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Abstract

GNU Radio is a free and open-source graphical programming environment that can be used to
design Software-Defined Radios using a large panel of signal-processing blocks. It is widely used
in hobbyist, academic, commercial and military environments to support real-world radio systems
as well as research and development in wireless communications.
We propose SDR WorkFlow Advisor, a methodology that leverages Software-Defined Radio ap-
plications like GNURadio Companion in order to deploy the flowgraphs to be accelerated us-
ing FPGA or ASIC. The proposed methodology includes a tool which helps experienced signal-
processing engineers reduce the development time and the integration complexity of IP blocks into
the Software-Defined Radio signal-processing chain. Thanks to this methodology, it is possible to
create complex architectures directly from the GNU Radio Companion with the same workflow
used to create host-based flowgraphs (applications) and export them as AMBA-compliant accel-
erators for FPGA or ASIC design. We evaluate our methodology by implementing the 802.11p
standard used in Vehicle-To-Vehicle Communication. It is chosen for its growing interest within the
electronic engineers community; nevertheless our methodology can be applied to any algorithm.



Acknowledgements

This thesis project has been supported by the Columbia University in the City of New York,
precisely by the System-Level-Design (SLD) group. All the work mentioned in this thesis project
has been supervised by Professor Luca Carloni during my stay in New York City.
Further investigation have been made in Turin (Italy) at the Politecnico di Torino University under
the supervision of Professor Guido Masera and Professor Luciano Lavagno.



Contents

1 Introduction 6
1.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 More about RFNoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Software Defined Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 About SDR performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 About SDR software Enviroment . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 GNU Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 High-Level synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 OFDM(Orthogonal Frequency Division Multiplex) & IEEE 802.11p . . . . . . . . . 22

3 802.11p accelerator 26
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Reference Top layer Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Working Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Hardware Top Layer Module . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Project structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Matlab implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Packet Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.1 Short Preamble Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Frequency Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7.1 Coarse CFO Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7.2 Fine CFO Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Symbol alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9.2 Bit Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Sub-carrier Equalization and Pilot Correction . . . . . . . . . . . . . . . . . . . . . 58
3.10.1 Sub-carrier Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10.2 Sub-Carrier Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.10.3 Residual Frequency Offset Correction . . . . . . . . . . . . . . . . . . . . . 59
3.10.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.11.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Evaluation 70
4.1 Xilinx Zynq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Xilinx zc706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 AXI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Hardware Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Software Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2



4.4 Test Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 VHDL vs HLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 SDR workflow advisor 87
5.0.1 The "new" GR block Implementation . . . . . . . . . . . . . . . . . . . . . 88

5.1 Practical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion 92
6.0.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.0.2 Summary of the work done . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.0.3 Significant Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.0.4 Lesson Learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.0.5 Future investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Mathematical recall 95
A.1 Number rappresentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.1.1 Negative Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.2 Overflow, Underflow, and Rounding . . . . . . . . . . . . . . . . . . . . . . 98
A.1.3 Binary arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.1.4 Representing Arbitrary Precision Integers in C and C++ . . . . . . . . . . 100
A.1.5 Floating Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.3 Finite Impulse Response (FIR) filter . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B High-Level Synthesis (HLS) 109
B.1 Xilinx Vivado HLS Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B.1.1 Test Bench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.1.2 Synthesis, Optimization, and Analysis . . . . . . . . . . . . . . . . . . . . . 111
B.1.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.1.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.1.5 RTL Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.2 Optimization teqniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2.1 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.2.2 Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2.3 Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.2.4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2.5 Array partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2.6 Dataflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.2.7 Specifying resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 123

3



List of Figures

1.1 RFNoC Block Internal Structure (Ettus, c) . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Software-Defined Radio block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Graph representation of a GNU Radio application. . . . . . . . . . . . . . . . . . . 19
2.3 High-level synthesis in the Gasjki-Kuhn Y-chart. . . . . . . . . . . . . . . . . . . . 21
2.4 OFDM time spectrum and frequency spectrum . . . . . . . . . . . . . . . . . . . . 22
2.5 Attaching a guard interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 OFDM transmission spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 The subcarriers in an 802.11p OFDM symbol. . . . . . . . . . . . . . . . . . . . . . 24
2.8 Structure of an 802.11p OFDM frame. . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 Structure of the pilot symbols in an 802.11p OFDM frame. . . . . . . . . . . . . . 25
2.10 Simplified base-band structure of an 802.11p transmitter and receiver. . . . . . . . 25

3.1 Overview of the blocks comprising the OFDM receiver in GNU Radio Companion. 28
3.2 Design Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 In-Phase of Short Preamble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Auto Correlation of the Short Preamble samples (N=48). . . . . . . . . . . . . . . 36
3.5 GNU Radio Blocks in charge of frame detection. . . . . . . . . . . . . . . . . . . . 37
3.6 The received base-band signal spectrum is shifted by the CFO(∆f) with respect to

the transmitted signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.7 Sampling error cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.8 constellation points of a 16-QAM modulated 802.11p packet . . . . . . . . . . . . . 42
3.9 GNU Radio Blocks in charge of frequency Offset. . . . . . . . . . . . . . . . . . . . 43
3.10 802.11 OFDM Packet Structure (Fig 18-4 in 802.11-2012 Std) . . . . . . . . . . . 46
3.11 Long Preamble and Cross Correlation Result . . . . . . . . . . . . . . . . . . . . . 46
3.12 GNU Radio Blocks in charge of Symbol alignment. . . . . . . . . . . . . . . . . . . 47
3.13 GNU Radio Blocks in charge of FFT. . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.14 example with three FFT stages (i.e., an 8 point FFT). The Figure shows four 8

point FFT executing at the same time. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.15 Comparison between Function dataflow and loop unrolling. . . . . . . . . . . . . . 56
3.16 Fine-grain HLS report implemented in a dataflow region.. . . . . . . . . . . . . . . 56
3.17 FIFO element instantiated in the fft() function . . . . . . . . . . . . . . . . . . . . 57
3.18 Sub-carriers in 802.11 OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.19 FFT before (a) and after (b) normalization using channel gain. . . . . . . . . . . . 59
3.20 Residual CFO Correction Using Pilot Sub-Carriers . . . . . . . . . . . . . . . . . . 60
3.21 GNU Radio Blocks in charge of Symbol alignment. . . . . . . . . . . . . . . . . . . 61
3.22 Example of BPSK demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.23 Paths metrics equality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.24 GNU Radio Blocks in charge of decoding bits. . . . . . . . . . . . . . . . . . . . . . 67
3.25 Viterbi Decoder - Xilinx IP Core - . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 The three general hardware accelerator structures. . . . . . . . . . . . . . . . . . . 71
4.2 System diagram of the Zynq SoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 Hardware of the Xilinx zc706 evaluation board . . . . . . . . . . . . . . . . . . . . 72
4.4 High-Level Block Diagram of the Zynq 7000 . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Top-level system overview of the 802.11p implementation on Zynq as seen in Vivado 74
4.6 Test Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Profiling graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4



4.8 Design Space Exploration of the HW accelerator. . . . . . . . . . . . . . . . . . . . 82
4.9 HLS report performed by Vivado HLS. . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.10 Synthesized HW accelerator architecture. . . . . . . . . . . . . . . . . . . . . . . . 83
4.11 Synthesis report - Vivado Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.12 Screenshot for the final implementation. . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 sdrWA Optimization Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 GnuRadio layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 SDRwa flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 DFT/FFT fttb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2 A four point FFT divided into two stages. . . . . . . . . . . . . . . . . . . . . . . . 104
A.3 Building an N point FFT from two N=2 point FFTs. The upper N=2 point FFT is

performed on the even inputs; the lower N=2 FFT uses the odd inputs . . . . . . . 105
A.4 8 point FFT built recursively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.1 Xilinx HLS design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
B.2 Vivado HLS Analysis Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5



Chapter 1

Introduction

The most difficult and complicated part of the writing process is the beginning. - A. B.
Yehoshua
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The main goal of this project is to design, simulate and evaluate a wireless communication
hardware accelerator base on the IEEE 802.11p starting from its software implementation in GNU
Radio and extracting useful information to extend the methodology Software To Hardware (GNU
Radio to FPGA) to every general algorithm.
In other words, this thesis uses the case of study of 802.11p algorithm 1 to investigate whether is
possible for a general algorithm, already available in GNU Radio environment, to deploy it - in
an easy and straightforward way- onto an FPGA and give it a significant speed-up regardless its
software implementation.

Software-defined Radio (SDR) is a technology for radio communication. This technology is
based on software-defined wireless protocols, as opposed to hardware-based solutions. This trans-
lates to supporting various features and functionalities, such as updating and upgrading through
reprogramming, without the need to replace the hardware on which they are implemented.
SDR have become one of the most powerful tools when it comes to experimental and proof-of-
concept solutions of new wireless technologies [1]. Even more importantly, the use of SDR proved
hugely beneficial to general wireless networking research. The main advantage is that freely pro-
grammable radios provide access to all data including the physical layer and they allow to study
current protocol standards in greater detail, to study new protocol variants, or even to study com-
pletely new protocols.
Following [2], we can distinguish two kinds of SDR macro-architectures based on how the physical
layer is implemented:

1. first of all, the so called software-only solutions do exist. Here, the most common approach is
to use a system like GNU Radio where the complete physical layer is implemented on a general
purpose processor, i.e., a host PC [3]. This approach gives the user the best flexibility and
also allows even newcomers to the field to quickly set up the entire communication system.
On the other hand, this architecture does not allow to quickly react on received signals
since streaming the samples to the host PC and decoding on a CPU running a non-real-
time operating system introduces significant delays and non-determinism expressed in delay
variations [4]. Therefore, conceptually simple tasks like conforming to Carrier Sense Multiple
Access (CSMA) timing constraints become unfeasible.

2. The second approach is what one calls hardware solutions, where the physical layer is im-
plemented directly on a Field-Programmable Gate Array (FPGA) [5] or very close to the
hardware as with Digital Signal Processors (DSPs). Using this architecture, timings are de-
terministic and delay requirements of modern wireless standards can be met. However, re-
programming the system becomes complex and time consuming. Another drawback is that
an implementation of a wireless standard is specific to an SDR platform.

A more detailed discussion about SDR limitations and performance consideration can be found
in the following sections (specifically see section 2.1.1)
Given the strong need to support SDR-based solutions especially in the IVC application, it is
mandatory to overcome the aforementioned limitations.

The project has two steps. Firstly, I came up with the design following the requirement in
802.11p standard. A system was built and simulated in Matlab to obtain numerical result such as
bit error rate plots and verify the functionality of each block in the design.
As sad before, a GNU Radio flowgraph is considered as the reference design from which to start.
As it is written in gnu radio,it is composed by preexisting blocks so that it bypass the requirements
of understanding Python and C++; 2 Doing so, some opportunities to understand the fundamental
communications theory underneath the basic top layer block are lost, as the author just uses a
block that someone else wrote. This is why MATLAB was chosen for the first implementation.
It is a cross-platform environment and all the blocks are MATLAB scripts with nothing to hide.
This allow a better understand of the entire algorithm because it is defined in MATLAB code,
with nothing to obfuscate the communications theory.

1it is chosen for its growing interest within the electronic engineers community
2requirements for a deep understand of GNU Radio, see Section 2.2
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Secondly, I rebuilt the whole system in C using the Xilinx HLS flow for simulation and imple-
mented on a FPGA.

Using Matlab, I have built the model of a simple 802.11p wireless communication system lim-
iting the usage of the communication tool box. The input/output plots was obtained to verify the
theoretical result and it is compared with an already existing and tested GNU Radio flowgraph 3.
The system is designed base on the requirement of IEEE 802.11p standard. By simulation in
Matlab, I can verify the functionality of each block. Base on that, I rebuilt the system in C for
its implementation on an FPGA. Starting from the C implementation, the RTL was generated by
Vivado HLS flow and imported as IP core in the Vivado environment and connected to the hard
core ARM processor via AXI bus . Finally the system was tested, simulated and compare the
results with Matlab.
Most of the blocks were constructed base on the Matlab model. Some other complex blocks such
as square root, Viterbi Decoder and stream interface are directly instantiated as IP core by Vivado
HLS. I made assumption that the channel is known and set to be constant.

1.1 State of the art

802.11p

Although the 802.11p transceiver has been in draft form till July 2010, there are already different
industrial solutions available. One is the LinkBird-MX v3 unit produced by NEC [6] which embeds
a Linux machine based on a 64 bits MIPS process or working at 266 MHz and which can be
configured either for reception or for transmission. Besides, NXP and Cohda Wireless developed a
flexible SDR implementation of WAVE (Wireless Access in Vehicular Environments) called MK3
[7]. It includes among others a GPS module and a CAN bus interface and is based on the NXP
MARS platform which has been designed for the automotive context. Another solution is the
combination of the WSU (Wireless Safety Unit) platform from DENSO and the Openwave Engine
developed by BMW [8]. Besides the physical layer implementation of 802.11p, this transceiver
supports the required MAC protocols for US, Europe and Japan and includes CAN2.0, Ethernet
and a 400 MHz power PC that can process one or two standards in parallel.
Finally, [9] presented a transceiver based on GNURadio which has been combined with USRP2
(Universal Software Radio Peripheral) followed by [10] using the same architecture.

GNURadio on FPGA

The NI USRP RIO[11] is an SDR game changer that provides wireless communications designers an
affordable SDR in a user-friendly software environment aka Labview. Recently National instrument
announced the availability of the USRP-2945 quad receiver SDR device and the USRP-2944 high
performance 2x2 multiple input, multiple output (MIMO) SDR device. Both models deliver a new
level of performance and capability to the USRP (Universal Software Radio Peripheral) family.
These devices feature the widest frequency ranges, highest bandwidth and best RF performance
in the USRP family.
Nutaq [12] proposed a similar hardware solution with commercial IPs and a complete integration
with the common commercial and non, SDR software like GNURadio, Labview and Matlab.
Last but not least Ettus research (ER) supports a wide variety of development environments
on a proprietary high performance RF hardware; ER USRP platform is the SDR platform of
choice for thousands of engineers, scientists and students worldwide for algorithm development,
exploration, prototyping and developing next-generation wireless technologies across a wide variety
of applications. The Ettus Research hardware comes with an open source framework (RfNoC)[13],
which allows developers to integrate an existing IP into more complex systems, involving both
software and FPGA components, with little overhead. RFNoC is primarily developed for the
Universal Software Radio Peripheral (USRP) family of products, but its source code is freely
available.

3Wine Project: https://www.wime-project.net/
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1.1.1 More about RFNoC
RFNoC (Radio Frequency Network on Chip) is an open source processing tool focused on the de-
velopment of heterogeneous applications on SDR(Software Defined Radio) devices provided from
Ettus Research, generally known as USRP (Universal Software Radio Peripheral).
The concept of NoC refers to a communication system integrated into a single chip used for ex-
changing data and control between the internal PEs (Processing Engines). The main difference
with respect to a normal SoC (System on Chip) is the flexibility in terms of heterogeneous capa-
bilities: in fact, the internal composition of PEs is abstracted from the communication framework

RFNoC Blocks
RFNoC is internally composed of RFNoC blocks, the PEs implementing the DSP algorithms. To
reduce the effort of integrating digital signal processing IPs as PEs into an RFNoC block, the
design framework provides a pre-cooked interface wrapper. The internals of a RFNoC block are
independent from any other block and can be designed with any language and tool that supports
AXI stream interfaces, including VHDL, Verilog, and Xilinx Vivado HLS.

NoC Shell

Figure 1.1: RFNoC Block Internal Structure (Ettus, c)

We briefly report the structure of the
RFNoC’s interface, the NoC Shell.
As explained previously, this wrapper
represents the common part present
in all blocks constituting the RFNoC,
independently of the respective inter-
nal DSP algorithm. The role of the
NoC Shell is to interface the inter-
nal PE with the rest of RFNoC, im-
plementing a standard registers and
command interface to allow it to
be integrated within the RFNoC. It
presents a user interface and an in-
terface to the RFNoC AXI stream
crossbar. The latest expects a Com-
pressed Header packets as defined in
CHDR (Ettus, b). Figure 1.1 shows the structure of the RFNoC Block (Pendlum, 2014). To create
this NoC Shell and all the file system structure, Ettus has deployed a tool called RFNoC Modtool.
This tool creates a custom GNU Radio OOT (Out of Tree) module as well the necessary files for
the RFNoC block development and simulation.

Differences
Substantial differences exists between the aim of this thesis and RFNoC:

1. The approach to deploy Software GNU Radio algorithm to FPGA should not be based only
on a Network-On-Chip approach. A loosely coupled accelerator should be generated, instead.

2. If the methodology will be automatized, the hypothetical tool should extract the netlist from
GNU Radio and synthesize the algorithm directly to FPGA, optimizing the design in a way
that take into account the simulation behaviour executed in GNU Radio.

3. The methodology is not as tight coupled in GNU Radio as RFNoC.
RFNoc uses ad hoc blocks under RFNoC library in GNC. Here, the idea is to add another
implementation for each and every block in gnuradio and uses the original for simulation
purpose, the modified for synthesis purpose.

4. Blocks could execute also in software. Not every Blocks should be mapped on FPGA; Ac-
cording to a profiling of the flowgraph and the given constrain, the methodology can choose
to map the entire algorithm onto the FPGA (and optimize it) or leave part executed on
the hard core ARM processor of the Zynq architecture (or even on the PC with the FPGA
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connected to the computer through a high speed link), and accelerate only the critical part
of the algorithm.

10



Chapter 2

Background

Software radio is the technique of getting code as close to the antenna as possible. It turns
radio hardware problems into software problems. Eric Bloosom
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2.1 Software Defined Radio

A universal SDR structure with the specific software (GNU Radio) and hardware (USRP/2) is
given in Figure 2.1

Figure 2.1: Software-Defined Radio block diagram.

In Figure 2.1, the Software-Defined Radio (SDR) structure is divided into three blocks. The
left one builds the RF frontend of the hardware which serves as interface to the analog RF domain.
In the second block, the intelligence of the hardware part is implemented, forming the interface
between the digital and the analog world. In the third block, the whole signal processing is done
- fully designed in software.
Getting more detailed, the interface to the analog world is given as mentioned on left side of
Figure 2.1. An analog RF signal can be received or transmitted over antennas, or can also be
directly connected via SMA connectors to the SMA ports of RF frontend called daughterboards.
The upper path (arrow towards the daughterboard) marks the receive path (Rx), the lower path
describes the transmit path (Tx). Both paths can operate autonomously. The possible operation
frequency range is very modular (from DC to 5.9 GHz), depending on the available daughterboards
for USRP/2. Daughterboards form the RF frontend of USRP/2 and are connected to the USRP/2
motherboard. On USRP/2 motherboard, the analog signals are converted to digital samples and
mixed down to baseband within the FPGA. Also, a decimation of the sample rate is performed.
Regarding Figure 2.1, data sampled by the FPGA are sent to the host by USB or Gigabit Ethernet
respectively what is used – USRP or URSP2. Connected to the host computer (right block in Figure
2.1), the GNU Radio framework controls the further signal processing capabilities. GNU Radio is
an open source framework, providing various pre-assembled signal processing blocks for waveform
creation and analysis in software radio development.

2.1.1 About SDR performance

SDRs are implemented through employing various types of hardware platforms, such as General
Purpose Processors (GPPs), Graphics Processing Units (GPUs), Digital Signal Processors (DSPs),
and Field Programmable Gate Arrays (FPGAs). Each of these platforms is associated with their
own set of challenges. Some of these challenges are: utilizing the computational power of the
selected hardware platform, keeping the power consumption at a minimum, ease of design process,
and cost of tools and equipment.

1. GPP - General Purpose Processor -
One of the first approaches to realizing SDR platforms is using a General Purpose Processor
(GPP), or the commonly known generic computer microprocessors such as x86/64 and ARM
architectures. Examples of SDR platforms that utilize GPPs include Sora [14], KUAR [15],
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and USRP [16].
A GPP is a digital circuit that is clock-driven and register-based, and is capable of processing
different functions and operates on data streams represented in binary system [17]. These
GPPs can be used for several purposes, making them extremely useful for unlimited number of
applications, eliminating the need for building application specific circuits, and thus reducing
the overall cost of running applications. GPPs are generally a preferable hardware platform
by researchers in academia due to their flexibility, abundance, and ease of programmability,
which is one of the main requirements in SDR platforms [18]. In addition, researchers prefer
GPPs since they are more familiar with them and their software frameworks, compared to
DSPs and FPGAs.
From the performance point of view, GPPs are being enhanced rapidly, credited not only
to technological advances in terms of CMOS technology [19], but also to the increase of the
average number of instructions processed per clock cycle. The latter is achieved through
different means, and in particular, utilizing parallelism within and between processors. This
has led to the evolution of multi-core GPPs [20].
Architecturally, the instruction set of GPPs include instructions for different operations such
as Arithmetic and Logic Unit (ALU), data transfer, and I/O. A GPP processes these in-
structions in the sequential order. Because of sequential processing, GPPs are not
convenient for high-throughput computing with real-time requirements (i.e., high
throughput and low latency) [21].For example, using GNU Radio [22] to implement
IEEE 802.11 standard, which requires 20 MHz sampling rate, would be challeng-
ing, since GNU Radio is restricted by the limited processing capabilities of GPPs. This leads
to the GPP cores (of the PC attached) to reach saturation and frames become corrupted and
discarded. Moreover, wireless protocols require predictable performance in order to guarantee
meeting timing constraints. However, conditional branch instructions in GPP’s instruction
sets lead to out-of-order execution, which makes it unfeasible to achieve predictability. To
remedy the limitation of GPPs, researchers have proposed multiple solutions, one of which
is the addition of co-processors, such as Graphic Processing Unit (GPU) [23].
When both GPP and GPU are used for a SDR design, data transfer operations between
GPP and GPU can be bottlenecks and cause performance loss, especially for meeting re-
altime requirements [24]. However, there are continuous efforts to reduce or eliminate the
time overhead of data transfers by introducing multi-stream scheduling for pipelining of the
memory copy tasks. This would ensure no stalls in the pipeline and thus enhancing process-
ing parallelism [25], [26]. Finally, although the processing power of microprocessors is being
constantly improved, balancing between sufficient computing power and a specific goal for
energy consumption and cost, stays a very difficult task now and in the future. This is true
especially with the growing need for more data to be processed and blocks that can handle
data processing in parallel.
GPUs are processors specifically designed to handle graphics-related tasks and they efficiently
process large blocks of streaming data in parallel. SDR platforms comprised of both GPPs
and GPUs are flexible and have a higher level of processing power. However, this results
in a lower level of power efficiency (e.g., GPP’s power efficiency is 9GFLOPS/W for single-
precision, compared to 20GFLOPS/W for GPU [27]). GPUs act as co-processors to GPPs
because a GPP is required to act as the control unit and transfer data from external memory.
After a transfer is completed, signal processing algorithms are executed by the GPU.
While GPUs are typically used for processing graphics, they are also useful at signal pro-
cessing algorithms. Over the past few years, theoretical peak performance for GPUs and
GPPs for single and double precision processing has been growing [28]. For example, com-
paring Intel Haswell’s 900 GFLOPs [29] with NVIDIA GTX TITAN’s 4500 GFLOPS [30]
for single precision, it is apparent that GPUs have a computational power that far exceeds
their GPP counterparts [28]. Their multi-core architectures and parallel processors are the
main attractive features, in addition to their relatively reasonable prices and credit card sizes.
These features make them good candidates as co-processors in GPP-based SDRs, where they
can play a vital role in accelerating computing-intensive blocks [31]. Another advantage is
their power efficiency, which keeps improving with every new model (e.g., it went from 0.5
to 20GFLOPS/W for single precision) [27]. To take full advantage of GPUs, it is a condi-
tion that algorithms conform to their architecture. From an architectural perspective, GPUs
have a number of advantages that makes them preferable solutions to applications such as
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video processing. In particular, GPUs employ a concept called Single Program Multiple Data
(SPMD) that allows multiple instruction streams to execute the same program. In addition,
due to their multi-threading scheme, data load instructions are more efficient. GPUs also
present a high computational density, where cache to ALU ratio is low [32].

ADC Data Length (ms) Processing Platform of Signal Detection Algorithm

GPP Serial Processing (ms) GPP Parallel Processing (ms) GPU Parallel Processing (ms)

1 13.487 1.254 0.278

10 135.852 12.842 2.846

100 1384.237 131.026 29.358

1000 13946.218 1324.346 29.358

Table 2.1: Performance of Signal Detection Algorithm on GPP and GPU [31]

In Table 2.1, the authors of [31] confirmed that the signal detection algorithm (which in-
cludes intensive FFT computations) shows a faster parallel processing in the case of GPU
over GPP, while operating in real-time. This is due to the availability of cuFFT library
developed for NVIDIA GPUs for more efficient FFT processing [48]. With regards to the ar-
chitectural advantage of GPUs, several hundred CUDA cores can perform a single operation
at the same time, as opposed to a few cores in the case of multi-core GPPs. Examples of
using GPUs alongside GPPs to build SDR platforms is the work in [33], where the authors
built a framework on a desktop PC in addition to using a GPU to implement an FM receiver.
The authors in [31] studied realtime signal detection using an SDR platform composed of a
laptop computer and an NVIDIA Quadro M4000M [30].
When both GPP and GPU are used for a SDR design, data transfer operations between
GPP and GPU can be bottlenecks and cause performance loss, especially for meeting re-
altime requirements [24]. However, there are continuous efforts to reduce or eliminate the
time overhead of data transfers by introducing multi-stream scheduling for pipelining of the
memory copy tasks. This would ensure no stalls in the pipeline and thus enhancing process-
ing parallelism [25], [26]. Finally, although the processing power of microprocessors is being
constantly improved, balancing between sufficient computing power and a specific goal for
energy consumption and cost, stays a very difficult task now and in the future. This is true
especially with the growing need for more data to be processed and blocks that can handle
data processing in parallel.

2. DSP-based
The DSP-based solution can be considered as a special case of GPP-based solutions, but
due to its popularity and unique processing features, it deserves a separate discussion. An
example of DSP-based SDR is the Atomix platform [19] which utilizes TI TMS320C6670
DSP [34].
DSP is a particular type of microprocessor that is optimized to process digital signals [35].
To help understand how DSPs are distinguished from GPPs, we should first note that both
are capable of implementing and processing complex arithmetic tasks [36]. Tasks like mod-
ulation/demodulation, filtering, and encoding/decoding are commonly and frequently used
in applications that include speech recognition, image processing, and communication sys-
tems. DSPs, however, implement them more quickly and efficiently due to their architecture
(e.g., RISC-like architecture, parallel processing) which is specifically optimized to handle
arithmetic operations, especially multiplications. Since DSPs are capable of delivering high
performance with lower power, they are better candidates for SDR deployment [37], compared
to GPPs. Examples of DSPs especially designed for SDR platforms are TI TMS320C6657
and TMS320C6655. These DSPs are both equipped with hardware accelerators for complex
functions like the Viterbi and Turbo Decoders [38].

