
Politecnico di Torino

Master of Science Degree in MECHATRONIC ENGINEERING

Master Thesis

Person tracking methodologies and
algorithms in service robotic

applications

Supervisor:
prof. Marcello Chiaberge

Candidate:
Anna Boschi
S253105

Academic year 2018 - 2019

Abstract

The vital statistics of the last century highlight a sharply increasement of the average
life of the world population with a consequent growth of the number of elderly people.
This scenario has caused new social needs that the research in the service robotics field
is trying to fulfill. Particularly, the idea of this thesis is born at the PIC4SeR (PoliTo
interdepartmental centre for service robotics) with the purpose of creating complex
service robotics applications to support the autonomous and self-sufficient old people
into their house in everyday life, avoiding the task of monitoring them by third parties.
This work represents the first steps of a broad project in which many other service
tasks will be integrated.

The main argument of this thesis is to develop algorithms and methodologies to detect,
track and follow a person in an indoor environment using a small wheeled rover and low
cost and available sensors to monitor the target person. Several techniques are explored
showing the evolution of these methods along the years: from the classical Machine
Learning algorithms to the Deep Neural Network ones. Since the main requirement to
be respected is the necessity of real-time results, only few of the analysed algorithms
are developed for this project scope and at the end are compared in order to find the
best solution with optimal outcomes. The detection and localization are the basis of
the person tracking application, done by the robot on which it has been implemented a
movement control algorithm and at last it has been introduced an obstacle avoidance
algorithm to prevent collisions.

i

Contents

1 Introduction 1
1.1 Objective of the thesis . 1
1.2 Organization of the thesis . 2

2 Object Detection 3
2.1 Introduction . 3
2.2 Evolution of Object Detection . 5

2.2.1 Viola-Jones algorithm . 5
Haar Feature-based Cascade Classifiers 6
AdaBoost classifier . 7
Haarcascade Classifier . 8

2.2.2 Histograms of Oriented Gradients for Human Detection 10
2.2.3 CNN . 12

Sliding-window detectors . 12
Selective Search (SS) . 12
Regional CNN (R-CNN) . 13
Fast R-CNN . 14
Faster R-CNN . 14

2.2.4 Single Shot MultiBox Detector (SSD) 15

3 Y.O.L.O. 17
3.1 How it works . 17
3.2 Network Design details . 18

3.2.1 Loss Function . 20
Localization Loss . 20
Confidence Loss . 20
Classification Loss . 21

3.2.2 Inference . 21
3.2.3 Limits . 21

3.3 Y.O.L.O.v2 . 22
3.3.1 Accuracy Improvements . 22

Batch normalization . 22
High-resolution classifier . 23

ii

Contents

Convolutional Layer with Anchor Boxes 23
Dimension Clusters . 23
Direct Location Prediction . 24
Fine-Grained Features . 25
Multi-Scale Training . 26
Accuracy and Speed Comparison 26

3.3.2 Speed . 26
3.3.3 Hierarchical Classification . 28

Joint classification detection . 29
3.4 Y.O.L.O.v3 . 30

3.4.1 Prediction . 30
3.4.2 Feature Extraction . 30
3.4.3 Results . 32

4 Metrics 33
4.1 Metrics used for Object Detection . 33

4.1.1 IoU . 33
Ground-truth . 34

4.1.2 Mean Average Precision . 35
Precision & Recall . 35
AP . 36
mAP . 37

5 Robot 39
5.1 Introduction . 39
5.2 Sensors . 40

5.2.1 Cameras . 41
5.2.2 Depth Camera . 41
5.2.3 Laser Distance Sensor . 42
5.2.4 ROS Motor Controller Drivers 42

5.3 Embedded System . 43
5.3.1 OpenCR . 43

5.4 TurtleBot . 44
5.5 Hardware components used . 46

5.5.1 Object detection hardware . 46
A) Intel R¥ RealSenseTM Depth Camera D435i 46
B) Intel R¥ Compute Stick . 48
C) NVIDIA R¥ JetsonTM . 50

5.5.2 Person tracking hardware . 53
JAFFLE . 53

5.5.3 Final choice Hardware components 54
5.6 Software used . 54

5.6.1 Operating system and ROS platforms 54

iii

Contents

5.6.2 Packages used in the project . 56
5.6.3 Gazebo . 56
5.6.4 RViz . 56

6 Implementation 58
6.1 Person Detection . 58

6.1.1 Haarcascade Classifier . 58
Person’s 2D coordinates in the video frame 60
Distance between the robot and the person 61
Detection situations . 61
Two-code approach . 61

6.1.2 Y.O.L.O. 65
How Y.O.L.O. works in ROS . 65
Dataset . 66
Re-Training . 66
Person’s 2D coordinates in the video frame 68
Distance between the robot and the person 68
Detection situations . 69

6.2 Control Algorithm . 71
6.2.1 Introduction . 71
6.2.2 Angular Velocity . 71
6.2.3 Linear velocity . 73

7 Obstacle Avoidance 76
7.1 Introduction . 76

7.1.1 Global Path Planning Method 76
7.1.2 Local Motion Control . 77

7.2 Obstacle Avoidance Implementation . 77
7.2.1 Estimation of the goal-pose of the person 78

From Pixel coordinates to Camera coordinates 79
From Camera coordinate to base_footprint RF 80
Goal in map RF . 81

7.2.2 Detection situations . 82

8 Results and Conclusions 83
8.1 Haarcascade Classifier algorithm . 83

8.1.1 Qualitative Results . 83
8.2 Y.O.L.O. 87

8.2.1 Results post re-training . 87
AP and mAP . 87
FPS improvements . 88
Precision, Recall, F1-score and average IoU 88

8.2.2 Results obtained from Jaffle tests 89

iv

Contents

8.3 Obstacle Avoidance . 96
8.4 Conclusions and Future Works . 99

Bibliography 100

v

List of Figures

2.1 Object Classification, Localization and Detection. 3
2.2 RoIs example. 4
2.3 Gradient vector computation. 5
2.4 Haar features representation. 6
2.5 Haar features used for face recognition. 7
2.6 Haarcascade classifier structure. 8
2.7 Results of an HOG application. 10
2.8 HOG steps structure. 11
2.9 Procedure of the sliding-window detector. 12
2.10 Example of image processing using Selective Search. 13
2.11 Procedure of the R-CNN. 13
2.12 Procedure of the Fast R-CNN. 14
2.13 Procedure of the Faster R-CNN. 15
2.14 SSD structure. 15

