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Abstract

The main objective of this proposed thesis is to design and implement two different
systems on a Parrot Bebop 2 UAV.

The first system is a Human-UAV interaction (HUI) system to take off, fly and
land the UAV by using the camera of the ground station machine to detect and
identify the operator’s gesture and send different commands to the drone based on
the operator’s gesture.
A dataset containing different hands postures have been used to train the detection
framework to detect the face and hands of the operator.
Then, an algorithm is used to interpret the gestures obtained from the detection
results, in which each interpreted gesture is equivalent to a flying command.

The second system is an Image-Based Visual Servoing IBVS controlling system
for sending commands to the UAV in order to track and follow a detected object,
in this case a person, by using the monocular camera of the drone.
This requires an algorithm that is able to use the detected object geometry and
location in the image plane to send commands to the UAV in order to keep the
target within a fixed distance and almost in the centre of its Field of View FoV.
To do so, a PID controller have been used to calculate the velocity (horizontal, lat-
eral, vertical and angular) to send to the drone.
A dataset containing different pedestrians have been used to train the detection
framework.
To support the detection framework, a tracking framework have been implemented
to identify and assign a unique ID to each detected person.
In this way, the drone is able to continuously follow the same person even when in
the image plane there are more people detected.

The system components used (deep neural network detector, tracker framework,
HUI and IBVS) are built as nodes under ROS environment.
Both systems are verified to work off-board with a ground station machine with the
Parrot Bebop 2 drone.

In the chapter 1, a description of the Robot Operating System and of the pack-
ages used for this project is given.

In chapter 2, an introduction to Object Detection and Deep Learning is given with
details about Convolutional Neural Network and YOLO object detection system.

In chapter 3, a description of the steps taken to implement the Human-UAV in-
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teraction system is given. Furthermore, the reasoning behind the interpretation of
the gestures by the developed algorithm to send commands is explained.

In chapter 4, an introduction to object tracking and a description of the SORT
and deep SORT trackers is given.

In chapter 5, a description of the steps taken to implement the IBVS system is
given. Furthermore, the reasoning behind the design of the PID controller and of
the object follower is explained.

In chapter 6, a discussion and analysis about the results obtained from both HUI
and IBVS systems is given.
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Chapter 1

Introduction

1.1 UAV

An unmanned aerial vehicle UAV is an aircraft without a human pilot aboard. The
necessity to start using UAVs originated in the military field, where the missions
were too dangerous for humans to be executed without incurring in serious injuries
or death.
The use of UAVs has rapidly expanded from the military field to the commer-
cial field (with applications like aerial photography, surveillance, scientific research,
agriculture, etc) thanks to the advances in computing technologies that allowed the
miniaturization of sensors, computers and communication devices.

Figure 1.1: USA drone market growth. Source: Consumer Technology Association

Nowadays, drones are dexterous and can be piloted with a remote controller.
Despite this, flying a drone with a controller is not straightforward: it can happen
to lose control of the drone leading to a crash.
For this reason, a lot of effort has been put into developing autonomous flight soft-
ware to make the drone fly by itself without the need of remote control. For example,
an autonomous drone can follow an object of interest and avoid obstacles in the way.
There are already different companies, both private and public, that have developed
artificial intelligence software to allow drones to process in real-time what they see
and to identify objects and respond to them instantly.

The most popular layout in circulation for small size UAVs is the quadcopter model.
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1.1.1 Quadcopter

A quadcopter is a multirotor vehicle that is lifted and propelled by four rotors, of
which 2 are clockwise and the other two are counterclockwise. The two couples of
rotors have opposite direction in order to balance the torques exerted upon the body
of the quadcopter.

Figure 1.2: Quadcopter rotors direction of rotation. From [29]

Each rotor produces both a thrust and torque about its center of rotation. It
also produces a drag force opposite to the vehicle’s direction of flight.

For this work, a quadcopter Parrot Bebop 2 has been used. The reason for this
choice is that it is a low-cost, light weight drone with a stabilized camera for quality
footage and an SDK available for developers.

Parrot Bebop 2

The Parrot Bebop 2 is a drone developed by Parrot with 180 degree fisheye lens
capable of shooting 1080p HD videos (which is important for the image recognition
purpose) and with a built-in GPS.
The wide field of view obtained by the fisheye lens allows to virtually capture all the
semi sphere space in front of it and to tilt and pan the camera angle electronically as
if it were on a mechanical gimbal thanks to the real-time digital image stabilization.
This characteristic makes the drone cheaper than those with mechanical stabiliza-
tion that need moving parts. Even if the electronic image stabilization is not as
good as the mechanical stabilization, it is more than enough for our application.

The following table contains the technical specifications of the drone used during
this thesis:
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Table 1.1: Technical specifications. From [26]

Weight 380g (400g with hull)
Motors 4 Brushless rotating cage motors (7500 rpm)
Horizontal speed max 16 m/s
Vertical speed max 6 m/s
Processor Dual core processor with quad-core GPU
Storage 8 GB flash storage system
Battery life 2700 mAh - 25 minutes flying
Sensors GPS, IMU
WiFi Bi-band MIMO with 2.4 and 5 GHz dual dipole antennas
Output power Up to 21 dBm
Signal range Up to 300 m
Video resolution full HD 1080p with 3-axis digital stabilizer

Figure 1.3: Parrot Bebop 2 drone.

The main components of the quadcopter that are utilized in this thesis are the
software of the flight controller and the camera.
The flight controller is the brain of the quadcopter and it uses the data coming from
the sensors (camera, GPS, etc) to calculate the velocity at which each motor should
be spinning.
For this drone, the company Parrot has made available for developers an SDK (set of
software development tools that allows to create applications for a certain hardware
platform) called ARDroneSDK3 to connect, pilot and receive video stream from the
drone.
This SDK is available as a ROS driver and it will be used for sending commands to
the drone.
The camera is used to send the video stream to the ground station, then the video
stream will be processed to obtain the detected object thanks to a deep neural net-
work.
The detected objects will be used to decide which commands to send to the drone
via the SDK.
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1.2 Robot Operating System ROS

1.2.1 Operating system and ROS version

Ubuntu is a free and open-source Linux distribution based on Debian, which is an
operating system made from a software collection based upon the Linux kernel and
a package management system.
The Ubuntu release used is Ubuntu 16.04 LTS (“Xenial Xerus”).
The reason for using Ubuntu Linux-based operating system is that ROS has only
experimental Windows support while Ubuntu has full support for ROS.
In addition, Ubuntu is less GUI oriented and most of the work done on this project
is executed using the Linux terminal.
The ROS distribution used is ROS Kinetic Kame.

Figure 1.4: Ubuntu Linux-based system terminal

1.2.2 ROS

Robot Operating System ROS is a flexible software framework for robot software
development containing tools, libraries for building, writing and running code across
multiple computers.
Some of the key advantages of ROS are its modularity, its inter-platform operability
and a vibrant community of user-contributed packages that add value on top of the
core ROS system. It is licensed under an open source BSD license.

ROS is an open-source meta-operating system (it runs on top of an operating system
like Ubuntu) in which users select the configuration of tools and libraries to use in
their applications that run on the core of ROS.
The core of ROS is simply the underlying general structure within which applica-
tions run and communicate between each other.
Users can create new libraries and make them available to the rest of the ROS com-
munity.

Figure 1.5: ROS ecosystem

To synthetize, ROS is the underlying plumbing that runs under the nodes and
messages passing.