3. FPGA-Based
Another approach towards realizing SDRs is to use a programmable hardware such as FPGAs.
Example of FPGAbased SDR platforms are Airblue [39], Xilinx Zynq-based implementation
of IEEE 802.11ah [40], and [41] that used the same FPGA board to implement a complete
communication system with channel coding.
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An FPGA is an array of programmable logic blocks, such as general logic, memory, and
multiplier blocks, that are surrounded by a routing fabric, which is also programmable [42].
This circuit has the capability of implementing any design or function, with ease of up-
dating it. Although FPGAs consume more power and occupy more area than ASICs, the
programmability feature is the reason behind their increasing adoption in a wide range of
applications. Furthermore, when the reconfiguration delay is in the order of milliseconds,
the SDR can switch between different modes and protocols seamlessly [43]. Another major
difference is that, ASIC fabrication is expensive (at least a few tens of thousands of dollars)
and requires a few months, whereas FPGAs can be quickly reprogrammed, and their cost is
within a few tens to a few thousands of dollars, at most. The low end product cycle, along
with attractive hardware processing advantages, such as high speed performance, low power
consumption, and portability, compared to processors such as GPPs and DSPs, present FP-
GAs as contenders that offer the best of both worlds [42]. In a study by [44], the authors
compared the performance of Xilinx FPGAs [45] against 16-core GPPs. The calculation of
peak performance for GPPs was performed through multiplying the number of floating point
function units on each core by the number of cores and by the clock frequency. For FPGAs,
performance is calculated through picking a configuration, adding up the Lookup Tables
(LUTs), flip-flops, and DSP slices needed, then multiplying them by the appropriate clock
frequency. The authors calculated the theoretical peaks for 64- bit floating point arithmetic
and showed that Xilinx Virtex-7 FPGA is about 4.2 times faster than a 16-core GPP. This
can been seen in Figure 2. Even with a one-to-one adder/multiplier configuration, the V7-
2000T achieved 345.35GFLOPS, which is better than a 16-core GPP. From Intel [29], Stratix
10 FPGAs can achieve a 10 Tera FLOPS peak floating point performance [46]. This is due
to the fixed architecture of the GPP, where not all functional units can be fully utilized,
and the inherent parallelism of FPGAs and their dynamic architecture. In addition, despite
having lower clock frequencies (up to 300MHz), FPGAs can achieve better performances due
to their architectures which allow higher levels of parallelism through custom design [47].
In a study by [48], the authors compared the performance and power efficiency of FPGAs
to that of GPPs and GPUs using double-precision floating point matrixvector multiplica-
tion. The results show that FPGAs are capable of outperforming the other platforms, while
maintaining their flexibility. In another study by [32], the authors thoroughly analyzed and
compared FPGAs against GPUs via the implementations of various algorithms. The authors
concluded that although both architectures support a high level of parallelism, which is cru-
cial to signal processing applications, FPGAs offer a larger increase in parallelism, whereas
GPUs have a fixed parallelism due to their data path and memory system. Over the past
decade, FPGAs have significantly advanced and become more powerful computationally, and
now exist in many different versions such as Xilinx Kintex UltraScale [45] and Intel Arria 10
[29] [49], [50]. In addition, the availability of various toolsets gave FPGAs an advantage by
making them more accessible. This is supported by the availability of compilers that have
the capability of generating Register-transfer Level (RTL) code, such as Verilog and VHDL,
that is needed to run on FPGAs, from high-level programming languages. This process is
typically referred to as High Level Synthesis (HLS) -it will be described in the following
section-. Examples of such compilers include HDL Coder [51] for MATLAB code [52] and
Xilinx HLS [53] or Altera Nios II C2H compiler [54] for C, C++, and SystemC.
HLS allows software engineers to design and implement applications, such as SDRs, on
FPGAs using a familiar programming language to code, namely C, C++, SystemC, and
MATLAB, without the need to possess a prior rich knowledge about the target hardware
architecture. These compilers can also be used to speed up or accelerate parts of the soft-
ware code running on a GPP or DSP that are causing slowdowns or setbacks to the overall
performance.
Further, FPGAs can achieve high performance while still consuming less energy than previ-
ously discussed processors [55] (e.g., Intel Stratix 10 FPGA can achieve up to 100 GFLOP-
S/W [56], compared to 23 GFLOPS/W for NVIDIA GeForce GTX 980 Ti [30]). In addition,
power dissipation can be further lowered through the implementation of several techniques
discussed in [43]. These techniques can be at a system, device, and/or architecture level,
such as clock gating and glitch reduction.

4. Hybrid design
The fourth approach towards realizing SDRs is the hybrid approach, where both hardware
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and software-based techniques are combined into one platform. This is commonly referred to
as the co-design or hybrid approach. Examples of SDRs that adopted the co-design approach
include WARP [21] and CODIPHY [57].
Hardware/software co-design as a concept has been around for over a decade, and it has
evolved at a faster rate in the past few years due to an increasing interest in solving inte-
grated circuit design problems with a new and different approach. Even with GPPs becoming
more powerful than ever, and with multi-core designs, it is clear that in order to achieve higher
performance and realize applications that demand real-time processing, designers had to shift
attention to new design schemes that utilize hardware solutions, namely, FPGAs and ASICs
[58], [59]. Co-design indicates the use of hardware design methodology, represented by the
FPGA fabric, and software methodology, represented by processors. As more applications,
such as automotive, communication, and medical, grow in complexity and size, it has be-
come a common practice to design systems that integrate both software (like firmware and
operating system) and hardware [95]. This has been made feasible in the recent years thanks
to the advances in high-level synthesis and developing tools that not only have the capability
to produce efficient RTL from software codes, but also define the interface between the both
sides. The industry has realized the huge market for co-design, and provided various SoC
boards, that in addition to the FPGA fabric, contain multiple processors. For example, the
Xilinx Zynq board [45] includes an FPGA fabric as well as two ARM Cortex-A9 processors
[96].
There are other reasons that make co-design even more interesting including, faster time-to-
market, lower power consumption (when optimized for this), flexibility, and higher processing
speeds, as typically hardware in these systems is used as an acceleration to software bottle-
necks [97]. Adopting the co-design methodology in essence is a matter of partitioning the
system into synthesizable hardware and executable software blocks. This process depends
on a strict criteria that is developed by the designer [98], [99]. The authors in [60] and
[61] discuss their partitioning methodologies and present the process of making the proper
architectural decisions. Common methods typically provide useful information to the de-
signer to help make the best decision of what to implement in hardware and what to keep
in software. This information can include possible speedups, communication overheads, data
dependencies, and locality and regularity of computations [61].

In Table 2.2, we provide a high-level comparison between three major design approaches as a
guideline for designers towards choosing the method that best meets their application specifica-
tions. In this comparison, we focus on the features that are important to SDR design. However, we
do not make assumptions on what the best approach is and believe it is the developer’s responsi-
bility to make the best judgment depending on the application area. Please note that in this table
we did not include GPUs, as they typically act as co-processors to GPPs and their addition gener-
ally improves performance. We also did not include co-design since it combines GPPs with FPGAs.

GPP DSP FPGA

Computation Fixed Arithmetic Engines Fixed Arithmetic Engines User Configurable Logic

Execution Sequential Partially Parallel Highly Parallel

Throughput Low Medium High

Data Rate Low Medium High

Data Width Limited by Bus Width Limited by Bus Width High

Programmability Easy Easy Moderate

Complex Algorithms Easy Easy Moderate

I/O Dedicated Ports Dedicated Ports User Configurable Ports

Cost Moderate Low Moderate

Power Efficienty Low Moderate High

Form Factor Large Medium Small

Table 2.2: Comparison of SDR design approaches
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As Table 2.2 shows, while GPPs are easy to program and extremely flexible, they lack the power
to meet specifications in real-time and are very inefficient in terms of power. To increase their per-
formance, multiple cores with similar instruction sets are included in the same GPP platform to
exploit parallelism and perform more operations per clock cycle. However, hardware replication
(i.e., adding more cores to GPPs) may not necessarily translate to a higher performance. GPUs
tackle this by offering the same control logic for several functional units. The sequential portion of
the code runs on the GPP, which can be optimized on multi-core GPPs, while the computationally
intensive portion runs on a several-hundred-core GPU, where the cores operate in parallel. An-
other example of a customized processor is DSP, which performs significantly better than GPPs,
while at the same time maintaining the ease-of-use feature that GPPs possess, making them very
attractive options. They are also more power efficient and better fit for signal processing applica-
tions. On the other hand, they are more expensive, which is the main trade-off. Finally, FPGAs
combine the flexibility of processors and efficiency of hardware. FPGAs can achieve a high level of
parallelism through dynamic reconfiguration, while yielding better power efficiency [27]. FPGAs
are typically more suitable for fixed-point arithmetic, like signal processing tasks, but in the recent
years their floating-point performance has increased significantly [48], [62]. However, the designers
are expected to know a lot more about the hardware, which is sometimes a deterring feature.
In a comparative analysis by [108], authors studied the performance and energy efficiency of GPUs
and FPGAs using a number of benchmarks in terms of targeted applications, complexity, and
data type. The authors concluded that GPUs perform better for streaming applications, whereas
FPGAs are more suitable for applications that employ intensive FFT computations, due to their
ability to handle non-sequential memory accesses in a faster and more energy efficient manner.
Similarly, in [27], the authors review and report the sustainable performance and energy efficiency
for different applications. One of their findings related to SDRs is that FPGAs should be used
for signal processing without floating point, confirming aforementioned results. In addition, the
authors in [63] report that GPUs are ten times faster than FPGAs with regards to FFT processing,
while authors in [48] demonstrate that the power efficiency of FPGAs is always better than GPUs
for matrix operations.

2.1.2 About SDR software Enviroment
Referring back to Figure 2.1, the boundary between the analog and digital worlds for a communica-
tion system is located at the analog-to-digital converter (ADC) and the digital-to-analog converter
(DAC), where signal information is translated between a continuous signal and a discrete set of
signal sample values. Typically, the radio can be configured to select center frequency, sampling
rate, bandwidth, and other parameters to transmit and receive signals of interest. This leaves
the modulation and demodulation techniques, which are developed using a two-step development
process.

1. Develop, tune, and optimize the modulation and demodulation algorithms for a specific
sample rate, bandwidth, and environment. This is normally done on a host PC, where
debugging and visualization is much easier. At this phase of development, the modulation
and demodulation of the RFFEs are performed on a host, providing great flexibility to
experiment and test algorithm ideas.

2. Take the above algorithm, which may be implemented in a high-level language in floating
point, and code it in a production worthy environment, making production trade-offs of a
product’s size, weight, power and cost in mind. These platforms become truly software-
defined when the onboard hardware and embedded processor are programmed to perform
application-specific digital communications and signal processing functions.

The first step requires a convenient mechanism to capture data for signal analysis and devel-
opment of algorithms that process those signals. This makes it vitally important to have efficient
and reliable PC-based software to develop and test the data transmission and digital signal pro-
cessing functions in a wireless communications system. One software environment that meets this
requirement is MATLAB from MathWorks. MATLAB is a technical computing environment and
programming language, allowing ease of use development and excellent visualization mechanisms.
An additional product, Communications Systems Toolbox, adds physical layer algorithms, channel
models, reference models, and connectivity to SDR hardware to transmit and receive live signals.
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MATLAB is cross platform (Windows, Linux, MAC) offering support for many of the popular
commercial radio front-ends. Using MATLAB enables an incremental and iterative development
workflow for SDR consisting of:

• Algorithm development and design validation with link-level simulations;

• Algorithm validation with live signals using connection to commercially available SDR hard-
ware.

MathWorks also offers Simulink, which is an environment for real-world system simulation and
automatic code generation for hardware and software implementation. It allows the radio developer
to continue to the second stage of production development. These capabilities of Simulink provide
a path to production:

• Development and validation of a hardware-accurate model;

• Implementation of a prototype on SDR hardware using automatic HDL and C code genera-
tion;

• Verification of the prototype versus the validated model;

• Deployment of the implementation to production SDR hardware.

Although Simulink will largely be ignored in this thesis project, being able to have a single envi-
ronment from concept to production is very powerful and should not be overlooked for those who
are trying to make a real production radio.

Another SDR software architecture is the popular open-source GNU Radio software [9], which
is a free software (as in freedom) development toolkit that provides signal processing blocks to
implement software-defined radios and signal processing systems. It can be used with external RF
hardware to create software-defined radios, or without hardware in a simulation-like environment.
It is widely used in hobbyist, academic, and commercial environments to support both wireless
communications research and real-world radio systems. In GNU Radio, a variety of C++ libraries
modeling different digital communications and digital signal processing algorithms are integrated
together using Python and SWIG (a software development tool that connects programs written in
C and C++ with a variety of high-level programming languages including Python). These libraries
are produced by the open-source community and freely shared with everyone.

2.2 GNU Radio
GNU Radio is a software toolkit designed to allow users to create SDR implementations.
It provides mechanisms and tools to create customized and also a great amount of source code
modules that can be used as a part of a customized radio as well as stand-alone examples.
GNU Radio is used by a large community of hobbyists, academic researchers and commercial
companies, specially for prototyping and testing possible implementations. The software in GNU
Radio is divided in modules. These modules can be divided in two large groups. The modules that
take care of the signal processing needed in the system are programmed in C++. These signal
processing modules can be signal filters, equalizers, FFT modules and so on. The other group of
modules include the software needed to interconnect these signal processing modules and configure
them according to out needs. These last ones are programmed in Python and they act as some
kind of glue that makes the whole system one unit [3]. The possibilities that Python provides for
configuration without the need of compiling every time a change is made in a parameter are very
convenient for quick re-configurations and tests. GNU Radio modules are able to operate with
infinite streams of data of a certain type.
The most common types of data that we will use are complex, short and float. Many GNU Radio
applications keep running forever, when the streams of data are infinite. If the stream has a finite
number of bytes the application will finish once the data has been consumed out of the system.
In a GNU Radio application the software modules can also be differentiated in three classes: Source
modules, which provide a stream or signal into the system. Examples of source modules are file
sources, that get data from a file and insert in into the system, or random data generators, that
generate and output a stream of data according to some criteria established by us. The second
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group of modules are sink modules. They are the contrary of source modules. They receive an
a stream of data and consume it. Some examples for these modules are the trivial null sink,
which consumes the signal without doing anything, file sinks that insert the data from the stream
into a file or even graphical spectrum analyzers, that convert the signal received into spectral
data and present it to the user in a graphical way as a real spectrum analyzer would do. The
last kind of modules are the modules with both input and output ports. They receive streams
from their input ports, convert it into a different stream by applying a conversion or a filter and
output the result through their output ports. Examples of these modules are band pass filters,
Fourier transformation modules, operators or data converters.We are able to create GNU Radio
applications by joining blocks. The union of these blocks creates a graph.

Figure 2.2: Graph representation of a GNU Radio application.

We can see a simple example of one of these graphs in Figure 2.2. In the figure we can see
various modules with their parameters and the connections between them.
The graph representation is important to understand how GNU Radio executes each module in the
system. All GNU Radio applications have one thing in common. All applications have a top block
class that contains an initialization method that will create the instances on the needed modules,
build the graph and initialize the parameters of these modules. This initialization method will be
called from the main method when we run the application and only after it finishes its execution
the system created will be ready to be used. When the application is running GNU Radio will
execute the code of the blocks sequentially according to the graph. In the case of the application
in Figure 2.2 we would need a Python script to create instances of all these modules, initialize all
the parameters that we can see and join them with the connect to build the graph.

GNU Radio Companion (GRC)

A very useful extension that GNU Radio provides is called GRC and it provides a graphical in-
terface that allows its users to easily create GNU Radio applications. GRC has a list of available
modules that can be inserted in the application by only clicking on them. These modules can also
be configured, and GRC even tells you if the configured parameters are correct. Then, the modules
can be connected together also very easily. Afterwards, GRC will build the needed python code
that will run the application. The use of GRC has both advantages and disadvantages, but if it
is used correctly it can be a good tool to save a lot of time and to avoid unnecessary mistakes.
The main advantages it offers are the simple setup of a system, thanks to its graphical and easy
to understand interface,the real time verification of the configured parameters, as it shows the
parameters that are not correctly configured and where they are, making it very easy to locate
configuration problems.
Another advantage is the easy way of inserting and testing new modules in the system; New mod-
ules can be added to the system very easily in order to test their behaviour. However GRC also
has some disadvantages. GRC only works with the modules and parameters and offers almost no
place for customization of a module out of the configuration of the parameters.
During the implementation of a module GRC is not recommended, as every time the module is
modified one should take care of also modifying the files that allow this module to be controlled
from GRC.
We can say that GRC is a very interesting tool in some environments but it should be left out
in other environments. In an educational environment GRC would allow students to control and
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create GNU Radio applications with a very short learning period, and with very successful results,
as students would be able to understand all the stages of the system, control the different param-
eters and see the results in a very short period of time. However, in a research context, where the
researcher is adding and customizing modules in all levels GRC would not be recommended, as
it adds overhead time to the research process, specially when the researcher already knows GNU
Radio well. GRC would be only useful to build test applications and then use the Python code
automatically generated by GRC as the starting point for the development of more complex ap-
plications. Custom made modules can be added to GRC by creating an XML file that describes
the module.

2.3 High-Level synthesis

The hardware design process has evolved significantly over the years. When the circuits were small,
hardware designers could more easily specify every transistor, how they were wired together, and
their physical layout. Everything was done manually. As our ability to manufacture more tran-
sistors increased, hardware designers began to rely on automated design tools to help them in the
process of creating the circuits. These tools gradually become more and more sophisticated and
allowed hardware designers to work at higher levels of abstraction and thus become more efficient.
Rather than specify the layout of every transistor, a hardware designer could instead specify digi-
tal circuits and have electronic design automation (EDA) tools automatically translate these more
abstract specifications into a physical layout.
Since the hardware complexity, at the time, continue increasing at an exponential rate, hardware
designers are forced to move to even more abstract hardware programming languages. Register-
transfer level (RTL) was one step in abstraction, enabling a designer to simply specify the registers
and the operations performed on those registers, without considering how the registers and oper-
ations are eventually implementation. EDA tools can translate RTL specifications into a digital
circuit model and then subsequently into the detailed specification for a device that implements
the digital circuit. This specification might be the files necessary to manufacture a custom device
or might be the files necessary to program an off-the-shelf device, such as an field-programmable
gate array (FPGA). Ultimately, the combination of these abstractions enables designers to build
extraordinarily complex systems without getting lost in the details of how they are implemented.
A non-technical perspective on the value of these abstractions can be found in [64].

High-level synthesis (HLS) is a new step in the design flow of a digital electronic circuit, moving
the design effort to higher abstraction levels. Its place in the design flow can be best situated using
Gajski and Kuhn’s Y-chart. This chart (Fig. 1a) has 3 axes that represent different views on
the design: behavior (what the (sub)circuit does), structure (how the circuit is built together,
e.g. a netlist or schematic) and geometry (how the circuit is physically implemented or what
it looks like, e.g. a layout). There are also 5 concentric circles representing abstraction levels:
circuit (transistors, voltages, circuit equations), logical (ones and zeros, boolean equations), register
transfer (RTL: registers, operators, HDL), algorithmic (functions, loops, programming languages)
and system level (system specifications, programming and natural languages).
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Figure 2.3: High-level synthesis in the Gasjki-Kuhn Y-chart.

In the design flow that has become mainstream in the past 2 decades (Fig. 2.3a), the hardware
designer would manually refine the behavioral system specifications down to the RT level. From
that point, RTL synthesis and place and route complete the design flow. As both the RTL de-
sign and design tools are made by humans, verification is necessary to match the behavior of the
design with the specifications at various stages of the design flow and remove discrepancies when
necessary. Nowadays this design flow is increasingly being challenged. Moore’s law states that an
increasing amount of functionality can be integrated on a single chip. Someone has to design all
this functionality though, and it is not economically nor practically viable to steadily increase the
size of design teams or design time. This means that somehow the design productivity has to be
improved. Given the fast growing transistor count, it may be acceptable to trade some transistors
(or chip area) for an improved design time.
High-level synthesis improves design productivity by automating the refinement from the algorith-
mic level to RTL. As can be seen on the Y-chart (Fig. 2.3b), the transition from the specifications
to the start of the automated design flow becomes smaller now. HLS generates an RTL design from
a function written in a programming language like C, C++ or Matlab. High-level synthesis takes
over a number of tasks from the designer. After analysis of the source code, resource allocation is
done, i.e. determining what types of operators and memory elements are needed and how many.
Next, during scheduling, each operation from the source code is assigned to a certain time slot
(clock cycle or cstep). Finally, in resource binding, operations and data elements from the source
code are assigned to specific operators and memory elements. High-level synthesis also takes care
of interface synthesis, the generation of an appropriate interface, consisting of data and control
signals, between the generated circuit and its periphery (e.g. a memory interface).
Several advantages arise from the use of HLS in the design flow. First of all, the amount of code to
be written by designers is reduced dramatically, which saves time and reduces the risk of mistakes.
HLS can optimize a design by tweaking source code and tool options, opening up opportunities
for extensive design space exploration. Verification time, which nowadays exceeds design time,
is reduced a lot because the HLS tool can, in addition to the design itself, generate testbenches,
thereby reusing test data that was used to validate the source code.
This is particularly relevant for the design of FPGA based embedded systems. Moving to a higher
abstraction level makes it possible to handle the increasing design complexity while removing the
need to hand-code the hardware architecture and timing into the algorithm.
Hardware accelerators for embedded software may be generated with minimal effort. HLS and
FPGAs make a perfect combination for rapid prototyping and a fast time to market.
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2.4 OFDM(Orthogonal Frequency Division Multiplex) & IEEE
802.11p

OFDM - Orthogonal Frequency Division Multiplex -

Figure 2.4: OFDM time spectrum and frequency spectrum

Orthogonal frequency-division mul-
tiplexing is a multi-carrier digital
modulation system that has been
employed as a modulation system
for terrestrial digital broadcasting.
Compared with single-carrier digital
modulation, OFDM can lengthen the
symbol period while maintaining the
same error-rate characteristics and
band efficiency. It can also add a re-
dundant signal period called a guard
interval. For these reasons, OFDM
features little deterioration of trans-
mission characteristics with respect
to multi-path distortion, the main
type of disturbance on a terrestrial
transmission path.
The OFDM signal multiplexes mul-
tiple digitally modulated waves that
are mutually orthogonal in a certain
signal interval. Referring to Figure
1, if, for base-band frequencies, we
let carrier-1 be the base wave and ar-
range subsequent carriers at integral
multiples of 2, 3, and so on of the
base frequency, then any set of these carriers will be mutually orthogonal within one period of the
basic wave. Varying the amplitude and phase of each of these carriers by digital modulation and
then adding them together (frequency multiplexing them) results in an OFDM signal. In addition,
performing a Fourier transform on this OFDM signal in one base-wave period makes it possible to
uncover the amplitude and phase information of each carrier. This operation is none other than
OFDM demodulation.
Digital modulation of individual carriers is normally performed using QPSK or QAM, and par-
ticular modulation systems are referred to as QPSK-OFDM, 64QAM-OFDM, etc. The QPSK-
OFDM and 16QAM-OFDM systems are used on transmission paths characterized by severe dis-
turbances such as in mobile communications where automobiles and other objects come into
play. On the other hand, for fixed reception by an antenna installed on a roof as in ordinary
television reception, 64QAMOFDM is used so that as much data as possible can be trans-
mitted within a limited frequency bandwidth.Transmit symbols in OFDM consist of effective
symbols and guard intervals. Data allocated to the carriers are transformed collectively by
an inverse discrete Fourier transform into symbols each within the effective symbol period Tu.

Figure 2.5: Attaching a guard interval

A guard interval is formed for
each effective symbol period by tak-
ing a section of waveform data from
the end of the symbol in question and
simply attaching it to the front of
the symbol, as shown in Figure 2.5.
Transmit symbols of period Tu+Tg
are obtained in this way.
The OFDM carrier interval is the in-
verse of the base-wave period (effective symbol period) shown in Figure 2.4.

∆f =
1

Tu
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Each OFDM carrier has a small spectral width because of the low-speed modulation, and the
OFDM transmission spectrum that groups together these individual spectrum takes on a nearly
rectangular shape, as shown in Figure 2.6.

Figure 2.6: OFDM transmis-
sion spectrum

If the number of carriers K is large (several hundred or more),
the occupied bandwidth B can be approximated as follows.

B = K∆f

Letting C(l, k) denote transmit data corresponding to symbol
number l and carrier number k, the OFDM transmit signal S(t)
can be expressed as follow.

S8t) = Ree2jπfct
inf∑

l=− inf

K−1∑
k=0

C(l, k)Ψ(l, k, t)

where:

Ψ(l, k, t) =

{
ej2π

k−Kc
Tu

(t−Tg−lTs lT s < t < (l + 1)Ts

0 t < lTs,(l + 1)Ts ≤ t

k −→ carrier number (carrier at lower end of the band is 0

l −→ Symbol number

K −→ Number of carriers

Ts −→ Length of symbol period (Tg+ Tu)

Tg −→ Length of guard-interval period

Tu −→ Length of effective symbol period

fc −→ Center frequency of RF signal

Kc −→ Carrier number corresponding to center frequency of RF signal

C(l, k) −→ Complex transmit data corresponding to symbol number l and carrier number k

S(t) −→ RF signal

IEEE 802.11p

The need for communications services is constantly growing. Nowadays mobile devices are present
almost everywhere and wireless communications is an area of great commercial interest. This
fact has motivated a considerable amount of contemporary research. The IEEE 802.11 standard
(802.11) is one of the most widely used standards for wireless communication and is updated fre-
quently to meet future requirements. Importantly although it specifies the lower layer parameters
in the OSI model such as modulation schemes and frame formats, vendors are free to choose their
preferred method for channel estimation.
The p amendment to the 802.11 standard is intended to be used for wireless access in vehicular en-
vironments. Such environments, where the transmitter and/or the receiver can be moving at high
speeds, introduce the challenge of a time-selective channel. In addition the outdoor environment
also increases the frequency-selectivity compared to an indoor channel.
A physical layer simulator based on the 802.11p standard has been developed at Chalmers as part
of a recent research initiative.

Systems that utilize the 802.11p standard operate in orthogonal frequency division multiplexing
(OFDM) mode with 64 subcarriers. However, only NST = 52 of the 64 subcarriers are actually used
for transmitting useful information. Out of these 52 subcarriers, NSP = 4 are used for transmitting
pilot symbols, i.e. symbols with pre-determined values, and NSD = 48 subcarriers are used for
transmitting data. An illustration of an OFDM symbol in this format is included in Figure 2.7.
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Figure 2.7: The subcarriers in an 802.11p OFDM symbol.

Generally, an 802.11p OFDM frame consists of several concatenated OFDM symbols. In Figure
2.8 the general structure of an OFDM frame is presented. The duration of an OFDM symbol is
TFFT = 6.4µs with a cyclic prefix denoted as GI of duration TGI = 1.6µs which is added for each
OFDM symbol. GI2 denotes a cyclic prefix with duration twice that of a GI, i.e. TGI2 = 1.6 · 2 =
3.2µs.

Figure 2.8: Structure of an 802.11p OFDM frame.

An OFDM frame begins with a short preamble that consists of 10 identical short training sym-
bols (t1, t2, ... , t10), each with duration 1.6µs. The short training symbols are mainly used for
signal detection, coarse frequency offset estimation and timing synchronization. A long preamble
follows, consisting of two identical long training symbols (T1, T2), each with duration 6.4µs. The
long training symbols are mainly used for fine frequency offset estimation and channel estimation.
It should be noted that since the 10 short training symbols in the short preamble are identical
they also function as cyclic prefixes for each other, i.e., t1 is a cyclic prefix for t2, which in turn is
a cyclic prefix for t3 and so on. This is also true for the T1 and T2 symbols in the long preamble.
Following the training sequences in an OFDM frame is a SIGNAL OFDM symbol which contains
information about the length of the OFDM frame and the type of modulation and coding rate
used for the remainder of the OFDM frame. Then, the next OFDM symbol contains a scrambling
sequence as well as actual data; subsequent symbols only contain data.

Figure 2.9 shows the pilot symbols and data symbols. Note that no distinction is made between
the SIGNAL OFDM symbol and the actual data OFDM symbols since there is no difference be-
tween them from a channel estimation point of view. The symbols at frequency indexes −26 −→ −1
in Figure 2.9 correspond to indexes 38→ 63 in Figure 2.8 and, similarly, frequency indexes 1→ 26
in Figure 2.9 correspond to index 1→ 26 in Figure 2.8. The two OFDM symbols in Figure 2.9 with
symbol indexes (T1, T2) correspond to the long preamble and each consists of 52 pilot subcarriers.
The SIGNAL OFDM symbol corresponds to symbol index 0 and the Data symbols correspond to
symbol indexes 1, ..., Nframe. As mentioned, the SIGNAL and data OFDM symbols, each have
4 pilot subcarriers — the remaining 48 subcarriers consist of actual data.
The 802.11p amendment supports 4 different modulation techniques, namely BPSK, QPSK, 16-
QAM, 64-QAM. It also makes use of error-correction and interleaving. With respect to error-
correction, convolutional coding is used with the coding rates R = 1/2, 2/3 or 3/4. Combining
different coding rates with different modulation techniques results in 8 different data rates, as
summarized in Table 1. Only the data rates of 3, 6 and 12 Mbit/s are mandatory in 802.11p.

Finally, the channel spacing is 10 MHz, subcarrier spacing is 10/64 MHz, and the difference
between the lowest and highest subcarrier is (53/64)*10 MHz. Figure 2.10 describes a simplified
block diagram for a transmitter and receiver that utilize 802.11p.
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Figure 2.9: Structure of the pilot symbols in an 802.11p OFDM frame.

Figure 2.10: Simplified base-band structure of an 802.11p transmitter and receiver.
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Chapter 3

802.11p accelerator

If you were plowing a field which would you rather use two strong oxen or 1024 chickens.
-Seymour Cray, Father of the supercomputer
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3.1 Overview

To study the physical layer, researchers often rely on simulators that model IEEE 802.11p at signal
level, considering channel effects on the electromagnetic waveform [65], [66] [67] [68] [69], or on
hardware prototypes for experiments in the lab and on the road [69, 70, 71]. Both approaches
are, however, limited to their domain only, i.e., it is not possible to switch from simulations to
experiments. As a consequence, there is no easy way to validate and test findings from simulation
studies through experiments or vice versa.

To overcome this limitation, in 2013, a group of students from the University of Paderborn,
Germany, released the source code of an SDR based Orthogonal Frequency Division Multiplexing
(OFDM) receiver [10]. It supports channel bandwidths up to 20MHz and do not rely on additional
FPGA code for working.
This GNU Radio based implementation of an IEEE 802.11 transciever is an ongoing development,
and is used as a starting point in this project. Our main goal is to improve the performance of the
system so as to advance in the support of high transfer data rates.

