replaced by 1 division and N products, that are
generally faster and less power-consuming. However, the great variability in num-
ber of classes and in Q formats makes this option numerically unstable. The main
reason is the underflow of the division result, which is certainly prevented only if
the condition in Equation 4.26 is met.

1qN
j=1 e(xj−xmax) ≥ 1

N
≥ 2−fb =⇒ N ≤ 2fb (4.26)

This condition cannot be ensured in general, so dividing all terms by the sum of
Exponentials remains the safest approach.

4.8 DPU Data Flow Scheme
The DPU combines all previously described blocks into one single design. The
general scheme is presented in Figure 4.3. Due to the number of components and
the complexity of connection, a data flow scheme has been adopted in favor of a
detailed description to allow for better readability. Even though multiple units can
be instantiated, the Figure reports only one of each type, again for a simpler view.
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Chapter 5

Other Silago Cell
Components

Similarly to the DPU, the Slice & Pad Unit, a special decompression AGU needed
by SOM has been designed from scratch. No other blocks inside the DRRA cell re-
quired specific customizations for ANNs, but still optimisations and enhancements
have been introduced to the existing Register File and AGU modules.

5.1 Register File and AGUs

The standard version of the Register File has two read, two write ports that provide
word-level access and one read, one write DiMArch port that enables the transfer
of an entire data block to and from the SRAM. Control and address signals for each
port are handled by dedicated AGUs. Previously, the same AGUs for two data ports
were shared with the two DiMArch ports, limiting data accesses through the RF
during data block exchanges with SRAM. Furthermore RF total size, data width,
and block size were fixed to specific values. As a first enhancement, a modified AGU
has been introduced to handle the DiMArch ports control signals, so that all RF
ports could be used with the maximum flexibility. The only difference of the new
DiMArch AGU with respect to the original one is the reduced address space, which
points to data blocks instead of just single entries. In order to prevent simultaneous
writing of the same word by different inputs, a priority mechanism has been added,
which privileges ports in the following order: DiMArch, port 0, port 1. Lastly, the
RF has been parameterized in terms of RF total size, data width, and block size,
to favor its reuse in different versions of the DRRA fabric.
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5.2 Slice & Pad Unit
The SOM algorithm operates on the four nucleotides Cytosine (C), Guanine (G),
Adenine (A) and Thymine (T), which on a hardware level can be encoded on two
bits. The SOM computations require instead to represent each nucleotide as a
couple of 16-bit coordinates (X,Y) with equal distance from the origin, as shown in
Table 5.1.

A T C G
X 1 0 -1 0
Y 0 1 0 -1

Table 5.1

In order to achieve the best storage efficiency, the nucleotides have to be stored
in the compressed form so that many of them can fit in one data word. With
this approach, a decompressor is needed at each output of the RF to extract the
coordinates couple from each encoded two-bit slice. This is precisely the task of
the Slice & Pad Unit. The RTL scheme is depicted in Figure 5.1.

The component is enabled by the read signal from the main AGU just like the
RF read port. Upon activation, the unit receives the data word from the RF and
processes each two-bit slice, one after the other. For each slice (one nucleotide),
the coordinates are sent in separate clock cycles with a programmable delay. In
order to save one clock cycle for each nucleotide, the Unit has been implemented as
Mealy machine, so it sends out the first value in the same cycle it gets activated.
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5.2 – Slice & Pad Unit
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Figure 5.1: Slice & Pad Unit for SOM
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Chapter 6

Compression Engine

Recalling from Section 3.3, In state of the art CNN accelerators ZRLE processing
is usually placed between L2 and L1 of memory. The goal that has been set for this
thesis was to carry compressed data further down the memory hierarchy, namely
between L1 and L0. In this way, data travelling between SRAM and RF would
always be compressed, and all ZRLE processing would take place just outside of
the Register File.
For the DiMArch cells, the extra memory required by NZIV and ZI has been con-
sidered too large of an overhead. The SRAM has size (Nrows ·Nwords ·Nbytes) Bytes,
so increasing by one the Nwords would produce a relative size increase in Equation
6.1.

Nrows · (Nwords + 1) · Nbytes

Nrows · Nwords · Nbytes

− 1 = 1
Nwords

(6.1)

This would correspond to the absolute size increase in Equation 6.2.

1
Nwords

Nrows · Nwords · Nbytes = Nrows · Nbytes [Bytes] = 2Nrows [Bytes] (6.2)

The resulting overhead scaling factor has been deemed too high for the DiMArch
SRAMs.
Another relevant problem for data compression is that the CGRA in its current
form is designed for computation-heavy dataflows that mostly use run-time static
addressing patterns. The variable size of data vectors in NZIV and ZI would then
incompatible with this policy, since the SRAM content would not be fixed and pre-
dictable anymore. The RLC method embeds information inside the SRAM word
itself so it would require no memory overhead, but the key problem is again that the
information quantity inside each SRAM word would be run-time dynamic and thus
unpredictable. The only viable solution is then splitting the full input sequence
into multiple smaller ones, each one matching the SRAM word length. Compres-
sion/decompression are then carried out on each sub-sequence independently. In
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6 – Compression Engine

order to keep the same information amount in every SRAM word, original and
compressed sequences must have the same length: if the latter are shorter, then
their remaining space is padded with zeros. This approach to ZRLE turns out to be
quite different from the standard ones. The visual example in Figure 6.1 illustrates
an SRAM word before and after compression with DRRA ZRLE.