3.1 Y.O.L.O. detection passages. 17
3.2 Y.O.L.O. procedure sequence. 18
3.3 Structure of Y.O.L.O. 19
3.4 Example of batch normalization. 22
3.5 Priors found with K-means clustering. 24
3.6 K-means clustering used in Y.O.L.O. 24
3.7 Visualization of Y.O.L.O.v2 boxes algorithm. 25
3.8 Accuracy comparison for different detectors. 27
3.9 Structure of COCO, ImageNet and WordTree dataset. 29
3.10 Darknet-53 network structure. 31
3.11 Performance comparison. 32

4.1 IoU application on a person. 34
4.2 IoU computation and evaluation. 34
4.3 Example of a Precision-Recall graph. 36
4.4 Example of a Precision-Recall approximated graph with interpolation

technique. 37
4.5 AP and mAP example results. 37

vi

List of Figures

5.1 Types of dynamixel. 43
5.2 OpenCR interface configuration. 44
5.3 TurtleBot3 Hardware components. 45
5.4 Intel R¥ RealSenseTM Depth Camera D435i. 46
5.5 Internal hardware components of Intel R¥ RealSenseTM Depth Camera

D435i. 47
5.6 Technical specifications of Intel R¥ RealSenseTM Depth Camera D435i. . 48
5.7 Intel R¥ Compute Stick. 49
5.8 Jetson Xavier Developer Kit. 51
5.9 Technical specifications of the Jetson Xavier Developer Kit. 52
5.10 Jaffle. 54
5.11 ROS code building organization. 55
5.12 ROS execution structure. 56

6.1 RF of the video frame. 60
6.2 Scheme of the three Haarcascade classifiers in cascade. 63
6.3 Flow Chart of the ’Haarcascade classifier’ algorithm. 64
6.4 Flow Chart of the algorithm of the ’Y.O.L.O.’ networks. 70
6.5 2D pixel coordinates of the person in the video frame. 71
6.6 Angular velocity control behaviour. 72
6.7 Linear velocity control behaviour in Haarcascade algorithm. 74
6.8 Linear velocity control behaviour in Y.O.L.O. algorithm. 75

7.1 Move_base navigation stack. 78
7.2 From 2D image projection to 3D coordinates. 79
7.3 From pixel coordinates to image coordinates. 79
7.4 From image coordinates to camera coordinates. 80
7.5 RFbase_footprint and YAW angle. 81

8.1 Haarcascade classifier: RGB detection. 84
8.2 Haarcascade classifier: Infrared detection. 85
8.3 Haarcascade classifier nothing detected. 85
8.4 Haarcascade classifier: two people detected. 86
8.5 Haarcascade classifier: example of false positive. 86
8.6 Y.O.L.O.v2: one person detected. 89
8.7 Y.O.L.O.v2: two people detected. 90
8.8 Y.O.L.O.v2: nothing detected. 90
8.9 Y.O.L.O.v2: false positive detection. 91
8.10 Tiny-Y.O.L.O.v3: one person detected. 91
8.11 Tiny-Y.O.L.O.v3: two people detected. 92
8.12 Tiny-Y.O.L.O.v3: no false positive. 92
8.13 Tiny-Y.O.L.O.v3: nothing detected. 93
8.14 Y.O.L.O.v3: one person detected. 94

vii

List of Figures

8.15 Y.O.L.O.v3: two people detected. 94
8.16 Y.O.L.O.v3: no false positive. 95
8.17 Y.O.L.O.v3: nothing detected. 95
8.18 Obstacle avoidance result. 97
8.19 Obstacle avoidance: the goal pose is changed. 98

viii

Chapter 1

Introduction

1.1 Objective of the thesis
The vital statistics of the last century highlight a sharply increasement of the average
life of the world population with a consequent growth of the number of elderly people.
This scenario has caused new social needs that the research in the service robotics field
is trying to fulfill. Particularly the attention has been focused on the assistive system
in order to promote the ageing-in-place and to make the independent indoor life easy
[1]. The idea of this thesis is born at the PIC4SeR (PoliTo interdepartmental centre
for service robotics) with the purpose of creating complex service robotics applications
to support the autonomous and self-sufficient old people into their houses in everyday
life, avoiding the task of monitoring them by third parties. This work represents the
first steps of a broad project in which many other service tasks will be integrated.

The goal of the thesis is to develop algorithms and methodologies to detect, track and
follow a person in an indoor environment using a small wheeled rover and available low
cost sensors to monitor the target person.
Several techniques have been analysed showing the evolution of the object detection
methods along the years: from the Machine Learning algorithms to the Deep Neural
Network ones. Since the main requirement to be respected is the necessity of real-time
results, only few of them are developed for this scope and at the end are compared in
order to find the best solution with optimal outcomes.
Many hardware configurations are analysed in order to find a good compromise between
the external payload of the robot and the performances required by the algorithms.
The detection and localization are done using different kind of data provided by a
single stereo-camera and the robot control movement is developed in order to follow
correctly the person, remaining at a certain safety distance from it. To conclude, a
basic obstacle avoidance algorithm is integrated in order to prevent collisions.

1

Chapter 1. Introduction

1.2 Organization of the thesis
The thesis is composed of eight chapters and the work is organized as follows:

Chapter 1 is introductory and gives the motivations that stimulate researchers in the
service robotics for elderly people field. Next, the goal of the thesis is explained and
its organization structure is provided.

In chapter 2 there is an overview of all the object detection methods developed during
the years starting from the classical Machine Learning algorithms to the Deep Neural
Networks ones.

Chapter 3 provides a detailed study of the Y.O.L.O. networks starting from the first
version and showing the improvements obtained in the following ones.

Chapter 4 is functional to explain the parameters used to evaluate the performance of
the neural networks and the re-training operation on them.