SDRs are programmable radios that provide access to all data down to the physical waveform,
allowing to implement all signal processing in software. This aspect makes them particularly
well suited to build early prototype transceivers and to experiment with novel signal processing
algorithms.
With their SDR transceiver, signal processing is implemented in software on a normal PC, making
it particularly easy to use, modify, and debug. While we also investigate standard compliant
channel access for broadcast transmissions, the main application domain of the transceiver is clearly
the physical layer. In contrast to existing approaches, the major advantage is that the software
implementation is decoupled from the radio frontend. This and the fact that the transceiver
works with cheap, open, and widely used radio hardware makes the system accessible to fellow
researchers. Since the physical layer of our SDR transceiver is implemented completely in software,
new physical layer concepts can easily be implemented and tested. Furthermore, this also allows
to use our transceiver for simulations too, enabling studies of IEEE 802.11p and novel variants in
reproducible configurations. The ability to use the same tool for both simulations and experiments
allows for a seamless switch between theory and practice and presents a big advantage of the
proposed approach.
The code, open source, fully available on GitHub 1 and largely tested by the scientific
community, for the aforementioned reasons is taken as reference implementation.

3.2 Reference Top layer Module

This thesis relies on the GNURadio IEEE 802.11 implementation introduced by Bloessl et al.
[10]. The code contains both transmitter and receiver implementations that work with commercial
802.11a/g/p devices. Only the receiver is taken into consideration while the transmitter is only
used to generate useful data in order to validate the receiver.

1https://github.com/bastibl/gr-ieee802-11
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Figure 3.1: Overview of the blocks comprising the OFDM receiver in GNU Radio Companion.

Similar to LabView and Simulink, GNURadio is, at its core, a signal processing system for
data streams. This architecture is very natural for SDRs, where the hardware produces a constant
stream of complex baseband samples. To process the data, the sample stream is piped through sig-
nal processing blocks that implement actual functionality. With GNURadio, such signal processing
system is described by a flow graph, a data structure that defines how blocks are parameterized
and connected.

Figure 3.1 presents a graphical representation of the blocks that compose the receiver and the
connections between them, as seen in GNU Radio Companion. While the detailed functionality
is not important at this point, the figure gives an idea of GNURadio’s stream paradigm; the
signal processing blocks are visualized by the boxes, while the sample streams are depicted by the
arrows that connect them. As flow graphs can get rather complex, GNURadio allows encapsulating
functionality in hierarchical blocks that can be used as building blocks in other flow graphs.
Going deeper, the receiver is divided into two functional parts:

• The first part, depicted in the top half, is responsible for frame detection.

• The second part, shown in the bottom half, is responsible for decoding the frame.

All the initial blocks, up to the OFDM Sync Short, are responsible for the calculation of the
normalized autocorrelation of the incoming signal. When this calculation reaches a predetermined
threshold, a new incoming frame has been detected. The block that checks whether the threshold
has been reached is the OFDM Sync Short. If it detects the start of a frame, then it pipes a fixed
number of samples into the following blocks in the pipeline, otherwise, samples are dropped. The
next block in the processing chain, OFDM Sync Long, applies frequency offset correction to the
signal and symbol alignment.
Next is the Stream to Vector block, which converts a single stream of complex numbers into a
vectorized stream. Note that this is a prerequisite for using the FFT block, which converts the
signal from the time domain to the frequency domain.
After the signal transformation by the FFT the OFDM Equalize Symbols block is executed. This
block performs channel estimations and phase offset corrections. It also removes the guard and
pilot carriers, leaving only the 48 subcarriers with actual data.
The OFDM Decode Signal follows, which is responsible of decoding the signal field of the physical
layer frame, and to set the proper modulation scheme and coding rate for the DATA field.
Finally, the last block in the processing chain, the OFDM Decode MAC, is responsible for imple-
menting the demodulation, the deinterleaving, the convolutional decoding and the descrambling
of the data field of the physical layer frame. The output of this block is the link layer frame that
was originally transmitted.
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3.3 Working Methodology
The project methodology used in this thesis is graphically summarized by Figure 3.2b.
A divide at impera approach is used for the 802.11p algorithm. The entire standard is divided
into small blocks; each of them performs a simple task as shown in the GNU Radio Top layer
in Section 3.2. The same approach is used for the design of the Hardware accelerator and the
designing procedure is shown in details in Fig.3.2a.

For every block belonging to the 802.11p flowgraph (shown in the reference design 3.1):

1. It is studied the overall 802.11p algorithm in detail ( Section 2.4 ),

2. it is studied what the role of the single block is by considering one at the time; it is deeply
understood its function and how the considered algorithm uses its functionality,

3. It is studied the source code of the reference design (by reverse engineering GNU Radio
802.11p library source code).

4. A first implementation was made in MATLAB,

5. the block was tested in a new flowgraph alone by feeding known input and saving the output;
they are next compared to the MATLAB implementation.

6. The C implementation is written and tested through GCC compiler, the code is imported in
Vivado HLS,

7. It was synthesized with and without optimization and it was exported as IP core,

8. the generated IP was imported in Vivado, connected to the on-board hard ARM processor
through an AXI bus,

9. it was deployed to an FPGA by downloading the generated bit-stream.

10. Finally, the accelerator and the ARM software are executed with some known data; results
are collected from the RAM and they are compared with the corresponding GNU Radio
reference design and the MATLAB implementation.

(a) Block Design process. (b) Project Design methodology

Figure 3.2: Design Methodologies
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3.3.1 Hardware Top Layer Module

1 void top( fx_pt1 *out , fx_pt *wave , const unsigned size)
2 {
3 fx_pt history[CHUNK];
4 fx_pt _inbuff1[CHUNK];
5 fx_pt1 _outbuff[CHUNK];
6

7 go:
8 for(unsigned i=0;i<size/CHUNK; i++)
9 {

10 load(_inbuff1 , wave ,i);
11 compute(_inbuff1 ,_outbuff);
12 store( _outbuff , out ,i);
13 } //end - for every chunk
14

15

16 } // main end

Listing 3.1: Top level module

Hardware Top layer Module is divided into 3 main macro function (Listing 3.1) in order to
instantiate a dataflow region and implement a ping pong buffer (see appendix B.2; Dataflow and
ping pong are explained in detail in section 3.9.3 considering the practical example of the FFT to
better clarify the concepts).

• Load: The function retrieves from memory the data to be processed. Address of the memory
address is passed as parameter (*wave) at the invocation of the accelerator by the processor.
If the range of data exceed the maximum private accelerator memory, many bursts are
performed. If not, the free positions are filled with 0s.
The load function uses the so called ping-pong buffer; It consist of a behaviour like this:
_inbuff1 is replicated 2 times; when the first buffer is full and ready to be processed, data
are transferred to the next function (compute) while the load function instantiates another
burst and fill the 2nd ’hidden’ buffer. When the compute function ends its execution, the 2nd

’hidden’ buffer become active and it starts the computation with that data while now the 1st

become the ’hidden’ one. Due to this overlapping, if the latency of the loading, computing
and storing function are balanced, it is possible to ’hide’ the load and store latency being
visible only the maximum between the tree function.

1 void load(fx_pt _inbuff1[CHUNK],fx_pt *wave ,unsigned chunk){
2 load_data:
3 for(unsigned i=0;i<CHUNK;i++)
4 _inbuff1[i]=wave[CHUNK*chunk+i];
5 }
6

Listing 3.2: Load function

• Compute: The compute function is implemented with the same way as the reference design
(3.1). Instead of graphical blocks, we found the function.
The first part is purely as close as much as the original GNU Radio code. The second, instead,
a change of flow is made by preferring a streaming interface. Every function is explained in
the following sections.

1 void compute(fx_pt *_inbuff1 , fx_pt1 *_outbuff){
2 fx_pt _tmpbuff[CHUNK];
3 fx_pt _tmp1buff[CHUNK ];
4 fx_pt _tmp2buff[CHUNK ];
5 fx_pt correlation_complex[CHUNK];
6 fx_pt1 correlation[CHUNK ];
7 fx_pt1 _signPower[CHUNK ];
8 fx_pt1 _signPowerAveraged[CHUNK ];
9 fx_pt1 correlazione[CHUNK];

10

11 delay(_tmpbuff ,_inbuff1);
12 coniugate(_tmp1buff ,_tmpbuff);
13 complex_mult(_tmp2buff ,_tmp1buff ,_inbuff1);
14 firc(correlation_complex ,_tmp2buff);
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15 magnitude(correlation ,correlation_complex);
16 signal_power(_signPower ,_inbuff1);
17 fir(_signPowerAveraged ,_signPower ,coeff_mvgAvg);
18 division(correlazione ,correlation ,_signPowerAveraged);
19

20 // frame decoding
21 fx_pt d_frame[CHUNK];
22 fx_pt d_frame_d[CHUNK ];
23 hls::stream <fx_pt > frame;
24 hls::stream <fx_pt > frame_d;
25 hls::stream <fx_pt > frame_p;
26 hls::stream <fx_pt > d_frame_long;
27 fx_pt prova[CHUNK ];
28

29 sync_short(_tmpbuff ,correlation_complex ,correlazione ,frame);
30 delay320(frame_p , frame_d , frame);
31 sync_long(frame_p , frame_d , d_frame_long );
32

33 // ************* FFT *****************
34 fx_pt1 fft_ar_r[CHUNK];
35 fx_pt1 fft_ar_i[CHUNK];
36 static unsigned p_next =0;
37 fx_pt fftSample;
38 unsigned nc_fft=p_next;
39

40 // adjust the samples
41 static fx_pt1 mem_fft_r[CHUNK];
42 static fx_pt1 mem_fft_i[CHUNK];
43 accoda: for(unsigned i=0;i<p_next;i++)
44 {
45 fft_ar_r[i] = mem_fft_r[i];
46 fft_ar_i[i] = mem_fft_i[i];
47 }
48

49 s2p: for(unsigned i=p_next;i<CHUNK;i++)
50 {
51 if ( d_frame_long.read_nb(fftSample) )
52 {
53 fft_ar_r[i] = (fx_pt1) fftSample.real();
54 fft_ar_i[i] = (fx_pt1) fftSample.imag();
55 nc_fft ++;
56

57 } else {
58 fft_ar_r[i] = 0;
59 fft_ar_i[i] = 0;
60 }
61 }
62

63 fft: for(unsigned i=0;i<nc_fft /64; i++)
64 {
65 fft_hls( (fft_ar_r +64*i), (fft_ar_i +64*i),true );
66 }
67

68 unsigned p=( nc_fft /64);
69 p_next =0;
70

71 remain: for(unsigned i=p*64; i<nc_fft; i++)
72 {
73 mem_fft_r[p_next ]= fft_ar_r[i];
74 mem_fft_i[p_next ]= fft_ar_i[i];
75 fft_ar_r[i]=0; // only for sim purpose
76 fft_ar_i[i]=0; // only for sim purpose
77 p_next ++;
78 }
79 // equalize
80 fx_pt tobeEqualize[CHUNK];
81 fx_pt equalized[CHUNK ];
82 for(unsigned i=0;i <10*64;i++)
83 tobeEqualize[i]=fx_pt(fft_ar_r[i],fft_ar_i[i]);
84 equalize(tobeEqualize ,equalized);
85

86 // decode signal
87 hls::stream < ap_uint <1> > decoded_bit;
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88

89 decode_signal(equalized ,decoded_bit);
90 ap_uint <1> bit;
91 for(unsigned i=0;i<CHUNK;i++)
92 if(decoded_bit.read_nb(bit))
93 _outbuff[i]=( unsigned) bit;
94 else
95 _outbuff[i]=0;
96 }
97

Listing 3.3: Compute function

• Store: It uses a similar approach as in load function. but in the opposite way: from private
accelerator memory to the global RAM in the location (*out) passed as parameter at the
invocation of the accelerator by the processor.

1 void store(fx_pt1 _outbuff[CHUNK],fx_pt1 *out ,unsigned chunk) {
2 store_data:
3 for(unsigned i=0;i<CHUNK; i++)
4 out[CHUNK*chunk+i]= _outbuff[i];
5 }
6

Listing 3.4: Store function

3.4 Project structure
The project is divided into different folder; each one contains files used in different tool.

• inc: This is the folder where the project header files are located.

• src: This is the folder where the source code is located. This is the folder used to develop
the algorithm and test through gcc compiler.

• syn: This is the folder where the Xilinx Vivado HLS project is located and it is used as
storage for temporary files for the synthesis as well as any automatic script. Reports are also
found under this folder.

• sys: This is the folder where the Xilinx Vivado project is located. This folder is used to
contain any intermidiate files used by the logic synthesis.

• tb: This is the folder where source and header files used to test the behaviour of the archi-
tecture. Any files with raw data is contained under this path.

• sdk: This is the folder where source code and any temporary files (i.e. BSP, etc.) are located.
This is the main path where files are used for the development and execution of the ARM
software part.

3.5 Matlab implementation
As mentioned in the 3.3 section, a Matlab implementation has been made for every block.
Top layer function are reported in Listing 3.5.

1 coarse_freq_adj =1;
2 fine_freq_adj =1;
3 display =0;
4

5 debug_correlation =0;
6 debug_sync_short =0;
7 debug_sync_long =0;
8 debug_fft =0;
9 debug_equalizer =0;

10

32



11 %% import data
12 import_data
13

14 %% frame detection
15 frame_detection
16

17 %% frequency offset correction
18 sync_short
19

20 %% sync long part
21 sync_long1
22

23 %% Furier Transform
24 furier_t
25

26 %% equalizer
27 equalizer
28

29 %% decode signal
30 decode_signal

Listing 3.5: Matlab Top Function

The variable with the prefix debug_ is used to better understand and locate errors in the
programming phase. In other word, if 1, the script loads the input and output data of the related
block from GNU Radio so that the Matlab implementation can be verify to be fully compliant
with the GNU Radio reference design.
The code related to the debug_correlation is shown as an example in listing 3.6.

1 if debug_correlation ==1
2 gr_ref_corr=bin2double (’./data/gr_ref_correlation_old.txt ’);
3 l=min([ length(gr_ref_corr); length(cor) ]);
4 l=5500;
5 plot( gr_ref_corr (1:l),’b’ );
6 hold on
7 plot(cor (1:l),’r’);
8 err=max(abs(gr_ref_corr (1:l)-cor(1:l) ));
9 if err <1e-3

10 str=[’ -) correlation -> Error= ’ num2str(err), ’ OK ’ ];
11 else
12 str=[’ -) correlation -> Error= ’ num2str(err), ’ FAIL ’ ];
13 end
14

15 disp(str);
16

17 end

Listing 3.6: effect of debug_correlation vaiable in frame_detection function

Intermediate variables are stored and passed from one function to another by the Matlab
workspace(it is like a global variable in C).

Some useful script has been carefully engineered in order to easy the integration between Mat-
lab, Xilinx environment and GNU Radio and makes type conversion straightforward.

• Binary data (GNU Radio ouput) to double (matlab)
1 function b = bin2double(file ,varagin)
2

3 fin=file;
4 if nargin ==1
5 type=’single ’;
6 complex =0;
7 elseif nargin ==2
8 type=’single ’;
9 complex =1;

10 end
11

12 fid=fopen(fin);
13 b=fread(fid ,inf ,type);
14 if complex ==1
15 b=[b(1:2:end -1), b(2:2: end)];
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16 end
17 fclose(fid);
18

19 end
20

• double (matlab) to Binary data (GNU Radio)
1 fout=fopen(’out.bin ’,’w’);
2 a=real(X);
3 b=imag(X);
4

5

6 for i=1: length(a)
7 for k=1:2
8 if k==1
9 fwrite(fout ,a(i),’single ’);

10 elseif k==2
11 fwrite(fout ,b(i),’single ’);
12 end
13 end
14 end
15

16 fclose(fout);
17

• Binary (GNU Radio) to N_Word bit fixed point (Xilinx)

1 import_data
2

3 N_Sample =5*4096;
4

5 %d=fi(d,1,N_Word ,N_Word -N_integer);
6 N_Word =32;
7 N_integer =6;
8

9

10 d_fx_real=int32(real(d(1: N_Sample))* 2^(( N_Word -N_integer)));
11 d_fx_imag=int32(imag(d(1: N_Sample))* 2^(( N_Word -N_integer)));
12

13

14 fileID=fopen(’real.bin ’,’w’);
15 fwrite(fileID ,d_fx_real ,’int32 ’);
16 fclose(fileID);
17

18

19 fileID=fopen(’img.bin ’,’w’);
20 fwrite(fileID ,d_fx_imag ,’int32 ’);
21 fclose(fileID);
22
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3.6 Packet Detection
802.11 OFDM packets start with a short PLCP Preamble sequence to help the receiver detect
the beginning of the packet. The short preamble duration is 8 us. At 20 MSPS sampling rate, it
contains 10 repeating sequence of 16 I/Q samples, or 160 samples in total. The short preamble
also helps the receiver for coarse frequency offset correction , which will be discussed separately in
Frequency Offset Correction.

Power Trigger
The core idea of detecting the short preamble is to utilize its repeating nature by calculating
the auto correlation metric. But before that, we need to make sure we are trying to
detect short preamble from “meaningful” signals. One example of “un-meaningful” signal
is constant power levels, whose auto correlation metric is also very high (nearly 1) but
obviously does not represent packet beginning.
It takes the I/Q samples as input and asserts the trigger signal during a potential packet
activity. Optionally, it can be configured to skip the first certain number of samples before
detecting a power trigger. This is useful to skip the spurious signals during the intimal
hardware stabilization phase.

3.6.1 Short Preamble Detection

Figure 3.3: In-Phase of Short Preamble.

3.3 shows the in-phase of the beginning of a packet. Some repeating patterns can clearly be seen.
We can utilize this characteristic and calculate the auto correlation metric of incoming signals to
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detect such pattern:

corr[i] =

∥∥∥∑N
i=0 S[i] ∗ S[i+ 16]

∥∥∥∑N
i=0 S[i] ∗ S[i]

where S[i] is the 〈I,Q〉 sample expressed as a complex number, and S[i] is its conjugate, N
is the correlation window size. The correlation reaches 1 if the incoming signal is repeating itself
every 16 samples. If the correlation stays high for certain number of continuous samples, then a
short preamble can be declared.

(a) Real Part of the I-Q signal (b) Auto Correlation of (a)

Figure 3.4: Auto Correlation of the Short Preamble samples (N=48).

Figure 3.3 and 3.4 is obtained by plotting signal d and cor inside the frame_detection
Matlab script.

1 ... %execute decode script until frame\_detection function ...
2 figure
3 plot(real(d(2834:3304)))
4 figure
5 plot(real(cor (2834:3304)))

3.4b shows the auto correlation value of the samples in (a). We can see that the correlation
value is almost 1 during the short preamble period, but drops quickly after that. We can also see
that for the very first 20 samples or so, the correlation value is also very high. This is because the
silence also repeats itself (at arbitrary interval)!

36



3.6.2 Implementation

Figure 3.5: GNU Radio Blocks in charge of frame detection.

From 3.9 it can be seen that the calculation of the auto-correlation coefficient is split in eight blocks
and realize all operations with standard operations in GNU Radio. All the involved blocks make
use of the already mentioned VOLK library.

Delay

Arithmetic operation
Complex Arithmetic library include the following operation:

• Complex Coniugate : Returns the conjugate of the complex number x.
1 void coniugate(fx_pt out[CHUNK], fx_pt data[CHUNK])
2 {
3 conj:for (unsigned i=0; i<CHUNK;i++)
4 out[i]= conj( data[i] );
5 }

Listing 3.7: conjugate function

• Signal Power :
1 void signal_power(fx_pt1 out[CHUNK], fx_pt data[CHUNK])
2 {
3 fx_pt1 a,b;
4 power:for (unsigned i=0; i<CHUNK;i++)
5 {
6 a=data[i].real();
7 b=data[i].imag();
8 out[i]= a*a+b*b;
9 }

10 }

Listing 3.8: signbal power function

• Magnitude :
1 void magnitude(fx_pt1 out[CHUNK], fx_pt data[CHUNK ])
2 {
3 fx_pt1_ext tmp ,a,b;
4

5 magn:for (unsigned i=0; i<CHUNK;i++)
6 {
7 a= (fx_pt1_ext) data[i].real();
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8 b=( fx_pt1_ext) data[i].imag();
9 tmp= a*a+b*b;

10 out[i]= (fx_pt1) hls::sqrt(tmp);
11 // printf ("a=%f; b=%f; -> %f\n",a.to_float (),b.to_float (), out[i]. to_float

() );
12 }
13 }

Listing 3.9: magnitude function

• Complex Multiplication :
1 #define N_ext 64
2 #define int_ext 16
3

4 void complex_mult(fx_pt out[CHUNK], fx_pt data1[CHUNK], fx_pt data2[CHUNK ])
5 {
6 mult:for(unsigned j=0;j<CHUNK;j++)
7 {
8

9 complex <ap_fixed <N_ext ,int_ext > > out_ext = complex <ap_fixed <N_ext ,
int_ext > > (data1[j])* complex <ap_fixed <N_ext ,int_ext > >(data2[j]);

10 out[j]= fx_pt(out_ext);
11 }
12 }

Listing 3.10: multiplication function

• Absolute Value : The function abs_c calculate the absolute value (also called the modulus)
of the input data defined as:

a+ ib =
√
a2 + b2

1 fx_pt1 abs_c(fx_pt data)
2 {
3

4 fx_pt1_ext tmp ,a,b;
5

6 magn:for (unsigned i=0; i<CHUNK;i++)
7 {
8 a= (fx_pt1_ext) data.real();
9 b=( fx_pt1_ext) data.imag();

10 tmp= a*a+b*b;
11 return (fx_pt1) hls::sqrt(tmp);
12 }
13 }

Listing 3.11: ABS function

Finite Impulse Response (FIR) filter
The function takes two arguments, an input sample vector input_sample, and the output sample
vector output. The coefficients for the filter are avoided since we need a moving average filter where
all coefficient are 1s (no multiplication is needed so the architecture has been simplified). The code
is written as a streaming function. It receives one sample at a time, and therefore it must store
the previous samples. Since this is an COEFF_LENGHTc tap filter, we must keep the previous
COEFF_LENGHTc-1 samples. This is the purpose of the buffer[] array. This array is declared
static since the data must be persistent across multiple calls to the function.

There are 2 main operation to be performed in this filter: The first part shifts the data through
the buffer array. The second part performs the (multiply and) accumulate operations in order to
calculate the output sample.
Loop fission takes these two operations and implements each of them in their own loop. While it
may not intuitively seem like a good idea, it allows us to perform optimizations separately on each
loop. This can be advantageous especially in cases when the resulting optimizations on the split
loops are different. Loop fission alone often does not provide a more efficient hardware implemen-
tation. However, it allows each of the loops to be optimized independently, which could lead to
better results than optimizing the single, original for loop. The reverse is also true; merging two
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(or more) for loops into one for loop may yield the best results.

The first for loop (with the label data_shift) shifts the values up through the buffer array. The
loop iterates from largest value (COEFF_LENGHTc-1) to the smallest value (i = 1). By unrolling
this loop, we can create a data path that executes a number of these shift operations in parallel.

Loop unrolling can increase the overall performance provided that we have the ability to exe-
cute some (or all) of the statements in parallel. In the unrolled code, each iteration requires that
we read two values from the shift reg array; and we write two values to the same array. Thus, if
we wish to execute both statements in parallel, we must be able to perform two read operations
and two write operations from the shift reg array in the same cycle.
Assume that we store the buffer array in one BRAM, and that BRAM has two read ports and one
write port. Thus we can perform two read operations in one cycle. But we must sequentialize the
write operations across two consecutive cycles. There are ways to execute these two statements in
one cycle. For example, we could store all of the values of the shift reg array in separate registers.
It is possible to read and write to each individual register on every cycle. In this case, we can
perform both of the statements in this unrolled for loop in one cycle. You can tell the Vivado HLS
tool to put all of the values in the shift reg array into registers using the directive pragma HLS
array partition variable=shift reg complete.

1 void firc(fx_pt output[CHUNK],fx_pt input_sample[CHUNK ])
2 {
3

4 static fx_pt_ext buffer[COEFF_LENGTHc ];
5 static bool init=true;
6

7 if(init) {
8 init: for(unsigned i=0; i<COEFF_LENGTHc;i++)
9 buffer[i]=( fx_pt_ext)(0,0);

10 init=false;
11 }
12

13 loop_filter_data:
14 for(unsigned n=0;n<CHUNK;n++)
15 {
16 fx_pt_ext _output[COEFF_LENGTHc ];
17 fx_pt_ext _output_ (0,0);
18 data_shift:
19 for(int i=COEFF_LENGTHc -1;i>=0;i--) {
20 if(i==0) buffer [0]=( fx_pt_ext)(input_sample[n]);
21 else buffer[i]= buffer[i-1];
22 }
23

24 for(int i=COEFF_LENGTHc -1;i>=0;i--)
25 _output_ += buffer[i];
26

27 output[n]= fx_pt(_output_); //fx_pt( _output_/fx_pt_ext (32,0) );
28

29 } //end for every sample
30

31 } //end function

Listing 3.12: FIR filter function

Matlab Implementation

1 %upper branch
2 d_d=[zeros (16,1); d(1:end -16)];
3 c_c_d=conj(d_d);
4 mul=d.* c_c_d ;
5 %filter
6 windowSize = 48;
7 %b = (1/ windowSize)*ones(1, windowSize);
8 b = (1)*ones(1, windowSize);
9 a = 1;

10 s_x_sc=filter(b,a,mul);
11 upper_branch=abs(s_x_sc);
12
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13 %lower branch
14 po=(abs(d)).^2;
15 windowSize = 64;
16 %b = (1/ windowSize)*ones(1, windowSize);
17 b = (1)*ones(1, windowSize);
18 a = 1;
19 lower_branch=abs(filter(b,a,po));
20

21 cor=upper_branch ./ lower_branch;

40



3.7 Frequency Offset Correction

The synchronization issue is inevitable in all signal transmission systems. In digital transmis-
sion, though the bit streams are inherently discrete-time signals, all physical media, such as radio
channels or transmission lines, are continuous-time in nature. In wireless communications, most
physical transmission media are inefficient in transmitting base-band signals. Consequently, the
digital base-band transmitted signal has to be converted to a continuous-time waveform and then
modulated by a higher-frequency carrier signal.
After the modulated signal passes through the physical media, several inverse processing proce-
dures, including sampling/digitization and demodulation, are applied.

This paper [72] explains why frequency offset occurs and how to correct it. There are two types
of frequency offsets:

• The Carrier Frequency Offset (CFO) : it occurs when the local oscillator signal for
down conversion in the receiver does not synchronize with the carrier signal contained in the
received signal.
This phenomenon can be attributed to two factors: frequency mismatch in the transmitter
and the receiver oscillators, and the Doppler effect as the transmitter and/or the receiver
is moving. When this occurs, the received signal will be shifted in frequency, as shown in
Figure 3.6.
The symptom of this offset is a phase rotation of incoming I/Q samples (time domain). It
can be corrected by the help of short preamble (Coarse) and long preamble (Fine).

Figure 3.6: The received base-band signal spectrum is shifted by the CFO(∆f) with respect to the
transmitted signal.

• The Sampling Frequency Offset (SFO): it is quite similar to the CFO, as they both orig-
inate from oscillator mismatch and the Doppler effect. When oscillators with mismatched
frequencies are used to drive the sampling clocks of the DAC in the transmitter and the
ADC in the receiver, SCO may occur. Figure 3.7(a) illustrates an example in which the
sampling clock mismatch causes the received waveform to be sampled at time instants that
are progressively skewing.
Motion between the transmitter and the receiver effectively makes the signal waveform to
contract or expand in time. Therefore, even without sampling clock mismatch, the sampled
waveform at the receiver can still be suffering errors in sampling times, as in the previous
case. Figure 3.7(b) shows a case in which the Doppler effect causes the received waveform to
expand and thus sample-time error occurs, even though the ADC and DAC are synchronously
clocked.
The symptom of this offset is a phase rotation of constellation points after FFT (frequency
domain). It can be corrected using the pilot sub-carriers in each OFDM symbols.
However, considering the data generated by the transmitter, it was observed that this con-
tribution is small; the fact that we are using BPSK modulation makes useless the correction
of SFO because it will not lead to any practical advantage;it is therefore not included in this
analysis.
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Figure 3.7: Sampling error cases.

In the figure 3.8 it is resumed visually how each correction step helps in the final constellation
plane.

(a) Constellation Points Without Any Cor-
rection

(b) Constellation Points with Only Coarse
Correction

(c) Constellation Points with both Coarse
and Fine Correction

(d) Constellation Points with Coarse, Fine
and Pilot Correction

Figure 3.8: constellation points of a 16-QAM modulated 802.11p packet

3.7.1 Coarse CFO Correction

The coarse CFO can be estimated using the short preamble as follows:
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αST =
1

16
6 (

N−1∑
i=0

S[i] · S[i+ 16])

where 6 (·) is the phase of complex number and N ≤ 144(160 − 16) is the subset of short
preambles utilized. The intuition is that the phase difference between S[i] and S[i+ 16] represents
the accumulated CFO over 16 samples. After getting αST each following I/Q samples (starting
from long preamble) are corrected as:

S′[m] = S[m] exp−j·m·αST , m = 0, 1, 2, ...