1 2 3 4 0 0 0 5 6 0 0 7 0 8 9 10

1 2 3 4 Z3 5 6 Z2 7 Z1 8 9 10 0 0 0
Padding zeros

OFMs have strictly positive values Encode # zeros with a negative value

Figure 6.1: Working principle of ZRLE in DRRA

Any word inside the data string could be an encoded value, so Zero Runs cannot
be identified by position, but they need a specific feature to be distinguished from
normal non-zero values. OFMs only contain values greater than or equal to zero,
so negative numbers can be employed to encode compression information. On the
other hand, filter weights can take any value so they leave no room for encoded
data. For these reasons, ZRLE has been limited to OFMs. The natural drawback
of all these functionality restrictions is that the number of memory accesses is not
reduced, since DRAM and SRAM store the same quantity of data as without com-
pression. Power savings however still occur in data transfers: the last part of each
SRAM word (each sub-sequence) will frequently contain many zeros, so a certain
portion of the memory output will always stay constant and prevent switching ac-
tivity in the interconnects.
Overall, compression efficiency of DRRA ZRLE is undoubtedly lower than the tra-
ditional approaches, but lack of memory overhead and widespread interconnect
power savings can likely compensate and make it a worthy inclusion in the fabric.
The validity of this statement must be verified during the characterization step. if
results are not promising enough, it is best to move back to traditional implemen-
tations of ZRL between L2 and L1 memories.
As already pointed out, ZRLE processing would take place in DRRA cells, before
RF block writes and after RF block reads. It follows that the compression engine
must be able to process a batch of multiple words at once. In the following, Nb
refers to the number of bits for a single data and Nw to the number of data con-
tainted in a SRAM word, so that the input to the engine is Nb · Nw bits.
Three different approaches can be taken to implement RLE.
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6.1 – ZRL Basic block: the ZRL Layer

In the Purely Sequential, input data is registered, then words are processed one at
each clock cycle. Elaboration is controlled by a simple FSM so few computational
elements are required, while most of the space is taken by the memory. The mem-
ory size is equal to an entire RF block. The latency is the highest among the three
methods, being 1+Nw: one cycle to register the inputs, Nw cycles to process each
word.
In the Purely Combinatorial, input data coming from the DiMArch is directly pro-
cessed without being sampled. The area occupation and combinatorial delay can
be potentially high due to the amount of logic required for elaborating all words at
once, but the component has zero latency.
Lastly, there is the Mixed approach, which is a combination of the previous two
methods. Inputs are registered, but multiple words are processed within the same
clock cycle. Defining Wp as the number of words computed in parallel, the latency
equals 1 + çNw

Wp
è. The area is likely dominated by the registers as in the Sequen-

tial approach, but also includes a relevant amount of logic. The purely sequential
approach has been discarded, since its latency grows too fast with Nw. As an
example, the standard SRAM for DiMArch contains 16 data, which would require
17 clock cycles to be elaborated: the RLE engine would become the main system
bottleneck. Moreover, extended execution times might nullify the energy savings
that compression is meant to introduce.
For these reasons, the hardware implementation has focused only on the Combina-
torial and Mixed approaches. All the HDL descriptions have been generalized, so
as to be compatible with any combination of Nw and Nb.

6.1 ZRL Basic block: the ZRL Layer

It is worth recalling the two peculiar characteristics of DRRA ZRL: there are no
fixed positions for the Zero Runs, but any of the Nw data inside a compressed
sequence can be either a non-zero or an encoded value. Also, data sequences always
match with one SRAM word. In case a compressed sequence becomes shorter,
padding zeros are appended to restore its length. These two properties imply that
the position of each single data word depends on the content of all previous entries
inside the sequence. In case of compression, runs of multiple zeros are converted
in one encoded word and all the subsequent words must be shifted backwards. For
decompression, encoded words are expanded back to many consecutive zeros, so
all the next words are pushed forward. From these characteristics it follows that
is impossible to process data independently, but instead the input sequence must
be elaborated one word after the other, starting from the first. This is the reason
that brought the ZRL engine to be organized in cascaded Layers: given Nw words,
the Layer Li reads the word in position i and, depending on its content, updates
the remaining part of the sequence and feeds it to Li+1. The Decompression Layer
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6 – Compression Engine

block scheme is shown in Figure 6.2.

W0W1W(Nw-1) ⋅ ⋅ ⋅

<

"0"

0 1

"0"

0 1

"0" cut

Nb
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(Nw-1)Nb

Decompressed
Word

Layer
Output

Layer Input

Nb

(Nw-1)Nb

2's

log2(1+Nw)

log2(1+Nw)

Figure 6.2: ZRLE Decompression Layer

The first word from the input is read and interpreted: if it is a negative number,
it is complemented and sent to a left barrel shifter, that introduces the Zero run
inside the vector. If the active word is instead a positive number then nothing must
be changed, so the barrel shifter receives zero. In all cases, the processed word is
sent to the output, while the remaining part of the sequence is transferred to the
next Layer. The Compression Layer is quite similar, as can be seen in Figure 6.3.
A layer of comparators identifies the zeros inside the input word, then the Zero
Run length is determined by a Trailing Ones Unit. According to its result, a barrel
shifter removes the Zero Run by pushing the sequence to the right and introducing
padding zeros. The two Decompression and Compression Layers share most of
their components, so they can actually be joined to save on area an obtain a single
hardware component for the entire ZRL processing. The new general ZRL Layer
is depicted in Figure 6.4, and can be used for all the three different approaches to
SiLago ZRL. The control bit mode sets the operation: 1 for decompression, 0 for
compression.

6.2 Purely Combinatorial ZRL
This implementation processes the whole input vector at once, so it chains all layers
in a fully combinatorial way. Figure 6.5 shows its RTL scheme.
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Figure 6.3: ZRLE Compression Layer

6.3 Mixed ZRL

The Mixed approach samples the input data and processes it over 1 + çNw
Np

è cycles,
so it needs a counter to keep track of the elaboration state. The same register file
is used to store the initial vector and the intermediate results, so two left barrel
shifters are driven by the counter to select the locations to update. Similarly, a right
barrel shifter brings the data back in position for the layer input. After 1 + çNw

Np
è

cycles, the processed SRAM word is available at the register file output. The RTL
scheme can be found in Figure 6.6.