At the beginning of chapter 5 a short overview of the types of robots and sensors, used
for different applications, is presented. After that, the Hardware configuration tried
to best satisfy these application requirements and the Software used in the thesis are
described.

In chapter 6 are explicated all the implementations realized to do person tracking with
the different algorithms chosen including the control of the robot’s movement.

In chapter 7 there is an overview of the obstacle avoidance algorithms and it is ex-
plained the implementation of a specific one of them into this project.

In chapter 8 the results obtained from the implementations are presented, finding also
the best solution between the developed ones. At the end the conclusions and some
future works ideas are given.

2

Chapter 2

Object Detection

2.1 Introduction
Object detection is an important area of research interested into the processing of
images and videos to detect and recognise object. This sector is called Computer Vision
and it is possible to see its evolution in the literature: from the classical algorithms to
the ones that used the Deep Neural Networks technologies.
The Computer vision discipline was born in the late 1960s in universities pioneering
artificial intelligence, but only the studies of the 1970s produced algorithms used also
nowadays as labelling of lines, extraction of edges, segmentations and others.
The evolution of these techniques of machine learning permits to do two different
actions: to localize and identify multiple objects in a single image or video frame.
These actions are very similar, but not the same, as the figure 2.1 shows.

Figure 2.1: Object Classification, Localization and Detection [2].

For the localization it is necessary to identify the image under a specific category.
Differently, for the identification, it is necessary the localization of the objects, that

3

Chapter 2. Object Detection

are recognised into the image, and then this information must be processed. These
two methods are very different in complexity and results, but the best thing to do is
to realize an algorithm able to do both the actions with great performances. All the
objects belong to a class, identified by some features. If the object detected in the
figure has these specific features, it belongs to this class, so it is possible to identify it.

Region of Interests (RoIs)
The object detection framework can be divided in three steps [3]:

1. Generation of Regions of Interests (RoIs): an algorithm is used to create a large
set of bounding boxes crossing the entire image;

2. From all the bounding boxes created, visual features are extracted and are eval-
uated in order to classify the object detected, if present, on each RoI;

3. The overlapping boxes, which contain the same object, are merged into a unique
box containing the overall detected element.

In the figure 2.2 it is possible to see an example of this concept.

Figure 2.2: RoIs example [4].

Image Gradient Vector
During the evolution of the object detection, the creation of RoIs can be implemented
in different ways and all these methods are based on the Image Gradient Vector, used
to determine the intensity and the edge direction in a (x, y) position. The gradient
contains partial derivatives, computed as the colour difference among the adjacent

4

Chapter 2. Object Detection

pixels of the image along the principal directions. It is important to notice that, in
this case, the gradient is discrete because each pixel is independent from the others
and cannot be split anymore:

∇f(x, y) =
C
gx
gy

D
=
∂f∂x
∂f
∂y

 =
C
f(x, y + 1) − f(x, y − 1)
f(x+ 1, y) − f(x− 1, y)

D

This formula can be easily understood using the figure 2.3.

Figure 2.3: Gradient vector computation [5].

The gradient gives information about two values used in the algorithms:

• Direction it is given by the arctangent of the ratio between two partial deriva-
tives on two directions: θ = arctan (gy/gx)

• Magnitude it is calculated as the L2-norm of the vector: g =
ñ
g2
x + g2

y

The application of this process to every pixels of the image is a big waste of time.
The solution is to include this operation inside a convolutional operator on the whole
image matrix. In this case, the operator depends on the algorithm and have a specific
purpose.

2.2 Evolution of Object Detection
Here the main solutions and methods used for object detection in its evolution are
reported.

2.2.1 Viola-Jones algorithm
The Viola-Jones image-base algorithm was developed in 2001 and for that year was
very powerful even if simple [6].
It uses an image-based method able to relate an input image to the class selected or
not. The algorithm consists of two stages: training of the classifier and detection of
the object.

5

Chapter 2. Object Detection

During the detection, if the trained classifier is not able to find the object (false nega-
tive) or differently detected a wrong object (false positive) it is necessary to retrained
the classifier, including these examples in the training set.
To do the detection, it is necessary to turn on the image in greyscale and divide it in
sub-windows. Inside these sub-windows the classifier tries to find the features of the
class that should be detected. Only when all the necessary features of the class are
detected, it traces a box around the sub-windows identified and the box remains fixed
also when the image is turning on the RGB scale.
There are three main contributions to this approach:

• Haar Feature-based Cascade Classifier;

• AdaBoost;

• Haar Cascade Classifier.

Haar Feature-based Cascade Classifiers

This method has its bases in the machine learning. It uses a classifier trained with
multiple positive and negative images, which later is applied on other test images.
During the training, many features are extracted from the examples and the more
discriminant ones are selected and set inside the statistic model. For this operation
many Haar features (Figure 2.4) are used like a kernel.

(a) Edge Features

(b) Line Features

(c) Four-rectangle features

Figure 2.4: Haar features representation [6].

Since an image is composed by pixels partially black and white, dividing the image in
part, depending on the luminosity, it is possible to identify the different features in the
image and so to recognise the object to be detected. In fact, each feature has a value
obtained by the subtraction between the pixels sum under the black rectangle and the
pixels sum under the white rectangle.
Even if the computation for this calculus is huge, the solution can be found in the
Integral Image. The integral image contains at the (x, y) location of the image the sum
of the pixels above and to the left of the position inclusive:

ii(x, y) =
Ø

xÍ≤x,yÍ≤y
i(xÍ, yÍ)

6

Chapter 2. Object Detection

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y)

In this way the calculation is accelerated and makes possible the integral image com-
putation just passing one time only over the original image.
Anyway, it is evident that many of the calculated features are useless or relevant only
in specific zones of the image, as it is showed in the figure 2.5. In fact, if they are
shifted in another point of the image, they make no sense. This means that only few
features can be combined into an effective classifier, but it is necessary to find them.

Figure 2.5: Haar features used for face recognition [7].