3.7.2 Fine CFO Correction
A finer estimation of the CFO can be obtained with the help of long training sequence inside the
long preamble. The long preamble contains two identify training sequence (64 samples each at 20
MSPS), the phase offset can be calculated as:

αST =
1

64
6 (

63∑
i=0

S[i] · S[i+ 64])

3.7.3 Implementation

Figure 3.9: GNU Radio Blocks in charge of frequency Offset.

Frequency correction is performed in the reference GNU Radio design by the block OFDM Sync
Short block to act like a valve. Its inputs are the samples from the USRP and the normalized
autocorrelation coefficient. If it detects a plateau in the auto-correlation stream, it pipes a fixed
number of samples into the rest of the signal processing pipeline; otherwise it drops the samples.
It also performs the first part of the frequency compensation (the rest will be discussed in the next
section for the sync Long Block).

Once a frame has been detected, all the data belonging to the frame are streamed to the sync
short block (now in a stream fashion). The Coarse CFO correction is implemented by finding
the frequency offset:

1

2 if (frame== false) {
3 for(unsigned i=0;i<CHUNK;i++)
4 {
5 if(c_plateau <2){
6 if( correlation[i]> (fx_pt1)0.56 )
7 c_plateau ++;
8 } else {
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9 fx_pt1_ext1 x= (fx_pt1_ext1) input_abs[i].real();
10 fx_pt1_ext1 y= (fx_pt1_ext1) input_abs[i].imag();
11 fx_pt1_ext1 raz= y/x ;
12 df= hls::atan( raz )/16;
13 frame_start=i;
14 frame=true;
15 break;
16 }
17 } //frame for every sample
18 } // fine if frame

Listing 3.13: Coarse CFO

and next applying the frequency offset to every sample.
1 if(frame) {
2 // printf (" frame_start: %d\n",frame_start);
3 fx_pt_ext df_c;
4 static fx_pt1_ext1 pos=1;
5

6 fx_pt1_ext2 mult =0;
7 static fx_pt1_ext2 pos_ext =1;
8

9 // printf ("df=%f\n",df.to_float () );
10 c_freq_corr:for(unsigned k=frame_start;k<CHUNK;k++)
11 {
12 mult= -(fx_pt1_ext2)df*pos_ext;
13

14

15 fx_pt_ext esp = fx_pt_ext( hls::cos(( fx_pt1_ext1)mult), hls::sin((
fx_pt1_ext1)mult));

16 // printf("-df*pos=%f*%f=%f, (%f,%f)\n",df.to_float (),pos.to_float (),mult.
to_float (), esp.real().to_float (),esp.imag().to_float () );

17 fx_pt_ext prod= fx_pt_ext(input_sample[k]) * esp ;
18 // printf ("input: (%f,%f)\n", input_sample[k].real().to_float (),

input_sample[k].imag().to_float () );
19 // printf ("prod: (%f,%f)\n ", prod.real().to_float (), prod.imag().to_float ()

);
20 // output[k]= fx_pt(prod);
21 output.write(fx_pt(prod) );
22 pos ++;
23 pos_ext ++;
24

25 } // fine for
26 if(pos_ext >= MAX_SAMPLES)
27 {
28 frame=false;
29 // printf (" arrivati a fine\n");
30

31 }
32 }
33

34

35 }

Listing 3.14: Coarse CFO con’t

Matlab Implementation

1 %sync short -d2 is the input - d3 the oputput
2

3 MAX_SAMPLES = 540 * 80;
4 threshold =0.56;
5 start_packet= find(cor >threshold ,1,’first’)+2;
6

7 m=[’-) Frame start at: ’, num2str(start_packet)];
8 disp(m);
9

10 if(MAX_SAMPLES <length(d)-start_packet)
11 d2=d_d(start_packet:start_packet+MAX_SAMPLES);
12 else
13 d2=d_d(start_packet:end);
14 end
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15

16 idx =2;
17 Ns=1;
18 Nf=60;
19 df=angle(s_x_sc(start_packet))/16;
20 df_gnuradio = -0.000861016;
21 err=df_gnuradio -df;
22 err_p=err/df_gnuradio *100;
23

24 str=[’-) Coarse Frequency offset :’ num2str(df) ];
25 disp(str);
26 str=[’ *)’, ’err=’ num2str(err) ’ err (%)= ’ num2str(err_p) ’%’];
27 disp(str);
28

29

30 if coarse_freq_adj ==1
31 for k=1: length(d2)
32 esp(k,1)=exp(-1i*k*df);
33 esp(k,2)=cos(-df*k)+1i*sin(-df*k);
34 esp(k,3)= -k*df;
35 d3(k,1)=d2(k).*esp(k,1);
36 end
37 else
38 d3=d2;
39 end

Listing 3.15: Sync_short Matlab Function
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3.8 Symbol alignment

After detecting the packet, the next step is to determine precisely where each OFDM symbol
starts. In 802.11, each OFDM symbol is 8 µs long. At 10 MSPS sampling rate, this means each
OFDM symbol contains 80 samples. The task is to group the incoming streaming of samples into
80 sample OFDM symbols. This can be achieved using the 2 long preamble.

Figure 3.10: 802.11 OFDM Packet Structure (Fig 18-4 in 802.11-2012 Std)

As shown in 3.10, the long preamble duration is 8 µs (160 samples), and contains two identical
long training sequence (LTS), 64 samples each. The LTS is known and we can use cross correlation
to find it. The cross validation score at sample i can be calculated as follows.

Y [i] =

63∑
k=0

(S[i+ k]H[k])

where H is the 64 sample known LTS in time domain, and can be found in Table L-6 in
802.11-2012 std (index 96 to 159) 2.

(a) Real Part of the I-Q signal (b) Cross Correlation of (a)

Figure 3.11: Long Preamble and Cross Correlation Result

Figure 3.11 shows the long preamble samples and also the result of cross correlation. We can
clearly see two spikes corresponding the two LTS in long preamble. And the spike width is only 1
sample which shows exactly the beginning of each sequence. Suppose the sample index if the first
spike is N , then the 160 sample long preamble starts at sample N − 32

2https://standards.ieee.org/standard/80211− 2012.html
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3.8.1 Implementation

Figure 3.12: GNU Radio Blocks in charge of Symbol alignment.

Symbol alignment is performed in the reference design in GNU Radio by the sync Long Block.
Actually OFDM Sync Long applies the remaining part of frequency offset correction and symbol
alignment.

Cross correlation is performed by the function firG. The function implements a classic finite
impulse response filter (FIR) written in order to accommodate the streaming data coming from
the previous block.

1 void firG(fx_pt output[CHUNK],fx_pt input_sample[CHUNK], const fx_pt_ext
coefficient[COEFF_LENGTH ])

2 {
3 static fx_pt_ext buffer[COEFF_LENGTH ];
4 static bool init=true;
5

6 if(init) {
7 init: for(unsigned i=0; i<COEFF_LENGTH;i++)
8 buffer[i]= fx_pt_ext (0,0);
9 init=false;

10 }
11

12 loop_filter_data:
13 for(unsigned n=0;n<CHUNK;n++)
14 {
15 fx_pt_ext _output[COEFF_LENGTH ];
16 fx_pt_ext _output_=fx_pt_ext (0,0);
17 data_shift:
18 for(int i=COEFF_LENGTH -1;i>=0;i--) {
19 if(i==0) buffer [0]= input_sample[n];
20 else buffer[i]= buffer[i-1];
21 }
22 Mply:
23 for(int i=COEFF_LENGTH -1;i>=0;i--)
24 _output[i]= buffer[i]* coefficient[i];
25 ACC:
26 for(int i=COEFF_LENGTH -1;i>=0;i--)
27 _output_ += _output[i];
28

29 output[n]=( fx_pt)_output_;
30 } //end for every sample
31

32 } //end function

Listing 3.16: complex filter
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Once the cross correlation has been calculated the output Y are analyzed in order to find the
two picks (see fig. 3.11).

1

2

3 find_pick: for(unsigned i=1;i<CHUNK;i++)
4 {
5 fx_pt1_ext comp1= (fx_pt1_ext)abs_c(first_pick) -(fx_pt1_ext)abs_c(filtered

[i]);
6 fx_pt1_ext comp2= (fx_pt1_ext)abs_c(second_pick) -(fx_pt1_ext)abs_c(filtered

[i] );
7 /*
8 printf ("%d -> %f ",i,comp2.to_float () );
9 printf ("|(%f,%f)|=%f ",first_pick.real().to_float (), first_pick.imag().

to_float (), abs_c(first_pick).to_float () );
10 printf ("|(%f,%f)|=%f\n",filtered[i].real().to_float (), filtered[i].imag().

to_float (), abs_c(filtered[i]).to_float () );
11 */
12 if( comp1 <0 )
13 {
14 second_pick=first_pick;
15 first_pick=filtered[i];
16

17 idx2=idx1;
18 idx1=i;
19 pick=abs_c(first_pick);
20 } else if (comp2 <0)
21 {
22 second_pick=filtered[i];
23 idx2=i;
24 }
25 }

Listing 3.17: Sync Long - peak find

From the pick index, the starting points of the symbols are calculated. In the same time the
fine CFO correction (d_freq_offset) is estimated :

1

2

3 fx_pt first=fx_pt (0,0);
4 fx_pt second=fx_pt (0,0);
5 if(idx1 >idx2) {
6 first=filtered[idx2];
7 second=filtered[idx1];
8 }else {
9 first=filtered[idx1];

10 second=filtered[idx2];
11 }
12

13 fx_pt_ext1 arg= (fx_pt_ext1)(first)* fx_pt_ext1(std::conj(second));
14 fx_pt1_ext1 x= (fx_pt1_ext1) arg.real();
15 fx_pt1_ext1 y= (fx_pt1_ext1) arg.imag();
16 fx_pt1_ext1 raz= y/x ;
17 d_freq_offset= hls::atan( raz )/64;
18

19 if (idx1 >idx2)
20 start_frame=idx1 +64 -128;
21 else
22 start_frame=idx2 +64 -128;

Listing 3.18: Sync Long - symbol starting index & fine CFO estimation

Finally all the data packets above LTS are corrected with the quantities found above:
1

2 if(d_offset_ui <= MAX_SAMPLES) {
3 // printf (" samples: %d\n", smpl);
4

5 freq_correct: for(unsigned i=0;i<smpl;i++) {
6 int rel=d_offset_ui -(int)start_frame;
7 // printf ("i=%d, rel=%d\n",i,rel);
8

9 d_offset ++;
10 d_offset_ui ++;
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11 if(rel >=0 && (rel <128 || ((rel -128) %80) >15 ) )
12 {
13 fx_pt_ext2 esp = fx_pt_ext2( hls::cos(d_freq_offset*d_offset), hls::sin(

d_freq_offset*d_offset));
14 // fx_pt_ext2 num=( fx_pt_ext2)(toBfiltered[i+167]);
15 fx_pt_ext2 num=( fx_pt_ext2)(toBfiltered[i]);
16

17 // fx_pt_ext2 num=( fx_pt_ext2)(toBfiltered_d[i+320+167]);
18 fx_pt_ext2 dsampl= esp*num;
19 output.write( fx_pt(dsampl) );
20 } // fine if
21 o++;
22 }//fine for

Listing 3.19: Sync Long - frequency correction

Matlab Implementation

1 comparison =0;
2

3 load(’./data/lts.mat’)
4 LT=lts_real +1i*lts_imag;
5

6 %LT=flip(LT);
7 %d3=sync_ref_data;
8

9 d_correlation_ext=filter(LT ,1,d3(1:end));
10

11 d_correlation=d_correlation_ext (64: end);
12 %d3=d3(64: end);
13

14 if comparison ==1
15 import_corr_gr
16 d_cor_gr=corr_r_gr +1i*corr_i_gr;
17 plot(abs(d_cor_gr));
18 hold on
19 plot(abs(d_correlation (1:320)));
20 [vgr ,idxmgr ]=maxk(d_cor_gr ,2,’ComparisonMethod ’,’abs’);
21 end
22

23 [v,idxm]=maxk(d_correlation ,2,’ComparisonMethod ’,’abs’);
24

25 np=max(idxm)+64;
26

27 off =0;
28 flag =0;
29

30 for i=1:2
31 for k=i+1:2
32

33 if idxm(i)>idxm(k)
34 first=d_correlation( idxm(k)+off );
35 second=d_correlation(idxm(i)+off );
36 else
37 first=d_correlation(idxm(i)+off );
38 second=d_correlation(idxm(k)+off );
39 end
40

41 diff=abs(idxm(i)-idxm(k));
42

43 if diff ==64
44 %d_frame_start = max(get <1>(vec[i]), get <1>(vec[k])) + 64 - 128 - 1;
45 d_frame_start=max([idxm(i),idxm(k)])+64 -128;
46 %d_frame_start=min([idxm(i),idxm(k)]);
47 d_freq_offset= angle( first * conj(second ) )/64;
48 flag =1;
49 break;
50 end
51

52 end
53 if flag ==1
54 break;
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55 end
56 end
57

58 m=[’-) Fine Frequency offset : ’, num2str(d_freq_offset)];
59 disp(m);
60 m=[’ *) diff=’ num2str(df -d_freq_offset)];
61 disp(m);
62 m=[’-) Long Frame Start: ’ num2str(d_frame_start)];
63 disp(m);
64

65 d_offset =169;
66 o=1;
67 % adjust the frequency
68 if fine_freq_adj ==1
69 for k=1:( length(d3) -170)
70

71 rel= d_offset - (d_frame_start -1);
72 if (rel >=0 && (rel < 128 || ( mod( (rel - 128) , 80)> 15) ) )
73

74 espo(o,1)=d3(k+168);
75 espo(o,2)=exp(1i*d_offset*d_freq_offset);
76 espo(o,3)=d_offset;
77 espo(o,4)=rel;
78

79 d4(o,1)=d3(k+168).*espo(o,2);
80 o=o+1;
81 end
82 d_offset=d_offset +1;
83 end
84 else
85 d4=d3;
86 end

Listing 3.20: Sync_long Matlab Function
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3.9 FFT
At the receiver, the system performs inverse processing with respect to the transmit side. Specifi-
cally, the system first performs carrier and clock recovery in the synchronization circuit section. It
then performsorthogonal demodulation on the received OFDM signal by using the recovered car-
rier frequency fc as a local signal, and converts the result to the baseband frequency. The system
next performs an A/D conversion on these baseband signals by using the recovered clock and then
executes an FFT to enable the receive data from each carrier to be determined.
After A/D conversion, N instances of complex data R(i) within the effective symbol period Tu are
input to an Npoint FFT. Its output Y(n) is as follows.

Y (n) =
1

N

N−1∑
i=0

R(i)e
−j
(

2π i
N (n−Kc)

)

3.9.1 Implementation

Figure 3.13: GNU Radio Blocks in charge of FFT.

In the reference design(Figure 3.13 ) FFT is implemented by the out of the box FFT function.

In hardware, the FFT is performed by the function prototype void fft_hls(DTYPE X_R[SIZE],
DTYPE X_I[SIZE]) where DTYPE is a user customizable data type for the representation of the
input data. This may be int, float, or a fixed point type. For example, define DTYPE int defines
DTYPE as an int. Note that we choose to implement the real and imaginary parts of the complex
numbers in two separate arrays. The X_R array holds the real input values, and the X_I array
holds the imaginary values. X_R[i] and X_I[i] hold the ith complex number in separate real and
imaginary parts.
This function prototype forces an in-place implementation. That is, the output data is stored in
the same array as the input data. This eliminates the need for additional arrays for the output
data, which reduces the amount of memory that is required for the implementation. However, this
may limit the performance due to the fact that we must read the input data and write the output
data to the same arrays. Using separate arrays for the output data is reasonable if it can increase
the performance. There is always a trade-off between resource usage and performance; Of course,
the best implementation depends upon the application requirements (e.g., high throughput, low
power, size of FPGA, size of the FFT, etc.).

1 void fft_hls(DTYPE X_R[SIZE], DTYPE X_I[SIZE], bool shift) {
2

3 DTYPE temp_R; // temporary storage complex variable
4 DTYPE temp_I; // temporary storage complex variable
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5 int i, j, k; // loop indexes
6 int i_lower; // Index of lower point in butterfly
7 int step , stage , DFTpts;
8 int numBF; // Butterfly Width
9 int N2 = SIZE2; // N2=N>>1

10 bit_reverse(X_R , X_I);
11 step = N2;
12 DTYPE a, e, c, s;
13

14

15

16 stage_loop:
17 for (stage = 1; stage <= M; stage ++) {
18 // Do M stages of butterflies
19 DFTpts = 1 << stage; // DFT = 2 s t a g e = points in sub DFT
20 numBF = DFTpts / 2; // Butterfly WIDTHS in sub -DFT
21 k = 0;
22 e = -6.283185307178 / DFTpts;
23 a = 0.0;
24 // Perform butterflies for j-th stage
25 butterfly_loop:
26 for (j = 0; j < numBF; j++) {
27 c = hls::cos(a);
28 s = hls::sin(a);
29 a = a + e;
30 // Compute butterflies that use same W**k
31 dft_loop:
32 for (i = j; i < SIZE; i += DFTpts) {
33 i_lower = i + numBF; // index of lower point in butterfly
34 temp_R = X_R[i_lower] * c - X_I[i_lower] * s;
35 temp_I = X_I[i_lower] * c + X_R[i_lower] * s;
36 X_R[i_lower] = X_R[i] - temp_R;
37 X_I[i_lower] = X_I[i] - temp_I;
38 X_R[i] = X_R[i] + temp_R;
39 X_I[i] = X_I[i] + temp_I;
40 }
41 k += step;
42 }
43 step = step / 2;
44 }
45

46

47 DTYPE swap_r , swap_i;
48

49 if(shift)
50 shift: for(unsigned i=0;i<SIZE /2;i++)
51 {
52 swap_r=X_R[i];
53 swap_i=X_I[i];
54 X_R[i]=X_R [32+i];
55 X_I[i]=X_I [32+i];
56 X_R [32+i]= swap_r;
57 X_I [32+i]= swap_i;
58 }
59 }

Listing 3.21: Implementation for the FFT using three nested for loops.

We start with code for an FFT that would be typical for a software implementation. 3.21 shows
a nested three for loop structure.
The outer for loop, labeled stage loop implements one stage of the FFT during each iteration.
There are log2(N) stages where N is the number of input samples. The stages are clearly labeled
in 3.21; this 8 point FFT has log2(8) = 3 stages. You can see that each stage performs the same
amount of computation, or the same number of butterfly operations. In the 8 point FFT, each
stage has four butterfly operations.
The second for loop, labeled butterfly loop, performs all of the butterfly operations for the current
stage.
Butterfly loop has another nested for loop, labeled dft loop. Each iteration of dft loop performs
one butterfly operation. Remember that we are dealing with complex numbers and must perform
complex additions and multiplications. The remaining operations in dft loop perform multiplication
by the twiddle factor and an addition or subtraction operation. The variables temp R and temp
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I hold the real and imaginary portions of the data after multiplication by the twiddle factor
W. The variables c and s are the real and imaginary parts of W, which is calculated using the
sin() and cos() builtin functions. We could also use the CORDIC, to have more control over the
implementation. Lastly, elements of the X_R[] and X_I[] arrays are updated with the result
of the butterfly computation. dft loop and butterfly loop each execute a different number of
times depending upon the stage. However the total number of times that the body of dft loop
is executed in one stage is constant. The number of iterations for the butterfly for loop depends
upon the number of unique W twiddle factors in that stage. Referring again to Figure 5.4, we can
see that Stage 1 uses only one twiddle factor, in this case W08. Stage 2 uses two unique twiddle
factors and Stage 3 uses four different W values. Thus, butterfly loop has only one iteration in
Stage 1, 2 iterations in stage 2, and four iterations in stage 3. Similarly, the number of iterations
of dft_loop changes. It iterates four times for an 8 point FFT in Stage 1, two times in Stage 2,
and only one time in stage 3. However in every stage, the body of dft_loop is executed the same
number of times in total, executing a total of four butterfly operations for each stage an 8 point
FFT.

3.9.2 Bit Reversal

1 unsigned int reverse_bits(unsigned int input) {
2 int i, rev = 0;
3 for (i = 0; i < FFT_BITS; i++) {
4 rev = (rev << 1) | (input & 1);
5 input = input >> 1;
6 }
7 return rev;
8 }
9

10 void bit_reverse(DTYPE X_R[SIZE], DTYPE X_I[SIZE]) {
11 unsigned int reversed;
12 unsigned int i;
13 DTYPE temp;
14

15 for (i = 0; i < SIZE; i++) {
16 reversed = reverse_bits(i); // Find the bit reversed index
17 if (i < reversed) {
18 // Swap the real values
19 temp = X_R[i];
20 X_R[i] = X_R[reversed ];
21 X_R[reversed] = temp;
22 // Swap the imaginary values
23 temp = X_I[i];
24 X_I[i] = X_I[reversed ];
25 X_I[reversed] = temp;
26 }
27 }
28 }

Listing 3.22: Function reverse_bit and function bit_reverse are the first stage of the FFT
implementation.

3.22 shows one possible implementation of the bit reverse function. It divides the code into
two functions. The first is the bit reversal function (bit reverse), which reorders data in the given
arrays so that each data is in located at a different index in the array. This function calls another
function, reverse bits, which takes an input integer and returns the bit reversed value of that input.
The function goes bit by bit through the input variable and shifts it into the rev variable. The
for loop body consists of a few bit-wise operations that reorder the bits of the input. Although
these operations are individually not terribly complex, the intention of this code is that the for
loop is completely unrolled and Vivado HLS can identify that the bits of the input can simply be
wired to the output. As a result, the implementation of the reverse bits function should require
no logic resources at all, but only wires. This is a case where unrolling loops greatly simplifies
the operations that must be performed. Without unrolling the loop, the individual ‘or’ operations
must be performed sequentially. Although this loop can be pipelined, the ‘or’ operation would
still be implemented in logic resources in the FPGA and executing the loop would have a latency
determined by the number of bits being reversed.
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Now let us optimize the parent bit reverse function. This function has a single for loop that
iterates through each index of the input arrays. Note that there are two input arrays X_R[] and
X_I[]. Since we are dealing with complex numbers, we must store both the real portion (in the
array X_R[]), and the imaginary portion (in the array X_I[]). X_R[i] and X_I[i] holds the real
and imaginary values of the i-th input. In each iteration of the for loop, we find the index reversed
value by calling the reverse bits function. Then we swap both the real and imaginary values stored
in the index i and the index returned by the function reverse bits. Note that as we go through all
SIZE indices, we will eventually hit the reversed index for every value. Thus, the code only swaps
values the first time based on the condition if(i < reversed).

3.9.3 Optimization

When performed sequentially, the O(n log n) operations in the FFT require O(n log n) time steps.
Typically, a parallel implementation will perform some portion of the FFT in parallel. One common
way of parallelizing the FFT is to organize the computation into log n stages, as shown in Figure
??. The operations in each stage are dependent on the operations of the previous stage, naturally
leading to a pipelining across the tasks. Such an architecture allows log n FFTs to be computed
simultaneously with a task interval determined by the architecture of each stage 3.
Each stage in the FFT also contains significant parallelism, since each butterfly computation is
independent of other butterfly computations in the same stage. In the limit, performing n/2
butterfly computations every clock cycle with a Task Interval of 1 can allow the entire stage to
be computed with a Task Interval of 1. When combined with a dataflow architecture, all of
the parallelism in the FFT algorithm can be exploited. Note, however that although such an
architecture can be constructed, it is almost never used except for very small signals, since an
entire new block of SIZE samples must be provided every clock cycle to keep the pipeline fully
utilized.4

Pipelining

Figure 3.14: example with three FFT stages (i.e., an 8 point FFT). The Figure shows four 8 point
FFT executing at the same time.

Dividing the FFT algorithm into stages enables Vivado HLS to generate an implementation where
different stages of the algorithm are operating on different data sets. This optimization, called task

3Pipelining in combination with dataflow HLS directive will be explained in the next sections
4For instance, a 1024-point FFT of complex 32-bit floating point values, running at 250 MHz would require 1024

points*(8 bytes/point)*250*109 Hz = 1Terabyte/second of data into the FPGA!! In practice, a designer must match
the computation architecture to the data rate required in a system.
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pipelining is enabled using the dataflow directive. This is a common hardware optimization, and
thus is relevant across a range of applications.
We can naturally divide the FFT algorithm into log2(N+1) stages where N is the number of points
of the FFT. The first stage swaps each element in the input array with the element located at the
bit reversed address in the array. After this bit reverse stage, we perform log2(N) stages of butterfly
operations. Each of these butterfly stages has the same computational complexity. Figure 3.14
describes how to divide an 8 point FFT into four separate tasks5. The code has separate functions
for each of the tasks: bit reverse, fft stage one, fft stage two, and fft stage three6. Each stage has
two input arrays and two output arrays: one for the real portion and one for the imaginary portion
of the complex numbers. Assume that the DTYPE is defined elsewhere, e.g., as an int, float or a
fixed point data type. Refactoring the FFT code allows us to perform task pipelining.
Rather than wait for the first task to complete all four functions in the code before the second task
can begin, we allow the second task to start after the first task has only completed the first function
bit reverse. The first task continues to execute each stage in the pipeline in order, followed by the
remaining tasks in order. Once the pipeline is full, all four sub-functions are executing concurrently,
but each one is operating on different input data. Similarly, there are four 8 point FFTs being
computed simultaneously, each one executing on a different component of the hardware. This
shown in the middle portion of Figure 3.14. Each of the vertical four stages represents one 8 point
FFT. And the horizontal denotes increasing time. Thus, once we start the fourth 8 point FFT, we
have four FFTs running simultaneously.
The top entity of the FFT function is shown in 3.23.

1 void fft(DTYPE X_R[SIZE], DTYPE X_I[SIZE],DTYPE OUT_R[SIZE], DTYPE OUT_I[SIZE])
2 {
3 DTYPE stage1_r[SIZE], stage1_i[SIZE];
4 DTYPE stage2_r[SIZE], stage2_i[SIZE];
5 DTYPE stage3_r[SIZE], stage3_i[SIZE];
6 DTYPE stage4_r[SIZE], stage4_i[SIZE];
7 DTYPE stage5_r[SIZE], stage5_i[SIZE];
8 DTYPE stage6_r[SIZE], stage6_i[SIZE];
9

10

11 bit_reverseMOD(X_R ,X_I ,stage1_r ,stage1_i);
12 fft_stage(stage1_r ,stage1_i ,stage2_r ,stage2_i ,1);
13 fft_stage(stage2_r ,stage2_i ,stage3_r ,stage3_i ,2);
14 fft_stage(stage3_r ,stage3_i ,stage4_r ,stage4_i ,3);
15 fft_stage(stage4_r ,stage4_i ,stage5_r ,stage5_i ,4);
16 fft_stage(stage5_r ,stage5_i ,stage6_r ,stage6_i ,5);
17 fft_stage(stage6_r ,stage6_i ,OUT_R ,OUT_I ,6);
18 }

Listing 3.23: Top function of the FFT algorithm.

Dataflow & Loop Unrolling

The dataflow directive can construct separate pipeline stages (often called processes) from both
functions and loops. The code in 3.23 uses functions only, but we could achieve a similar result
with six loops instead of four functions. In fact, this result could be achieved by unrolling the
outer stage loop in the original code either explicitly or using #pragma HLS unroll. Comparison
results of this two techniques are shown in Fiugure 3.25.

5A smoller FFT is shown in the figure to better visualize the concept.
6The FFT stages has the same code as the original implementation in 3.21 without the stage_loop for loop.
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(a) HLS Report of the modified code with
the Dataflow directive.

(b) original code with the stage_loop com-
pletely unrolled.

Figure 3.15: Comparison between Function dataflow and loop unrolling.

The dataflow directive and the pipeline directive both generate circuits capable of pipelined
execution. The key difference is in the granularity of the pipeline. The pipeline directive constructs
an architecture that is efficiently pipelined at the cycle level and is characterized by the II of the
pipeline. Operators are statically scheduled and if the II is greater than one, then operations
can be shared on the same operator. The dataflow directive constructs an architecture that is
efficiently pipelined for operations that take a (possibly unknown) number of clock cycles, such
as the behavior of a loop operating on a block of data. These coarse-grained operations are not
statically scheduled and the behavior is controlled dynamically by the handshake of data through
the pipeline. In the case of the FFT, each stage is an operation on a block of data (the whole array)
which takes a large number of cycles. Within each stage, loops execute individual operations on
the data in a block. Hence, this is a case where it often makes sense to use the dataflow directive
at the toplevel to form a coarse-grained pipeline, combined with the pipeline directive within each
loop to form fine-grained pipelines of the operations on each individual data element.
Final results are reported in Figure 3.16

(a) HLS Resource report of
the modified code with the
Dataflow directive and Fine-
Grain Pipeline.