6.4 Optimized Layer

In its straightforward implementation, a ZRL Layer processes only one word, but
a closer analysis to the algorithm behavior makes it possible to increase its paral-
lelism to two words at the same time. In the following, first and second input words
are noted as L0 and L1 respectively. The corresponding processed words in output
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W0W1W(Nw-1) ⋅ ⋅ ⋅

0 1

"0"

Nb

shift
bits Barrel Shifter

(Nw-1)Nb

De/Compressed
Word

Layer
Output

Layer Input

Nb

(Nw-1)Nb

Trailing Ones Unit

NwNb

< 0< 0< 0 ⋅ ⋅ ⋅

NbNbNb

Nw

log2(1+Nw)

0 1

2's

cut

L/Rn

mode

0 1 mode

2's
ext

Figure 6.4: ZRLE General Layer

are out_word0 and out_word1. For simplicity, let us consider at first compression
and decompression separately.
Decompression: If the input word L0 is encoded, and so it is containing the length
of a Zero run, then the following word L1 is the first non-encoded value after the
sequence so it is always non-zero. In this case, out_word0 = 0, while out_word1
depends on the content of L0.
If L1 is encoded, then L0 can only be non-zero, so out_word0 = L0, out_word1 = 0.
Compression: If L0 is encoded, no information on L1 can be derived so the input
sequence is processed normally. In this case out_word0 = Zero run length while
out_word1 is the next non-zero value after the Zero Run. If L0 is not encoded, it
can be skipped by starting the processing on L1 directly, so out_word0 = L0 and
out_word1 depends on the content of the remaining inputs besides L0.
Overall, it turns out that if one word is processed, then the result of the following
one is already known. This allows to arrange the input stream in couples and so
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Figure 6.5: Purely Combinatorial ZRLE

to elaborate two words at the same time. Figure 6.7 shows that the new opti-
mized Layer needs more control logic than in the previous version, but doubles the
throughput. The new right barrel shifter keeps the input sequence unchanged or
shifts out L0 and moves L1 to the rightmost position. When this happens, the left
barrel shifter just before the output is used to get the words back to their original
positioning. The optimized layer just presented can be plugged into the ZRLE ar-
chitecture just like the old one, but in this case the overall number of Layers would
be halved. The overhead to this enhanced layer may not seem negligible, but the
extra logic functionally replaces an entire old layer while taking up less area. In
particular, the two new barrel shifters can only move 0 or Nb bits, so in general
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Figure 6.6: Mixed ZRLE. Long connections are color-coded.

they are much smaller than a standard barrel shifter. Overall, area and delay for
the new solution are expected to improve by a sensible margin. Results presented
in Section 8.4 confirm these expectations.
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Chapter 7

CGRA Synthesis

The DRRA and DiMArch arrays are tightly coupled and complement each other’s
functionality, so in this work they have been synthesized together as a whole bigger
fabric. This makes the area analyses more complete and allows to verify the whole
system functionality. It must be pointed out however that the Compression Engine
has been excluded from the DRRA synthesis due to its area occupation. The
area values from logic synthesis are available in Section 8.4. Even the optimized
ZRLE engine would have brought an eccessive overhead to the DRRA block area,
so it has been temporarily removed. Adjusting the CGRA to include compression
engines has been left as future work in Chapter 9. Figure 7.1 presents the general
floorplan of both SOM and CNN/LSTM fabrics. In both cases, the array is made
up of 8 columns and 3 rows, one for DiMArch and two for DRRA. The top DRRA
row is numbered with 0 and all other rows are given a number according to their
distance from the origin. Columns instead follow a standard increasing order from
left to right. In accordance with the rules of Synchoricity, the design area has
been sectioned into equal space intervals. Horizontal and vertical strides have the
same value and they generate a grid formed by squares. Any synchoros component
must then be contained in an integer number of squares. The stride value has been
adjusted to half the side of a DRRA cell, so that each one of them occupies exactly
four area units. DiMArch tiles need a bigger area in order to contain the SRAM,
so they have been accommodated on a greater number of squares.

7.1 Logic Synthesis

The logic synthesis of the whole fabric has been carried out on Cadence Genus.
The employed technology library has been a Low Power (LP) 28nm from TSMC.
Timing analyses have been carried out on the three corner cases listed in Table 7.1.
The target frequency to be achieved for both SOM and CNN/LSTM has been set
to 200 MHz. For a large design like the CGRA which is widely based on repetition
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7 – CGRA Synthesis

Worst Typical Best
Voltage [V] 0.855 0.95 1.045

Temperature [◦C] 125 25 -40

Table 7.1

of the same components, the bottom-up approach has been deemed as the most
suitable. The logic synthesis process requires a few naming conventions, which are
introduced in Figure 7.1. DPU, Register File, Sequencer and SwitchBox are in
common to all DRRA tiles so they have been grouped under a dedicated block, the
Tile Core. In the first synthesis step this component is synthesized only once, and
for the rest of the process it is reused without further modifications. DRRA cells at
the corners require different interface and control logic than the ones in the center,
and the same goes for the top and bottom rows. Corner cells have different IO
pins because they are linked to the sliding window interconnect only on one side,
whereas top DRRA cells contain all the feedthrough wires from the DiMArch to the
bottom row and also include the logic to handle communication between DRRA
and DiMArch. As a result, six variations of DRRA cells are needed: top left, top,
top right, bottom left, bottom, bottom right. In the second step of the synthesis,
the same Tile Core was enclosed by six Wrappers which account for all DRRA
variations. As for the DiMArch, all tiles are composed of SRAM blocks and NoC
switches so their content doesn’t change with their position, however the interface
differences still require to distinguish between left, center and right wrappers. For
both fabrics, SRAM blocks have been shaped as 128 rows of 16 data words of 16
bit each, for a total size of 4KB. It must be pointed out that SRAMs have not been
actually synthesized because their physical macros were not available. Instead,
they have been reserved a region inside the cells (the dark rectangles at the center,
Figure 7.2) but they have been left as a black box and only their behavioral model
has been used during verification. Column 4 in Figure 7.1 represents the generic
structure of DRRA and DiMArch cells just described.
The top-level fabric has been set up so that it contains no logic of its own, but only
wrappers and wires. As a consequence, the last synthesis step simply consists in
instantiating the cells and connecting them.

7.2 Physical synthesis
The physical synthesis followed a standard flow, but required special measures
for floorplan and pin assignment. Dimensions and position of all cells had to be
exact so that they perfectly aligned to the grid. Their size was chosen to have
an initial area utilization around 70%, needed to ensure enough space for buffers
and internal routing. Some void space has been left between cells to accommodate
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7.2 – Physical synthesis

the interconnections, so wire channels of equal width have been introduced across
the whole fabric. The synchoros grid stride has been adjusted so that all grid
lines laid exactly in the middle of the channels. The resulting floorplan is visible
in Figure 7.1. Positioning of IO pins was the other critical part that enabled
abutment. Pins among all cells were carefully aligned, so that the interconnections
were simply formed by straight lines. At the end of physical synthesis, both SOM
and CNN/LSTM arrays met the frequency of 200 MHz and were DRC-clean.

