

Collegio di Ingegneria Informatica, del Cinema e Meccatronica

Class LM-25 : Mechatronic Engineering

A simulator implementing NVIDIA kepler GPU

for ADAS applications

Mohammed Faisal Helmy Elrashedy

Supervisors

Prof S. Di Carlo

Prof A. Vallero

23rd October 2019

Summary

In this thesis, the reliability of the General Purpose Graphics Processing Unit
(GPGPU) NVIDIA Kepler architecture is evaluated. We will use the Multi2sim
Simulation framework to assess the reliability of the Kepler architecture; moreover,
a fault injector is developed along with ACE analysis to evaluate the performance
and the impact of such faults to supercomputing in mission-critical applications.

1

Acknowledgements

I would like to acknowledge prof. Allesandro Vallero for his continuous support
and dedication; I wish him all the best in his path. Moreover, I would like to thank
Ms. Silvia Kuehl for her brilliant assistance; I wish her continuous development
and a satisfying career.

2

Contents

List of Figures 4

1 Background 5
1.1 general purpose graphics processing unit 5

1.1.1 History . 6
1.1.2 GPGPUs Architecture . 7
1.1.3 NVIDIA Architecture . 8
1.1.4 NVIDIA Execution Model 10

1.2 Multi2Sim Simulation Framework 10
1.2.1 Architecture . 11
1.2.2 Operating Modes . 13

1.3 Vulnerability of GPGPUs . 13

2 Instrumentation 15
2.1 NVIDIA Kepler . 15

2.1.1 Architecture . 16
2.1.2 Memory Hierarchy . 16

2.2 KEPLER on MULTI2SIM . 18
2.2.1 M2S Execution . 18
2.2.2 Simulation Processes . 18
2.2.3 Architecture and Piping . 20
2.2.4 Operating modes . 22

2.3 Micro-architectural Level Fault Injector 22
2.3.1 SIFI . 22
2.3.2 Combining Cluster Sampling and ACE analysis 24
2.3.3 The Proposed Workflow . 26

3 Experimental results 28

4 Conclusion 30

3

List of Figures

1.1 Gpu Faster . 5
1.2 before gpus . 6
1.3 After Gpus . 6
1.4 Kernel Code example . 7
1.5 Example of simple parallel addition program 7
1.6 Example of simple parallel addition program 8
1.7 Example of simple parallel addition program 9
1.8 NVIDIA Memory Hierarchy . 9
1.9 Example of simple parallel addition program 9
1.10 Software execution on GPU . 10
1.11 Multi2Sim’s simulation paradigm 11
1.12 4 stage processor pipeline,and the communication between the de-

tailed and the functional simulators. 12
1.13 Full-system VS Application-only Emulation. 13
2.1 KEPLER Improvements . 15
2.2 Kepler’s SMx architecture . 16
2.3 Kepler’s Quad Warp Scheduler . 17
2.4 Kepler’s Memory Hierarchy . 17
2.5 Kepler’s SW modules . 18
2.6 Multi2sim three stages for KEPLER 19
2.7 code that has been disassembled 19
2.8 Execution unit for timing simulation architecture 20
2.9 Kepler’s front-end architecture . 21
2.10 LS unit architecture . 22
2.11 The vulnerable timing windows considered in ACE analysis 24
2.12 Ace Util faults . 25
2.13 The proposed Workflow . 27
3.1 Simulation output . 29

4

Chapter 1

Background

In this chapter, we will discuss the main principles of GPUs, like parallel com-
puting. Moreover, we will discuss the building blocks of our analysis, which are:
NVIDIA Kepler, multi2sim, and reliability for micro-architecture.