(b) HLS Latency report of the modified code with the
Dataflow directive and Fine-Grain Pipeline.

Figure 3.16: Fine-grain HLS report implemented in a dataflow region..

The dataflow directive must implement memories to pass data between different processes. In
the case when Vivado HLS can determine that processes access data in sequential order, it im-
plements the memory using a FIFO. This requires that data is written into an array in the same
order that it is read from the array. If the is not the case, or if Vivado HLS can not determine if
this streaming condition is met, then the memory can be implemented using a ping-pong buffer
instead. The ping-pong buffer consists of two (or more) conceptual blocks of data, each the size
of the original array. One of the blocks can be written by the source process while another block
is read by the destination process. The term “ping-pong” comes from the fact that the reading
and writing to each block of data alternates in every execution of the task. That is, the source
process will write to one block and then switch to the other block before beginning the next task.
The destination process reads from the block that the producer is not writing to. As a result, the
source and destination processes can never write and read from the same block at the same time.
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Figure 3.17: FIFO element instantiated
in the fft() function

A ping-pong buffer requires enough memory to store
each communication array at least twice. FIFOs ( Vivado
HLS, in this project) instantiate 7 FIFOs -one for each
stage- as shown in Fig. 3.17 ) can often be significantly
smaller, although determining a minimal size for each fifo
is often a difficult design problem. Unlike a FIFO, how-
ever, the data in a ping-pong buffer can be written to
and read from in any order. Thus, FIFOs are generally the best choice when the data is produced
and consumed in sequential order and ping-pong buffers are a better choice when there is not such
regular data access patterns.

Using the dataflow directive effectively still requires the behavior of each individual process to
be optimized. Each individual process in the pipeline can still be optimized using techniques we
have seen previously such as code restructuring, pipelining, and unrolling. For example, we have
already discussed some optimizations for the bit reverse function. In general, it is important to
optimize the individual tasks while considering overall toplevel performance goals. Many times
it is best to start with small functions and understand how to optimize them in isolation. As a
designer, it is often easier to comprehend what is going on in a small piece of code and hopefully
determine the best optimizations quickly. After optimizing each individual function, then you can
move up the hierarchy considering larger functions given particular implementations of low level
functions, eventually reaching the toplevel function.

However, the local optimizations must be considered in the overall scope of the goals. In
particular for dataflow designs the achieved interval for the overall pipeline can never be smaller
than the interval of each individual process. Looking again at Figure 3.14, assume that bit reverse
has an interval of 8 cycles, fft stage one takes 12 cycles, fft stage two requires 12 cycles, and fft
stage three takes 14 cycles. When using dataflow, the overall task interval is 14, determined by
the maximum of all of the tasks/functions. This means that you should be careful in balancing
optimizations across different processes with the goal of creating a balanced pipeline where the
interval of each process is approximately the same. In this example, improving the interval of the
bit reverse function cannot improve the overall interval of the fft function. In fact, it might be
beneficial to increase the latency of the bit reverse function, if it can be achieved with significantly
fewer resources.

Matlab Implementation

1 % input d4 ---
2 shift =1;
3 nsimb=min( length(d4), 540*80);
4 for i=0: (double(int32(nsimb /64)) -1)
5 sym(:,i+1)=d4(i*64+1:i*64+64 );
6 end
7

8 X=fft(sym);
9 if shift ==1

10 X=fftshift(X,1);
11 end
12

13 X_lin=reshape(X,[] ,1);

Listing 3.24: FFT Matlab Function
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3.10 Sub-carrier Equalization and Pilot Correction

This is the first step in frequency domain. There are two main tasks:

1. sub-carrier gain equalization,

2. correcting residue phase offset using the pilot sub-carriers.

3.10.1 Sub-carrier Structure

The basic channel width in 802.11p is 10 MHz, which is further divided into 64 sub-carriers (0.156
MHz each).

Figure 3.18: Sub-carriers in 802.11 OFDM

3.18 shows the sub-carrier structure of the 10 MHz band. 52 out of 64 sub-carriers are utilized,
and 4 out of the 52 (-7, -21, 7, 21) sub-carriers are used as pilot sub-carrier and the remaining
48 sub-carriers carries data. As we will see later, the pilot sub-carriers can be used to correct the
residue frequency offset.

Each sub-carrier carries I/Q modulated information, corresponding to the output of 64 point
FFT from sync long module.

3.10.2 Sub-Carrier Equalization

In theory every sub-carrier contains an information according to the modulation used. In practice,
each sub-carrier exhibits different magnitude gain. In fact, they also have different phase drift.
The combined effect of magnitude gain and phase drift (known as channel gain) can clearly be
seen in the I/Q plane shown in .

To map the FFT point to constellation points, we need to compensate for the channel gain. This
can be achieved by normalize the data OFDM symbols using the LTS(Long Training Sequence).
In particular, the mean of the two LTS is used as channel gain H.

H[i] =
1

2
(LTS1[i] + LTS2[i]) · L[i], i ∈ [−26, 26]

where L[i] is the sign of the LTS sequence:

L−26,26 = {1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,

− 1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,

− 1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1}

and the FFT output at sub-carrier i is normalized as:

Y [i] =
X[i]

H[i]
, i ∈ [−26, 26]

where X[i] is the FFT output at sub-carrier i.
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(a) FT Without Normalization (b) FFT With Normalization

Figure 3.19: FFT before (a) and after (b) normalization using channel gain.

Figure 3.19 is obtained by plotting signals X, X_eq0 inside the equalize Matlab script.

1 ... %execute decode script ...
2 figure
3 plot(real(X(3,:)),imag(X(3,:)) ,’*’);
4 figure
5 plot(real(X_eq0 (3,:)),imag(X_eq0 (3,:)) ,’*’);

3.10.3 Residual Frequency Offset Correction

We can see from Fig. 3.19b that the FFT output is tilted slightly. This is caused by residual
frequency offset that was not compensated during the coarse CFO correction step.

This residual CFO can be corrected either by Fine CFO Correction, or/and by the pilot sub-
carriers. Ideally we want to do both, but since the fine CFO is usually beyond the resolution of
the phase in the sync long module and only rely on the pilot sub-carriers.

Regardless of the data sub-carrier modulation, the four pilot sub-carriers (-21, -7, 7, 21) always
contains BPSK modulated pseudo-random binary sequence. The polarity of the pilot sub-carriers
varies symbol to symbol. For 802.11p, the pilot pattern is:

p0,...,126 = {1, 1, 1, 1,−1,−1,−1, 1,−1,−1,−1,−1, 1, 1,−1, 1,−1,−1, 1, 1,−1, 1, 1,−1, 1,

1, 1, 1, 1, 1,−1, 1, 1, 1,−1, 1, 1,−1,−1, 1, 1, 1,−1, 1,−1,−1,−1, 1,−1,

1,−1,−1, 1,−1,−1, 1, 1, 1, 1, 1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1,

1,−1,−1,−1, 1, 1,−1,−1,−1,−1, 1,−1,−1, 1,−1, 1, 1, 1, 1,−1, 1,−1, 1,−1,

1,−1,−1,−1,−1,−1, 1,−1, 1, 1,−1, 1,−1, 1, 1, 1,−1,−1, 1,−1,−1,−1, 1, 1,

1,−1,−1,−1,−1,−1,−1,−1}

And the pilot sub-carriers at OFDM symbol n (starting at 0 from the first symbol after the
long preamble) is then:

P
(n)
−21,−7,7,21 = {pn%127, pn%127, pn%127,−pn%127}

For 802.11p at 10MHz bandwidth with single spatial stream, the nth pilot sub-carriers are:

P
(n)
−21,−7,7,21 = {Ψn%4,Ψ(n+1)%4,Ψ(n+2)%4,Ψ(n+3)%4}

and

Ψ0,1,2,3 = {1, 1, 1,−1}
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In other words, the pilot sub-carries of the first few symbols are:

P
(0)
−21,−7,7,21 = {1, 1, 1,−1}

P
(1)
−21,−7,7,21 = {1, 1,−1, 1}

P
(2)
−21,−7,7,21 = {1,−1, 1, 1}

P
(3)
−21,−7,7,21 = {−1, 1, 1, 1}

P
(4)
−21,−7,7,21 = {1, 1, 1,−1}

· · ·

For other configurations (e.g., spatial stream, bandwidth), the pilot sub-carrier pattern can be
found in Section 20.3.11.10 in 802.11-2012 std.7
The residual phase offset at symbol n can then be estimated as:

θn = 6 (
∑

i∈{−21,−7,7,21}

X(n)[i]× P (n)[i]×H[i])

Combine this phase offset and the previous channel gain correction together, the adjustment
to symbol n is:

Y [i] =
X(n)[i]

H[i]
ejΘn

Figure 3.20: Residual CFO Correction Using Pilot Sub-Carriers

Figure 3.20 shows the effect of correcting the residual CFO using pilot sub-carriers. Each
sub-carrier can then be mapped to constellation points easily.

7https://standards.ieee.org/standard/802_11-2012.html
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Figure 3.20 is obtained by plotting signal X_eql inside the equalize Matlab script.

1 ... %execute decode script until equalize function ...
2 figure
3 plot(real(X_eql (3,:)),imag(X_eql (3,:)) ,’*’);

3.10.4 Implementation

Figure 3.21: GNU Radio Blocks in charge of Symbol alignment.

Following the FFT, the OFDM Equalize Symbols block is the first one in frequency domain and
is responsible for phase offset correction and channel estimation.

Equalization is performed by equalize( fx_pt X[CHUNK], fx_pt X_eql[CHUNK] ). This func-
tion scans every sample in frames. When the 2nd frame is detected (corresponding to the Long
Training Sequence (LTS) the channel gain (freq_offset) is calculated :

1

2 sumC= fx_pt_ext2(carrier [11])* fx_pt_ext2(std::conj( X[11+64] ) ) ;
3 sumC+= fx_pt_ext2(carrier [25])* fx_pt_ext2(std::conj( X[25+64] ) ) ;
4 sumC+= fx_pt_ext2(carrier [39])* fx_pt_ext2(std::conj( X[39+64] ) ) ;
5 sumC+= fx_pt_ext2(carrier [53])* fx_pt_ext2(std::conj( X[53+64] ) );
6 // angle of offset
7 fx_pt1_ext1 x= (fx_pt1_ext1) sumC.real();
8 fx_pt1_ext1 y= (fx_pt1_ext1) sumC.imag();
9 fx_pt1_ext1 raz= y/x ;

10 freq_offset=raz;
11 freq_sum =0;
12 // update new carrier for next cycle
13 for(unsigned i=0;i<64;i++)
14 carrier[i]+= fx_pt_ext2(X[64+i]);
15 for(unsigned i=0;i<64;i++)
16 carrier[i]= carrier[i]*( fx_pt_ext2)(ref[i],ref[i])*( fx_pt_ext2)(0.5 ,0.5);
17

18 // remove pilot carrier
19 o=0;
20 for(unsigned i=6; i <=10;i++)
21 carrier_data[o++]= carrier[i];
22 for(unsigned i=12; i<=24;i++)
23 carrier_data[o++]= carrier[i];
24 for(unsigned i=26; i<=31;i++)
25 carrier_data[o++]= carrier[i];
26 for(unsigned i=33; i<=38;i++)
27 carrier_data[o++]= carrier[i];
28 for(unsigned i=40; i<=52;i++)

61



29 carrier_data[o++]= carrier[i];
30 for(unsigned i=54; i<=58;i++)
31 carrier_data[o++]= carrier[i];
32 packet ++;
33

Listing 3.25: Equalization -estimation of the channel gain-

Residual frequency correction is done by following procedure described in ??; the frequency
shift is stored in the a_sumC variable:

1 unsigned idx=((packet -2) %127) +1;
2 fx_pt1 p=POLARITY[idx];
3 sumC= fx_pt_ext2(carrier [11])* fx_pt_ext2(std::conj( X[11+64* packet] ) )*

fx_pt_ext2(p,0);
4 sumC+= fx_pt_ext2(carrier [25])* fx_pt_ext2(std::conj( X[25+64* packet] ) ) *

fx_pt_ext2(p,0);
5 sumC+= fx_pt_ext2(carrier [39])* fx_pt_ext2(std::conj( X[39+64* packet] ) ) *

fx_pt_ext2(p,0);
6 sumC+= fx_pt_ext2(carrier [53])* fx_pt_ext2(std::conj( X[53+64* packet] ) )* -

fx_pt_ext2(p,0);
7

8 fx_pt1_ext1 x= (fx_pt1_ext1) sumC.real();
9 fx_pt1_ext1 y= (fx_pt1_ext1) sumC.imag();

10 fx_pt1_ext1 a_sumC= y/x ;
11

12 carrier [11]= fx_pt_ext2( X[11+64* packet] ) * fx_pt_ext2(p,0);
13 carrier [25]= fx_pt_ext2( X[25+64* packet] ) *fx_pt_ext2(p,0);
14 carrier [39]= fx_pt_ext2( X[39+64* packet] ) *fx_pt_ext2(p,0);
15 carrier [53]= fx_pt_ext2( X[53+64* packet] ) *-fx_pt_ext2(p,0);

Listing 3.26: Equalization - Residual frequency correction

Next, the Pilot (that have only functional purpose and do not carry any information) are
removed from all the packet in order to decode the message in the next blocks.

1 fx_pt_ext2 X_med [64];
2 fx_pt_ext2 X_eql_ext[CHUNK ];
3 // remove pilot carrier
4 o=0;
5 for(unsigned i=6; i <=10;i++)
6 X_med[o++]=X[i+64* packet ];
7 for(unsigned i=12; i<=24;i++)
8 X_med[o++]=X[i+64* packet ];
9 for(unsigned i=26; i<=31;i++)

10 X_med[o++]=X[i+64* packet ];
11 for(unsigned i=33; i<=38;i++)
12 X_med[o++]=X[i+64* packet ];
13 for(unsigned i=40; i<=52;i++)
14 X_med[o++]=X[i+64* packet ];
15 for(unsigned i=54; i<=58;i++)
16 X_med[o++]=X[i+64* packet ];

Listing 3.27: Equalization - Pilot Removal-

Finally the channel gain (freq_offset) and the residual offset correction (based on the pilot)
a_sumC is applied to every sample (3.10.3) :

1 const fx_pt1_ext1 alpha =0.9;
2 freq_offset =((1- alpha)*freq_offset)+(alpha*a_sumC);
3 freq_sum += freq_offset;
4

5 // compensate offset carrier + channel model
6 fx_pt_ext2 esp = fx_pt_ext2( hls::cos(freq_sum), hls::sin(freq_sum));
7 for(unsigned i=0;i<48;i++)
8 {
9 X_eql_ext[i]= (X_med[i]*esp)/carrier_data[i];

10 X_eql[i+48*( packet -2)]=( fx_pt)(X_eql_ext[i]);
11 smpl ++;
12 }
13 packet ++;
14 } //fine if-elseif - else

Listing 3.28: Equalization - Frequency offset correction-
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Matlab Implementation

1 % input -> X (fft reverse of symbol - including pilots and null carrier
2 % output X_eql
3

4 bw=10e6;
5 freq =5.89e9;
6 ref=[0, 0, 0, 0, 0, 0, 1, 1, -1, -1, ...
7 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, ...
8 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, ...
9 1, 1, 0, 1, -1, -1, 1, 1, -1, 1, ...

10 -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, ...
11 -1, 1, -1, 1, -1, 1, 1, 1, 1, 0, ...
12 0, 0, 0, 0 ].;
13

14 POLARITY =[ 1, 1, 1, 1,-1,-1,-1, 1,-1,-1,-1,-1, 1, 1,-1, 1, ...
15 -1,-1, 1, 1,-1, 1, 1,-1, 1, 1, 1, 1, 1, 1,-1, 1,...
16 1, 1,-1, 1, 1,-1,-1, 1, 1, 1,-1, 1,-1,-1,-1, 1,...
17 -1, 1,-1,-1, 1,-1,-1, 1, 1, 1, 1, 1,-1,-1, 1, 1,...
18 -1,-1, 1,-1, 1,-1, 1, 1,-1,-1,-1, 1, 1,-1,-1,-1,...
19 -1, 1,-1,-1, 1,-1, 1, 1, 1, 1,-1, 1,-1, 1,-1, 1,...
20 -1,-1,-1,-1,-1, 1,-1, 1, 1,-1, 1,-1, 1, 1, 1,-1,...
21 -1, 1,-1,-1,-1, 1, 1, 1,-1,-1,-1,-1,-1,-1,-1 ].;
22

23

24 pilot =[12 26 40 54].;
25 data_carrier =[7:11 13:25 27:32 34:39 41:53 55:59];
26

27 alpha =0.9;
28

29 [nX mX]=size(X);
30 c=1;
31 for i=1:mX
32

33 if i==1
34 carrier=X(:,1);
35 elseif i==2
36

37 %sumC= sum(carrier(pilot).*conj( X(pilot ,i) ) );
38 sumC= (carrier (12)*conj(X(12 ,2)) )+ ...
39 (carrier (26)*conj(X(26,2)) )+ ...
40 (carrier (40)*conj(X(40,2)) )+ ...
41 (carrier (54)*conj(X(54,2)) );
42

43 freq_offset=angle(sumC);
44 freq_sum =0;
45 %defining new carrier for next symbol
46 carrier=carrier+X(:,i);
47 carrier=carrier .* ref .*0.5;
48

49 str=[’i= ’ num2str(i) ’, sum=’ num2str(sumC) ’ freq_off=’ num2str(
freq_offset)];

50 else
51 p=POLARITY( mod((i-3) ,127)+1 ) ;
52 sumC=sum( carrier(pilot) .* conj( X(pilot ,i) ) .* [1 1 1 -1]’.*p );
53

54 str=[’freq_offset=’ num2str(freq_offset) ’, freq_sum=’ num2str(sumC)];
55

56 freq_offset= ( (1-alpha)*freq_offset ) +( alpha*angle(sumC) );
57 freq_sum=freq_sum+freq_offset;
58

59 carrier(pilot)=X(pilot ,i).*[1 1 1 -1]’.*p;
60 X_eq0(:,c)=(X(data_carrier ,i)./ carrier(data_carrier) );
61 X_eql(:,c)=(X(data_carrier ,i)./ carrier(data_carrier) ).*exp(1i*freq_sum);
62 c=c+1;
63 str=[’i= ’ num2str(i) ’, freq_sum=’ num2str(freq_sum)];
64 end
65 end
66

67 X_eql_lin=reshape(X_eql ,[] ,1);

Listing 3.29: equalizer Matlab Function
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3.11 Decoding
Now we have corrected the residual CFO and also have corrected the channel gain, the next step
is to map the FFT output to actual data bits. This is the reverse process of encoding a packet.

1. demodulation: complex number to bits

2. deinterleaving: shuffle the bits inside each OFDM symbol

3. Convolution decoding: remove redundancy and correct potential bit errors

4. Descramble.

Step 1 and 3 depend on the modulation and coding scheme, which can be obtained from the
SIGNAL field. The SIGNAL field is encoded in the first OFDM symbol after the long preamble
and is always BPSK modulated regardless of the actual modulation. Recall that in 802.11p, one
OFDM symbol contains 48 data sub-carriers, which corresponds to 48 data bits in BPSK scheme.
The SIGNAL field is also convolutional encoded at 1/2 rate so there are 24 actual data bits in the
SIGNAL field.

Demodulation
This step maps the complex symbol come from the FFT plane into bits. Many modulation scheme
could be used for the 802.11p protocol; however, in this thesis, only Binary Phase Shift Keying is
implemented. 8

Binary Phase Shift Keying (BPSK)
In BPSK, “0” and “1” are represented by:

s0 = Apt(t) · cos(2πfct+ θ

s1 = −Apt(t) · cos(2πfct+ θ

Equivalently, we can write:
s0 = Apt(t) · cos(2πfct+ θ

s1 = Apt(t) · cos(2πfct+ θ + π

In this representation, we see that the information is carried by the phase of the carrier, hence,
the name phase shift keying.
The average bit error probability (for equally probable binary signals) is:

Pb = Q(
√

2Eb/N0)

To avoid the complexity involved in calculating the exact error probability, we use the dominant
terms in the union bound (the terms due to the nearest neighbors in the signal constellation)
to compare the power efficiency of different modulation schemes.

Figure 3.22: Example of BPSK demod-
ulation

In other word, we decode the received signal by map-
ping it to the closest one in the set of possible transmitted
signals as explained in the following list.

• Map to the closest constellation point

• Quantitative measure of the distance between the
received signal s’ and any possible signal s (Find
|s′ − s| in the I-Q plane)

Figure 3.22 shows an example of BSPK demodulation
using the ńearest one ḿethod.

n1 = |s′ − s| = |s′ − (1 + 0i)

n0 = |s′ − s| = |s′ − (−1 + 0i)

Since n1 < n0, s1 is mapped to (1 + 0i)→ 1

8This is because 802.11p is only a case study. It is out of the scope of this project develop a complete 802.11p
architecture.

64



Deinterleaving
Inside each OFDM symbol, the encoded bits are interleaved. To understand how the block inter-
leaver works, first we need to define a few parameters.

Let s = max(NBPSC/2, 1) be the number of bits along the real (or imaginary) axis in the
constellation plane. The interleaver is based on writing the data bits in rows and reading them
out in columns.

The interleaving process involves two permutations. Let k be the index of the bit index before
the first permutation, i be the index after the first but before the second permutation, and j be
the index after the second permutation.
The first permutation (k → i) of interleaving ensures adjacent code bits are mapped to non-adjacent
sub-carriers, and is defined as:

i = NROW × (k mod NCOL) + b k

NCOL
c

And the second permutation (i → j) ensures that adjacent code bits are mapped alternatively to
less or more significant bits in constellation point, and is defined as:

j = s× b i
s
c+ (i+NCBPS − bNCOL ×

i

NCBPS
c) mod s

First, to reverse the second permutation

i = s× bj
s
c+ (j + bNCOL ×

j

NCBPS
c) mod s

and to reverse the first permutation:

k = NCOL × i− (NCBPS − 1)× b i

NROW
c

Viterbi Decoding
Convolution codes are better codes of error controlling performance. Convolutional encoder outputs
are not only associated with the encode elements at present, but also affected by several ones before.
(n, k, m) is used for describing convolutional codes, where k are the input encode elements, n are
the output encode elements and m are the shift register numbers of convolution encoder. Usually,
the value of n and k is smaller and k is less than n, but the number of shift registers takes larger
value. In 802.11p standards the convolutional codes are defined by given generator polynomials
with constraint length of 7 and code rate of 1

2 , resulting in 64 trellis states. The given generator
polynomials codes are G1 = 133(OCT ) and G2 = 171(OCT ), equally

G1 = x0 + x2 + x3 + x5 + x6 = 1011011 = 1338

G2 = x0 + x1 + x2 + x3 + x6 = 1111001 = 1718

Viterbi Algorithm
Convolutional codes are a class of error-correcting codes. They are widely used in modern telecom-
munication systems, e.g. in IEEE 802.11 [73], IEEE 802.16 [74], UMTS [75], LTE [76], etc

Convolutional codes can be decoded by several methods, e.g. Viterbi algorithm, sequential de-
coding, BCJR algorithm. The Viterbi algorithm (VA) [77] is one of the most common approaches,
it is recommended in all the above mentioned standards. It is also implemented in Mathworks
Simulink Communications Systems Toolbox [78] and GNU Radio [79] which are widely used for
experiments and a performance evaluation of digital communication systems by the research com-
munity.

The VA was firstly identified as the maximum likelihood sequence estimator in [80]. This
section recalls the major aspects of the algorithm, which are relevant for the considered problem.
In general the VA finds the most likely message of states of a Hidden Markov Model, called a
path, which produces a particular observed output. Each decoding step the VA produces several
candidate branching paths, which lead to the same output state. This is illustrated in in Fig. 3.23.
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Each branch is characterized by a branch metric, which when summed up result in a path metric.
The algorithm selects the path with the minimal path metric.

Figure 3.23: Paths metrics equality.

However, VA is out of the scope of this thesis so no further investigation is made and it was
used the HLS Viterbi core provided by Xilinx.
For the detailed description of the Viterbi algorithm as well as its extensive performance analysis in
the context of decoding of convolutional codes over a noisy communication channel the interested
reader is referred to [77] [81].

Descrambling

The scrambling step at the transmitter side is to avoid long consecutive sequences of 0s or 1s. The
scrambling and descrambling process can be realized using the same logic.

Suppose the current input bit is Bn, the scrambled bit Bsn and the internal state of the scrambler
is updated as follows:

Bsn ← X1
n ⊕Bn

X1
n+1 ← X7

n ⊕X4
n

Xi
n+1 ← Xi−1

n , i = 2, 3, . . . , 7

where Xi
n is the scrambler state before the nth input bit, n = 0, 1, 2, ....

At the transmitter side, for each packet, the scrambler is initialized with pseudo random value.
The very first 7 bits of the data bits is preset to zero before scrambling, so that the receiver can
estimate the value using the scrambled bits.
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3.11.1 Implementation

Figure 3.24: GNU Radio Blocks in charge of decoding bits.

Decoding
Decoding is performed by mapping bits to the nearest one:

1 for(unsigned i=0;i<384;i++)
2 if( constellation[i].real() >0 )
3 bit_r[i]=( ap_uint <1>)1;
4 else
5 bit_r[i]=( ap_uint <1>)0;

Listing 3.30: Decoding bits

Deinterleaving
Deinterleaving is performed by looking a look-up table (variable inter) and exchanging the position
of the bits:

1 const unsigned inter []=
2 { 0,3,6,9,12,15,18,21,24,27,30,33,36,
3 39,42,45,1,4,7,10,13,16,19,22,25,28,
4 31,34,37,40,43,46,2,5,8,11,14,17,20,23,
5 26,29,32,35,38,41,44,47 };
6

7 for(unsigned i=0;i<7;i++)
8 for(unsigned j=0;j<48;j++)
9 {

10 unsigned index=inter[j]+i*48;
11 bit[ j+i*48 ]=bit_r[index ];
12

13 }

Listing 3.31: Deinterleave process

Viterbi Decoding
Decoding of the signal is performed by the Xilinx HLS IP Viterbi decoder after formatting the
data according to the inputs of the IP. We utilize the Viterbi HLS IP core provided by Xilinx.
The summary features for the Viterbi Decoder IP core are as follows:

1. Parameterizable decoder rates, constraint length, convolution codes and traceback lengths.

2. Choice of either parallel architecture for high data throughput, or serial for smaller area
footprint.
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3. Very low latency option.

4. Soft decision with parameterizable soft width

5. Other architectural options such as multichannel decoding, dual rate decoder or trellis mode

6. Erasure for external puncturing

A representative symbol of the Viterbi Decoder, with the signal names, is shown in Figure
3.25a and Figure 3.25b. Some of the pins are optional. These should be selected only if they are
genuinely required, as their inclusion might result in an increase in the core size.

(a) Core AXI Channels. (b) Core Schematic Symbol.

Figure 3.25: Viterbi Decoder - Xilinx IP Core - .

