
POLITECNICO DI TORINO

Master degree course in Mechatronic Engineering

Master Degree Thesis

A Machine Learning Technique for
Predictive Maintenance and Quality

in Cut Glass Machinery

Supervisors

prof. Edoardo Patti
Andrea Acquaviva
Lorenzo Bottaccioli
Luciano Baresi

Candidate

Giacomo Ornati

2019 October

Abstract

The study presented in this thesis work is based on the development of
a machine learning project applied to the particular case of the 548 Lam
machine, a cut glass machine produced by the company Bottero s.p.a.,
which collaborates with this thesis. The work describes how to develop
a project based on machine learning and how it can be applied in a real
case. The thesis is in fact divided into two distinct parts, the first more
didactic in which are explained the various steps to be followed to prepare
the data and apply different algorithms of machine learning to maximize
the results, the second instead shows how to use in a concrete way the
results of the study of machine learning in order to effectively increase
productivity. To do this, two problems have been selected to be solved,
indicated by the company.

The first study tries to predict machine stops and anomalous failures.
The work includes an accurate understanding of the machine and the
starting dataset, and then concentrate on the data preparation. There-
fore, all the various steps to be followed during the pre-processing phase
are listed: how to perform data merging, correlational and statistical
analysis to find important information from the data, feature selection,
how to manage categorical features. When the initial data have been
properly manipulated, we proceed to the evaluation phase of the selected
algorithms based on the characteristics of the dataset, evaluating which
model obtains the best results in predicting machine errors. The results
obtained show that the probabilistic algorithms based on the tree classi-
fication are those that best predict errors. In details, the Random Forest
Classifier proves to be the best model obtaining an F1 score of about 50%
on the positive prediction.

The second part deals with the prediction of machining times based
on the characteristics of the work to be performed. This second part want
to show how a machine learning model can be transposed from the mere
field of study to a real application, so there is a reconstruction of the
prediction function inside the machine itself, in order to make real time
predictions based on the data selected by the user. The linear regression
model was first trained on a PC thanks to the data contained in the
dataset and then reconstructed in the software interface of the machine
thanks to the coefficients listed in an orderly JSON file that is first created
during the training of the model and then passed to the machine that is
at this point able to make predictions. The results show that the time
prediction based on this model achieves an error of less than 10% with
respect to the actual measured values.

iii

Contents

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Scope of this work and problem formulation 1
1.2 Error Prediction . 2
1.3 Time Prevision . 3
1.4 How the work was structured 4

2 The machinary and the process 7
2.1 Functional groups . 8
2.2 Phases of interest and criticalities 10
2.3 The process of cutting the laminated glass 12

2.3.1 Trim cuts . 15
2.4 The machine control software 16

2.4.1 Interface management 17

3 Database and Data Collection 21
3.1 Structure of the database 21

3.1.1 Session event . 23
3.1.2 MachineState event 23
3.1.3 Step event . 24
3.1.4 Cut event . 25
3.1.5 Glass event . 25
3.1.6 Piece event . 26
3.1.7 TypeOfGlassBasicParameters event 26
3.1.8 MachineError event 26
3.1.9 Other events . 28

3.2 How and when the data is sent 28
3.3 Raw Data Manipulation on the Database for Time Prevision 29

v

4 Machine Learning: Main Supervised Characteristics and
Algorithms 31
4.1 Supervised Learning . 32

4.1.1 General Structure 33
4.1.2 Classification and Regression 36
4.1.3 Underfitting and Overfitting 36
4.1.4 Bias and Variance 38
4.1.5 Evaluation Metrics 43

4.2 Classification Learning Algorithms 46
4.2.1 Logistic Regression 46
4.2.2 Naive Bayas . 48
4.2.3 Support Vector Machine 49
4.2.4 Random Forest Classifier 51
4.2.5 Nearest Neighbor 52
4.2.6 Neural Networks 54
4.2.7 Linear Discriminant Analysis and Principal Com-

ponent Analysis . 56
4.3 Regression Learning Algorithms 57

4.3.1 Linear Regression 58
4.3.2 Polynomial Regression 59
4.3.3 Ridge and Lasso Regression 60
4.3.4 Support Vector Regression 61

4.4 Supervised Algorithm Choice 62
4.4.1 Choose feasible algorithms 62
4.4.2 Best algorithm selection 65

5 Error Prediction: Data Preparation 67
5.1 A bug in manual mode data collection 68
5.2 Data merging . 69

5.2.1 Basic idea . 71
5.2.2 Cut table . 72
5.2.3 Associate Step event 72
5.2.4 Associate other events, the example of Session event 74
5.2.5 Final reshape . 77

5.3 Handle Categorical Features 77
5.3.1 Common methods 79
5.3.2 Application on the case study 81

5.4 Correlation analysis . 82
5.4.1 In theory . 83
5.4.2 In practice . 85

5.5 Statistical analysis . 90
5.5.1 Unbalanced dataset 90

vi

5.5.2 Differences among customers 92
5.6 Feature selection . 95

5.6.1 Manual features selection 96
5.6.2 Automatic features selection 97
5.6.3 Some algorithms implementation in the real dataset 99

6 Error Prediction: Algorithm evaluation 103
6.1 Training and Test sets and Normalization 103
6.2 Evaluation Metric Choice 105
6.3 Hyperparameters tuning 106

6.3.1 Grid Search . 107
6.4 Results for each client . 107
6.5 Notes on performances . 112
6.6 Algorithm Choice . 113

6.6.1 Random forest learning curve 113

7 Time Prevision Solution 117
7.1 Requirement . 117
7.2 Starting Data . 118
7.3 Idea . 119
7.4 Implementation . 120

7.4.1 548 Lam implementation 122
7.4.2 Validation of the performance 123

7.5 Results . 124
7.6 Further Applications . 125

8 Final Observations and Comments 129

9 Appendix 1 133
9.1 Programming Environment 133

9.1.1 Jupyter Notebook 133
9.1.2 Python . 134
9.1.3 Pandas . 134
9.1.4 SKLearn, NumPy, SciPy 134
9.1.5 Other libraries . 135

9.2 Structure of the work . 138
9.2.1 Error Prediction: Scripts Structure and Division . . 138
9.2.2 Time Prevision Script 138

Bibliography 147

vii

List of Figures

2.1 Basic setup of a 548 Lam machine 8
2.2 TTS module of a 548 Lam machine 9
2.3 The loading table of a 548 Lam machine 10
2.4 Workbench of a 548 Lam machine 10
2.5 Laminated glass general structure 13
2.6 Steps for cutting laminated glass 15
2.7 Process of trim cut . 16
2.8 Editor menu . 17
2.9 Automatic menu . 18
2.10 Type of glass selection and tuning 19
2.11 Manual mode . 20

4.1 Different fit of the data set 35
4.2 A simple representation of a cost function 35
4.3 Overfitting and underfitting for a simple classification prob-

lem . 37
4.4 Correlation errors/fitting in function of model complexity . 38
4.5 Learning curve that seems to perform well 40
4.6 Learning curve for high variance dataset 41
4.7 Learning curve for high bias 42
4.8 Sigmoid function: hypothesis function for logistic regression 47
4.9 SVM: large margin classifier 50
4.10 RFC: general structure of a Random Forest Classifier . . . 52
4.11 KNN: classification changes basis on different k 53
4.12 Neural Network: a typical structure 55
4.13 PCA and LDA representation in a two features size database 57
4.14 A typical example of linear regression fitting in 2D. 59
4.15 Polynomial regression, the hypothesis function is now a curve. . 60
4.16 Support vector regression with the usage of tolerance range for

finding the maximum margin. 62

5.1 Bad terminated cuts occurrency in function of cut length . 68

viii

5.2 Automatic and manual occurrency of bad terminated cuts 69
5.3 The discovered bug affects all the clients 70
5.4 Process of cut table creation 73
5.5 Step table creation flow chart 74
5.6 Merging of cut and step table by inner join 75
5.7 Creation of Cut+Step+Session table 76
5.8 Three example of scatter plots and relative Pearson coeffi-

cient . 84
5.9 Pearson correlation coefficients matrix 86
5.10 Kendall correlation coefficients matrix 87
5.11 Spearman correlation coefficients matrix 88
5.12 Correlation matrix for the firt client 89
5.13 Correlation matrix for the second client 90
5.14 Correlation matrix for the third client 91
5.15 Cut length divided by clients 92
5.16 Thickness of cut glass divided by clients 94
5.17 Pression used for upper truncation divided by clients . . . 94
5.18 Normalized standard deviation reduction plot 101
5.19 Code for implement the univariate statistical test features

selection . 102

6.1 Process of training and testing with cross-validation 105
6.2 Client 1 in manual feature selection 108
6.3 Client 1: automatic feature selection 109
6.4 Client 2: manual feature selection scores 110
6.5 Client 2: automatic feature selection results 110
6.6 Client 3: manual feature selection scores 111
6.7 Client 3: automatic feature selection algorithms evaluation 111
6.8 Random forest learning curve for client 1 114
6.9 Learning curve for client 2 114
6.10 Learning curve for client 3 115

7.1 Data preparation phase for time prevision. 119
7.2 Data flow of time prevision 121
7.3 JSON file example . 123
7.4 Implementation of time prevision inside 548 Lam 123
7.5 Validation process . 124
7.6 Client A time prediction results from validation process . . 126
7.7 Client B results from validation process 127

9.1 A typical interface of Jupyter Notebook 134

ix

List of Tables

3.1 Format of TEvent table 22
3.2 List of all possible errors for 548 Lam 27

4.1 Reducing Bias and Variance 39
4.2 Confusion matrix for binary classification 44

5.1 Schematic shape of table obtained after data merging . . . 72
5.2 Features after data merging 78
5.3 Features after handling categorical features 82
5.4 Historic review of the output to predict divided by client . 91
5.5 Mean and Standard Deviation divided by clients for au-

tomaic cuts . 93

6.1 Hyperparameters tuned after grid search 107

x

Chapter 1

Introduction

1.1 Scope of this work and problem formula-
tion

This thesis work was born from the will of the company Bottero s.p.a.
to expand its knowledge in the Internet of Thinks (IoT) and Artificial
Intelligence (AI) field. Specifically it acts on data collected by one of
their machines: the 548 Lam for cutting laminated glass. The purpose of
this thesis is to try, thanks to the analysis of the data collected by these
machines, to predict its possible behavior in a perspective of predictive
maintenance and predictive quality.

More in detail, the work that will be presented consists of two main
parts: Error Prediction and Time Prevision. Both are works related
to the world of Machine Learning (ML) that use as a starting point the
Bottero database full of information from machines already produced and
in operation in the possession of various customers around the world.

The initial purpose of the database was to collect information for sta-
tistical purposes of the company. Bottero then realized the potential of
the collected data that can be used for more complex and productive
purposes such as increasing the quality of the machine, avoiding errors
or adding functionality in a simple way thanks to the fact that the IoT
ecosystem was already complete from the point of view of data collection,
to complete it was missing only a prudent use of the database to achieve
improvements and optimizations. This prudent use is a correct applica-
tion of artificial intelligence that allows to obtain substantial achievements
only thanks to data analysis.

This work therefore represents common parts for both Error Predic-
tion and Time Prevision that are: a study of the machinery, of the working

1

1 – Introduction

process and of the database containing the information related to the lat-
ter in such a way as to be able to find the machine learning algorithms that
best behave with the object of study in question. Then a detailed study
for each of the two sections will be performed: it will analyze the main
characteristics of various algorithms known in the literature, highlighting
their pros and cons. Finally, the results obtained by implementing these
algorithms in the case study will be presented.

1.2 Error Prediction
This first part of the thesis tries to solve an uncommon problem on the
548 Lam but potentially very harmful to the production process. At
the moment it can happen that the machine stops and the whole work
chain stops, or that the machine produces pieces out of standard. The
problem is currently solved a posteriori, i.e. when the abnormal stop has
occurred or the failed piece is produced an operator blocks the produc-
tion line and manually restarts the machine. This involves a huge waste
of time and work, moreover, it can happen that the machine ruins the
workpieces, being a machine for cutting glass, a failure of this type can
mean the replacement of the entire glass plate being processed, causing
great frustration and loss of time, money and energy to restart the line.

The proposed novelty seeks then to obtain correlations between input
to the machine and consequent output, so as to avoid out-of-standard
or otherwise unacceptable outcomes, or even when this combination of
inputs results in an interruption of the process that causes inconvenience
to the entire production line. This is what can be defined as a predictive
quality, in fact on the basis of certain features known a priori or set by the
user it is possible to try to anticipate the operation of the machine and to
predict whether a certain combination of inputs may result in a bad piece
or may lead to a stoppage of the machine with consequent loss of work
hours and money. This concept goes beyond machine maintenance and is
independent of it, because even a new or revisioned machine can lead to
damage if the sequence of input parameters is critical for a certain specific
task. Given the amount of information and parameters at stake, it was
decided to rely on artificial learning because in most of the negative events
in question it is impossible or very difficult to understand the reason of
the anomaly. In this optics a sort of artificial intelligence can be able to
carry out the correlations necessary to avoid this type of behaviour.

This means that if you are able to effectively predict a possible crash or
a badly finished piece, you will have a significant saving of time and money
because instead of restarting the production line by manually reloading

2

1.3 – Time Prevision

the machine with a new glass plate, you only have to change the set of
inputs provided to the machine which will then resume the work process
with a minimum loss of time. Alternatively, if the initial inputs would
create a situation of risk, the software would be able to signal it before
the processing starts.

Technically the error prediction output can lead on machine learning
problems called binary classification, where the result of the algorithm
will be only 0 or 1, this information has to be taken into account when
choosing the prediction algorithms.

1.3 Time Prevision

Even the time forecast part is based on machine learning algorithms, this
time we want to predict the machining time of a machine in order to
anticipate the customer the duration of the operation. Up to now, the
problem of predicting processing times has been partially covered by a
deterministic approach. Partly because the 548 Lam machine has many
operating modes and parameters to set. All of this information together
creates a huge combination of possibilities. A deterministic approach
requires the creation of formulas for each of them. The state of the
art selects the most promising parameters and estimates on the basis of
these processing times. This deterministic approach is repeated only for
the most used operating modes, demonstrating great shortcomings also
from the point of view of performance, reaching errors greater than 50%
between the prediction and the real value.

The proposed novelty here is linked to the prediction of each sin-
gle sub-processing performed (from now on defined step). The steps are
linked directly to the parameters, the variation of these affects the ma-
chining time. The machining modes combine different steps and in dif-
ferent numbers, once the machining mode is known, the individual steps
are predicted and then added to have the total machining time for any
combination. Since the prediction is to be made in a continuous range of
possibilities, this second part of the work will be based on algorithms on
a part of the machine learning called regression.

Unlike the first part, this second work will also explain how to directly
integrate the time prediction algorithm into the machine software, so that
the operator, even before starting to work on a glass plate, will know how
long the machine will take to finish the job.

3

1 – Introduction

1.4 How the work was structured

The developing of this thesis took few mounts because of the knowledge
required for a good understanding of the problem. So first step was to
know the machinery and the team who developed it. The machine as
we will see in the next chapter is able to perform really complex tasks
and manage multiple and completely different types of situations. The
criticality in this step was to associate the data provided from the ma-
chine with the actions the machine performs. Then was possible to start
viewing at the database collection of Bottero s.p.a. that is quite new and
still under developing. This non stationarity comported lot of adapta-
tions to every change in the database format. After having met all the
tools needed for the work was the time to study the literature of the pos-
sible machine learning techniques to apply for this case study. Then it
is possible to go in a more concrete direction describing the setting up
of the developing environment that is related, just for introduction, with
the use of SQL Server by Microsoft, with Jupyter Notebook and Pandas
for managing data structures and for rearranging them and with the use
of some ML libraries such SKlearn. Then it is possible to apply some
of this techniques and get the results, obviously the rearranging of the
implementation is crucial to obtain good outcome, so in the chapter re-
lated with this part the reiteration is part of the develop. Finally will be
the time of conclusions and suggestions for eventually improve the work
based on different type of informations obtainable from the machine. In
details this work is structured as follow:

Chapter 2 : Chapter dedicated to the description of the machine, its
interface and the peculiarity of the production process.

Chapter 3 : Here are descriptions of the database format, structure and
tips on its use.

Chapter 4 : Description of the main algorithms in the literature and
search for possible machine learning techniques both for classification
and forregression problems.

Chapter 5 : Error Prediction pre-processing and unification of the vari-
ous data in the database, eliminating discordant values or repetitions.

Chapter 6 : Error Prediction algorithms evaluation and results obtained
for this first part, specifying which problems there were in the adap-
tation of the algorithms and in the initial data.

Chapter 7 : Time Prevision solution, here the preprocessing phase is
less important because in part already done, so the goal is not only

4

1.4 – How the work was structured

to obtain the best ML algorithm to use, but is to create a real pos-
sible implementation in the machines able to predict the time of op-
erations. So here the approach is more concreate also because the
problem is more complex and with possible further applications.

Conclusion : final observations, comments and reflexions on this work.

5

Chapter 2

The machinary and the
process

Bottero has been manufacturing machinery and plants for glass processing
for over 50 years and is now a world leader in the sector. It is organized
into 3 business units: flat glass, large plants and hollow glass. Over the
years the company has developed many machines and the one under study
in this thesis is the result of decades of experience and innovation. The
machinery in question belongs to the flat glass business unit, its trade
name is 548 Lam, as the name indicates its purpose is the cutting of
laminated glass sheets.

Under certain conditions it is fully automatic machinery. The auto-
matic mode is particularly suitable with the use of optimizations : given
the input glass format, the machine software is able to generate the out-
put pieces in order to optimize the cuts minimizing the waste of glass
from the plate, so it is able to calculate the best sequence of cuts to be
made to obtain all the desired parts. Once the plate is loaded on the
machine, it is automatically managed and processed obtaining in output
all the pieces cut and transported elsewhere. For special cuts or for less
frequent requirements it is possible to use the machine also in manual
mode. Unlike the automatic cuts that work on the entire glass sheet, the
manual cuts are set on the single piece that is loaded manually on the
machine, when set it will perform the cut. The task of the 548 Lam, in
addition to cutting the glass, is to move, align, rotate the glass sheets
in order to make the process fast and efficient. This has led to a great
reduction in the time required for these operations.

The 548 Lam derives from a model capable of performing very similar
tasks, the model 558, which can be defined as the father of the machinery

7

2 – The machinary and the process

in question. Compared to the 558, the 548 Lam is cheaper, more effi-
cient and easier to maintain, which has allowed it to be widely used and
appreciated by customers.

The machine has been designed to work in a continuous production
line integrated with other Bottero machines, such as loaders, overhead
cranes, conveyors, etc . . . so that every single machine can be seen as an
element of a production line able to manage all the processing of the plates
including loading from the warehouse, transport, positioning, cutting and
unloading.

Figure 2.1: Basic setup of a 548 Lam machine

2.1 Functional groups
The machine is made up of various macro parts that can be identified
according to the task they perform. Some of these parts are standard and
normally combined with the central body, even if there are many setups
to satisfy every kind of customers. In any case, all the optional parts can
be integrated with the main body of the machine. The parts described are
those related to the normal setup of the machine, here are not described
all the other possibilities offered by the company for simplicity and also
because they have no influence on this work. The main parts are:

T-T-S Module (Taglio Troncaggio e Stacco in italian) is the heart of
the machinery, here is concentrated most of the technology used and
developed and patented by the company over the years. This part is
composed of two fixed bridges characterized by:

• A locking system of the plate to keep it in position during cutting,
this result is guaranteed by special rubberized air chambers that
once inflated ensure an even distribution of forces on the plate.

• A highly efficient heating element (lamp) for heating the plastic
inside the laminated glass. This is composed of a single mobile

8

2.1 – Functional groups

element of small size easy to replace and much cheaper than the
solution adopted on the 558.

• A support surface for the module with belts capable of carrying
the piece under the bridge for cutting.

• A gripper that working in symbiosis with an air suction cup
mounted on the work bench is able to rotate the workpiece to
perform transverse or diagonal cuts.

• A blade for precision cutting of the plastic inside the laminated
glass sheet.

• Two plate engraving wheels create the line of weakness where the
glass will be cut off.

• The breakout bar and wheels that hit the glass and cause the
glass to split.

Figure 2.2: TTS module of a 548 Lam machine

The figure 2.2 shows the TTS module.

Loading table It is a table used to transport the glass sheet to the
bridge where it will be cut. It is composed of transport belts and can
sometimes be replaced by other Bottero machines for in-line work.
The loading table is shown in 2.3.

Workbench This is another work table that serves for the correct po-
sitioning of the piece of glass under the bridge, it is an essential
component of the machine. Here there is also the suction cup that is
used together with the bridge clamp to rotate the piece. The rotation
takes place through a connecting rod-hand crank system that keeps
the length between the two points of contact with the glass fixed and
in the meantime moves them causing the rotation of the piece. In
the figure 2.4 there is a picture of the workbanch.

The machine is sold in different layouts and sizes. The equipment
are basic, semi-auto, fully-auto, LTM where the services offered are
increasingly greater and with a higher level of automation, while the

9

2 – The machinary and the process

Figure 2.3: The loading table of a 548 Lam machine

Figure 2.4: Workbench of a 548 Lam machine

sizes are 548 Lam - 38, 548 Lam - 49, 548 Lam - 61 where the last
number indicates the size of the bigger glass plate achievable (they stay
for 3800, 4950 and 6100 mm respectively, so it indicates the size of the
machine). The minimum cut is about 20mm from the edge, that is a very
little measureand require lot of expedients that will be cited after in this
chapter while speacking about the process of cutting the glass.

2.2 Phases of interest and criticalities
As seen, the operational possibilities of the machine are many and variable
depending on the chosen equipment and the operations to be performed.
Briefly summarizing the main actions that the machine can perform are:

• Positioning

• Cut

• Diagonal cut

• Train discharge

• Transport

10

2.2 – Phases of interest and criticalities

• Rotation

• Reverse transport

• Scraping

The details of these operations and others more remain omitted for sim-
plicity. The important message to be leaked is that of all the possibilities
offered by the machine has chosen to focus on the main ones. Among the
various, the most complex, delicate and essential operation is the cutting.
This is the fundamental step to be taken into account, moreover in addi-
tion to the most important it is also the most complex because it consists
of various sequential phases. The research work of this thesis will start
from this operation, trying to predict if the cut operation will have a good
output or not. The second part will be focused on the time prevision not
only for this step but for all the steps that the machine perform in an
automatic manner.

Let’s now analyze some of the various failures that may occur to the
machinery. These failures are real eventualities and have been selected
from a long list in the Bottero software documentation. Here are only the
most important and easiest to guess for what has been explained so far
on the machinery, are omitted those that require a thorough knowledge
of the machinery:

• Vacuum missing in sucker for the movimentation of the glass.

• Glass search failed, the glass is bad positioned on the table, some
photocells do not read the glass.

• Wheel worn has to be replaced.

• Invalid position for cut.

• Servo error.

• Truncation cycle error.

• Exhaust error.

• Pression lost.

• Error reading workpiece height.

• Trim not fallen in trim box.

• Rotation error.

• Blade broken.

• Glass mismatch.

• . . .

11

2 – The machinary and the process

As you can see in every phase there may be errors and failures of various
kinds that normally lead to the block of the machine for safety. Here,
however, you can see that most of the possible problems occur during the
cutting phase, confirming what has been said above, the cutting phase is
the most delicate and the errors in this phase concern problems during
the breakout, the take-off, the blade, the clamping pressures, . . .

After this further confirmation of the importance of the cutting phase,
we will now analyze in detail the general process of separation of lami-
nated glass sheets to better understand how the machine works.

2.3 The process of cutting the laminated glass
In order to better understand the glass cutting phase that takes place in
the TTS module of 548 Lam (cutting, breakout and take-off), the process
of separation into parts of laminated glass is described in general terms.

Laminated glass consists of two or more layers of monolithic glass per-
manently and thermally bonded under pressure with one or more plastic
interlayers of Polyvinyl Butyral (hereinafter PVB). It is possible to com-
bine different glass thicknesses with different layers of PVB to obtain the
desired properties. Usually laminated glass is identified by three digits
corresponding to the mm of thickness of the glass and the number of lay-
ers of PVB used to join the parts. Each layer of PVB has a thickness
of 0.38mm so a glass described by the acronym 3-2-3 is composed of two
outer sheets of 3mm glass interspersed with 2 layers of PVB of 0.38mm
for a total thickness of 6.72mm. The 548 Lam machine is able to work
with glass in the thickness range between 2-1-2 and 8-12-8 glasses (i.e.
between 4.38mm and 20.56mm). A general structure of laminated glass
is shown in fig. 2.5. Now it is possible to understand why laminated glass
is also called stratified glass. This laminated glass composition ensures
safety, so laminated glass is widely used in window and door frames and
flooring. Other properties of this glass are therefore the greater resistance
to impact and stress than normal monolithic glass and the seal in case
of breakage, in fact when broken this glass does not collapse but its frag-
ments remain attached to the layer of PVB reducing the risk of injury
and increasing the safety against injury. Finally, laminated glass gener-
ally increases the level of soundproofing and blocks a high percentage of
ultraviolet rays, these are two other qualities for which this glass is now
widely used.

The downside of the medal is that compared to monolithic glass, it
requires longer processing and is more expensive. Even the cut is much
more complex, now we will analyze in detail the process of separation.

12

2.3 – The process of cutting the laminated glass

Figure 2.5: Laminated glass general structure. Usually dimension a is equal for both the
glasses but can vary in range 2-8mm while dimension b is fixed at 0.38mm, in this case
the number of layers of PCB can vary. C is the total high of the glass sheet.

The steps to be taken in order to obtain a correct, clean and chipless
cut of the laminated glass are now described in sequence.

1. The first step is a engraving on the surface of the upper and lower
glass: this engraving is performed by two toothed wheels, similar to
the pinion of a bicycle, and create micro grooves that weaken the
glass along that line that in jargon is defined as the cutting line.
The result of this operation is the creation of an engraved path that
has a dashed shape almost like a paper card prepared to be removed
manually.

2. The second phase is the breakout of the glass. The separation of
laminated glass is not a real cut is just a breakage of the glass along
a line of weakness. The line of separation is, in this case, the line
engraved in the previous step. There are two truncations, upper and
lower. They can be made by means of a roller or a bar. The sim-
plest and most immediate is the one with the bar in which you give
a sudden and violent blow to the glass throughout its length. The
breakout is immediate, the glass breaks exactly on the line of weak-
ness. With the wheel instead the process is different: a wheel starts
from one side of the glass giving a sudden blow on the opposite side of
the engraving, so a local separation of the glass takes place, then the
wheel maintaining a certain pressure runs along the entire length of
the sheet making the breakage propagate till the opposite edge. For
technical reasons related to the necessary space, the 548 Lam uses
both methods of breakout. It is important to note that the terms
breakout upper and lower refer to the glass that is separated, to have
a breakout you have to create pressure from the opposite side of the
sheet so that you create on the glass a zone of tension that splits the
glass. It is to be noted instead that the glass resists at compression
so in the part of the blow the glass does not collapse. Moreover, for

13

2 – The machinary and the process

obvious reasons, the glass must be supported on the opposite side to
where it is hit. The support distance and the thickness of the glass
affect the pressure to be exerted to obtain the separation.

