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«Il bimbo ristette, lo sguardo era triste,
e gli occhi guardavano cose mai viste

e poi disse al vecchio con voce sognante:
"Mi piaccion le fiabe, raccontane altre!"»

F.Guccini, Il vecchio e il bambino

A mio nonno Adolfo,
sei stato la scintilla che ha acceso in me il fuoco della curiosità.
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Chapter 1

Introduction

Alongside with the spread of robotic applications that is seen nowadays[1],
tools for teaching the main concepts related to robotics are needed to famil-
iarize new generation of students with this branch of engineering. Industrial
robots are not well suited for demonstrational and teaching use due to their
complexity, cost and lack of a friendly interface. To this purpose a new
category of robots is being studied and designed by companies: educational
robots.
Educational robots are low cost and low performance robots, meant to be
used for teaching technology and related skills such as Computational think-
ing [2].
The context in which educational robotics is used fixes some design principles
for this category.
For what concerns the mechanical structure, an educational robot should
have a simple and representative one. Usually when dealing with mobile
robotics we see wheeled robots being adopted. When it comes to manipula-
tor instead, anthropomorphic arm with spherical wrist is often designed since
in literature they are mostly used as example for the serial link manipulator
category.
When designing the software for control of such robots it must be kept in
mind that open and simple solutions are preferable for teaching purposes.
The code should be open in the sense that students may be interested in
reading, studying and modifying it, then open source solutions are prefer-
able.
The development of high-level interfaces, that relieves the student from the
knowledge of coding, is also of use when dealing with less experienced users.
When designing such systems one should try to make them as much as possi-
ble likely to be expanded. Software architectures should provide solid basis,
implementing the lower and most complex algorithm, from which the student
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can start the design of a higher-level behavior.
In this context Comau s.p.a invested in the development of the “e.Do”
project.
Comau is a company founded in Turin in 1973. Born as COnsorzio MAc-
chine Utensili to merge all companies providing industrial supplies to build
Togliattigrad VAZ plant in Russia [3], today it is global leader in the field of
industry automation with 32 operation centers in 14 countries[4].
The development of the e.Do project it is of interest for the company for par-
ticipating also in creation of educational and personal automation solutions.
Besides commercializing the physical robot, the company provides a cloud
containing resources for the user. Thanks to “eDo.cloud” the user is sup-
ported in developing projects using their robots. Tutorials, news and show-
cases are available together with a forum administrated by Comau staff to
help user share knowledge and solve technical problems. The hardware and
software architecture is open source and ROS based, so a virtual machine
and the code repositories are available online. To facilitate the interaction
with the user an android and web application has been developed.
This project aims at studying the capability of the robot when used outside
of a teaching context. When inside an academic robotic lab such a robot is
of particular interest for the study of robotic’s algorithms.
The ROS architecture running on e.Do, developed by Comau as a ROS pack-
age named edo_core_pkg , is a solid base from which to start a complex
application.
For this specific case we are interested in investigating the capabilities of
e.Do to operate a pick and place task in a “multiple-system” environment.
A new ROS package to implement an interface between the robot and a dig-
ital microscope had to be designed. The digital microscope involved in the
project is called mesoSPIM, currently the microscope has been installed in
seven different locations. Among those we find a setup in the Neuropathol-
ogy Institute of Universitat Spital of Zurich, the same institute bought e.Do
and asked Comau for a jointed reasearch on the interaction between the mi-
croscope and the robot.
The objective of the interface was to implement the behavior needed for per-
forming a series of analysis on medical samples. Such samples, stored in a
holder, must be grasped and delivered to the microscope for the analysis.
Once the screening is completed the samples are put back in place. These
actions are then repeated on a series of different samples.
Automation of this process relieves the researcher from the manual load and
unload of the samples, annoying in case of long duration analysis on a series
of different samples.
The package developed extends the functionalities of edo_core_pkg. I have
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been working along with the e.Do software team to better understand the
path this project is following and where its future development will lead.
A functional collaboration helped to highlight the feature that an expert
user, as an academic researcher, looks for when working with a robot of this
type.
The use of a ROS environment for manipulators is little investigated by the
community, unlike mobile robotics; furthermore pick and place task are usu-
ally carried out by industrial robots designed ad-hoc for the specific task.
For these reasons this work finds little references to existing literature and
relays more on practical aspects of the specific case.
In the next chapters the work done during the collaboration is presented.
Conceptually two aspects have been studied. First e.Do has been studied
deeply in its code architecture and software-hardware structure. Typical
robotics analysis, such as direct kinematics, Jacobian and so on are presented.
All of this has been carried out to better understand the e.Do system, the
way it works and communicates.
Then in the second part a ROS package has been developed to accomplish
the pick and place task.
In Chapter 1 all the studies done on e.Do are presented. Both its software
and hardware structure are explained. Kinematics features of e.DO are in-
vestigated and a representation of the workspace is discussed. The ROS
edo_core_pkg architecture is also described.
In Chapter 2 we talk about the microscope, its features are represented and
a method to overcome its physical absence it is presented.
In Chapter 3 the development of the new ros package is illustrated. Con-
straints and choices that motivate the project evolution are discussed.
In Appendix A some key concepts about Robotic Operating System are syn-
thetized. In Appendix B instead some basic robotics concepts are illustrated.
In Appendix C we present numerical results for direct kinematics function,
Jacobian and Workspace characterization.
In the final chapter we illustrate future developments that could start from
this work of thesis. Some possible improvements to the code structure are
also discussed.
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Chapter 2

e.Do

e.Do is the name of the educational robot developed by Comau S.p.A. The
robot belongs to the category of manipulators. More specifically the robot
is an anthropomorphic arm with spherical wrist. The length of the arm
extended is 0.99 metres and its weight is 11.1 kg.
e.Do can lift up to one kilo of payload and deliver a torque of 4 Nm, making
the robot suitable for small pick and place tasks; more detailed techincal
specifications are reported in Fig. 2.1 [5].

Figure 2.1: e.Do techincal specification provided by Comau
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2.1 Hardware analysis
The joints are actuated by six electric motors. The three motors located at
the base have bigger dimensions and can bare more weight, they can rotate
up to 38deg/s and deliver a static torque of 17.9 Nm. The three motors used
for the spherical wrist are instead smaller and capable of less torque, they
rotate at 56 deg/s and produce a static torque of 2.75 Nm.
These motors are driven by Novalabs ServoDrive boards placed on top of
them. Motors are also equipped with an encoder and hall sensor to feedback
their position. The boards are then connected via CAN system. A PCB
finally bridges the connection from CAN to Serial to a Raspberry Pi that
serves as main control unit for high level algorithms.
e.Do comes with no end effector, although it is possible to attach one to it.
For this work of thesis a robot gripper with two fingers has been used, fixed
by means of screws and connected to the CAN network just as one of the
other motors.

2.2 Software analysis
The Raspberry Pi with which e.Do is equipped comes with the Raspian Jesse
OS, a Debian-based operating system ad-hoc for Raspberry Pi.
Installed on the operating system there is ROS Kinetic. ROS Kinetic is a
distribution of ROS released in may 23 2016, since it’s been released more
than three years ago , Kinetic is now well supported and stable compared to
successive releases.
It is in the ROS infrastructure of e.Do that we find the higher level control
algorithms. Such algorithms are implemented by means of ROS nodes and
are contained in the ROS package edo_core_pkg .
An outline of the e.Do comunication network si presented in Fig. 2.2.
The edo_core_pkg contains code written in C++ to implement an Algo-

rithm Manager, a State Machine and to handle communication from/to the
motors and from/to the user.
Lower level algorithms, such as direct, inverse kinematics and dynamic model
of the motors are contained in a private library named ORL. The functions of
ORL used by edo_core_pkg are not accessible by the user and are property
of Comau.
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Figure 2.2: Scheme of e.Do system configuration.

2.3 e.Do core package
Comau developed a specific package for implementing a basic software in-
frastructure to control e.Do.
The package contains nodes to implement an interface towards the lower level
control.
This package allows also to command the robot using the android application.

2.3.1 Algorith Manager
The Algorithm Manager node is the node that implements the highest be-
havior of the robot system, it offers the following functionalities :

• Calibration:
When powered on e.DO needs to calibrate, which is the procedure to set
the zero of the encoders that when off lose their reference. To calibrate
e.Do, Comau provides an user interface with an android app. The
user must connect an android device to e.Do, by means of wifi ad-hoc
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mode connection, and perform calibration. This feature is implemented
through Algorithm Manager methods.

• Feedback signal:
Position, velocity and current values are fedback by the motors. These
datas are collected by AlgorithmManager and passed to ORL functions.

• User Commands:
Messages sent by the user to move e.Do have a specific structure, de-
fined by Comau, and different from the ROS standard.
User messages are interpreted by the AlgorithmManager node and fed
to the ORL functions.
To send messages to e.Do the user must publish on topic bridge_move
a message of the type MoveCommand whose structure is showed in Fig.
2.3 and Fig. 2.4, the message must be filled with the following fields:

Figure 2.3: Structure of MoveCommand defined in edo_core_msgs

◦ Command Type:
It is the type of command we are about to send; it can be

∗ MOVE: Message sent will be a request of movement between
current position and target position.

∗ JOG: Message sent will increment gradually one of the joint
variables.

∗ CANCEL: Cancel execution of current action.
∗ PAUSE: Pause execution of current action.

◦ Move Type:
In case we are sending a MOVE command we must specify what
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Figure 2.4: Structure of Point, CartesianPose and Frame types defined in
edo_core_msgs

type of move we want to perform.
At the time the project was developed there were two options.
The first one is a move of the JOINT type; it means that we are
performing a linear move in the joint space, that results in a non-
linear motion of the end-effector.
A second option was to send a move of the LINEAR type, this
mode creates a linear motion in the cartesian space, that results
in a motion of the end effector along a straight line.
In newer realeses of edo_core_pkg a new move has been imple-
mented, the CIRCULAR.

◦ Data Type:
When sending a move message we must specify the type of data
format we will send in the message.
The options are two, whether we send a message containing the
target joint angolar positions, JOINT data type, or we send the
cartesian coordinate of the point we want to reach, CARTESIAN
data type.