1.1 General Purpose Graphics Processing
The General Purpose Graphics Processing Unit (GPGPU) alters the path of

general purpose computing by performing parallel computing faster than CPUs, as
shown in 1.1

GPGPUs enables the performance of non-graphic calculations and opera-
tions, as fast as real-time MPEG videos. For instance, GPUs can be used to
compute fast-Fourier transform functions, scientific computing as Monte Carlo sim-
ulation and weather forecasting, and neural networks [1]

Figure 1.1: Numbers of 512x512 images processed by Deep Neuron Network per
second

5

1 – Background

1.1.1 History
In 2001, NVIDIA and ATI revolutionized graphics computing by allowing their

GPUs to be programmed. Developers could write limited programs to execute at
real-time level, like bump mapping or shadowing.

Microsoft played an essential role in programming GPUs, by introducing Di-
rectX 8.0, which provides 3D graphics APIs for Windows and Xbox. DirectX
offered fixed-function pipelines. Therefore programmers had limitations program-
ming GPGPUs. DirectX 9 secured the next big step in the progress of graphics
computing, by enlarging instruction sets for pixel shading, and by increasing the
mathematical precision up to a 128-bits floating-point from a 8-bits precision. C
for Graphics Cg, a creation of both NVIDIA and Microsoft, is the programming
language in which graphics units re programmed. Figure 1.2 and 1.3 illustrates the
architecture before and after GPUs.[1]

Figure 1.2: PC-3D graphics pre-1999

Figure 1.3: Silicon Graphics RealityEngine 1993

6

1.1 – general purpose graphics processing unit

1.1.2 GPGPUs Architecture
Today’s GPUs are flexible: they do support high-level programming and they

have a precision of 32-bit floating-point. Ultimately, GPGPUs are available to
developers as, to some extent, co-processors.

To program a NVIDIA GPGPUs, it is necessary to write a piece of code called
Kernel, which is the running function on each streaming pipeline of the GPGPUs,
as in figure 1.4 shows a program to copy memory from device to host and the vise
versa .In graphics domain, a Kernel would be defined as a ’shader’. Using APIs like
OpenGL, OpenCL, and CUDA, Kernel and shader functions can be accessed
from the host: GPU’s main memory or in-chip memory.

MY_API void kernelIncrement(int * data)
{

int workItemId = threadIdx.x+blockIdx.x*blockDim.x;
data[workItemId]++;

}
cudaMemcpy(gpuData, hostData, n, cudaMemcpyHostToDevice);
kernelIncrement<<<128,128>>>(gpuData);
cudaMemcpy(hostData, gpuData, n, cudaMemcpyDeviceToHost);

Figure 1.4: Kernel Code example

The central concept of GPGPUs is the Single Instruction Multiple Data (SIMD),
which allows parallelism. SMIDs creates the hardware, while the API introduces
them as multi-core CPU to ease writing programs. Figure 1.5 shows a simple par-
allel execution of a program where there is a single instruction the addition and
vectorized data a and b and results in vectorized data c.

Figure 1.5: A simple parallel addition program

In writing vectorized codes, for example, APIs like CUDA have online-compilation

7

1 – Background

that get your non-SIMD, scalar-simple, and map it into SIMD units. These APIs
support multiple architectures: once the code is written, it can run on a NVIDIA
architecture.

1.1.3 NVIDIA Architecture
Streaming multiprocessorSMs are the building blocks of GPUs and execute the

actual computation. As illustrated in figure 1.6, each SM possesses control units,
registers, execution pipelines, and caches.

Figure 1.6: The main architecture of NVIDIA

Each SM has multiple CUDA cores which are displayed in figure1.9 . CUDA
core holds the floating-point unit, Fused multiply-add, logic unit, Move, compare
unit, and, finally, the branch unit. SM holds individual function units such as
cos, sin, and tan. In addition, it carries shared memories, L1 & L2 cache, and
thousands of 32-bit registers, where the SM read from, as illustrated in figures 1.7
and 1.8 respectively. Despite their limited size, SM memories are extremely fast.
Programmers can select which cache to use, whether L1 or shared memory.
L1 cache is designed for hardware use as register spilling, and should not be used as
CPU caches. By contrast, shared memory acts as a scratchpad, with data accesses
that must be synchronized. Finally, unified L2 cache is fast, coherent, and shares
data across all the GPU cores.