3. Now the glass is detached from the top and bottom but the two parts
are still joined by the middle layer of PVB that must be cut. This
phase is the separation and heating phase:you have to enlarge
the two sheets to allow then to pass a blade that will cut the plastic.
To obtain the best results, the separation does not take place cold,
but a lamp formed by an electric heater heats the glass along the
separation line, melting the plastic and making it more elastic. At
this point it is possible to separate the two parts. On the 548 Lam
the separation takes place thanks to the work table that is able to
move away a few millimeters from the bridge. The glass is kept in
position on the table by the two air chambers that press it and do
not make it slide on the table, as a result of which the two parts are
now spaced.

4. Finally the cutting phase: a razor blade descends from the machine
in this enlarged position, cutting the heated plastic along the entire
length of the piece of glass. When cut, the PVB does not fall inside
the edges of the glass but is in line with the surface, which results in
a clean and aesthetically pleasing cut, as well as preserving all the
properties of the glass unaltered.

To allow a perfect cut, not chipped and without smudges caused by
the plastic, there are various parameters to be adjusted on the machine,
which further complicate the learning. The various phases of the process
described above are qualitatively illustrated in the figure 2.6.

As you can see, cutting laminated glass is not a simple task and the
possibility of breaking the glass during separation is more than real. In
addition, each glass manufacturer creates glass with different chemical
characteristics, which can influence the cutting parameters. For all these
reasons, the 548 Lam machine takes into account the needs of all cus-
tomers for each type of cut and glass used, so the parameters of pressure,
speed, heating are fully customizable and adaptable to every need. This
versatility generally goes against the simplicity of the algorithm to be
used for the purpose of the first part of this thesis, which reminds us
to find correlations between the various inputs that create incorrect or
non-compliant outputs, within a view of predictive maintenance. About
this complexity of manage the data will be discussed in the database
paragraph.

14

2.3 – The process of cutting the laminated glass

Figure 2.6: Steps for cutting laminated glass: in order Engraving of the surface, Breakout
of the two glasses, Heating and Separation, Cut of PVB.

2.3.1 Trim cuts

For the sake of completeness, it should be noted that the 548 Lam can also
make so-called trim cuts. Normally, as far as the breakout is concerned,
the glass must be placed on the surface of the table or crushed by the
inner tube in order to be truncated correctly, i.e. it must have a support
on the opposite surface in order to be deformed and to apply the force
necessary for the controlled breakage. Trim cuts are cuts in which the
cutting line is very close to the edge of the glass. In these cases it happens
that the surface of the piece cannot rest on the other edge of the cutting
table, so for the breakout of these pieces the glass is placed on appropriate
tools that the machine extracts when it recognizes that the piece can not
rest on the table nor be pressed by the air chambers. Moreover, even the
separation and heating phase is different from the classic one explained
above, even if the process is the same. Now the heating is done with the
part to be cut that does not rest on the table but is suspended in air, once
the right temperature is reached the slab is moved until the trim piece
does not arrive on the table and can be clamped by a special bar, then
there is the separation with the piece now moved from one side, finally
a second blade also moved from the center of the bridge cuts the PVB.
Usually the trim pieces have to be thrown away because they are waste,
in this case a moving part is available on the 548 Lam that opens and
throws away the waste. In figure 2.7 is possible to see the difference of a

15

2 – The machinary and the process

trim cut with respect a normal cut.

Figure 2.7: Steps for cutting a trim piece: in order Engraving of the surface, Breakout
of the glasses, Separation and Cut of PVB.

I wanted to expose also this particular cut in order to make understand
even more the complexity of the machine with which we have to deal,
obviously this complexity also affects the mass and the diversity of data
sent in the database that will be analyzed in the next chapter. Moreover,
it should be clear what is meant from now on when we talk about trim
cut.

2.4 The machine control software
The 548 Lam is managed thanks to the apposite integrated computer
where there are installed two main softwares: the first one is a high level
graphic interface for selection, managing, tune parameters and interact
with the user. This is the only part that the worker can see. The second
part of the software installed is a low level one. Its scope is to manage
the communications (input and output) between the hardware parts of
the machine and the interface, where the input are selected. In order to
manage the machine it is needed a real time system, so a processor of the
pc is dedicated for this task and work in real time like an embedded sys-
tem. This kind of software is essential to guarantee hard time constraints
and to not miss any deadline of the machine tasks. Instead, the interface
works on a normal Windows based OS. Unlike the real time software, the
interface can be directly managed by the user and its main purpose is to
simplify the use and regulation of the machine to anyone who acquires a
minimum of familiarity with the various buttons and keys.

All settings chosen by the user through this program are then sent to
the low-level software which translates and sends them to the machine.
This correspondence is obviously valid also on the contrary direction, in
fact when a step of working is finished or there have been some failures,

16

2.4 – The machine control software

this software sends to the interface all the useful information to represent
the output of the machine, which will be immediately represented to the
user and then sent to the database.

Of the two softwares will now be analyzed in more detail the graphical
interface so as to better clarify how the machine works and for what
purposes it was designed. In addition, this high-level software is also
used for recording and sending machine data in the online database.

2.4.1 Interface management

For the purpose of this thesis it is not necessary to examine the type
of communication between the software and hardware, so the part to be
analyzed is related to the interface. When the machine is turned on, it
appears the main screen, which consists of four tabs:

Editor : In the editor you can select or draw cutting patterns (also
called optimizations). Cutting patterns are representations of prop-
erly oriented lines separated by previously selected distances. They
indicate where and how a standard glass plate will be cut and there-
fore the lines contain all the various pieces that will be extracted from
the main plate. The dimensions of the glass sheets are standardized
while the optimization process can be done with any dimension of
glass.1

Figure 2.8: Editor menu, here it is possible to select or create a cutting scheme.

1The most common sizes of glass sheets are Jumbo (6000x3210mm) and Regular
(2250x3210mm although some manufacturers while maintaining fixed the second size change the
first in 2550mm or 2000mm)

17

2 – The machinary and the process

Automatic : The cutting pattern set in the editor menu is loaded here.
Before operating, you can navigate through the cutting pattern and
view all the steps of the process that will then be performed physi-
cally. In detail you can see how the machine will perform the cuts and
in what sequence, which pieces will be moved, discarded, etc. . . all in
a clear and illustrative 3D graphic interface. You can also change the
type of glass to be used and the parameters set through the special
bar of the type of glass used where you can select some options:

• Thickness of the upper glass plate
• Lower glass plate thickness
• PVB thickness
• Engraving head pressure
• Upper truncation pressure
• Lower truncation pressure
• . . .

By pressing the cycle start button, the interface and the machine
will work synchronously: the graphics inside the software follow and
reproduce exactly the steps being executed. There are some opera-
tions (such as diagonal cuts) where the piece in question is shown in
yellow, in which case the machine enters semi-automatic mode. This
mode puts the machine in stand-by mode, waiting for an operator to
perform a manual action that the machine is unable to perform due
to mechanical limitations. in this situation the operation to be per-
formed is simple and fast (for example placing a bar on the cutting
table to allow positioning before diagonal cut).

Figure 2.9: Automatic menu. It is possible to see all the phase of the cutting sequence
in a clear 3D representation.

18

2.4 – The machine control software

Figure 2.10: Type of glass selection and tuning: some of the parameters related with the
type of glass.

Manual : The manual mode, unlike the automatic mode, allows you to
make cuts on pieces of glass not set with a cutting pattern. The
workpiece must be correctly positioned on the work table. The ma-
chine is however able to automatically perform some operations such
as understanding the length of the piece to be cut and make the cut.
The manual mode can therefore be defined as composed of small au-
tomatic cycles that are fast and pre-established. In particular, the
following operations can be carried out in this mode:

• Positioning and cutting
• Only cutting
• Only diagonal cutting

Differently from the automatic mode here it is always needed an
operator to supervise the operation and interact with the work. Even
in this case you can select the type of glass and the parameters to
be used accordingly. If any of the settings are changed, an event will
be recorded containing information about the new glass type and
selected parameters. This event will then be sent to the database.
To anticipate what will be said in the chapter on the database, this
is an event called TypeOfGlass and like all other types of glass is
identifiable by a CodeEvent. Other events with other CodeEvent are
sent to the database at different times and in different ways, and
obviously contain other types of information.

Service :Allows you to access the screen concerning the controls of the
manual movements of the machine. This menu is not very important
for the purpose of this thesis.

Summarizing, the machine can work in automatic or manual mode. In
automatic mode it works when starting from a whole plate to be cut ac-
cording to a cutting scheme defined in the editor menu, and it is possible
that for some cutting schemes there are operations to be carried out in
semi-automatic mode in which the operator must help the correct posi-
tioning of the piece of glass that the machine cannot mechanically carry
out. In manual mode, instead, cuts are made on single pieces of glass that
have not been previously set or calculated. Currently, in manual mode,

19

2 – The machinary and the process

Figure 2.11: Manual menu: on the left there are the three operations a operator can do
in this mode. Also here it is possible to configure the type of glass.

three actions are available, all concerning the cut, which is always carried
out automatically.

For the sake of completeness, mention is made of the fact that each cut
can be broken down into a series of operations as seen in the paragraph
2.3 about the process, some of these operations can be skipped or avoided,
all this information is recorded anyway (e.g. it is possible to cut without
heating the piece with the electrical resistance, it is only possible to cut
the glass, it is possible to cut the glass but not to separate the two parts
from the PVB, etc..).

The purpose of the second part of the thesis is to predict the en-
tire time of a machining cycle when a certain optimization is selected,
this time changes according to the number of cuts, transports, rota-
tions and in general according to the number of step to be made in the
plate. In addition, parameters such as glass thickness, type, selected pres-
sures,. . . influence the processing times. After this introduction to the
machinary it is clear why a machinale learning solution can be hopefully
a good alternative to solve also the time prevision problem.

20

Chapter 3

Database and Data
Collection

The company Bottero in recent years has decided to create a database
to record the data produced by their machinery. The intent for which
the database was born was to make production statistics and keep under
control the machinery installed by the various customers also with a view
to an easier detection of errors and consequent easier maintenance.The
database collects data on various types of machinery produced by the
company and installed around the world, not only from the 584 Lam.
So there are many types of machines and many ’copies’ of the same ma-
chine scattered across the various continents that send their data on the
database.

3.1 Structure of the database

In detail, the data is saved on an online AWS database. Each type of
data sent by the various machines installed by Bottero customers around
the world goes to populate and enrich a single table called TEvents. This
table collects all types of data sent by various machines, so here inside
there are many different types of data, and to use the information inside,
it will need to extract the features and classify the data. TEvents has a
well defined and formatted structure, so each event that populates it has
a set of information divided by columns. There are lot of columns for each
type of event, although they are often not all used for each event.They
are enumerated in table 3.1. You will then have many null values that
must be taken into account in the preprocessing phase of the data. The
data contained in the various columns change meaning according to the
recorded event. Each event belongs to a certain well-defined category.

21

3 – Database and Data Collection

First, however, it is good to define the generic structure of the large
TEvents table. As I said it is composed by lot ofcolumns. Some of them
have fixed meaning for each type of recorded event, others instead change
of meaning according to the event. The columns with fixed meaning are:
ID, CodeEvent, PLCIP, DateTime, DateTimePLC, EventData1, Event-
DataA.

ColumnName DataType Fixed/Variable Meaning Description

ID bigint fixed index of the data
CodeEvent int fixed event code among 11 possibilities
PLCIP varchar(50) fixed local IP of the machine

DateTime datetime2 fixed Date of the registered event
DateTimePLC datetime2 fixed as above
EventData1 int fixed number of the event from session start
EventData2 int variable
EventData3 int variable
EventData4 int variable
EventData5 int variable
EventData6 int variable
EventData7 int variable
EventData8 int variable
EventDataA varchar(max) fixed machine ID
EventDataB varchar(max) variable
EventDataC varchar(max) variable
EventDataD varchar(max) variable
EventDataE varchar(max) variable
EventDataF varchar(max) variable
EventDataG varchar(max) variable
EventDataH varchar(max) variable

Table 3.1: Structure of TEvent table on the Database. At the right side of the column
name there is the type of the data contained. All the informations respect this format
when arrive at the database. Each event create a single line of this table containing
informations in this format.

The population in the TEvents table changes according to the type of
event recorded. In other words, in order to extract the data properly, the
rows of TEvents must be ’read’ appropriately based on the event code.
The possible events sent by the 584 Lam machine and contained in the
CodeEvent feature are:

• Session
• MachineState
• Step
• Cut
• Glass

22

3.1 – Structure of the database

• Piece

• TypeOfGlass (deprecated)

• TypeOfGlassBasicParameters

• TypeOfGlassAllParameters

• TypeOfGlassOnlyDependencies (deprecated)

• MachineError

In the next sub-chapters there will be analyzed in detail all these events,
with the meaning to attribute to each variable column defined above,
that, as said, vary according to the event type. It is possible to find
in TEvents different types of event codes, these will be ignored because
generated from other machines different from 584 Lam.

3.1.1 Session event

A session event is generated whenever a new session of the machine starts,
i.e. when the 548 Lam software is turned on. This event is therefore
logically recorded in a much smaller number than the events of type cut
or step for example, because usually the machine is turned on at the
beginning of the work day even if it is possible that the machines remain
turned on several consecutive days or that they are restarted many times
throughout the day. In any case, the number of session events reaching
the database remains rather limited because this operation is not frequent
compared to the number of operations to be performed in each session.

In general and event of type session contains informations about the
software installed on the machine plus the datetime of the start of the
session.

3.1.2 MachineState event

An event of type MachineState is triggered each time a machine change
state. The columns in TEvents contain now the information about the
machine state, the possible values can be:

• 0: Off

• 1: Ready

• 2: Busy

• 3: Service

. Many columns are not used for this event.

23

3 – Database and Data Collection

3.1.3 Step event

This is one of the most important events generated by the machine. When
an event code is type step the TEvents columns collect information about
the type of step performed by the machine. The machine can perform
many different types of steps including positioning, cutting, diagonal cut-
ting, rotation, etc . . . (Others have already been mentioned in the chapter
2.2). This event contains both step input information (selected parame-
ters) and machine output information (step execution time, if the step has
ended badly, . . .). In detail, the TEvents columns assume the following
meaning when the CodeEvent is related with a step event:

• EventData2 : Number of the glass plate within the optimization. Nor-
mally this number is in the order of tens and grows by one unit each
time a new plate starts to be cut in the same optimization.

• EventData3 : Number of steps in the glass plate: remember that each
plate is associated with an optimization, so before the physical start
of operations the software already associates at each operation a step
number inside the glass plate.

• EventData4 : It is a decimal number that represents a mask contain-
ing a series of operations. it is basically a way of compressing binary
information into a single decimal number. The values that this num-
ber can assume are between 0 and 7, i.e. it can be represented in
binary on 3 bits. Each bit is a boolean key that contain the following
information1:

– Bit 0 (LSB):If the step is in automatic mode.
– Bit 1: If the step has to be performed in semiautomatic mode
(chapter 2.4.1)

– Bit 2 (MSB): if the step is bad terminated (outcome result)

• EventData5 : Boolean key that indicates if for this glass plat the
grinding in on.

• EventData6 : Measured time for executing the step in ms (output
result).

• EventDataB : String that indicate the type of the step. Among all
the most important step is the cut that will be analyzed deeper in
this thesis.

1LSB stay for Least Significant Bit, it is the first bit starting from the right, MSB stay for
Most Significant Bit, it is the last bit starting from the right

24

3.1 – Structure of the database

3.1.4 Cut event
Whenever there is a Step event associated only with a step type StepVsx-
Taglio5X8 or StepVsxTaglioDiagonale5X8 , a Cut event is immediately
sent containing additional informations. In practice this type of event is
to be read as an extension of the Step event that introduces additional
informations when the step is a StepVsxTaglio5X8 or StepVsxTaglioDi-
agonale5X8.

As for the previous events, the various meanings of the TEvents table
are now indicated when a Cut event is recorded:

• EventData2 : It indicates the length of the cut to be made calculated
according to the optimization and the selected cutting pattern.

• EventData3 : Indicates whether cutting is in manual mode (boolean
key).

• EventData4 : It is a mask like the Step event. it is represented by a
decimal number that, if converted to binary, indicates various boolean
information through the bits of the binary number. This mask is
composed of 8 bits, so the corresponding decimal number varies from
0 to 255. In detail:
Bit 0: if the piece has to be grinded
Bit 1: if the piece has to be cut
Bit 2: if there will be upper truncation
Bit 3: if there will be lower truncation
Bit 4: if the piece will be heated during separation
Bit 5: if the piece will be detached
Bit 6: if the piece has a diagonal cut to be performed
Bit 7: if the process is bad terminated (output result)

• EventData5 :This number represents the measured time to perform
the cut (output result)

3.1.5 Glass event
A Glass event is generated when the machine starts to process a new sheet
of glass in the optimization process. It is therefore an event that reaches
the database only when the machine is working in automatic mode, since
in manual mode the glass sheets are not processed but only pieces are
cut. For this reason, this event is to be correlated only with steps that
take place in automatic mode and not in manual mode. Theinformation
contained are related with the optimization glass sheet number from the
beginning of the otimization selected, the glass sheet number since the

25

3 – Database and Data Collection

session started, length of the glass sheet, high of the glass sheet, total
length of the cuts in the actual glass sheet, number of pieces to obtained
from the glass sheet, name of the optimization.

3.1.6 Piece event

This event provides information on the machining operations to be carried
out on a given piece of the plate. Every time the process of machining
a new workpiece from a complete or partially machined plate starts, a
Piece event populates the database. In this case the columns meaning
are related with number of the piece in the in the glass sheet,if the piece
is worked in automatic mode, length of the piece, high of the piece.

3.1.7 TypeOfGlassBasicParameters event

This event populates the TEvents table when the user selects a new glass
type from the software or modifies its parameters. The parameters of
glass type have already been partially discussed in the section 2.4.1. it
is important to note that the machine is able to adjust pressures, speed,
forces thanks to the modification of the appropriate commands from the
interface. This makes the machine adaptable to any type of glass, not
only of different thickness but also of different chemical composition. The
columns that go to popular TEvents for this type contain information
about top plate thickness , PVB thickness , maximum and minimum
pressure that can be exerted by the upper head during the engraving
phase, maximum and minimum pressure for truncation.

3.1.8 MachineError event

This event is generated when an error occurs during a machine working
step. It contains detailed information associated with the type of action
that caused the error, its structure in the database is variable and articu-
lated to analyzed. The columns of TEvents used are few but not always
contain all the information, the content varies greatly for each type of
error. The information here inside are related with standard error codes,
generic codes valid for multiple errors. In general there is lot of variance
in the structure of the error that will be, when needed, analyzed case by
case. A possible thing to do is to list all the possible error that can occur.
The table 3.2 enumerates these possible errors.

26

3.1 – Structure of the database

Description Message Error

Vacuum missing MSG-ERR-SICUREZZA-VUOTO
Glass search failed MSG-ERR-MANCA-VETRO

Wheel worn - replace MSG-ERR-MOLA-ESAURITA
Cycle interrupted by emergency MSG-ERR-EMERG-BREAK

Bewilderment bridge motor excessive MSG-ERR-STOP-MOTOR-PHASE
Invalid position for cut MSG-ERR-POSIZ-ATTESTA

File not found MSG-ERR-OPENFILE
Servo error MSG-ERR-SERVO

Servo warning MSG-ERR-SERVOWARN
Input waiting timeout MSG-ERR-IN-TOUT

Timeout zeroing MSG-ERR-AZZERAMENTO
Drive not ok MSG-ERR-AZZ-WAIT-AZ-OK

Slow down not found MSG-ERR-AZZ-ACCEL
Stop not out MSG-ERR-AZZ-WAIT-EXIT-STOP

Stop not found MSG-ERR-AZZ-WAIT-STOP
Error photocell1 MSG-ERR-FTC1
Error photocell2 MSG-ERR-FTC2

Error upper truncate cycle MSG-ERR-CICLOTRONCS
Error attesting cycle MSG-ERR-CICLOATT
Error air presence MSG-ERR-AIR-PRESENCE

Error reading thickness MSG-ERR-SPESS
Error cut security MSG-ERR-SAFETYCUT

Error discharge security MSG-ERR-SAFETYUNLOAD
Glass load still to execute MSG-ERR-LOAD-TODO

Glass load in act MSG-ERR-LOAD-IN-CORSO
Sheet pusher extractable only with high table MSG-ERR-PUSH-ON-LOW

No input MSG-ERR-NO-INPUT
Presence Input MSG-ERR-INPUT

Glass On MSG-ERR-GLASS-ON
Time out MSG-ERR-TIMEOUT

Time out transport glass MSG-ERR-TIMEOUT-TRANSPORT-GLASS
Error transport glass MSG-ERR-TRANSPORT-GLASS

Grinding wheel operations in progress MSG-ERR-OPER-ON-GRIND-IN-CORSO
Operations on the clamping cups in progress MSG-ERR-OPER–ON-CLAMPING-IN-CORSO

Trim presence MSG-ERR-TRIMONPRESSOR
Errore cut cycle MSG-ERR-CICLOCUT

Errore high length MSG-ERR-ALTEZZA
Error piece length MSG-ERR-LUNGHEZZA

Trim Not Falled in Trim box MSG-ERR-TRIM-NOT-FALLED
Pezzo fuori squadro MSG-ERR-FUORI-SQUADRO

Error rotation cycle 6000 MSG-ERR-CICLOROT6
Data corrupted on some EtherCAT slave. MSG-ERR-MESSAGES-LOST-BY-SLAVE

Error safety tilt MSG-ERR-SAFETYTILT
Glass under thickness measure MSG-ERR-TRANSPORT-GLASS-FTC-THICK

Timeout Blade Lowering MSG-ERR-TIMEOUT-BLADE-LOW
Blade broken MSG-ERR-BLADE-NOT-OK

Blade Trim broken MSG-ERR-BLADETRIM-NOT-OK
Trim Box Full MSG-ERR-TRIM-BOX-FULL

Glass on M03, but not on FTC upper carriage MSG-ERR-TRANSPORT-GLASS-FTC-M03
Axis setEnabled failed. Axis MSG-ERR-ENABLE-AXIS

Table 3.2: List of all possible errors for 548 Lam.

27

3 – Database and Data Collection

3.1.9 Other events

Events 100007, 100009, 100010 are not analyzed. However, a brief de-
scription and justification of this decision is given:

• The event 100007 is no longer used, it was the old format of selection
type glass, now replaced by the event 100008.

• The 100009 event contains more precise details about the glass type
and is sent together and in extension to the 100008 event. Inside,
however, the data is not formatted in columns but a single feature
contains a long string with all the information about the glass type,
much more than those contained in the event 100008.

• The 100010 event is being studied and is not yet implemented, always
on the glass type.

3.2 How and when the data is sent
A number of operations are performed before data is sent to the database.
Usually the parameters and the configurations on the use of the machine
are chosen before the operation to be carried out through the graphic
interface. These parameters are then sent to the real time software that
controls the machine, which translates them into a language suitable for
communication with the hardware mounted on the 548 Lam machine.
This low-level software controls the process that the machine is running,
providing input and obtaining output results. When a certain step or
phase ends, the low level software communicates to the interface the out-
come of the operation, returning both the inputs previously supplied and,
in some cases, the outcome of the operation carried out. At this point the
execution of the program continues showing the user the next step that
the machine starts to execute, moreover the log files of the operation are
recorded and some of the data of return from the low level software are
selected and saved in a sort of temporary local backup. When the ma-
chine is not too busy, this backup sends the selected and recorded data to
the cloud database, going to populate the TEvents table discussed in the
previous paragraph. The information contained in TEvents are therefore
only a part of those that the machine uses during its normal operation,
and it is possible, by changing the criteria for selecting information to be
sent to the database, to change the type of data that reaches TEvents.

However, not all events need to be output from the machine and can
be sent before the machine physically performs the operation. These
are selection data, for example the parameters of the glass type and of
the optimizations are saved as events in the database every time the

28

3.3 – Raw Data Manipulation on the Database for Time Prevision

configurations of the interface changed. It is therefore possible that there
are more than one configuration change and therefore various events of
the same type in succession during a period in which the machine is
not actually operating. This happens for glass events, when changed it
is possible that various events related to the various changes reach the
database, it is therefore important to select only the last recorded event of
glass type change before the machine starts operating, so as to associate
the last glass type chosen to the steps and cuts actually made by the
machine.

This last reflection will be of extreme importance when, later on in this
thesis, we will proceed to combine various types of events together (for
example, the Cuts events with the TypeOfGlass ones, the Step with the
Glass in the optimization, etc. . .). An accurate and careful unification of
the events will lead to the creation of new extended but reliable features
for the events of type Cut and Step that contain the output of interest.
Reliability is vital to have concrete and correct results from the machine
learning algorithms that will be used to try to predict errors and increase
the quality of the output of the machine in terms of correctly cut pieces
or successfully performed steps. Also expanding the amount of features
to be used with machine learning algorithms can be of great importance
if you realize you have problems related to high bias. These technicalities
will be discussed in detail in the chapter dedicated to the choice of the
most suitable algorithms for this work.

3.3 Raw Data Manipulation on the Database
for Time Prevision

TEvents is the only table that continuously increases the size of the AWS
database. It is still possible to manage and edit data directly online
through the Microsoft SQL Server database manager. Through this soft-
ware you can manipulate the database by creating new tables or views
getting the data from TEvents filtering them appropriately. In fact the
subtables generated by TEvents in the AWS server are many, all created
for statistical purposes. Among these there are 2 that will be the starting
point for the time prevision part, already developed by Bottero. The sec-
ond part of the thesis will take in input these two tables and after a small
pre-processing the data will be well formatted to estimate the processing
time for each step.

These two tables are:

• view_StepDetail

29

3 – Database and Data Collection

• TLamiWinDataToRtx548

The first one is an extension of the Step event to which other information
of other events like Session, Glass, TypeOfGlass have been associated so
that the table contains a lot of information related to each step taken by
the machine. Having a lot of information for each step it is possible to
estimate the working time of that operation and finally obtain the total
working time of the plate by adding all the steps belonging to a glass
plate.