◦ Joint mask:
If we want only specific joints to move, and the others to stay still,
we can encode this information in a mask.
For each joint we specify 1 if we want it to move, else 0. Composing
these binary values, ordering them from the lower motor as LSB
until the end-effector MSB we obtain a binary number that is
then converted in integer and inserted in the dedicated field of the
message to send.
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The possible values ranges from 1 to 127.
For example, if we want only the end-effector gripper to move, we
have the following mask : 1000000, converting this binary number
to an integer we obtain 64. On the opposite if we want to move
all joints except the end-effector the mask is 0111111, that is 63.

◦ Target Position:
Once specified the data type of the position information we can
specify by means of a vector of float numbers the target joint or
cartesian positions.
To close or open the end-effector the method is different. There
is a unique way, for both the data types, to specify its position
which is the opening width in mm, or −1 to ask for a closing untill
a considerable reaction force it is sensed, that means we grasped
a solid object.

◦ Via Point:
Even tough at the time of the project development via points
where not implemented yet, in the last releases it is possible to
specify, with the same data type of the target position, a via point
for our motion.
The ORL library will generate a motion from starting point to
target point with a “fly-by” motion in proximity of the via point

◦ Override Velocity:
Represented as a percentage, it is the velocity at which the joints
will turn. With 100 we want the motors to spin at their maximum
velocity.
It’s suggested, especially when precision is needed, to take this
value between 20 and 50.

Upon reception of a MOVE command the robot moves to the target
position, the trajectory planning algorithms belong to the ORL library.

• State Machine comunication:
Algorithm Manager communicates with the StateMachine node to take
actions accordingly to the status of the machine state

• Error Handling:
Algorithm Manager implements methods for the notifications of error
and, when possible, initializes the error recovery procedures.
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2.3.2 State Machine
edo_core_package comes with a State Machine implemented as a ROS node.
The possible states are the following:

• INIT

• NOT CALIBRATE

• CALIBRATE

• MOVE

• JOG

• ERROR

• BRAKED

• COMMAND

When the robot is powered on the initial state is the INIT state. When we
access the calibration procedure the state changes to the NOT CALIBRATE
state. As soon as the calibration is completed the state changes to the CAL-
IBRATE state. In this state the robot is ready to accept commands. Upon
reception of a message the state changes to COMMAND. When the message
has been received, depending on its type, the status of the machine changes;

• MOVE, if the message type received was MOVE

• JOG, if the message type received was JOG

• Whenever e.Do faces an internal error the status changes to MACHINE
ERROR.

• In case of critical fault, like collisions, the motors are powered off and
the status changes to BRAKED.

The StateMachine node subscribes to a topic named bridge_move, that is the
topic on which the user must publish the move messages. When receiving a
message on bridge_move the State Machines changes its status and notifies
the Algorithm Manager node about the new message. The content of the
message is forwarded through the topic machine_move. To communicate its
current status to the Algorithm Manager the topic machine_state is used.
This topic is periodically written, the states are encoded as integer numbers
according to Table 2.1 . When in ERROR the message of the machine state

14



State enumerate
COMMAND_STATE 255

INIT 0
NOT_CALIBRATE 1

CALIBRATE 2
MOVE 3
JOG 4

MACHINE_ERROR 5
BRAKED 6

Table 2.1: State Machine enumerate states

Operational Code enumerate
NACK 0

JOINT_ABSENT 1
JOINT_OVERCURRENT 2
JOINT_UNCALIBRATED 3

POSITION_ERROR 4
ROSSERIAL_ERROR 5
BRAKE_ACTIVE 6

EMERGENCY_STOP 7
FENCE 8

COLLISION_ON 9

Table 2.2: State Machine enumerate operational codes

is extended with an additional field named operational code.
As shown in table 2.2 the operational code gives details about the nature of
the error.

2.3.3 e.Do Recovery
A node it is implemented to allow recordings of feedback data during the
execution of moves.
Upon reception of a specific message this node records position, velocity and
current measured from the robot motors. These datas are then saved in a
txt file located in the local memory storage of e.Do’s Raspberry Pi.
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During the project development, COMAU provided protected Matlab func-
tions to load the data in Matlab, this has been useful for the validation of
the correct execution of trajectories.

2.3.4 ROS Serial
Serial comunication towards the board that bridges the connection to the
CAN network has been implemented with ROSSerial metapackage. ROS
serial is a protocol to wrap ROS messages and send them over a serial net-
work. Among the various solutions offered by ROSSerial meta package we
find implemented the package ROSSerial_server. ROSSerial_server offers
the implementation from the host-side of a serial communication, handling
autonomously setup, publishing and subscribing to a rosserial-enabled device.
The package offers different nodes accordingly to the number of clients that
need the connection, in case of multiple clients rosserial socket is needed[6].
Since in this application the client is one, that is the serial-can bridging
board, the rosserial node is used, designed for single-client serial connection.

2.4 Study of Direct kinematics
e.Do is an open chain manipulator, composed of an anthropomorphic arm
with a spherical wrist attached on it as shown in Fig. 2.5

Figure 2.5: Antropomorphic arm with spherical wrist,[7]

For this section the presence of the seventh joint which actuates the gripper
is neglected and will be discussed later on.
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n di [m] ai [m] αi [rad] θi

1 0.337 0 −π
2 q1

2 0 0.210 0 q2
3 0 0 −π

2 q3
4 0.268 0 π

2 q4
5 0 0 −π

2 q5
6 0.174 0 0 q6

Table 2.3: e.Do’s Denavit–Hartenberg parametrs

Instead the end effector reference frame will coincide with that one of the
sixth link. The direct kinematics for open-chain structures can be obtained
as a compositions of homogeneous transformation between two consecutive
links [7].
Using the DH parameters, shown in Table 2.3, we can find the homogeneous
transformations between each one of the joint’s reference frames.
Composing the transformation we obtain the direct kinematics function for
the end effector position and orientation.

T 0
6 =

6Ù
i=1

T i−1
i (qi)

For the arm we find:

T 0
1 =


cos(q1) 0 −sin(q1) a1 · cos(q1)
sin(q1) 0 cos(q1) a1 · sin(q1)

0 −1 0 d1
0 0 0 1

 (2.1)

T 1
2 =


cos(q2) −sin(q2) 0 a2 · cos(q2)
sin(q2) cos(q2) 0 a2 · sin(q2)

0 0 1 d2
0 0 0 1

 (2.2)

T 2
3 =


cos(q3) 0 −sin(q3) a3 · cos(q3)
sin(q3) 0 cos(q3) a3 · sin(q3)

0 −1 0 d3
0 0 0 1

 (2.3)

1See Appendix C for T 0
3 numerical result

17



Composing transofrmations (2.1), (2.2) and (2.3) and substituting the values
of DH parameters we obtain the following matrix1:

T 0
3 = T 0

1 · T 1
2 · T 2

3 (2.4)

Equation 2.4 is the transformation that expresses the position and orientation
of arm-end with respect to the base reference frame.
Applying the same method for the wrist we obtain:

T 3
4 =


cos(q4) 0 sin(q4) a4 · cos(q4)
sin(q4) 0 −cos(q4) a4 · sin(q4)

0 1 0 d4
0 0 0 1

 (2.5)

T 4
5 =


cos(q5) 0 −sin(q5) a5 · cos(q5)
sin(q5) 0 cos(q5) a5 · sin(q5)

0 −1 0 d5
0 0 0 1

 (2.6)

T 5
6 =


cos(q6) −sin(q6) 0 a6 · cos(q6)
sin(q6) cos(q6) 0 a6 · sin(q6)

0 0 1 d6
0 0 0 1

 (2.7)

Composing (2.5), (2.6), (2.7) and substituting the values of ai and di for
i = 4, 5, 6 we obtain the following matrix2 :

T 3
6 = T 3

4 · T 4
5 · T 5

6 (2.8)
that is the homogeneous transformation matrix for the wrist part.

The arm transformation is then composed with the wrist one as follows:

T 0
6 = Tarm · Twrist = T 0

3 · T 3
6 (2.9)

We find the change of representation matrix from the 6th reference frame to
the base one, substituting the values of di and ai, the origin of end-effector
reference frame and the components of its versors are found3:

T 0
6 =

C
n0 s0 a0 p0

0 0 0 1

D
(2.10)

2See Appendix C for T 3
6 numerical result

3See Appendix C for T 0
6 numerical result
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2.5 Gripper description
In this project a seventh joint is used, the one that closes and opens the
two-finger gripper, shown in Fig. 2.6.
The transformation found in previous section expresses the position of the
end of joint 6 with respect to the base reference frame.
To get the final expression of the direct kinematics we must add a seventh
transformation which takes in account the distance between the sixth axis
origin and the pick point of the gripper.
We will call this transformation T 6

EE, the transformation between the sixth
link and the end-effector.

Figure 2.6: e.Do gripper, avaible at e.Do shop,[8]

Due to the mechanism structure, the length of this distance changes with
the opening width of the gripper: in fact we can see how this point can move
up and down as a consequence of the rotation of the mechanism that opens
and closes it, as shown in Fig. 2.7 . What we expect is that also T 6

EE is a
function of a joint variable, T 6

EE(qee). Joint seven acts as a prismatic joint,
translating the end effector reference frame along the z6 axis.
Since the exact physical dimensions of the gripper parts were not known and
in order to simplify the direct kinematic functions, freeing it from a seventh
variable, the following simplifying procedure has been adopted:
During the execution of the pick and place task, eachtime we need to position
the gripper to pick an object, the necessary opening width is assumed to be
always the same, meaning qEE = const.
This is true for the specific application because all the picked objects have
the same dimensions.
If qEE = const then T 6

EE(qee) = T 6
EE = const. The homogeneous transforma-

tion T 6
EE is found as a translation of a fixed distance dEE along z6.