8

1.1 – general purpose graphics processing unit

Figure 1.7: Inside Streaming Multi Processor SM

Figure 1.8: NVIDIA Memory Hierarchy

Figure 1.9: Cuda Core inside

9

1 – Background

1.1.4 NVIDIA Execution Model
Threads are the main component of the software running on GPU, handled

by the Scalar processor (CUDA). Whereas the whole Thread block executes on
multiprocessors, each Thread block consists of warps that execute in parallel.
This execution called Single Instruction Multiple Thread (SIMT).

Thread blocks can stack on one SM, depending on the architecture or the
available resources.

When the Kernel is launched, it executes as a grid of Thread blocks. Next,
it runs on the GPU. Figure 1.10 shows how the SW runs on the GPU.

Figure 1.10: Software execution on GPU

1.2 Multi2Sim Simulation Framework
We are interested in micro-architectural simulators as multi2sim (m2s) because

they allow us to evaluate the performance as power consumption and memory
footprint in the early design stages. (m2s) is a simulator for CPU, GPU, and Het-
erogeneous systems, written in C and C++11. The Multi2Sim architecture consists
of four independent software modules that interact with predefined interfaces, as
illustrated in figure 1.11 The modules are:

• Module 1: Disassembler

• Module 2: Functional simulator

10

1.2 – Multi2Sim Simulation Framework

• Module 3: Detailed simulator

• Module 4: Visual Tool

Figure 1.11: Multi2Sim’s simulation model example

1.2.1 Architecture
Considering that every stage has its own specific function, it needs to propagate

the data in the right manner for the following stage. Thus, a stage can not function
properly without the preceding stages.

First, the disassembler’s purpose is to decode the instructions extracted from
the guest program running into useful data. It can then be used for simulation pur-
poses, such as operation codes, input/output operands, or immediate constants.
As mentioned before, every module can work independently or as part of the whole
simulation. In the first case, the disassembler would be interested only in the in-
struction set architecture (ISA) found in the binary file, where it dumps a text
file including all the found instructions. While In the second case, the disassembler
uses a buffer to iterate through each instruction, then maps every one accordingly
to its field.

The second module consists of the emulator or functional simulator. Here,
the simulator illudes the guest program that it is executing natively on a given
micro-architecture. This occurs with the emulator tracking the state of the guest
program and continuously updating the instructions, one by one, until the guest
program ends. To do so, the emulator passes through four main steps:

• Reading the instruction;

• Decoding the instruction;

11

1 – Background

• Emulating the instruction and updating memory and registers;

• Incrementing instruction pointer (IP).

The most important aspect of the functional simulator is that it simulates timing
cycles accurately. If the functional simulator is used alone, the program counter
starts reading from the address of the first instruction — next, the simulation
loops through the four steps mentioned above until the program terminates. If
the simulator is used for the next stages, it provides all the data related to the
emulated instructions. Figure 1.12 depicts the emulator’s functioning for the 4-
stage processor pipeline.

Figure 1.12: 4 stage processor pipeline,and the communication between the detailed
and the functional simulators.

The third module involves a detailed simulator or timing simulation. In this
stage, the hardware structures are modeled into pipeline stages, pipe registers,
instruction queues, functional units, cache, and other needed structures. The simu-
lator also tracks time accessibility for modeled structures. When the timing simula-
tion detects free ports in the instruction memory, and free space in the fetch&decode
pipe register - after the functional simulator sends all the required data from the
current instruction - it requests the functional simulator to fetch new instruction.
In summary, the timing simulator works to simulate one iteration of the program
loop modeling one real-clock cycle. However, the simulator takes more time to
simulate one cycle; It is the most accurate cycle compared to the execution on the
Hardware.[6]

Finally, the visual tool provides visualization for each simulation cycle; that,
however, will not be covered in this dissertation.