Figure 7.1: CGRA General Floorplan Scheme.

Figure 7.2: Synthesized SOM CGRA, Top-level view.
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Chapter 8

Results

This Chapter is dedicated to the results analysis for all components that are part of
the DRRA cell and for the CGRA synthesis. The main goal for the ANN activator
functions (Sigmoid, Tanh, Exponential, Softmax) is to reach an acceptable accuracy
while containing area requirements. As for the Zero Run Length Encoding, the
different available implementations are compared basing on latency and area. Power
estimations on the synthesized CGRAs were not performed due to lack of time, so
only detailed area reports have been included.

8.1 Sigmoid and Tanh
The fundamental design parameter for a LUT is the number of entries, which is
always determined in a tradeoff with the final accuracy. The optimal input partition
has been found by comparing the maximum absolute error Ômax against the number
of entries Ne through the following figure of merit:

FoM = errormax
max(errormax)

· Ne

max(Ne)
(8.1)

Both terms are normalized so they have the same weight. The golden reference
models that have been used for measuring the error of Sigmoid and Tanh use 64-
bit floating point format.
An alternative to the maximum error could have been the average error, but in
the case of sigmoid it turns out to be completely unreliable. This is caused by the
following two factors:

1. The sigmoid tails always reach their ideal value so their error is always 0;

2. They take up a greater and greater part of the total input range as the number
of fractional bits decreases.
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The latter property can be formally proved by finding the value xÍ at which the
quantized sigmoid jumps from 1−2−fb to 1. This change happens when the sigmoid
is exactly halfway between 1 and the previous quantized value 1−2−fb. The formula
is given in 8.2.

1 − 1
1 + e−xÍ = 2−fb

2 = 2−(1+fb) (8.2)

Solving for xÍ one finds the result in Equation 8.3.
1

1 + exÍ = 2−(1+fb) =⇒ xÍ = ln
1
2(1+fb) − 1

2
(8.3)

This means that xÍ, the sigmoid saturation point, gets closer and closer to the
origin as fb decreases. The combination of these two factors averages out the more
relevant errors of the central part, especially for the low fractional bit formats that
are expected to be less precise. The consequence is evident in Figure 8.1b, where
the formats Q15.0 and Q14.1 are given as the most accurate, even though the only
allow the values {0, 0.5, 1} and {0,1} respectively.
In the case of sigmoid, relative errors should also be avoided simply because their
formula:

Ôσ(x) = errorσ(x)
σ(x) (8.4)

Would be undefined for the portion σ(x) = 0.
The Maximum absolute error should instead be taken as a safer measure of the
accuracy: Figure 8.1a shows that the maximum absolute error always decreases as
fb increases, in accordance with the expectations.
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Figure 8.1: Sigmoid Maximum error (a), Sigmoid Average error (b)

An efficient LUT strikes a balance between error and size, so the optimal solution
is to be found in the global minimum of the FoM function. As an example, Figure
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8.1 – Sigmoid and Tanh

8.2b shows the tradeoff that led to the chosen size for the uniform PWL look-up
table for Q4.11. In Figure 8.2a it can be noticed that the number of entries is
always different from the number of intervals: all LUTs have been implemented as
combinatorial logic, so distinct outputs with the same value can be merged.
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Figure 8.2: Tradeoff for LUT size: Optimal number of partition intervals corresponds
to global minimum of FoM function

This optimum search method has been conducted on LUT, RALUT, UPWL
(uniform PWL) and NUPWL (non-uniform PWL) versions of sigmoid, for all fb ∈
[0,11] and Ni, Nib ∈ [5,14]. Table 8.1 reports all optimal solutions through their
two main figures of merit (number of entries and maximum error) for all valid fb.

Number of Entries Maximum Error
fr. bits LUT RALUT UPWL NUPWL LUT RALUT UPWL NUPWL

0 2 3 2 33 0.5 0.5 0.5 0.5
1 3 3 3 31 0.2689 0.2310 0.2689 0.2310
2 4 4 4 20 0.1275 0.1225 0.1275 0.1225
3 6 6 4 18 0.1645 0.0621 0.1645 0.0622
4 2 10 4 26 0.0361 0.0312 0.1240 0.0312
5 4 18 6 41 0.2188 0.0156 0.0547 0.0156
6 7 34 6 23 0.1250 0.0078 0.0429 0.0181
7 12 25 11 28 0.0625 0.0234 0.0148 0.0100
8 22 44 24 35 0.0316 0.0130 0.0065 0.0055
9 43 82 25 45 0.0159 0.0071 0.0042 0.0025
10 84 91 46 45 0.0079 0.0064 0.0017 0.0017
11 166 162 53 46 0.0040 0.0042 0.0010 0.0012

Table 8.1: Figures of merit for Sigmoid against number of fractional bits
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RALUTs achieve similar performances to standard LUT. The maximum error pro-
vided by RALUTs is only slightly lower, but it is counterbalanced by a greater
number of entries. Considering that RALUTs require an additional decoder layer
besides the actual LUT, this overhead ends up not being justified by the greater
accuracy.
Algorithms 2, 3 and 4 have been used for deriving partitions for all LUT, RALUT
or PWL implmentations of sigmoid. The differences between LUT and RALUT can
be seen in Figure 8.3, which contains the Sigmoid on 64-bit floating point precision
along with LUT and RALUT Sigmoids, for format Q4.11 and a partition of 64
intervals. It is possible to notice the RALUT intervals changing width according to
the Sigmoid slope and allowing greater accuracy with the same number of partition
intervals. The PWL approaches easily prevail on LUT-based ones, as expected.

(a) (b)

Figure 8.3: LUT and RALUT. Sigmoid full input range (a), Sigmoid Close-up on tail
(b).