The distance has been found using the protected inverse Kinematic contained
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Figure 2.7: e.Do gripper schematic, different opening width, o.w., results in
differents dEE

in the android application provided by Comau. The robot has been config-
ured in six joints mode, no end effector attached, all joints are moved to
position zero, the robot is now aligned along the base reference frame z axis,
z0. The inverse kinematics provides the position of o6 w.r.t4 the base frame.
The z-coordinate is a measure of the arm extension. We repeat the proce-
dure with the robot configured with the seventh joint. Once we set the right
opening width of the gripper we repeat the previous measure. Subtracting
the first measure to the second measure we find dEE, the distance between
the pick point, at the specific opening width needed to pick the sample, and
the end of sixth joint. It’s now possible to find T 6

EE as a translation of that
distance along the z axis of reference frame 6. A sketch of the procedure is
illustraded in Fig. 2.8 .
Coordinates in base reference frame of o6 as 0 þo6, and those of oEE, as 0 þoEE,
are reported 5 using maximum opening width, owmax, closed grip, owc, and
sample thickness, owp = 26 mm:

4w.r.t. with respect to
5Mesures are expressed in milimmiters
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Figure 2.8: e.Do consifugration for dEE measurment

0 þo6 =
è
0 0 990 mm

é
0 þoEE(owc) =

è
0 0 1 122 mm

é
0 þoEE(owmax) =

è
0 0 1 096 mm

é
0 þoEE(owp) =

è
0 0 1 120 mm

é
(2.11)

For the specific application we find dEE as:

dEE =
è

0 þoEE(owp) − 0 þo6
é
z

= 130 mm (2.12)

2.6 Modelling e.Do kinematic chain
Peter Corke’s robotic toolbox, [9], provided useful Matlab tools to realize
an e.Do kinematic model. Thanks to this toolbox a Matlab object for sim-
ulating the robot has been created starting from the knowledge of the DH
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Figure 2.9: e.Do’s parameter in Peter Corke’s Toolbox, [9]

parameters. In Fig. 2.9 the parameters for the model are shown. With
the toolbox is possible to plot a graphic representation of e.Do, that is of
use when designing a path planning algorithm poses. The grapich model is
animated with a teach feature, Fig. 2.10.

Figure 2.10: e.Do’s model and teach in Peter Corke’s Toolbox,[9]
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n di [m] ai [m] αi [rad] θi

1 0.337 0 −π
2 q1

2 0 0.2105 0 q2
3 0 0 −π

2 q3
4 0.268 0 π

2 q4
5 0 0 −π

2 q5
6 0 0 0 q6

Table 2.4: e.Do’s Denavit–Hartenberg parametrs with o6 in wrist center

2.7 Computation of the Jacobian
Choosing the end effector reference frame origin at the intersection of the
wrist axes, it is possible to simplify the calculation for the Jacobian and the
robot singularities.
To do this we must modify the Denavit Hartneberg parameters as in Table
2.4.
The Geometric Orientation Jacobian matrix obtained is the following6:

Jo =
è

0 þz0
0 þz1

0 þz2
0 þz3

0 þz4
0 þz5
é

(2.13)

The Position Jacobian obtained is the following:

Jp =
è

0 þz0 × 0 þo6
0 þz1 × 0 þo6

0 þz2 × 0 þo6
0 þz3 × 0 þo6

0 þz4 × 0 þo6
0 þz5 × 0 þo6

é
(2.14)

To find singolarities we look for those þq such that det(J) = 0.

• q5 = 0 , wrist singolarity

• q3 = 0 , elbow singolarities

• (536 · s23 − 421 · c2) = 0, shoulder singolarities 7

Singolarities given by the third element of the list above, the shoulder sin-
golarities, have been found; Fig. 2.11 shows all possible combinations of q2
and q3 such that (536 · s23 − 421 · c2) = 0.

6See Appendix C for numerical results of Geometric Jacobian
7sin(q2 + q3) = s23
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Figure 2.11: e.Do’s shoulder singolarities

2.8 Workspace
A qualitative representation of the robot workspace, to analyze its reacha-
bility limits, has been studied.
In the first place a method based on repetitive calculations has been tested.
The direct kinematic function was evaluated for a set of joint variable values
combinations. The trade off between the density of points and the computa-
tional cost made this method fail.
Then a more efficient way to represent the robot workspace has been tested.
Of crucial importance for this study is the knowledge of the joints rotational
limits. Mechanical structure of e.Do doesn’t allow its joints to spin contin-
uously. Depending on the specific joint the rotational limits can vary as in
table 2.5.

Starting from paper [10], a method to express the boundaries surfaces of
the workspace, designed for the specific robot, has been found.
Since q1, q4, q6 can spin at least 2π, we can simplify the problem and study,
instead of surfaces, the curves, in bidimensional space, that the end effector
trajectory generates when at its maximum and minimum reach. Once these
curves are found, applying a rotation of 2π we can get the expression of the
boundaries surfaces of the workspace.
Known þoEE(þq) from the direct kinematic study, function from Ù6 to Ù3,
substituting 5 of the 6 joint variables with constant values, we obtain the
function þoEE(q) , from Ù1 to Ù3, which describes a parametric curve in the
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n min [deg] max [deg]
q1 0 360
q2 -113 +113
q3 -113 113
q4 0 360
q5 -104 104
q6 0 360

Table 2.5: Limit joint rotations

space.

• q1 = q4 = q6 = const. = 0. We are interested in studying the problem
in xz plane. Those joint variable are neglectable.

• q2 , q3, q5 We keep one of them as a variable and fix the remaining two
to a singularity8 constant value. Multiple combinations are possible.
Among all combinations of singularity values for qi, i = 2, 3, 5 only 3
are selected. Due to the mechanical structure and rotational limits,
e.Do can hit himself, in fact some of the surfaces intersect the body of
the robot; on this basis some surfaces are discarded.

The limit curves choosen are the following:

γ1(x, y, z = 0) = þoEE(0, q2, q3elbow, 0, 0, 0), q2 ∈
î
q2min : q2max

ï
(2.15)

γ2(x, y, z = 0) = þoEE(0, q2max, q3, 0, 0, 0), q3 ∈
î
q3elbow : q3max

ï
(2.16)

γ3(x, y = 0, z) = þoEE(0, q2, q3max, 0, q5max, 0), q2 ∈
î
q2max : q2min

ï
(2.17)

Applying a rotation of a parameter v, as in equation (2.18), bounded
between 0 and 2π, we obtain the corresponding parametric surfaces expressed
by equation (2.19).

Rz(v) =

cos(v) −sin(v) 0
sin(v) cos(v) 0

0 0 1

 (2.18)

8Singularity concept is extended also to mechanical joint limit since they constitute
also a loss of mobility
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γi(x, z) = þfγ(s) fγ : Ù1 → Ù2

Si(x, y, z) = þfS(u, v) fS : Ù2 → Ù3

s → u

v ∈ [0 : 2π]

Si(x, y, z) = Rz(v) ·

γix
0

γiz


(2.19)

Once the parametric expression of the surfaces have been found they can
be plotted with any math tool not needing heavy computational resources.
In Fig. 2.12, Fig. 2.13 and Fig. 2.14 results for S1, S2, S3 are shown9. In
Fig. 2.15 a plot of all the surfaces and e.Do10 is presented.

Figure 2.12: S1

9For numerical results see Appendix C, Workspace section
10Peter Cork’s Robotic Toolbox graphical representation
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Figure 2.13: S2

Figure 2.14: S3
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Figure 2.15: e.Do and its boundaries
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Chapter 3

mesoSPIM digital microscope

MesoSPIM, Fig. 3.1, is a digital microscope. The software it runs is open
source, developed in python language and available in github, [11]. Since the
microscope was not physically available during the project development, we
procede highlighting the main features of interest for this project.

Figure 3.1: The digital microscope mesoSPIM, [12]
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3.1 mesoSPIM in project context
What is mostly relevant from a structural point of view is the space available
for delivering the samples, that has been measured from a CAD, provided by
the designer of the microscope. Another relevant aspect of the structure of
the microscope is the mechanism with which the sample is held. mesoSPIM
accepts samples by means of an electro magnet, positioned above the immer-
sion container. Samples have a magnet located on the top. When delivering
the sample the electro magnet activates and attracts the samples.
Since during the project development it has not been possible to visit the
labs in which mesoSPIM is located, the functioning of the microscope code
has been outlined reading the available git-hub.
In the first place it is important to highlight that the software for the control
of the microscope, called mesoSPIM_control, is meant to run in a Windows
environment; this played an important role in the design of the interface.
The most relevant feature about mesoSPIM’s algorithm is the presence of
a variable to store the status of the microscope and a method to start the
actions to perform an analysis. From the knowledge of this two aspects it is
possible to design a simple interface between mesoSPIM and e.Do.
To overcome the absence of the physical microscope, the property of support-
ing code spread across multiple machine of ROS is exploited. The microscope
is implemented as a node. The behavior of this node is to communicate the
microscope state to the interface and accept from it requests of analysis be-
gin, Fig. 3.2.

Figure 3.2: mesoSPIM node in its system

On the topic mesoSPIM_cmd requests of beginning analysis are accepted
by the microscope; this is achieved sending a string message containing the
"START" word. On the topic mesoSPIM_state instead mesoSPIM comuni-
cates its status. The possible state words, sent as string messages, are:
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• Init : Microscope not ready to perform analysis.

• Ready: Microscope ready to accept "START" command.

• Busy: Microscope currently performing analysis.

To replace the real execution of the task, upon reception of a STARTmessage,
the node simulates a BUSY state for a time Tanalysis, then becomes READY
again, Fig. 3.3.
During the first phase of application development, the microscope was meant

Figure 3.3: mesoSPIM simulated behaviour

to be simulated on the same machine of eDo. In a second phase the node ran
on another machine connected to the ROS network, setting manipulator’s
ROS process as the master. In the final design phase the node was then
moved outside the context of a ROS environment. With the use of specific
libraries the same behaviors were implemented in a system running Windows
O.S.
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Chapter 4

Project Development

4.1 Introduction
Objective of this project was to develop an interface to accomplish a pick and
place task. Part of the pick and place (task) involved the digital microscope
mesoSPIM. It was then needed that the interface coordinates e.Do’s action
with those of mesoSPIM.
The manipulator has to pick a sample from a sample holder, deliver it inside
the microscope, wait for it to be analyzed and then put the sample back in
its place, as shown in Fig. 4.1.

Figure 4.1: Multiple analysis tasks, each one can be decomposed in lower
level tasks

This series of action has to be repeated for a series of different samples, all
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located in the holder.

4.2 Task analysis
A top-down decomposition of the task is presented to better understand the
objective.

• High level: a series of analysis must be performed, each of them involves
a different sample among those located in the holder. Samples are
identified by a number, to each number corresponds a sample in a
specific holder position. Higher level task then comes in the form:
Perform analysis of sample 1, then sample 2 and so on.

• Medium level: In order to accomplish an analysis of a sample, a series
of actions are requested. These actions are:

◦ Pick the desired sample.
◦ Deliver the sample to mesoSPIM.
◦ Wait for mesoSPIM to perform the analysis.
◦ Take back the sample from the microscope.
◦ Put the sample back in its holder place.