12

1.3 – Vulnerability of GPGPUs

1.2.2 Operating Modes
There are two modes of operating m2s: Full-system and Application-only Emu-

lation.
Full-System Emulation executes the full stack of software as if it was running on
real hardware. It starts running the guest operating system (OS) form a disk image.
Physical memory image with the values of the register file represents the state of
the OS. The full-system emulator runs the guest OS and tracks I/O as if it was a
virtual machine; its downside is the speed of running ISA. In fact, the Full system
emulation is slow to feed other software components concerning timing simulation.

Application-only Emulation runs by removing the OS from the guest software stack.
In this way, services are abstracted by the emulator, providing the application with
initial memory image (program loading), and run-time communications between
OS and the application. Program loading is simplified in the following steps: 1)
Analyzing application ELF binary, especially ISA parts and initializing static data;
2) Initializing memory for the guest program by mapping ELF sections accordingly
in virtual base addresses; 3) Initializing program stack by copying image program
arguments and variables to the memory; 4) Assigning value of the architected file
to the stack. After these steps, the emulation can start fetching the first ISA. When
the guest’s program requests an interrupt from the OS, the emulator collects all
the data required by the interrupt and then update its internal state illuding the
guest program that it runs natively.[6]

Figure 1.13: Full-system VS Application-only Emulation.

1.3 Vulnerability of GPGPUs
High-Energy particles bombarding GPUs is a concern for safety-critical systems

such as automotive, aerospace, and medical devices.
When high energy neutrons or alpha particles hit sensitive nodes on the micro-
architecture, the current produced can drive circuit simulators and cause transient

13

1 – Background

hardware errors. Transient errors are able to generate errors at the application
level. In this thesis transient faults are modeled as single bit-flips in memory ar-
rays. There are two different types of application and execution error: the first
type is silent data corruption (SDC), in which data propagates without the user
noticing; the second type is detected unrecoverable error (DUE), which makes the
program crash while avoiding any corruption of data.[5]

Architectural vulnerability factor (AVF) AVF is the probability that a fault in
a processor structure will result in a visible error in the final output of the program.
AVF is defined as in equation 1.1. However, AVF nonetheless it is not an absolute
factor: in fact, it varies depending on workload, time, and circuit dimensions. Being
a time-dependent factor, it creates an user-visible error. [5]

AV F : = number of vulnerable bits instructure

total number of bits in structure
(1.1)

14

Chapter 2

Instrumentation

This chapter presents the instruments used and the setup implemented in the
project. NVIDIA Kepler micro-architecture is evaluated for reliability using a
Fault injector (FI) and ACE analysis which are built on the top of the Multi2sim
framework.

2.1 NVIDIA Kepler
GPGPUs are constantly under development and object for improvement. This

thesis adopts the Kepler architecture, acknowledging that several successors, such
as Turing and Maxwell exist. However, our Analysis is easily extendable for the
newer models mentioned.

Kepler was released in 2012 in three versions: GK104, GK110, andGK210.
The last two models are explored in details in this thesis. GK110 was originally
designed for Tesla. Significant later features developed increased computing horse-
power and decreased power footprint and consumption. GK110 and GK210 have
up to 15 SM units and six 64-bit memory controllers.

Figure 2.1: KEPLER Improvements

15

2 – Instrumentation

2.1.1 Architecture
The SMx holds broad architectural improvements, enabling it for the double-

precision workload. The new SM holds 192 single-precision equipped with single
and double-precision arithmetic units, in addition to fused multiply-add (FMA).
SMx utilizes the principal GPU clock , which permits the increase of throughput
outside of having multiple copies of execution units.

Figure 2.2: Kepler’s SMx architecture

Quad Warp scheduler is the newly adapted technology in Kepler SMx. As
mentioned in the first chapter, a warp forms for every 32 Threads. In Kepler,
there are four warps and eight instruction dispatch units. Each cycle warp sched-
ulers vouchsafe dispatching double instructions, permitting parallelism of double-
precision instructions with others.[4]

Kepler performance significantly increases, permitting each Thread to access
255 Registers, which in turn decreases memory spill to local memory. Within the
same warp, Threads can exchange data using the new shuffle instructions. These
can reduce the shared memory size needed by a Thread.