For low fb the two approaches yield equal results, but it is for higher fb that PWL
gains a considerable edge both in acccuracy and in number of entries. For what
concerns the Silago platform, multipliers and adders are already included in the
DPU, so choosing PWL comes at the very low cost of adding one entry to input
multiplexers of the MAC unit. A good example can be format Q4.11, for which both
PWL implementations have a maximum error around 4 times lower than LUTs. In
addition to this, standard LUT and RALUT approaches require more entries that
the PWL look-up tables. These considerations lead to the adoption of PWL-based
approaches for the DPU, so the final choice narrows down to UPWL or NUPWL.
For low fb, accuracies are mostly the same, but NUPWL requires more entries;
for greater fb, both accuracy and number of entries are quite similar. NUPWL is
based on RALUTs which have an increased area cost, so the more simple UPWL
has been chosen instead. In light of these results, PWL approaches in general are
confirmed to be the best solution for Silago in terms of area and accuracy.
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Figure 8.4 provide visual proof by comparing Sigmoid and Tanh as obtained by a
normal LUT and UPWL. It is interesting to note that the tails take the exact same
values: this is because the UPWL slope fades to 0, so only one degree of freedom
is left just like in a LUT. For the rest of the waveform however the UPWL yields
much more accurate results. The final performances reached by Sigmoid and Tanh

(a) (b)

Figure 8.4: LUT and UPWL. Sigmoid full input range (a), Sigmoid Close-up on tail
(b).

are resumed in Table 8.2. The maximum absolute error has been taken as the main
figure of merit. The average has still been included for completeness, but with the
caveat that has already been discussed previously.

The most precise sigmoid (fb = 11) has a maximum error of 0.001, so it can be
considered a very good approximation. For lower fb (5-10), the accuracy obviously
reduces but still attains reasonable values; if fb decreases too much results get quite
poor, but that is due to the inbuilt lack of precision of the format, rather than to
the interpolation method itself.
The Tanh is derived from the Sigmoid, and the tradeoff from the area savings is
an increase of the maximum error, which is around 1.5 times bigger for greater fb,
while goes up to 2 times for lower ones. Thanks to the small errors achieved by
the Sigmoid, this detrimental effect is kept under control so Tanh maintains good
accuracy values. Tanh is a stretched, translated and sped up version of the Sigmoid
as in Equation 4.5, so the tail saturation occurs even earlier than the Sigmoid and
this leads to the Tanh average error being smaller.

8.2 Exponential
Following the same approach for neuron activators, the accuracy is mainly quanti-
fied in terms of maximum absolute error. The golden reference is still the target
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Absolute errors UPWL
Sigmoid Tanh

fr. bits Max Average Max Average
0 0.5 2.179E-5 1 2.380E-5
1 0.2689 4.262E-5 0.5379 4.359E-5
2 0.1275 8.477E-5 0.2550 8.524E-5
3 0.1645 1.693E-4 0.2384 5.101E-5
4 0.1240 1.027E-4 0.1716 9.141E-5
5 0.0547 8.579E-5 0.0643 6.538E-5
6 0.0429 1.266E-4 0.0625 1.121E-5
7 0.0148 1.074E-4 0.0229 8.404E-5
8 0.0065 1.020E-4 0.0097 6.718E-5
9 0.0041 1.174E-4 0.0066 8.535E-5
10 0.0016 1.164E-4 0.0023 8.056E-5
11 0.0010 1.346E-4 0.0015 9.711E-5

Table 8.2: Figures of merit for Sigmoid and Tanh against number of fractional bits

function on 64-bit floating point, but modified to include saturation on a 16-bit
fixed point format. The reason is the following: the exponential reaches very high
values for relatively small positive inputs, so for all targeted Q formats the output
saturates long before the input range ends. Within the saturation region, the dif-
ference between fixed point and floating point becomes so dramatic that it heavily
skews the error computation, thus making it useless. The solution can only be
saturating the reference exponential in the same way as the fixed-point version, so
that the error can be evaluated only on the meaningful part. Although the issue
with the maximum error is now solved, for the whole saturation interval the error
is 0, so the average error gets skewed and becomes affected by the same reliability
issues as in the Sigmoid. Table 4.2 lists exponential errors as function of fb.

Exponential Absolute errors
fb 0 1 2 3 4 5

Maximum 32764 16381 8184 4090 2026 990
Average 4.468 3.982 3.067 2.878 1.595 1.227

fb 6 7 8 9 10 11
Maximum 473 129 45.35 8.29 0.859 0.198
Average 0.840 0.274 0.0709 0.0169 0.0044 0.0014

Table 8.3: Figures of merit for Exponential against number of fractional bits

The problem that Table 4.2 brings out is the striking precision loss compared
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to the Sigmoid from which the Exponential has been derived. As an example,
it is enough to look at the maximum error for format Q4.11, which is the most
precise: for Sigmoid it is 0.0010 while Exponential reaches 0.198, 198 times bigger.
This dramatic loss in performance has been investigated with the first order Taylor
expansion model for error propagation in Equation 8.5.

exp(σ) = 1
σ(−x) − 1 = 1

1 − σ(x) − 1

=⇒ δexp(σ) =
-----∂exp

∂σ

----- δσ =⇒ δexp(σ) = 1
(1 − σ)2 δσ

(8.5)

According to Equation 8.5, the error tends to infinity as the Sigmoid saturates
towards 1, so the model might be the correct explanation for the accuracy degra-
dation. In such case, the limit would be inbuilt in the use of division and its way of
propagating the error, so it could only be eliminated by changing the exponential
implementation altogether. The propagation model can be further studied by in-
troducing a dependency on the fixed-point format. Given Nb bits and a Q format
Q(ib).(fb), the biggest number that can be represented is the one in Equation 8.6.

2Nb−fb−1 − 2−fp = A (8.6)

When the exponential saturates, both the reference model and real implemen-
tation reach the same value, so the error drops to zero. The worst case for error
propagation occurs just before saturation and it is given in Equation 8.7.

1
1 − σ∗ − 1 = A =⇒ σ∗ = A

A + 1 (8.7)

The value σ∗ can be plugged into the error model, which is done in Equation
??.

=⇒ δexpmax = 1
1 −

1
A
A+1

22 δσ =⇒ δexpmax = (A + 1)2 δσ

=⇒ δexpmax =
1
2Nb−fb−1 + 1 − 2−fp

22
δσ

=⇒ δexpmax ∼ 22(Nb−fb−1)δσ = 22ibδσ

(8.8)

For Nb = 16, the term 1−2−fp can be neglected to highlight the main contribution:
approaching saturation, the error propagation coefficient depends exponentially on
the number of integer bits ib (excluding the sign bit).