Once completed the above series of actions, we repeat for the successive
requested sample.

• Low level: Each one of the medium level actions has been decomposed
in motions between known points.

First of all three zones of interest are identified as follows:

• Initial position zone: Location in which the robot is upon finishing the
calibration.

• Sample Holder zone: Location in which the sample holder is positioned.

• mesoSPIM zone : Location in which the microscope is positioned

We look for remarkable points in each of the zones to define the robot ele-
mentary moves.
In the initial position zone we identify:
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• Init point: In this point the robot is positioned as soon as the calibra-
tion procedure is completed.

• Home point: The point, away from singularity initial position, where
we first move the robot.

In the Sample Holder zone we identify:

• Holder point: Point positioned above the holder, this is the point from
which we start/end moves from/to the holder of samples.

• Sample points: These points are the target ones for picking and releas-
ing of the samples. The number of points is equal to the number of the
different samples.

• Sample-via points: Above each one of the sample points we choose a
via point. Via points are located on top of each sample. Their choice is
such that motion will happens on a straight vertical line when moving
between via points and sample points.

In the mesoSPIM zone we identify:

• mesoSPIM deliver point: Target point inside the microscope. Here we
need to position the sample for the analysis.

• mesoSPIM proximity point: This point, located in front of the mesoSPIM
point, is the one from where we start/end the movements to/from the
microscope delivery point. This point is also used as the position where
to wait for the sample to be analyzed. Its choice is made to constrain
the movements from and to the microscope on a straight line.

4.3 Constraints
When designing the path planning and the application itself some constraint
had to be respected.

4.3.1 Pose constraints
• Deliver: The body of the microscope during the pick and place from and

to it constrains the physical trajectory of the end effector to a straight
line. The deliver point is in fact contained inside a cube approximately
of 10 cm edge, where five of the six faces are occupied by the microscope
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components. Then when approaching the microscope the robot must
move in a straight line orthogonal to the microscope frontal plane, Fig.
4.2.

Figure 4.2: Trajectory for reaching the delivery point

• Sample pick: Samples are placed in a stair-shaped holder. In order to
pick samples the gripper moves on top of them and then slides from
above to grasp. The stairs allow to position the gripper in order not to
damage the nearby samples, Fig. 4.3.
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Figure 4.3: Trajectory for reaching the sample points

4.3.2 Software Constraints
• Move Type: Publishing on /bridge_move the messages mentioned be-

fore allows to move the robot from one point to another. When com-
municating a target point the user must decide first what format to use
for the coordinates, then the desired trajectory.
Trajectory generation is handled currently in two ways, with a linear
planning in the joint space, or else a linear planning in the cartesian
space.
During the development of the project both solutions were tested. Joint
space planning resulted to be robust and singularity-proof. It was cho-
sen for long distances, in which the end effector could pass by singular-
ity points, and when exact trajectory of the end effector is not needed
to be imposed.
Cartesian space planning was still under development. Among the two
data format possible, the joint one proved to be more efficient.
As a consequence, when moving the robot using the cartesian linear
planning, joint coordinates of target points must be computed first.
This problem is solved by the inverse kinematic function. Due the fact
that inverse kinematics is contained in the private library function its
solution will not be discussed.
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Cartesian space planning was used when it was needed to impose a
specific straight line in the space to avoid collisions with environment.

• Decoupling of algorithm: When designing the application two approaches
were taken into consideration: A first one in which an application de-
signed for the specific task would have been produced. A second one
aimed at making easier a possible integration with future upgrades of
e.Do system.
Considering the evolutionary state of e.Do project solution two was
adopted. Project application proved to be compatible through three
consecutive releases, 2.3 2.4 2.5. This choice lead to design a decoupled
system, preferring to separate the implementation of the methods and
functionalities between them.
The use of a multi-node structure in the computational graph was
adopted and will be illustrated in Section 4.6.

4.4 Path Planning design

4.4.1 Move Type Choice
When deciding the movement types a mixed solution, between type joint and
type cartesian moves, has been adopted.
This choice is justified by the need of having a robust application without
fixing the microscope and sample holder position with respect to the robot.
Due to the evolutionary situation in which this project has been developed,
the position of the microscope and holder in the space were not known, addi-
tionally it was assumed that they could vary in time. Even though cartesian
planning is preferable, since the generated trajectory has a predictable shape,
it can’t be used for long distance movements that may involve singularity
close passage.
When addressing all the remarkable points in the space we grouped them in
zones of interest. Point belonging to the same zone are reasonably close and
the trajectory between them occurs along a straight line, thus it’s easy to
calculate. For this category of move commands is then chosen the cartesian
planning type. Defined geometric constraints, that will ensure the correct
execution, are less likely going to change in future developments since they
depend on the structure of microscope and holder.
When performing instead a move between different zones we can expect to
explore a wider part of the workspace, as showed in Fig. 4.4.
For this reason joint type planning has been chosen to move across different
zones.
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Figure 4.4: Identified zones in the workspace to group target points

Zone Target Point
Initial Init
Initial Home

Sample Holder Holder
Sample Holder Sample
Sample Holder Sample-Via
mesoSPIM Deliver
mesoSPIM Proximity

Table 4.1: Target points and their belonging zone

Samples store delicate materials and they cant’t be flipped. When moving
with joint linear planning, where the cartesian trajectory of the end effector
is hardly predictable, samples risk to be damaged.
Start and end point of these moves are taken with closest possible orientation
for pitch and roll angles. Small variation of the end effector roll/pitch orien-
tation during moves proved the joint algorithm planning safe for the samples.

4.4.2 Path definition
The path for the considered task is then defined as a series of movements
between known points, Table 4.1, with different types of moves. Table 4.2
reports the sequence moves between the target points in a typical analysis
by the microscope. The final path planning results in a series of consecutive
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Starting Point Ending Point Move type
Init Home Joint
Home Holder Joint
Holder Sample-via[i] Cartesian

Sample-via[i] Sample[i] Cartesian
Sample[i] Sample-via[i] Cartesian

Sample-via[i] Holder Cartesian
Holder Proximity Joint

Proximity Deliver Cartesian
Deliver Proximity Cartesian

Proximity Holder Joint
Holder Sample-via[i] Cartesian

Sample-via[i] Sample[i] Cartesian
Sample[i] Sample-via[i] Cartesian

Sample-via[i] Holder Cartesian

Table 4.2: Moves between target points for a single analysis

moves, some of them planned in joint space, some planned in cartesian space.
An example is illustrated in Fig. 4.5.

39



Figure 4.5: Multiple analysis tasks, each one can be decomposed in lower
level tasks

4.5 Community resources
During the development of this project ROS packages by the community
were integrated in the application.

4.5.1 edo_core_pkg and _msg
The algorithms provided by Comau, mentioned in Section 2.3, that has been
used for the control of the system, come as a ROS package. Alongside
edo_core_pkg, the package edo_core_msgs has been used. This package
serves as a container for all the message definitions of edo_core_pkg.

4.5.2 SMACH
Executive SMACH is a metapackage made available by the community1.
The tools provided by this metapackage are those needed when designing a
Machine State compliant with ROS.

1http://wiki.ros.org/smach
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Using ROS_SMACH a finite-state machine was designed, thanks to the func-
tionalities provided, states could integrate ROS methods like publish and
subscribe.

4.5.3 ROSLIBPY
Microscope operating system is not compatible with ROS. Messages between
e.Do and the microscope had to be exchanged across a mixed o.s. infrastruc-
ture. For this need ROSLIBPY[13] provided already implemented solutions.
Basic functionalities typical of a ROS system, as subscribe publish and server
parameter communication, are supported.

4.5.4 ROS Bridge
ROS Bridge is a ROS metapackage providing "a JSON API to ROS func-
tionality for non-ROS programs"[14]. Many front-end for the comunication
are available, inside the already existing e.Do system a node for a Websocket
is present.
The Web socket allows comunication with the Android App. To facilitate
system design to comunicate with mesoSPIM, a non-ROS system, the same
Websocket is used. Roslibpy allows to comunicate from the microscope side
connecting to the Websocket basic ROS methods such as publish and sub-
scribe. In Fig. 4.6 the network configuration between the two system is
sketched,

Figure 4.6: Network connection between mesoSPIM and e.Do
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4.6 Package development
To implement all the features discussed above a ROS package was created.
The final structure comes in the form of an algorithm to control the two differ-
ent systems. At this purpose a finite state machine was designed, collecting
the state of each of the two subsystems, a series of actions are requested.
Those actions come in the form of move requests for the manipulator and
sample analysis request for the microscope.
When writing a ROS code one must decide whether to use Python language
or Cpp.
Python was preferred since dynamically interpreted[15], this feature plays a
crucial aspect during the development phase of a project of this nature.
The use of Python allowed to save time when testing different solutions of
the code. Another Python feature that led to choose it as main language for
this asplication is its reduced complexity in writing structures suitable for
high level system implementation.
The interface had to function as a high level layer controlling two subsystems,
each one already provided with its control software.
The outline of the whole system is shown in Fig. 4.7.

Figure 4.7: Systems interaction scheme

4.6.1 Package resources
In the package directory the following resources are contained:
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• src/ : Folder containing all the .py files that are used by the system.

• param/ : Folder containing the param.yaml file in which static param-
eters for the application are defined. Values stored in parameters are
constant variables needed across the application.

• launch/ : Folder containing the launch files.
Those types of files are needed when a molteplicity of nodes and ser-
vices are requested to run by the same application.
Additionally the launch file loads the parameters defined values at
startup, making them available to the nodes. Launch file comes with
two versions. A first one to launch the program with joints coordinates
as default, a second one to launch cartesian coordinates as default. Sec-
ond option is yet not fully supported, edo_core_pkg proved not to be
enough robust when dealing with cartesian coordinate algorithm.

• readme.txt : text file containing instruction for installing and config-
uring the package.

• package.xml : Manifest of package.

4.6.2 State Machine
To coordinate the actions of the two subsystems a state machine is imple-
mented,whose states are shown in Fig. 4.8. Evolution of the system is
accomplished upon completion of different tasks. The states defined are:

• Init:
This is the initial state when the robot is powered on. This state mon-
itor the topic /system_state; when receiving a READY message from
there the system evolves to the next status.

• Build queue:
In this state the queue of samples to analyse is loaded from the pa-
rameter server. Sample’s ID are saved as an array of integers. Upon
completion of analysis the queue will be emptied.