2.1.2 Memory Hierarchy
Kepler’s shared memory and L1 cache are configurable. IN GK210 there are

128 KB of adaptable memory, which can be used as l1 cache or shared memory.

16

2.1 – NVIDIA Kepler

Figure 2.3: Kepler’s Quad Warp Scheduler

Read-only data cache and L2 cache have seen diverse improvements. A
read-only 48kB cache can be used to map data as textures, and it is optimized
with compiler through const__restirict keyword. L2 cache was doubled in size in
addition to bandwidth per clock cycle.

Kepler’s memory Hierarchy is protected by a Single-Error Correct Double-
Error Detect (SECDED) ECC code, while single-error correction protects the
Read-only Data Cache through a parity bit.[4]

Figure 2.4: Kepler’s Memory Hierarchy

17

2 – Instrumentation

2.2 KEPLER on MULTI2SIM
CUDAs applications running on Multi2sim are simplified into four entities,

illustrated in figure 2.5.

Figure 2.5: Kepler’s SW modules

2.2.1 M2S Execution
Events Order On M2S:

• cudaLaunchKernel API is launched by the host program(x86 executable).

• Program calls are intercepted by the runtime library;

• Driver starts the GPU emulator, which interprets the API calls and reads the
Grid values;

• The GPU emulator starts the simulation by initialing the loop.

2.2.2 Simulation Processes
In the simulation process for KEPLER, only the first three stages are available

as shown in figure 2.6. There is no Visual tool.

Disassembler

The disassembler works on the same principles as those presented in chapter 1.2.
Figure 2.7 illustrates an example of code translated in assembly.

18

2.2 – KEPLER on MULTI2SIM

Figure 2.6: Multi2sim three stages for KEPLER

Figure 2.7: code that has been disassembled

Emulator

Emulation loop has two types of execution: the first one is Thread block
execution, where Thread blocks execute randomly, with a policy of one Thread
block at a time. This type of implementation is not relevant to the emulator. The
second one is Warp execution, in which warps inside a Thread block execute in
random order. The protocol to be respected is synchronization and one warp at a
time [3].

Timing Simulation

After the Grid is created, Thread blocks are mapped by the scheduler into
available SMs. Each SM accommodates four warp pools containing the warps
of the assigned thread blocks. The warps to be executed are scheduled by the

19

2 – Instrumentation

front-end. The process develops under the following rationale:

• Instructions are fetched by the front-end, to be then decoded and sent to the
execution units (that have 32 parallel units named lanes);

• The special functional unit, load-store unit, and integer math unit have one
instance;

• Single precision units, double precision units, and branch units have multiple
instances.

Figure2.9 shows the existing piping.

Figure 2.8: Execution unit for timing simulation architecture

2.2.3 Architecture and Piping
Front-end

The piping of the front-end works in the following sequence:

• There are four warp pools , each of them holding an assigned Thread block;

20

2.2 – KEPLER on MULTI2SIM

• All the four warp pools present their request to the instruction memory
during the fetch stage, for each cycle;

• Dispatch stage is responsible for consuming the instructions from the buffers
and sending them to the proper execution unit.

The interior of the front-end is shown in figure 2.9 below.

Figure 2.9: Kepler’s front-end architecture

Execution Units

Execution Units have five stages: decode, read, execute, write, and complete.
The execution units perform the arithmetic-logic instructions depending on data-
type, and access register files in the read and write stages. The LS units are
illustrated in the below figure 2.10 .

21

2 – Instrumentation

Figure 2.10: LS unit architecture

2.2.4 Operating modes
Functional Simulation

Within the first operating mode, the functional simulation, Thread blocks
are run one at a time; through emulating instructions and updating registers and
memory. There are some limitations for this simulation, as it only shows the number
of executed grids and blocks and the dynamic instruction mix of the kernel.