AdaBoost classifier

The AdaBoost algorithm is used to improve the performance of a simple classification
algorithm. It is able to create a classifier by selecting a small set of important features.
It consists in a modification of a Viola-Jones algorithm: every weak learner classifier
is able to return the response using a single feature. There are many versions of this
algorithm, but the most performant is the latest one, here, explained by steps:

- All the features are used for all the training image dataset;

- The algorithm connects the best threshold to each feature and gives a classifica-
tion of the prediction as positive or negative;

- The previous point generates errors or wrong classifications that are useful to
realize a rank of features saving only the one that provides accurate classification;

- This process is repeated until the right error rate satisfies the required parameters.

This improvement guarantees better performances and strong bounds in the general-
ization of the algorithm. However, this process is not so fast, even if the features used
have been reduced to the minimum necessary. This problem is due to the application

7

Chapter 2. Object Detection

of all the selected features to the entire image area, even if the object to be analysed is
in a small zone, so there are some parts of the image that can be avoided in the process
to waste less time.

Haarcascade Classifier

This technique is an improvement of the previous ones [8]. The Haarcascade Classifier
is the best expression of the evolution of the machine learning classical method used
for object detection.

Structure:
The algorithm consists in the construction of a cascade of classifiers in series to increase
the detection results and reduce the computation time. This is a great intuition because
the use of smaller boosted classifiers reduces the complexity of the algorithm, which is
considered to run real-time.
The detection process can be explained with a degenerate decisional tree structure
(figure 2.6) of classifiers commonly called “cascade”. The process of detection consists
in dividing the image in sub-windows and then analysing all of them with the first stage
of classifier. The sub-windows that receive negative response are rejected, differently
the ones that result positive are analysed using the second stage of classifier. The
process continues until either all the areas of the image are rejected or there is a final
positive response, so the object requested is detected in the image. In this way the
time cost is reduced and the performance of the algorithm is high.
The first classifier is more general to do an initial considerable skimming, then the
others are more specific so increase the accuracy of the results. The stage in cascade
are constructed using AdaBoost for the training process and then thresholds regulation
is done in order to reduce the false negatives.

Figure 2.6: Haarcascade classifier structure [9].

8

Chapter 2. Object Detection

Training
The training process of a cascade of classifier wants to balance two necessities: the
accuracy and the cost time. In fact, the classifiers with more features reach high
detection rates, but obtain lower false positives results and need a long computation
time.
To obtain a good result is necessary to find a good compromise between the following
points:

1. Number of stages of cascade classifier;

2. Number of features for each stage;

3. Thresholds applied to each stage.

in order to minimize the value of the evaluated features, but is not a simple choice.
Each stage of the classifier is trained by adding features until the false positive rates
and the detection target rates are reached.

Results
The progress with this method is evident, but there could be some problems due to:

- False positives and negatives;

- Not detected object (mainly due to the excessive backlighting);

- C-error: the localization error (err<0.25 to have a correct localization).

9

Chapter 2. Object Detection

2.2.2 Histograms of Oriented Gradients for Human Detection
Developed in 2005, the HOG algorithm uses the image gradient vector for extracting
features out of the colours of pixels with great performance [10]. The aim of this
method is to search the major gradient direction related to each sub-group of pixels,
which indicates the flow of the image from light to dark. In the figure 2.7 it is possible
to see an example of the image derived from the algorithm

Figure 2.7: Results of an HOG application [11].

This method can be analysed in six steps (figure 2.8):

1 Gamma/Colour Normalization: all images have to have the same dimension
of pixels in order to obtain correct and meaningful results;

2 Gradient Computation: the gradient is calculated in two main directions with
a kernel and this value is used to obtain both the magnitude and the direction.
In fact, the gradient eliminates the useless information of the image, giving im-
portance only to the outlines;

3 Spatial/Orientation Binning: the image is divided in 8x8 pixels cells and
there each magnitude is changed into 9 bins of unsigned direction, but, if a
magnitude is set in the board of two bins, it is proportionally separated into the
two;

4 Normalization and Descriptor Blocks: a 2x2 cells block slip on the image
and in each region is created a one-dimensional vector of 36 values coming from
four histograms of four cells and then is normalized in order to have a unit weight.
At the end, the feature of the HOG is a vector generated from the concatenation
of all the block vectors;

5 Detector Window and Context: the reduction of the 16 pixels’ margin around
the 64x128 detection window decreases the performance of about 3%;

10

Chapter 2. Object Detection

6 Classifier: using a Gaussian kernel SVM improves the performance by about
3%, but there is a cost in run time.

Figure 2.8: HOG steps structure [10].

11

Chapter 2. Object Detection

2.2.3 CNN
At the beginning of Deep Learning the Convolutional Neural Network (CNN) was the
most used architecture for classification 1.

Sliding-window detectors

One of the approaches for object detection is to divide the image in sub-windows of
varied sizes and proportions and to identify the object using classification [13]. The sub-
windows identified are cut out from the image and these patches are warped because
the classifiers need fixed size images only, but this should not impact in the accuracy
of the classification because the classifiers are trained to manage warped images.
The warped image patch is given to a CNN classifier to pull out 4096 features. After
that, a SVM classifier is applied to it in order to find the class and a linear regression
for the boundary box (figure 2.9).

Figure 2.9: Procedure of the sliding-window detector [13].

In order to increase the performance of the algorithm, it is necessary to reduce the
number of sub-windows.

Selective Search (SS)

Differently from the previous method, this one uses a regional proposal approach [14]
[13] to create RoIs necessary for doing object detection (figure 2.10). Each pixel is
considered as a group and for each group is calculated the texture matching the two
ones that are strictly nearest. However, in order to avoid that every single region
becomes part of the others, it is better to generate smaller group first. Then, the
process of integrating region continues until everything is combined together.

1To read this section it is necessary to have knowledge about Machine Learning, Deep Learning
and Convolutional Neural Networks [12].

12

Chapter 2. Object Detection

Figure 2.10: Example of image processing using Selective Search [13].

Regional CNN (R-CNN)

R-CNN [15] is a combination between the SS and the CNN and is able to generate
about 2000 RoIs. Each region is warped and passed to the CNN network individually,
in this way it is followed by fully connected layers to define the bounding boxes and
correctly classify the object (figure 2.11).