• Publish:
After the queue is loaded its first element is popped out. From this
information we know what sample to analyse. If no elements are in the
queue, the task is completed and the application terminates. Once the
sample that has to be analysed is known, the first move message is sent.
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Publish state contains the sequence of all the move messages to send
in order to complete one analysis. To take record of the current state
of the analysis a counter for the movements is implemented. When the
message is published the state evolves to Wait move.

• Wait move:
This state serves as a synchronizing state. Wait moves implement no
specific actions but to wait for e.Do to start moving after receiving the
move message.

• Wait ready:
As wait move, wait ready contains no specific actions. In this state the
system waits for both e.Do and mesoSPIM to be ready. We want the
task execution to procede only if e.Do is ready, meaning it is not moving
or in error state, and mesoSPIM is ready to accept a new sample to
analyse.

Figure 4.8: Interface State Machine to coordinate subsystem actions

4.6.3 State Interpreter
To deal with the interpretation of the manipulator microscope states and
to extrapolate a higher-level information, the state interpreter has been de-
signed.
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e.Do original state e.Do reduced state
COMMAND_STATE not implemented

INIT INIT
NOT_CALIBRATE INIT

CALIBRATE READY
MOVE MOVE
JOG MOVE

MACHINE_ERROR ERROR
BRAKED ERROR

Table 4.3: State Machine enumerate states

This node subscribes to machine_state topic, published by e.Do’s state ma-
chine, and to meso_state, topic in which the microscope publishes its state.
Information sent across machine_state resulted to be redundant for the high
level action planning.
The state interpreter changes the method with which subsystems’ states are
communicated to the interface state machine; from being periodically pub-
lished to be published only in case of their change. A mapping between e.Do
S.M.2 states to a new and less numerous set of states is implemented to re-
duce algorithm complexity, Table 4.3.

From the knowledge of the subsystem states it is possible to define a new
conceptual state that is the one of the system in its whole. A mapping to
obtain this information is presented in Fig. 4.9.

Figure 4.9: Interface State Machine to coordinate subsystem actions

In future edo_core_pkg releases, having the State Interpreter to decouple
the interface state with that one of their subsystems, will facilitate to adapt
to changes of the code.

2S.M. : State Machine
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4.6.4 Command Interpreter
With the same principle used in the state interpreter we adopt a specific
node, the command interpreter, to send and handle assembly of messages.
The Interface state machine communicates to the command interpreter a
message containing the start point and the end point of the move to accom-
plish.
Two Different command interpreters were realized in order to test separately
cartesian coordinates format and joint coordinate format.

4.7 Testing and results evaluation
During the last steps of the project development, a simulation of the pro-
cedure to set up the interface and the task itself has been realized. The
execution was videotaped for demonstrational purposes.
Reproducing a scenario more likely as possible to the real one helped under-
standing what weaknesses the interface had and what could be improved.

4.7.1 Scene Objects
For what coencerns the environment with which e.Do has to interact during
the pick and place, reproduction of the samples, the microscope and the
sample holder have been built.

• Sample : Four identical reproductions of a sample have been 3-d printed.
A real sample is a box of dimensions 46x26x18 mm. Printed samples
have the same dimensions as the real ones. These are the objects whom
will be picked by e.Do.

• Sample Holder: The sample holder is the place in which samples are
stored. From here e.Do takes samples and put them back. The shape
choosen for the design is such that e.Do can easily grab samples without
damaging those nearby. The number of samples used for the simulation
is 4, then the designed holder can hold the same number. This design
is easily expandable in the number of samples that can be held adding
more stairs or more cells in line.

• mesoSPIM: When trying to reproduce the microscope we look for hav-
ing the same space for delivering the sample that mesoSPIM offers.
Using the CAD project of the microscope dimension were taken and
then a similar shape has been 3d printed. A box of 120x75x78 mm
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Figure 4.10: Sample 3d model

Figure 4.11: Sample holder unloaded

with two zones to unload the sample, one on the floor, and one on the
ceiling, meant to be used with a magnet is shown in Fig. 4.12.

4.7.2 Set Up of Interface
To set up the interface the user must teach the target points discussed in the
previous section.
Teaching of targets point is done using the JOG function on the android
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Figure 4.12: Sample holder loaded with two samples

Figure 4.13: mesoSPIM reproduction

application. The end effector is moved on each one of the following target
points : samples, deliver, and home points.
Once these points are reached we register the corresponding joint coordi-
nates. From the knowledge of these taught points the equivalent cartesian
coordinates for the holder, sample via, and proximity target points, that re-

3Inverse kinematic was not accessible, then if a point is known in cartesian coordinates
we must use protected inverse kinematic algorithm contained in the android application
to convert to joints coordinates
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Figure 4.14: mesoSPIM reproduction loaded with a sample

spect the previous discussed contraints, are found with a Matlab script, in
Fig. 4.15 the previous discussed poses are showed.
To finish with this procedure we must now move the robot to the previous
found cartesian positions and read the corresponding joint values3.
Once this has been done we can copy the joints coordinates of all the target
points in the interface parameters
This procedure highlighted a major weakness of the Interface: Due to the fact
that e.Do must be calibrated every time is switched on, taught points must
be taken again every time we power on the robot. Calibration performed a
previous time may differ slightly from the current, then teaching could be
imprecise.
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Figure 4.15: From Left to Right and Top to Bottom : Home, Sample-Via,
Sample, Holder, mesoSPIM proximity and deliver poses
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4.7.3 Results evaluation
Using edo_recovery node’s methods the feedback signals coming from all of
the six joints were collected.

Figure 4.16: Axis target and measured values during the task simulated

In Fig. 4.16 target and measured values are showed for each one of the
six joint variables. To evaluate the quality of the trajectory execution we
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define the error as the difference between the joint’s target positions signals
J targi (t) and the joint’s measured positions signals Jmeasi (t):

ei(t) = J targi (t) − Jmeasi (t) (4.1)

Once these errors have been found we can calculate the Root Mean Square
Level for the error signals (RMSEJ

i ) as follows:

RMSEJ
i =

öõõô 1
N

NØ
n=1

ei(n)2 (4.2)

where N is the length of the error signals.
In Table 4.4 the results obtained are reported.
If we observe the target and measured signals we notice that the measured

Joint RMSE [deg]
1 0.8931
2 0.6626
3 1.0108
4 0.6880
5 0.5341
6 1.1126

Table 4.4: RMSE for joint variables

are delayed with respect to the targets, Fig. 4.17, this delay is taken in
account in the RMSE. If we repeat the computation of the RMSE but with a
smaller interval where both the signals are constant, Fig. 4.18, we obtain new
measures for the RMSE without the delay error; we will call this ∗

RMSEJ
i ,

in Table 4.5 its values are reported. Values obtained for ∗
RMSEJ

i are really
small for a robot of this type, precision of e.Do is actually worst due to
mechanical backlash happening in the joints that are not seen by motors
encoders.

Starting from the target and measured values of the joint variables, using
Comau kinematics function, the target and measured values have been found
for the End Effector pose. In Fig. 4.19 the End Effector trajectory, measured
and target, during the task, is showed. If we repeat the computation of the
∗RMSE for the pose coordinates of the end-effector we obtain the values
showed in Table 4.6.
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Joint *RMSE [deg]
1 0.0109
2 0.0064
3 0.0075
4 0.0057
5 0.0016
6 0.0127

Table 4.5: RMSE without delay

Figure 4.17: Target and Measured signal for Joint 1

Figure 4.18: Target and Measured signal for Joint 1
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Figure 4.19: End Effector position in cartesian space, measured and target
values

Pose Coordinate *RMSE [deg]
x 0.0932 mm
y 0.0394 mm
z 0.0229 mm

angle x 0.0095 deg
angle y 0.0039 deg
angle z 0.0096 deg

Table 4.6: RMSE for pose coordinates
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To prove consistency of the trajectory generated with the pose contraints,
defined in Chapter 4.3.1, images from the demo are showed in Fig. 4.20.

Figure 4.20: Pose Constraints

Of importance are also the x and y angles orientations during the path;
we want them to change as little as possible in order not to damage the
materials inside the samples. In Fig. 4.21 and Fig. 4.22 variations about x
and y base reference frame axis angles are reported. As it can be seen, except
for the initial part, in which the robots moves from the initial position, where
it is extended, to the home position, the variation of the orientations angles
around x and y are limited.

Figure 4.21: End Effector x-
orientation measured and tar-
get values

Figure 4.22: End Effector y-
orientation measured and tar-
get values
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Chapter 5

Conclusions and future works

During this work of thesis we aimed at developing an interface capable of let-
ting e.Do coordinate its actions with a high precision instrumentation such
as mesoSPIM digital microscope.
The interface had to work on top of the lower level control algorithms de-
veloped by Comau, as it concerns e.Do, and by the mesoSPIM Initiative, for
what concerns mesoSPIM.
Since the microscope was not available to study we investigated deeply the
e.Do system and focus the project development on this robot.
e.Do has been studied in it’s hardware and software architecture, typical
robotics analysis, such as Direct Kinematics, Jacobian and Workspace stud-
ies, alongside with a detailed analysis of the software running e.Do have been
produced.
Features of mesoSPIM microscope were abstracted from available resources,
such as code repositories and CAD projects.
Exploiting ROS environment, in which hardware simulation and code spread-
ing are easily implemented, a package to fulfill the task of performing au-
tonomous analysis on different medical samples has been developed.
Due to the context in which the project has been carried out, that saw mostly
e.Do as a protagonist, the interface from the side of the microscope has yet
to be implemented and the resulting application developed is characterized
by a general interaction behavior that in the future can be shaped both on
mesoSPIM but also on any digital instrumentation that share common fea-
tures with the microscope.
Future development for this project involve two different evolutions.
First we discuss future of e.Do itself. The robot proved to be capable of
precise enough positioning suitable for the interaction with such delicate in-
strumentation. Control algorithms that drives e.Do guarantee good reference
tracking and accuracy in positioning within millimeters. In future releases
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collision detection will be implemented to help the robot operate in delicate
environments.
Major weaknesses of e.Do resulted to be two: impossibility for the user to
create personalized trajectories, and calibration procedure, that in case of
applications that require teaching of target points, makes the set up proce-
dure obsolete every time we switch off the robot.
To overcome these problems the following solutions are proposed: first to
generate a personalized trajectory we could bypass edo_core_pkg and write
joint reference signal directly on the serial communication. Private Inverse
Kinematics and Trajectory planning functions by Comau could be replaced
by open source algorithms available from the community. Then to overcome
calibration problems we could substitute the teaching procedure with a Com-
puter Vision system capable of deriving target points position from image
processing.
As it concerns the future interface what has to be done is to hook it up to the
mesoSPIM system. Test in medical labs in which mesoSPIM is present could
be developed in the future to implement the interaction from the microscope
side.
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Chapter 6