The model resumed in Equation 8.8 can be tested to confirm its validity. For
format Q4.11:

σ∗ = A

A + 1 Ä 15.995
16.995 Ä 0.941 (8.9)
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Knowing the value of σ∗ and so of 1 − σ∗, it is possible to obtain the corresponding
δσ∗ and multiply it by the propagation coefficient to derive a theoretical estimate
of the worst-case error for the Exponential, reported in Equation 8.10.

δexpmax =
1
2Nb−fb−1 + 1 − 2−fp

22
δσ∗ = 288.98 · 6.75 · 10−4 = 0.195 (8.10)

The result is reasonably close to the maximum error of 0.198 reported in Table
8.3.
The analysis ultimately shows that the worse performances of the Exponential are
due to the use of division itself, thus improvements are only possible by changing
implementation method: the decrease in accuracy is the necessary tradeoff to pay
by reusing the divider to save area and power. The error values can be somewhat
acceptable for format Q4.11, but they would get unreasonably large with more
integer bits.
Such kind of inbuilt limitation would be an issue for a general implementation of
the exponential, but the peculiar use of the function inside ANNs allows to bypass
the problem altogether. Exponential is in fact only used in two operations:

• ELU (Exponential Linear Unit). Its definition is recalled in Equation 8.11.

ELU =
x, x > 0,

a(ex − 1), x < 0
(8.11)

It can be seen that only the Exponential tail is used, which behaves well in
terms of error. In fact, the largest propagation coefficient is 4 as in Equation
8.12. -----∂exp

∂σ

-----
max

= 1
(1 − σ(0))2 = 11

1 − 1
2

22 = 4 (8.12)

That is an acceptable value and most importantly it is independent on the
data format.

• Softmax. As explained in Section 4.7, the input vector is first subtracted by
its maximum value, so all exponentials have an argument that is lower than
or equal to zero. Also in this case, the effectively used portion is just the tail.

Ultimately, it turns out that ANNs make use of the exponential section that poses
no problem in terms of error, so the inbuilt accuracy losses do not need to be
solved as they are always avoided. It is worth reporting the error figures of merit
for the exponential tail only, which are given in Table 8.4. All new errors are now
in line with the performance provided by the Sigmoid, so the chosen Exponential
implementation has proven to be valid.
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Exponential Tail Absolute errors
fb 0 1 2 3 4 5

Maximum 1 1 1 1 0.25 0.125
Average 4.828E-5 7.756E-5 1.379E-4 2.597E-4 1.664E-4 1.127E-4

fb 6 7 8 9 10 11
Maximum 0.125 0.03125 0.01165 0.0079 0.0033 0.0015
Average 1.717E-4 1.325E-4 1.090E-4 1.364E-4 1.231E-4 1.423E-4

Table 8.4: Figures of merit for Exponential tail against number of fractional bits

8.3 Softmax
Recalling Equation 4.18, it can be seen that each output of Softmax depends on
all inputs but also on their number N . Under these conditions, performing a
complete error evaluation with all possible combinations of input values and with
varying N becomes very unpractical. A more feasible alternative is finding a proper
distribution of inputs that is close to realistic use cases. The Softmax in ANNs
serves the purpose of taking the network outputs and normalizing them into a
probability distribution. The non-linear and strictly increasing curve of Exponential
emphasizes the difference between high and low values, but the overall behavior of
the input distribution is left unchanged. Figure 8.5 displays an example.

1 2 3 4 5 6

Input sequence
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1 2 3 4 5 6
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0.15

0.2
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0.3

0.35

0.4

0.45

0.5
Output values

(b)

Figure 8.5: Example of Softmax Normalization

The relative weights among inputs have changed, with the higher values being
accentuated and the lower ones flattened out, but the overall distribution ‘shape’
remains the same. The expected behavior for CNN and LSTM is having only one

89



8 – Results

output close to 1 and all others to 0 (a correct data classification), so it is reasonable
to assume that this particular behavior can be found at the input of the Softmax
Layer as well. The final choice for representing the input vectors fell on the altered
Normal distribution in 8.13.

Xi(µ, σ2) = −2ib
3

e− (i−µ)2

σ2 − 1
4

(8.13)

Inside Equation 8.13, i is the position inside the input sequence 1,2, . . . , N , Xi

is the i − th input, µ is the mean and σ is the standard deviation. This Normal
distribution has been modified so that its values now span the interval [−2ib,0],
modeling the (xi − xmax) inputs to Softmax. For each suitable Q format, input
vectors have been created with N varying in the interval [24, 216]. The mean µ
for each vector has been chosen at random, while the standard deviation has al-
ways been kept fixed to 5, so as to include some intermediate values between the
maximum and the function tails. The chosen figures of merit are the maximum
and average error over the output vector. An additional check can be done on the
sum of all outputs, which should be equal to 1 since the Softmax creates a proba-
bility distribution. The golden reference model employs 64-bit floating point data
for both Exponentials and division, while the hardware implementation model is
limited to fixed-point with fb fractional bits both for exponential and for division.
In order to ensure a fair comparison, the same input vectors with discretized values
on fb bits have been used for both versions.
All figures of merit have proven to be almost independent on N , so only the average
values with respect to N have been reported. Tables 8.5 and 8.6 lists the results as
a function of Q.

Softmax Absolute errors
fb 0 1 2 3 4 5

Maximum 3.917E-64 1.979E-32 4.4403E-16 2.372E-8 2.177E-4 0.0204
Average 0.0292 0.0074 0.0028 0.0011 9.032E-4 3.989E-4

fb 6 7 8 9 10 11
Maximum 0.125 0.03125 0.01165 0.0079 0.0033 0.0015
Average 1.717E-4 1.325E-4 1.090E-4 1.364E-4 1.231E-4 1.423E-4

Table 8.5

Unintuitively, the lower fb formats appear to have the highest precision. This
result is easily explained by the shape of the exponential, that gets closer and closer
to the discontinuous function:

fexp(x) =
1, x = 0

0, otherwise
(8.14)

90



8.4 – ZRLE implementation

fb 0 1 2 3 4 5
Softmax Sum 1 1 1 1 1 1

fb 6 7 8 9 10 11
Softmax Sum 0.9844 0.9844 0.9883 0.9941 0.9912 0.9951

Table 8.6

it follows that Softmax for both floating-point and fixed-point tends to assign a
very high score (ideally 1) to one single output and zero to all others. Instead,
on higher precision formats many more values are available both for inputs and
outputs, so more differences between the two Softmax models arise.
Overall, the results point out that the chosen Softmax is very precise and stable
with respect to both Q format and vector size N .