The second table contains additional information for each step. A
column is a pointer to the step ID so that the two tables can be merged
to create an extended one with even more information, so that the time
prediction is more precise.

These two tables were created by Bottero explicitly in order to be
functional to the prediction of machining times. To create them Bottero
worked, as anticipated, on SQL Server directly connected to the database
AWS. Starting from TEvents the desired data was searched and associ-
ated in the two tables. The programming on SQL Server is done through
the T-SQL language very powerful. The two tables will then be extracted
and imported in python development environment for faster management
and for the application of machine learning algorithms. Of this work I
will discuss in chapter related with time prevision.

30

Chapter 4

Machine Learning: Main
Supervised Characteristics
and Algorithms

A formal definition of what machine learning is was given by Tom. M.
Mitchell and turns out to be highly rated and appreciated:

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E.

It is clear from this definition what is meant by learning : a program is
said to learn if there is an improvement in performance after completing
a task, i.e. with experience. Based on this experience of the program, the
objective of machine learning is to successfully complete new tasks that
it has never faced. Thanks to many examples collected (and therefore
known), the machine that has the task of producing accurate forecasts
based on criteria detected independently during the training phase is
instructed. From what has been said we can identify the various steps
that are necessary to successfully develop a classical machine learning
algorithm. These phases are:

• Learning

• Test and Validation

• Prediction

To these it is necessary to add the pre-processing phase of the data to pro-
vide the algorithm with correct, significant and well-formatted examples,
so as to optimize the learning phase and obtain better predictions. The
first two phases are iterative until the algorithm is validated. Iterative

31

4 – Machine Learning: Main Supervised Characteristics and Algorithms

means that parameters, features, algorithms are often changed before be-
ing satisfied with the result. These iterations are due to the resolution of
problems intrinsic to machine learning projects that are related to over-
fitting, underfitting, bias, variance, size and characteristics of the training
and test set, type and complexity of the hypothesis, features selection. In
the next paragraphs these concepts will be extended and defined precisely
because they will be an integral part of this thesis, in fact we will discuss
them again when we will choose the algorithms to be adopted for this
work.

Now it is good to define the different types of existing machine learning
that can be divided into 4 groups:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

• Recommender Systems

The most important for this work is the first type. Supervised Learning
works with examples providing input and relative output, a part of these
examples are known during the learning phase. The objective is to extract
a general rule that associates the inputs with the correct outputs, when
this rule has been found the algorithm is able to use only the inputs
so as to be useful for predicting the output. The goal is to be able to
trust these predictions with some confidence, to measure the degree of
"confidence" of the model there is the testing and validation phase that
defines measures regarding accuracy, precision, recall, F1 score, etc. . .

The other types of machine learning are not important for the purpose
of this work. Only Unsupervised Learning deserves a mention, in which
unlike the previous one the outputs are not provided but are only the
inputs. These algorithms have the task of finding correlations between
the inputs provided and grouping them, doing what in jargon is called
clustering.

4.1 Supervised Learning

To better understand this type of learning on which this thesis is based,
the typical structure of this type will now be described. In addition, com-
mon and known problems will be discussed, together with some evaluation
methods and the most used supervised learning algorithms.

32

4.1 – Supervised Learning

4.1.1 General Structure

To be able to use these types of algorithms you must have a so-called
training set of examples. Generally, the larger this set is, the better the
final result will be, but the slower the training process will be. Sometimes
having a huge set of examples is not enough to improve the results of the
algorithm, but surely the result will not get worse as the examples grow.
The set of examples must always be representative of the problem that
you want to solve, that is, the examples that you want to predict later
must have similar characteristics to those used during the testing and
training phase.

Normally the set of examples is divided into two groups, one for train-
ing (the algorithm searches for correlations between input and output)
and the other for testing and validation (the trained model is provided
only the inputs of the test set, so that you can compare the predictions
resulting from the correlations found previously in the training set with
the true outputs of the test set, known but not provided). It is common
practice to divide the two sets into percentages 70-30 for training and
testing, but a variation of ±15% is common. Another method of model
validation is to divide the set of examples into three sub-sets instead of
two: training, cross validation and test sets. The new cross validation
set works as a temporary test set that indicates what to change when
adjusting the algorithm parameters. We use a percentage division of the
set of examples in the ratios 70-15-15 or 60-20-20. These percentages
are not fixed and generally the tests and cross validation sets reduce the
fraction of the total database if the number of examples is very large. In
fact, for databases with many entries (millions) it is not necessary to have
large test sets because even a small percentage contains all the types of
examples needed and are therefore representative of the case study.

While the testing phase is simple and requires no effort to be un-
derstood, the training phase is much more complex because it is based
on mathematical intuitions. Training is in fact an iterative process of
minimizing the error of prediction. Generally this error is calculated on
the basis of the difference between the prediction and the true output.
With the number of iterations this error tends to decrease asymptotically.
Technically the error that is calculated is the error of fitting of the data
by a hypothesis function. Before continuing, it is good to define what is
meant by these two terms. The hypothesis function is the mathematical
function that predicts the result given the inputs and set the parameters
within the function itself. This function can be more or less complex,
linear or polynomial, exponential, logarithmic etc. . . A given example de-
fined by certain features (input) produces an output well defined by the

33

4 – Machine Learning: Main Supervised Characteristics and Algorithms

function and dependent on the chosen parameters. Therefore the hypoth-
esis function weighs the various input features to produce output. The
weights are just the parameters that therefore become the object to be
defined during the learning phase. Each algorithm has a different hypoth-
esis function and therefore different parameters will also be obtained. The
value of the weights (the parameters) define the so called fitting of the
data. The fitting can be defined as finding the multidimensional line or
surface that best approximates the examples during training. The choice
of weights is defined by the cost function, i.e. by a function of minimizing
the error between the fitting surface defined by the parameters in the
features space and the real values of the output. If this fitting is very
precise (i.e. each example perfectly belong at the surface) the algorithm
risk running into the problem of overfitting, if it is too rough it risk the
opposite problem of underfitting. These two problems will be discussed
shortly.

A simple representation of what has just been explained is visible in
figure 4.3 where you can observe the fitting line for a linear regression
problem, that in the first case represents an underfit condition and in the
third case an overfit, while the second is an adequate fit of the data. In
figure 4.2 it is instead possible to visualize a graphic representation of a
possible and simple cost function that depends only from two parameters.
When its value is minimum, there is the best adaptation of the training
data with the prediction model, but there is a risk of overfitting.

Only for example a Linear Regression Hypothesis Function (regression
problems) has this shape:

hϑ(x) = ϑ0 + ϑ1 ∗ x1 + ϑ2 ∗ x2 + · · ·+ ϑn ∗ xn = ϑTX

Where the coefficients ϑ are the parameters to be estimate and the
features x are the input informations at the algorithm. The cost function
to minimize to find the ϑ parameters is instead:

J(ϑ) =
1

2m

m∑
i=1

(hϑ(x(i))− y(i))2

Finally the iterative process to compute ϑ parameters is of this form:

ϑj = ϑj −
α

m

m∑
i=1

[(hϑ(x(i))− y(i))x(i)j]

As you can see the conversion depends on a so-called learning rate
α, the tuning of this parameter have some effect on the velocity of the
conversion and in its accuracy, in fact if it is too little the conversion will

34

4.1 – Supervised Learning

be precise but very slow and the number of iteration required to converge
at the minimum of the cost function will be huge. On the contrary, a big
value of α may create problems of oscillations in the convergence or even
divergence. So it is crucial to determine it well.

Figure 4.1: Different fit of the data set for a regression problem: an underfitting, a good
fit and an overfitting. The different behaviors are due to different choice of parameters in
the hypothesis function.

Figure 4.2: A simple representation of a cost function: there is at least one minimum
but normally it is possible to find a local minimum trying to minimize the cost function.

Things can be much more complex than what is described with the
increase of the number of parameters, of the form of the cost function
and of that of the hypothesis function, of the variance and of the average
of the data.

35

4 – Machine Learning: Main Supervised Characteristics and Algorithms

4.1.2 Classification and Regression

Before are cited terms such a regression and classification. These are the
two categories of problems in witch supervised learning algorithms are
divided:

Regression problems : they are problems with continuous output in
the domain of real or integer numbers or in any case in an infinite
range of possibilities. An example of a regression problem is the
prediction of the price of a house based on the number of rooms,
square meters,. . .

Classification problems : the output of the problem is in this case
belonging to a small circle of possibilities. This set can be composed
by two alternatives (0 or 1) or by a integer number more or less wide.
In any case, the size of the integer is known a priori. Some examples
of classification problems are the diagnosis of a disease, predicting
the gender of a child based on the characteristics of the parents,. . .

It is easy to guess that for the purpose of this thesis it is necessary to
use supervised algorithms for both the parts of error prediction and time
prevision, because the output that we will analyze and that we want to
predict for the 548 Lam machine is labeed with a known output. In details
classificatioin algorithms are to be used in the first case to understand
whether a glass cut of the 548 Lam machine ends well or badly, while in
the second case we need a continuous range of time necessary to make a
certain step, this would belong to regression problems. In any case, both
these models need to be trained with supervised techniques, i.e. with a
complete training set of known output.

4.1.3 Underfitting and Overfitting

In this and in the following sub-section the already mentioned concept of
fitting is extended.

Overfitting generally appears in models that train data too well, that
is, when a model learns the details and even the noises of the data. These
have a negative and wrong impact during the test phase because the
model takes into account the fluctuations that normally are present in
the training set. Noise is learned as part of the model even if it is not.
This problem is mostly found in non-linear models, i.e. as complexity
increases, because the fit curve can take on more complex forms and
there is a lot of flexibility in fitting. Therefore, some techniques have
been developed to limit that the model learns too much detail from the
features and thus avoid overfitting.

36

4.1 – Supervised Learning

The problem of underfitting, on the other hand, refers to poorly ap-
proximated problems that cannot predict new examples. The function
and calculated parameters are not suitable for the chosen model and per-
formance is poor. Underfitting is generally simpler to resolve than over-
fitting because it is easy to identify with a good choice of performance
metrics.

Figure 4.3: Overfitting and underfitting for a simple classification problem: the circles
and the cross identify two categories of output, they are correlated with the values of the
features in the axis.

Ideally, you should select a good model that is precise but does not in-
clude noise during the training phase. The problem is therefore a tradeoff
between under and overfitting.

To understand how learning is working with respect to fitting, it is
possible to plot the errors of training and test sets according to the com-
plexity of the algorithm. Both start from a big error that initially de-
crease. The error of the training set continues to decrease incrementing
the complexity of the model and tends to converge to zero when there is
a perfect fit of the data (including noise), while that of the test set first
drops to a minimum value, then if the model is too complicated begins
to rise again. When the error of the test set starts to rise again, we are
facing with the problem of overfitting. When both errors are large there
is instead the problem of underfitting. It is important to note that we are
globally interested in the error on the test set because the ultimate goal
is to train an algorithm to make predictions on data not yet analyzed.
The figure 4.4 is a graphical representation of what just mentioned.

Overfitting is a big problem during a machine learning project. Unlike
underfitting, it is difficult to identify because the training model behaves
well (too well). There are various methods to limit overfitting including
simplifying the model, applying regularization (limiting the importance
of certain features) and more.

37

4 – Machine Learning: Main Supervised Characteristics and Algorithms

Figure 4.4: Correlation errors/fitting in function of model complexity: for great com-
plexity of the model the test set may suffer of overfitting, while for too easy model it can
suffer of underfitting. The correct fitting is a tradeoff of the two.

4.1.4 Bias and Variance

The concept of bias and variance is closely linked to that of fitting, so
it is discussed here. Bias and variance are two typical problems of the
machine learning algorithms that always arise and therefore must be able
to analyze and limit. There is a tradeoff in the ability of a model to
minimize bias rather than variance. If you have a lot of data available,
an informal definition is as follows:

Bias :can be thought of as the error of the algorithm in predicting the
output of the training set from which it was trained and that therefore
"knows".

Variance :can instead be thought of as the worsening of prediction be-
tween the training set and the test set (it is assumed that the accuracy
of the training set is always better than that of the test set).

Using these two definitions is very easy to compare them with the
concept of fitting. In fact if the error on the training set is low but I
have a big error on the test set there will be an overfitting problem and
there will be great variance. On the contrary if the error on the training
set is big and is very similar to the error on the test set there will be
underfitting and high bias.

Finally it is possible to define a minimum bias not eliminable, in this
case the definition of bias changes because it is necessary to take into
account this additional part. The unavoidable bias is not erasable by any

38

4.1 – Supervised Learning

kind of algorithm because it depends on the structure of the data. This
type of bias is not always easy to recognize, especially in machine learning
projects that a human is not able to perform.

There are many method to reduce bias and variance, but as you can
see in table 4.1 many of them are in contrast: one reduce a problem but
sometimes increase the other.

Reduce Bias Reduce Variance

Increase the model size Decrease the model size
Modify input features Reduce input features

Reduce or eliminate regularization Add regularization
Modify model architecture Modify model architecture
Add more training data Add more training data

Augment complexity of the model Add early stopping in gradient descent

Table 4.1: Reducing Bias and Variance: some method are common and other are in
contrast.

Mathematic Definition

To formalize the definition, it is now proposed the mathematical concept
of Bias and Variance related to the world of machine learning. Given a set
of m examples each composed of n features xi and an output y , we can
evaluate the performance of the machine learning algorithm through the
analysis of the convergence error between training set and real output.The
real output y can be described by a function of x plus an error term with
zero mean: y = f(x) + ε. The error we are interested to compute is the
square of the difference between this y and the hypothesis function f̃(x)
that is the predictive function that approximate y:

Err(x) = E[(y − f̃(x))2] = E[(f(x) + ε− f̃(x))2]

It is possible to show that the previous formula can be re-written as follow:

Err(x) = (E[f̃(x)]− f(x))2 + E[(f̃(x)− E[f̃(x)])2] + ε2

where the three separate terms have the following meaning:
Bias2 = (E[f̃(x)]− f(x))2

V ariance = E[(f̃(x)− E[f̃(x)])2]

Irreducible error = ε2

39

4 – Machine Learning: Main Supervised Characteristics and Algorithms

The important thing to note is that with this definition Bias and Variance
depends on f̃(x) so on the selected model and on the correlated parame-
ters, while ε2 is proper of the system. This means that Bias and Variance
are variable parameters that we can modify if selecting an appropriate
hypothesis function while the internal error of y is not. This error de-
pends on the goodness of the data and can influence a lot the final result
of the machine learning project.

Learning Curves

The learning curves are graphs of performance (y-axis) according to ex-
perience or training time (x-axis). The most common in machine learning
are curves of loss (cost function) or accuracy with respect to the increase
of training examples. In the same graph two curves are usually plotted,
one relative to the training set and the other to the test set. In this way
it is possible to compare the evolution of the performances with respect
to the variation of the experience of the algorithm based on the quantity
of examples used during the training phase. In this section we decided to
plot the error of the training and test sets, but later in this work you will
also see those related to accuracy that are roughly the opposite of those
of the error.

The learning curves based on error as a function of the number of
examples generally have a decreasing trend with regard to the test set
and increasing with regard to the training set. This means that gener-
ally the error of the test set decreases with the increase of the number
of examples while the error of the training set increases. At best, the
two curves asymptotically converge around a low error and their values
remain about constant after a number of examples of the training set. In
figure 4.5 is shown a learning curve of a model that perform well because
the convergence is fast and the final error low.

Figure 4.5: Learning curve that seems to perform well: the two curves are converging
near the desired value.

40

4.1 – Supervised Learning

If the behavior deviates from that of the figure 4.5 it is possible to
identify various problems that can be solved in different ways:

• High Variance
• High Bias
• High Bias and Variance
• Model Performance Mismatch
In order to identify these problems, it is necessary to be able to recog-

nize for your model a desired performance to be displayed on the graph.
In the case in which the metrics of evaluation of the learning curve is the
error, it is therefore necessary to be able to estimate the error considered
acceptable for our machine learning model (e.g. I want my model to be
able to fail less than 5% of the output, 5% is the desired error).

Now the possible behaviors of the learning curves will be briefly ana-
lyzed:

High Variance

If you are measuring the error a model with high variance will have
a big gap between test and training error. The desired performances
are still achievable because the error of the training set remains low and
therefore increasing the number of examples or using other techniques to
limit the variance the two curves will get closer and closer.

Figure 4.6: Learning curve for high variance dataset: the two curves can still converge
in the range of desired performance if the model is correctly modified.

High Bias

If there are bias problems, the two curves converge rapidly and at the
same asymptote but far from the desired performance. This means that
the test set is representative of the dataset but the model has been poorly
trained.

High Bias and Variance

41

4 – Machine Learning: Main Supervised Characteristics and Algorithms

Figure 4.7: Learning curve for high bias: the two curves behave the same and are con-
verged. No more data is useful and we have to modify the model for better performance.

The two curves are quite flat and converged, far from each other and
both far from the desired performance. In this case it is necessary to
change the model or improve the pre-processing phase. If these methods
do not work, there may be a problem of model performance mismatch.

Model Performance Mismatch Learning curves can also be used

to diagnose dataset properties and whether the dataset is representative
of the problem to be solved. A non-representative dataset does not cap-
ture the statistical characteristics of the problem. The term Model Per-
formance Mismatch means that the chosen machine learning algorithm
behaves very differently between training set and test set. A small differ-
ence is normal because it indicates an inevitable small overfitting but if
this discrepancy is too large it compulsory to reduce it to obtain accept-
able results. We want to have small discrepancies between training and
test set so that we can compare and choose between the various models
which is the best. The possible causes of a Model Performance Mismatch
are:

Model overfitting : usually is the more frequent cause, solutions were
already mentioned.

Quality of the sampling data: it is possible that the training or test set
is not representative or that the training set does not cover all possible
cases. In this case, increasing a lot the number of examples is very useful
to cover all possible cases. To understand if we are facing this problem
it is useful to analyze the statistics of the features and look for if there is
great variance and standard deviation in the data.

Stochastic nature of algorithms : creates discrepancies in the model
score due to a random factor (e.g. algorithm initialization) that affects
model accuracy. This problem can be visualized by evaluating the vari-
ance of the cross validation set.

42

4.1 – Supervised Learning

Many problems with the Model Performance Mismatch can be avoided
by using a more robust test set. To understand if you are using a suitable
test set you need to perform an analysis before using it for evaluation.
However, this analysis is often complex and time-consuming.

4.1.5 Evaluation Metrics

The problems related to fitting, variance and bias can be identified through
evaluation metrics, which, in addition to indicating which are the prob-
lems, also make different algorithms comparable. Moreover, the same
algorithm can give good results with a certain evaluation metric, and
poor results with others. Therefore it is necessary to know all the eval-
uation techniques in order to fully understand how the model is really
behaving.

The most popular evaluation metrics are:

• Accuracy

• Confusion matrix

• Recall and Precisioin

• F1 score

• Mean absolute error

• Mean squared error

A brief discussion about these evaluation metrics are carried on:

Accuracy

Accuracy is the most classic and instinctive method of evaluation based
on the ratio between correct predictions and total number of predictions.

Accuracy =
Correct predictions

Total number of predictions

A significant problem of this method of evaluation is visible when you
have very unbalanced classes in the number of occurrences, this method
of evaluation does not give useful information and you risk misunder-
standings.

Example: if a machine works well in 99% of the cases and gives an error
only 1% of the time, an algorithm that never predicts errors will predict
100% negative cases (usually 0 is attributed to the major value and 1
to the particular case). The accuracy, when calculated, will therefore
be 99%, which seems to be a very good value. The problem is that

43

4 – Machine Learning: Main Supervised Characteristics and Algorithms

my algorithm never recognizes a positive case, so it does not work! For
this reason, for very unbalanced classes, other methods such as F1 score,
Recall and Precision are used.

Confusion matrix

It is an array that completely defines the behavior of a model, used in
classification problems. In case of binary classification the confusion ma-
trix correlates the predicted results with the real ones. Its form is shown
in figure 4.2. The terms true and false, positive and negative, refer to the

Predicted Negative Predicted Positive

Real Negative True Negative False Positive
Real Positive False Negative True Positive

Table 4.2: Confusion matrix for binary classification.

goodness of the forecast after comparing it with the real output in the
test set. In detail:
True Positive : positive predicted and positive real value.
True Negative : negative predicted and negative real value
False Positive : positive predicted but negative real value.
False Negative : negative predicted but positive real value.
Positive is usually understood as a minority value to which we tend to
assign the value 1 (in other words, the action that happens rarely has a
value of 1). You can calculate the previously defined accuracy with the
use of the confusion matrix in this way:

Accuracy =
True positive+ True negative

True positive+ True negative+ False positive+ False negative

=
True positive+ True negative

Total number of prediction

Recall and Precision

These are two measures based on the values of the confusion matrix. They
are especially useful in the case of unbalanced datasets, when the mea-
surement of accuracy is not adequate as described above. The definition
of precision and recall is as follows:

Precision =
True positive

True positive+ False positive
=

True positive

n. predicted positive

44

4.1 – Supervised Learning

Recall =
True positive

True positive+ False negative
=

True positive

n. actual positive

These are two measures that are often calculated for the minority class
but their definition can be modified to use it also with the majority class.

Accuracy is the reliability of the prediction. When precision tends to
one for sure when the algorithm predicts a positive case the real output
will also be positive. On the contrary when the precision tends to zero
if the algorithm predicts positive the real value will almost certainly be
negative. Therefore the more the precision tends to the value one, the
higher the reliability is.

The recall instead indicates the amount of positive values found by the
algorithm on the total of the real positive values. When the recall tends
to one, the algorithm finds almost all the values that are actually positive.
If it tends to zero, however, the algorithm finds almost no positive values
among the real ones.

There are cases where you have high precision and low recall: in these
cases you can trust when the algorithm predicts one, because it will also
be a real positive, but there will be many unforeseen positives. On the
contrary, there are cases in which you have low precision and high recall:
the algorithm predicts many positives that will actually be negatives,
but on the number of forecasts the algorithm includes almost all the real
positive values. The reliability is low but it can be said to be a particularly
conservative case.

F1 Score

Since precision and recall are often in contrast, this value represents the
condensation of two metrics into one number. It is often defined in various
ways but the most common method is as follows:

F1 = 2
PR

P +R

Where P and R represent precision and recall values. The relation be-
tween precision and recall is usually non linear, for this reason is a good
idea to use this single performance metric. Sometimes there are situatins
in which the goal is to reach a good precision instead of a high recall or
vice versa. So the better choice is to apply these metrics case by case.

Mean absolute error

The metric now analyzed is again a generic metric for both classification
and regression problems that indicates the difference between the predic-
tion and the real output, in practice it is a measure of the error of the

45

4 – Machine Learning: Main Supervised Characteristics and Algorithms

average prediction for all the examples of the training set. It is defined
in the following way:

MAE =
1

m

m∑
i=1

|yi − ỹi| i = 1,2, . . . ,m

Mean squared error

Very similar to the previous one but it takes into consideration the square
of the difference between true output and forecast, then it averages on the
number of examples in the training set. The advantage compared to the
previous metric is in the easy use for the search of the gradient because
with this shrewdness of the square the calculation of the derivative is
simplified a lot. The computational calculation is faster. In addition,
the power of two enhances the larger errors making the algorithm more
efficient for the main losses. The form is as follows:

MSE =
1

m

m∑
i=1

(yi − ỹi)2 i = 1,2, . . . ,m

4.2 Classification Learning Algorithms
This section describes the main features of the most commonly used ma-
chine learning algorithms concerning classification problems. The descrip-
tion will be mostly qualitative, expressing general concepts and useful in-
formation to understand the differences between the various algorithms.
Where deemed appropriate, some mathematical concepts that are on the
basis of the algorithms will be expressed. In the literature exist numerous
articles and manuals, please refer to these for further details.

4.2.1 Logistic Regression

It is a simple and well-established classification technique. It takes its
cue from linear regression, a standard technique for regression problems
(output to be predicted in a continuous and infinite domain). It is based
on a hypothetical function to make predictions called Sigmoid function
or Logistic function. It is a function with real domain between zero and
one and infinite co-domain. Its form is the following:

g(θTX) =
1

1 + e−θTX

The Sigmoid function is defined positive, dependent on the matricial

46

4.2 – Classification Learning Algorithms

Figure 4.8: Sigmoid function: hypothesis function for logistic regression.

quantity θTX , i.e. it is a function of the features X of the examples
of the dataset once fixed the parameters θ to optimize. Returns a value
between 0 and 1 not a simple binary value. However, being in a problem
of classification the algorithm must choose a threshold of separation of
the two classes. Usually this threshold is set to the value of 0.5 but can be
modified to increase or not the confidence in the prediction obtained. In
fact, a number close to 1 indicates that the prediction is more likely to be
safe, while a value slightly higher than 0.5 is an indication of uncertainty
of the forecast. As the complexity of the θTX function increases, there are
more complex decision boundaries and a better fit of the training data,
creating however the possible problem of overfitting and variance.

To find the parameters θ a modified cost function J is used compared
to the normal minimization of the square of the error between prediction
and real output. This is due to the form of the cost function created using
the Sigmoid function to make predictions, in fact if you used normally the
cost function would become a non-convex function and the simple appli-
cation of gradient descent algorithms would not find the global minimum
but would stop in a local minimum, resulting in poor performance. For
these reasons the cost function becomes the following:

J(ϑ) =
−1

m

m∑
i=1

(y(i) log(hϑ(x(i))) + (1− y(i)) log[1− hϑ(x(i))])

Through the derivation of its gradient it is possible to find the global
minimum and therefore the appropriate parameters. Once found, the
training phase ends and you can use the Sigmoid function to quickly
calculate future predictions.

Due to overfitting problems it is possible to modify the cost function
to find theta parameters that are less dependent on the details of the X
feautures, this technique is called regularization.

47

4 – Machine Learning: Main Supervised Characteristics and Algorithms

Logistic regression is not the most powerful and versatile technique
but it is certainly well structured and there are various reliable libraries
that implement it. It works well in standard machine learning problems
where the purpose is well defined. It is very fast if there are no features
disconnected from the output or similarities between features (indepen-
dent features). It is susceptible to overfitting problems and requires well
formatted and linearly separable data.

4.2.2 Naive Bayas

Unlike the previous one, this is a probabilistic method based on the Bayes
theorem. First of all we calculate the probabilities of obtaining an out-
put 0 or 1, based on the training dataset, then we individually correlate
the features with the output, that is according to the value of a feature
we calculate the probability that the output is 0 or 1. We repeat this
operation for all the features, then we make cross correlations between
the probabilities just calculated. In other words we multiply the various
probabilities feature by feature obtaining a general value index of the
probability of that sequence of features with respect to the output. The
more features you have and the more diversity of possibilities you have
for each features, the more complex the calculation and cross-referencing
of data becomes. The probabilities obtained must then be normalized
according to the recurrence of the features and their values.