Appendix A: Robotic
Operating System, ROS

6.1 Introduction
ROS is an open-source meta-operating system designed to be used for robotics
applications. It provides functionalities typical of an operating system such
as hardware abstraction and low level device control. Moreover it provides
tools and libraries to build, write and run code spread across multiple ma-
chines [16].
The primary goal of ROS is to allow code reuse among the community. ROS
is a distributed framework of processes that enables executables to be in-
dividually designed and loosely coupled at runtime. These processes can
be grouped into Packages and Stacks, which can be easily shared and dis-
tributed.
The core of ROS is licensed under the standard three-clause BSD license.
This is a very permissive open license that allows for reuse in commercial
and closed source products.
"Over the past several years ROS has grown to include a large community
of users worldwide. Historically, the majority of the users were in research
labs, but increasingly is seen adopted in the commercial sector, particularly
in industrial and service robotics" [17].
These features, and many others, make ROS the perfect tool for the study
and design of complex robotic systems. Dealing with complex robotic sys-
tems means to deal with many different technological aspects. The support
from the community allows the user to integrate resources from others in his
project, relieving him from the development of the system in its whole.
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6.2 Three levels of concepts
ROS structure has been designed and divided in three sections of concepts,
[18]:

• File System

• Computation Graph

• Community

6.2.1 File System
The file system level concepts describe the resource that are typically found
on a ROS system storage, [18].

• Package: A package is the main unit to organize software in ROS.
Generally speaking a package can contain runtime processes (nodes),
libraries, configuration files or any other resource needed to be orga-
nized together.

• Metapackage: A metapackage is a specialized package meant to repre-
sent a group of related packages.

• Package Manifest: A manifest defines metadata about a package such
as: author name’s, license of the package, dependencies and so on.

• Repository: A repository is a collection of packages that share the same
version control (VCS) .

• Message Type: It describes a type of message, defining its data struc-
ture.

• Service Type: It describes a type of service, defining the request and
response data structure of the service.

6.2.2 Computation Graph
The computation graph is the p2p network configuration of ROS processes,
[19].
Communication occurs through direct links, called topics, between different
terminals, called nodes.
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• Node: A node, generally speaking, is a process performing computa-
tion. In a complex robotic system we can address different tasks to
different nodes, in such a way we can decompose the code of the whole
in smaller modular pieces, [19].

• Master: When setting up a ROS environment, occasionally spread
across multiple machines, the ROS Master provides name registration
and lookup for the rest of the computational Graph elements, this al-
lows nodes to locate each other in the network and exchange messages.
The Master API network functionality is implemented through XML-
RCP. XML-RCP is a remote procedure call (RCP) protocol which uses
XML to encode its calls and HTTP as a transport mechanism. In
XML-RPC a client performs an RCP by sending an HTTP request to
a server that implements XML-RCP and receives the HTTP response.
The API provides methods for register and unregister services, sub-
scription and publish will. Clients use libraries like rospy and roscpp
to access methods of the Master API.
ROS Master provides a service to allow nodes to be aware of the pres-
ence of other nodes with whom to communicate. When a node has data
to publish, it communicates the master the will to send a message on
a specific topic, Fig. 6.1. When a node wants to subscribe to a topic
it communicates to the Master its interest, Fig. 6.2. By matching
this informations the master notifies publisher and subscriber about
reciprocal existence, Fig. 6.3, [20].

Figure 6.1: Camera advertise Master the will to publish on topic Images,
[20]
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Figure 6.2: Image viewer advertise Master the will to subscribe on topic
Images, [20]

Figure 6.3: Camera and Image can now start exchanging messages on Images
topic, [20]

• Topic: Topics are named unidirectional buses over which nodes ex-
change data. Subscribe and Publish methods have an anonymous se-
mantic. When publishing on a topic it’s not needed to specify whom is
addressed the message. Doing so the production of information is de-
coupled from its consumption and the resultant code is loosely coupled.
Message transport is implemented through TCPROS and UDPROS a
TCP/UDP-based transport that uses pre-existing TCP/UDP connec-
tions. When a node is willing to use UDPROS if the interested node
doesn’t support it, the connection can fallback to TCPROS, this hap-
pens dynamically. Topics are strongly tied by the message type they
can transport. When defining a topic one must specify the message
type it will carry. Subscribers must perform a consistency check with
the topic type before connecting, instead the master does not enforce
a type consistency among the publishers, [21].
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6.2.3 Community

As mentioned before, code reuse and knowledge sharing among users
play a fundamental role in developing a system in ROS. The main con-
cepts related to the community level are the following [18]:

◦ Distributions: ROS distributions are collection of versioned stack
available for install. In this work of thesis the Kinetic Kame dis-
tribution has been used. When implementing a new package from
the community in a project the user must ensure compatibility
between the distribution in use and the package.

◦ Repositories: ROS repositories are collection of code available to
download coming from the same institution.

◦ ROS Wiki: The ROS community Wiki is the main forum for docu-
menting information about ROS. Upon registration every user can
contribute to the wiki writing new articles, updating or correcting
old ones.

◦ Mailing List: It is the main channel to be updated about new
software releases about ROS.

◦ Ros Answer: A Q&A forum to support users from the community.
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Chapter 7

Appendix B: Robotics

Among the various types of robot that have been designed we are interested
in investigating the manipulator category.
Manipulator robots are, generally speaking, a chain of rigid bodies, called
links. The connections between links are called joints, they can be revolute
or prismatic, whether the constraint is on an axis of revolution or a direction
of linear motion.
In manipulators characterized by an open-shaped chain one end is con-
strained to a base and the other one serves as tool (or end-effector).
The motion of the tool in space is obtained composing those of the joints.
The manipulator has number of DOF ( degree of freedom), depending on the
number of joints and their disposition, which define the robot posture.

7.1 Rotation Matrix
If we consider two reference frames, like those in Fig. 7.1, and a point P in
space we can write that:

p =

px
py
pz

 (7.1)

pÍ =

pÍ
x

pÍ
y

pÍ
z

 (7.2)

Since we are representing the same point we can equal (7.1) and (7.2) :

p = pÍ
x · xÍ + pÍ

y · yÍ + pÍ
z · zÍ =

è
xÍ yÍ zÍ

é
pÍ (7.3)
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Figure 7.1: Point P expressed in two different reference frames, [7]

Where
è
xÍ yÍ zÍ

é
is a matrix whose columns are the versors of O-xÍyÍzÍ

represented in reference frame O-xyz, we call this matrix the rotation matrix
between the two reference frames, and it is found as follows:

R =

xÍ
x yÍ

x zÍ
x

xÍ
y yÍ

y zÍ
y

xÍ
z yÍ

z zÍ
z

 =

xÍTx yÍTx zÍTx
xÍTy yÍTy zÍTy
xÍTz yÍTz zÍTz

 (7.4)

We now can write:
p = R · pÍ (7.5)

We will illustrate two major properties of matrix R:

• Inverse-Transpose: Since columns of R represents orthonormal vectors
we can write:

R · RT = I (7.6)

Pre-multiplying by R−1 we get:

RT = R−1 (7.7)

• Composition: Suppose we have three reference frames O-xyz, O-xÍyÍzÍ,
O-xÍÍyÍÍzÍÍ and a point in space P. We know the following rotation matrix
R0

1 and R1
2 , which represent the transformation from reference frames
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O-xyz to O-xÍyÍzÍ and from O-xÍyÍzÍ to O-xÍyÍÍzÍÍ respectively.
We know that:

p = R0
1 · pÍ (7.8)

And that:
pÍ = R1

2 · pÍÍ (7.9)

Substituting (7.9) in (7.8) we obtain:

p = R0
1 · pÍ = R0

1 · R1
2 · pÍÍ (7.10)

which is the property of composition of rotations matrix.
We will call further on:

R0
2 = R0

1 · R1
2 (7.11)

7.2 Homogeneous Transformation

Figure 7.2: Point P expressed in two different coordinates frames,[7]

Consider the Fig. 7.2, P is a point in space and R0 and R1 two reference
frame. p1 is the vector expressing the position of P with respect to R1 and ,
similarly, p0 is the vector expressing the position of P with respect to R0. Let
o0

1 be the vector who express the position of O1, origin of R1, with respect
to R0.
We can say that :

p0 = o0
1 + R0

1 · p1 (7.12)

To achieve a compact representation of this expression we must introduce the
homogeneous representation of a vector, we simply add a fourth row equal

65



to one and obtain:
p̃ =

C
p
1

D
(7.13)

Then the transformation expressed in (7.12), composed of a rotation and a
translation, can be written in a single matrix named homogeneous transfor-
mation:

T 0
1 =

C
R0

1 o0
1

0T 1

D
(7.14)

Using (7.14) in (7.12) we get:

p̃0 = T 0
1 · p1

p̃1 = T 1
0 · p0

T 1
0 = (T 0

1 )−1 =
C
R1

0 −R1
0o0

1
0T 1

D
(7.15)

7.3 Joints
In robotics "a joint is the mechanical connection between two consecutive
links" [7].
Joints can be active, if they are actuated by a motor, or else passive. Among
the various types of joints the most common are revolute joints and prismatic
joints, Fig. 7.3. In revolute joints motion happens on an axis of revolution,
the joint variable associated is the angle around that axis.
In prismatic joints instead motion happens as a linear sliding motion, the
joint variable associated is then the displacement along that direction.

7.4 Direct Kinematics
Dealing with direct kinematics means to compute the pose of the end-effector
as a function of the joint variables, whose values correspond to the positions
of each joint. As shown in Fig. 7.4 the pose of the end-effector with respect
to the reference frame Ob-xbybzb is defined by the position and orientation of
the end-effector reference frame. The direct kinematic function is then the
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Figure 7.3: Revolute (left) and prismatic (right) joint type, [7]

Figure 7.4: Description of the end-effector reference frame position,[7]

homogeneous transformation between the tool frame and the base frame:

T b
e =

C
nb

e (q) sb
e (q) ab

e (q) pb
e (q)

0 0 0 1

D
(7.16)

In an open chain manipulator with n joints and n + 1 link we can fix one
reference frame to each one of the links. Being the links connected by joints,
the relation between two consecutive links is given by a homogenous trans-
formation with the joint position as variable. Composing for each joint we
obtain the direct kinematic function, Fig. 7.5.