Architectural Simulation

Secondly, the Architectural Simulation starts by modeling the SMs and the
memory hierarchy. Then, it runs Thread blocks into SMs and warp pools, and,
finally, it emulates instructions and delivers state within the execution pipelines.
This type of simulation is for the benefit of resource modeling usage, contention ,
and timing accuracy.

2.3 Micro-architectural Level Fault Injector
2.3.1 SIFI

This Fault injector used in this thesis is inspired by Southern island fault injector
(SIFI), which was designed for AMD GPUs, However we will evaluate the reli-
ability of the Kepler micro-architecture. SIFI was designed originally for the
AMD micro-architecture and was constructed on the top of Multi2sim simulator.
SIFI provides the chance to be extended to other micro-architectures such as
NVIDIA Kepler, which is our area of interest.[7]

22

2.3 – Micro-architectural Level Fault Injector

SIFI Architecture and Functionalities

SIFIs’ main focus is on the Soft Errors mentioned in section 1.3 within the
memory arrays of GPUs as the Vector register file, the scalar register file, and the
local memory. SIFI directs the Single Event Upset (SEU), which is a single bit-
flip of a memory element. The reliability of GPU is calculated by the Architectural
Vulnerability Factor (AVF) of the addressed hardware. AVF scales the soft-error
responsible for a system failure as Detected Unrecoverable error (DUE). [5]

AVF Util is the exposure of the system for a system failure caused by a soft error
occurring in a resource which is used at least once in the context of the computation.
and can be calculated in terms of AVF, and Occupancy which represents the ratio
between util resources and the total number of resources. 2.1

AV F = AV FUtil × Occupancy (2.1)

Failure In Time (FIT) rate of the system λS, it can be derived from AVF com-
puted and Vulnerability of memory elements in the GPU:

λS =
∑︂

i∈υRF,sRF,LM

AV Fı × λ × #bitı (2.2)

In equation 2.2, #bitı represents the number of memory elements in HW while ı
and λ is the error rate bit of the targeted technology node.
To calculate system performance Executions Per Failure (EPF) 2.3 is introduced
in terms of Executions in Time (EIT) in 109 hours. SIFI enables the calculation
of all the above-mentioned metrics.

EBF = EIT \ λS (2.3)

The Fault Injection Engine

The Fault Injection(FI) engine allows for precise reliability analysis. The FI is
a complex task because it requires the running of a significant number of execu-
tions. In fact, it simulates only one fault per execution, after which the output is
compared with one golden execution, to break down into two categories: masked
or non-masked. Non-masked faults can be filtered into SDC and DUE.

FI campaign consists of several steps. At first, the application is profiled in order
to identify the time intervals in which the GPU is active and to collect information
about the executed kernels. The faults to be injected are then randomly generated

23

2 – Instrumentation

and another simulation is run to profile whether these faults affect at least one
hardware structure assigned to a work-groups. In case a fault hits a non-assigned
hardware structure, it is marked as masked without performing any simulation.
Otherwise, it is marked as Util. Eventually, all faults marked as Util are simulated
and classified. Using the results of FI simulations the AV F and AV FUtil of an
hardware structure can be computed as [8]:

AV F = #injnot_masked

#inj
(2.4)

#injnot_masked represents the number of not masked faults, while #inj simulates
the total number of injections.

AV Futil = #util − injnot_masked

#utilinj
(2.5)

In equation no 2.5, AV Futil is calculated in terms of util faults.
The speedup obtained by skipping non-Util simulations depends on the application
and mainly on the occupancy of the hardware structures. It can be computed [8]:

Occoccupancy = #inj. /util − inj (2.6)

2.3.2 Combining Cluster Sampling and ACE analysis
Architectural Correct Execution (ACE) Analysis

In order to identify a memory element as ACE, the fault must be not only
masked but read too. Thus, to be considered, an element as ACE util, must be
after reading cycle, defining what is called vulnerable timing windows (VTW) of
a resource. Figure 2.11 shows the criteria applied.[9]