In ROS, the code is organized in the following way:
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Figure 1.6: Code bundling organization

• Metapackage: is a set of packages that have common purpose

• Package: is a collection of files, including both executables and supporting
files, that serve a specific purpose.

• Node: is an instance of a code executable file. Every code/node is always
part of a package.

The runtime structure in ROS is the following:

Figure 1.7: Runtime structure

• Master: it provides name registration and lookup (name server) for node-
to-node connections and message communication. Without the master, nodes
would not be able to find each other and exchange messages.

• Node: process that performs computation. A ROS node is written with the
use of a ROS client library, such as roscpp (C++ implementation of ROS) or
rospy (Python implementation of ROS).
There are 2 types of nodes:

– Subscriber node: it receives data from the other nodes running on ROS.

– Publisher node: it sends data to the other nodes running on ROS

• Message: is a data structure used by the nodes to communicate with each
other.

ROS processes are represented as nodes in a graph structure, each node is able to
communicate with another nodes.
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Figure 1.8: Graph structure of some of the ROS packages used

There are different ways for the nodes to communicate between each other:

• Topics: it allows a continuous exchange of data. To send a message to a
topic, a node must publish to that topic. To receive a message from a topic, a
node must subscribe to that topic. The type of message that can be sent via a
topic varies and can be user-defined. The message can be composed of sensor
data, state information and so on.

• Services: it consists of request from a node to another and response/result
from the node that receives the request.

• Actions: it is similar to a service but with a continuous feedback from the
node that receives the request.

• Parameters: it is a database shared between nodes. It contains data that
does not change frequently.

Before setting up a node-to-node communication, a master node must always be run
first.
Every node that wants to communicate with other nodes in ROS must register its
node name, topic name, message type, URI address and port with the ROS master.
The messages that the nodes want to send between each other do not pass through
the master, rather the master is responsible for setting up a peer-to-peer communi-
cation between nodes that have registered themselves with the master.

This decentralized architecture is advantageous because a robot consists of a set
of networked computers, and it may need to communicate with off-board computers
for heavy computation. For example, in this work the video stream of the drone is
sent to the ground station laptop where the computation for detecting objects and
sending commands is done.

To begin a project in ROS, it is necessary to create a catkin workspace, which
is a folder where it is possible to modify, build and install catkin packages. The
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advantage is that it is possible to build multiple, interdependent packages together
all at once.

Catkin is the official build system of ROS responsible for generating targets (li-
braries, executable programs, generated scripts or anything else that is not static
code) from source code that is organized into packages.

A catkin workspace contains different spaces that serve different roles:

• Source space: it contains the source code of the catkin packages

• Build space: it is where CMake (software tool for managing build process)
is invoked to build the catkin packages in the source space

• Development (Dev) space: it is where built targets are placed prior to
being installed

1.2.3 Packages used for this project

• bebop autonomy: it is a ROS driver for Parrot Bebop drone, based on
Parrot’s official ARDroneSDK3, developed in Autonomy Lab of Simon Fraser
University.

• darknet ros: is an open source neural network framework that runs on CPU
and GPU.

• teleop twist keyboard: generic keyboard for twist robots. This package
has been used to use the keyboard of the ground station to control the drone.

• usb cam: to receive video stream from the integrated camera in the ground
station laptop. This package has been used for the HUI system design to use
YOLOv3 detection framework on the ground station laptop.

• sort track: It is a ROS package that I developed to implement sort and
deep sort tracker on ROS. It is available at https://github.com/ilyas95/sort-
deepsort-yolov3-ROS

1.2.4 Parrot-Sphinx

Parrot-Sphinx is a simulation tool that allows to run a Parrot drone firmware on a
PC, in an isolated environment well separated from the host system. It uses Gazebo
to simulate the physical and visual surroundings of the drone.
Parrot-Sphinx can create on the host system real WiFi access points attached to
the simulated drone. The simulated drone will use the host system WiFi as if it was
using its own WiFi chip to connect to the ROS environment via bebop autonomy
ROS package.
The simulation tool has been a key component in the development of the HUI and
IBVS systems because it allowed to simulate the drone instead of using the real
one for the algorithm development, especially because there were no secure facilities
available to test the drone.
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By simulating the drone behaviour, unexpected errors in the drone software devel-
opment will not cause damage to the drone or to its surroundings.
Moreover, apart from security reasons, being able to use a simulation tool instead of
testing every algorithm modification on the field allowed to save time and to improve
the algorithm faster.

1.2.5 Gazebo

Gazebo is a robot simulation tool for rapid algorithm testing, regression testing,
and so on. It has a robust physics engine, high-quality graphics, and convenient
graphical interface.

Figure 1.9: Parrot Bebop 2 drone in Gazebo environment

Gazebo can be used to simulate robots in complex indoor and outdoor environ-
ments. Its main components are the following:

• World description file: it contains all the elements in a simulation (robots,
lights, sensors, ect). It is formatted using SDF (Simulation Description For-
mat) and it has a .world extension

• Model file: it contains the components (links, joints, plugins) necessary to
generate a robot model on Gazebo. A number of robot models is provided in
an online model database

• Gazebo Server gzserver: it parses a world description file given on the
command line, and then simulates the world using a physics and sensor engine.

• Graphical Client gzclient: it connects to a running Gazebo server

1.2.6 NVIDIA CUDA and cuDNN

“CUDA” is a parallel computing platform and programming model developed by
NVIDIA for general computing on graphical processing units (GPUs). It allows to
speed up computing applications by harnessing the power of GPUs by giving the
GPU the ability to speed up more processes than just graphics themselves.
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“cuDNN” (CUDA Deep Neural Network) is a NVIDIA GPU-accelerated library
for deep neural networks.

CUDA and cuDNN have been used with the deep neural network framework YOLO
on ROS in order to acquire a higher rate of frames processed per second as we need
to process the input image fast enough to achieve real time performance.
To process the detection of an image, the laptop used requires 0.95s with CPU and
0.013s with GPU: this means that using GPU is 73 times faster.
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Chapter 2

Object detection and deep
learning

2.1 Object Detection

Object detection is a computer vision technique used to detect objects of a certain
class (such as humans, animals, cars, etc.) in digital images and videos. This
technique is based on image classification (given an image I obtain as output a
single class) and its aim is to localize exactly where the object is located in the
image.

Figure 2.1: Difference between Classification and Object detection.

Given an input image, the output of the object detection task is:

• List of bounding boxes for each detected object

• Class label associated with the bounding box

• Probability/Confidence score associated with each bounding box and class
label.

There are 2 general object detection methods used:

• Machine Learning approach
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• Deep Learning approach: deep learning techniques are able to do end-to-end
object detection without defining features. Deep learning techniques are typ-
ically based on convolutional neural networks CNN.

In this project deep learning approach will be used, especially the YOLO detection
system.

2.2 Artificial intelligence

Artificial intelligence is a term used to describe any technique that enables com-
puters to imitate human intelligence. Two subcategories of artificial intelligence are
machine learning and deep learning.

Figure 2.2: Artificial intelligence and its subcategories.

Machine learning ML is the scientific study of algorithms and statistical models
that computer systems use to effectively perform a specific task without using ex-
plicit instructions, relying on patterns and inference instead.
Deep learning is a subset of machine learning that uses artificial neural networks.
The key difference between machine learning and deep learning is in the way in
which the feature extraction is done.