In mathematical terms we can say that given a problem of classifica-
tion it is represented by n featuresX (they must be independent for Bayes
property). The model assigns a probabilistic outcome to each Ck for each
possible K outcome. If we are in binary classification the outcomes are
only two (0 or 1). In formula:

P (Ck|x1, x2, ...xn)

Using Bayes’ probabilistic theorem rewrites the previous formula in this
way:

P (Ck|x) =
P (Ck)P (x|Ck)

P (x)

That is, in Bayesan terminology:

Posterior =
Prior ∗ Likehood

Evidence

Evidence is a constant that depends on features data, it is a normaliza-
tion constant. Prior * Likehood can be rewritten (assuming indipendent

48

4.2 – Classification Learning Algorithms

features) as:

P (Ck|x1, x2, ...xn) = P (Ck)
n∏
i=1

P (xi|Ck)

The Naive Bayes classifier combines this probabilistic model with certain
decision rules based on the value of probability. This creates an algorithm
that provides an output based on the probability calculated with the
Bayes theorem. It is therefore assigned ỹ = Ck for a certain k based on
the following rule:

ỹ = argmaxK∈{0−1}P (Ck)
n∏
i=1

P (xi|Ck)

There are various versions and extensions of this classifier such as Gaus-
sian Naive Bayes, Multinominal Naive Bayes, Bernulli Naive Bayes,. . .

A theoretical limitation of this algorithm concerns the independence
of features. In practice, in fact, this hypothesis is difficult to achieve.
However, various tests have shown that even if this hypothesis is not
guaranteed, the model often behaves well. A disadvantage is the behavior
of the algorithm towards new features, as these will be assigned a zero
probability and you can not make a prediction. So it needs well-formatted
datasets and large enough to cover all cases. It is often used in real time
applications, for multiclass classification, text classification, social media
analysis, recommender system.

4.2.3 Support Vector Machine
Support Vector Machine can be seen as an extension of logistic regression.
Its cost function is very similar to the one previously analyzed. In fact,
it is a piecewise approximation of the logarithmic values within the cost
function. Its structure becomes:

J(θTX) = C

m∑
i=1

(yicost1(θ
TX) + (1− yi)cost0(θTX)) +

1

2

n∑
j=1

θ2j

where cost1 and cost2 are the piecewise approximations of the logarithms.
Moreover, the constant C is the term of regularization and the part 1

m

is no longer present in the minimization of the cost function. Unlike the
logistic regression which has only one decision threshold to obtain the
prediction 0 or 1, the SVM has limit values beyond which the prediction
can only be 0 or 1: {

θTX ≥ 1→ y = 1

θTX ≤ −1→ y = 0

49

4 – Machine Learning: Main Supervised Characteristics and Algorithms

There is an additional safety factor between -1 and 1 to be sure of the
result. While in logistics the only threshold was around zero.

SVM is defined large margin classifier because it always leaves the
greatest margin in the choice of the decision boundary, this increases the
robustness of the algorithm, it is always chosen the line with more margin
with the same fitting. This property is graphically visible in the figure
4.9.

Figure 4.9: SVM: large margin classifier. The selected boundary is the farthest from the
data.

SVM works by defining a similarity function that associates a value
between 0 and 1 to each landmark-example pair. Each example is chosen
as a landmark, so calculating the similarity function creates regions with
a wide margin to identify areas where the output is 0 or 1. That is, each
example becomes a nucleus from which the similarity with the other nu-
cleus are defined. The similarity function can be more or less complex.
Some examples are Linear Kernel, Gaussian Kernel, Polynomial Kernel,
String Kernel and others. . . Due to its cost function it is possible to opti-
mize the computational calculation making it fast and efficient. In other
words, the SVM is based on the idea of finding a hyperplane that best
divides a set of data. The term "support vector" identifies the points
(examples) closer to the hyperplane, if they are removed or moved they
modify the position of the hyperplane. The margin is therefore the dis-
tance from the "support vectors", these distances define the position of
the dividing plane. The hyperplane can be linear or non-linear using the
kernel idea.

The advantages of the SVM are: effectiveness in large spaces, memory
efficiency, versatility in the choice of the hyperplane, accuracy.

50

4.2 – Classification Learning Algorithms

4.2.4 Random Forest Classifier

This algorithm is based on the concept of decision tree. A decision tree
can be considered as a predictive model for making classifications. It has
a hierarchical structure formed by a series of ramifications that converge
more or less slowly towards a result based on a series of decisions imposed
during the branching of the tree. The main characteristics of a decision
tree are:

Entropy : it is a measure of the unpredictability of the system, it is on
the database itself.

Information Gain :when a decision is taken the database is divided in
even more little parts, the entropy is reduced. The information gain
is a measure of the entropy reduction after a node.

Leaf Node : it is th last node of the tree, where the decision is taken.
Here the entropy is minimum and the classification estimation is per-
formed.

Decision Node : nodes where the divisions are taken and the database
is splitted into subsets.

Root Node : it is the top decision node, the database here is complete
and the entropy is maximum.

Decision trees therefore lead to a result based on successive choices
that tend to decrease the entropy of the dataset. They are usually used
for classifications, but if carefully imported they can also be used for
regressions.

A single decision tree is usually characterized by great variance, so
we use a technique that increases the security of the choice called Bag-
ging. Bagging (or Bootstrap Aggregating) is a resampling technique.
The data is sampled with repetition several times, thus obtaining many
different datasets. After which many decision trees are created, one for
each dataset and finally the average of the results thus obtained is cal-
culated or the most recurrent result is chosen. These measures greatly
reduce the variance and make the result more reliable.

The algorithm of Random Forest is based on the idea of Bagging, but
improves it because the various trees are not correlated each other. In
other words, the various re-sampled datasets are scrolled between them,
thus obtaining a wider safety margin and a greater reduction of the vari-
ance. The term "forest" refers precisely to the fact that various decision
trees are used. The algorithm uses them to make classifications between
independent resampled datasets. The chosen result is the most repeated,
the one that happens most frequently in the forest. The important thing

51

4 – Machine Learning: Main Supervised Characteristics and Algorithms

to underline is that each dataset has a different decision-making model
based on the characteristics of its own features.

The random forest algorithm has some main advantages: the use of
many decision trees limits the problem of overfitting. Due to the simplic-
ity of the model, the algorithm is fast in terms of training time. It runs
efficiently on large datasets and works well even in case of datat miss-
ing. So it is an excellent algorithm when you do not have well structured
data or not easily correlations because its great versatility finds the right
decision boundary.

Figure 4.10: RFC: general structure of a Random Forest Classifier. First the dataset is
divided in independent subset, each of them make a prediction based on their decision
tree. The final outcome is a joining of all the decision tree results.

4.2.5 Nearest Neighbor
It is an algorithm that is based on the similarity of the characteristics of
a certain data that you want to classify with respect to k known elements
closer to it. Once fixed the k some regions are defined in the space of the
features where an element for proximity to the other known elements is
labeled according to the characteristics of the dominant elements of that
space. Each element within a known region is immediately labeled. If the
classification is binary (only 0 or 1) it is better to select an odd value
of k to make sure you always have a majority in a given region of space.
For the same reason k should never be multiple of the number of classes.
The main disadvantage of this algorithm is the complexity of searching
for the nearest elements for each new example.

The operation process of this algorithm is easily visualized graphically
in the case of only two features in the database. In the figure 4.11 you
can see how the regions of the classification space change as the value of
k increases.

52

4.2 – Classification Learning Algorithms

Figure 4.11: KNN: classification changes basis on different k. The lighter color indi-
cates a lower reliability of the solution, i.e. those regions have neighbors of not unique
classification.

This algorithm is very powerful when there are large non-linearities
in the structure of the dataset, in fact the KNN algorithms are based
on similarities and can create very complex decision boundaries, differ-
ently from any mathematical formula in other models. The result is an
incredibly flexible algorithm, especially if the value of k is low. In this
case, however, the fit of the data is too precise and you risk running into
the problem of overfitting because the decision boundary is fragmented
and too detailed. On the contrary, if k increases the decision boundary
becomes more and more defined.

As we have understood, choosing the appropriate value of the param-
eter k has a great influence on the performance of the algorithm, in fact
often entire regions change classification according to its value. To choose
it correctly there are some general rules that should be followed. Usually
choosing k as the square root of the number of examples in the dataset
gives pretty results, but it should always be rounded to the odd number
nearest the exact square to avoid possible confusion between two classes
of data.

In the case of large datasets the value of the parameter k will be high,
this considerably increases the complexity of the algorithm and slows it
down. For this reason it works best on small or medium datasets. KNN
works well on well-labeled, noise-free databases. It is also defined as lazy
learner : doesn’t learn discriminative function from the dataset.

Mathematically, the similarities on which the algorithm is based are
calculated on the Euclidean distance in the multidimensional domain of
the features of dimension n. A general structure of this distance is the

53

4 – Machine Learning: Main Supervised Characteristics and Algorithms

following:

d(i) =

√
x
(i)2
1 + x

(i)2
2 + · · ·+ x

(i)2
n

However, it is possible to use different distance formulas in order to give
more or less importance to some features. It is evident that as the num-
ber of features n, number of examples m and value of the parameter of
neighbors k increases, the complexity increases considerably in the calcu-
lation of the distance and therefore in finding the classification regions.
Any algorithm that calculates measurements from features always needs
to normalize the data before performing the calculation. This is necessary
to give each feature the same importance.

4.2.6 Neural Networks

Neural networks are a very powerful tool for machine learning. In recent
years they have become increasingly popular due to the fact that the
computing power needed to manage them is now available. The neural
networks are in fact a tool known for decades but really never used until
a few years ago because of the scarcity of computational resources of the
years of the 900’.

The neural networks are so called because their structure tries to em-
ulate the human brain. Basically, in fact, they are made up of neurons
interconnected among them by means of dentrites and axons. The den-
trites receive the various inputs from the other neurons, while the axon
is in charge of transmitting the processed output, which depends on the
inputs received. Therefore various complex connections are formed, these
connections create the network. Each input to the cell is weighed and
therefore the importance changes through appropriate coefficients to be
determined during the training phase of the network.

Technically, an artificial neural network is composed of three types of
layers:

• Input Layer

• Hidden Layer

• Output Layer

In the simplest cases there are only three levels, but for more complex
networks the number of hidden layers can be greater than one, while input
and output layers are always single. If the classification to be carried out
is binary, the output layer is composed of only one cell able to estimate
if the output is zero or one, while for multiclass classification the output
layer is composed of several cells.

54

4.2 – Classification Learning Algorithms

The learning of a neural network involves, after having fixed the struc-
ture of the network, to find the parameters that weigh the various signals
carried by the network. During the training, the examples are analyzed
individually, as the machine processes the outputs, it proceeds to correct
them to improve the responses by varying the weights.

The training mechanism is a continuous iteration for all examples of
the binomial forward propagation and back propagation. It starts with
random weights, propagates directly to the predicted output, calculates
the error with respect to the actual result, and performs back propaga-
tion to calculate the error at each step of the network. In this way, the
coefficients that cause the error are calibrated. Also for this algorithm
we try to minimize the cost function related to the errors. This process
is a complex process that can be quite slow. However, the efficiency of a
well trained neural network is usually very good and the results are often
more satisfactory than those of other algorithms.

The user of the neural network libraries does not have to worry about
implementing propagation. Its task is to select the appropriate network
structure in terms of size, number of layers and number of neurons. This
is a delicate and not easy task. It is a good idea to always start from
a single hidden layer and try to increase the number if the performance
is not satisfactory. More hidden layers must have more or less the same
number of neurons, this number must be comparable with the number of
input features for each example, to not create an unbalanced network.

in figure 4.12 is shown a typical structure of a neural network at several
levels for binary classification.

Figure 4.12: Neural Network: a typical structure: the network shown has three input
features, a single binary output and three hidden layer equal is size and comparable with
number of features.

The advantages of a neural network are the high parallelism thanks

55

4 – Machine Learning: Main Supervised Characteristics and Algorithms

to which a lot of data can be processed in a short time, the tolerance
to faults, the tolerance to noise, the self-adactivity to data change. The
limits, on the other hand, are linked to the fact that it is not always clear
how the network arrives at the results, so the algorithm behaves like a
black box. In addition, the training period is long due to the complexity
of the algorithm.

4.2.7 Linear Discriminant Analysis and Principal Com-
ponent Analysis

These last two algorithms are not classifiers and therefore are not used
to make predictions of the results. The objective is to discard irrelevant
or less relevant informations to the problem of interest.They are used in
the preprocessing phase to reduce the number of features and compress
them to make the classification algorithms more efficient and make the
data well separable so as to reduce overfitting.

LDA and PCA are both linear transformation techniques. PCA is an
unsupervised learning algorithm that identifies the direction of the prin-
cipal components that maximizes the variance of the database (preserve
pattern information to the fullest possible extent). LDA is instead a su-
pervised learning technique that finds the direction that maximizes the
separation between classes to facilitate classification (favours dimensions
that discriminate against classes).

The structure of the LDA process is as follows:

1. Calculation of separability between classes.

2. Calculation of the distance between the class average and the exam-
ples for each feature.

3. Build the smallest dimensional space that maximizes the first step
and minimizes the second.

4. Project the original data into the created subspace.

Some of the disadvantages of the LDA analysis are the low efficiency
in small databases and the problem related to the non-linearity of the
initial features. If linearity is not guaranteed, the LDA analysis cannot
find the subspace to reduce features dimension. This problem can be
partially solved by using the kernel, similar to SVM kernel technique.
LDA analysis is often used in speech recognition and in many medical
applications where features are linearly separable.

The PCA aim instead, is to reduce the number of variables describing
a dataset to a smaller number, limiting the loss of information as much as

56

4.3 – Regression Learning Algorithms

possible. This happens through a linear transformation of the variables
that projects the original ones in a new Cartesian system in which the
new variable with the greatest variance is projected on the x axis, second
axis for second size of the variance, and so on. Unlike other linear trans-
formations of variables practiced in the field of statistics, in this technique
are the same data that determine the vectors of transformation, and that
is why the PCA is defined as a technique of unsupervised learning.

In figure 4.13 a representation of the PCA and LDA application is
shown for a dataset with two featuresx x1 and x2. The black segment that
identifies the PCA solution is the hyperplane on which projecting the pat-
terns (regardless of their class) we keep as much information as possible.
The green segment that identifies the LDA solution is the hyperplane
on which, by projecting patterns, we are able to distinguish between the
better the two classes (red versus blue patterns).

Figure 4.13: PCA and LDA representation in a two features size database: the green
and the black lines are a compression from 2D to 1D for LDA and PCA. The objective
on LDA is to separate the classes, the one of PCA is to retain the maximum amount of
informations.

4.3 Regression Learning Algorithms

As previously done for classification problems, in this section we will men-
tion the main algorithms of machine learning for regression problems, that
is with the desired output to be searched in a continuous domain.There

57

4 – Machine Learning: Main Supervised Characteristics and Algorithms

are other types of regression algorithms that can be used in certain par-
ticular cases when the most common, mentioned here are not suitable for
the problem to be solved. In this section we list the most important.

4.3.1 Linear Regression

Linear regression is the first and basic concept of machine learning for re-
gression problems. As already mentioned above, it has such a hypothesis
function:

hϑ(x) = ϑ0 + ϑ1 ∗ x1 + ϑ2 ∗ x2 + · · ·+ ϑn ∗ xn

As you can see is a linear prediction formula in the coefficients and
in the inputs. The coefficients ϑ have to be estimate and the features x
are the input informations taken from the database. The cost function to
optimize to find the best ϑ to have minimum error is instead:

J(ϑ) =
1

2m

m∑
i=1

(hϑ(x(i))− y(i))2

As you can see the cost function tries to minimize the error between
the prediction made by the hypothesis function with certain parameters
and the real output desired. This means that the parameters must be
changed several times before reaching a satisfactory result. The selection
of the parameters therefore takes place in an iterative way according to
the following formula:

ϑj = ϑj −
α

m

m∑
i=1

[(hϑ(x(i))− y(i))x(i)j]

Here there is the introduction of a new parameter, the so-called learn-
ing rate α. Tuning this parameter change the velocity of the conversion
and in its accuracy. A big value of α may create problems of oscillations
in the convergence or even divergence, whie a too little value imply great
precision but very slow convergence so the number of iterations required
to converge at the minimum of the cost function will be huge. Deter-
mination of the learning rate parameter is essential for a good choice of
learning parameters.

In the figure 4.14 it is visible a fitting of the data with linear regres-
sion, the figure shows a two-dimensional representation. It is possible to
imagine a straight line in more dimensions to the increase of the features
that makes the solution no longer graphable.

58

4.3 – Regression Learning Algorithms

Figure 4.14: A typical example of linear regression fitting in 2D.

4.3.2 Polynomial Regression
The polynomial regression has the same cost function as the linear re-
gression from which it starts. The objective is always to find the best
coefficients that minimize the error between prediction and true output.
What changes is the form of the hypothesis function. The input features
are now interpolated obtaining a polynomial between degree greater than
one among the features while the linearity of the coefficients remains. In
fact it would be better to define this kind of algorithms as linear regression
with polynomial features.

It is possible to have any degree of interpolated features, the more the
degree grows, the more the number of total features will be. For example,
think of a machine learning problem that involves only 2 features. The
hypothesis function of a normal linear regression is:

hϑ(x) = ϑ0 + ϑ1 ∗ x1 + ϑ2 ∗ x2

while for a polynomial regression grade 2 we will have:

hϑ(x) = ϑ0 + ϑ1 ∗ x1 + ϑ2 ∗ x2 + ϑ3 ∗ x21 + ϑ4 ∗ x22 + ϑ5 ∗ x1 ∗ x2

and grade 3 becomes:

hϑ(x) = ϑ0+ϑ1∗x1+ϑ2∗x2+ϑ3∗x21+ϑ4∗x22+ϑ5∗x1∗x2+ϑ6∗x31+ϑ7∗x32+ϑ8∗x21∗x2+ϑ9∗x1∗x22

As you can see the complexity of the hypothesis function grows a lot as
soon as the degree of polynomial interpolation rises. For what has been

59

4 – Machine Learning: Main Supervised Characteristics and Algorithms

said so far, if the selected degree is high, the fitting will be more and more
precise with a great risk of overfitting. Moreover, the number of features
increases exponentially, so the computational calculation is a determining
factor in the polynomial regression.

If you have only one feature you can also represent this hypothesis
function in a 2D plane as shown in figure fig:regpol where the interpo-
lation no longer generates a straight line but a curve that approximates
the real values.

Figure 4.15: Polynomial regression, the hypothesis function is now a curve.

4.3.3 Ridge and Lasso Regression
These regression algorithms are based on linear or polynomial regression
with the addition of a term in the regularization cost function. This
device has been thought to avoid the problem of overfitting, therefore the
term has the function to give less importance to the coefficients in the
hypothesis function of certain terms, so that the fitting of the data does
not lead to the above mentioned problem.

In detail, the Ridge regression has the following cost function:

J(ϑ) =
1

2m

m∑
i=1

(hϑ(x(i))− y(i))2 + λ

m∑
i=1

ϑ2
i

λ (lambda) is defined as the tuning parameter, which multiplied by the
sum of the squared coefficients (excluding the intercept) defines the penalty
term. It is evident that having a λ = 0 means not having a penalty in
the model, that is we would produce the same estimates that with the
minimum squares. In another way having a λ very large means having a

60

4.3 – Regression Learning Algorithms

high penalty effect, which will bring many coefficients to be close to zero,
but will not imply their exclusion from the model. The ridge regression
method never allows the exclusion of estimated coefficients similar to 0
from the model. This lack, from the point of view of the accuracy of the
estimate, may not be a problem. A problem connected to this limit is on
the side of the interpretability of the coefficients, given the high number
of predictors.

The lasso method (least absolute shrinkage and selection operator)
fills the disadvantage of the ridge regression. It allows the coefficients
to be excluded from the model when they are equal to zero. It can be
noticed that the formula of the ridge regression is very similar to that
of the lasso, the only difference consists in the structure of the penalty,
in how much it is necessary to calculate the summation of the absolute
value of the coefficients:

J(ϑ) =
1

2m

m∑
i=1

(hϑ(x(i))− y(i))2 + λ
m∑
i=1

|ϑi|

As in the ridge regression the lasso method forces the estimated coeffi-
cients towards zero but, the absolute value present, forces some of them
to be exactly equal to zero.

In general, it can be expected that ridge regression will do a better
job when the number of predictors is high, and at the same time that the
time frame will do a better job when the number of predictors is small.

4.3.4 Support Vector Regression

The support vector machine (SVM) method already seen in the regression
algorithms part can also be used for part and regression while keeping the
characteristic part of the massive margins intact. If used for regression its
name becomes Support Vector Regression (SVR) with some differences
compared toSVM: it is impossible to estimate a number with respect to an
infinite range of possibilities so we use a range within which the solution is
defined as ideal. The main idea is always the same, however, to minimize
the error by finding the hyperplane that maximizes the margins, taking
into account a certain rollerance in the error as just said.

Even the kernel function has the same function of transforming the
data into a higher dimensional feature space to make it possible to perform
the linear separation.

61

4 – Machine Learning: Main Supervised Characteristics and Algorithms

Figure 4.16: Support vector regression with the usage of tolerance range for finding the
maximum margin.

4.4 Supervised Algorithm Choice

There are many types of machine learning algorithms and many libraries
are able to implement them in a performing way. The choice of algorithm
to use is not obvious, because each algorithm has strengths and weak-
nesses and there is no better model than the others but depends on each
situation.

Given the large number of algorithms available, it is necessary to
create a selection process through 2 phases: before and after training in
order to train a limited number of algorithms based on the characteristics
of the dataset.

4.4.1 Choose feasible algorithms

Before training the algorithms it is already possible to partially under-
stand which of the various possible choices will be those that will work
best for our dataset. This group of algorithms is based on the character-
istics of the dataset. The parameters to select them are:

• Linearity of the database

• Missing values in the dataset

• Data repeatability

• Examples and features number

• Number of algorithm parameters

• Class imbalance

62

4.4 – Supervised Algorithm Choice

Linearity of the database

Some algorithms of machine learning use hypothesis of linearity, it is
meant that the classes or the features of the database are separable from
a linear function like a straight line or from a space o hgher dimensions
equivalent and linear. This hypothesis is difficult to ascertain and often
not applicable to real cases. It happens that the features are dependent
and not separable, for this reason the linear algorithms obtain not good
results. More realistically, the data needs polynomial interpolations or
very complex decision boundaries. However, a high degree of polynomial
interpolation is very expensive at a computational level and may therefore
make a probabilistic method preferable to an exact one because of the high
complexity required.

Linear algorithms are however an excellent starting point to under-
stand how the dataset is structured and to direct the choice to more
complex models, avoiding trying to find the best model with a brute
force technique.

Missing values in the dataset

A very common feature in databases is the presence of missing values
between the data. These are due to different phenomena such as the
diversification of the examples in the dataset, data sampling errors, er-
rors during the pre-processing phase,. . . It is very important to take into

account the missing values because some algorithms work badly or do
not work at all in the presence of missing values between the data. This
problem can be solved in two ways: The pre-processing phase is extended
by deleting examples or modifying data; the choice of an algorithm that
is less sensitive to missing values.

In both cases the solution is not optimal because you lose time and
you generally get worse solutions than you would get with a homogeneous
dataset without missing values. The techniques of treatment of these
values are many and if necessary they will be discussed when they occur.

Data repeatability

Any algorithm to work well requires that the outputs to be predicted
depend on features very similar to those with which the algorithm was
trained. However, some models are more sensitive to changes in the input
data to be predicted. These make them adaptable to the training set but
with a poor behavior on the test set and future predictions. This is due to
the more or less important change in input data over time. It is therefore

63

4 – Machine Learning: Main Supervised Characteristics and Algorithms

better in these cases to select an algorithm with worse performance on
the training but with greater versatility and repeatability of accuracy,
this increases the reliability of the output.

Another solution if you want to keep the same high-performance algo-
rithm in your training is to increase the training time and data to cover all
possible cases. Finally, the best performance is obtained by making the
algorithm self-learning over time, i.e. using the prediction data as subse-
quent data to perform a new training by increasing the total dataset and
adding information from the new examples. With this care the algorithm
adapts to the changes that can occur in time and the output remains
reliable over time. The cons is that this continuous training requires
high computational costs to keep the model up to date, this is often not
acceptable during a normal application of the model.

Examples and features number

The size of the database is relevant not only for the training time but also
for the intrinsic ability of an algorithm to properly manage a large amount
of information. For some algorithms it becomes difficult to extract infor-
mation on what are the relevant features causing overfitting problems
that are difficult to solve and identify. In the same way there are oppo-
site problems related to data underfitting if the size of the database is not
adequate. In any case, it is necessary to act on the modification of the
features, using techniques of regularization or extension of the features.
Some algorithms are better then other to extract these informations with-
out modifying the database and this can imply less time to dedicate at
the preprocessing phase.

Number of algorithm parameters

The parameters of the algorithms are those coefficients that characterize
the setup of the model. An algorithm with many parameters is more
difficult to optimize than one with few, and requires a lot of experience
to be used. In general, an algorithm with several parameters is more
flexible and adapts well to many cases, but it is difficult to find the right
combination of these parameters to achieve the best possible performance.

Class imbalance

For classification, an unbalanced dataset guides the user to the algorithms
that will perform best. Usually having a great imbalance between the
classes we tend to use more robust algorithms specifically designed for

64

4.4 – Supervised Algorithm Choice

this function. Algorithms based on research trees are very powerful in
these conditions.

4.4.2 Best algorithm selection
Once you have chosen the group of algorithms that you think can best
behave with the dataset you have, you can train these algorithms and
evaluate which is the best of them on the basis of:

• Performance

• Training time

Performance

One of the most important features of a machine learning algorithm is
that it predicts data well. This is the main purpose of any of such project.
Performance evaluation is done by using a test set to simulate the algo-
rithm’s task, i.e. predict results before they occur. Thanks to the use of
the test set it is possible to extract the evaluation metrics that quantify
in a simple and intuitive way the goodness of an algorithm. They also
make it possible to compare different models so that you can choose the
one with the best performance. For further information, please refer to
the chapter 4.1.5 where the main ones are discussed in detail.

Training time

It is another characteristic to take into account, especially when compar-
ing various algorithms. If you have to do several tests and trials it is a
good idea that this time is limited in order to evaluate the algorithm.
Moreover, there is often a constraint imposed by the project on the time
for elaboration. This time is closely related to performance but some
algorithms, especially those based of probabilistic models, may take a
short time to optimize the parameters and still obtaining good results.
The training time factor can limit the possibilities for a decision of certain
algorithms especially for very large databases because even slightly better
performance can lead to long computational calculations not acceptable.