1 hls::stream < ap_uint <1> > bits_in("Bits In");
2 hls::stream < hls:: viterbi_decoder_input <OutputRate ,InputDataWidth ,HasEraseInput >

> input_data("Input Data");
3 // hls::stream < ap_uint <1> > output_data (" Output Data");
4 hls:: viterbi_decoder_input <OutputRate ,InputDataWidth ,HasEraseInput > input;
5 ap_uint <OutputRate > encoded_data;
6

7 for(unsigned i=0;i <4*48;i=i+2)
8 {
9 encoded_data [0]= bit[i];

10 encoded_data [1]= bit[i+1];
11 input.data= encoded_data;
12 input_data << input;
13 }
14 while (! input_data.empty()) {
15 viterbi_decoder_top(input_data , output_data);

Listing 3.32: complex filter

Matlab Implementation

1 bits=-real(X_eql);
2 bits=bits <0;
3 inter =[0,3,6,9,12,15,18,21,24,27,30,33,36,...
4 39,42,45,1,4,7,10,13,16,19,22,25,28,...
5 31,34,37,40,43,46,2,5,8,11,14,17,20,23,...
6 26 ,29 ,32 ,35 ,38 ,41 ,44 ,47].’’+1;
7

8 [nX_eq ,mX_eq ]=size(X_eql);
9 tmp(:,1)=bits(inter (1: nX_eq) ,1);

10 bits=tmp;
11

12 %********* decode *******
13 t = poly2trellis (7 ,[133 171] );
14 tb =14;
15 decoded = vitdec(bits ,t,tb ,’trunc’,’hard’) .’’;
16

17 % interpretate signal
18 decoded=decoded (1:19);
19
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20 prate= sum(decoded (1:4) .*2.^(3: -1:0));
21 plength=sum(decoded (6:17) .*2.^( 0:11 ) );
22 pparity=decoded (18);
23

24 switch prate
25 case 13
26 rate_d =1;
27 disp(’-)Codec: BPSK 1/2’);
28 case 15
29 rate_d =2;
30 disp(’-)Codec: BPSK 3/4’);
31 case 5
32 rate_d =2;
33 disp(’-)Codec: QPSK 1/2’);
34 case 7
35 rate_d =2;
36 disp(’-)Codec: QPSK 3/4’);
37 case 9
38 rate_d =2;
39 disp(’-)Codec: 16-QAM 1/2’);
40 case 11
41 rate_d =2;
42 disp(’-)Codec: 16-QAM 3/4’);
43 case 1
44 rate_d =2;
45 disp(’-)Codec: 64-QAM 2/3’);
46 case 3
47 rate_d =2;
48 disp(’-)Codec: 64-QAM 3/4’);
49 end
50 str=[’-)Length=’ num2str(plength)];
51 disp(str);

Listing 3.33: equalizer Matlab Function
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Chapter 4

Evaluation

First law: The pesticide paradox. Every method you use to prevent or find bugs leaves a
residue of subtler bugs against which those methods are ineffective. – Boris Beizer
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4.1 Xilinx Zynq
Zynq SoC is a product line from Xilinx where a processor and programmable logic is implemented
on the same silicon die. More specifically it is an ARM Cortex-9 dual-core processor connected
to various sized amounts of programmable logic dependent on the chip model. In addition to the
ARM Dual-core processor there is also an ARM NEON unit, which is a general-purpose Single-
Instruction Multiple-Data(SIMD) engine.
The combination of a general-purpose processor and programmable logic on the same silicon die
allows realization of hardware accelerators with at higher data-throughput, as the communication
bus between the two units is as short as possible.
The three most common types of hardware accelerator architectures are depicted in Figure 4.1.
Each of these have their own pros and cons, with type 4.1c being the fastest architecture due
to the communication bus between CPU and accelerator being physically short. Reducing the
length of a bus reduces the capacitance of the bus, which in return makes it easier to obtain
a higher data throughput on the bus. A normal computer would allow implementation of the
type 4.1a architecture through the PCIe-bus while the Zynq SoC makes a type 4.1b architecture
implementation possible.

(a) System Bus Connection (b) Processor Bus Connection (c) Tightly Coupled Accelerator

Figure 4.1: The three general hardware accelerator structures.

Figure 4.2: System diagram of the Zynq SoC

The Zynq SoC system diagram is
depicted in Figure 4.2. As it can be
observed the ARM Cortex-9 proces-
sor is connected to the programmable
logic of the Zynq SoC through AXI-
interconnects and Extended Multi-
use I/O (EMIO). EMIO will not be
used in this project, but is useful if
one want to use some of the builtin
communication modules such as SPI,
I2C etc. to communicate with ex-
ternal hardware or hardware imple-
mented in the programmable logic.

4.1.1 Xilinx zc706
A Xilinx zc706 evaluation Board has
been used for validation purpose.
The ZC706 evaluation board for the
XC7Z045 SoC provides a hardware
environment for developing and eval-
uating designs targeting the Zynq-
7000 XC7Z045-2FFG900C SoC. The
ZC706 evaluation board provides fea-
tures common to many embedded
processing systems, including DDR3
SODIMM and component memory, a
four-lane PCI Express interface, an
Ethernet PHY, general purpose I/O,
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and two UART interfaces. Other fea-
tures can be supported using VITA-57 FPGAmezzanine cards (FMC) attached to the low pin count
(LPC) FMC and high pin count (HPC) FMC connectors.
A detailed description of the component installed on the board is resumed in the Figure 4.3.

Figure 4.3: Hardware of the Xilinx zc706 evaluation board

The ZC706 evaluation board is populated with the Zynq-7000 XC7Z045-2FFG900C SoC.
The XC7Z045 SoC consists of an integrated processing system (PS) and programmable logic (PL),
on a single die. The high-level block diagram is shown in 4.4.

Figure 4.4: High-Level Block Diagram of the Zynq 7000

The PS integrates two ARM Cortex-A9 MPCore application processors, AMBA interconnect,
internal memories, external memory interfaces, and peripherals including USB, Ethernet, SPI,
SD/SDIO, I2C, CAN, UART, and GPIO. The PS runs independently of the PL and boots at
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power-up or reset.

4.2 AXI interfaces

The Xilinx Vivado software package from Xilinx is the recommended development environment
when working with the Zynq SoCs. The Vivado environment is highly geared towards using Intel-
lectual Property (IP) and block-based design to increase productivity and lower development time.
Vivado features several necessary IP blocks and templates for Zynq and FPGA-designs, several of
these blocks are related to or used for implementation of Xilinx’s AXI-bus and configuration of the
ARM processor.
Adding custom RTL to a project is done by creating IP-blocks from templates and using these
in the block design of the project. As mentioned in section 4.1 the Zynq SoC is internally using
Xilinx’s AXI-bus to connect the ARM processor with the programmable logic of the Zynq SoC,
and as such it is preferable to use the AXI-bus to connect the custom RTL to the processor of the
system using the AXI-bus. Other connection possibilities exist though, these are however not as
fast as the AXI-bus and it is thus up to the developer to choose a suitable bus for communication
between the RTL and the ARM processor.
When creating a new IP peripheral in the Vivado design suite, the user has the choice of adding
AXI-connections of three types, Full, Lite and Stream, these can be added either as a slave or
master connections. When creating the peripheral a template is given to the user with the basic
control logic for the added AXI-bus.

4.3 Implementation

In this project, the IEEE 802.11p algorithm accelerator is implemented. Furthermore the con-
figuration of the ARM processor is also explained, as the ARM-processor was used for both the
hardware and software execution of each benchmark. Implementation of both processors was done
in the Xilinx Vivado development environment, as this is the intended development environment
for the Zynq SoC. The Vivado software package is shipped with several Intellectual Property pack-
ages for development on different FPGAs, but most importantly several IPs related to AXI-bus
communication. In the implementation of the hardware accelerators, AXI-related IP was used for
connecting the CPU and accelerator, as well as connecting the accelerator with the external RAM.
The implementation of the hardware accelerators consists of a hardware implementation mapped
to the logic part and an embedded software application running on the ARM processor controlling
the accelerator.
Due to some parts of the overall architecture which their software implementation is out of the
scope of this thesis (like the software implementation of the Viterbi decoder; In hardware it was
used an existing, ready to use Xilinx IP) only the frame detection part of the 802.11p algorithm is
taken into consideration for timing reports and acceleration speed-up.

4.3.1 Hardware Part

Implementation of the 802.11p accelerator was split up into three tasks; packaging the 802.11p
architecture into an IP package with an AXI-interface, configuration of the ARM processor system,
and connection of the accelerator IP to the processor system.

Creating the802.11p IP was done in the Vivado design suite, where Vivado HLS was used to
generate a template for an AXI4-peripheral with tree AXI interfaces operating one in slave-mode
(control bus) and two in master mode(destination and source bus).

After this the top-level module of the 802.11p was implemented as a peripheral, where the input
clock was wired to the clock of the AXI slave interface while the reset signal was connected to a
register instead of the global reset, such that the accelerator can be reset without resetting the
entire programmable logic fabric on the Zynq SoC. Finally the 802.11p peripheral was synthesized
and packaged into an IP entity.

Configuration of the ARM processor system was done by creating a new project in Vivado
and adding an instance of the processor system IP to the system design. The processor IP was
then configured to have only the necessary modules to connect with the generated 802.11p IP.
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This means that the processor system was configured to have a dual AXI-bus connection to the
programmable logic, and to provide a clock running at 150MHz (this was the highest frequency
achievable without timing errors) to the programmable logic.
After this the 802.11p IP was added to the design, and connected to the processor system on the
Zynq SoC. An automatic connection wizard of Vivado was run, this added a couple of AXI related
IP blocks to the system, blocks which synchronize the reset signals and connect the IP AXI bus
the AXI bus of the processor system. The system overview as seen in Vivado is depicted in Figure
4.5.

Figure 4.5: Top-level system overview of the 802.11p implementation on Zynq as seen in Vivado

4.3.2 Software Part
Memory location of the source data (raw data to be processed corresponding to the RF stream
coming from the Radio Frequency front-end), destination data (data elaborated by the hardware
accelerator) and golden data (data elaborated via software by the hard core ARM processor) are
chosen to not collide with other data in the following location:

1 #define MAXDATA (5*4096* sizeof(unsigned) )
2 #define SRC_BUFFER_BASE 0x20000000 //( DATA_OFFSET)
3 unsigned *src_mem_real =( unsigned *) SRC_BUFFER_BASE;
4

5 #define SRC_img_BUFFER_BASE 0x22000000
6 unsigned *src_mem_img =( unsigned *) SRC_img_BUFFER_BASE;
7

8

9 #define HP_DST_BUFFER_BASE 0x23000000 //( DATA_OFFSET + 4* MAXDATA)
10 unsigned *dst_mem = (unsigned *) HP_DST_BUFFER_BASE;
11

12 #define GLD_BUFFER_BASE 0x24000000
13 _Complex double *out = (_Complex double *) GLD_BUFFER_BASE;

We perform a simple MARCH test to the memory in order to be sure that the chosen location
are writable/readable and no errors appear during writing and reading process.

1 int test_memory ()
2 {
3 const unsigned uno=0 xFFFFFFFF;
4 const int num =20;
5 const double uno_f=0 xFFFFFFFFFFFFFFFF;
6

7 for(int i=0; i<num *4096;i++)
8 {
9 src_mem_real[i]=0x0;

10 src_mem_img[i]=0x0;
11 dst_mem[i]=0x0;
12 out[i]=0x0*0x0*I;
13 }
14 for(int k=0; k<(num *4096) -10; k++)

74



15 {
16 if(src_mem_real[k] != 0x00 ) return 1;
17 if(src_mem_img[k]!=0x0) return 2;
18 if(dst_mem[k]!=0x0) return 3;
19 if(out[k]!=0x0) return 4;
20 }
21 for(unsigned i=0; i<num *4096;i++)
22 {
23 src_mem_real[i]=uno;
24 src_mem_img[i]=uno;
25 dst_mem[i]=uno;
26 out[i]= uno_f+I*uno_f;
27 }
28 for(unsigned i=0; i<num *4096;i++)
29 {
30 if(src_mem_real[i]!= uno) return 5;
31 if(src_mem_img[i]!= uno) return 6;
32 if(dst_mem[i]!= uno) return 7;
33 if(out[i]!= uno_f+I*uno_f) return 8;
34 }
35

36 return 0;
37

38 }

After loading the data into the memory, the software execution is performed and the time
execution is saved into the variable sw_elapsed :

1 XTime_GetTime (& start);
2 algo_soft ();
3 XTime_GetTime (&stop);
4 sw_elapsed = get_elapsed_time(start , stop);

where the function algo_soft implement a software version of 3.2.

1 void algo_soft ()
2 {
3 // SUPPORT VAR;
4 _Complex double out_s1[SIZE];
5 _Complex double src[SIZE];
6 // INIT VARIABLE
7 for(unsigned i=0;i<SIZE;i++) {
8 double src_rd= (double) fixed32_to_float ((( unsigned)src_mem_real[i]),nINT);
9 double src_id= (double) fixed32_to_float ((( unsigned)src_mem_img[i]),nINT);

10 src[i]= src_rd+I*src_id;
11 }
12 /***** DELAY ******* */
13 const int DELAY =16;
14

15 for (unsigned i=0;i<SIZE;i++)
16 {
17 int index=i-DELAY;
18 if( index <0 )
19 out[i]=0;
20 else
21 out[i] = src[index ];
22 }
23

24 /****** coniugate/mult *****/
25

26 for (unsigned i=0;i<SIZE;i++)
27 {
28 out[i]= creal(out[i])-I*cimag(out[i]); // omplex <T_type >(out[i].real(), -out[i

].imag());
29 out[i]=out[i]*src[i];
30 }
31 /***** FILTER ****** */
32 _Complex double out1[SIZE];
33 const int order_filter_upper =32;
34 moving_average(out1 ,out ,order_filter_upper);
35

36 /* ****** ABS *****/
37 for (unsigned i=0;i<SIZE;i++)
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38 {
39

40 out[i]=cabs(out1[i])+0*I;
41 }
42

43 /* ************************* */
44 /**** lower branch ******/
45 /* *********************** */
46 _Complex double out_s[SIZE];
47

48 for (unsigned i=0;i<SIZE;i++)
49 {
50 out_s[i]=pow(cabs(src[i]) ,2);
51

52 }
53

54 const int order_filter_lower =64;
55 moving_average(out_s1 ,out_s ,order_filter_lower);
56

57 for (unsigned i=0;i<SIZE;i++)
58 {
59 out[i]=out[i]/ out_s1[i];
60 }
61 }

Listing 4.1: software algorithm

76



4.4 Test Platform
The test platform is shown in Figure 4.6. It can be sintetized as follow;

1. Vivado HLS generates the RTL IP core from the c code. With (a) we import the IP into
Vivado environment,

2. the overall architecture is synthetized in Vivado and the bitstream is uploaded into the FPGA
memory -(b)-.

3. Matlab is in charge to generate, upload, download and verify the correctness of the data
processed by the FPGA.

Figure 4.6: Test Platform.

Matlab Environment
It is worth spending a section on how matlab interact with the FPGA flow.
Different scripts were ad hoc written in order to accommodate the need to have a fast and easy way
to interact with the FPGA. Since the algorithm has been studied and understood with Matlab, it
was for me naturally to develop such flow.

• Real output data are retrieved from the 802.11p transmitter of the reference design and are
saved in 2 files containing real and imaginary part of the I-Q signals.

• Matlab converts them into the proper format in order to be read correctly by the hardware
accelerator.

1

2 clear all
3 import_data
4

5 N_Sample =5*4096;
6

7 %d=fi(d,1,N_Word ,N_Word -N_integer);
8 N_Word =32;
9 N_integer =6;

10

11

12 d_fx_real=int32(real(d(1: N_Sample))* 2^(( N_Word -N_integer)));
13 d_fx_imag=int32(imag(d(1: N_Sample))* 2^(( N_Word -N_integer)));
14

15

16 fileID=fopen(’real.bin’,’w’);
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17 fwrite(fileID ,d_fx_real ,’int32’);
18 fclose(fileID);
19

20

21 fileID=fopen(’img.bin’,’w’);
22 fwrite(fileID ,d_fx_imag ,’int32’);
23 fclose(fileID);
24

25

26 [status ,cmdout ]= system(’./ mem_inject.sh’);
27 cmdout;
28

29

30 k=strfind(cmdout ,’Successfully ’);
31 if length(k)==2
32 disp(’ -) Uploaled 2/2’ );
33 end

Listing 4.2: Upload Matlab script

The upload process is managed by the system call system and executing the bash script
starting the Xilinx debugger in order to extract the data:

1 source /tools/Xilinx/Vivado /2018.3/ settings64.sh
2 xsdb ./ mem_inject.tcl
3

1 connect -url espdev.cs.columbia.edu :3124
2 targets 1
3 dow -data /home/linux/Documents/MATLAB/software_ver/real.bin 0x20000000
4 after 2000
5 dow -data /home/linux/Documents/MATLAB/software_ver/img.bin 0x22000000
6

• when the accelerator finishes its execution, Matlab download the data from the memory
directly into its workspace in order to be compared with the golden output.

1 clear all
2

3 import_data
4 frame_detection
5

6 [status ,cmdout ]= system(’./ mem_dump.sh’);
7

8 fileID=fopen(’corhw.dat’);
9 A=fread(fileID ,’int32’);

10

11 chunk =5;
12 Nsample=chunk *4096 ;
13

14

15

16 fclose(fileID);
17

18 N_Word =32;
19 N_integer =6;
20

21 cor_hw = 2^(-(N_Word -N_integer))*double(A);
22

23

24 [err , idx]=maxk(abs(cor_hw (1: Nsample)-cor(1: Nsample)) ,3);
25

26 str=[ ’-) Errore = ’, num2str(max(err)) ’ max -> ’ num2str(err(1)) ’idx=’
num2str(idx(1)) ];

27 disp(str);
28 for i=1:3
29 str=[ ’ -) max -> ’ num2str(err(i)) ’idx=’ num2str(idx(i)) ];
30 disp(str)
31 end
32

33 a=[ (cor (1: Nsample)).’; (cor_hw (1: Nsample)).’];

78



34 subplot (2,1,1)
35 title(’Samples ’)
36 plot(cor_hw (1: Nsample));
37 hold on
38 plot(cor (1: Nsample));
39 legend(’HW data’,’MATLAB reference ’);
40 title(’Time Domain Data’)
41 subplot (2,1,2);
42 plot(std(a));
43 title(’Standard Deviation ’);

Listing 4.3: Download and comparison Matlab script

Again, the download process is managed by the system call system and executing the bash
script starting the Xilinx debugger in order to extract the data.

1 source /tools/Xilinx/Vivado /2018.3/ settings64.sh
2 xsdb ./dump.tcl
3

1 connect
2 targets 1
3 mrd -file /home/linux/Documents/MATLAB/software_ver/corhw.dat -bin 0

x23000000 0x10000
4

4.5 Profiling

When it comes to GPP-based SDR systems, the computational performance and the ability to
process samples in real time are critical factors. In this context, we refer to the term real-time
signal processing to contrast offline signal processing. It implies that the PC is able to keep up with
the incoming sample stream without dropping samples. In other words, the average processing
time per sample is smaller than the sample duration. This property is crucial, since, otherwise, the
transceiver would have to drop samples, which causes packet loss. Ultimately, this could lead to
wrong interpretations of measurement results if lost frames are regarded as effects of the wireless
channel or shortcomings of receive algorithms. Given the importance, we have an in-depth look at
the computational complexity and real-time capabilities of our system.
In that regard, the transmit side is not critical as the whole waveform can be computed ad pri-
ori and streamed to the SDR. The only requirement is that the stream does not stall, which is,
however, no problem in practice. The receive side is much more challenging as it has to process a
large number of samples in real-time. An IEEE 802.11p channel with a bandwidth of 10MHz, for
examples, results in 10 · 106 complex floating point numbers per second.

To cope with such high bandwidths, GNURadio starts each signal processing block in its own
thread. During runtime, each block monitors performance related metrics like CPU time and fill
state of the input and output queues. Depending on the hardware platform and the operating sys-
tem, there are several methods available to log the CPU time. We use the accurate thread clock,
which takes into account only the time when the thread was actually scheduled by the operating
system.

So, the goal of this stage was to determine the percentage of total runtime consumed by each
block. It is called High level profiling, because the level of abstraction in this case is fairly general,
since the collected information corresponds to GNU Radio blocks and not to code statements ex-
ecuting within the blocks. We wish to use the official built-in GNU Radio profiler called
GR Control Port Monitor and GR Performance Monitor but the tools are somehow
still buggy and an open issue is still opened to the GNU Radio Official mailing list.
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ControlPort is a new tool that creates an integrated remote procedure call interface to
GNU Radio. Any block or part of GNU Radio can now register interfaces with ControlPort,
which then allows a ControlPort client to interact with the GNU Radio application through
any one of these interfaces. The general form of these interfaces is a set and/or get function
to adjust or query the state of a GNU Radio block’s parameter. For instance, a phase lock
loop can have an interface to set the loop bandwidth so as to optimize the acquisition of
different signals.

GNU Radio’s Performance Counters are a way of generating performance measure-
ments for each block running in a GNU Radio flowgraph. These counters keep track of
various states of each block that can then be used for analyzing the performance and be-
havior of a running flowgraph. Currently, there are five identified performance counters:

• noutput items: number of items the block can produce.

• nproduced: the number of items the block produced.

• input_buffers_full: % of how full each input buffer is.

• ouptut_buffers_full % of how full each output buffer is.

• work_time: number of CPU ticks during the call to general work().

When calculating the performance counters, each block keeps track of the most recent value
(i.e., the instantaneous value) as well as the running average and running variance of the
counter. We can retrieve all three values programmatically using the function calls on the
blocks themselves, described in the GNU Radio manual.

However, the reported bug is only a graphical issue since the profiler still work reliably. There-
fore, it is created a python script (Listing 4.4) in order to extract the data from GR performance
monitor; Results obtained by simulating different configurations (constraining the number of avail-
able core and trying different sample rate for input data) are shown in Table 4.1 and graphically
visualized in Figure 4.7.

1 import sys , time
2

3 from gnuradio import gr, ctrlport
4 from subprocess import Popen , PIPE
5

6 class MyApp(object):
7 def __init__(self , args):
8 p = gr.prefs()
9 cp_on = p.get_bool("ControlPort", "on", False)

10 cp_edges = p.get_bool("ControlPort", "edges_list", False)
11 pcs_on = p.get_bool("PerfCounters", "on", False)
12 pcs_exported = p.get_bool("PerfCounters", "export", False)
13 if(not (pcs_on and cp_on and pcs_exported and cp_edges)):
14 print("Configuration has not turned on all of the appropriate

ControlPort features:")
15 print("\t[ControlPort] on = {0}".format(cp_on))
16 print("\t[ControlPort] edges_list = {0}".format(cp_edges))
17 print("\t[PerfCounters] on = {0}".format(pcs_on))
18 print("\t[PerfCounters] export = {0}".format(pcs_exported))
19 exit (1)
20

21 from gnuradio.ctrlport.GNURadioControlPortClient import
GNURadioControlPortClient

22 GNURadioControlPortClient(args , ’thrift ’, self.run)
23

24 def run(self , client):
25 input_name = lambda x: x+"::avg input % full"
26

27 tmplist = []
28 knobs = client.getKnobs ([])
29 for k in knobs:
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30 propname = k.split("::")
31 blockname = propname [0]
32 keyname = propname [1]
33 if(blockname not in tmplist):
34 # only take gr_blocks (no hier_block2)
35 if(knobs.has_key(input_name(blockname))):
36 tmplist.append(blockname)
37

38 blocks = tmplist
39 blocks.sort()
40

41 # print csv header
42 print(",".join(blocks))
43

44 #knobs = map(lambda x: client.Knob ("%s:: reset_perf_counters" % x), blocks)
45 #client.setKnobs(knobs)
46

47 # let the flow graph run for some time
48 time.sleep (1)
49 ## get work time for all blocks
50 #kl = map(lambda x: "%s::total work time" % x, blocks)
51 #kl = map(lambda x: "%s::avg input %% full" % x, blocks)
52 #kl = map(lambda x: "%s::avg throughput" % x, blocks)
53 kl = map(lambda x: "%s::avg work time" % x, blocks)
54

55 wrk_knobs = client.getKnobs(kl)
56

57 work_times = dict(zip(
58 map(lambda x: x.split("::")[0], wrk_knobs.keys()),
59 map(lambda x: x.value , wrk_knobs.values ())))
60

61 print(",".join(map(lambda x: str(x[1]), sorted(work_times.items()))))
62

63 p = Popen("uptime", stdout=PIPE , close_fds=True , shell=True)
64 print(p.stdout.read())
65

66 MyApp(sys.argv)

Listing 4.4: Profiling script

For the measurements, we ran the receiver on a laptop workstation with an Intel Xeon E3-
1535M CPU and 64 GByte RAM. The operating system was Ubuntu 16.04 running a Linux 4.4.0
kernel. We compiled GNURadio and our transceiver with GCC 5.4.0 in release mode, which enables
all standard compliant run time optimizations.

Core: 1
Input Data Sample: 10 MHz

Core: 1
Input Data Sample: 20 MHz

Core: 8
Input Data Sample: 10 MHz

Clock ticks % exe Clock ticks % exe Clock ticks % exe
Moving_average_cc0 815585728 24,39 4183701248 27,26 1509560448 19,94
Moving_average_ff0 798904832 23,89 4104116480 26,74 1329299328 17,56
Divide_ff0 453766976 13,57 1753872896 11,43 1045683904 13,82
Multiply_cc0 393322304 11,76 1573547520 10,25 1150029952 15,19
Complex_to_mag_squared0 221384432 6,62 1261193600 8,22 512761856 6,77
Conjugate_cc0 196575664 5,88 893310656 5,82 726618304 9,60
Complex_to_mag0 181753440 5,43 856642432 5,58 594946688 7,86
Delay0 282914846 8,46 722341440 4,71 700268440 9,25

Sum 3344208222 100 15348726272 100 7569168920 100

Table 4.1: GNU Radio profiling results.
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(a) Profile report for 1 core, 10
MHz data rate

(b) Profile report for 1 core, 20
MHz data rate

(c) Profile report for 8 core, 10
MHz data rate

Figure 4.7: Profiling graphs

4.6 Results

Figure 4.8: Design Space Exploration of the HW accelerator.

Figure 4.8 shows different implementation of the same accelerator (802.11p) synthetized using the
HLS flows. This is achieved by acting a low-grain optimization (low grain optimization stands for
optimizing the design at the lower possible layer e.g. inner loops inside functions; this is achieved
e.g. optimizing last level of for loop, completely unrolling variable often accessed etc. Refer to
Appendix C for further information about optimization technique used in this project). In be-
tween of this points, there are other implementations; some of them could also be Pareto-point
that dominate the one drawn. We are not interested in exploring the overall design space because
the way optimizations are applied could be generalized and automatically done by some heuristics
considering simulation results and acting in order to accelerate critical part of the algorithm. (see
section 5)
In general, the fastest implementation occupy more area than a slower one(trade-off between speed
and area is defined by constrains and the particular situation; there is no ’best’ implementation
nor ’best’ speed-up.
All the solution proposed in the Figure 4.8 are compatible with the timing constrain published by
the IEEE standard.

Fig.4.9 is obtained by synthetizing the best implementation so far (again, for sure there is
another ’better’ implementation). Note the latency: except for some blocks (that could be further
optimized) they have about the same throughput in order to balance the chain.
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Figure 4.9: HLS report performed by Vivado HLS.

Every instance in Figure 4.9, is a single function that has not been inlined (inline means to
remove the function as a separate entity in the hierarchy. After inlining, the function is dissolved
into the calling function and no longer appears as a separate level of hierarchy in the RTL. In some
cases, inlining a function allows operations within the function to be shared and optimized more
effectively with surrounding operations.) By recalling the GNU Radio symbolism, Figure 4.10
shows in detail how the accelerator architecture is built by Vivado HLS highlighting the function
in 4.9.

Figure 4.10: Synthesized HW accelerator architecture.

The report of the Logic synthesis is shown in 4.11. All in all, the resource utilization is reason-
able small for the performance achieved.
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(a) Synthesis resource report (b) Synthesis power report

Figure 4.11: Synthesis report - Vivado Outputs

Finally the ARM software execution time (discussed in 4.3.2) is compared with the time hard-
ware accelerator takes to execute the same task. This flow is iterated for 3 different design with tree
different optimization grade. Again, for this test, only the first part of the algorithm is considered
(frame detection) even if the Hardware accelerator implement the overall design (from raw data to
decoded bits where modulation scheme is BPSK ).

exe time (ms)
ARM HLS speed-up

Loop unrolling+pipelining 90 1.3 70x
loop unrolling 90 6.4 14x
Only Dataflow 90 45.5 2x

Table 4.2: execution time comparison

The fastest hardware implementation overcome the software execution1 with a
speed-up of about 60x as shown in Figure 4.12.

1debug flag disabled and C optimization -O3
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Figure 4.12: Screenshot for the final implementation.

4.6.1 VHDL vs HLS

For the sake of completeness, it was investigated how far (in term of speed-up and area) the HLS
implementation is with respect to the HDL one. Considering:

1. For every block in GR it is built the corresponding MATLAB script that it functionally the
same.

2. Every MATLAB script is built with simple and basic function. No wireless toolbox add-on
are used.

3. Every function of the previous point is compatible with HDL coder.

So, it was used the set of MATLAB scripts to generate the VHDL code using the Matlab tool HDL
coder in an automatic way. Comparison are shown in Table 4.3

HDL Coder generates portable, synthesizable Verilog and VHDL code from MATLAB func-
tions, Simulink models, and Stateflow charts. The generated HDL code can be used for
FPGA programming or ASIC prototyping and design.
HDL Coder provides a workflow advisor that automates the programming of Xilinx, Mi-
crosemi, and Intel FPGAs. You can control HDL architecture and implementation, high-
light critical paths, and generate hardware resource utilization estimates. HDL Coder
provides traceability between your Simulink model and the generated Verilog and VHDL
code, enabling code verification for high-integrity applications adhering to DO-254 and
other standards.

ARM HLS VHDL

exe time (ms) 90 1.3 0.079

Table 4.3: execution time comparison
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In summary, HLS design compared to the VHDL project generated by HDL coder,
was about twice the area, consumed more power 2 and was slower(about 20x). Even
though the performance of the HLS design was poorer in every way when compared to the VHDL
design, it was easy to program and much more flexible in term of design space exploration.