Figure 2.3: Feature extraction difference between machine learning and deep learn-
ing. Source: https://codeutsava.in/blog/40
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In machine learning the feature extraction is done by human while in deep learn-
ing it is done by the deep learning network itself.

2.3 Deep learning

Deep learning became the widely used machine learning technique in academia and
industry to solve a large number of problems like computer vision, natural language
processing, pattern recognition, etc..
Deep learning is a subset of machine learning that uses multi-layered artificial neural
networks to deliver state-of-the-art accuracy in tasks such as object detection.
The tasks are broken down in consecutive layers and each layer builds up on the
output of the previous layer. Together the consecutive layers constitute an artificial
neural network that imitate the structure and functioning of the human brain cells.
In the human nervous system each neuron has its own learnable weights and biases.
Each neuron is connected with each other to pass information between them.

Figure 2.4: Deep network architecture with multiple layers. From [18]

An artificial neural network ANN consists of at least three different layers: input
layer, hidden layers and output layer. Each layer accepts the information from the
previous one and passes it to the next one.
A deep neural network DNN is an artificial neural network with multiple layers be-
tween the input and the output layer.

To introduce the mathematics behind a deep neural network, a simple artificial
neural network called multilayer perceptron MLP will be used. [11]
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Figure 2.5: Multilayer perceptron neural network scheme. From [18]

In an artificial neural network, each neuron is a function in which the inputs are
all the neuron outputs of the previous layer.
An artificial neuron calculates the weighted sum of its inputs and adds a bias term
which is used to change the activation threshold by making the neuron inactive for
a longer time.

Y = Σ(weight∗input)+bias = (w1a1+w2a2+ ...+wnan)+bias = [−∞,+∞] (2.1)

The output of a neuron can be any number in the range [−∞,+∞] but we want to
obtain an output in the range [0, 1] to activate the neuron (make it “fire”) when
it is greater than a threshold because with a range [−∞,+∞] the neuron doesn’t
know the bounds of the value.
To limit the neuron output range, we insert the output of each neuron in an activa-
tion function. In this way, the neuron output with the activation function will be
in the range [0,1].

An activation function is helpful because it also introduces a non-linearity into the
output of the neuron.
There are different activation functions: step function, linear function, sigmoid func-
tion, ReLu function and so on.
As we want to introduce non-linearity in our network, a suitable activation function
is the sigmoid function which is defined by:

σ(z) =
1

1 + e−z
(2.2)

Figure 2.6: Sigmoid function graph.

With the activation function, the output of the neuron becomes:
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Y = σ[Σ(weight ∗ input) + bias] = [−1,+1] (2.3)

With the activation function, small changes in the weights and bias will cause only
small changes in their output.
To synthetize, an activation can be defined as:

a(1) = σ(Wa(0) + b) (2.4)

An activation in one layer determines the activation in the successive layers. In this
formula (1) represents the current layer while (0) represents the previous layer.

Figure 2.7: 2 layers of an artificial neural network

We can write an equation with the activations from a whole layer as:

σ
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For an artificial neural network learning means finding the right weight and bias of
each neuron.
Learning is done by training the neural network with a suitable dataset. After the
training phase, there is a testing phase in which we feed labelled data to test the
accuracy of the neural network.
At the beginning of the training, weights and bias are initialized randomly.
To evaluate the performance and to tune the parameters of the neural network, we
use a cost function.
A cost function is a measure of the performance of the neural network with respect
to the given training samples and the expected output. A neural network training
is an optimization problem in which we seek to minimize a cost function.

There are different cost functions that can be used for training a neural network
and they all must satisfy the following two properties:

• The cost function C must be written as an average over cost functions Cx (x
is the individual training sample) in order to compute the gradient for the
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gradient descent algorithm.

C =
1

n

X
x

Cx (2.6)

• The cost function must not be dependent upon any activation layer besides
the output layer.

One of the most used cost functions is the quadratic cost also known as mean squared
error.

MSE =
1

n

nX
i=1

(Yi − Ŷi)2 (2.7)

where Yi is the output of the activation layer and Ŷi is the desired output.

The output of a cost function is a scalar number because it evaluates the neural
network as a whole. The output is a small value when the network performs well
and it is a large number when it doesn’t performs well.

The algorithm used for minimizing the cost function is gradient descent which
attempts to find a local or global minimum of a function by learning the direc-
tion/gradient that the model should take to reduce errors.

Figure 2.8: Illustration of the gradient descent algorithm. From [28]

Deep learning networks can be categorized according to their structure “archi-
tecture” and learning method.

2.3.1 CNN Convolutional Neural Network

It is a widely used deep learning method, especially for computer vision applications
like object detection.
An application function such as the Softmax function is applied to classify an object
with probabilistic values ranging from 0 to 1.
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Figure 2.9: Convolutional neural network architecture. From [27]

Unlike standard neural networks, in the CNN architecture the input is a 4-D
tensor which is a matrix of numbers with additional dimensions. An image repre-
sented by RGB (Red-Green-Blue) encoding produces three layers matrices.
A convolutional neural network is composed of:

• Convolutional layer: it is the first layer of the CNN and it has the function
to extract features from an input image by doing a convolution operation be-
tween a set of kernels (filters) and the input image.
The output of the convolution operation is called “Feature Map”.
Different types of filters produce different independent feature maps and typ-
ically a convolution layer includes a set of different filters in order to create
different feature maps.
As the real-world data is not linear, we need to introduce non-linearity in the
CNN layer input. To do so, we use ReLU which stands for Rectified Linear
Unit for a non-linear operation.
ReLU is one of the most used non-linear functions due to its performance.

• Pooling layer: it is used to reduce the number of parameters of each feature
map in order to reduce the computation in the network while retaining the
important information. The pooling layer operates on each feature map inde-
pendently.
There are different types of spatial pooling: max pooling (most common ap-
proach used), average pooling and sum pooling.

• Fully connected layer: the feature map matrices are converted as vectors and
then we combine the vectors together to create a model.

The last step is to use an activation function (such as softmax or sigmoid) to classify
the output of the convolutional neural network into labels/classes.
We will focus on applying CNN architecture for detection task since it is considered
the most effective method in real life computer vision applications.
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2.4 Fast Deep Detection Framework YOLO

2.4.1 YOLO You only look once

YOLO is a state-of-the-art, real time fast deep detection framework ([1],[2],[3] have
been used as reference).
Instead of repurposing classifiers to perform detection as other detection systems,
YOLO applies a single neural network that divides the image into regions and pre-
dicts bounding boxes and probabilities directly from the images for each region in
one evaluation. These bounding boxes are weighted by the predicted probabilities.

The YOLO detection system workflow is the following:

• Input image is resized to 448 x 448 pixels

• Run single convolutional network on the resized image

• Threshold the resulting detection based on the model’s confidence

The key advantage of YOLO is the fact that it unifies separate components of object
detection into a single neural network that is able to reason globally about the full
image and its objects.
The neural network uses features from the entire image to predict each bounding
box and it also predicts all bounding boxes for an image simultaneously.
To localize the target, YOLO models the detection as a regression problem.
After resizing the input image to 448 x 448 resolution, the detection system divides
the input image into an S x S grid and each grid cell predicts B bounding boxes,
confidence scores for those boxes and C class probabilities.
Each grid cell predicts only one object regardless of the number of bounding boxes
B. This limits how close detected objects can be.

Figure 2.10: YOLO detection system model. From [1]

The output of the detection system consists of bounding boxes representing the
detected objects. Each bounding box has 5 different predictions: x, y, w, h and a
box confidence score:
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• The (x,y) coordinates represent the bounding box center relative to the bound-
ary or the containing grid cell (thus are between 0 and 1).