Figure 2.11: Procedure of the R-CNN [13].

This method needs a huge amount of time during the training of the network because
it depends on to the large quantity of regional proposals per image to classify. This
implies not real-time application: the process needs 50s for a single image.

13

Chapter 2. Object Detection

Fast R-CNN

It is a great evolution of the R-CNN [16]: it does not extract the features for all
images from scratch, but it uses a unique features extractor (a CNN) applied to the
whole image first. Then it uses regional proposal method as SS in order to generate
RoIs that will be combined with the corresponding features maps to create patches for
object detection. These patches are wrapped to a fixed size with a pooling layer and
fed to a fully convoluted network, able to classify and localize the object (figure 2.12).

Figure 2.12: Procedure of the Fast R-CNN [13].

This network is faster than the previous one because it does not repeat the extraction
of the feature one-by-one, but only once, so it is 10x faster during the training and
150x faster during the inferencing.

Faster R-CNN

R-CNN and Fast R-CNN algorithms use external regional proposal method like selec-
tive search. This usage affects the performance of the algorithm because it needs CPU
to run and consequently waste much time. In order to reduce this problem, in the new
version of the algorithm (the faster R-CNN [17]), this step is replaced with an internal
deep network which directly derives the RoIs from the feature maps. The new network
is called Regional Proposal Network (RPN) and is really efficient: it is able to process
an image in about 10 ms (figure 2.13).
RPN makes prediction in order to recognise an anchor, a different size box which can
contain the requested object on the foreground or on the background and refines it.

14

Chapter 2. Object Detection

Figure 2.13: Procedure of the Faster R-CNN [13].

The remaining part of the network is the same of the fast R-CNN, replacing only the
region proposal with a convolutional network.

2.2.4 Single Shot MultiBox Detector (SSD)
The acronym of the method stands for [18] [19]:

• Single shot: object localization and classification are both done in a single step
forward over the network;

• MultiBox: it is the name of the bounding box regression technique developed
by Szegeday et al;

• Detector: it means that the neural network detects and classifies the object
found.

The SSD method is based on a feed-forward convolutional neural network able to gener-
ate a fixed-size set of bounding boxes and scores related to the percentage of correlation
between the object detected and the one requested, followed by an evaluation phase
used to obtain the final results. This architecture makes possible to reach a high value
of mAP (mean Average Precision §4.1.2) with a higher frame rate than R-CNN.

Figure 2.14: SSD structure [19].

15

Chapter 2. Object Detection

The SSD architecture (figure 2.14) has as base network a VGG-16, which is chosen for
its high performance on the classification of high quality images and the extraction of
the feature maps. Differently from the original VGG, this one is not a fully connected
layers, but it is a set of auxiliary convolutional layers used to extract features at multiple
scales and step by step to curtail the size of the input image to the following layer.
Instead of using anchors like CNN, SSD uses priors, a pre-computed, fixed size bound-
ing boxes which try to match the allocations of the original ground truth boxes. The
priors are selected depending on the minimum Intersection over Union ratio (IoU
§4.1.1) of 0.5. This is a surely better starting point instead of starting the prediction
in random coordinates. Therefore, this technique starts with the priors as predictions
and reaches a position close to the ground truth bounding boxes.

16

Chapter 3

Y.O.L.O.

You Only Look Once [20] is an object detection method used for real-time image
processing applications. As it is an evolution of the SSD concept, it is able to predict
bounding boxes and the class detection probability analysing the image just one time.
Its architecture is based on a single neural network only that can be trained end-to-end
to increase the accuracy, moreover Y.O.L.O. reduces the predictions of false positives
on background.

Figure 3.1: Y.O.L.O. detection passages [20].

3.1 How it works
The algorithm could be divided in four steps:

1. The input image is divided into a grid of S x S cells (figure 3.2a).

2. Each grid cell generates B bounding boxes and predicts their confidence rate.
The confidence value depends on how the network is sure that inside a precise
bounding box there would be an object. In the figure (3.2b) it is reported the step
already explained underlying that the higher confidence of the model is indicated
using a fatter drawn boxes. Each bounding boxes have 5 predictions: x, y, w, h
and the confidence. The (x, y) position identify the centre of the box, w and h
are respectively the weight and the height of the box.

3. Each grid cell has a C value representing the class probabilities. This value
depends on the dataset used during the network training process (PASCAL VOC,

17

Chapter 3. Y.O.L.O.

COCO, etc...). In the figure (3.2c) the class probability map for each cells is
represented.

4. The total number of the bounding boxes, calculated as S x S x B must be mini-
mized because many of them have a lower confidence rate. By setting a minimum
value of this rate it is possible to reduce the bounding boxes to the only sure one
and the final result obtained is shown in the figure (3.2d).

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 3.2: Y.O.L.O. procedure sequence [20].

3.2 Network Design details
The network architecture (figure 3.3) is composed by 24 convolutional layers followed
by 2 fully connected layers. The alternation between 1 x 1 and 3 x 3 convolutional
layers is useful to limit the feature space from the preceding layers. Differently, the fully
connected layers are used to generate an output tensor with a desired shape, which is
flattened and used to obtain (S , S, B x 5 + C) parameters.

18

Chapter 3. Y.O.L.O.

Figure 3.3: Structure of Y.O.L.O. [20].

Layer Kernel Stride Output

Input (416, 416, 3)
Convolution 3x3 1 (416, 416, 16)
MaxPooling 2x2 2 (208, 208, 16)
Convolution 3x3 1 (208, 208, 32)
MaxPooling 2x2 2 (104, 104, 32)
Convolution 3x3 1 (104, 104, 64)
MaxPooling 2x2 2 (52, 52, 64)
Convolution 3x3 1 (52, 52, 128)
MaxPooling 2x2 2 (26, 26, 128)
Convolution 3x3 1 (26, 26, 256)
MaxPooling 2x2 2 (13, 13, 256)
Convolution 3x3 1 (13, 13, 512)
MaxPooling 2x2 1 (13, 13, 512)
Convolution 3x3 1 (13, 13, 1024)
Convolution 3x3 1 (13, 13, 1024)
Convolution 1x1 1 (13, 13, 125)

TABLE 3.1: Structure of Y.O.L.O.