8.4 ZRLE implementation
In order to determine the most efficient version of the ZRLE engine, critical path
and area/number of cells from Logic Synthesis have been used together with the
latency values.
As also remarked in Section 7.1, The employed technology library has been a 28 nm
Low Power from TSMC, with the corner cases in Table 7.1.
Naturally, all results from timing analysis are referred to the Worst Voltage Tem-
perature corner, and only implementations that met the timing constraints have
been taken into account. The target clock frequency of the platform is 200 MHz
that correspond to a 5 ns period, however an additional slack of 2ns has been re-
served to account for the wire delays connecting to the DiMArch, and for the some
extra control logic around the ZRLE engine. Overall, only implementations with a
critical path ≤ 3ns have been considered suitable.
Neither the standard combinatorial approach nor its optimized version met the
target timing constraints, so they had to be put aside, leaving the mixed approach
as the only viable alternative. The optimal solution must strike a balance between
clock cycles of latency and area occupation, so it has been searched with the fol-
lowing Figure of Merit:

FoM = area

max(area)
latency

max(latency) (8.15)

Since it is desirable to minimize both area and latency, the optimum corresponds
to the global minimum of the FoM. Area values at parity of word parallelism Wp
are reported in Figure 8.6a, while the FoM can be found in Figure 8.6b.

Except for the case Wp = 1 the optimized ZRLE always attains a smaller
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Figure 8.6: Logic Synthesis results for Mixed ZRL

area, with a performance gap that widens for high Wp. As expected, increasing
the Layers size but halving their overall number has a major positive impact. It
is interesting to see how area constantly increases for the standard ZRLE, while
for the optimized ZRLE is bigger for odd Wp values than for even ones. That is a
consequence of processing data in couples: one layer is added at every Wp = 1+2k,
but its outputs are fully exploited only at Wp = 2k + 2. It follows that odd Wp
have same area devoted to Layers, but a bigger control logic to handle the greater
number of intermediate results, hence their overhead in size. The best tradeoff has
been found for Wp = 4 for both versions of ZRLE, so that is the value ultimately
recommended for the ZRLE Engine.

8.4.1 SOM Fabric Area Results
The main parameters related to the SOM fabric floorplan are listed in Table 8.7.
DiMArch height has been set to 2hdrra+Wchannel, so that it could be accommodated
on eight grid squares. This leads to the same total area for DRRA and DiMArch
arrays. A view of the post place & route SOM fabric is available in Figure 7.2
(Chapter 7). The same view for CNN/LSTM looks very similar, so it has not been
reported.
Since the main target of customization for the DRRA has been the DPU, Figure
8.7a presents the area occupation of its inner components. As expected, multipliers
take up a fair amount of space, with a close second being the control logic, i.e. the
multiplexers that allow to reuse the same blocks for different operations.

A visual representation of synthesis results for the entire SOM DRRA cell can be
seen in Figure 8.8a, which uses the Top DRRA Tile as an example. Standard cells
have been color coded to provide a glance at area occupation and spatial distribution
of each basic DRRA component. It must be specified that Standard Cells falling
under the ‘Others’category (in grey) are part of the registers and control logic that
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(a) (b)

Figure 8.7: Comparison between a SOM and CNN/LSTM DPU.

Figure 8.8: Area distribution of Top DRRA Tile - Components are color coded.

do not belong to the Tile Core, i.e. are contained in the wrapper. Thanks to its
low complexity, the DPU takes up a fairly small area and this allowed to expand
the Register File up to 64 locations. As a consequence, the RF became the major
contribution to the DRRA area. The chart in Figure 8.9a quantifies the size of
DRRA components in terms of gate count and reports their relative contributions.
Table 8.8 contains the complete synthesis results for all DRRA tiles. Although
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not the main focus of this work, DiMArch data have been reported as well for
completeness. The values are slightly different from one cell to the other due to
the different optimizations performed by Innovus. It is interesting to note that the
corner Switchboxes are missing half of the connections and so end up being smaller
than the central ones. Moreover, the ‘Others’ field which represents the wrapper
logic has bigger values in all top cells, since they have to handle communication
with DiMArch cells.

(a) (b)

Figure 8.9: Comparison between a SOM and CNN/LSTM Tile. Example based on Top
Tile data from Tables 8.8 and 8.10.

8.4.2 CNN/LSTM Fabric Area Results
Floorplan dimensions for this fabric version are available in Table 8.9. In this
case, DiMArch cells have a broader base as compared to SOM but contain same
logic and same SRAM block, so their height has been set to a lower value of
1.67hdrra + Wchannel. In this way DiMArch cells don’t match perfectly with the
grid, but are still contained in eight blocks and have a very similar area occupation
to the SOM case.
Figure 8.7b shows the area distribution for the DPU. With an area that is more
than two times the SOM DPU and an occupation of 59%, the divider clearly repre-
sents the most bulky component, but at least it is reused for both exponential and
softmax which reduces its cost. On the other hand, LUTs for Sigmoid and Tanh
(Squash Units) appear to have a very low impact with only a 2% weight. Even
If they were added to the SOM DPU they would take up around 9% of the area,
which is still tolerable.
The considerable area increase induced by the divider is evident in Figure 8.8b.
As a consequence, the RF had to be scaled down to 32 words in order to keep the
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total area under control, and this is why it occupies less area than in the SOM
tile. Sequencer and SwitchBox did not undergo modifications and in fact they take
up a similar tile portion. All these considerations are proved correct by the gate
count data in Figure 8.9b. It is worth recalling from Chapter 7 that ZRLE is not
present in Figure 8.8b because it has been excluded from CNN/LSTM fabric syn-
thesis due to its excessive area requirements. For completeness, Table 8.10 lists all
the available data on the fabric synthesis results.

SOM Fabric Floorplan
- Width Height Area Channels Width

DRRA Tiles 189 189 35721 18.9
DiMArch Tiles 189 396.9 75014.1 18.9

DRRA Area = 699437.025
DiMArch Area = DRRA Area = 699437.025

Fabric Area = 1398874.05

Table 8.7: SOM Floorplan sizes. All dimensions are in [µm2].