• The (w,h) coordinates represent the width and height of the bounding box,
normalized by the image width and height (thus are between 0 and 1).

• The confidence represents the “objectness” score of the detection, which means
the presence of an object (1 if there is an object and 0 if there is no detected
object) multiplied by the IoU Intersection over Union between the predicted
box and the ground truth box.

The architectural design of YOLO neural network comprises two stages (feature
extraction and detection stage) and has 24 convolutional layers for the feature ex-
traction followed by 2 fully connected layers for the detection stage in which 1 x
1 convolutional layers are alternated with 3 x 3 convolutional layers to reduce the
depth of the features map from preceding layers.

Figure 2.11: YOLO detection system architecture. From [1]

As detection requires rigid visual information, the input resolution of the net-
work is increased to 448 x 448.
The final layer of the network predicts the class probabilities and the bounding box
coordinates.
The final output of the neural network is a 7 x 7 x 30 tensor of predictions, given
as (S, S, B x 5 + C).

The reasons for using YOLO deep learning detection system are the following:

• It is fast: this means it is good for real-time processing.

• Predictions are made from one single network.

• It accesses to the whole image in predicting boundaries.
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2.4.2 YOLOv3

YOLOv3 is the third version of YOLO and it is the version used in this project.
For the feature extractor, YOLOv3 uses a new CNN architecture.
A new 53-layer Darknet-53 is used instead of the YOLOv2 Darknet-19. It is com-
posed of 3 x 3 and 1 x 1 convolutional layers with some shortcut connections.
Darknet is an open source neural network framework written in C and CUDA.

Figure 2.12: Darknet-53. From [3]

YOLOv3 is better and more accurate than its previous versions but it is not
faster due to the increase of complexity of the underlying architecture Darknet-53.
The total number of convolutional layers underlying YOLOv3 architecture is 106:
in addition to the 53 original layers of Darknet trained on Imagenet, 53 more layers
have been added for the task of detection.
The most salient feature of the new version is that it detects objects at different
layers: the detection is done by applying 1 x 1 kernels on feature maps of three
different sizes at three different places in the network.
For an input image of the same size, YOLOv3 predicts 10 times the number of boxes
predicted by the previous version but it is slower due to the tradeoff to increase its
accuracy.
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Chapter 3

Human-UAV interaction for drone
controlling

3.1 Human-UAV interaction

Humans have a natural desire to use their body for communication purposes (body
launguage). For this reason, a Human-UAV interaction HUI system based on deep
detection framework has been designed using [10] as reference.

This HUI system consists of an intuitive real-time system for controlling a par-
rot bebop 2 drone using a pre-designed and trained set of human gesture dataset.
The real object detection system on which the dataset has been trained is YOLOv3.

The dataset includes images focusing on human hands and faces with a resolu-
tion of approximately 1200x1000. The dataset includes different positions of the
hands and face of the operator in order to later be able to send different commands
to the drone according to the particular position of the face and hands of the drone
operator.

The different commands that have been implemented with the HUI system are the
following:
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(a) Take off command

(b) Landing command

(c) Fly up command (d) Fly down command

(e) Fly forward command (f) Fly backward command

(g) Fly right command (h) Fly left command

(i) Clockwise rotation around Z axis com-
mand

(j) Anticlockwise rotation around Z axis com-
mand

Figure 3.1: All the implemented gesture flight commands
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When no command is sent, the drone will automatically keep hovering.

The real object detection system will detect the operator gesture (right and left
hands and head) in each frame and it will publish three bounding boxes.

3.2 Drone controlling algorithm design

A python script interfacing with ROS has been written to use the detected objects
for sending flight commands depending on the operator hands and face position.
In the script, a Python client library for ROS called rospy has been used.
The rospy client API enables Python programmers to quickly interface with ROS
Topics, Services and Parameters.
While developing the algorithm, instead of using the real drone, a simulation tool
called Sphinx has been used to run the drone firmware on a PC and Gazebo has
been used to simulate the physical and visual surroundings of the drone.
Instead of using the drone camera, the ground station laptop camera has been used
for detecting the gestures of the operator.
The reason for this choice is that the laptop camera is static as the ground station
will not move. Instead, the drone will move based on the operator gestures so the
drone camera can lose sight of the operator.

The algorithm subscribes to the topic /darknet ros/bounding boxes in order to re-
ceive from YOLO detection system the messages with bounding box coordinates,
classes and probabilities of each detected object.
For each detected object, the algorithm will calculate its center coordinates (Cx, Cy)
and then it will save them only if the class is “face” or “hand”.
In particular for the class “hand”, the algorithm will save the bounding box centre
coordinates only if there is already a saved bounding box with the class “hand”.
The reason is because we want to send commands only if in the image plane there
are 2 hands and one face.

Figure 3.2: Detection of hands and face using darknet ros package
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Table 3.1: List of commands

HANDS AND FACE POSTURE Rdx Rsx COMMANDS
All aligned at face level 0.9:1.1 0.9:1.1 Take off
Two hands aligned beneath far from the face 0:0.6 0:0.6 Landing
Two hands aligned above the face 1.6:2.4 1.6:2.4 Fly up
Two hands aligned beneath the face 0.6:0.850.6:0.85 Fly down
Left hand aligned with the face and right hand above >1.6 0.8:1.2 Fly forward
Right hand aligned with the face and left hand above 0.8:1.2 >1.6 Fly backward
Right hand aligned with the face and left hand beneath 0.8:1.2 <0.7 Fly left
Left hand aligned with the face and right hand beneath <0.7 0.8:1.2 Fly right
Left hand beneath and right hand above >1.6 <0.7 Clockwise rot
Left hand above and right hand beneath <0.7 >1.6 Anti-clockwise rot

The algorithm takes the hand which has lower horizontal location (x-values) as
a “Right hand” and the other one as a “Left hand”. Then we use the ratios between
vertical centers (y-values) of the three bounding boxes:

Rdx = fc/hdx (3.1)

Rsx = fc/hsx (3.2)

where fc is the vertical coordinate of face centre, hdx is the vertical coordinate of
the right hand and hsx is the vertical coordinate of the left hand.

Figure 3.3: Ratio between hands and face vertical position

The advantage of using the ratios of the hands posture with respect to the
operator’s face is that it provides scale invariance: this means that it does not
matter where the operator will stand in front of the ground station camera.

Based on the ratios Rdx and Rsx, the algorithm sends the right flight commands
to the drone by publishing a ROS message of type stdmsgs/Empty to the topic
/bebop/takeoff and /bebop/land respectively for taking off and landing. To move
the drone, the algorithm publishes ROS message of type geometry msgs/Twist to
the topic bebop/cmd vel.
Twist is a message type part of geometry msgs that expresses the velocity into its
linear and angular parts.
The algorithm is initialized with a state “landed” and after sending the command
take off the state is changed to “flying”. The take off command can be sent only if
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the state is “landed”.
The flying and landing commands can be sent only if the state is “flying”.

Figure 3.4: Drone reference system

Bebop autonomy package allows to send velocity commands with range [-1,1]
m/s, and in order to not make the drone movement too rapid a velocity of 0.3 has
been chosen through trial and error.