T 0
n(q) = T 0

1 (q1) · T 1
2 (q2)...T n−1

n (qn) (7.17)
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Figure 7.5: Composition of transformation between links in open chain
manipulator,[7]

7.5 Denevit Hartenberg convention
Denavit Hartenberg (DH) convention provides a standard way for choosing
how to attach the reference frame on each link.
Using this convention allows to easily represent the mechanical structure of
the robot and, as a consequence, find its direct kinematics.

Figure 7.6: DH parameters in between two consecutive links,[7]

In Fig. 7.6 the axis i refers to the axis of the joint connection between
link i − 1 and link i. We use the DH convention to define the reference frame
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of the link i, the rules are the following, [7]:

• Put zi along the axis of joint i + 1.

• Locate Oi at the intersection of the axis zi with the common normal to
axes zi−1 and zi, and OÍ

i at the intersection with the common normal
with axis zi−1.

• Choose xi on the common normal to axes zi−1 and zi, with direction
from joint i to joint i + 1.

• Pick yi adopting the rule of the right hand, in order to obtain an or-
thogonal base.

The position and orientation between two consecutive frames is then specified
by four parameter:

• ai: distance between Oi and OÍ
i.

• di: coordinate of OÍ
i along zi−1.

• αi: angle between axes zi and zi−1 about axis xi.

• θi: angle between axis xi and xi−1 about axis zi.

What can be said about these four parameter is that if the joint is revolute,
then the joint variable is θi, else, if the joint is prismatic, the joint variable
is di. Also αi and ai are always constant no matter the type of joint.
In both type of joints we then have one parameter which is the joint variable
and the other three that are constant , determined by the mechanical struc-
ture of the robot.
If the convention is respected and the four parameters are known for each of
the manipulator joints, the procedure to find the coordinate transformation
between each of the consecutive links becomes systematic.
In fact we know that chosen a frame aligned with Frame i−1 to get to frame
i we must perform the following transofrmations:

• Translate the frame aligned with frame i − 1 by di along the axis zi
and rotate it by θi about axis zi−1, in such a way we align the current
frame with the frame iÍ. We obtain the following transformation:

T i−1
iÍ =


cθi

−sθi
0 0

sθi
cθi

0 0
0 0 1 di
0 0 0 1

 (7.18)
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• Translate the frame aligned with iÍ by ai along xÍ
i and rotate it by αi

about axis xi, in such a way we have aligned the current frame with
frame i. We obtain the following transformation :

T iÍ

i =


1 0 0 ai
0 cαi

sαi
0

0 sαi
cαi

0
0 0 0 1

 (7.19)

• Multiplicating these two transformations we compose them and obtain
a single transformation with the following expression:

T i−1
i = T i−1

iÍ · T iÍ

i =


cθi

−sθi
cαi

sθi
sαi

aicθi

sθi
cθi

cαi
−cθi

sαi
aisθi

0 sαi
cαi

di
0 0 0 1

 (7.20)

Once the transformation matrix is obtained for each one of the joints, it is
possible to compose them and obtain the expression of the direct kinematic
function.

7.6 Workspace
The set of point in space that the end-effector can reach is called workspace.
The workspace is a closed, connected and finite volume limited by surfaces
[7].
The boundaries surfaces of the workspace depend on the physical structure
of the robot, the links length, and the mechanical limits of joints.
For a manipulator with n joints the workspace is the geometric locus of all the
points obtained by the sole part of position of the direct kinematics varying
the joint variables in their limits.

pe = pe(q) qim ≤ qi ≤ qiM (7.21)

7.7 Differential Kinematics
Differential kinematics studies the relationships between the end-effector ve-
locity and the joints velocities. These connections are expressed by the Ja-
cobian matrix.
When describing velocity of the end-effector we must distinguish between
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angular velocity and linear velocity.
The concept of angular velocity of a rigid body comes with two different
approaches. A first one in which angular velocity is a vector whose compo-
nents are the elements of vector ω, physical angular velocity vector. A second
approach consists in considering the rate of change of the angular variables
chosen for representing the end effector orientation. When it comes to de-
scribe linear speed of the end-effector instead the representation is unique
and obtained by the rate of change of the x, y and z coordinates of the tool
reference frame origin.
Accordingly to the type of velocity, among those explained above, that we
want to relate with joints velocities we obtain two different types of Jacobian
matrix. A first one is called Analytical Jacobian and relates linear velocities
and angular velocities, accordingly to the second approach mentioned before,
with joints velocities. A second one, the Geometric Jacobian, that relates
linear and angular velocities, expressed by the vector ω, to joints velocities.

7.7.1 Geometric Jacobian: Angular Speed
ωe = Jo(q) · q̇ (7.22)

Where ωe is the angular velocity vector of the end effector reference frame.
Geometric jacobian, depending on the type of joint, whether is revolute or
prismatic, assume the following expression:

• Prismatic:

0
0
0


• Revolute: zi−1 expressed in base reference frame

7.7.2 Geometric Jacobian: Linear Speed

ṗe =
nØ
i=1

∂pe

∂qi
q̇i =

nØ
i=1

JPiq̇i (7.23)

Where ṗe is the linear velocity of the end effector reference frame.

• Prismatic: JPi = zi−1

• Revolute: JPi = zi−1 × (pe − pi−1)
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7.8 Singolarity
Generally the Jacobian is function of the joint variables. Those configura-
tions that makes the Jacobian rank deficient are called singular configuration,
qsing. Those configuration are then such that:

det(J(qsing)) = 0 (7.24)

When in a singular configuration the following phenomena occur,[7]:

• There is a loss of mobility of the manipulator, it’s not possible to impose
any arbitrary trajectory to the end effector.

• Small velocities of the end effector can result in large velocities at the
joints.

• The solutions of the inverse kinematic problem can be infinite

For an anthropomorphic arm with spherical wrist it is possible to study sep-
arately the arm singularities and the wrist singularities under the hypothesis
that the center of the tool frame coincides with the intersection point of the
wrist axes. This procedure is called singolarity decoupling, [7].

7.8.1 Wrist Singolarity
Wrist singularity happens when q5 = 0, Fig. 7.7. In this configuration the

Figure 7.7: Wrist singolarity for the spherical wrist, [7]

tool frame can’t rotate about the axis perpendicular both to z5 and z4.
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Figure 7.8: Elbow singolarity for the antropomorphic arm, [7]

7.8.2 Arm Singolarities
For an antropomorphic robot, arm singularities are of two types. A first
one happens when q3 = 0, it is called elbow singularity, Fig. 7.8. In this
configuration the arm is outstretch and can’t extend anymore. A second
singularity, named shoulder singularity, Fig. 7.9 happens when the wrist
center is along the z0 axis. In this configuration the tool frame can’t translate
along the z3 direction. This specific situation does not happen for a specific
value of a joint, like the previous ones, but for a set of combination of q2 and
q3 depending on the link length.

Figure 7.9: Shoulder singolarity for the antropomorphic arm, [7]
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Chapter 8

Appendix C: Numerical Results

8.1 Direct Kinematic Function

8.1.1 Expression of T 0
3

T 0
3 (:, 1)=


cos (q1) cos (q2) cos (q3) − cos (q1) sin (q2) sin (q3)
cos (q2) cos (q3) sin (q1) − sin (q1) sin (q2) sin (q3)

− cos (q2) sin (q3) − cos (q3) sin (q2)
0



T 0
3 (:, 2)=


sin (q1)

− cos (q1)
0
0



T 0
3 (:, 3)=


− cos (q1) cos (q2) sin (q3) − cos (q1) cos (q3) sin (q2)
− cos (q2) sin (q1) sin (q3) − cos (q3) sin (q1) sin (q2)

sin (q2) sin (q3) − cos (q2) cos (q3)
0



T 0
3 (:, 4)=


421 cos(q1) cos(q2)

2000
421 cos(q2) sin(q1)

2000
337
1000 − 421 sin(q2)

2000
1
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8.1.2 Expression of T 3
6

T 3
6 (:, 1)=


cos (q4) cos (q5) cos (q6) − sin (q4) sin (q6)
cos (q4) sin (q6) + cos (q5) cos (q6) sin (q4)

cos (q6) sin (q5)
0



T 3
6 (:, 2)=


− cos (q6) sin (q4) − cos (q4) cos (q5) sin (q6)
cos (q4) cos (q6) − cos (q5) sin (q4) sin (q6)

− sin (q5) sin (q6)
0



T 3
6 (:, 3)=


− cos (q4) sin (q5)
− sin (q4) sin (q5)

cos (q5)
0



T 3
6 (:, 4)=


−349 cos(q4) sin(q5)

2000
−349 sin(q4) sin(q5)

2000
349 cos(q5)

2000 + 67
250

1
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8.1.3 Expression of T 0
6

n0=



sin(q6) (cos(q4) sin(q1) − sin(q4) (cos(q1) cos(q2) cos(q3) − cos(q1) sin(q2) sin(q3)))+
+ cos(q6) (cos(q5) (sin(q1) sin(q4) + cos(q4) (cos(q1) cos(q2) cos(q3) − cos(q1) sin(q2) sin(q3)))−

− sin(q5) (cos(q1) cos(q2) sin(q3) + cos(q1) cos(q3) sin(q2)))

− sin(q6) (cos(q1) cos(q4) − sin(q4) (sin(q1) sin(q2) sin(q3) − cos(q2) cos(q3) sin(q1)))−
− cos(q6) (cos(q5) (cos(q1) sin(q4) + cos(q4) (sin(q1) sin(q2) sin(q3)−

− cos(q2) cos(q3) sin(q1))) + sin(q5) (cos(q2) sin(q1) sin(q3) + cos(q3) sin(q1) sin(q2)))

sin(q4) sin(q6) (cos(q2) sin(q3) + cos(q3) sin(q2)) − cos(q6) (sin(q5) (cos(q2) cos(q3) − sin(q2) sin(q3))+
+ cos(q4) cos(q5) (cos(q2) sin(q3) + cos(q3) sin(q2)))