65

Chapter 5

Error Prediction: Data
Preparation

This chapter and the following one are dedicated to the problem of error
prediction. As mentioned in the chapter 1.2 the problem to be solved is
to try to predict abnormal machine stops and badly finished parts. The
solution chosen involves the use of machine learning algorithms to find
correlations between the inputs provided to the machine. To do this,
the first phase of work is to reconstruct the series of inputs that can be
decisive for a possible failure of the machine. This will be discussed in
this chapter, while in the next we will test various algorithms to find the
one that best suits the problem.

In details we start describing the creation process of a single large
table of cuts. Each cut event will be associated with all other related
events in such a way as to extend the features of the data and add all the
information obtainable from the raw database described in the chapter 3.
From this unified table it will then be possible to easily select subsections
related to the machines concerned.

In the second part we will look for information about the correlations
between features, trying to identify the most similar and dependent ones.
Ensuring independence between features is essential to avoid repetition,
lighten computational calculation and get better results from machine
learning algorithms.

Finally, a statistical analysis will be carried out between the features of
each machine. This will eventually justify a separation of the application
of machine learning algorithms for individual machines and will then also
define the subsections for best results.

In this chapter and in the following ones we will take for granted the

67

5 – Error Prediction: Data Preparation

knowledge of the Jupyter Notebook programming environment, as well
as of the Python programming language and of the main libraries used
for data management, that is Pandas and NumPy. Further information
on the working environment is presented in appendix one, chapter 9.

5.1 A bug in manual mode data collection
A problem come up when plotting the number of occurrences of a badly
finished cut according to the CutLength feature. To do this, we filtered
the extended database by taking only the lines containing a BadTermi-
nated_MC==1 and we used the .hist() method of Pandas to create the
histogram. In this study all data of the three machines were used.

In figure 5.1 it is visible the diagram of the occurrences of a terminated
badly in function of the length of cuttings given as input. As you can
see, there are 2 cutting lengths in which many errors are generated, that
is, when the cut is set to 0mm and 3200mm , while the rest of the errors
are distributed over all the other lengths.

Figure 5.1: Bad terminated cuts occurrency in function of cut length: two peack are
clearly visibles where the errors occurr.

Two further subgraphs have been obtained from the previous one,
they are visible in the figure 5.2. By dividing the manual steps from the
automatic ones, in this way it has been discovered a very important fact
that changes the study conducted. In the graph of the automatic steps

68

5.2 – Data merging

the peak on the length 3200mm remains, this peak is due to the fact that
the glass sheet have dimension in height of this measure, therefore it is the
dimension more cut and the more recurrent, and so it is on this measure
that the greater part of the errors is concentrated. The manual step graph,
on the other hand, has only one value for which the errors occur, namely
the value of CutLength==0. It was thus discovered that the software
that generates the badly finished events for manual cuts contained a bug
and the errors were only sent when the selected measurement was zero,
without taking into account all the other potential bad situations that
can occur in the reality of the problems.

The main consequence is that it is not possible to use the
steps made in manual mode in the machine learning algorithm
because they are buggy. From now on, therefore, the manual
steps identified by the feature StepManual_C== 1 will be dis-
carded. All the graphs and tables will refer from here on only
to cuts made in automatic mode.

Figure 5.2: Automatic and manual occurrency of bad terminated cuts: from this graph
was discovered a bug in manual mode data sending. From now on manual mode data are
no more used.

A further check of the above is visible in the figure 5.3 where you
see the same histogram graph of the occurrence of errors as a function
of the cutting length divided by customers. This shows how the bug is
contained in the software of each machine analyzed, as the badly finished
occur daily at different lengths even if the step is manual.

5.2 Data merging
The term data merging means the union of several datasets into one,
extended, containing information from all the sets that compose the

69

5 – Error Prediction: Data Preparation

Figure 5.3: The discovered bug affects all the clients: no error registration for cut length
different from zero in manual mode operations.

database. This process is necessary when you have multiple sources of
information, raw data or multiple separate tables for storing data. You
can divide this process into three possible groups:

Extend examples : Merging in this way extends the number of exam-
ples, i.e. the length of the table. This method of unification is also
called "hanging new data". It is assumed, in this type of merging,
that the tables to be merged have the same variables and that the
meaning of the columns is the same for both tables. It is also good
to check that the various examples (the rows, the entries of a table)
are not repeated in the various tables to be merged, otherwise it is
necessary to remove the duplicates after merging the data.

Extend the number of features : Extending the number of variables
requires some correlation between features of the two tables to be
merged. Without a proper correlation it is impossible to merge them.
Normally this type of merging is done on the basis of table indexes or
on the value of some feature that is repeated in both datasets. The
output of this merging is an extension of the columns with respect to
the starting datasets. The entries remain the same but the amount
of information for each example increases. Also in this case you
will eventually have to delete the related features to avoid linear
correlations between them.

Associate features uing look-up : This type of merging is the most
complex and is used when you have incomplete datasets to combine,
i.e. with different features and different information contained. There
is not an equal column for merging, only a few data in scattered order
are the link between the two tables. The method of association is
therefore done through some values of one or more features present
in both datasets, or through an algorithm that can identify for each

70

5.2 – Data merging

example of the first set exactly a value of the first set. This implies
that this merging can take place between tables of different sizes as
long as there are direct or indirect correlations between some features
of the tables.
An example is the association of a geographical region (based on the
zipcode) to the examples of a table where each entry corresponds to
the districts of a city. The table to be extended contains information
about the neighborhood and the zipcode of the city. Another table
instead correlates zipcode and region of origin. It is not certain that
all the zipcodes of the second table also belong to the first and not
even the opposite if the second table is incomplete. But surely if
the zipcode of the two tables coincides you can assign the first table
to the region of belonging, so as to know the location of a certain
neighborhood in the corresponding region. This merging method is
a kind of cross association between the two tables.

In our case the second and third merging methods will be used, as we do
not need to first that extend the examples because for this work they are
always all contained in the database described in the chapter 3.

5.2.1 Basic idea
Here are described the guidelines of the process that will be analyzed
technically and in detail in the following sections. What you want to get
is an extended table for the events of type Cut containing information
of other events of Step, TypeOfGlass, Glass, Session. The method of
correlation of the tables is different for each event and will be described
later. The desired output is a table with m examples (corresponding
to the number of examples of the cutting event) and n features. The n
features are due to the sum of the single columns coming from each event.
Mathematically:

n = ncut + nstep + nses + ntype + nglass

where each ni is a subsection of the total number of features present
for event i. If you look at the chapter 3 you will see that each example
consists of a set of features, only the most relevant of them are selected
to extend the table of cuts.

In table 5.1. you can have a schematic graphical display of the desired
output, with the features from the events just described. It is important
to note that the unified table has as its starting point the table of cuts and
extends based on this. So the output can be defined as an extension of
the table of cuts that collects much more information from other events.

71

5 – Error Prediction: Data Preparation

Cut Event Step Event Session Event TypeOfGlass Event Glass Event

1. . .ncut 1. . .nstep 1. . .nses 1. . .ntyp 1. . .nglass

n total features

Table 5.1: Schematic shape of table obtained after data merging.

5.2.2 Cut table
As defined in the basic idea,it is necessary first create a table of cut
events. This table is created by extracting only this type of event from the
database based on the EventCode. You then delete the unused database
columns and rename the remaining ones to give them explicit meaning.
Finally, extract the information from the mask in EventData2 and insert
it into the new features as boolean variables. Information about this event
can be found in the paragraph 3.1.4.

The figure 5.4. shows this procedure of creating the table of cuts in
a flow chart easy to understand. In a real approach I used Python with
the library Pandas for managing dataframes. TEvents contains part of
the entire database from a prefixed date, so the TEvents dataframe is
structured exactly as described in the chapter 3.

5.2.3 Associate Step event
To associate step events to the newly created cut table, you must also
create a suitable step table. Not all the steps, however, are related to a
cut event, only the steps of type StepVsxCut5X8 and StepVsxDiagonal-
Cut5X8 (see table ?? for further details), this is due to the fact that,
as the software that manages and sends the events to the database is
structured, every time a step of the type StepVsxCut5X8 and StepVsxDi-
agonalCut5X8 takes place, a cut event is also recorded. In these cases the
two cut and step events are sent together at the same time. In practice
the two events are recorded in the same second but with a difference of a
few milliseconds. This information is the basis of the association between
the two tables, in fact, based on the hypothesis that a machine can not
do more than one cut per second, you can truncate the datetime of the
two events in the range of seconds and use them as a comparison between
the events to do the merging of data.

This procedure can lead to a slight loss of data if the cut and step
events differ by several milliseconds so that their truncated DateTimes
per second differ. If the number of seconds is different, the merging is

72

5.2 – Data merging

Figure 5.4: Process of cut table creation in flow chart.

unsuccessful and both parts are discarded. From the verifications carried
out the loss of data is negligible.

In figure 5.5 you can see the flow chart tocreate the step table when
the step type is StepVsxCut5X8 or StepVsxDiagonalCut5X8, the other
columns of the table are those extrapolated from TEvents and defined in
paragraph 3.1.3, some of them are discharded or renamed for an easier
usage. As explained before the column DateTime will be used to merge
with theProcessorID.

In the figure 5.6 there is the steps to create the extended table Step
+ Cut. The merging keys (i.e. the values to be compared) are the Pro-
cessorID of the machine that generates the event and the DateTime ap-
proximated to the seconds. In the real implementation code aninner join
is executed: only when both keys coincide a new entry in the extended
table is created. This means that in the new table you will never have
missing values due to the non-association of the two table entries. The
negative aspect is a slight loss of data considered not to be influential.

73

5 – Error Prediction: Data Preparation

Figure 5.5: Step table creation flow chart.

5.2.4 Associate other events, the example of Session
event
What will now be explained for the session event is also valid for the other
TypeOfGlass and Glass events.

To insert the information about the session in the previously created
cut + step table, a separate table is used, containing only information
about this event code. The session event extrapolation program and the
creation of the relative table is very similar to the previous and its flow
chart is omitted. Remember that the meaning of the features for this
event is described in the chapter on the database in paragraph 3.1.1.

To join these new informations coming from the Session it is not pos-
sible to perform an inner join to extend the table (like before between
Step and Cut). This is due to the fact that the number of Session events
is much lower than the number of cuts and there is not correlation one
by one. Remember that the Session event is sent when the machine is
turned on, then when the machine is started many cuts are made. This
means that many cut events will be associated with the same session. To
associate this session to the various cuts the algorithm searches, for each
cut of a specific machine, for the last session event that took place (in

74

5.2 – Data merging

Figure 5.6: Merging of cut and step table by inner join with keys DateTime and Proces-
sorID

chronological order).

To do the merging the execution of a for cycle that runs through
all the entries of the cut + step table is performed. For a specific i-th
example, the DateTime and ProcessorID are extracted and the session
table is cycled to find the closest and previous DateTime to that of the
cut with the same ProcessorID. When you find the desired session its
features are extracted and go next to the row of of step + cut table. The
flow chart of this algorithm is visible in the figure 5.7.

It may happen that towards the end of the research null values appear
and the table is not completely populated. This is due to the fact that the
algorithm does not find precedent session events with respect to the cuts.
Obviously, every cut is made when the machine is already started, but
this problem occurs when the partial selection of the database starts from

75

5 – Error Prediction: Data Preparation

Figure 5.7: Creation of Cut+Step+Session table.

a certain sampling start date, when the machine can already be started,
and therefore already switched on. For this reason it is not possible to
associate data relating to a session event with some cuts very close to the
sampling start date (i.e. the tail of the cut + step table).

At this point you get a table Cut + Step + Session.

The same algorithm is reused for the TypeOfGlass and Glass events
and is therefore omitted from the description.

76

5.3 – Handle Categorical Features

5.2.5 Final reshape

Before saving the created extended table, consisting of the merging of
the 5 events, it is better to perform some actions to make the table more
functional by adding and deleting columns. 3 new features are then in-
serted, they are related to the difference in time between the cut event
and other events except the step (which has the same DateTime of the
cuts). These columns contain a difference in time expressed in seconds.
This addition is not based on any justifiable reason, but is an example of
how the number of columns can be increased by mixing information from
multiple features.

Finally, many columns containing repetitions or no more useful infor-
mation are deleted.

Moreover, other variables are deleted:

• DateTime_x : event timestamp, being of type object cannot be used
as input of machine learning algorithms.

• ExecutionTime: Column containing the execution times of the step.
Is obtained after the step has been executed, so it is an output that
should not be considered at the time of prediction because it will not
yet be available in real cases.

• HeatingTime: another temporal measure obtained a posteriori. This
is also an output of the executed step, so it cannot be used to make
predictions.

The data merging ends with the saving of this extended table in a
.csv file from which information will be extracted for each client and the
techniques of correlation analysis, statistical analysis, features selection
and finally machine learning will be applied.

At this time the features contained in the dataset merged are 33 con-
taining information of cuts, steps, glass and type of glass used. The
session information are not considered useful in the merged table and all
the relative features regarding this event were deleted in the final reshape
before saving the table. The saved features that will be used for machine
learning training and prediction are therefore those in table 5.2.

5.3 Handle Categorical Features
It often happens that some features belong to certain categories, normally
they are represented by a string or by one or more digits. In the latter
case the numbers are not correlated by any mathematical link. For ex-
ample, if there are entries belonging to three different categories (1,2,3)

77

5 – Error Prediction: Data Preparation

Feature Type

CutLength int64
Grind_MC int64
Cut_MC int64
TSup_MC int64
TInf_MC int64

Heating_MC int64
Detach_MC int64

IsDiagonal_MC int64
BadTerminated_MC int64
GlassNumberInSession int64
StepNumberInGlass int64

GrindEnabled int64
StepType object
Spess1_sup float64
Spess2_inf float64
SpessPVB float64
Pmax_sup float64
Pmax_inf float64

parWheelBreakoutInf float64
parBreakoutInfTrim float64
parBreakoutSupTrim float64

NGlassInOpt float64
NGlassInSess float64
GlassLength float64
GlassHeight float64

GlassTotCut(mm) float64
PiecesInGlass float64

WastePiecesInGlass float64
TimeFromLastSession float64
TimeFromLastGlass float64
TimeFromLastType float64

Table 5.2: Features after data merging, the first phase of the preprocessing phase.

these categories cannot be provided as they are to the machine learning
algorithm because the algorithm would tend to look for mathematical
correlations between the numbers 1,2,3 (e.g. 3 is triple 1) that have no
meaning between the categories that are only groups, which in fact could
be identified by three letters A, B, C without changing the meaning. The
problem of managing categorical features arises. The main techniques for

78

5.3 – Handle Categorical Features

converting and extrapolating information from them in a mathematical
form are now analysed.

5.3.1 Common methods
There are two main classes of categorical data: nominal and ordinal. In
the nominal categorical data there is no concept of sorting between the
various categories, i.e. no category comes before the other and it is not
possible to compare them because they are substantially disconnected
from each other (e.g. weather, musical genres,...).

Instead, in the ordinal categorical data there is a concept related to
the sorting between the classes. An example are the sizes of clothing
(S,M,L,XL). These are related to the size of the garment but it is not
clear whether linearly, polynomally or otherwise.

It is therefore necessary to transform these categories into numbers in
order to be able to process the data. This method of transforming cate-
gorical features is called encodings. Now we will analyze the methods of
encoding most useful in machine learning applications, the so-called clas-
sic encoding. Remember that there are various types of feature encoding
that will not be analyzed here.1

One-hot encoding

This is the most used encoder for machine learning because it is very re-
liable and performing. You get a total scrolling of the categories without
loss of information but it is not a good solution if the number of cate-
gories per features is high. It works by transforming the m categories

into m binary features, so that for each example of the dataset only one
of these newly created m features will have value one, the one related to
the categoryof the selected entry. The others instead will all have zero
value. In this way there is a total separation of the categories with a nu-
merically comprehensible representation of them for the machine learning
algorithm.

Dummy coding scheme

Very similar to the previous one with the difference that the m categories
are transformed intom−1 features where them-th category is represented

1The encoding techniques not presented here are the so-called contrast encoders and the
bayesian encoders. A good Python library in which to find implementations of these encoding
types is called category_encoders.

79

5 – Error Prediction: Data Preparation

when all the m − 1 features have null value, all the others are instead
identified by a 1 in the relative feature (as for one-hot encoding).

Effect coding scheme

Practically equal to the dummy coding scheme with the only difference
that the category previously indicated by the zeros in all m− 1 features
is now represented with all values equal to -1 in the m− 1 features.

Bit-counting scheme

The previous encoding methodologies work very well when the number of
categories is small but begin to become problematic when the number of
categories rises because too many new binary features are created. The
problems that can emerge if the number of categories is high and one
of the previous methods is used are related to storage, computational
training time and dimensionality of the dataset. In fact, if the number
of examples becomes comparable to the number of features, overfitting
problems are created in the machine learning model (this possibility is
called in jargon curse of dimensionality problem).

If you have many categories the bin-counting scheme represents a good
encoding to avoid the problems mentioned above. It is based on the as-
signment of a probability to each category based on historical occurrence.
It is clear that for this type of encoding we need datasets containing all
the categories in order to calculate true probabilities.

Binary encoding

Immediately each element of the categories is transformed into a number
if it was not yet, then this decimal number is transformed into binary
and the various bits that make it up are separated one by one going to
create each a new feature, so as to create a series of unique columns for a
certain bit. This encoding creates a limited number of new columns and
is therefore also indicated if the number of categories is high. It is more
efficient than one-hot encoding both at the computational and storage
levels, but the performance obtained is lower as there is no complete
separation between categories. In fact, equal bits do not correspond to
the same number but there is the risk that the algorithm of machine
learning seeks erroneous associations between these elements. It therefore
represents a compromise between efficiency and performance.

80

5.3 – Handle Categorical Features

Hashing encoders

This last encoding algorithm is similar to one-hot but with fewer columns
created and some information lost. It is based on the hashing trick 2

concept. The new number of features created is established a priori and
therefore you can check the growth of the dataset before applying the
encoding algorithm.

5.3.2 Application on the case study
After creating the extended table of cuts as explained in the section 5.2
it is needed to manage the categorical features. The only column rep-
resented by categories is StepType. The StepType represents the type of
cut made that, remember, can be StepVsxTaglio5X8 or StepVsxTaglio-
Diagonale5X8, these two strings represent the categories of the feature
StepType.

There are only 3 machine that send data in the format described in
the chapter on the database (chapter 3), the ProcessorID that represent
the machine can seem a categorical feature but, as we will see, studios
will be kept separate for each machine because of their diversity. This
means that in every algorithm training the ProcessorID will be unique
for each machine and will be eliminated from the treatment, so it is not
necessary to treat it as a categorical feature.

Since the categories of StepType are few we will use the classic one-
hot method that works well when you do not have too many categories to
divide. It can be implemented directly with the SKLearn machine learn-
ing library but it is easier and more intuitive to use a library dedicated
to encoding called category_encoder. The use is simple, you create the
object capable of encoding thanks to the class OneHotEncoder passing
the names of features to be managed. Then the fit_trasform method is
applied to the dataframe to be modified. The method returns another
dataframe with the addition of the newly created columns.

In table 5.3 you can see how the features are now increased after
handling categorical features. Moreover the type of the categorical fea-
tures was object and could represent a problem for many machine lerning
algorithm. Now this is no more a problem thanks to the transformation
in numerical features.

2For a clear and satisfactory explanation of the hashing trick see "Don’t be tricked by the
hashing trick" by Lucas Bernardi.

81

5 – Error Prediction: Data Preparation

Feature Type

CutLength int64
Grind_MC int64
Cut_MC int64
TSup_MC int64
TInf_MC int64

Heating_MC int64
Detach_MC int64

IsDiagonal_MC int64
BadTerminated_MC int64
GlassNumberInSession int64
StepNumberInGlass int64

GrindEnabled int64
StepType_StepVsxTaglio5X8 int64

StepType_StepVsxTaglioDiagonale5X8 int64
Spess1_sup float64
Spess2_inf float64
SpessPVB float64
Pmax_sup float64
Pmax_inf float64

parWheelBreakoutInf float64
parBreakoutInfTrim float64
parBreakoutSupTrim float64

NGlassInOpt float64
NGlassInSess float64
GlassLength float64
GlassHeight float64

GlassTotCut(mm) float64
PiecesInGlass float64

WastePiecesInGlass float64
TimeFromLastSession float64
TimeFromLastGlass float64
TimeFromLastType float64

Table 5.3: Features after handling categorical features, now all features are of int or float
type, only the datetime is of object type.

5.4 Correlation analysis

Once you have combined the various events you need to have an idea
of the relationships that may exist between the various features, this to

82

5.4 – Correlation analysis

build a more reliable, lightweight and performing model. Formally, the
degree of correlation is a statistical measure that indicates whether there
are associations between two inputs.

5.4.1 In theory
In this section we discuss the mathematical process that leads to the
calculation of this indicator’s value. There are various methods of corre-
lation, we will discuss three of the most widely used:

Pearson Correlation Coefficient : it is the most widely used tech-
nique to obtain the degree of correlation between two features. The
value of the degree of correlation indicator varies between -1 and +1.
Domain extremes represent high negative and positive correlation.
The value 0 instead indicates that there is no correlation between
the two parts which are therefore independent. Pearson’s coefficient
is a measure of the linear degree of association between variables that
is supposed to be continuous:

ρx,y =
Covariance(x, y)

σxσy

where ρx,y is the Pearson Correlation Coefficient, Covariance(x, y)
as the name suggest is the covariance between the two features, σx
and σy are represent the standard deviations of the two features x
and y. Important: If the values of x or y are always constant, their
standard deviation is null. This imply that the Pearson Coefficient is
not computable as a zero appears at the denominator of the formula.
The Pearson Coefficient will assume a NaN value.

For series of data that contain m examples the previous formula can
be rewritten as:

ρx,y =

∑m
i=1(xi − x̄)(yi − ȳ)√∑m

i=1(xi − x̄)2
√∑m

i=1(yi − ȳ)2

where xi and yi are the entries of the dataset.

Geometrically this correlation coefficient can be obtained from the
graphs called scatter plots, which are nothing more than a graph of
one feature as a function of the other. This coefficient represents the
linearity of the data curve. To calculate it graphically we first need to
draw a fitting line of the data in order to minimize the square of the
distance between the fitting line itself and the data. Then calculate
the scatter with respect to an axis and the fitting line. The ratio of

83

5 – Error Prediction: Data Preparation

these spillages represents the desired coefficient. In other words, the
variance of the data with respect to the goodness of the linear fitting
designed is being verified. What has just been described is visible in
the figure 5.8 where three examples of scatter plots with the best
fitting line and the relative value of the Pearson coefficient are shown.

Figure 5.8: Three example of scatter plots and relative Pearson coefficient.

Spearman’s Correlation : this index is a special case of the previous
Pearson coefficient, applied to ordered variables. The relations be-
tween features can also be non-linear, but the measure obtained from
this calculation is always referred to a monotonic association. This
means that this correlation is more versatile than the previous one
that was linear, but it has however big limitations as it is not able to
calculate complex relations between data (like almost all polynomial
relations).

The formula is the same as Pearson’s but we have to input the ranks
instead of the raw data.

There is a simplified version of the formula in case of unique ranks:

ρs = 1− 6
∑m

i=1 d
2
i

m(m2 − 1)

with di = rankxi − rankyi and m is the number of example in the
dataset.

Sometimes it happens that the degree of correlation changes depend-
ing on the correlation algorithm used. The message that must be
leaked is that the degree of correlation may not be an exhaustive
method of the relationship between two features, i.e. if you get a

84

5.4 – Correlation analysis

zero correlation value there may still be association between features,
especially if this association is not linear.

Kendall’s Tau : it is a measure based on the concept of matching and
discordant pairs in a dataset, where a pair is composed by two en-
tries of features. In practice a set of m examples can be divided into
m (m−1)

2
possible combinations of pairs, each of which can be identi-

fied as matching or discordant pairs. Kendall tau is based on this
definition:

τk =
ConcordantPairs−DiscordantPairs

mm−1
2

that is, we look at the similarity between pairs of the dataset and we
normalize this value with the total number of combinations, so as to
have in output a value between -1 and +1 as for the other indicators.

5.4.2 In practice
The degree of correlation is easily obtained in Phyton using Pandas
dataframe thanks to the method .corr() which automatically calculates
for each pair of features the degree of correlation according to the method
given in input to the function. This method returns a dataframe of size
nxn (where n is the number of features) containing the degrees of cor-
relation. Using this structure it results that the correlation matrix is
symmetrical, with maximum values equal to 1 on the diagonal. This is
due to the fact that on the diagonal the algorithm is looking for correla-
tions between a feature and itself, and obviously this leads to a perfect
correlation.

To get a clearer idea of the situation you can place scatter plots next
to the correlation matrix, so as to see a graphical representation of the
relationship between the features, in fact the correlations are based on
the distribution of data of the two features.

In figures 5.9, ?? and ?? it is possible to see the correlation matrix
of the unified database, the three graphs are relative to the three methods
described above to estimate the degree of correlation: Pearson, Kendall
and Spearman. As we can see the matrices are very similar to each
other, this is synonymous of a good reliability of the correlation. Because
of the high similarity between the matrices obtained, from now on only
Pearson’s will be proposed, since it is the most used method for these
analyses.

In the correlation matrices shown the bright red color indicates a value
very close to +1, while the deep blue a value very close to -1, the grey

85

5 – Error Prediction: Data Preparation

instead indicates that there is no correlation between the features. As we
can see, there is a maximum correlation between some features, which
can therefore be considered dependent. This conclusion allows to reduce
the number of features to be given in input to the algorithms of machine
learning since dependent features are not useful to perform predictions
and train the data.

Figure 5.9: Pearson correlation coefficients matrix: there are no big differences among
the other two correlation methods. For this reason from now on only Pearson will be
used.

A very important detail to note is that for the output of the machine
to be predicted (that is BadTerminatedMC in the table), there do not
seem to be strong correlations with any of the input features. This is
not good news and may define a data mismatch problem (see paragraph
4.1.4). A possible cause of this phenomenon is when the input dataset
is not representative of the output you want to predict. This leads to
poor results once machine learning techniques are applied, as there are
no significant associations between input and output to predict.

On the other hand, there is some correlation between the various fea-
tures and the ProcessorIDNumeric, which is an identification number of

86

5.4 – Correlation analysis

Figure 5.10: Kendall correlation coefficients matrix.

the 548 Lam machines installed by the various customers. It is therefore
useful to study in depth the correlations of each individual 548 Lam ma-
chine, because as mentioned in the chapter describing the machinery, the
548 Lam sold by Bottero are very customizable and the setup parameters
are reconfigured on each of them.