Table 3.2: Possible movement implemented with gesture

Movement type Command type
Forward / Backward movement twist.linear.x = ± 0.3
Up / Down movement twist.linear.z = ± 0.3
Left / Right movement twist.linear.y = ± 0.3
Left / Right rotation around Z axis twist.angular.z = ± 0.3

The parrot bebop 2 drone is controlled through its driver/SDK within the ROS
framework by means of Wi-Fi.
The ground station is a laptop with processor Intel Core i7-7700HQ @2.4GHz and
equipped with NVIDIA GPU GeForce GTX 1050. The drone uses an ARM Dual
core.

The architecture of the HCI system is the following:

Figure 3.5: Gesture interpreter architecture
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3.3 Human Gesture Database

To develop the Human-UAV interaction HUI, a new dataset with approximately
6000 images focusing on human’s hands and faces have been created with the back-
ground focusing on both indoor and outdoor environments.
Each image of the dataset has been manually annotated to later train YOLOv3 to
detect hands and face.
Data annotation consists in creating a text file for each image in the dataset with
the object number and object coordinates.
Each text file has the following structure (YOLOv3 format):
[category number] [object center in X] [object center in Y] [object width in X] [object
width in Y]
Before starting the training, we divide the dataset in training set and test set and
prepare the YOLOv3 configuration files needed for the neural network to know how
and what to train. The percentage of images used for the test set is 10%.
We will prepare 3 files

• .data: it says how many classes we are training, the location of the training
and validation set files, the file containing the names of the categories and the
location of the backup file in which the yolo weights will be stored.

• .names: it say the category names.

• .cfg: it says the chosen yolo architecture.

As the ground station laptop is equipped with NVIDIA GPU GeForce GTX 1050 the
tiny-yolo.cfg architecture, which is a small model for constrained environments,
has been chosen to obtain real time performance.

Figure 3.6: Server terminal during dataset training

The training has been done in the cloud because the laptop graphic card is not
powerful enough to complete the training in a suitable amount of time.
The result of the training is a file containing the final neural network weights that
will be used by the neural network detection system to detect custom objects.
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Chapter 4

Object tracking

Up until now, a real time object detection system has been used to scan and search
for a particular object (in our case hands and face) but relying only on object
detection is not a good idea because, compared to object tracking, object detection
has many drawbacks.
Object tracking allows to locate an object in successive frames of a scene and it has
the following advantages:

• it is faster than detection: the reason is because the tracking algorithm has a
lot of information about the detected object that has to track. For example,
it knows the appearance of the detected object, the location in the previous
frames, the direction and the speed of its motion and so on. This means that
in the next frames, all this information can be used to locate accurately the
object.

• works as a backup in case the detection fails: when the object detected is
occluded, most of the time the detector will fail to detect it.

• it preserves the identity of each detected object: with detection it is not pos-
sible to be able to attach an identity to the detected objects and maintain it.
On the contrary, this is possible with object tracking.

It is common for tracking algorithms to accumulate errors and as a result the bound-
ing box of the tracked object starts to slowly drift away from the object it is tracking.
For this reason, in an efficiently designed system, the detector is run on every nth

frame while the tracker is employed in the frames between the detector.

4.1 Tracker implementation

For the IBVS system to work in real time we need to use a tracking system that is
fast in processing the received frames in real time.
The most popular and simplest algorithm for doing so is SORT.
The following papers have been used to implement this tracker: [5], [6]

4.1.1 SORT tracker

SORT (Simple Online and Realtime Tracking) is a simple tracking algorithm that
can track multiple objects in real time by using Kalman Filter [7] to handle the
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motion prediction for each tracked object and Hungarian assignment algorithm [8]
for the data association problem.
It focuses on frame-to-frame prediction and association.
The SORT tracker uses an off-the-shelf object detection system to obtain the de-
tected object bounding boxes and confidence scores in each frame: for this reason,
detection quality is a key factor influencing the tracking performance.
The output of the tracker are the bounding box of the tracked object and its unique
ID in the following frames.
The reason behind SORT tracker methodology of relying heavily on detection is that
nowadays, thanks to deep learning, object detection algorithms have considerable
improved to the point that a simple tracking algorithm is adequate to achieve an
accuracy comparable to state-of-the-art trackers that are heavier in terms of com-
putational cost.
Instead, due to its tracking method simplicity, SORT is over 20x faster making it
fit for real-time applications.

The drawbacks of SORT tracker are mainly three:

• It depends heavily on detection system.

• It has a high number of identity switches due to missed detections by the
detector framework that cause the tracker to reinitialize the same object with
a new ID when the same object is detected again.

• It cannot handle short-term and long-term occlusion.

Estimation Model and Kalman Filter

The state of each detected object is modelled as:

x = [u, v, s, r, u̇, v̇, ṡ]T (4.1)

where u and v represent the centre of the target (respectively horizontal and vertical
location) while s and r are respectively the area and the aspect ratio.
The aspect ratio of the image is the ratio between width and height.

A Kalman filter is an algorithm that combines information about the state of a

Figure 4.1: Output of SORT tracker in a common tracking situation. Image from
[6]
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dynamic system with measurements related to the system acquired by sensors in
order to predict the behaviour of the system in the future.
A dynamical system can be represented in a state-space mathematical model.

xt = Atxt−1 +Btut + wt

yt = Ctpt + vt
(4.2)

where xt is the state vector, yt is the output vector, wt is the process noise and vt is
the measurement noise.

The Kalman filter is an iterative algorithm that includes two steps: prediction and
measurement update.
The prediction phase consists of estimating the system state in the next step based
on the previous state estimate and the process noise.

x̂−t = Atx̂
−
t−1 +Btut

Σ−
t = AtΣt−1A

T
t +Qt

(4.3)

where x̂−t is the predicted ( a priori ) state of the system and Σ−
t is the predicted (a

priori ) covariance estimate.

The measurement update phase consists of updating the estimated state using in-
formation coming from the sensors.

Kt = Σ−
t C

T
t (CtΣ

−
t C

T
t +Qt)

−1

x̂t = x̂−t +Kt(zt − Ctx̂
−
t )

Σt = (I −KtCt)Σ
−
t

(4.4)

Kt is the Kalman Gain and it computes how much the estimation should be cor-
rected given a measurement. It is used to update the a priori estimated state and
to update the a priori covariance estimate.

(zt − Ctx̂
−
t ) is the Innovation term: it adjusts the a priori estimate in order to

obtain an a posteriori estimate. It is the difference between the measured quantity
zt and the quantity that we expect to measure from our a priori estimate Ctx̂

−
t .

After assigning a new detection to an existing tracked object, the bounding box
is used to update the state of the detected object where the velocity components
are solved by using the Kalman filter framework.
If there is no new detection, the state is simply predicted without correction.

Data association and Hungarian algorithm

According to the Kalman filter model, the state of each detected object is updated
thus also the bounding box of each detected object is updated in the current frame.
The new updated bounding boxes are assigned to the existing objects.
This assignment is based on a similarity function and it is solved using the Hungar-
ian algorithm.
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The Hungarian algorithm solves an assignment problem in polynomial time by find-
ing an optimal solution from a finite set of possible solutions.
The algorithm consists of four steps of which the first two are executed once while
the other two are repeated until an optimal assignment is found. The input of the
algorithm is an nxn cost matrix.

The steps are the following:

1. For each row, subtract the lowest element from each element in that row.

2. For each column, subtract the lowest element from each element in that col-
umn.

3. Cover all zeros in the resulting matrix after the first 2 steps using a minimum
number of horizontal and vertical lines. If the number of lines required is equal
to the dimension of the cost matrix, an optimal assignment exists among the
zeros and the algorithm stops.