SOM Fabric Synthesis Results

DiMArch Tiles Left Center Right
Gates Cells Area Gates Cells Area Gates Cells Area

Logic 28849 8699 10095 35325 11989 13352.8 26877 8267 10159.5
SRAM Area 39000 39000 39000
Utilization 66.5% 69.8% 65.5%

DRRA Tiles Top Left Top Top Right
Gates Cells Area Gates Cells Area Gates Cells Area

DPU 9365 4201 3540 10388 4546 3926.9 9868 4280 3730.1
Register File 27828 12042 10519.1 27716 12014 10476.9 28816 12081 10892.4
Sequencer 21747 7757 8220.4 22063 7795 8340.1 21928 7758 8288.8
SwitchBox 5681 3015 2147.4 7362 3333 2783.1 5625 3059 126.2
Others 5796 3176 2191 5622 2664 2124.1 5532 2890 2091.4
Total 70417 30191 26617.9 73151 30352 27651.1 71769 30068 27128.9

Utilization 74.5% 77.4% 75.9%

DRRA Tiles Bottom Left Bottom Bottom Right
Gates Cells Area Gates Cells Area Gates Cells Area

DPU 9487 4149 3586.2 9212 4166 3482.4 9315 4188 3521.3
Register File 28120 12252 10629.5 28098 12227 10621 28509 12283 10776.5
Sequencer 21854 7768 8261.1 21780 7783 8233.1 21832 7823 8252.7
SwitchBox 6191 3131 2340.4 5963 3144 2254 5791 3107 2189.2
Others 2350 1120 887.8 2462 956 930.2 1954 963 738.1
Total 68002 28420 25705 67515 28276 25520.7 67401 28364 25477.8

Utilization 72.0% 71.4% 71.3%

Table 8.8: SOM Fabric Synthesis Results. Area values are in [µm2].
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CNN/LSTM Fabric Floorplan
- Width Height Area Channels Width

DRRA Tiles 207.9 207.9 43222.41 18.9
DiMArch Tiles 207.9 365.4 75966.66 18.9

DRRA Area = 831604.725
DiMArch Area = 705430.215
Fabric Area = 1537034.94

Table 8.9: CNN/LSTM Floorplan sizes. All dimensions are in [µm2].

CNN/LSTM Fabric Synthesis Results

DiMArch Tiles Left Center Right
Gates Cells Area Gates Cells Area Gates Cells Area

Logic 28263 8871 10683.7 34096 11824 12888.4 26627 8231 10065.1
SRAM Area 40000 40000 40000
Utilization 66.7% 69.6% 65.9%

DRRA Tiles Top Left Top Top Right
Gates Cells Area Gates Cells Area Gates Cells Area

DPU 42953 17404 16236.5 45247 17476 17103.6 42823 17440 16187.2
Register File 14653 5884 5538.8 14973 5845 5659.9 14931 5878 5644.2
Sequencer 21525 7696 8136.7 21548 7670 8145.4 21677 7726 8194.2
SwitchBox 5423 3035 2050.1 5562 3078 2102.4 5359 3046 2025.8
Others 5958 3251 2251.7 5440 2714 2055.9 5317 3076 2009
Total 90512 37270 34213.8 92770 36783 35067.2 90107 37166 34060.4

Utilization 79.2% 81.1% 78.8%

DRRA Tiles Bottom Left Bottom Bottom Right
Gates Cells Area Gates Cells Area Gates Cells Area

DPU 42754 17434 16161 42965 17376 16240.8 42935 17406 16229.7
Register File 15052 6090 5689.9 14850 5843 5613.4 15242 6071 5761.5
Sequencer 21647 7739 8182.8 21648 7716 8183.1 21642 7806 8180.6
SwitchBox 5222 3005 1973.9 5773 3111 2182.4 5427 3068 2051.7
Others 2516 1226 950.7 2642 1127 998.2 2141 1085 808.8
Total 87191 35494 32958.3 87878 35173 33217.9 87387 35436 33032.5

Utilization 76.3% 76.9% 76.4%

Table 8.10: CNN/LSTM Fabric Synthesis Results. Area values are in [µm2].
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Chapter 9

Conclusions and Future
Work

The purpose of this thesis was to demonstrate the feasibility of a SiLago-based
CGRA for Artificial Neural Network applications. This task has been successfully
carried out by showing a end-to-end design flow for the basic CGRA block and
for the whole fabric. Starting from the target algorithms, the operations to be
included in the SiLago block have been identified. In accordance with the SiLago
framework, these operations have been manually implemented at RTL as a one-
time engineering effort and grouped into two designs, the DataPath Unit and the
Compression Engine, to be included in the CGRA blocks. These two components
are the main contribution of this thesis, so the design trade-offs and decisions
have been reported in detail. The high degree of parameterization provides both
DPU and Compression Engine with good versatility and reusability. They can be
used to explore different variants of the CGRA block and choose the best trade-
off between area, power and throughput. The other important contribution to the
SiLago framework was establishing and testing an EDA synthesis flow for the entire
CGRA: this work has shown how to assemble the CGRA blocks into a fabric in
compliance with the rules of Synchoricity and in a fully automated way. The end
result of this work are two functioning SiLago-compatible CGRAs, one for CNN
and LSTM networks and the other for SOM.
Detailed area reports have been included in this work, but due to lack of time power
estimations have not been carried out, so completing the fabric characterisation is
definitely the primary task to carry out in the future.
This thesis has explored a compression approach that takes data elaboration close
to the bottom of the memory hierarchy and has exposed its inherent limitations,
so power estimations will be useful to find out if this policy brings higher efficiency
than the traditional methods or not. Once this has become clear, the fabric will
have to be modified to integrate the Compression Engine.
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As a last remark, this thesis has focused on the hardware implementation of CGRAs,
but to actually execute ANNs they also require to be loaded with the correct
configuration software. In other words, ANNs need to be mapped to the CGRAs.
This is a task for the SiLago platform compiler so it is outside the scope of this
thesis, but nevertheless it is needed to compare the platform perfomance with the
other state-of-the-art designs for ANNs.
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