NOTE: The format of the database described in this thesis and the
sending of the data as described in the chapter 3 is currently valid (May
2019) for only 3 machines even if other machines are still connected to
the database but send partial information and not updated due to an
obsolete software version. The three customers in question will henceforth
be named as client1, client2 and client3 to maintain confidentiality. The
algorithm performance will be discussed only on their data.

Client1

The client1 has the machine on which you have the most interesting re-
sults with regard to correlation analysis. In figure 5.12 it is possible to see
the correlation matrix of this client. You can see strong correlations be-
tween some features resulting from both cutting events and TypeOfGlass

87

5 – Error Prediction: Data Preparation

Figure 5.11: Spearman correlation coefficients matrix

events. In addition, the output BadTerminatedMC has slight correla-
tions with other features, this may be an indication of a more accurate
prediction. It is possible that sometimes some features are without corre-
lation coefficient, the main reason is because those features have always
the same value, so the variance is zero and it is not possible to calculate
the correlation with other features. Basically, these columns with no vari-
ance are useless because they do not give information that can be used
by automatic learning algorithms.

Client2

The correlation matrices for the second customer (figure 5.13 is also
shown. From this you can see how the correlations between features are
lower with respect to the first client, even the output to be predicted
seems less dependent from the features.

88

5.4 – Correlation analysis

Figure 5.12: Correlation matrix for the first client .

Client3

The same matrice is also displayed for customer 3. The results shown in
figure 5.14 are similar to the previous ones.

89

5 – Error Prediction: Data Preparation

Figure 5.13: Correlation matrix for the second client

5.5 Statistical analysis

In this part there are presented some statistics. Usually I will refer to
three separate clients of Bottero in order to show the difference among the
various machines that send data in the database. This statistical analysis
can demonstrate the possible need of a machine learning algorithm for
each machine rather than a single generic predictor. The 548 Lam as
already said it is not a standard and uniform machine, so its parameters
are customized and different.

As mentioned in the beginning of this chapter only automatic mode is
selected because manual mode have a bug in the collection of data,described
in paragraph 5.1.

5.5.1 Unbalanced dataset

First of all, it is necessary to quantify the number of errors that occur
during the cutting phases. In the period considered (March-May 2019)
the cuts recorded in automatic mode by the 3 machines under study were
15701, this number is also the number of entries (rows) in the extended

90

5.5 – Statistical analysis

Figure 5.14: Correlation matrix for the third client

table of cuts previously created. Of these, 641 were badly finished, i.e.
4.1%.

It is possible to divide this data for the three customers in question so
as to understand which machine has the most problems. The table 5.4
collects the number of outputs divided by customer and by cutting mode
(that is by StepType).

Output Only Automatic
Cut Diagonal Cut

Client 1 0
1

Client 2 0
1

Client 3 0
1

3142 14
112 1
5489 104
251 2
7459 46
338 0

Table 5.4: Historic review of the output to predict divided by client.

In general, the number of badly finished cuts is always much lower

91

5 – Error Prediction: Data Preparation

than the number of successful cuts. This fact indicates that the dataset
under study is an unbalanced dataset. As explained in the paragraph
4.1.5 the best metrics to evaluate datasets of this type are f1 score, recall
and precision.

5.5.2 Differences among customers
To evaluate the differences between the various customers the merged
dataset of the cuts is divided into various subsets one for each machine
and basic statistics are calculated for each of them. The average and the
standard deviation of each dataset feature is given in the table 5.5. These
two measures are useful to evaluate mathematically how much a machine
is different from the others and how much a feature can be useful in the
algorithm of machine learning.

Another way to understand visually and more easily the differences
between customers is to plot a variable based on the number of occur-
rences. These graphs show the preferences and needs of one customer over
another. An example is the length of the cuts shown in the figure 5.15.
From this graph we can see that customer 2 is the only one who makes cuts
up to about 6000mm long while the others reach up to3200mm. These
values are not random but depend on the standardized measurements of
the glass sheets.

Figure 5.15: Cut length divided by clients.

A similar graph is the comparison between the different thicknesses of
the cut glass. From the figure 5.16 it can be seen that customer 3 tends
to use glass that is thinner than customer 2.

92

5.5 – Statistical analysis

Client 1 Client 2 Client 3
Mean Std Mean Std Mean Std

CutLength
GrindMC
CutMC
TSupMC
TInfMC

HeatingMC
DetachMC

IsDiagonalMC
BadTerminatedMC

GlassNumberInSession
StepNumberInGlass

GrindEnabled
StepType_StepVsxTaglio5X8

StepType_StepVsxTaglioDiagonale5X8
Spess1sup
Spess2inf
SpessPVB
Pmaxsup
Pmaxinf

parWheelBreakoutInf
parBreakoutInfTrim
parBreakoutSupTrim

NGlassInOpt
NGlassInSess
GlassLength
GlassHeight

GlassTotCut(mm)
PiecesInGlass

WastePiecesInGlass
TimeFromLastSession
TimeFromLastGlass
TimeFromLastType

1316.42 935.56
0.05 0.23
0.98 0.13
0.98 0.14
0.98 0.14
0.03 0.16
0.96 0.20
0.00 0.07
0.03 0.18
3.60 3.34
64.20 53.15
0.05 0.23
1.00 0.07
0.00 0.07
3.46 0.81
3.46 0.81
39.53 25.22
119.19 12.65
118.10 14.49
1.49 0.54
1.80 0.58
1.40 0.50
2.22 1.60
3.60 3.34

5268.09 1308.59
3106.01 406.69
44836.92 18412.41
26.65 16.55
11.00 5.77

14420.29 10938.77
1426.18 1541.67
9081.26 9637.52

2022.25 1330.95
0.00 0.00
1.00 0.00
0.98 0.14
0.98 0.14
0.02 0.13
0.98 0.14
0.02 0.13
0.04 0.20
8.06 5.31
32.84 28.43
0.00 0.00
0.98 0.13
0.02 0.13
4.58 0.84
4.58 0.84
72.96 10.3
136.75 6.16
140.66 7.45
1.98 0.77
2.12 0.97
2.10 0.73
2.54 1.98
8.06 5.31

5316.70 960.48
3312.86 567.64
31714.61 9019.60
12.07 8.53
7.14 3.88

21798.93 14559.96
1111.35 1008.40
3570.15 3893.92

1682.45 971.53
0.00 0.00
1.00 0.07
0.99 0.09
0.99 0.12
0.01 0.12
0.98 0.15
0.01 0.07
0.04 0.20
8.79 7.31
37.53 32.61
0.00 0.00
0.99 0.07
0.01 0.07
3.47 0.81
3.45 0.85
40.92 15.60
127.69 8.07
126.06 10.10
1.77 0.59
1.97 0.66
1.58 0.58
2.27 2.16
8.79 7.31

5187.61 1386.13
3078.44 389.84
32655.17 15250.60
14.08 7.88
7.40 4.30

18841.33 21013.40
1036.56 1014.77
3869.39 4521.33

Table 5.5: Mean and Standard Deviation divided by clients for automatic cuts. The row
represent the features.

93

5 – Error Prediction: Data Preparation

Figure 5.16: Thickness of cut glass divided by clients.

As far as the cutting parameters are concerned, the values of the
maximum cutting pressures (in bar) for the three customers are shown
in the figure 5.17. This is important for the machine as it can create
a bad terminated situation if the step is unsafe because the glass can
break or not truncate if the chosen value is incorrect. The differences are
considerable but are somehow related to the thickness of the glass type
chosen (see previous graph).

Figure 5.17: Pression used for upper truncation divided by clients.

94

5.6 – Feature selection

5.6 Feature selection

The last step of the preprocessing phase is the selection of features. The
output of this phase is a modified table that takes into account only the
most important features for prediction. It is essential to provide machine
learning algorithms with the right features in the correct format, this has
some advantages:

• Better performance during training and testing, as the algorithm does
not assimilate irrelevant information.

• Correlations between cause and effect are clearer, so it will be easier
to understand how the algorithm works and on which parameters the
prediction depends.

• Less training time and prediction because usually after this phase the
total size of the dataset decreases.

There are several ways to classify feature selection processes. The most
common is to divide them according to the process used:

Filter methods : they select features by sorting them based on their
direct importance to the target or on the diversity of the inputs.
They are based on statistical or correlation analysis.

Wrapper methods : generate subset of features that are trained with
some machine learning algorithms. The best subset is selected based
on the performance achieved.

Embedded methods : are a combination of the two previous methods.

A different categorization to features selection is defined by the degree of
automatism of the process and the amount of work required to obtain the
result. It is possible to distinguish between:

Manual Features Selection 3: requires great knowledge of the dataset,
this method consists of several distinct phases based on data analysis.
it is very versatile but slow and complex. It is suitable for expert data
scientists or for those who have a clear view of the problem.

Automatic Features Selection : it is faster than the previous one but
in some cases it can give unexpected or worse results. It is especially
suitable for beginners and those who do not have a clear view of the
data to be processed or even when you have a very large number of
features that would be difficult to manage manually.

3The methods cited here are a part of 12 methods identified by Vishal Patel in his speech: "A
Practical Guide to Dimensionality Reduction Techniques"

95

5 – Error Prediction: Data Preparation

Some algorithms of features selection divided according to the degree of
automation required are now described, as they represent a substantial
difference in practical implementation.

5.6.1 Manual features selection

This category includes all those processes that have to be imitated on
their dataset in a different way according to their needs. To select the
features with the methods listed below you need good experience of both
the dataset and the work of data scientist. The following are generic
concepts to apply to your case study with the algorithm that you prefer
and that must usually be written ad hoc.

Percent of missing values

This is a study based on the amount of missing values that often repre-
sent a problem in data science, as they reduce the performance of many
prediction algorithms. If certain features have high missing values per-
centages, they must be removed from the final dataset. In the case of
smaller percentages, the importance of the feature must be evaluated on
a case-by-case basis to understand whether it can be removed from the
discussion or not. If it is not possible to convert the NaN value into a
mathematically acceptable value that does not influence the parameteri-
zation of the algorithm.

Amount of variation

A statistical analysis of the variance and standard deviation from the
average value of each feature can identify which data are almost always
present in a constant manner. These data are usually of little use and
indicate that a certain feature does not contain characterizing information
to parameterize the machine learning algorithm. Before eliminating low-
variance features without any problems, however, it must be ensured that
there are no obvious correlations with the target.

Pairwise correlation

Based on the concept of correlation between features, this analysis com-
pares the features in pairs. The pairs that obtain a great value (positive
or negative) of correlation contain very similar information and therefore
constitute a sort of redundancy that slows down the process of training
and prediction by lowering performance. We must surely eliminate the
pairs with maximum correlation value and evaluate all the others.

96

5.6 – Feature selection

Correlation with the target

As the previous one is based on a correlation analysis but now the aim
is to eliminate the features with low correlation with the target, because
they are not very useful to correctly identify the output to be predicted.

Forward/Backward/Stepwise selection

Forward : It is based on the concept of the subsequent selection of the
most promising features on the basis of a certain evaluation criterion
decided a priori. The end of research method can be the achieve-
ment of a certain number of features or the maintenance of a certain
standard.

Backward :Unlike the previous one, we start from a model with all the
features and discard a feature by iteration, the least promising. Con-
tinue until the search constraint is met.

Pairwise :Alternate Forward and Backward selection by adding and re-
moving a feature at each step until you get a stable subset of variables.

5.6.2 Automatic features selection

There are many methods to automate the process of selecting features,
many are based on an optimal criteria to be met, this includes measures
of evaluation metrics penalized by the number of features selected. In
this way we try to reduce the number of features selected to maximize
the value obtained. Other methods are based on the degree of correlation
between features or between features and target. These automatic meth-
ods can lead to bad performances if not correctly used as they are based
only on mathematical calculations made without considering the context.

In the automatic selection of features it is therefore a risk to lose
useful information and thus decrease the performance of the system only
to improve its efficiency.

The automatic selection of features becomes very useful when the
number of variables is very high and it would be difficult to manage them
manually.

There are countless algorithms of automatic features selection, here
are briefly described those present in the library Python SKLearn used
for this work. They are the most commonly used.

97

5 – Error Prediction: Data Preparation

Univariate features selection

Select the best K features based on univariate statistics between each
feature and the target output. Input features with high statistical rela-
tionship are selected.

Recursive features elimination

IT is a specific method of the library SKLearn, it is based on the training
phase and the evaluation of its goodness thanks to an algorithm provided
at the entrance to the method. At each iteration the algorithm does the
training phase and eliminates the features less useful to the calculation of
the output. This iterative process stops when you reach the number or
percentage of features you want. The importance of features is calculated
based on the coefficient that is associated with it during the training
phase. Low coefficients indicate that the features are not indicative of
the problem to be predicted.

PCA: Principal component analysis

This technique of reducing the dimensionality of the dataset has already
been briefly discussed in the paragraph 4.2.7.

The PCA is not a technique that selects the most promising features
but creates new ones by combining the characteristics of the original ones.
It is therefore more correct to define it as a technique for reducing the
dimensionality of the dataset. Apparently, the output of the PCA algo-
rithm cannot be associated with the old features and the data obtained
no longer has any physical meaning. The problem of the PCA analysis is
that it is based only on the relationships between the features because it
is a technique of unsupervised learning and therefore does not take into
account the information coming from the output.

LASSO: Least Absolute Shrinkage and Selection Operator

This algorithm performs two main tasks: a feature selection and a regular-
ization task. This means that in addition to selecting the most promising
features so as to make the model clear and fast, it also helps to reduce
the possible problem of overfitting.

It works by selecting constraints on the maximum value that the sum
of the model parameters can reach. If this sum exceeds the preset thresh-
old, LASSO applies a correction through a lambda regularization variable
that decreases the value of the model parameters, so as to decrease the

98

5.6 – Feature selection

sum below the threshold value. Only some parameters are kept, these
will indicate the features to be selected.

Select From Model

It is another method specific to the SKLearn library. It works in a similar
way to recursive features elimination so it can work with many estimators.
Select from model is a little less robust as it only removes features based
on a threshold without using any iterative algorithms.

5.6.3 Some algorithms implementation in the real dataset

To reflect what has been explained in the previous pages, both automatic
and manual methods of fetures selection have been implemented. The first
one that has been implemented is the process of manual features selection
that requires the use of correlational and statistical analysis explained in
the previous paragraphs. We will then show some results of the process
of automatic features selection, not customizable and the output a bit
cryptic and not always performing.

It should be added that in our case the feature selection process is
not done so much to decrease the number of features and therefore the
dimensionality of the dataset because the number of variables is relatively
small. The feature selection aims to increase the quality of the data
provided in input to the machine learning algorithm, so you should not
expect a big increase in performance as much as an improvement in time
and understanding of the algorithm.

Manual features selection

If only one customer is selected through the relative feature, the various
ProcessorIDs, deriving from the separation due to the categorical features,
can be eliminated as they are always constant for a certain customer, so
that the columns shrink a little bit. If, on the other hand, only one table
is considered for all customers, there are 3 more features, one identifying
each customer. In each of the two cases the process of manual features
selection followed is inclusive of 4 steps:

1. Missing values:With Pandas it is easy to see how many missing
values there are in the dataset, just enter the code df.isnull().sum()
and the list of features with its number of null values will be printed
on the screen. In our case the null values are always zero: the tables
used are without null values.

99

5 – Error Prediction: Data Preparation

2. Pairwise correlation:As seen in the paragraph 5.4 you can get
correlation values between features with the command .corr(). By
analyzing the coefficients obtained and sorting them in descending
order by degree of correlation, it is easy to identify the redundant
features. The code written permitt to show the correlation between
features in a decreasing order. A value of 1indicate they are perfectly
redundant. It was immediately decided to eliminate this redundancy
by deleting the features Grind_MC, NGlassInSess, Spess1_sup, Is-
Diagonal_MC that have perfect correlation with other features (as
shown also in paraghraph 5.4.2). Other pairs have correlation value
close to 1 but being our dataset unbalanced it is better to avoid
drawing hasty conclusions and it is better to wait to evaluate the
correlation with the target.

3. Correlation with the target : This type of analysis is also based
on the correlation, not between features this time, but between the
target (BadTeminated_MC) and the various features. Obviously you
have to eliminate the features not very related to the target as they
give little information on the desired output. You have to choose
therefore a minimum threshold that has been fixed to 0.005 under
which the features are eliminated. The threshold has been chosen
very small because we have an unbalanced dataset and therefore a
small correlation can still be important to find the when the target
assumes value 1. Another reason for this choice is due to the fact that
we have few features so in the choice of features is not necessary to
remove much information as the database remains small. So you try
to delete only those features completely useless, keeping those with
little information.

4. Amount of variation :To be able to make a study on variance
you need to do a data scaling. After that we use on the normalized
dataset the method .describe() of Pandas that calculates statistics
divided by features and returns them in a small dataframe object.
It is now possible to sort the object obtained in descending order
of standard deviation. As you can see in figure 5.18 the trend of
the decrease of standard deviation as a function of the features is
linear and has zero value only for two features. this means that they
always have the same values. They are StepManual_C (the manual
steps in fact are no longer considered in this treatment as described
in the paragraph 5.1) and the ProcessorID is a certain customer if
you consider only that machine in the table.

100

5.6 – Feature selection

Figure 5.18: Normalized standard deviation reduction plot in function of related feature.

Automatic features selection

Of the various algorithms presented in the theoretical paragraph, 5 have
been chosen for implementation, namely:

1. Univariate Statistical Test (Chi-squared for classification)

2. Recursive Features Elimination

3. Principal Component Analysis

4. Features Importance

5. Select from model

Their implementation is very simple and the code for the univariate
statistical test is given as an example (figure 5.19). For the others the
code is similar, just a few changes on the chosen feature selection algo-
rithm are enough. For the PCA it is not possible to identify the chosen
features because it creates new ones and you lose the physical meaning of
the numbers so that the various columns will no longer have an eloquent
index.

For these automatic feature selection methods, the number of maxi-
mum features to be selected can be inserted as parameter, for this thesis
purpose a number of 30 can be optimal, thanks also to the considera-
tions made during the automatic features selection. The 5 methods of
automatic feature selection create five tables for each client and their ef-
fectiveness will be tested in the chapter on the evaluation of the best

101

5 – Error Prediction: Data Preparation

algorithm.

Figure 5.19: Code for implement the univariate statistical test features selection.

102

Chapter 6

Error Prediction:
Algorithm evaluation

In this chapter we continue with the error prediction, in detail after hav-
ing prepared the data during the preprocessing phase in this chapter we
evaluate the performance of the algorithms. A good result is desirable
given the importance of the agrande problem to be solved, so as to avoid
abnormal stops of the machine or pieces terminated badly. For further in-
dication on the problem see chapter 1.2. The methods used for machine
learning are described in the machine learning theoric chapter, section
4.2. The algorithms used are both classic and probabilistic.

We will describe, starting from the tables created specifically thanks
to the procedure described in the chapter 5 concerning the preprocessing
phase, how to divide the examples for the test and train phases, how
to evaluate the algorithms concretely thanks to the evaluation metrics
described in the paragraph 4.1.5 and finally we will discuss about the
selection of the best solution, trying to understand, thanks to the final
result, why the dataset at our disposal behaves better with one solution
rather than another.

6.1 Training and Test sets and Normaliza-
tion

The first step to apply machine learning after data preparation is the
division of the dataframe into 2 sections:

• X contains all the features of the dataframe except the desired target
to predict

103

6 – Error Prediction: Algorithm evaluation

• y is the column containing the target to predict

For example if our table after data preparation contained 30 columns,
this step will reduce to 29 the inputs X and 1 column will be the output
to be predicted y.

After this step it is possible to apply a normalization of the X train
and test inputs through the StandardScaler() class. The standardization
performs the following transformation on each feature:

z =
(x− u)

s

with u the average of the feature and s its standard deviation.

Then data is divided between training and testing as explained in the
chapter 4.1.1. To do this there is a simple function of the SKLearn library
called train_test_split() that takes as arguments X, y and the test size
i.e. the percentage of the database to be used for the test, default at 0.25.
The method returns 4 tables X and y for the train and X and y for the
test.

The problem of the train-test division is that of the randomness of
the division between the two datasets, this involves different scores of the
algorithm each time the dataset is divided because of the distribution
between train and test set. Therefore, making with this classical division
various tests if you often get results even very different from each other
means that the prediction depends very much on the division of the ini-
tial dataset. This problem occurs especially in small and medium sized
datasets.

Another more effective method is dividing the training dataset thanks
to a process called cross-validation. This method divides the dataset into
k parts and uses k-1 for the train and the last one for the validation. Re-
peat this operation k times until each combination has been performed.
This way the validation set will always be different and you will surely
analyze all possible cases. For each training and prediction you will get
different results from which you then calculate the average to get the
final result. In SKLearn there is a function that performs just this opera-
tion called cross_val_score() to which you pass the parameter k and the
algorithm to train.

In figure 6.1 it is shown the general process of training and testing
by means of cross-validation.

104

6.2 – Evaluation Metric Choice

Figure 6.1: Process of training and testing with cross-validation

6.2 Evaluation Metric Choice

It remains to choose the method of evaluation and comparison of the
various algorithms that will be tested. Since the prediction of errors is
a problem of classification with unbalanced datasets, the best choice is
certainly to use the recall and precision. Not having particular constraints
or preferences between one and the other, it was decided to combine the
two evaluation metrics in a single numerical datum that is the F1 score
defined in the section 4.1.5. The F1 score is a number that varies from
0 to 1, where 1 is the best grade that the algorithm can get, in fact if
F1 is equal to 1 it means that the algorithm finds all the machine errors
without false negatives or false positives.

In practice this value is calculated on SKLearn using the classifica-
tion_report() method which takes two inputs: y real output to predict
and compares it with h the output predicted by the machine learning
algorithm. The method calculates many values starting from these two
columns as accuracy, recall, precision, F1 score, micro average, macro av-
erage. Alternatively, the F1 score can be the output of the cross-validation
procedure that perform this operation automatically.

What has been done in this work is to compare the F1 score, obtained
in one of these way, of various algorithms for each client to find the best
algorithm for error prediction.

105

6 – Error Prediction: Algorithm evaluation

6.3 Hyperparameters tuning

In this section we select the machine learning algorithms among those
available in the Python SKlearn library that will be compared in the
next section. The set of algorithms chosen before training are:

• Random Forest Classifier

• Support Vector Machine

• Logistic Regression

• Neural Network

• KNN

• Naive Bayes Gaussian

• Gaussian Process Classifier

• Decision Tree Classifier

• Gradient Boosting Classifier

This group is based on the characteristics of the dataset in our possession
where it was mainly taken into account to have an unbalanced dataset.
An unbalanced dataset implies that the probabilistic models are the most
suitable. Moreover, the correlation between the features and with the tar-
get are very slight, this is another factor that directs the choice towards
algorithms based on subsequent choices and not on mathematical models
staandard. In any case it has been decided to insert also simple deter-
ministic models (SVM, Logistic Regression) and more complex (Neural
Network) for completeness and comparison.

Hyperparameters tuning is the choice of the best and most efficient
parameters for each algorithm, so that the performance in terms of predic-
tion is maximum. Each algorithm has many parameters to modify, often
the right combination is difficult to find manually, so there are automatic
methods for choosing the best parameters.

There are mainly 3 methods for the automatic selection of hyperpa-
rameters:

Grid Search : perform a brute force search by trying all combinations
and selecting the best one. If the parameters have an infinite range,
select the search range. It can be very slow but always finds the best
parameters.

Random Selection : random search of parameters up to a set limit of
iterations. Definitely faster but less effective.

106

6.4 – Results for each client

Bayesian based optimization : Efficient method that manages to im-
prove the search for parameters at each iteration by understanding
the search direction and minimizing time. Often it finds the optimal
combination especially if you leave a random component that avoids
the fall in local optima.

.

6.3.1 Grid Search
Since the datasets to be worked on are small, it was decided to use a
deterministic approach to find the best parameters for each algorithm.
To do this SKLearn provides a method called GridSearchCV() which
executes all possible combinations of the parameters passed as input. By
performing this search for each algorithm you will find the optimized
parameters in the table 6.1. All the parameters not mentioned in the
table are set as default.

Algorithm Modifies parameters

Random Forest Classifier max_features=’log2’, n_estimators= 80
Support Vector Machine C=3, kernel=’poly’,degree=3

Logistic Regression C=5, penalty=’l1’, tol=0.001, class_weight=’balanced’
Neural Network activation=’relu’, solver= ’adam’, hidden_layer_sizes= 500

KNN n_neighbors= 7, weights= ’distance’, algorithm= ’ball_tree’, p= 1
Naive Bayes Gaussian var_smoothing= 1

Gaussian Process Classifier warm_start=True, max_iter_predict= 100, multi_class: one_vs_rest
Decision Tree Classifier presort= True, splitter= ’random’, criterion=’entropy’, class_weight=’balanced’

Gradient Boosting Classifier warm_start=False, loss=’exponential’, learning_rate=0.5, n_estimators=100,subsample=0.5

Table 6.1: Hyperparameters tuned after grid search.

6.4 Results for each client
Once the best parameters for each algorithm have been chosen as ex-
plained in the previous section, the performance can be evaluated for
individual customers. As explained in the 5.6.3 section, both manual
and automatic features selection were performed, so the performance of
both feature reduction methods was evaluated. For automatic features
selection, only the table of the selection that obtained the best results is
shown.

The results were obtained thanks to the cross-validation method as
explained at the beginning of the chapter. In practice, k=4 folds were
used to obtain 4 sets of predictions from which average F1 and standard
F1 deviation values were obtained. This evaluation method is more well
structured than a single train-test division.

107

6 – Error Prediction: Algorithm evaluation

Client 1

As will be seen below, customer 1 is the one who gets the best score.

Now we will analyze in detail the scores obtained with the various
algorithms in situations of different feature selection.

The first results discussed are related to Client 1 with manual selection
of features (see paragraph 5.6.3). The values of the manually filtered
dataset are visible in the figure 6.2.

Figure 6.2: Client 1: in manual feature selection the Random Forest classifier is the one
that reach the best results, while Logistic Regression is the worse. The standard deviation
is quite low indicating stability of the results.

The second comparison carried out concerns the evaluation of the
dataset where an automatic feature selection was carried out. In order
not to report the results of each of the 5 automatic feature selection
described in the paragraph 5.6.3 it was decided to report only the best
results that in the case of Client 1 were obtained from the use of Principal
Component Analysis and Chi-squared for classification obtaining similar
results reported in fugura 6.3.