4. Create additional zeros in order to make the number of lines that cover the
zeros equal to the dimension of the cost matrix. The creation of additional
zeros is done by finding the smallest element that is not covered by a line in
the previous step and then subtract it from all not covered elements and add
it twice to all elements that are covered.

The Hungarian algorithm for the linear assignment uses the intersection-over-union
IOU distance (bounding box overlap) as association metric.
The IOU is simply an evaluation metric of the performance of the predicted bound-
ing boxes with respect to the detected bounding boxes.
The assignment cost matrix is computed as the intersection-over-union IOU distance
between the detections performed by the detection system and all the predicted
bounding boxes performed by the Kalman filter.
In order to avoid overlap between detection and predicted bounding boxes, a mini-
mum intersection-over-union IOU distance is imposed.

4.1.2 DEEP SORT tracker

In order to reduce the ID switches and improve the occlusion handling, an improved
version of SORT with appearance information integrated will be used in this work.
The high number of ID switches is due to the only association metric used (bounding
box overlap) which is accurate only when the state estimation uncertainty is low.
To overcome this issue, “SORT tracker with deep association metric” combines mo-
tion and appearance information as association metric.
In addition, it applies a convolutional neural network CNN trained to discriminate
persons: in this way the tracker robustness is increased while keeping the system
simple and applicable to real time scenarios.
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Figure 4.2: Left windows shows output of YOLOv3-tiny while right window shows
output of deep SORT tracker with ID assigned. Both implemented on ROS

As SORT tracker with deep association metric is more robust and has less ID
switches it will be used for the implementation of the IBVS system.
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Chapter 5

Drone object following and control

5.1 Image-Based Visual Servoing IBVS system

The main idea is to implement on the Parrot Bebop 2 drone an algorithm that is
able to track a detected object (in this case a person) and follow it by keeping some
distance ([9] has been used as reference).
To implement a real-time tracking and follower the processing of the drone camera
images must be fast. For this reason, the resolution of the drone camera is reduced
to 856 x 480 pixels to help process quickly the images so that the control commands
will act properly when they are sent to the drone.
For the object detection, the same detection system YOLOv3 will be used.

The drone is equipped with a single monocular camera so it is not possible to extract
depth information from it. To estimate the detected object distance we assume that
the object is rigid and that a change in the object size is due to a change of its
distance from the camera.
An ideal bounding box centered in the image plane will be used as a reference for
the control algorithm.

The goal of the algorithm is to minimize the error between the bounding box of
the detected object and the ideal bounding box.

Figure 5.1: Detected bounding box and goal parameter bounding box: we want to
minimize the error between them.
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The algorithm will send commands to the drone until the goal parameters are
reached. A PID controller is used to achieve the goal parameters ([11] has been used
as reference).
The goal parameters are the centre of the image (428,240) and an ideal bounding
box area of 30% the pixel space. The ideal area has been selected through trial and
error.
Assuming that the object is rigid and its size doesn’t change, any change in size is
due to the change of the object distance to the camera.
For example, a bigger bounding box means that the object is close while a small
bounding box means that the object is far.

Figure 5.2: In the left detected object is too near while in the right it is too far
away.

To be able to follow the detected object properly, at least 2 different PID con-
trollers are necessary: for the X axis (forward/backward movement) and the Y axis
(lateral movement left/right).

Figure 5.3: Coordinate system with respect to the drone. X forward horizontal
movement, Y left lateral movement, Z vertical movement

To make the drone movements complete, another PID controller for the Z axis
(vertical movement) has been used: in this way, the drone can regulate its height in
order to have the target centered.
In addition to the 3 linear movements (X, Y and Z), an additional rotation around
the Z axis based on the output of the Y axis PID controller has been added to make
the drone more versatile.
The position error is calculated as:

epx(t) = Areaid − Arearef (5.1)
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where Arearef is the area of the tracked person while Areaid is 30% of the image
plane area (856x480x0.3).

epy(t) = Cycentre − Cy (5.2)

where Cycentre is the horizontal center of the image plane (428px) while Cy is the
horizontal center of the person bounding box.

epz(t) = Czcentre − Cz (5.3)

where Czcentre is the vertical center of the image plane (240px) while Cz is the ver-
tical center of the person bounding box.

The output of the PID controllers is the drone velocity but the input error is in
pixel: for this reason we have to convert from position error (pixels) to velocity
values.
This is done by normalizing the error.
For the lateral and vertical error, 428 px will have the value of 1 and -428 px will
have the values of -1.

Vy(t) =
epy(t)

428
(5.4)

Vz(t) =
epz(t)

428
(5.5)

Figure 5.4: Normalization of the lateral and vertical position error

The same normalization have been done for the depth position error, the only
difference is that we have used the ideal area for the normalization.

Vx(t) =
epx(t)

Areaideal
(5.6)
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Figure 5.5: Normalization of the depth position error

This table summarizes the data used for the design of the 3 PID controllers:

Table 5.1: PID commands

PID position error velocity error COMMAND
X axis epx(t) Vx(t) Forward/Backward
Y axis epy(t) Vy(t) Left/Right + Rotation around Z
Z axis epz(t) Vz(t) Up/Down

The bebop autonomy ROS package allows to send velocity within [-1, 1] range
but for security reasons we limit the values that the drone can send to a lower
velocity value.
After converting the position error values in velocity, a speed limiter has been added
to limit the input values to the PID controller to the range [-1,1].
In addition, to limit the velocity commands to the drone, the outputs of the PID
controllers have been further decreased by dividing for a constant.

Figure 5.6: Block diagram of the Image-Based Visual Servoing system

The algorithm sends the outputs of the PID controllers to the drone by publishing
a ROS message of type geometry msgs/Twist to the topic bebop/cmd vel.
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Table 5.2: PID outputs and drone movements

PID axis Command type Controller action
PID axis X twist.linear.x Forward / Backward movement
PID axis Y twist.linear.y Left / Right movement
PID axis Y twist.angular.z Left / Right rotation around Z
PID axis Z twist.linear.z = Up / Down movement

Twist.msg is a ROS message that expresses the velocity in the free space broken
into its linear and angular parts.
In our case we have:

When in the image plane of the drone camera there are more people, the algo-
rithm will choose the most centered person bounding box as the person to follow
and then it will save its bounding box center coordinates in the current frame.
In the next frame the algorithm will compare the stored bounding box center of the
person in the previous frame with all the person bounding boxes in the new current
frame and it will choose as the person to follow the one that has the smallest dis-
tance with respect to the person followed in the previous frame.

By using SORT tracker with YOLO detection framework, a unique ID can be as-
signed to each person in the image plane and with a modification to the already
implemented algorithm the drone follows the most centered person and saves its
unique ID in order to compare it with the other IDs in the next frames.
When an ID switch occurs and the drone loses the tracked person ID, the algorithm
will choose the most centered person and it will save its new ID in order to compare
it in the next frames.

The architecture of the IBVS system is the following:

Figure 5.7: Architecture of the IBVS system
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5.2 PID controller

A proportional-integral-derivative controller is a control loop feedback mechanism
that calculates an error value and applies a correction based on proportional, integral
and derivative terms.

Figure 5.8: Block diagram of a PID controller. From [25]

The error is calculated as the difference between a desired setpoint and a mea-
sured process variable. In our case, the measured process variable is the detected
bounding box position.

e(t) = r(t)− y(t) (5.7)

The proportional term P is directly dependent on its input error e(t) multiplied
by the proportional gain constant Kp. This term will move the system toward the
desired setpoint with an intensity dependent on the value of the error and of the
constant Kp.