19

Chapter 3. Y.O.L.O.

3.2.1 Loss Function
Y.O.L.O. can predict multiple bounding boxes for each grid cell, but, during the train-
ing, it is requested only one bounding box predictor for each object. This selection
of the predictor depends on the highest IoU with the ground truth. In this way, the
size and shape of the bounding boxes are easier to recognise and also it is possible to
compute the loss function as the correlation of three factors:

• Localization loss;

• Confidence loss;

• Classification loss.

Localization Loss

These parameters calculate the errors of the predicted bounding box locations and size,
but related only with the box that detected an object.

λcoord
S2Ø
i=0

BØ
j=0

1
obj
ij [(xi− x̂i)2 +(yi− ŷi)2]+λcoord

S2Ø
i=0

BØ
j=0

1
obj
ij [(√wi−

ñ
ŵi)2 +(

ñ
hi−

ñ
ĥi)2]

Where:

- 1objij is equal to 1 if the j-th edges of the cell i is selected only once to recognise
the object, differently is set equal to 0.

- λcoord is used to improve the weight of the loss in the bounding box coordinates,
so it normalizes the error among small and large boxes.

Confidence Loss

It is formed by two formulas and the use of one instead of another depends on the
object being detected or not:


S2q
i=0

Bq
j=0

1
obj
ij (Ci − Ĉi)2 if detected

λnoobj
S2q
i=0

Bq
j=0

1
noobj
ij (Ci − Ĉi)2 if not detected

Where:

- If 1objij is equal to 1 the j-th bounding box in i-cell is selected once to recognise
the object, 0 (1objij is its complement) in the opposite case.

- Ĉi is the box confidence score of box j in the cell i and λnoobj reduces the loss
during the background detection.

20

Chapter 3. Y.O.L.O.

Classification Loss

In case of detected object, this parameter is given for each cell as the squared error of
the class conditional probabilities for each class.

S2Ø
i=0

1
obj
i

Ø
c∈classes

(pi(c) − p̂i(c))2

Where:

- 1obji is equal to 1 if there is an object in the i cell, otherwise is equal to 0.

- p̂i(c) represents the class conditional probability of the class c in cell i.

3.2.2 Inference
Y.O.L.O. is very fast during the test process because it needs only a single network
evaluation. In the most of the cases the detection is accurate and each object is
identified inside a bounding box. However, in some cases, when the objects in the
image are close one to another or when the object is really large, the algorithm makes
a doubles detection of the same object. This problem can be solved by applying the
non-maximal suppression. This method removes inference deleting the bounding with
the lower confidence and increases the mAP of the 2-3%.

3.2.3 Limits
Y.O.L.O. is a really strong object detection method. It is really simple to realize and
can be trained directly on the entire images. However, it has some limitations:

- Spatial constraints limit the nearby objects prediction;

- Problem in the generalization of new objects or atypical aspect ratios;

- Same treatment of the error in small or big bounding boxes.

So the main problems of this architecture are the wrong localizations.

21

Chapter 3. Y.O.L.O.

3.3 Y.O.L.O.v2

3.3.1 Accuracy Improvements
Y.O.L.O.v2 is a great improvement of the previous model version [21]. The object
detection is more accurate and extremely fast, so the performances are higher. As it
is shown in the following table many parameters are modified in order to obtain this
result.

YOLO YOLOv2
batch norm? X X X X X X X X
hi-re classifier? X X X X X X X
convolutional? X X X X X X
anchor boxes? X X
new network? X X X X X

dimension priors? X X X X
location prediction? X X X X

pass-through? X X X
multi-scale? X X

hi-res detector? X

Pascal VOC (2007) - mAP 63.4 65.8 69.5 69.2 69.6 74.4 75.4 76.8 78.6

TABLE 3.2: Improvements in Y.O.L.O.v2.

These parameters affect the increases in mAP.

Batch normalization

The batch normalization increases the regularization of a neural network. It “normal-
izes the output of the previous layer by subtracting the batch mean and dividing by
the batch standard deviation.” [22]. Generally, it is set between the convolutional layer
and the activation function and it is able to remove the drop-out from the model and
to guarantee an improvement of 2% in the mAP (figure 3.4).

Figure 3.4: Example of batch normalization [23].

22

Chapter 3. Y.O.L.O.

High-resolution classifier

The training of the original Y.O.L.O. starts with the classifier and then to the fully
connected layers for object detection. In Y.O.L.O.v1 the classifier is trained with
224x224 images and the object detection part with 448x448 images resolution. In
Y.O.L.O.v2 this process changes: there are two trainings on the classifier. The first
one is done with 224x224 images and the second retrain is done with 448x448 images
resolution and 10 epochs. This retrain makes the network accurate and improves the
value of the mAP of about 4%.

Convolutional Layer with Anchor Boxes

Y.O.L.O. uses priors to predict the bounding boxes. The boxes are selected randomly
and not always fit all the objects well, so the gradient is unstable during the step
changes. By analysing other networks for object detection, it is noticed that replacing
the offset prediction with the coordinate prediction makes the problem easier. The
concept of offset prediction is the following: the priors that include a specific class are
constrained between an offset range. In this way the diversity of the prediction does
not change, but at the end of each epoch the collected shape information makes it
accurate. According to this, in Y.O.L.O.v2 there are some changes:

• The fully connected layers are removed and substitute with anchor boxes;

• The predictions are done not at cells level, but at boundary box level;

• The image input size from 448x448 becomes of 416x416. This is done in order
to:

- Have odd number of locations in the feature map and to easily determine
at what centre cell the object belongs;

- Get an output feature map of 13x13 through a convolutional layers down-
sampling of 32 ratios.

The anchor boxes method affects in the accuracy in fact, Y.O.L.O. predicts at least 98
boxes per image and Y.O.L.O.v2 can predict until a thousand ones. Without changing
in the network, the model gets 69.5 mAP with a recall of 81%. In Y.O.L.O.v2 the use
of anchor boxes reduces the mAP of a 0.3 factor, but the recall reaches 88%.