Figure 2.11: The vulnerable timing windows considered in ACE analysis

AV FUtil = AV FACEUtil × ACEUtilF actor (2.7)

M̄util

InjUtil

= M̄ACEUtil

InjACEUtil

× ACEUtilF actor (2.8)

24

2.3 – Micro-architectural Level Fault Injector

In equations 2.9 and 2.10, AVF was calculated by ACE util injections, by intro-
ducing an ACEUtilF actor representing the ratio between util injections and ACE
util injections. Following the procedure and forms used in equations 2.9 and 2.10,
we obtain M̄Util = M̄ACEUtil and InjACEUtil = Injutil × ACEUtilfactor. Where
0 ≤ ACEUtilfactor ≤ 1, simulating only InjaceAceUtil will decrease the number of
injections by a factor of 1/ACEUtilF acror.

Fault Pruning

Combining both FI and Ace Analysis results in the Fault pruning.In order to ad-
dresses the vulnerable HW resources more efficiently with respect to evaluation time
and accuracy. The fault pruning in figure 2.12 was applied associated with cluster
fault sampling techniques[9], In addition to the ACE analysis which addresses the
util resources mentioned in SIFI. Fault injection is refined by identifying ACE
resources inside util resources, as shown in figure 2.12.

Figure 2.12: Ace Util faults

AVF is computed by redefining equations no 2.4,2.5 and 2.6, with respect to M̄ ,
which is the number of non-masked injections for both util and non-util injections.

AV F = AV FUtil × Occ (2.9)

M̄

Inj

= M̄

InjU til
× Occ (2.10)

25

2 – Instrumentation

M̄util represents the number of non-masked util injection, Inj is the number
of both util and non-util injections, and Injutil represents only the number of util
injection. Therefore, Inutil = Inj×occ, considering that M̄ = M̄util as the non−util
injections are always masked.

Finally, simulating only Injutil and knowing that 0 ≤ Occ ≤ 1, the number of
injections with a factor of 1/Occ diminish.

Injection Sampling

The cluster sampling occurs in two steps: a first step consists of sampling the
clusters, and the second is identifying the individuals from the selected clusters.
The VTW is considered a cluster, and its weight is modeled by its duration (Clock
cycles).
In this thesis, Wight and Sample (WAS) technique is used. the first sampling
stage is based on proportional to size sampling (PSS). Clusters are selected with
a probability proportional to the associated wi. Once the clusters are selected an
injection is evaluated for each of them. The second sampling stage is based on
uniform sampling and the same number of individuals must be analyzed for each
of the selected cluster. In this particular case we consider just a single individual
per cluster as its outcome is the same to the other individuals in its cluster. If
the outcome is non-masked, then ai = 1, otherwise ai = 0. With this approach,
adapting the theory introduced in 2.4, 2.5, and 2.6 to our case, the AV FACEUtil [9]
can be:

AV FACEUtil =
∑︁n

i=1 αi

n
(2.11)

with a standard error equal to

se(AV FACEUtil)

⌜⃓⃓⎷∑︁n
i=1(αi − AV FACEUtil)2

n(n − 1) (2.12)

2.3.3 The Proposed Workflow
The workflow adopted to estimate reliability consists of several steps:

1. Application profiling

• Identify VTW concerning:
– duration and first clock cycle
– involved micro-architectural regiters file

• Collection information about kernels execution

26

2.3 – Micro-architectural Level Fault Injector

– parameters needed to map architectural registers to the physical one

2. Fault pool is generated using WAS

3. Faults are injected

4. Faults are classified according to PSS

Figure 2.13: The proposed Workflow

27

Chapter 3

Experimental results

We adopted the workflow presented in chapter 2.3. We simulated 1000 Injec-
tions of single bit upset in the register file and used four benchmarks of CUDA:
VectorADD, VectorADD-Int, MartixMul, and ScalarProd.

First, the VTW was identified using ACE analysis. Second, the fault pool
was generated using WAS. Finally, faults were injected and classified according to
PSS. The output of the workflow is shown in table 3.1 and figure 3.1.