P = Kp e(t) (5.8)

The integral term I is the sum of all past errors integrated over time and multiplied
by the integral gain constant Ki. If the error is not zero, the integral term will
continue to grow over time until the error is eliminated.

I = Ki

Z t

0

e(t) dt (5.9)

The derivative term D is the magnitude of the error change (current error value
compared to the previous error value) multiplied by the derivative gain constant
Kd. This term is an estimate of the future trend of the error based on its current
rate of change. The more rapid the change, the greater will be the derivative term.

D = Kd
de(t)

dt
(5.10)

The overall control function can be expressed mathematically as:

u(t) = Kp e(t) +Ki

Z t

0

e(t) dt+Kd
de(t)

dt
(5.11)

The PIDs for the IBVS system are the following:
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Table 5.3: PID gain values

PID Kp proportional Ki integral Kd derivative
X axis 0.5 0.05 1.5
Y axis 0.4 0.3 0.8
Z axis 0.4 0.3 0.8

• For forward / backward movement (X axis) :

V outx = Kpx Vx(t) +Kix

Z t

0

Vx(t) dt+Kdx
dVx(t)

dt
(5.12)

• For up / down movement (Z axis) :

V outz = Kpz Vz(t) +Kiz

Z t

0

Vz(t) dt+Kdz
dVz(t)

dt
(5.13)

• For left / right movement (Y axis) :

V outy = Kpy Vy(t) +Kiy

Z t

0

Vy(t) dt+Kdy
dVy(t)

dt
(5.14)

This is the complete controller scheme of the IBVS system:

Figure 5.9: Complete block diagram of all implemented PIDs

To produce the optimal controller output we have to tune the three parameters
Kp, Ki and Kd so each part has an appropriate impact on the output.

5.2.1 PID tuning

There are different strategies that can be used to tune the parameters of a PID
controller. A simple and fast approach is the Ziegler-Nichols method.

In this method, all the gains Kp, Ki, Kd are set initially to zero and then Kp is
incrementally increased until it reaches a value at which the output of the controller
has stable and consistent oscillations.
This value is called ultimate gain Ku and it is used to set the values of the PID gains.
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Chapter 6

Results

6.1 HUI system

The HUI system is responsible for interpreting the operator gestures and for sending
different flight commands to the drone based on the gestures.

The position of the operator from the ground station laptop, which is positioned on
the ground, is approximately 1 meter.

Figure 6.1: Distance between operator and laptop

This distance has been chosen by doing experiments with the different distances
between the operator and the ground station in which the accuracy of the deep
neural network detector in detecting correctly the 2 hands and the face has been
evaluated.

Figure 6.2: Detection of hands and face of the drone operator
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The following table relates the detector accuracy with the distance between drone
and operator:

Table 6.1: Detector accuracy after training on hands and face dataset

Distance (m) Right hand accuracy Face accuracy Left hand accuracy
0.3 m 99% 99% 99%
0.6 m 99% 99% 99%
1 m 98% 99% 97%
1.3 m 94% 92% 92%
1.6 m 89% 90% 90%
2 m 83% 85% 81%

A total of 10 different gestures representing 10 different flight commands has
been implemented on the HUI system. Other gestures could have been added to
broaden the drone capabilities: for example a gesture for taking an on-board snap-
shot or for starting a video recording.

After the HUI system is activated, the first command to be sent is take off which
consists of hands all aligned at face level. After taking off, the drone will hover at
approximately 1 meter from the ground until the next command is received.
When there is no input command from the operator, the drone will keep hovering
until the next command is received.

The command to take off is the following:
rostopic pub –once bebop/takeoff std msgs/Empty

The landing command which consists of hands aligned beneath the face can be
sent at any drone altitude and it will land safely the drone.
The command for landing is the following:
rostopic pub –once bebop/land std msgs/Empty

Both the landing and take off commands don’t require a velocity input as the ve-
locity for ascending and descending during take off and landing is handled by the
drone firmware. For the remaining commands a velocity input is required.

The velocity of the commands has been chosen by doing experiments and consider-
ing the reaction time of a person in order to not have drone movements that are too
rapid: the final velocity chosen is 0.3m/s for each command.

The distance between the drone and the ground station does not have strict limits
as the WiFi range of the connection can reach more than 100 meters. The range
depends on the power of the WiFi generated by the device and this power depends
on several parameters (device type, physical environment, selected channel and so
on).
For the tests done with the HUI system, less than 100 meters between the drone
and the ground station are satisfactory.

The accuracy of the neural network detector has been evaluated under different
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lighting conditions and environments (i.e indoor and outdoor): the result is that the
neural network is robust under different lighting conditions and environments.

Overall, considering the accuracy of the neural network detector trained on hands
and face dataset and the stable drone response to the commands sent by the oper-
ator via gestures, the HUI system is suitable for its application.

Figure 6.3: Simulated HUI system in action.

Figure 6.4: Real HUI system in action.
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Figure 6.5: HUI system in action.

6.2 IBVS system

The IBVS system is responsible for storing the bounding box of the most centred
person in the field of view and to follow the same stored person even when there are
more people in the field of view.

To estimate the person distance from the drone we assume that detected objects are
rigid, this means that a change in the object size is due to a change of its distance
from the drone.

The IBVS system uses a PID controller to send velocity commands to the drone
based on its distance from the detected person in order to keep the same predefined
distance between drone and detected person that is based on the ideal bounding box
area.

The ideal area has been selected by doing experiments with different bounding box
areas in which the distance between drone and person has been measured.

The following table shows the results of the experiment:

Table 6.2: Ideal bounding box selection

Ideal BB area % Area pixel equivalent Drone and target distance
10% 41088 2m
20% 82176 1.5m
30% 123264 1m
40% 164350 0.6m
50% 205440 0.2m

Considering a trade-off between safety of the person and close distance between
drone and person, an ideal area of 30% has been chosen.
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In the IBVS system, the camera utilized and its resolution is different from the
HUI system and also the detected object is different: for this reason the accuracy
of the detection has been evaluated with respect to the distance between drone and
target.

The reason for not wanting a distant distance between drone and person is that
the resolution of the drone camera is not very high in order to help process quickly
the images received by the neural network detector system. For this reason, when
the drone is distant from the person the neural network detector system starts to
fail to detect some people.

The following table shows the correlation between distance and detection accuracy
measured with the IBVS system:

Table 6.3: Distance and detection accuracy correlation

Drone and target distance Area pixel equivalent Detection accuracy
1m 123264 99%
2m 106573 95%
3m 95678 89%
4m 84738 83%
5m 71829 77%
6m 62938 69%
over 7m 49384 less than 60%

Figure 6.6: Distance and detection accuracy correlation graph

If the distance between drone and target is greater than 7m, the drone will stop
following the target as it is not able to detect it due to the far distance.

To choose the ideal bounding box area, also the detection accuracy variation with
the distance has been taken into consideration.
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The computation and image processing is done on the ground station laptop which
is positioned on the ground similar to the HUI system. The difference is that both
the drone and the person will be moving away from the ground station. For this
reason the movements had been limited to a distance of 200 meters from the ground
station in order to keep a good WiFi signal between the drone and the laptop.

Figure 6.7: IBVS system: processing on laptop and commands sent to drone

The IBVS system has 3 PID controllers, one for each movement type (for-
ward/backward, left/right, up/down).