2The power refereed to this test do not take into account switching activity and other statistical parameter, so
it can be misleading and even a wrong result
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Chapter 5

SDR workflow advisor

It is quite a three-pipe problem. -Sir Arthur Conan Doyle
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GNURadio comes with a multitude advantages. First of all plenty of communication and sig-
nal processing blocks are already implemented; Secondly users can also implement custom blocks
themselves as part of out-of-tree library modules. The implementation of such blocks can be C++
or Python based; This mean that it is not necessary to understand or describe the system in a lower
level using Hardware Description Language (HDL) essential for in-hardware Field Programmable
Gate Array (FPGA) implementations. This approach comes with some performance limits regard-
ing processing latency, but for initial prototyping and validation purposes, the extra delays can be
considered marginal.

SDRwa is an attempt to push GNURadio further to overcome its software-execution
limits.

Its aim is to formalize a general methodology to deploy every GR algorithm into real hardware
(FPGA or even ASIC). A tool called SDR workflow advisor or sdrWA will be developed to assist
the designer step by step with the transition from software to hardware.

Regarding the GR side, another block implementation will be added next to the original one,
written in “synthesizable” C/C++ language, and it will be functionally equivalent.
Practically speaking, the engineer/designer or maker could develop/replicate/invent and simulate
an SDR or general-purpose algorithm in the GR environment using the original optimize software-
execution C implementation of the blocks, taking advantage of its large supportive community.
Next, the transaction from software to hardware is assisted by the sdrWA tool that analyzes the
flowgraph, synthesizes the accelerator using the synthesizable C implementation and optimizes the
architecture given some design constrains1.
Firstly, optimization is performed focusing on the block implementation (Fig.5.1) by choosing
the appropriate implementation for every block by which the algorithm is composed. For example,
critical parts can be accelerated by pipelining and/or by the unrolling technique, and the remaining
parts are balanced by potentially increasing resource sharing while simultaneously decreasing the
area.

"Optimized software-execution implementation" is used in contrast with "synthesizable C
implementation" even if they are both referring to the source code of a specific GR block.
The first implementation is originally developed by GNURadio team which uses high-
performance library for CPU execution e.g. VOLK library, a toolkit that eases the use
of Single Instruction Multiple Data (SIMD) instruction in order to dynamically select the
fastest implementation on the host system using vectors instead of scalar. Contrarily, the
second implementation is hardware optimized in the sense that it is written in a specific way
in order to derive the best hardware architecture ones it is synthesized using the the HLS
Flow; Even if it can be used for software execution, in general it is slower compared to its
common implementation (because loop are not merged by default, presence of redundant
operation, etc).

This fine-grain design exploration methodology can be further enhanced by taking advantage of
the GR system simulation which can extract useful information such as latency, block throughput ,
wire congestion, etc. Beginning with this information, sdrWA can choose the best implementation
knowing the blocks’ role within the overall algorithm.

The next step is the system level optimization (fig.5.1). The proposed tool assists the
designer in combining the appropriate system implementation by considering aspects such as bit
width requirements, approximation of the fixed point data type, bus congestion, etc. , taking
advantage again of the simulation behavior modeled by the real execution of the design.

5.0.1 The "new" GR block Implementation

As mentioned above, another implementation will be added for every GR block.Therefore GR has
to switch between them considering what the final purpose is; if it is the simulation of the system,
the original implementation will be chosen (that is optimized only for software execution on general-
purpose processors); If the purpose is the deployment of the algorithm into specialized Hardware,

1I am taking into consideration also the testing and validation process.
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Figure 5.1: sdrWA Optimization Layer

the "new" implementation will be chosen.

Figure 5.2: GnuRadio layer

The new block implementations
could be derived in two different way:

• HDL synthesis

• HLS synthesis

In order to provide designers more
flexibility in terms of hardware opti-
mization The second approach is cho-
sen for the project. This means that
the design starting point is written in
a high level language (C/C++), and
the hardware implementation derives
from a high level synthesis method-
ology (HLS). In fact, with the HLS
flow it is possible to perform a de-
sign space exploration(DSE) and di-
rectly choose the solution that better
fits the project constraints in terms
of latency, area,power, or a combina-
tion of the three.
One can therefore choose the best

speed implementation (that in general has more area) of the system Pareto curve because he/she
can use the entire FPGA for that purpose.
An industry researcher can choose to reduce the area of the implementation to better meet the
fitting constraints of the Network-on-Chip (NoC) while still accelerating the algorithm with respect
to the software execution.
Otherwise, a company can simply choose the best performance/area solution for a specific task of
an ASIC where the area is the main concern.
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5.1 Practical Implementation

Figure 5.3: SDRwa flow

Consider a generic algorithm implemented in GNU Radio. As mentioned above, SDRwa assist the
designer to deploy the algorithm into an FPGA by following the following steps (reported in figure
5.3):

• Starting point is the GNU Radio flowgraph. The designer has built and tested the algorithm
using GR; eventually the algorithm it is tested with some SDR platform e.g. Ettus Research
USPR.

• the netlist is extracted from GNU Radio and fed into a MATLAB script that decode the
different connection and classify the blocks used.

• Another script analyze the design; This is the steps in charge of tracking the right component,
the number of that component and building the matrix of connection according to the original
flowgraph.

90



• The next step is the accelerator design where the script puts all the information together:

– extract some simulation data from GR.

– analyze the loop of each component

– generate a set of directive for vivado HLS compiler

• The optimization phase is the interaction between Vivado HLS and MATLAB in order to fit
the given constrain.

• Once the optimization phase has completed, a series of MATLAB script are able to pack the
accelerator and generate the bit stream using Vivado.

91



Chapter 6

Conclusion
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6.0.1 Concluding Remarks

In this thesis, we first explained the motivation behind this work, i.e., modeling IEEE 802.11p,accelerate
the algorithm onto an FPGA in order to extract key features to propose an universal methodology.
Afterwards, in various chapters, we explained different building blocks of an IEEE 802.11p physical
layer. Where interesting and worthwhile, we mentioned the implementation choices made during
the development of the module.
As mentioned before, there is a long way towards having a realistic methodology. This is not only
due to complexities involved in the implementation of the current features, but also the practical
approach to coordinate different software, build for different application, to interact together.
On the other hand, this work evaluates the feasibility of deploying to FPGA and accelerate a
specific wireless network algorithm. This work, in conjunction with all the mentioned framework
(Vivado enviroment + Gnuradio + Matlab) can lead to solve open problems in existing and up-
coming 802.11 wireless networks.

6.0.2 Summary of the work done

First, a simulation model for the generation and demodulation of IEEE 802.11p OFDM signals
was implemented in MATLAB. Second the Hardware Code was written in such a way that it
is easier to optimize following the Xilinx HLS flow in order to obtain an IP core for the overall
algorithm. Third a software version for the on-chip ARM processor was made and tested. The
interaction between GNU Radio and Xilinx environment has been also investigated. Lastly the
accelerator is connected through an AXI bus to the ARM processor and executed leading an
overall 60x acceleration. Nonetheless other solutions are made available to meet area, power or
speed constrains under the form of Design Space Exploration(DSE).

6.0.3 Significant Results

On the frame detection part,utilizing a Hardware accelerator built in 3 It was obtained a reasonable
good speed up of 60x with respect to the execution performed by the hard core ARM processor of
the Xilinx Zynq architecture.
Furthermore it is possible to generate different architecture in order to met any reasonable con-
strain.

6.0.4 Lesson Learnt

• Xilinx High level synthesys design flow.

• GNU Radio environment (Graphical user interface and how GR works at lower level by
analyzing the source code).

• The way the C code is written makes the difference in RTL generation through the HLS used
flow.

• It is not possible to convert original GNU Radio code (C code) to HLS code due to a
particular workstation-oriented programming style and the heavy usage of external library.

• It is possible to add a new implementation to GNU Radio in C/C++; This new implemen-
tation has the ability to execute in an un-optimize way on workstation and perform its best
when synthesized with HLS code.

• GNU Radio can export useful simulation report (range of the single signal, bus congestion)
that can be crucial for a good optimization via Xilinx HLS flow.

6.0.5 Future investigation

IEEE 802.11p

802.11 p communications are mainly intended for the support of safety-critical and traffic manage-
ment applications. However, users accustomed to ubiquitous broadband access to the Internet will
transfer these expectations to the interior of their vehicles. In the near future, 802.11 p networks
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will have to face user demands for high throughput. To this end, schemes that adapt the data
rate provide good means to cope with these demands. However, this is a challenging task due
to the dispersive characteristics of the vehicular channel. Furthermore, the high mobility of the
nodes causes fast changes in the channel conditions and the network topology. In addition, the
connectivity time with the access points can be potentially low. Hence, the algorithm for adapting
the rate needs to be robust and feature short convergence times.
However, in car-to-infrastructure communications the surroundings of the access point typically
feature certain recurring characteristics, such as node density, vehicle speed, and propagation loss,
among others. These characteristics result in specific patterns of the signal strength evolution over
time.
It is worth to investigate the usage of a learning algorithm to identify these signal strength
patterns buried in empirical data and to, additionally, combine them with available GPS-based
context information, so as to efficiently predict the best performing rate for the expected propa-
gation conditions.

Toward a Hardware based Defined Radio
Amore general investigation, starting from this thesis, will be done in order to develop an automatic
tool that from the GNU Radio netlist and reports and through a guide procedure brings the designer
toward the final Hardware implementation.
A close look will also be taken in the division between software and Hardware pieces and how GNU
Radio interact with the operating system in order to lock GNU Radio with the FPGA with a high
speed bus.
Porting GNU Radio on ARM processor or enabling it to interact with PCI-e ports can be a
reasonable propose. However the methodology has been though toward a standalone solution
so the usage of GNU Radio software is limited only in the prototype phase where SDR enable
the designer a better signal visibility therefore more capabilities on the debugging process while
Hardware enables a quasi or in some case real time speed obtained by a more complex architecture
(and therefore more difficult to debug).
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Appendix A

Mathematical recall

If I were again beginning my studies, I would follow the advice of Plato and start with
mathematics. - Galileo Galilei
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A.1 Number rappresentation
Computers and FPGAs typically represent numbers using binary representation, which enables
numbers to be efficiently represented using on-off signals called binary digits, or simply bits. Binary
numbers work in most ways like normal decimal numbers, but can often be the cause of confusing
errors if you are not familiar with how they work. This is particularly true in many embedded
systems and FPGAs where minimizing the number of bits used to represent variables can greatly
increase the overall performance or efficiency of a system. In this section, we will summarize binary
arithmetic and the basic ways that computers represent numbers.
When we write a normal integer, such as 4062, what we really mean is implicitly (4 · 1000) + (0 ·
100) + (6 · 10) + (2 · 1) = 4062, or written in columns:

103 102 101 100 unsigned
4 0 6 2 = 4062

A binary number is similar, except instead of using digits from zero to nine and powers of ten,
we use numbers from zero to one and powers of 2:

23 22 21 20 unsigned
1 0 1 1 = 11

since (1 ·8)+(0 ·4)+(1 ·2)+(1 ·1) = 11. To avoid ambiguity, binary numbers are often prefixed
with "0b". This makes it obvious that 0b1011 is the number decimal 11 and not the number 1011.
The bit associated with the highest power of two is the most significant bit , and the bit associated
with the lowest power of two is the least significant bit . Hexadecimal numbers use the digits
representing numbers from zero to 15 and powers of 16:

163 162 161 160 unsigned
8 0 3 15 = 32831

In order to avoid ambiguity, the digits from 10 to 15 are represented by the letters "A" through
"F", and hexadecimal numbers are prefixed with "0x". So the number above would normally be
written in C code as 0x803F.
Note that binary representation can also represent fractional numbers, usually called fixed-point
numbers, by simply extending the pattern to include negative exponents, so that "0b1011.01" is
equivalent to:

23 22 21 20 2−1 2−2 unsigned
1 0 1 1 0 1 = 11.25

since 8 + 2 + 1 + 1
4 = 11.25. Unfortunately, the C standard doesn’t provide a way of specifying

constants in binary representation, although gcc and many other compilers allow integer constants
(without a decimal point) to be specified with the "0b" prefix. The C99 standard does provide a
way to describe floating-point constants with hexadecimal digits and a decimal exponent, however.
Note that the decimal exponent is required, even if it is zero.

1 oat p1 = 0xB.4p0; // Initialize p1 to "11.25"
2 oat p2 = 0xB4p -4; // Initialize p2 to "11.25"

Notice that in general, it is only necessary to write non-zero digits and any digits not shown
can be assumed to be zero without changing the represented value of an unsigned number. As a
result, it is easy to represent the same value with more digits: simply add as many zero digits as
necessary. This process is often called zero-extension. Note that each additional digit increases the
amount of numbers that can be represented. Adding an additional bit to a binary number doubles
the amount of numbers that can be represented, while an additional hexadecimal digit increases
the amount of numbers by a factor of 16.

27 26 25 24 23 22 21 20 2−1 2−2 2−3 2−4 unsigned
0 0 0 0 1 0 1 1 0 1 0 0 = 11.25
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Note that it is possible to have any number of bits in a binary number, not just 8, 16, or
32. SystemC [2], for instance, defines several template classes for handling arbitrary pre-
cision integers and fixed-point numbers (including sc_int<>, sc_uint<>, sc_bigint<>,
sc_ubigint<>, sc_fixed<>, and sc_ufixed<>). These classes can be commonly used
in HLS tools, although they were originally defined for system modeling and not neces-
sarily synthesis. Vivado HLS, for instance, includes similar template classes (ap_int<>,
ap_uint<>, ap_fixed<>, and ap_ufixed<>) that typically work better than the SystemC
template classes, both in simulation and synthesis.

A.1.1 Negative Number
Negative numbers are slightly more complicated than positive numbers, partly because there are
several common ways to do it. One simple way is represent negative numbers with a sign bit,
often called signed-magnitude representation. This representation just includes an additional bit
to the front of the number to indicate whether it is signed or not. One somewhat odd thing about
signed-magnitude representation is that there is more than one way to represent zero. This tends
to make even apparently simple operations, like operator ==(), more complex to implement.

+/- 21 20 signed magnitude
0 1 1 = 3
0 1 0 = 2
0 0 1 = 1
0 0 0 = 0
1 0 0 = -0
1 0 1 = -1
1 1 0 = -2
1 1 1 = -3

Another way to represent negative numbers is with biased representation. This representation
adds a constant offset (usually equal in magnitude to the value of the largest bit) to the value,
which are otherwise treated as positive numbers:

22 21 20 biased
1 1 1 = 3
1 1 0 = 2
1 0 1 = 1
1 0 0 = 0
0 1 1 = -1
0 1 0 = -2
0 0 1 = -3
0 0 0 = -4

However by far the most common technique for implementing negative numbers is known as
two’s complement. In two’s complement representation, the most significant bit represents the
sign of the number (as in signed-magnitude representation), and also whether or not an offset is
applied. One way of thinking about this situation is that the high order bit represents a negative
contribution to the overall number.

-22 21 20 two’s complement
0 1 1 = 3
0 1 0 = 2
0 0 1 = 1
0 0 0 = 0
1 1 1 = -1
1 1 0 = -2
1 0 1 = -3
1 0 0 = -4
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-24 23 22 21 20 two’s complement
0 0 0 1 1 = 3
0 0 0 1 0 = 2
0 0 0 0 1 = 1
0 0 0 0 0 = 0
1 1 1 1 1 = -1
1 1 1 1 0 = -2
1 1 1 0 1 = -3
1 1 1 0 0 = -4

One significant difference between unsigned numbers and two’s complement numbers is that we
need to know exactly how many bits are used to represent the number, since the most significant
bit is treated differently than the remaining bits. Furthermore, when widening a signed two’s
complement number with more bits, the sign bit is replicated to all the new most significant bits.
This process is normally called sign-extension. For the rest of the book, we will generally assume
that all signed numbers are represented in two’s complement unless otherwise mentioned.

A.1.2 Overflow, Underflow, and Rounding
Overfow occurs when a number is larger than the largest number that can be represented in a given
number of bits. Similarly, underflow occurs when a number is smaller than the smallest number
that can be represented. One common way of handling overflow or underflow is to simply drop the
most significant bits of the original number, often called wrapping.

25 24 23 22 21 20 2−1 2−2 2−3 2−4

0 0 1 0 1 1 0 1 0 0 = 11.25
0 1 0 1 1 0 1 0 0 = 11.25

1 0 1 1 0 1 0 0 = 11.25
0 1 1 0 1 0 0 = 3.25

Handling overflow and underflow by wrapping two’s complement numbers can even cause a
positive number to become negative, or a negative number to become positive.

-23 22 21 20 2−1 2−2 2−3 2−4 two’s complement
1 0 1 1 0 1 0 0 = 4.75

-22 21 20 2−1 2−2 2−3 2−4 two’s complement
0 1 1 0 1 0 0 = 3.25

Similarly, when a number cannot be represented precisely in a given number of fractional bits,
it is necessary to apply rounding. Again, there are several common ways to round numbers. The
simplest way is to just drop the extra fractional bits, which tends to result in numbers that are more
negative. This method of rounding is often called rounding down or rounding to negative infinity.
When rounding down to the nearest integer, this corresponds to the foor() function, although it’s
possible to round to other bit positions as well.
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It is also possible to handle rounding in other similar ways which force rounding to a more
positive numbers (called rounding up or rounding to positive infinity and corresponding to the
ceil() function), to smaller absolute values (called rounding to zero and corresponding to the
trunc() function), or to larger absolute values (called rounding away from zero or rounding to
infinity and corresponding to the round() function). None of these operations always minimizes
the error caused by rounding, however.
A better approach is called rounding to nearest even, convergent rounding, or banker’s rounding
and is implemented in the lrint() function. As you might expect, this approach to rounding always
picks the nearest representable number. In addition, If there are two numbers equally distant, then
the even one is always picked. An arbitrary-precision number is even if the last digit is zero. This
approach is the default handling of rounding with IEEE floating point, as it not only minimizes
rounding errors but also ensures that the rounding error tends to cancel out when computing sums
of random numbers.

A.1.3 Binary arithmetic

Binary addition is very similar to decimal addition, simply align the binary points and add digits,
taking care to correctly handle bits carried from one column to the next. Note that the result of
adding or subtracting two N-bit numbers generally takes N+1 bits to represent correctly without
overflow. The added bit is always an additional most significant bit for fractional numbers

23 22 21 20 unsigned
0 1 1 3

+ 0 1 1 3
0 1 1 0 6

23 22 21 20 2−1 unsigned
1 1 1 1 7.5

+ 0 1 1 1 7.5
1 1 1 1 0 15

Note that since the result of subtraction can be negative, the ’extra bit’ becomes the sign-bit
of a two’s complement number.

23 22 21 20 unsigned
0 1 1 3

- 0 1 1 3
0 0 0 0 0

2−4 23 22 21 20 unsigned
0 0 1 1 3

- 1 1 1 1 15
1 0 1 0 0 -12 (2’s complement)
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Multiplication for binary numbers also works similarly to familiar decimal multiplication. In
general, multiplying 2 N-bit numbers results in a 2*N bit result.

26 25 24 23 22 21 20 two’s complement
1 0 0 1 = 9

* 1 0 0 1 = 9
1 0 0 1 = 9

0 0 0 0 = 0
0 0 0 0 = 0

+ 1 0 0 1 = 72
1 0 1 0 0 0 1 = 81

Operations on signed numbers are somewhat more complex because of the sign-bit handling and
won’t be covered in detail. However, the observations regarding the width of the result still applies:
adding or subtracting two N-bit signed numbers results in an N+1-bit result, and Multiplying two
N-bit signed numbers results in an 2*N-bit result.

A.1.4 Representing Arbitrary Precision Integers in C and C++

According to the C99 language standard, the precision of many standard types, such as int and
long are implementation defined. Although many programs can be written with these types in a
way that does not have implementation-defined behavior, many cannot. One small improvement is
the inttypes.h header in C99, which defines the types int8 t,int16 t,int32 t, and int64 t representing
signed numbers of a given width and the corresponding types uint8_t,uint16_t,uint32_t, and
uint64_t representing unsigned numbers. Although these types are defined to have exactly the
given bit-widths, they can still be somewhat awkward to use. For instance, even relatively simple
programs like the code below can have unexpected behavior.

1 #include "inttypes.h"
2 uint16_t a =0 x4000;
3 uint16_t b = 0x4000;
4 // Danger! p depends on sizeof(int)
5 uint32_t p = a*b;

Although the values of a and b can be represented in 16 bits and their product (0x10000000)
can be represented exactly in 32 bits, the behavior of this code by the conversion rules in C99 is
to first convert a and b to type int, compute an integer result, and then to extend the result to
32 bits. Although uncommon, it is correct for a C99 compiler to only have integers with only 16
bits of precision. Furthermore, the C99 standard only defines 4 bit-widths for integer numbers,
while FPGA systems often use a wide variety of bit-widths for arithmetic. Also, printing these
data-types using printf() is awkward, requiring the use of additional macros to write portable code.
The situation is even worse if we consider a fixed-point arithmetic example. In the code below,
we consider a and b to be fixed point numbers, and perform normalization correctly to generate a
result in the same format.

1 #include "inttypes.h"
2 // 4.0 represented with 12 fractional bits
3 uint16_t a =0 x4000;
4 // 4.0 represented with 12 fractional bits.
5 uint16_t b = 0x4000;
6 // Danger! p depends on sizeof(int)
7 uint32_t p = (a*b) >> 12;

The correct code in both cases requires casting the input variables to the width of the result before
multiplying.

1 #include "inttypes.h"
2 uint16 t a = 0x4000;
3 uint16 t b = 0x4000;
4 // p is assigned to 0x10000000
5 uint32_t p = (uint32 t) a*( uint32 t) b;
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1 #include "inttypes.h"
2 // 4.0 represented with 12 fractional bits.
3 uint16_t a =0 x4000;
4 // 4.0 represented with 12 fractional bits.
5 uint16_t b = 0x4000;
6 // p assigned to 16.0 represented with 12 fractional bits
7 uint32_t p = ( (uint32 t) a*( uint32 t) b ) >> 12;

When using integers to represent fixed-point numbers, it is very important to document
the fixed point format used, so that normalization can be performed correctly after multi-
plication. Usually this is described using "Q" formats that give the number of fractional
bits. For instance, "Q15" format uses 15 fractional bits and usually applies to 16 bit signed
variables. Such a variable has values in the interval [-1; 1). Similarly "Q31" format uses 31
fractional bits.

For these reasons, it’s usually preferable to use C++ and the Vivado HLS template classes
ap_int<>, ap_uint<>, ap_fixed<>, and ap_ufixed<> to represent arbitrary precision numbers.
The ap_int<> and ap_uint<> template classes require a single integer template parameter that
defines their width. Arithmetic functions generally produce a result that is wide enough to contain
a correct result, following the rules in section A.1.3. Only if the result is assigned to a narrower
bit-width does overflow or underflow occur.

1 #include "ap_int.h"
2 ap_uint <15> a =0x4000;
3 ap_uint <15> b = 0x4000;
4 // p is assigned to 0x10000000.
5 ap_uint <30> p = a*b;

The ap_fixed<> and ap_ufixed<> template classes are similar, except that they require two
integer template arguments that define the overall width (the total number of bits) and the number
of integer bits.

1 #include "ap_fixed.h"
2 // 4.0 represented with 12 fractional bits.
3 ap u_fixed <15,12> a = 4.0;
4 // 4.0 represented with 12 fractional bits.
5 ap_ufixed <15,12> b = 4.0;
6 // p is assigned to 16.0 represented with 12 fractional bits
7 ap_ufixed <18,12> p = ab;

A.1.5 Floating Point
Vivado HLS can also synthesize floating point calculations. Floating point numbers provide a large
amount of precision, but this comes at a cost; it requires significant amount of computation which in
turn translates to a large amount of resource usage and many cycles of latency. Thus, floating point
numbers should be avoided unless absolutely necessary as dictated by the accuracy requirements
application. In fact, the primary goal of this chapter is to allow the reader to understand how
to effectively move from floating point to fixed point representations. Unfortunately, this is often
a non-trivial task and there are not many good standard methods to automatically perform this
translation. This is partially due to the fact that moving to fixed point will reduce the accuracy
of the application and this trade-off is best left to the designer.
The standard technique for high-level synthesis starts with a floating point representation during
the initial development of the application. This allows the designer to focus on getting a function-
ally correct implementation. Once that is achieved, then she can move optimizing the number
representation in order to reduce the resource usage and/or increase the performance.
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A.2 Fast Fourier Transform

The FFT brings about a reduction in complexity by taking advantage of symmetries in the DFT
calculation. To better understand how to do this, let us look at DFT with a small number of points,
starting with the 2 point DFT. Recall that the DFT performs a matrix vector multiplication, i.e.,
G[] = S[][] Â· g[], where g[] is the input data, G[] is the frequency domain output data, and S[][]
are the DFT coefficients. For a 2 point DFT, the values of S are:

S =

(
W 00

2 W 01
2

W 10
2 W 11

2

)
Here we use the notation W = e[U+0088][U+0092]j2π . The superscript on W denotes values that are
added to the numerator and the subscript on the W indicates those values added in the denominator
of the complex exponential. For example,W 23

4 = e
−2jπ·2·3

4 .
Writing the equation in matrix form:[

G[0]
G[1]

]
=

[
W 00

2 W 01
2

W 10
2 W 11

2

]
·
[
g[0]
g[1]

]
Expanding the two equation for a 2 point DFT gives:{

G[0] = g[0] · e
−2jπ·0·0

2 + g[1] · e
−2jπ·0·1

2 = g[0] + g[1]

G[1] = g[0] · e
−2jπ·1·0

2 + g[1] · e
−2jπ·1·1

2 = g[0]− g[1]

(a) data ow graph for a 2 point DFT/FFT.
(b) data flow graph for a 2 point DFT/FFT viewed
as a butterfly structure.

Figure A.1: DFT/FFT fttb

Figure A.1 provides two different representations for this computation. Part A.1a is the data
flow graph for the 2 point DFT. It is the familiar view that we have used to represent computation
throughout this book. Part A.1b shows a butterfly structure for the same computation. This is a
typically structure used in digital signal processing, in particular, to represent the computations
in an FFT.
The butterfly structure is a more compact representation that is useful to represent large data flow
graphs. When two lines come together this indicates an addition operation. Any label on the line
itself indicates a multiplication of that label by the value on that line.
The butterfly structure is a more compact representation that is useful to represent large data flow
graphs. When two lines come together this indicates an addition operation. Any label on the line
itself indicates a multiplication of that label by the value on that line. There are two labels in this
figure. The sign − on the bottom horizontal line indicates that this value should be negated.
This followed by the addition denoted by the two lines intersecting is the same as subtraction. The
second label is W 0

2 . While this is a multiplication is unnecessary (since W 0
2 = 1 this means it is

multiplying by the value 1), we show it here since it is a common structure that appears in higher
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point FFTs.

Now let us consider a slightly larger DFT - a 4 point DFT, i.e., one that has 4 inputs, 4 outputs,
and a 4x4 S matrix. The values of S for a 4 point DFT are:

S =


W 00

4 W 01
4 W 02

4 W 03
4

W 10
4 W 11

4 W 12
4 W 13

4

W 20
4 W 21

4 W 22
4 W 23

4

W 30
4 W 31

4 W 32
4 W 33

4


And the DFT equation to compute the frequency output terms are:


G[0]
G[1]
G[2]
G[3]

 =


W 00

4 W 01
4 W 02

4 W 03
4

W 10
4 W 11

4 W 12
4 W 13

4

W 20
4 W 21

4 W 22
4 W 23

4

W 30
4 W 31

4 W 32
4 W 33

4

 ·

g[0]
g[1]
g[2]
g[3]


By writing out the equations for each of the frequency domain values in G[] one-by-one, reduce

them (it is found out that e
−j18π

4 is reduced to e
−j10π

4 since these are equivalent based upon a 2π
rotation ) and finally reordering the result is:

G[0] = (g[0] + g[2]) + e
−j2π0

4 (g[1] + g[3])

G[1] = (g[0]− g[2]) + e
−j2π1

4 (g[1]− g[3])

G[2] = (g[0] + g[2]) + e
−j2π2

4 (g[1] + g[3])

G[3] = (g[0]− g[2]) + e
−j2π3

4 (g[1]− g[3])

Several different symmetries are starting to emerge. First, the input data can be partitioned
into even and odd elements, i.e., similar operations are done on the elements g[0] and g[2], and the
same is true for the odd elements g[1] and g[3]. Furthermore we can see that there are addition
and subtraction symmetries on these even and odd elements. During the calculations of the output
frequencies G[0] and G[2], the even and odd elements are summed together. The even and odd
input elements are subtracted when calculating the frequencies G[1] and G[3]. Finally, the odd
elements in every frequency term are multiplied by a constant complex exponential W i

4 where i
denotes the index for the frequency output, i.e., G[i].