Overall, the best results are obtained with probabilistic algorithms
based on the tree classifier.The result is a conseguence of unbalanced
database property.

You can still achieve a 50% of F1 score, which is about half of the
maximum score.

108

6.4 – Results for each client

Figure 6.3: Client 1in automatic feature selection. Also in this case Random Forest and
Logistic Regression are the best and worse algorithhm. After automatic features selection
the performances degrade a little bit and the solutioni is more instable.

Client 2

The same division based on the features selection was made for the second
client, generally obtaining lower scores. This fact had already been an-
ticipated in some way by the correlation analysis (paragraph 5.4) which
identified lower correlation values with the target for the second client
compared to the first one. In practice this minor correlation may mean
the need to have more data or a mismach dataset.

Also in this case customer 2 is evaluated after the manual feature
selection process, results in figure 6.4.

Then, the best scores for the automatic feature selection are shown
in the figure 6.5. The features selection that got the best results in
this case are Features Importance, Chi-squared and Recursive Features
Elimination all with a score around the one shown in the figure.

As anticipated and as shown in the summary tables the results for
customer 2 have worsened quite a bit. Probabilistic algorithms are always
the ones that get the best results, but this time, in addition to those based
on trees, it increases the score of K Nearest Neighboard, an algorithm
based on the percentages of similarity between outputs.

Client 3

Customer 3 obtains very similar results to customer 2 and therefore quite
distant from customer 1. Again, there is a dependence between these poor
results and the correlation analysis of this customer, which was similar to

109

6 – Error Prediction: Algorithm evaluation

Figure 6.4: For Client 2 the manual feature selection scores bring to the same best
algorithm as before but the performance degrade a lot. This time Naive Bayes is the
worse algorithm.

Figure 6.5: Results of client 2 with automatic feature selection are very similar at those
in manual feature selection.

that of the second.
As for the other customers, we proceeded to analyze the data related

to the manual features selection, the results of which are visible in the
figure 6.6.

Finally, the best processes of automatic features selection have been
selected and give life to the results of figure 6.7. These processes are Chi-
squared, Features Importance and Select From Model based on Random
Forest variable selection.

110

6.4 – Results for each client

Figure 6.6: Client 3 in manual feature selection reach very low performances with KNN
as best algorithm and SVM the worse that does not predict anything, there is here a clear
model mismatch.

Figure 6.7: Finally client 3 is evaluated with automatic features selection. Results are
quite poor KNN and Random Forest reach the best performances, KNN with lowewr
standard deviation, so it is a more reliable solution. SVM and Gaussian Process do not
center the goal at all.

Probabilistic algorithms once again prove to be the most effective with
this type of data even for the third customer. Only in one case does the
KNN obtain slightly better results than the other algorithms, which are
however very close in score. In this case other algorithms such as Logistic
Regression, SVM, Gaussian Process, Naive Bayes are not at all effective
and they do not succeed at all in centering the problem to be solved.

111

6 – Error Prediction: Algorithm evaluation

6.5 Notes on performances

The results shown in the previous section do not achieve high performance
in absolute terms. However, since there is no deterministic method ca-
pable of analyzing the database and finding any error produced by the
machine, I think that all the true positives found by the algorithm are
still a satisfactory result because we are working in the right direction to
effectively predict the errors of the 548 Lam machine. On the other hand
you would expect better results from a complex, complete and long work
like this.

A general speech should be made about the variance and the average
of the results expressed. The value indicated in the previous tables is
the result of an average carried out on various training tests and predic-
tions. Several tests are necessary because of the scarcity of data available.
When dividing the initial database into train and test datasets it is very
important to distribute the examples in order to effectively predict the
behavior of the machine. Having a few examples it happens that the
variance between the different results obtained is high. It was decided to
take as a result the average of the various tests, however, it is neded to
take into account a normal variance of about +- 5%, with peaks of F1
score in the most extreme cases can reach peaks of +-10% (means that
if 0.55 is the score of an algorithm for a given customer this can vary by
making a new test in a maximum range of about 0.4-0.7 depending on
the distribution of the examples of the dataset).

A further comment should be made on the comparison of the results
obtained with manual and automatic feature selection. A first very im-
portant note is that the feature selection does not significantly change
the final score in any of the cases examined. This means that there are
certainly features that are not very useful to the prediction and that the
useful features have always been kept within the database used to train
the algorithms. Another consequence of the stagnation of the results is
due to the fact that you have few features available. The feature selection
is very useful when the columns of the tables reach a large size that affect
the computational performance and therefore also the scores achievable.
Having in the dataset about 30 columns at most the feature selection is
often irrelevant or even worse if the deleted information contained useful
data. This is connected with the fact that only the scores of the best au-
tomatic feature selection were reported, the others not reported probably
eliminated useful information so as to obtain worse results.

Finally we can discuss why some algorithms often get useless results
by not finding any correlation with the target (value 0 of F1 score). It can

112

6.6 – Algorithm Choice

happen that due to the fact of having a small and unbalanced database,
some train or test datasets do not contain examples of machine errors
inside them. If this happens in the train set the algorithm is not able to
find correlations and will never predict 1. If, on the other hand, there
are no negative examples in the test set, the algorithm will never predict
true positive, obtaining null scores in this case too.

6.6 Algorithm Choice
From the results shown above it is clear that the algorithm that best pre-
dicts the errors of the 548 Lam machine is currently the Random Forest
Classifier. As already mentioned, however, in general the probabilistic
algorithms are the ones that perform best. This is typical of unbalanced
datasets.

Another feature of our database is that it has few obvious correlations
with the target, so a deterministic mathematical model cannot find linear
links between the data to approximate the correct result, so this is the
second reason why probabilistic algorithms work better.

You can do further studies now that you have the algorithm selected
as best available. For example, you can search for the causes of the
poor performance in the training set score, or you can better analyze the
prediction by going back to the two evaluetion metrics that make up the
F1 score that are recall and precision. These, unlike the F1 score, have a
more concrete meaning and it is therefore easier to understand which are
physically and practically the results obtained.

6.6.1 Random forest learning curve
You can study in more detail the behaviour of the Random Forest Classi-
fier algorithm through the learning curves (see paragraph 4.1.4). As you
can see, the cross-validation score curve is increasing as the number of
examples in the dataset increases, while the training score curve is almost
constant around the maximum value. This last fact probably indicates
an overfitting as the value of the learning curve should decrease slightly.
Another possible cause of the gap between the two curves is the lack of
data. As you can see the validation curve is constantly increasing with
the increase in the number of examples, you can therefore expect a further
growth as the amount of data increases.

In figures 6.9 and 6.10 you can see the learning curves for customers
2 and 3. The comments are similar to those made for customer 1 with

113

6 – Error Prediction: Algorithm evaluation

Figure 6.8: Random forest learning curve for client 1. In x axis the size of the dataset,
in y axis the F1 score.

the difference that the scores are lower. Here too there may be a problem
of overfitting or lack of data.

Figure 6.9: Learning curve for client 2

A further possibility is due to the uniqueness of the error situation,
so you can train an algorithm to predict only the errors for which it was
trained, but it is difficult to find correlations with the test set. Surely
in reality there are causes that lead to an error in the machine. When
the available data (features) are not representative of the problem to be
solved we speak of Dataset Mismatch already discussed in the paragraph
4.1.4. If the problem that causes a scarcity of results is due to a dataset

114

6.6 – Algorithm Choice

Figure 6.10: Learning curve for client 3

mismatch the algorithms of machine learning and their tuning can not
overcome this problem. The best solution to get good results for the pre-
dictioin error would be in this case a new project, collecting new features
and new data.

115

Chapter 7

Time Prevision Solution

This chapter discusses the second problem cited in the introduction, chap-
ter 1.3, i.e. the prediction of plate processing times. The forecasting of
processing times is a problem of great importance for Bottero, as cus-
tomers often expressly request a time for processing. Since the machine
has many possibilities of operation, indicating a time is not at all easy.
Before this work they tried to create for some applications a deterministic
approach that often turned out to be incorrect and that above all referred
only to certain processes. In this chapter we will try to explain how it is
possible to generalize the process obtaining satisfactory results.

This second part of the thesis has therefore a more practical approach
and focuses not only on optimizing the results, but on the contrary its
purpose is to create an algorithm that can be recreated directly on the
machine so that before the processing of the glass plate begins customers
know what time will be spent.

The time prediction is based on regression machine learning algo-
rithms. The idea of using machine learning in this second work also stems
from the need to generalize the solution quickly and reliably. Differently
from the error prediction part we will not discuss so much the process
that leads to the result (i.e. mathematical formulation, data merging, ...)
but this second part is more focused on the structure of the practical work
that must be performed for transport and ricreate directly the prediction
platform to the 548 Lam machine.

7.1 Requirement
Bottero is very interested in forecasting the cycle times of a glass plate.
This in a perspective of a more complete work can lead to two main
benefits:

117

7 – Time Prevision Solution

• Prediction of working time on existing 548 Lam machines installed
at various customers in order to make the time management of glass
works more efficient.

• Giving a good estimate to possible new customers of the company
who will use the values of the predicted processing times as a compar-
ison between companies so that they can rely on this work to choose
whether or not to buy a 548 Lam. The estimate of the time on
non-existent machines can be carried out for similarity with already
existing machines or it will be necessary to create in a second step
a forecast of the times based directly on the features of the machine
and not only on the inputs and outputs produced by the already ex-
isting machine. Remember that every 548 Lam is customizable and
therefore making the time forecast on a single machine that does not
yet exist is a very difficult task.

In this chapter, I will focus on the first of the two works just mentioned.
The requirements to be met are:

• Improve the probabilistic approach already implemented for some
machining operations.

• Extend the forecast to every possible processing (many steps, every
glass thickness, every possible combination)

• Keeping the error within 10% without take too much in account the
algorithm or the efficiency.

• Create an easily transportable and reproducible algorithm directly
on the 548 Lam machine.
From these requirements it is clear that the objective is directed more

to practicality than to optimization, which will then be an aspect to be
improved once a functioning apparatus has been built.

7.2 Starting Data
The data available on the AWS Database are used to make the prediction:

• view_StepDetail (VIEW)
• TLamiWinDataToRtx548 (TABLE)

These two tables have already been mentioned in the paragraph 3.3.
As discussed in this second part of the thesis the preprocessing phase
is minimal because the starting database are these two tables already
created by Bottero in function of this work.

The only part to do in data preparation is to associate the two types
of information thanks to the step ID so you create a single DataFrame

118

7.3 – Idea

containing a lot of information about the machine and the step whose exe-
cution time you want to predict. The result is a table called StepAllInfor-
mation that contains information from the two tables.

Figure 7.1: Data preparation phase for time prevision.

7.3 Idea
The idea to solve the problem described by satisfying the requirements is
to use a Machine Learning algorithm that uses numerical input data to
obtain the desired time. The inputs are all columns of the extended table
SteppAllInformation except the output column to be predicted Executin-
Time.

The problem clearly falls within the part of machine learning called
regression. There are various types of regression as seen in the paragraph
4.3 including:

• Linear Regression
• Redge Regression
• Lasso Regression
• Polynomial Regression
The common characteristic of these algorithms is that of finding suit-

able coefficients to multiply the inputs, thus creating the function of pre-
diction:

hc(x) = c0 + c1 ∗ x1 + c2 ∗ x2 + · · ·+ cn ∗ xn
This function is very simple and that is why we will use one of these
algorithms to recreate the prediction on the 548 Lam. For a first step you
can also exclude Polynomial Regression again as it extends the number
of features by creating interpolation between columns and making the
prediction more complex to recreate.

119

7 – Time Prevision Solution

The difference between the remaining algorithms consists in how the
convergence to the values of the coefficients happens, in practice it changes
the way in which the coefficients are chosen. In general, the coefficients
are found thanks to the data available on the database: having a lot of
data it is possible to associate the input x to the cycle times recorded
during the various steps and saved on the database, this correlation is
manifested through the coefficients.

Once the coefficients have been found, they will be saved in a JSON1

file and it will therefore be possible to reconstruct the prediction function
in the 548 Lam machine interface software when an optimization of a
glass plate is selected.

As shown graphically in figure 7.2 the structure of this project is
based on three main actors:

Database Used for collecting, formatting and organizing data and for
creating the two tables described above for forecasting times.

PC with ML Performs the following tasks:

• Get the data
• Pre-processing and training
• Obtaining coefficients
• Validation of results
• Exporting information (JSON)

548 Lam Here the prediction function is reconstructed, the cycle time
estimates are made thanks to the reconstructed function and from
the machine there is a continuous sending of data to the database
that will serve to create more precise algorithms.

7.4 Implementation

For the practical realization we used also in this case the Python pro-
gramming language and the Jupyter Notebook environment for the de-
velopment and debugging of the various parts to then create a final script
that when launched executes a series of operations that will be explained

1Json (Javascript Object notation), is a type of format widely used for data exchange, based on
JavaScript but its development is specific for data exchange and is independent of the development
of the scripting language from which it is born and with which it is perfectly integrated and easy
to use. Json has made his way through the various protocols and data exchange formats for ease
of implementation.

120

7.4 – Implementation

Figure 7.2: Data flow of time prevision: A PC selects data from the database and trains
a machine learning algorithm to find the coefficients necessary for prediction. These are
saved in a JSON file sent to the 548 Lam where the function is reconstructed and the
forecasts take place. The 548 Lam continues to send data to the database from which the
algorithm can be refined.

shortly generating at the end a file in JSON format containing the coef-
ficients to reproduce the functions of prediction for each step.

The Python script does the following:

• reads as input a configuration file containing the names of the cus-
tomers for which to perform the training of the algorithm and the
subsequent generation of JSON files. Each JSON file is referred to
only one customer.

• connects to the local SQL server where there is a copy of the AWS
database and imports the formatted tables referring to the steps
(view_StepDetail and TLamiWinDataToRtx548)

• Many columns not suitable for prediction are eliminated (usually all
those with literal and/or redundant information)

• The badly finished steps are eliminated

• The two tables are merged

121

7 – Time Prevision Solution

• Unified table is filtered to leave only selected customer data in the
configuration file

• For each ProcessorID in the configuration file, the algorithm is trained
as follow:

– Search the various step to train (cut, transport,rotation,. . .)
– For each of the step find before train a regression algorithm to
make prediction for each step (so finding coefficients for each type
of step)

– Save coefficients: append in a dictionary the parameters
– Repeat these actions for each step of the 548 Lam machine

• The results are saved in a JSON file and explanatory graphs are
printed on the screen, such that it is possible to validate the results.

The structure of the JSON file is shown in figure 7.3. The struc-
ture is fixed: first an external structure contains 4 information (Client,
MeanValueDataInputForClients, Datetime, Data) defined for the client
to predict:

Client : ID of the client to predict.

MeanValueDataInputForClients : debug purpose.

Datetime : date and time of the JSON creation.

Data : recursive information are here stored. Contain sub-structures
(one for each type of step) composed as follow:

MeanValueDataInputForStep :debug purpose.
Coeff : list of the coefficients (c0, c1, . . . , cn)
StepName : Name of the step
DataInput : List of ordered data input (features) to multiply the

coefficients.
MeanExecutionTime : mean value of the historical data of the

execution time for this step for that client. The scope of this list
is to compare later the prediction done thanks to the machine
learning process with the sum of these mean value to have an
approximation of the working time of the machine.

Intercept : c0 coefficient, is the first parameter who does not mul-
tiply any feature.

7.4.1 548 Lam implementation
When the coefficients have been obtained for each step and saved in a
JSON file you can proceed with the implementation in the 548 Lam. The

122

7.4 – Implementation

Figure 7.3: JSON file example:it is clear the data format inside the file

interface takes the data from the JSON file to reconstruct the prediction
function. Once the optimization of the glass plate has been chosen (num-
ber and sequence of steps to be carried out), the various execution times
of each step are predicted. Finally, these times of the individual steps are
added together to obtain the forecast of the plate time. The 548 Lam
implementation is shown in figure 7.4.

Figure 7.4: Implementation of time prevision inside 548 Lam: it read the JSON file and
predict independently each step. Then the step time forecast are summed to obtain the
final glass sheet optimization prediction.

7.4.2 Validation of the performance

Only part of the available data is used to find the coefficients. The remain-
ing part is used to make forecasts for validation purpose. The validation
is done comparing the result obtained with the forecast and the real one,
which was hidden from the algorithm in the training phase. In this way
you have the equivalent of new steps within a plate to predict. Finally,

123

7 – Time Prevision Solution

the cycle times of each step belonging to the same glass slab are added
together, thus obtaining the total slab time. In figure 7.5 is summarized
this process.

Figure 7.5: Validation process: before use the coefficients found in a real application
inside 548 Lam the results are tested.

7.5 Results

This section shows the results of two customers following the proposed
process. The results are related to the validation phase as explained above
and not to the actual implementation on the 548 Lam that will be tested
by Bottero.

For simplicity and confidentiality the two customers will be called
Customer A and Customer B.

The graphs 7.6 and 7.7 contain the results of the entire process of
processing a glass plate. The results reported in this section are those of
the entire glass plate processing, composed by various step. Remember
that the algorithm predict the steps and sum the individual results for ob-
taining the total glass processing time, that is the one we want to predict
from requirements. The following results must therefore be read as the
sum of various predictions made by algorithms with different coefficients
for each step performed, predictions are then added together to obtain
the final result.

Moreover, in the histograms are also reported the real measured values
to which we tend. Those results are registered after the end of the glass
processing phase and so they are the target we want to achieve.

124

7.6 – Further Applications

Also the results obtained with another algorithm2 that scrutinizes the
average of the times of the steps (also reported in the JSON files for each
step) is reported in the third column of the figures.

The axes of the graphs contain in the abscissa the GlassID (identifi-
cation of the glass plate being processed whose times are to be predicted)
and in the ordinate the predicted, average and true processing times mea-
sured in milliseconds.

Customer A achieves good results with an average error of 4.8% com-
pared to the true value. We also report the average value of the error
found thanks to the forecast made with the average time of each step,
which in this case is about 12%. Results shown in figure 7.6.

Customer B also gets good results as you can see from the figure 7.7
reaching an average error on the forecast of 8.8% compared to about
10% obtained using the average values of the times of each step and then
adding them up.

7.6 Further Applications
As said, this work of time prediction focuses on predicting the individual
steps of each optimization and then adding them up to obtain the total
time predicted for the entire processing of the glass plate.

This work has not been focused on maximizing performance but on
simplicity of implementation, also to give a way to obtain some results
that will lead to further studies and work. In this way it has been possible
to create all the necessary apparatus for the prediction of time, with prac-
tical purposes and with real consequences for the company. Surely now
that this first project has brought innovation thanks to the introduction
of machine learning inside the 548 Lam machine, there will be further
studies to improve the system presented here.

A limitation is that the process explained here is only suitable for
existing machines, so it can be customized for any customer who wants
to add this functionality to their machine. The heart of the matter is that

2The above algorithm is entered for comparison with the time prediction obtained with the
machine learning algorithm. Instead of predicting each machining step, we look at the historical
machining times of the steps and replace the prediction with the average of the times calculated
from the data in the dataset. Then these averages for each single step are added up to obtain a
sort of "prediction" based on the averages of the entire glass plate. This approach is evidently
heuristic, it is reported to compare the goodness of a machine learning approach compared to this
other approach more random and simpler that gives worse results.

125

7 – Time Prevision Solution

Figure 7.6: Client A time prediction results from validation process: in x-axis the GlassID
of the glass sheet to predict, in y-axis the time in ms. The graph compare three columns
for each glass plate worked. The three columns indicate actual values, the predicted one
with the machine learning implementation and a comparison with the time obtained using
the mean values of the step. the mean value is calculated on the basis of the historical
data contained in the database. The prediction perform better than the mean value and
reach an error of 4.8% wrt the actual values.

this process is based on the data that the machine has already produced
and recorded, that is on a historical data, the database precisely.

What further studies and works would like to achieve instead is the
prediction of the processing time of the glass plate for machinery not
yet existing. The 548 Lam machine is a very customizable machine and
can produce very different processes. The hope is to be able to correlate
the prediction of working time with some features of the machine. Let’s
suppose that the machine can be composed of several parts A B C D E
what we want to do is to correlate the parts with the speed of execution
of the machine so that if a customer wants only parts B and C installed
on the machine the working time can be predicted from this information.
Surely we will rely on existing machines and the like, but the hope is
a generalisation of the dependence between machine features and time
prediction.

126

7.6 – Further Applications

Figure 7.7: Client B results from validation process: in x-axis the GlassID , in y-axis the
time in ms. Also in this case the three columns compare actual, predicted with ML and
estimated with the use of the historical mean values. Also in this case the ML prediction
perform better than the mean and reach the requirement staying behind 10% of error wrt
the actual values.

127

Chapter 8

Final Observations and
Comments

The proposed thesis focused on two distinct parts of work, the Error
Prediction and the Time Forecast. The two parts as discussed in the
previous chapters are very distinct, one more didactic and study, the
other more practical and concrete. However, both are based on supervised
machine learning, the first deals with a problem of classification, the other
with a problem of regression. Inserting these two parts not only shows
how to manage and deal with a machine learning problem but also shows
how to implement it and have practical implications.

The first one has a more theoretical and more meticulous imprint on
the problem, and has had as its pro the fact of being very accurate and
of having tried to maximize the result. However, it is less concrete and
more detached from the reality of use and from a possible implementation
because of the greater didacticity. The main aim of this first part was
not so much to achieve the result that would be difficult to implement,
but to study and develop a complex and complete project of machine
learning. The main output of this first phase is therefore to be found in
the scrupulousness of the work and in the knowledge applied and studied
during the months of the thesis. What I have learned and hope to have
expressed in a clear and exhaustive way in this work, so that even a
reader can learn is how to carry out a project of classification of machine
learning, so in the thesis there are various ideas and quotations to parts
related to the work but not strictly necessary. However, they have been
included by virtue of a broader and more general view of the world of
machine learning.

The second part, unlike the first, is almost entirely focused on the
actual implementation of the idea carried out. The aim here is not to

129

8 – Final Observations and Comments

achieve maximum results but to use this idea to obtain practical feedback
from the company as well. The practicality obtained is highly correlated
with the simplicity of the theoretical part of this second phase. The
results, unlike the previous part, are vital because the study was done
only by virtue of the application that must therefore be working. In
this second part we can also see how machine learning can fit into and
coexist in a historically deterministic environment such as that of a time
forecast that has always been based on formulas and statistics. The result
obtained shows how machine learning is suitable in cases of multitude of
possibilities, where hundreds of formulas would be needed, one for each
specific case, a quantity not manageable by hand because of the increasing
industrial complexity.

130

Chapter 9

Appendix 1

In this appendix there are practical references to the work done in re-
lation to the working environment, the programming language and the
development method used.

9.1 Programming Environment

9.1.1 Jupyter Notebook

Jupyter Notebook is a free and open-source web application that allows
you to create and share documents that contain code, equations, text and
images incorporated and are offered educational insights that illustrate
the potential of its use. With Jupyter it is, in fact, possible to combine the
phases of data collection, code writing, visualization of graphs and tables
as well as the possibility of making the code shareable on the GitHub
platform (the most popular hosting service for software projects). In
particular, the code is, from time to time, modifiable and executable
in real time. What has been done can then be automatically exported
in HTML, PDF and LaTeX format. In concrete, through Jupyter it is
possible to unify moments normally separated from the work of a scientist
until now.

The Notebook was used together for the first part of the thesis and
for debugging in the second part because, when satisfied with the work,
a normal executable was created.

Versions of the different parts of Jupyter used for the thesis:

jupyter 1.0.0
notebook 5.7.8

jupyter-client 5.2.4

133

9 – Appendix 1

jupyter-console 5.2.0
jupyter-core 4.4.0

Figure 9.1: A typical interface of Jupyter Notebook

9.1.2 Python
Python is a high-level programming language, supports several program-
ming paradigms, such as object-oriented (with support for multiple inher-
itance), imperative and functional, and offers a strong dynamic typing.
It comes with an extremely rich built-in library, which together with au-
tomatic memory management and robust exception handling constructs
makes Python one of the richest and most convenient languages to use.

Python version used for this thesis:

Python 2.7.15rc1

9.1.3 Pandas
Pandas is a software library written for the Python programming language
for data manipulation and analysis. In particular, it offers data structures
and operations to manipulate numerical tables and time series. This tool
allows the creation of data sets that can be manipulated by executing
filters by column, row, order, join as well as SQL syntax.

The used version is:

Pandas 0.24.2

9.1.4 SKLearn, NumPy, SciPy
Scikit-learn is an open source library of automatic learning for the Python
programming language. It contains classification, regression and cluster-
ing algorithms and support vector machines, logistic regression, Bayesian
classifier, k-mean and many others. It is designed to work with the
NumPy and SciPy libraries that are two libraries to manage complex
numerical problem in Python.

134

9.1 – Programming Environment

The software version as follow:

SKLearn 0.20.3
NumPy 1.16.2
SciPy 1.2.1

9.1.5 Other libraries

MatplotLib

Matplotlib è una libreria per la creazione di grafici per il linguaggio di
programmazione Python e la libreria matematica NumPy.

Seaborn

Seaborn is a Matplotlib wrapper that simplifies the creation of common
statistical graphs. The list of supported charts includes univariate and
bivariate distribution charts, regression charts, and a number of methods
for plotting categorical variables. Creating graphs in Seaborn is as simple
as calling the appropriate graphics function. The style of the graph can
also be controlled using a declarative syntax.

Category-Encoders

It is a library to automatically manage categorical features. It leans
and is perfectly compatible with Pandas. There are various methods of
categorizing more or less complex features.

Pyodbc

It is a library for establishing connections with SQL server. You can con-
nect to the local or remote server. From Python with simple commands
you can get all or part of one or more tables. It is also possible to insert
an authentication or modify directly the data in the database without
using the SQL language but programming in Python.

Jsonschema

Necessary to create, manipulate and validate JSON format.

The relative versions are expressed below.

matplotlib 2.2.4
seaborn 0.9.0

category-encoders 2.0.0

135

9 – Appendix 1

pyodbc 4.0.26
jsonschema 3.0.1

A typical import of the occurrent libraries and classes for machine
learning

136

In []: import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
#import seaborn as sns

from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm
from sklearn.neighbors import KNeighborsClassifier
from sklearn import tree
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import BaggingClassifier

from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.model_selection import learning_curve
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score

from sklearn.utils import shuffle

%matplotlib inline

1

9 – Appendix 1

9.2 Structure of the work
This section briefly discusses how the work has been structured.

9.2.1 Error Prediction: Scripts Structure and Divi-
sion
For the first part of error prediction 10 files were used in jupyter note-
books, the work was carried out in an orderly manner and follows the com-
mon thread presented in the chapters refpar:preproc and refpar:evaluation.
The scripts are as follows:

• 1_Cuts_Extended.ipynb

• 1a_HandleCategoricalFeatures.ipynb

• 2_DivisionByClients.ipynb

• 3_CorrelationAnalysis.ipynb

• 4_StatisticalAnalysis.ipynb

• 5a_ManualFeaturesSelection.ipynb

• 5b_AutomaticFeaturesSelection.ipynb

• 6_HyperParameter_Tuning.ipynb

• 7_ML_Algorithms_Comparison.ipynb

• 8_MyLearningCurve.ipynb

The scripts ar enot reported here because of the big space requested
to include all.