0



s0=



cos(q6) (cos(q4) sin(q1) − sin(q4) (cos(q1) cos(q2) cos(q3) − cos(q1) sin(q2) sin(q3))) − sin(q6) (cos(q5) (sin(q1) sin(q4)+
+ cos(q4) (cos(q1) cos(q2) cos(q3) − cos(q1) sin(q2) sin(q3))) − sin(q5) (cos(q1) cos(q2) sin(q3)+

+ cos(q1) cos(q3) sin(q2)))

sin(q6) (cos(q5) (cos(q1) sin(q4) + cos(q4) (sin(q1) sin(q2) sin(q3)−
− cos(q2) cos(q3) sin(q1))) + sin(q5) (cos(q2) sin(q1) sin(q3) + cos(q3) sin(q1) sin(q2)))−

− cos(q6) (cos(q1) cos(q4) − sin(q4) (sin(q1) sin(q2) sin(q3) − cos(q2) cos(q3) sin(q1)))

sin(q6) (sin(q5) (cos(q2) cos(q3) − sin(q2) sin(q3)) + cos(q4) cos(q5) (cos(q2) sin(q3) + cos(q3) sin(q2)))+
+ cos(q6) sin(q4) (cos(q2) sin(q3) + cos(q3) sin(q2))

0



a0=



− sin(q5) (sin(q1) sin(q4) + cos(q4) (cos(q1) cos(q2) cos(q3) − cos(q1) sin(q2) sin(q3)))−
− cos(q5) (cos(q1) cos(q2) sin(q3) + cos(q1) cos(q3) sin(q2))

sin(q5) (cos(q1) sin(q4) + cos(q4) (sin(q1) sin(q2) sin(q3) − cos(q2) cos(q3) sin(q1)))−
− cos(q5) (cos(q2) sin(q1) sin(q3) + cos(q3) sin(q1) sin(q2))

cos(q4) sin(q5) (cos(q2) sin(q3) + cos(q3) sin(q2)) − cos(q5) (cos(q2) cos(q3) − sin(q2) sin(q3))

0



p0=



421 cos(q1) cos(q2)
2000 − 349 sin(q5) (sin(q1) sin(q4)+cos(q4) (cos(q1) cos(q2) cos(q3)−cos(q1) sin(q2) sin(q3)))

2000 −
− 349 cos(q5) (cos(q1) cos(q2) sin(q3)+cos(q1) cos(q3) sin(q2))

2000 − 67 cos(q1) cos(q2) sin(q3)
250 − 67 cos(q1) cos(q3) sin(q2)

250

421 cos(q2) sin(q1)
2000 + 349 sin(q5) (cos(q1) sin(q4)+cos(q4) (sin(q1) sin(q2) sin(q3)−cos(q2) cos(q3) sin(q1)))

2000 −
− 349 cos(q5) (cos(q2) sin(q1) sin(q3)+cos(q3) sin(q1) sin(q2))

2000 − 67 cos(q2) sin(q1) sin(q3)
250 − 67 cos(q3) sin(q1) sin(q2)

250

67 sin(q2) sin(q3)
250 − 67 cos(q2) cos(q3)

250 − 421 sin(q2)
2000 −

− 349 cos(q5) (cos(q2) cos(q3)−sin(q2) sin(q3))
2000 + 349 cos(q4) sin(q5) (cos(q2) sin(q3)+cos(q3) sin(q2))

2000 + 337
1000

1
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8.2 Geometric Jacobian

8.2.1 Orientation Jacobian

0 þz0=

 0
0
1



0 þz1=


− sin (q1)
cos (q1)

0
1



0 þz2=


− sin (q1)
cos (q1)

0
1



0 þz3=


− cos (q1) cos (q2) sin (q3) − cos (q1) cos (q3) sin (q2)
− cos (q2) sin (q1) sin (q3) − cos (q3) sin (q1) sin (q2)

sin (q2) sin (q3) − cos (q2) cos (q3)
1



0 þz4=


sin (q4) (cos (q1) cos (q2) cos (q3) − cos (q1) sin (q2) sin (q3)) − cos (q4) sin (q1)
cos (q1) cos (q4) − sin (q4) (sin (q1) sin (q2) sin (q3) − cos (q2) cos (q3) sin (q1))

− sin (q4) (cos (q2) sin (q3) + cos (q3) sin (q2))
1
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0 þz5=



− sin(q5) (sin(q1) sin(q4)+
+ cos(q4) (cos(q1) cos(q2) cos(q3) − cos(q1) sin(q2) sin(q3)))−

− cos(q5) (cos(q1) cos(q2) sin(q3)+
+ cos(q1) cos(q3) sin(q2))

sin(q5) (cos(q1) sin(q4)+
+ cos(q4) (sin(q1) sin(q2) sin(q3) − cos(q2) cos(q3) sin(q1)))−

− cos(q5) (cos(q2) sin(q1) sin(q3)+
+ cos(q3) sin(q1) sin(q2))

cos(q4) sin(q5) (cos(q2) sin(q3)+
+ cos(q3) sin(q2)) − cos(q5) (cos(q2) cos(q3)−

− sin(q2) sin(q3))

1



8.2.2 Position Jacobian
0 þz0 × 0 þo6=

A
67 cos(q2) sin(q1) sin(q3)

250 − 421 cos(q2) sin(q1)
2000 + 67 cos(q3) sin(q1) sin(q2)

250
421 cos(q1) cos(q2)

2000 − 67 cos(q1) cos(q2) sin(q3)
250 − 67 cos(q1) cos(q3) sin(q2)

250
0

B

0 þz1 × 0 þo6=



− cos (q1)
!

421 sin(q2)
2000 + 67 cos(q2) cos(q3)

250 − 67 sin(q2) sin(q3)
250

"
− sin (q1)

!
421 sin(q2)

2000 + 67 cos(q2) cos(q3)
250 − 67 sin(q2) sin(q3)

250

"
cos (q1)

!
67 cos(q1) cos(q2) sin(q3)

250 − 421 cos(q1) cos(q2)
2000 + 67 cos(q1) cos(q3) sin(q2)

250

"
+

+ sin (q1)
!

67 cos(q2) sin(q1) sin(q3)
250 − 421 cos(q2) sin(q1)

2000 + 67 cos(q3) sin(q1) sin(q2)
250

"


0 þz2×0 þo6=

 − cos (q1)
!

67 cos(q2) cos(q3)
250 − 67 sin(q2) sin(q3)

250

"
− sin (q1)

!
67 cos(q2) cos(q3)

250 − 67 sin(q2) sin(q3)
250

"
cos (q1)

!
67 cos(q1) cos(q2) sin(q3)

250 + 67 cos(q1) cos(q3) sin(q2)
250

"
+ sin (q1)

!
67 cos(q2) sin(q1) sin(q3)

250 + 67 cos(q3) sin(q1) sin(q2)
250

"


0 þz3×0 þo6=



(cos(q2) sin(q1) sin(q3) + cos(q3) sin(q1) sin(q2)) ( 67 cos(q2) cos(q3)
250 − 67 sin(q2) sin(q3)

250 )−
−( 67 cos(q2) sin(q1) sin(q3)

250 + 67 cos(q3) sin(q1) sin(q2)
250 ) (cos(q2) cos(q3) − sin(q2) sin(q3))

( 67 cos(q1) cos(q2) sin(q3)
250 + 67 cos(q1) cos(q3) sin(q2)

250 ) (cos(q2) cos(q3) − sin(q2) sin(q3))−
−(cos(q1) cos(q2) sin(q3) + cos(q1) cos(q3) sin(q2)) ( 67 cos(q2) cos(q3)

250 − 67 sin(q2) sin(q3)
250 )

(cos(q1) cos(q2) sin(q3) + cos(q1) cos(q3) sin(q2)) ( 67 cos(q2) sin(q1) sin(q3)
250 + 67 cos(q3) sin(q1) sin(q2)

250 )−
−( 67 cos(q1) cos(q2) sin(q3)

250 + 67 cos(q1) cos(q3) sin(q2)
250 ) (cos(q2) sin(q1) sin(q3) + cos(q3) sin(q1) sin(q2))


0 þz4 × 0 þo6=

3
0
0
0

4
0 þz4 × 0 þo6=

3
0
0
0

4
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8.3 Workspace Surfaces

S1=


783 cos(v) cos(u)

1000
783 cos(u) sin(v)

1000
337
1000 − 783 sin(u)

1000



S2=


421 cos( 23 π

180 ) cos(v)
2000 − 229 cos( 23 π

180 ) cos(v) sin(u)
400 − 229 sin( 23 π

180 ) cos(v) cos(u)
400

421 cos( 23 π
180 ) sin(v)

2000 − 229 cos( 23 π
180 ) sin(v) sin(u)

400 − 229 sin( 23 π
180 ) cos(u) sin(v)

400
229 sin( 23 π

180 ) sin(u)
400 − 229 cos( 23 π

180 ) cos(u)
400 − 421 sin( 23 π

180 )
2000 + 337

1000



S3=



421 cos(v) cos(u)
2000 + 609 cos( 761 π

1800 ) (cos( 23 π
180 ) cos(v) sin(u)+sin( 23 π

180 ) cos(v) cos(u))
2000 −

−609 sin( 761 π
1800 ) (cos( 23 π

180 ) cos(v) cos(u)−sin( 23 π
180 ) cos(v) sin(u))

2000 − 67 cos( 23 π
180 ) cos(v) sin(u)

250 −
−67 sin( 23 π

180 ) cos(v) cos(u)
250

421 cos(u) sin(v)
2000 +

+609 cos( 761 π
1800 ) (cos( 23 π

180 ) sin(v) sin(u)+sin( 23 π
180 ) cos(u) sin(v))

2000 −
−609 sin( 761 π

1800 ) (cos( 23 π
180 ) cos(u) sin(v)−sin( 23 π

180 ) sin(v) sin(u))
2000 − 67 cos( 23 π

180 ) sin(v) sin(u)
250 −

−67 sin( 23 π
180 ) cos(u) sin(v)

250

67 sin( 23 π
180 ) sin(u)
250 − 67 cos( 23 π

180 ) cos(u)
250 − 421 sin(u)

2000 +
+609 cos( 761 π

1800 ) (cos( 23 π
180 ) cos(u)−sin( 23 π

180 ) sin(u))
2000 +

+609 sin( 761 π
1800 ) (cos( 23 π

180 ) sin(u)+sin( 23 π
180 ) cos(u))

2000 + 337
1000
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