Dimension Clusters

The priors have similarities that are not too many in each dataset, so it is necessary
to choose the most important one to be used. In the classical anchor boxes approach,
the priors are find by hand and that increases the complexity of the network. In order
to simplify the process, it is used a K-means clustering on the training dataset. With

23

Chapter 3. Y.O.L.O.

Figure 3.5: Priors found with K-means clustering [24].

this method it is possible to find the principal boundary boxes through the centroids
(figure 3.5).
K is the number of clusters and has to be tuned depending on the used dataset and its
complexity. The choice has to guarantee a good IoU scores independently from the size
of the box. As it is possible to see in the figure 3.6 K=5 is a great trade-off between
the complexity of the model and the high recall.

Figure 3.6: Clustering box dimensions on VOC and COCO. The right
image shows the relative centroids found for VOC and COCO [21].

By analysing the difference between the handmade priors and the K-means method
it is possible to notice an increasing in the IoU average of 0.2 and consequently a
simplification of the network.

Direct Location Prediction

The anchor boxes used is responsible of the model instability during the initial itera-
tions. The instability problem derives from the prediction of the (x, y) coordinate of
the box. The classical offset prediction approach is extremely difficult to stabilize, so
it is preferable to predict the coordinate related to the position of the grid cell. In this
way the network’s prediction must be in the 0 to 1 range from the ground truth. It

24

Chapter 3. Y.O.L.O.

is possible to predict 5 bounding boxes for each cell and find their respectively values
through the following formulas:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

Pr(object) ∗ IoU(b, object) = σ(to)

From these equations are obtained (figure 3.7):

• tx, ty, tw, th: the coordinate of each bounding boxes;

• (cx, cy): normalized by the size of the image, is the origin point set in the top
left of the prior;

• bx, by, bw, bh: the predicted boundary box;

• σ(to): the confidence score of the box;

• cw, ch: , normalized by the size of the image, are the width and the height of the
prior.

Figure 3.7: Visualization of Y.O.L.O.v2 boxes algorithm. The dotted
box is the prior and the blue box is the predicted boundary [21].

This prediction method further simplifies the network and increases the performance
of 5%.

Fine-Grained Features

Y.O.L.O. does a prediction with a 13x13 feature map. It is sufficient and works correctly
with the medium size objects, but it can have some problems in case of small object

25

Chapter 3. Y.O.L.O.

recognition. Both SSD and Faster R-CNN run the proposal networks over many feature
maps obtaining object of different dimension, using a range of resolutions. In order
to do that in the Y.O.L.O. network, as it passes through the image only once, it is
necessary to add a pass-through layer to modify the resolution of the feature map from
13x13 to 26x26. The detector is set on the top of these features expansion and the
result is an increase of 1% of the performance.

Multi-Scale Training

Initially Y.O.L.O. receives input size images of resolution 448x448, but the use of
anchor boxes modifies this value into 416x416. However, considering that the new
architecture is composed by convolutional and pooling layers, the size can be changed
simply on the fly. This reduce the complexity of the network and Y.O.L.O.v2 results
more robust to run on images of various dimensions. In this way the input image size
is not fixed, but every 10 batches the network chooses a new image size randomly.
The model down-samples by a 32 factor, so it can be trained with images of different
sizes from 320x320 to 608x608 (320, 352, .., 576, 608). The use of different resolution
images during the training of the network increases the quality of the predictions. Now
the system can be used for lower resolution applications with an increase in the mAP,
which becomes next to the Fast R-CNN with more than 90FPS. At high resolutions
Y.O.L.O.v2 reaches 78.6mAP with PascalVoc.

Accuracy and Speed Comparison

Y.O.L.O.v2 is faster and more accurate than the previous object detection algorithms
(figure 3.8) because it is trained to run at different resolutions.

3.3.2 Speed
A speed improvement is requested in Y.O.L.O.v2 to maximize the performance of the
algorithm. Most of the networks use as feature extractor VGG-16, which is powerful,
but extremely complex: it requires 30.69 billion of floating point operations to analyse
an image with 224x224 resolution.

A solution can be replacing this architecture with GoogLeNet, which guarantees an
important improvement in the processing time although the accuracy decreases by 2%.

Another improvement is obtained changing the classification model and using Darknet-
19. This new classifier uses 3x3 filters and doubles the number of channels after every
pooling step. Moreover, it uses 1x1 filters to compress the feature map representa-
tion between 3x3 convolutions and also global average pooling to make predictions.
Darknet-19 processes an image using only 5.58 billion operations and reaches 72.9% of

26

Chapter 3. Y.O.L.O.

Figure 3.8: Accuracy comparison for different detectors [21].

top-1 accuracy and 91.2% of top-5 accuracy on ImageNet.

The network is trained on ImageNet with a dataset composed by 1000 classes for 160
epochs and considering momentum of 0.9, weight decay of 0.0005, stochastic gradient
descendent with starting learning rate of 0.1 and a polynomial rate decay with a power
of 4.

27

Chapter 3. Y.O.L.O.

Y.O.L.O.v2 architecture is showed in the following table:

Layer Filters Stride Output

Convolution 32 3x3 224x224
MaxPooling 2x2/2 112x112
Convolution 64 3x3 112x112
MaxPooling 2x2/2 56x56
Convolution 128 3x3 56x56
Convolution 64 1x1 56x56
Convolution 128 3x3 56x56
MaxPooling 2x2/2 28x28
Convolution 256 3x3 28x28
Convolution 128 1x1 28x28
Convolution 256 3x3 28x28
MaxPooling 2x2/2 14x14
Convolution 512 3x3 14x14
Convolution 256 1x1 14x14
Convolution 512 3x3 14x14
Convolution 256 1x1 14x14
Convolution 512 3x3 14x14
MaxPooling 2x2/2 7x7
Convolution 1024 3x3 7x7
Convolution 512 1x1 7x7
Convolution 1024 3x3 7x7
Convolution 512 1x1 7x7
Convolution 1024 3x3 7x7

TABLE 3.3: Structure of Y.O.L.O.v2.