VectorADD VectorADD-Int MartixMul ScalarProd
SDC 880 906 899 283
DUE 0 0 59 220

Masked 120 94 42 497
TOT 1000 1000 1000 1000

Table 3.1: Output of the simulation

SDC was encountered the faulty simulation output mismatched from a golden
simulation. The DUE was detected when when the simulation crashed or the
elapsed time of the running simulation was 5x longer than the one of the golden
simulation.

According to A. Vallero and S.Di Carlo. [2] the confidence interval calculated
is 95% with an error e = 3%

28

3 – Experimental results

Figure 3.1: Simulation Output

29

Chapter 4

Conclusion

Kepler-Multi2sim is an impactful tool. By allowing fast and efficient simu-
lation, it enables the modification of the running micro-architecture. However,
the findings of this study show that it also has some drawbacks. One drawback is
that the memory hierarchy of the timing simulation displays some defects. Second,
some unmodeled instructions were detected while using the Rodinia benchmark.
Addressing these issues may constitute a starting point for future work on the
subject.

The 2 stages cluster sampling strategy demonstrated a good fit for fault pruning
with respect to minimizing the number of injections. The adopted analysis allows
better reliability and faster time for GPGPU applications to access the market.
Due to limitations of this analysis, we adopted only the WAS methodology which
sharpened our simulations, while other methods such as SAW could be utilized in
future studies.

30

Bibliography

[1] M. Arora et al. “Redefining the Role of the CPU in the Era of CPU-GPU
Integration”. In: IEEE Micro 32.6 (Nov. 2012), pp. 4–16. doi: 10.1109/MM.
2012.57.

[2] A. Biswas et al. “Computing Accurate AVFs using ACE Analysis on Perfor-
mance Models: A Rebuttal”. In: IEEE Computer Architecture Letters 7.1 (Jan.
2008), pp. 21–24. doi: 10.1109/L-CA.2007.19.

[3] X. Gong, R. Ubal, and D. Kaeli. Multi2Sim Kepler: A detailed architectural
GPU simulator. Apr. 2017, pp. 269–278. doi: 10.1109/ISPASS.2017.7975298.

[4] E. Lindholm et al. “NVIDIA Tesla: A Unified Graphics and Computing Ar-
chitecture”. In: IEEE Micro 28.2 (Mar. 2008), pp. 39–55. doi: 10.1109/MM.
2008.31.

[5] S. S. Mukherjee et al. “A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor”. In: (Dec. 2003),
pp. 29–40. doi: 10.1109/MICRO.2003.1253181.

[6] R. Ubal et al. Multi2Sim: A simulation framework for CPU-GPU computing.
Sept. 2012, pp. 335–344.

[7] A. Vallero, D. Gizopoulos, and S. Di Carlo. “SIFI: AMD southern islands GPU
microarchitectural level fault injector”. In: (July 2017), pp. 138–144. doi: 10.
1109/IOLTS.2017.8046209.

[8] A. Vallero, D. Gizopoulos, and S. Di Carlo. “SIFI: AMD southern islands GPU
microarchitectural level fault injector”. In: 2017 IEEE 23rd International Sym-
posium on On-Line Testing and Robust System Design (IOLTS). July 2017,
pp. 138–144. doi: 10.1109/IOLTS.2017.8046209.

[9] A. Vallero and S.Di Carlo. “Combinig cluster sampling and ACE analysis to
improve fault-injection based reliability evaluation of GPU-based systems”.
2019.

31

https://doi.org/10.1109/MM.2012.57
https://doi.org/10.1109/MM.2012.57
https://doi.org/10.1109/L-CA.2007.19
https://doi.org/10.1109/ISPASS.2017.7975298
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/MICRO.2003.1253181
https://doi.org/10.1109/IOLTS.2017.8046209
https://doi.org/10.1109/IOLTS.2017.8046209
https://doi.org/10.1109/IOLTS.2017.8046209

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

32