Looking at the terms in the parentheses, we see that they are 2 point FFT. For example,
consider the terms corresponding to the even input values g[0] and g[2]. If we perform a 2 point
FFT on these even terms, the lower frequency (DC value) is g[0] + g[2] , and the higher frequency
is calculated as g[0]− [2]( The same is true for the odd input values g[1] and g[3]).
We perform one more transformation on these equations.

G[0] = (g[0] + g[2]) + e
−j2π0

4 (g[1] + g[3])

G[1] = (g[0]− g[2]) + e
−j2π1

4 (g[1]− g[3])

G[2] = (g[0] + g[2]) + e
−j2π0

4 (g[1] + g[3])

G[3] = (g[0]− g[2]) + e
−j2π1

4 (g[1]− g[3])

Figure A.2 shows the butter y diagram for the four point FFT. We can see that the first stage
is two 2 point FFT operations performed on the even (top butterfly) and odd (bottom butterfly)
input values. The output of the odd 2 point FFTs are multiplied by the appropriate twiddle factor.
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Figure A.2: A four point FFT divided into two stages.

We are seeing the beginning of trend that allows the a reduction in complexity from O(n2)
operations for the DFT to O(nlogn operations for the FFT. The key idea is building the compu-
tation through recursion. The 4 point FFT uses two 2 point FFTs. This extends to larger FFT
sizes. For example, an 8 point FFT uses two 4 point FFTs, which in turn each use two 2 point
FFTs (for a total of four 2 point FFTs). An 16 point FFT uses two 8 point FFTs, and so on.

Now let us formally derive the relationship, which provides a general way to describe the
recursive structure of the FFT. Assume that we are calculating an N point FFT. The formula for
calculating the frequency domain values G[] given the input values g[] is:

G[k] =

N−1∑
n=0

g[n] · e
−2jπkn

N for k = 0, ..., N

We can divide this equation into two parts, one that sums the even components and one that sums
the odd components.

G[k] =

N/2−1∑
n=0

g[2n] · e
−2jπkn
N/2 + e

−2jπk
N

N/2−1∑
n=0

g[2n+ 1] · e
−2jπkn
N/2

Finally we can simplify this to:

G[k] = Ak +W k
NBk

where Ak and Bk are the first and second summations, respectively. And recall thatW = e−2jπ

This completely describes an N point FFT by separating even and odd terms into two summations.
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Figure A.3: Building an N point FFT from two N=2 point FFTs. The upper N=2 point FFT is
performed on the even inputs; the lower N=2 FFT uses the odd inputs

Figure A.3 shows an N point FFT derived from two N/2 point FFTs. Ak corresponds to the
top N/2 FFT, and Bk is the bottom N/2 FFT. The output terms G[0] through G[N/2 − 1] are
multiplied by W 0

N while the output terms G[N/2] through G[N − 1] are multiplied by −W 0
N . Note

that the inputs g[] are divided into even and odd elements feeding into the top and bottom n/2
point FFTs, respectively.
We can use the general formula for creating the FFT that was just derived to recursively create
the N/2 point FFT. That is, each of the N/2 point FFTs can be implemented using two N/4 point
FFTs. And each N/4 point FFT uses two N/8 point FFTs, and so on until we reach the base case,
a 2 point FFT.

Figure A.4: 8 point FFT built recursively.
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Figure A.4 shows an 8 point FFT and highlights this recursive structure. The boxes with the
dotted lines indicate different sizes of FFT. The outermost box indicates an 8 point FFT. This is
composed by two 4 point FFTs. Each of these 4 point FFTs have two 2 point FFTs for a total of
four 2 point FFTs.
Also note that the inputs must be reordered before they are feed into the 8 point FFT. This is due
to the fact that the different N/2 point FFTs take even and odd inputs. The upper four inputs
correspond to even inputs and the lower four inputs have odd indices. However, they are reordered
twice. If we separate the even and odd inputs once we have the even set g[0]; g[2]; g[4]; g[6] and the
odd set g[1]; g[3]; g[5]; g[7]. Now let us reorder the even set once again. In the even set g[0] and
g[4] are the even elements, and g[2] and g[6] are the odd elements. Thus reordering it results in
the set g[0]; g[4]; g[2]; g[6]. The same can be done for the initial odd set yielding the reordered set
g[1]; g[5]; g[3]; g[7].
The final reordering is done by swapping values whose indices are in bit reversed order. Table A.1
shows the indices and their three bit binary values. The table shows the eight indices for the 8
point FFT, and the corresponding binary value for each of those indices in the second column.The
third column is the bit reversed binary value of the second column. And the last column is the
decimal number corresponding the reversed binary number.

index Binary Reversed Binary Reversed Index

1 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Table A.1: Reverse Bit

Looking at the first row, the initial index 0, has a binary value of 000, which when reversed
remains 000. Thus this index does not need to be swapped. Looking at Figure A.4 we see that this
is true. g[0] remains in the same location. In the second row, the index 1 has a binary value 001.
When reversed this is 100 or 4. Thus, the data that initially started at index 1, i.e., g[1] should
end up in the fourth location. And looking at index 4, we see the bit reversed value is 1. Thus g[1]
and g[4] are swapped.
This bit reversal process works regardless of the input size of the FFT, assuming that the FFT
is a power of two. FFT are commonly a power of two since this allows them to be recursively
implemented.
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A.3 Finite Impulse Response (FIR) filter

The output signal of a filter given an impulse input signal is its impulse response. The impulse
response of a linear, time invariant filter contains the complete information about the filter. As
the name implies, the impulse response of an FIR filter (a restricted type of linear, time invariant
filter) is finite, i.e., it is always zero far away from zero. Given the impulse response of an FIR filter,
we can compute the output signal for any input signal through the process of convolution. This
process combines samples of the impulse response (also called coefficients or taps) with samples of
the input signal to compute samples of the output signal. The output of filter can be computed
in other ways (for instance, in the frequency domain), but for the purposes of this chapter we will
focus on computing in the time domain. The convolution of an N-tap FIR filter with coefficients
h[] with an input signal x[] is described by the general difference equation:

y[i] =

N−1∑
j=0

h[j] · x[i− j]

To compute a single value of the output of an N-tap filter requires N multiplies and N-1
additions.

Note that in general, filter coefficients can be crafted to create many different kinds of filters:
low pass, high pass, band pass, etc.. In general, a larger value of number of taps provides more
degrees of freedom when designing a filter, generally resulting in filters with better characteristics.
There is substantial amount of literature devoted to generating filter coefficients with particular
characteristics for a given application. When implementing a filter, the actual values of these
coefficients are largely irrelevant and we can ignore how the coefficients themselves were arrived
at. However, as we will see below with the moving average filter, the structure of the filter, or
the particular coefficients can have a large impact on the number of operations that need to be
performed. For instance, symmetric filters have multiple taps with exactly the same value which
can be grouped to reduce the number of multiplications. In other cases, it is possible to convert
the multiplication by a known constant filter coefficient into shift and add operations [34]. In that
case, the values of the coefficients can drastically change the performance and area of the filter
implementation [52].

Moving Average Filter

Moving average filters are a simple form of lowpass FIR filter where all the coefficients are identical
and sum to one. For instance in the case of the three point moving filter, the coefficientsare
h = [ 1

3 ,
1
3 ,

1
3 ]. It is also called a box car filter due to the shape of its convolution kernel.

Alternatively, you can think of a moving average filter as taking the average of several adjacent
samples of the input signal and averaging them together. We can see that this equivalence by
substituting 1=N for h[j] in the convolution equation above and rearranging to arrive at the familiar
equation for an average of N elements:

y[i] =
1

N

N−1∑
j=0

x[i− j]

Each sample in the output signal can be computer by the above equation using N-1 additions
and one final multiplication by 1/N. Even the final multiplication can often be regrouped and
merged with other operations. As a result, moving average filters are simpler to compute than a
general FIR filter.

This filter is causal, meaning that the output is a function of no future values of the input. It
is possible and common to change this, for example, so that the average is centered on the current
sample, 1. While fundamentally causality is an important property for system analysis, it is less
important for a hardware implementation as a finite non-causal filter can be made causal with
buffering and/or re-indexing of the data.
Moving average filters can be used to smooth out a signal, for example to remove random (mostly
high frequency) noise. As the number of taps N gets larger, we average over a larger number of

1i.e., y[12] = 1
13

(x[11] + x[12] + x[13])
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samples, and we correspondingly must perform more computations. For a moving average filter,
larger values of N correspond to reducing the bandwidth of the output signal. In essence, it is acting
like a low pass filter (though not a very optimal one). Intuitively, this should make sense. As we
average over larger and larger number of samples, we are eliminating higher frequency variations
in the input signal. That is, ’smoothing’ is equivalent to reducing higher frequencies. The moving
average filter is optimal for reducing white noise while keeping the sharpest step response, i.e., it
creates the lowest noise for a given edge sharpness.
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Appendix B

High-Level Synthesis (HLS)

With a high-level language like SystemC, engineers can specify an accelerator while abstract-
ing away all low-level logic and circuit details to focus instead on the relationships between
the data structures and computational tasks that characterize the given algorithms. The
benefits are higher productivity, less chances of errors, and more options for performance
and power optimizations. - Luca Carloni
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The traditional way of programming FPGAs has been HDLs, mostly leaving the task to hard-
ware engineers.
With the development of high level synthesis tools from C and C++, as well as the increasing
effort to support OpenCL from both Altera and Xilinx, the world of FPGAs is becoming more
accessible to users with software backgrounds. Not unlike programming GPUs, however, the road
from writing a functionally correct program to writing a performant program is long, and the tools
even less mature. This section will take a closer look at the Vivado HLS tool used to produce all
kernels presented throughout this work, highlighting important programming techniques and the
hardware they produce. The goal is to provide some general insight in the mapping between the
high level C++ program that is fed to the tool and the resulting FPGA hardware.

B.1 Xilinx Vivado HLS Design Flow
The Xilinx Vivado HLS tool synthesizes a C function into an IP block that you can integrate into
a hardware system. It is tightly integrated with the rest of the Xilinx design tools and provides
comprehensive language support and features for creating the optimal implementation for your C
algorithm. Following is the Vivado HLS design flow:

1. Compile, execute (simulate), and debug the C algorithm.

In high-level synthesis, running the compiled C program is referred to as C simulation.
Executing the C algorithm simulates the function to validate that the algorithm is
functionally correct.

2. Synthesize the C algorithm into an RTL implementation, optionally using user optimization
directives.

3. Generate comprehensive reports and analyze the design.

4. Verify the RTL implementation using a pushbutton flow.

5. Package the RTL implementation into a selection of IP formats.

Graphically, the Xilinx HLS flow could be summarized as in Figure B.1.

Figure B.1: Xilinx HLS design Flow

B.1.1 Test Bench

When using the Vivado HLS design flow, it is time consuming to synthesize a functionally incorrect
C function and then analyze the implementation details to determine why the function does not
perform as expected. To improve productivity, use a test bench to validate that the C function is
functionally correct prior to synthesis.
The C test bench includes the function main() and any sub-functions that are not in the hierarchy
under the top-level function for synthesis. These functions verify that the top-level function for
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synthesis is functionally correct by providing stimuli to the function for synthesis and by consuming
its output.
Vivado HLS uses the test bench to compile and execute the C simulation.

B.1.2 Synthesis, Optimization, and Analysis

Vivado HLS is project based. Each project holds one set of C code and can contain multiple
solutions. Each solution can have different constraints and optimization directives. You can
analyze and compare the results from each solution in the Vivado HLS GUI.

Following are the synthesis, optimization, and analysis steps in the Vivado HLS design process:

1. Create a project with an initial solution.

2. Verify the C simulation executes without error.

3. Run synthesis to obtain a set of results.

4. Analyze the results.

After analyzing the results, you can create a new solution for the project with different constraints
and optimization directives and synthesize the new solution. You can repeat this process until the
design has the desired performance characteristics. Using multiple solutions allows you to proceed
with development while still retaining the previous results.

B.1.3 Optimization

Optimization teqniques are discussed in section B.2

B.1.4 Analysis

When synthesis completes, Vivado HLS automatically creates synthesis reports to help you under-
stand the performance of the implementation. In the Vivado HLS GUI, the Analysis Perspective
includes the Performance tab, which allows you to interactively analyze the results in detail. The
following figure shows the Performance tab for the fft algorithm developed in Listing 3.21 .

Figure B.2: Vivado HLS Analysis Example
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B.1.5 RTL Verification

If you added a C test bench to the project, you can use it to verify that the RTL is functionally
identical to the original C. The C test bench verifies the output from the top-level function for
synthesis and returns zero to the top-level function main() if the RTL is functionally identical.
Vivado HLS uses this return value for both C simulation and C/RTL co-simulation to determine
if the results are correct. If the C test bench returns a non-zero value, Vivado HLS reports that
the simulation failed.

B.2 Optimization teqniques

When describing synchronous circuits, one often will use the number of clock cycles as a measure
of performance. However, this is not appropriate when comparing designs that have different clock
rates, which is typically the case in HLS. For example, the clock frequency is specified as an input
constraint to the Vivado HLS, and it is feasible to generate different architectures for the same
exact code by simply changing the target clock frequency. Thus, it is most appropriate to use
seconds, which allows an apples-to-apples comparison between any HLS architecture. The Vivado
HLS tool reports the number of cycles and the clock frequency. These can be used to calculate the
exact amount of time that some piece of code requires to compute. We use the term task to mean
a fundamental atomic unit of behavior; this corresponds to a function invocation in Vivado HLS.
The task latency is the time between when a task starts and when it finishes. The task interval
is the time between when one task starts and the next starts or the difference between the start
times of two consecutive tasks.

B.2.1 Pipelining

At the heart of the spatial programming paradigm lies pipelining, and building performant HLS
programs revolves around expressing the target algorithm in a way that achieves a perfect pipeline
(with an initiation interval of 1).

In addition to maximizing the number of concurrent computations done on the chip, one
other critical condition must be fulfilled to achieve performant FPGA programs: each
computational element must work at its highest possible throughput. This is achieved
by pipelining, and any high performance FPGA implementation must implement perfect
pipelining in the computational elements to ensure that resources are kept busy at all times
by feeding them new input every cycle. This section will first cover the two principal prop-
erties of pipelining, latency and initiation interval, then go through the levels of pipelining
that must be treated in a pipelined program.
Latency and initiation interval A pipelined program will have a number of stages that
data will flow through before a result is produced. Latency is the number of cycles between
an element entering the first stage of the pipeline, and that same element exiting the last
stage of the pipeline. The latency is at the same time a measure for how long it takes for
the pipeline to saturate and drain, as maximum performance will not be reached before
the pipeline is fully saturated, and will degrade as the pipeline is draining. The number
of cycles between the pipeline being able to accept new elements is called the initiation
interval. In order to achieve full utilization of the compute units, the initiation interval of
the pipeline must be 1: it should consume one input (and produce one output) every cycle.
Achieving a perfect pipeline means achieving an initiation interval of 1 in all computational
stages of the pipeline and being able to feed these pipelines every cycle.

In Vivado HLS pipelines are implemented using the PIPELINE pragma, which takes as input
the desired initiation interval (the parameter is optional, and if unspecified defaults to 1), and
attempts to transform the scope in which it is issued to hardware that can throughput one result
every cycle when fully saturated. Listing 2 demonstrates the effect of the pipeline and unroll (see
next section) pragmas by illustrating the resulting hardware from an input code.
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Pipelining comes at three different levels, and all three must be treated in order to achieve
perfectly pipelined computation.

1. Modules: these can be thought of as higher level functions in software engineering,
and are the highest level of modularity in an FPGA implementation. Each module
has an input and an output interface, and some internal logic to transform the input
data to an output. In order to have a perfectly pipelined implementation, data passed
from one module to the next must always be ready when it is needed.
In most cases this implies producing and consuming one data element every cycle,
although this can in principle be violated if modules performing the computations
have internal reuse of data, thus maintaining full utilization of the computational
elements.

2. Dataflow: The final and strongest level of pipelining is the one across all modules
in the implementation, as it requires all modules to already be internally pipelined.
We refer to this as dataflow, and can be implemented in the Xilinx toolflow using
a dataflow optimization pragma (see Section 2.4.7). Functions will act as separate
modules connected by either ping pong buffers (requiring the programmer to guar-
antee that the producer will never push a new element before the previous element
was consumed) or FIFO streams. The programmer typically wants to ensure that the
pipeline across all modules in the dataflow is perfect, but applications with internal
reuse in individual modules can still achieve full computational efficiency as long as
the compute is fed.

B.2.2 Unrolling
The pipeline pragma produces the first spatial dimension: the depth; and unrolling generates the
second: the width.
Whenever a nested loop appears in a loop that is being pipelined, the HLS tool will attempt to
unroll all iterations of the inner loop in order to execute every stage in parallel. This can only
be done if there are no inter-iteration dependencies with a latency longer than the depth of the
pipeline. The UNROLL pragma used in Listing B.1 issues a complete unroll (every iteration will be
unrolled), but is optional, as pipelining the function will automatically unroll the loop to achieve
an initiation interval of 1.

1 void Calculate_median( const float a[4],
2 const float b[4],
3 float c[4])
4 {
5 #pragma HLS PIPELINE II=1
6 Unroll: for (int i = 0; i < 4; ++i) {
7 #pragma HLS UNROLL complete
8 c[i] = 0.5 * (a[i] + b[i]);
9 }

10 }

Listing B.1: unroll example

Unrolls such as this one control the width of the data path: in the example shown in the listing
B.1, the data path is 4x4 Byte = 16 Byte wide, as four floats are read in, computed and written
out every cycle. This is somewhat analogous to SIMD units on fixed hardware, although there is
technically no restriction on performing only a single ïnstruction across the entire data path.

B.2.3 Streams
When designing pipelined modules, it is useful to abstract communication between modules as
streams, only allowing FIFO semantics when reading in and writing out data. Restricting to FIFO
behavior requires fewer control paths than random access in hardware, as only a full/empty flag
needs to be asserted when data is written/read. An example using high level synthesis is given in
Listing B.2, using the Xilinx Vivado HLS primitive hls::stream, which offers FIFO semantics.
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1 void increment(hls::stream <float > &input , hls::stream <float > &output) {
2 for (int i = 0; i < k; ++i) {
3 #pragma HLS PIPELINE II=1
4 const float eval = input.read() + 1;
5 output.write(eval);
6 }
7 }

Listing B.2: stream pragma example

Vivado HLS allows specifying the depth of stream variables using the STREAM pragma, which
also makes them useful as buffer primitives. The depth is finite and must be decided at compile-
time, as it maps directly to registers or BRAM on the FPGA. Buffers like these can be useful to
implement cyclic behavior, such as inner dimensions in a multi dimensional iteration space (this
will be useful when implementing stencils). If no pragma is given, the tool is free to implement
the stream as a ping pong buffer instead, never allowing more than a single element in flight. An
example of using a stream primitive as a buffer is included in Listing B.3.

1 void increment(hls::stream <float > &input , hls::stream <float > &output) {
2 // define the variable stream
3 static hls::stream <float > buffer;
4 #pragma HLS STREAM variable=buffer depth=kPeriod
5 #pragma HLS RESOURCE variable=buffer core=FIFO_BRAM
6

7 for (int i = 0; i < k; ++i) {
8 #pragma HLS PIPELINE II=1
9 buffer.write(input.read() + 1);

10 }
11 ... // perform some operation on buffer
12 for(int i=0;i<k; ++i)
13 output.write(buffer.read() );
14 }

Listing B.3: stream pragma example

B.2.4 Interfaces

Just like passing larger amounts of variables can be done using either arrays or streams as described
above(B.2.3), the entry ports to kernels written in HLS can be implemented as different types of
interfaces. Xilinx offers three different interfaces in their Advanced eXtensible Interface (AXI)
standard:

• AXI Lite: low throughput interface for control flow, used for narrow types that are only
read or written once.

• AXI Master: a random access interface to addressed memory, using bursts to saturate the
bandwidth to e.g. DDR memory. It offers ports for specifying address, burst size and number
of bursts to retrieve.

• AXI Stream: follows FIFO semantics, eliminating the need to issue requests, as data will
simply be streamed at the highest possible rate by statically scheduling very long bursts from
memory.

AXI Stream promises the best memory performance, as the sequential semantics allow opti-
mally scheduling the requests to memory to allow maximum bandwidth and prevent bubbles, but
sacrifice random access, requiring the given kernel to follow streaming semantics.
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Although having an initiation interval of 1 cycle throughout the entire pipeline is what
allows all computational units to stay saturated, this assumes that data can be fed to the
beginning of the pipeline every cycle. If no data arrives in a cycle a bubble occurs, which is a
signal that will propagate throughout the entire pipeline without producing a useful result,
wasting operations equivalent to the latency of the pipeline (as every stage of the pipeline
will correspond to a non-operation when the signal passes it). Bubbles seriously degrade
overall performance, and having a bubble free program is essential to achieve performance
with deep pipelines.
A common source of bubbles can be feeding the pipeline from random access memory or
by choosing a streaming interface.

In Vivado HLS interfaces are specified at the top level function (the entry to the kernel) using
the INTERFACE pragma. An example of this can be found in Listing B.4 for AXI Stream interfaces
using the hls::stream primitive.

1 void top(hls::stream <float > &in, hls::stream <float > &out) {
2 #pragma HLS INTERFACE axis port=in
3 #pragma HLS INTERFACE axis port=out
4

5 static hls::stream <float > var [2];
6 DoSomething <0>(in, var [0]);
7 DoSomething <1>(var[0], var [1]);
8 DoSomething <2>(var[1], out);
9 }

Listing B.4: AXI interface example

B.2.5 Array partitioning

When declaring arrays, the access pattern that must be supported by the contained data can be
declared using the ARRAY_PARTITION pragma. For treating multiple elements in parallel in
an SIMD fashion, every element in an array must be accessed in a single cycle, which can be
specified with the complete option, shown in Listing B.5. Conversely, arrays that are only accessed
one element at a time can be implemented as FIFOs and/or in BRAM. The array partitioning
pragma is optional, and often the tool can induce the correct partioning from the access pattern
in the code, but for codes where the array is accessed from multiple locations it can be desirable
to declare it explicitly. There is no direct mapping from the array partitioning to hardware, as the
tool can choose implement the array in a variety of ways or optimize it out entirely, so it should
merely considered a hint for situations where the most appropriate partitioning cannot easily be
extracted by the tool.

1 void Entry( hls::stream <float > &aStream ,
2 hls::stream <float > &bStream ,
3 hls::stream <float > &cStream ,
4 int n) {
5

6 #pragma HLS INTERFACE axis port=aStream
7 #pragma HLS INTERFACE axis port=bStream
8 #pragma HLS INTERFACE axis port=cStream
9

10 Main: for (int i = 0; i < n; ++i) {
11 #pragma HLS PIPELINE II=1
12 float aArray [4], bArray [4], cArray [4];
13

14 #pragma HLS ARRAY_PARTITION variable=aArray complete
15 #pragma HLS ARRAY_PARTITION variable=bArray complete
16 #pragma HLS ARRAY_PARTITION variable=cArray complete
17

18 aStream.read() >> aArray;
19 bStream.read() >> bArray;
20 DoSomething(aArray , bArray , cArray); // should insert pipeline and unroll

pragma
21 cStream.write(Burst(cArray));
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22 }
23 }

Listing B.5: Array Partitioning pragma example

B.2.6 Dataflow
As described in Section B.2.1, dataflow is a form of pipelining performed between different mod-
ules in a design. This is achieved by issuing the DATAFLOW pragma in Vivado HLS, which will
attempt to instantiate all functions and loops in the scope in which it is called as process functions,
which are individual modules connected by ping pong buffers or FIFOs. These connections are
explicitly instantiated by the programmer as stream primitives, and must follow the semantics that
each stream object is only read from a single process function and written to from a single process
function.
An example of applying the dataflow optimization in Vivado HLS is included in Listing B.6 and
Listing B.7, demonstrating two different approaches to handling the iteration over elements passed
between the dataflow stages. The first is using large loops that communicate using stream primi-
tives( Listing B.6). This approach is problematic for testing the behavior by simulation in C++,
because the semantics of the hardware do not follow C
C++ semantics if there is feedback involved, as it will finish all iterations of one loop before pro-
ceeding to the next rather than computing them concurrently. Instead dataflow functions can be
implemented as in Listing B.7, relying on the function being called once per iteration. This will
generate similar hardware to the loop approach, while staying semantically equivalent to the C++
code, as it instead relies on static variables to maintain state. Apart from their C/C++ semantics,
static variables have the additional property when used in Vivado HLS that they always map to
hardware resources, and thus cannot be optimized away by the compiler.

1 void DataflowLoops(hls::stream <float > &in, hls::stream <float > &out , int n) {
2 #pragma HLS INTERFACE axis port=in
3 #pragma HLS INTERFACE axis port=out
4

5 #pragma HLS DATAFLOW // start of the dataflow region.
6 hls::stream <float > var_exch [2];
7

8 ComputeFirst: for (int i = 0; i < n; ++i) {
9 #pragma HLS PIPELINE II=1

10 DoSomething(in, var_exch [0]);
11 }
12

13 ComputeSecond: for (int i = 0; i < n; ++i) {
14 #pragma HLS PIPELINE II=1
15 DoSomething(var_exch [0], var_exch [1]);
16 }
17

18 ComputeThird: for (int i = 0; i < n; ++i) {
19 #pragma HLS PIPELINE II=1
20 DoSomething(var_exch [1], out);
21 }
22 }

Listing B.6: Dataflow example 1 - Stream interface-

1 void DataflowStatic(hls::stream <float > &in , hls::stream <float > &out) {
2 #pragma HLS INTERFACE axis port=in
3 #pragma HLS INTERFACE axis port=out
4

5 #pragma HLS DATAFLOW // start of the dataflow region.
6 static hls::stream <float > var_exch [2];
7

8 DoSomething(in, var_exch [0]);
9 DoSomething(var_exch [0], var_exch [1]);

10 DoSomething(var_exch [1], out);
11 }

Listing B.7: Dataflow example 2 -Functions-
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Since the dataflow optimization only allows writing to a given connecting stream from a single
dataflow function, feedback in the flow must be implemented with a demultiplexing function that
chooses an input but writing to the same output, as shown in Listing B.8.

1 void feedback(hls::stream <float > &input , hls::stream <float > &feedback ,
2 hls::stream <float > &output) {
3

4 #pragma HLS PIPELINE II=1
5

6 if (!input.empty()) {
7 output.write(input.read());
8 } else if (! feedback.empty()) {
9 output.write(feedback.read());

10 }
11 }

Listing B.8: Dataflow example -feedback case-

Implementing writing to the feedback loop is conversely done by multiplexing the incoming
data to either the feedback loop or the output. This function has the responsibility of stopping
the feedback after the desired amount of iterations. An example is shown in Listing B.9. This
code also demonstrates the RESET pragma, which instructs the tool to wire a reset signal to the
specified variable, causing it to return to its default state if a reset flag is sent to the encapsulating
kernel.

1

2 void MuxOutput( hls::stream <Burst > &input , hls::stream <Burst > &feedback ,
3 hls::stream <Burst > &output , const unsigned feedbackIterations) {
4 #pragma HLS PIPELINE II=1
5

6 static unsigned i = 0;
7 #pragma HLS RESET variable=i
8

9 if (!input.empty()) {
10 Burst read = input.read();
11 if (i < feedbackIterations) {
12 feedback.write(read);
13 } else {
14 output.write(read);
15 }
16 ++i;
17 }
18 }

Listing B.9: Dataflow example -feedback loop-

It should be noted that implementations using feedback of data as shown in Listing B.8 and
Listing ?? have caused issues for large resource usage, causing the design to hang. This method
should therefore be used with caution, as these issues have not yet been resolved.

B.2.7 Specifying resources
For many operations the desired functionality can be implemented in multiple ways using the
available resources on the FPGA fabric. The tool will attempt to determine the most appropriate
implementation for each case. Sometimes the programmer might wish to assign a particular IP
core, and to this end the RESOURCE pragma is available.

In addition to mapping directly from source to logic, Xilinx offers a number of intellectual
property cores (IP cores), that are composite software-defined components performing more
elaborate tasks. When working in Vivado, these are available as configurable blocks that
can be added by the user to their design, but are also automatically inserted by the tool
when synthesizing implementations in Vivado HLS.

Two cases already encountered in this work are choosing square root cores and Viterbi Decoder
cores. Since the choice of implementation affects which resources and how many of these resources
are consumed, it can affect to total number of operations that can be instantiated on the chip .
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For storage, when smaller amounts of memory are required and only have to be stored for a
small amount of cycles, the tool will often choose to implement such buffers by propagating these
values through the flip-flops in the logic resources rather than writing them to a dedicated storage
element. When attempting to maximize the number of logic used for performing computational
tasks, however, it is more desirable to make use of the dedicated BRAM resources, to avoid
competing for general logic resources. An example specifying a FIFO to be implemented using
BRAM is included in Listing B.2, and Listing B.3 shows specifying an addition to be implemented
without using any DSP resources.
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