9.2.2 Time Prevision Script
For the second part of the weather forecast Jupyter Notebook was used
at an early stage to then create a final script presented here.

138

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3
4
5 import pandas as pd
6 import matplotlib.pyplot as plt
7 import numpy as np
8 import seaborn as sns
9 from time import gmtime, strftime

10 import category_encoders as ce
11 import json
12 import pyodbc
13 from pandas.api.types import is_numeric_dtype
14
15 from sklearn.preprocessing import PolynomialFeatures
16 from sklearn.linear_model import Ridge
17 from sklearn.linear_model import Lasso
18 from sklearn.linear_model import LinearRegression
19 #from sklearn.linear_model import Lars
20 #from sklearn.linear_model import BayesianRidge
21 #from sklearn.kernel_ridge import KernelRidge
22 #from sklearn.svm import SVR
23 #from sklearn.linear_model import SGDRegressor
24 #from sklearn.neighbors import KNeighborsRegressor
25 #from sklearn.gaussian_process import GaussianProcessRegressor
26 #from sklearn.tree import DecisionTreeRegressor
27
28 from sklearn.model_selection import train_test_split
29 from sklearn.preprocessing import StandardScaler
30 from sklearn import metrics
31
32 file=open('MyClientsToPredict.json', 'r')
33 my_clients=json.load(file)['clients']
34 file.close()
35
36
37 ##
38 #funzioni utili dopo..
39 def bitwise_step(n):
40 auto = 1
41 manual = 2
42 bad = 4
43
44 mask=[0,0,0]
45
46 if n & auto == auto:
47 mask[0]=1
48 if n & manual == manual:
49 mask[1]=1
50 if n & bad == bad:
51 mask[2]=1
52 return mask
53
54 def get_element(mylist,position):
55 return mylist[position]
56
57
58 #...
59
60 ###
61 #IMPORTO DA SQL LOCALE
62 try:
63 print 'Importing StepDetail and TLamiWinDataToRtx548 from local SQL...'
64 conn = pyodbc.connect('Driver={SQL Server};'
65 'Server=DESKTOP-JKHKFQL\SQLEXPRESS;'
66 'CustomersProductionStatistics;'
67 'Trusted_Connection=yes;')
68 SQL_Query1 = pd.read_sql_query('''select * from

CustomersProductionStatistics.dbo.viewStepDetails''', conn)
69 SQL_Query2 = pd.read_sql_query('''select * from

CustomersProductionStatistics.dbo.TLamiWinDataToRtx548''', conn)
70 StepDetail1 = pd.DataFrame(SQL_Query1)

71 DataToRtx=pd.DataFrame(SQL_Query2)
72 print 'Tables imported.'
73 except:
74 print 'Impossibile connettersi al database SQL locale. Esco dal programma'
75 exit(1)
76
77
78
79
80
81 #faccio Merging dei due df
82 StepAll=StepDetail1.merge(DataToRtx, left_on='ID', right_on='StepID', how='inner')
83 #qualche operazione sulla tabella, estraggo info da maschera e elimino le colonne

con troppi dati nulli
84 StepAll.rename(columns={'StepAuto':'StepMaskDec'}, inplace=True)
85 #extract information from the step mask (StepMaskDec), it create a new feature

(StepMaskBit) containing a bit list
86 StepAll['StepMaskBit']=StepAll.StepMaskDec.apply(bitwise_step)
87 #create the features assigning the element of the just created list
88 StepAll['StepAuto_MS']=StepAll.StepMaskBit.apply(get_element,position=0)
89 StepAll['StepSemiAuto_MS']=StepAll.StepMaskBit.apply(get_element,position=1)
90 StepAll['BadTerminated_MS']=StepAll.StepMaskBit.apply(get_element,position=2)
91 #elimino le maschere perchè ho le appena creato creato nuove colonne con le stesse

info estese
92 StepAll.drop(columns=['StepMaskBit','StepMaskDec'], inplace=True)
93 StepAll.drop(columns=['G.[Duration]','G.[TimeWorking]','G.[TimeWaiting]','parStacco.pr

eriscaldamentoInit','parStacco.preriscaldamento','AllParam_NoDependences'],inplace=Tru
e)

94 StepAll.drop(columns=['MachineID_x','M.[Name]','M.[TypeMachineID]','M.[NameExtended]',
'G.[DateTime]','G.[DateTimeEnd]','G.[OptName]','G.[StringBottero]'],inplace=True)

95 StepAll.drop(columns=['T.[DateTime]','T.[Name]','DateTime_y','MachineID_y','Step','Pre
vStep','Laminato','NextStep'],inplace=True)

96 StepAll.drop(columns=['ID_x','ID_y','StepID'],inplace=True)
97 StepAll['G.[Grind]']=StepAll['G.[Grind]'].apply(int)
98
99 ############## 0_Prendo dati dal 10 aprile

100 print 'step 0...'
101 t1=pd.to_datetime('04/10/2019')
102 StepAll['DateTime_x']=pd.to_datetime(StepAll.DateTime_x)
103 StepAll=StepAll[(StepAll.DateTime_x>t1)]
104 StepAll.drop(columns=['DateTime_x'],inplace=True)
105 StepAll.reset_index(drop=True,inplace=True)
106
107 ############## 1_Elimino Bad terminated
108 print 'step 1...'
109 StepAll=StepAll[StepAll.BadTerminated_MS==0]
110 StepAll.drop(columns=['BadTerminated_MS'], inplace=True)
111
112 ############## 2_ Elimino Step manuali
113 print 'step 2...'
114 StepAll=StepAll[StepAll.StepAuto_MS==1]
115 StepAll.drop(columns=['StepAuto_MS'], inplace=True)
116
117 ############## 3_Elimino step SemiAuto
118 print 'step 3...'
119 StepAll=StepAll[StepAll.StepSemiAuto_MS==0]
120 StepAll.drop(columns=['StepSemiAuto_MS'], inplace=True)
121
122 ############## 4_Gestisco valori nulli
123 print 'step 4...'
124 #print StepAll.isnull().sum()
125 #print 'e necessario gestire i valori nulli in questa parte'
126
127
128 ############## 5_Seleziono Clients
129 print 'step 5...'
130 print 'somma di tutti gli step divisi per macchina:'
131 print StepAll['M.[ProcessorID]'].value_counts()
132 flag=0
133 my_clients_restricted=[]
134 for ii in my_clients:
135

136 if ii in list(StepAll['M.[ProcessorID]']):
137 if flag==0:
138 StepAllClients=StepAll[(StepAll['M.[ProcessorID]']==ii)].copy()
139 else:
140 StepAllClients.append(StepAll[(StepAll['M.[ProcessorID]']==ii)])
141 flag=1
142 my_clients_restricted.append(ii)
143
144 else:
145 print 'non è possibile trovare il cliente tramite il processor id '#%s

immesso. ' %ii
146 print 'Il processor ID puo essere sbagliato o non presente nella tabella di

ingresso StepAll. Verificare.'
147 print '--'
148 print 'Il processo e stato arrestato, eliminare le fonti di errore e

riprovare'
149 exit(1)
150
151 #categorizzo i clienti selezionati per la tabella generale valida per tutti i clienti
152 ce_one_hot = ce.OneHotEncoder(cols = ['M.[ProcessorID]'],use_cat_names=True)
153 StepAllClients=ce_one_hot.fit_transform(StepAllClients)
154
155 my_clients_restricted.append('AllClientsSelected')
156

##
##à

157
158

##
##

159
160

##
###

161 #parte 2
162
163 for tt in my_clients_restricted:
164 #read the table
165 print '\n\n\n\n-----------------------------Working on client: %s

-------------------------------\n' %tt
166 if tt!='AllClientsSelected':
167 my_table=StepAll[StepAll['M.[ProcessorID]']==tt].copy()
168 my_table.drop(columns=['M.[ProcessorID]'],inplace=True)
169 else:
170 my_table=StepAllClients.copy()
171 ###########GESTIONE VALORI NULLI DI DEFAULT
172 #controlo valori nulli. se ce ne sono esco dal programma. Bisogna gestire questi

problemi nella parte di pre-processing: file A1_StepDetail_Preprocessing
173 if my_table.isnull().sum().sum()!=0:
174 print 'Rilevati valori nulli per il cliente: %s' %tt
175 print 'Si desidera convertirli in 0 (zero)? '
176 print '(inserire y e premere invio per la conversione, altrimenti inserire

altro comando per uscire dal programma e gestirli a mano)'
177 scelta=raw_input('>')
178 if scelta=='y':
179 my_table.fillna(0, inplace = True)
180 else:
181 print 'Exiting from the program. The table of the client %s contains

Null (NaN) values. Manage this problem manually then re-try.' %tt
182 exit(1)
183
184 ##########GESTIONE DATI NON NUMERICI (int64 o float64)
185 #controlo di avere solo dati numerici int64 o float64
186 non_numerics = [x for x in my_table.columns if not (my_table[x].dtype ==

np.float64 or my_table[x].dtype == np.int64)]
187 for a in list(non_numerics):
188 if a!='Name':
189 print 'DataTypes di una o piu colonne diverso da int64 o float64,

controllare: %s' %a
190 exit(1)
191
192

193
194 #Creao lista con step eseguiti da cliente e per cui si creano algoritmi di

predizione
195 my_list=list(my_table.Name.value_counts().index)
196 print 'lista di step eseguiti dal cliente %s: ' %tt ,my_list
197
198 #Creo dataframe vuoto con n colonne. Questo dataframe sarà utile per debug per

risalire a predizione, step,..
199 Names=list(my_table.columns)
200 Names.append('NameStep')
201 Names.append('Actual')
202 Names.append('Predicted')
203 Names.append('MeanExecutionTimeOfStep')
204 Pred=pd.DataFrame(columns=Names)
205 Pred.drop(columns=['Name','ExecutionTime'],inplace=True)
206
207
208 #creo struttura dei vari file che verranno scritti in formato JSON
209 my_dic={'Client': tt, 'Datetime': strftime("%Y-%m-%d %H:%M:%S", gmtime()),

'data':[], 'MeanValueDataInputForClient': None}
210
211 #immetto media input per cliente (non in base agli step ma è media globale degli

input cliente) sono per alcune colonne (quelle di input) di Pred
212 col_temp=list(my_table.columns)
213 col_temp.remove('ExecutionTime')
214 col_temp.remove('Name')
215 temp=my_table[col_temp].copy()
216 my_dic['MeanValueDataInputForClient']=list(temp.mean(axis=0).values)
217 #per debug
218 canc1=list(temp.mean(axis=0).index)
219
220
221
222
223 #popolo il dizionario my_dic aggiungendo strutture dentro data. Ogni struttura

tra parentesi graffe sarà relativa ad una tipologia di step
224 for i in my_list:
225 #struttura interna di data, che chiamo al singolare dato (relativo ad una

singola tipologia di step)
226 dato={'StepName':i,'Coeff':None, 'Intercept': None,'DataInput':None,

'MeanExecutionTime': None, 'MeanValueDataInputForStep': None} #Json di ogni
step

227
228 #filtro la tabella selezionata nel ciclo principale in base allo step

i-esimo (secondo ciclo)
229 df=my_table[my_table.Name==i]
230
231 #separo input/output
232 X = df.drop(columns=['ExecutionTime','Name'], axis=1) #machine

learning input
233 y =df['ExecutionTime'] #machine leaning

output
234 #train dataset
235 X_train, X_test, y_train, y_test= train_test_split(X,y,test_size=0.25)
236
237 try:
238 #select the ML algorithm
239 regressor =Ridge() #Lasso(max_iter=2000, alpha=2.0) # Ridge()

#LinearRegression()
240 regressor.fit(X_train, y_train) #training the algorithm ==> può dar

problemi se abbiamo troppi pochi esempi
241
242 #Riempio il file esterno con i dati (coefficienti e termine noto) della

fase di learning. Metto anche le colonne da dare per effettuare la
predizione

243 #avrò: y=c0+c1*x1+c2*x2+....+cn*xn
244 #To retrieve the intercept:
245 dato['Intercept']=regressor.intercept_
246 #For retrieving the slope:
247 dato['Coeff']=list(regressor.coef_)
248 #To retrive data input
249 dato['DataInput']=list(X_test.columns)

250 #others
251 dato['MeanExecutionTime']=y.mean()
252 dato['MeanValueDataInputForStep']=list(X_train.mean(axis=0).values)
253 #per debug
254 canc2=list(X_train.mean(axis=0).index)
255
256
257
258 #implemento l'algoritmo e stimo y_test, poi metto y_test e y_pred in un

dataframe
259 y_pred = regressor.predict(X_test)
260 y_df=pd.DataFrame({'Actual': y_test, 'Predicted': y_pred, 'NameStep': i,

'MeanExecutionTimeOfStep': y_train.mean() })
261
262
263 #concateno i due dataframe X_test e y_df e li concateno in un grande

dataframe prima creato chiamato Pred
264 Pred=pd.concat([Pred,pd.concat([X_test, y_df], axis=1,

ignore_index=True)],sort=False)
265
266 print 'Working on %s ...' %i
267
268
269 #plotto i risultati ottenuti
270 df1 = y_df[['Actual','Predicted']].head(50)
271 df1.plot(kind='bar',figsize=(16,10))
272 plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
273 plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
274 plt.title(tt+ ' ' +i)
275 plt.show()
276
277 #time.sleep(2)
278
279 except:
280 print

'\n\n\n---
----------------------'

281 print 'non possibile stimare lo step:' , i , '. Non verrà inserito
questo step per il cliente '

282 print
'---
----------------\n\n\n'

283 #infine aggiorno my_dic con l'output dell'appendimento del machine learning
in modo da poter utilizzare questi dati esternamente per effettuare predizioni

284 my_dic['data'].append(dato)
285
286 if canc1 != canc2 or

len(my_dic['MeanValueDataInputForClient'])!=len(dato['MeanValueDataInputForSte
p']) or dato['DataInput']!=canc1:

287 print ("DataInput for mean and for prediction differ, check the problem.")
288 exit(1)
289
290
291 #salvo file Json in un file esterno
292 json_name= tt + '_JsonForPrediction.json'
293 file1 = open(json_name,"w")
294 file1.write(json.dumps(my_dic))
295 file1.close()
296
297 print '\n\n\n'
298 print 'File Json savato per cliente %s' %tt
299 print '\n\n\n'
300
301
302
303 #creo e poi plotto il risultato totale ottenuto in un grafico, unendo tutti gli

step con lo stesso GlassID (pedizione tempo lastra)
304

GlassActual=Pred[Pred.NameStep!='StepVsxScaricaConvoglio'].groupby('GlassID').Actu
al.sum()

305
GlassPredicted=Pred[Pred.NameStep!='StepVsxScaricaConvoglio'].groupby('GlassID').P

redicted.sum()
306

GlassMean=Pred[Pred.NameStep!='StepVsxScaricaConvoglio'].groupby('GlassID').MeanEx
ecutionTimeOfStep.sum()

307 Glass=pd.merge(GlassActual,GlassPredicted, on='GlassID', how='outer')
308 Glass=pd.merge(Glass,GlassMean, on='GlassID', how='outer')
309 Glass['DifferenceInSec']=(Glass.Actual-Glass.Predicted)/1000
310

Glass['PercentageErrorPrediction']=(abs(Glass[Glass.Actual>100000].Actual-Glass[Gl
ass.Actual>100000].Predicted)/Glass[Glass.Actual>100000].Actual)*100

311
Glass['PercentageErrorMean']=(abs(Glass[Glass.Actual>100000].Actual-Glass[Glass.Ac
tual>100000].MeanExecutionTimeOfStep)/Glass[Glass.Actual>100000].Actual)*100

312
313 df1 =

Glass[['Actual','Predicted','MeanExecutionTimeOfStep']][Glass.Actual>100000].iloc[
0:50]

314 print 'media errore cliente %s usando la predizione: '
%tt,Glass.PercentageErrorPrediction.mean()

315 print 'media errore cliente %s usando la media: ' %tt,
Glass.PercentageErrorMean.mean()

316
317 #plot
318 try:
319 df1.plot(kind='bar',figsize=(16,10))
320 plt.grid(which='major', linestyle='-', linewidth='0.5', color='green')
321 plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
322 plt.ylim(-500, 1000000)
323 #plt.xlim(0,10)
324 plt.title('%s: somma dei tempi degli step automatici per GlassID. (NO

StepVsxScaricaConvoglio)' %tt)
325 plt.show()
326 except:
327 print 'impossibile plottare grafico totale tempi predetti/veri per cliente:

%s' %tt
328
329
330
331 print

'\n\n\n---
---------------'

332 print
'---
---------'

333 print 'Tutti gli apprendimenti ML sono andati a buon fine. Tutti i file JSON con i
coefficienti sono savati.'

334 print '\n\n\n'
335
336

Bibliography

[1] Bottero Glass Technology,Laminated Cutting
[2] Bottero Glass Technology,548 Lam
[3] Bottero Glass Technology (2019),548 Lam: Linea automatica ad alte

prestazioni per vetro laminato
[4] Bottero Glass Technology,Manuale Software: macchina di taglio au-

tomatica 5448 Lam, sezione H Uso del software
[5] Alan Beaulieu (2009),Learning SQL ,Second Edition, O’Reilly

[6] Andrew Ng (2018),Machine Learning Yearning
[7] Murphy K.P. (2012),Machine Learning: A Probabilistic Perspective,

The MIT Press
[8] Hastie T, Tibshirani R., Friedman J. (2017),The Elements of Statisti-

cal Learning. Data Mining, Inference, and Prediction,Second Edition,
Springer

[9] S. B. Kotsiantis, D. Kanellopoulos and P. E. Pintelas (2006),Data
Preprocessing for Supervised Leaning

[10] Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi,
A. (2015),Machine Learning for Predictive Maintenance: A Multiple
Classifiers Approach, Queen’s University Belfast

[11] H. M. Hashemian, Senior Member, IEEE, and Wendell C. Bean,
Senior Member, IEEE (2011),State-of-the-Art Predictive Maintenance
Techniques

[12] Gregory Carey (2003),Coding Categorical Variables
[13] Joseph Lee Rodgers; W. Alan Nicewander (1988),Thirteen Ways to

Look at the Correlation Coefficient,The American Statistician, Vol.
42, No. 1.

[14] Sunil Kumar and Ilyoung Chong (2018),Correlation Analysis to Iden-
tify the Effective Data in Machine Learning: Prediction of Depressive
Disorder and Emotion States, International Journal of Environmental
Research and Public Healt.

[15] Valeria Fonti (2017),Feature Selection using LASSO, VU Amsterdam
[16] S. B. Kotsiantis (2007),Supervised Machine Learning: A Review of

147

Bibliography

Classification Techniques, Department of Computer Science and Tech-
nology, University of Peloponnese, Greece

[17] Pedro Domingos,A Uni
ed Bias-Variance Decomposition, Department of Computer Science
and Engineering, University of Washington

[18] Raul Rojas (2015),The Bias-Variance Dilemma
[19] Alaa Tharwat,Tarek Gaber, Abdelhameed Ibrahim and Aboul Ella

Hassanien (2000),Linear discriminant analysis: A detailed tuto-
rial,Department of Computer Science and Engineering, Frankfurt Uni-
versity of Applied Sciences, Frankfurt am Main, Germany

[20] S. B. Kotsiantis ,I. D. Zaharakis, P. E. Pintelas (2007),Machine learn-
ing: a review of classification and combining techniques

[21] Freek Stulp, Olivier Sigaud (2016),Many regression algorithms, one
unified model - A review

[22] Matilde Ugolini (2015),METODOLOGIE DI APPRENDIMENTO
AUTOMATICO APPLICATE ALLA GENERAZIONE DI DATI 3D

[23] Lars Buitinck & C. (2013),API design for machine learning soft-
ware:experiences from the scikit-learn project

Sites
[24] Bottero,https://www.bottero.com/it
[25] 548 Lam,https://www.bottero.com/taglio/548%20lam/58450
[26] Jupyter Notebook, https://jupyter.org/
[27] Pandas, https://pandas.pydata.org/
[28] SKLearn, https://scikit-learn.org/stable/
[29] Wikipedia, Vetro Stratificato, https://it.wikipedia.org/wiki/

Vetro_stratificato
[30] SKLearn, User Guide, https://scikit-learn.org/stable/user_

guide.html
[31] Pandas, Dcumentation, https://pandas.pydata.org/

pandas-docs/stable/
[32] Coursera, Machine Learning, https://www.coursera.org/learn/

machine-learning
[33] Wikipedia, Supervised learning, https://en.wikipedia.org/wiki/

Supervised_learning#Algorithm_choice
[34] Gaurav Gahukar, Classification Algorithms in Machine

Learning. . . , https://medium.com/datadriveninvestor/
classification-algorithms-in-machine-learning-85c0ab65ff4

[35] Ritchie Ng , Evaluate linear regression, https://www.ritchieng.
com/machine-learning-evaluate-linear-regression-model/

[36] Scott Fortmann-Roe, Bias Variance Tradeoff, http://scott.
fortmann-roe.com/docs/BiasVariance.html

148

https://www.bottero.com/it
https://www.bottero.com/taglio/548%20lam/58450
https://jupyter.org/
https://pandas.pydata.org/
https://scikit-learn.org/stable/
https://it.wikipedia.org/wiki/Vetro_stratificato
https://it.wikipedia.org/wiki/Vetro_stratificato
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
https://pandas.pydata.org/pandas-docs/stable/
https://pandas.pydata.org/pandas-docs/stable/
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://en.wikipedia.org/wiki/Supervised_learning#Algorithm_choice
https://en.wikipedia.org/wiki/Supervised_learning#Algorithm_choice
https://medium.com/datadriveninvestor/classification-algorithms-in-machine-learning-85c0ab65ff4
https://medium.com/datadriveninvestor/classification-algorithms-in-machine-learning-85c0ab65ff4
https://www.ritchieng.com/machine-learning-evaluate-linear-regression-model/
https://www.ritchieng.com/machine-learning-evaluate-linear-regression-model/
http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

Bibliography

[37] Sunil Ray, 7 Regression Techniques you should know!,
https://www.analyticsvidhya.com/blog/2015/08/
comprehensive-guide-regression/

[38] Aditya Mishra, Metrics to Evaluate your Machine
Learning Algorithm, https://towardsdatascience.com/
metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

[39] Jason Brownlee, How to use Learning Curves
to Diagnose Machine Learning Model Perfor-
mance, https://machinelearningmastery.com/
learning-curves-for-diagnosing-machine-learning-model-performance/

[40] Correlation In Python, http://benalexkeen.com/
correlation-in-python/

[41] Hugo Ferraira, Dealing with categorical features in ma-
chine learning, https://medium.com/hugo-ferreiras-blog/
dealing-with-categorical-features-in-machine-learning-1bb70f07262d

[42] Jason Brownlee, Feature selection for machine learn-
ing in Python, https://machinelearningmastery.com/
feature-selection-machine-learning-python/

[43] Jason Brownlee, Statistics for Machine Learning (7-Day
Mini-Course), https://machinelearningmastery.com/
statistics-for-machine-learning-mini-course/

149

https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/
https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
http://benalexkeen.com/correlation-in-python/
http://benalexkeen.com/correlation-in-python/
https://medium.com/hugo-ferreiras-blog/dealing-with-categorical-features-in-machine-learning-1bb70f07262d
https://medium.com/hugo-ferreiras-blog/dealing-with-categorical-features-in-machine-learning-1bb70f07262d
https://machinelearningmastery.com/feature-selection-machine-learning-python/
https://machinelearningmastery.com/feature-selection-machine-learning-python/
https://machinelearningmastery.com/statistics-for-machine-learning-mini-course/
https://machinelearningmastery.com/statistics-for-machine-learning-mini-course/

	List of Figures
	List of Tables
	Introduction
	Scope of this work and problem formulation
	Error Prediction
	Time Prevision
	How the work was structured

	 The machinary and the process
	Functional groups
	Phases of interest and criticalities
	The process of cutting the laminated glass
	Trim cuts

	The machine control software
	Interface management

	Database and Data Collection
	Structure of the database
	Session event
	MachineState event
	Step event
	Cut event
	Glass event
	Piece event
	TypeOfGlassBasicParameters event
	MachineError event
	Other events

	How and when the data is sent
	Raw Data Manipulation on the Database for Time Prevision

	 Machine Learning: Main Supervised Characteristics and Algorithms
	Supervised Learning
	General Structure
	Classification and Regression
	Underfitting and Overfitting
	Bias and Variance
	Evaluation Metrics

	Classification Learning Algorithms
	Logistic Regression
	Naive Bayas
	Support Vector Machine
	Random Forest Classifier
	Nearest Neighbor
	Neural Networks
	Linear Discriminant Analysis and Principal Component Analysis

	Regression Learning Algorithms
	Linear Regression
	Polynomial Regression
	Ridge and Lasso Regression
	Support Vector Regression

	Supervised Algorithm Choice
	Choose feasible algorithms
	Best algorithm selection

	Error Prediction: Data Preparation
	A bug in manual mode data collection
	Data merging
	Basic idea
	Cut table
	Associate Step event
	Associate other events, the example of Session event
	Final reshape

	Handle Categorical Features
	Common methods
	Application on the case study

	Correlation analysis
	In theory
	In practice

	Statistical analysis
	Unbalanced dataset
	Differences among customers

	Feature selection
	Manual features selection
	Automatic features selection
	Some algorithms implementation in the real dataset

	Error Prediction: Algorithm evaluation
	Training and Test sets and Normalization
	Evaluation Metric Choice
	Hyperparameters tuning
	Grid Search

	Results for each client
	Notes on performances
	Algorithm Choice
	Random forest learning curve

	Time Prevision Solution
	Requirement
	Starting Data
	Idea
	Implementation
	548 Lam implementation
	Validation of the performance

	Results
	Further Applications

	Final Observations and Comments
	Appendix 1
	Programming Environment
	Jupyter Notebook
	Python
	Pandas
	SKLearn, NumPy, SciPy
	Other libraries

	Structure of the work
	Error Prediction: Scripts Structure and Division
	Time Prevision Script

	Bibliography