Figure 6.8: Drone orientation and axis

In addition to the ideal bounding box area as a goal parameter for the for-
ward/backward movement PID controller, the goal parameter for the other 2 PID
controllers is the centre of the image (428,240): 428 pixel for the left/right move-
ment PID controller and 240 pixel for the up/down movement PID controller.

The Y axis PID controller, in addition to the linear velocity, also sends an an-
gular velocity around Z axis.
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The velocity sent by the X axis PID controller depends on the detected person dis-
tance from the drone (i.e bounding box area) while the velocity sent by the Y axis
and Z axis PID controllers depend respectively on horizontal center Cy and vertical
center Cz of the person bounding box.

The following tables represent the velocity values compared with the respective
goal parameters:

Table 6.4: X axis PID controller table

Detection area pixel2 Velocity m/s Controller action
79746 0.61 Forward
97483 0.41 Forward
109374 0.24 Forward
123264 0
135463 -0.21 Backward
144344 -0.38 Backward
154647 -0.49 Backward

A bounding box area bigger than the ideal area (30%) means that the person is
close to the drone, so the drone has to move backward. If the bounding box area is
smaller than the ideal area, it means that the person is far from the drone, thus the
drone has to move forward.
When the drone is approaching the person, one method to stop or move away the
drone is to open the arms to rapidly increase the bouding box area. In this way, the
drone will move backward because it assumes that the person is very near.

Table 6.5: Y axis PID controller table

Cy Linear velocity m/s Angular velocity rad/s Controller action
213 0.51 0.16 Left
326 0.24 0.07 Left
428 0 0
530 -0.24 -0.07 Right
643 -0.51 -0.16 Right

If Cy is greater than 428, the detected person is on the right compared to the
goal parameter so the drone will move to the right to realign the target with the
center of the image. If it is minor than 428, the detected person is on the left so the
drone will move to the left.

In addition to have a lateral linear movement, the drone also has an angular move-
ment that allows it to turn in the direction of the followed person. The drawback is
that the angular velocity is not high and it could happen that the target movement
away from the field of view is rapid. In this case, the drone loses its detected person
and it will hover until it detects a new person to follow. A solution for this problem
could be to implement an angular velocity when there is no detection until the drone

55



Table 6.6: Z axis PID controller table

Cz Velocity m/s Controller action
82 -0.16 Down
156 -0.07 Down
240 0
324 0.07 Up
398 0.16 Up

finds a new person to follow. If Cz is greater than 240, the detected person is on
the upper side compared to the goal parameter so the drone will move up to realign
the target with the center of the image. If it is minor than 240, the detected person
is on the lower side so the drone will move down.

When the drone takes off, it hovers at approximately 1 meter from the ground
and then when the IBVS system is activated it will adjust its height to have the
bounding box of the person centered in the field of view.

The 3 PID controllers operate at the same time, for example if the detected person
is distant and on the right side compared to the goal parameters the drone will move
forward, right and rotate clockwise to align itself with the detected person.

The accuracy of the neural network detector has been evaluated under different
lighting conditions and the result of the evaluation is that the neural network is
robust enough to detect the target under different conditions.

Using only the neural network detector system the drone is not able to follow the
same detected person when new people enter the drone field of view because the
detector system does not identify and differentiate every single detection in the field
of view. This means that there is no way for the detector system to identity and
follow the same person.

Figure 6.9: Detection of more than one person from drone camera
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The solution is to add a tracking system to identify and track each detected
object in each image frame.

Two different solutions have been implemented to solve this issue:

• Deep SORT tracking system

With the tracking system, the IBVS system registers the ID of the most cen-
tred bounding box and it follows it until it goes out of the field view. In case
of tracked object out of the field of view, the IBVS system will start tracking
the new most centred person.
The following table shows the tracking accuracy using the deep SORT tracker:

Table 6.7: deep SORT tracking accuracy

Drone and target distance Detection accuracy Tracking accuracy
1m 99 99%
2m 95 95%
3m 89 88%
4m 83 84%
5m 77 77%
6m 69 67%
over 7m less than 60 less than 60%

The tracking accuracy is similar to the detection accuracy because the tracker
relies heavily on the detector system.

The drawback of SORT is that it has a high number of identity switches
due to missed detections by YOLO detector.

The missed detections by the deep neural network detector cause the tracker
to reinitialize the same object with a new ID when the same object is detected
again. For example if an identity switch happens to a tracked object that is
still in the field of view but is not the most centred object, after the tracker
reinitializes the object with a new ID it will select the most centred person
that is not the tracker object in the previous frame as its old ID is not present
in the field of view anymore due to the identity switch.

• Tracking system implemented directly in the IBVS system algo-
rithm.

In the first frame, the algorithm will choose the most centred person and
then in the next frames it will compare the stored bounding box of the most
centred person with all the bounding boxes present in the field of view of the
new frame (including the same detected person, which now is in a slightly
different position) and it will choose as the person to follow the one that has
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the smallest distance with respect to the stored bounding box in the previous
frame.

This solution requires less computational power because the tracking system is
integrated with the IBVS algorithm, while the SORT tracking system requires
a separate system that is running in parallel with the neural network detector
system.
As only the detector system is running with the IBVS algorithm, the process-
ing is faster than with the SORT system.

A drawback of the IBVS system is that the algorithm does not handle the take off
and land commands, this means that the operator has to manually send the take
off command to the drone and then activate the tracking algorithm. When the op-
erator wants to stop the algorithm and land the drone, he has to manually stop the
algorithm and then send the landing command from the laptop.

Considering the accuracy of the neural network detector trained on pedestrians
and the reliability of the tracking system in following the same person, the IBVS
system is suitable for its application as it is able to track a detected target with
precision.

Figure 6.10: Simulated IBVS system in action.
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Figure 6.11: Real IBVS system in action.

Figure 6.12: IBVS tracking system in action.
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Conclusions

This study is devoted to the design and implementation of a Human-UAV interac-
tion system and an Image-Based Visual Servoing system based on deep learning.

In the HUI system, thanks to the personalized dataset used in the deep learning
detection framework, a high gesture detection accuracy has been achieved.
As a result of the high accuracy and of the deep learning model deployed in the
ground station equipped with GPU, the system is able to function in real-time.

In the IBVS system, thanks to the combination of detection framework, tracking
framework and PID control methodology, the system is able to function in real-time
and to follow the same person when the image plane has more people thanks to the
assignment of unique IDs.
As the IBVS system relies on the ground station and the drone is connected to the
ground station via WiFi, when the drone following the tracked person is too far
away from the ground station it will lose the connection with the ground station
and the ground station will not be able to further send the command to the drone
to keep following the detected person.

For this reason, a further development of this thesis work could be to implement
the IBVS components (i.e deep learning detector, tracking system, controlling algo-
rithm) in an embedded system like the NVIDIA Jetson TX2 module or Jetson Nano
module attached to the drone frame: that is adding edge computing capabilities to
the drone in order to analyse the data coming from the camera close to its source
to improve response times and save bandwidth.
In this way, there is no need for a ground station laptop and the computation can
be done “on the spot” , the drone is not limited in movement due to WiFi range
between drone and ground station and the whole performance and user experience
is improved by reducing the latency.

Another further improvement would be to train a dataset able to detect persons,
hands and faces in order to combine the HUI system with the IBVS system.
In this way, the problem of the IBVS system not handling take off and landing of
the drone is solved.
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