3.3.3 Hierarchical Classification
The datasets used in object detection have less class categories than those used for clas-
sification. In Y.O.L.O.v2 the images are mixed from both detection and classification
datasets during the training. The whole network is trained once using object detection
samples, instead, the classification loss is back-propagated from the classification path.
However, the main problem is to find a way to merge different datasets in order to
avoid mutual exclusion classes. The solution is the use of a hierarchical classification
(figure 3.9).
This type of structure links an image detected as “cat” from COCO to “Siamese cat”
recognised from ImageNet. According to that it is generated a WordTree structure
with parent/children used also for the final classification result. Generally, the children

28

Chapter 3. Y.O.L.O.

Figure 3.9: Structure of COCO, ImageNet and WordTree dataset [21].

confidence is law, so the output confidence of the all system is related to their parent
(in this case of the “cat”).

Joint classification detection

Using the Y.O.L.O.v2 structure with only 3 priors it comes up Y.O.L.O.9000.
Y.O.L.O.9000 leads the WordTree to the limits linking the COCO detection dataset
to the top 9000 classes from the ImageNet release. In conclusion joint classification
detection training makes the network able to detect the object in the images using the
detection data of the COCO dataset and to classify a large quantity of these objects
with ImageNet.

29

Chapter 3. Y.O.L.O.

3.4 Y.O.L.O.v3
Y.O.L.O.v3 [25] is the last evolution of this network. It introduces a notable modifica-
tion in the class prediction. Until now the classifiers have a mutually exclusive output
labels, so the final softmax function has maximum result equal to 1. Y.O.L.O.v3 mod-
ifies this structure and becomes a multi-label classifier, so an output result could be
labelled as both “car” and “vehicle”. The softmax function is not limited anymore to 1,
so it is replaced with an independent logistic regression classifier which calculates the
correct belonging of the input to a specific label. In this way, the mean square error
of the classification loss is eliminated and replaced with the cross-entropy loss for each
label and the cost function is modified. An objectness score equal to 1 is linked to the
prior bounding box that overlaps a ground truth object. For the priors that satisfy the
predefined threshold of IoU, the cost function is equal to 0. In this way, only a ground
truth object is linked to a prior boundary box and, if more bounding boxes satisfy the
requirements, there is no classification.

3.4.1 Prediction
Y.O.L.O.v3 makes 3 predictions for locations including: bounding boxes, 80 class scores
and objectness. A concept similar to Feature Pyramid Networks (FPN) is used to
extract the features and it is explained in the following steps:

1. Realizing a prediction in the last feature map layer;

2. Taking into account the 2 layers back and up-samples this layer by 2;

3. Taking a feature map from the earlier and merging it with the up-sampled feature
map in order to have more detailed information of both the resampling features
and finer-grained;

4. Adding a convolutional filter on the merged map to obtain the second prediction;

5. Repeating the process from the second step in order to obtain the final prediction.
In this way the last prediction will take into account of the previous calculations
and of the fine-grained features of all the network.

The priors of Y.O.L.O.v3 are found using K-Means clustering on the COCO dataset.
The preselected clusters are 9: (10x13); (16x30); (33x23); (30x61); (62x45); (59x119);
(116x90); (156x198); (373x326). These ones are divided into groups and then assigned
to a specific map, so the object can be detected better.

3.4.2 Feature Extraction
The network used for the feature extraction is changed from the Darknet-19 of Y.O.L.O.v2
to Darknet-53 of Y.O.L.O.v3, so there is an important increase of layers (figure 3.10):
now it has 53 convolutional layers.

30

Chapter 3. Y.O.L.O.

It better uses the GPU because it reaches the best, highest value of floating point
operations per second, so it is more powerful than the Darknet-19 and still more efficient
than ResNet-101 and ResNet-152.

Figure 3.10: Darknet-53 network structure [25].

31

Chapter 3. Y.O.L.O.

3.4.3 Results
As it is possible to see in the figure 3.11 Y.O.L.O.v3 is the fastest and performant
network tested on COCO dataset. The multi-scale predictions increase the APs per-
formance of the network and the small object detection is not a problem anymore.
Differently there is a little worsening in the detection of medium and large dimension
objects.

Figure 3.11: Performance comparison [25].

It is strongly used for the real-time operation with great results. There are many
types of this network depending on the complexity requested by the algorithm (as for
example Y.O.L.O.v3, Y.O.L.O.v3-tiny, Y.O.L.O.v3-spp) and on the resolution of the
images adopted (320, 416, 608).

32

Chapter 4

Metrics

The machine learning researchers can be divided in two factions, supporting two dif-
ferent ideas. The first one believes in the uselessness of knowing how exactly a neural
network works, differently the second one says that it is important to know every-
thing about it: parameters, steps, all the network structure to have the control of each
passage.
However, it is extremely complex to understand how a neural network works, moreover
the one used for deep learning. Generally, the global functionality and the general
passages are clear, but it is difficult to go into details of the particular values used.
The thing that the researchers have in common is the necessity to evaluate the results
and to understand if and how a network is performing. To do that many methods are
used to evaluate the networks. In the following part of the chapter the ones used in
this thesis work are listed in order to evaluate the performance of the used algorithms.

4.1 Metrics used for Object Detection
The methods used to evaluate the object detection analysis are different from the
general ones because in this case the evaluation is based on pixels and not on boolean
data. There are two main methods: IoU and Mean Average Precision.

4.1.1 IoU
Intersection over Union [26] is the evaluation metric used to assess the accuracy of an
object detection neural network on a particular test dataset. It can be used easily with
all the algorithms that give bounding boxes as output and it needs only two elements
per image to evaluate:

• Ground-truth bounding box : the minimum box size that can contain the detected
object. It is hand labelled from the programmer;

• Predicted bounding box : the output of the model.

33

Chapter 4. Metrics

IoU measures the overlapping between these two regions (figure 4.1) with a simple
mathematical operation:

IoU = Area of Overlap
Area of Union

and its value is a number between 0 and 1. In case of perfect overlap it is equal to 1,
differently if the two boxes do not overlap at all the IoU is 0 (figure 4.2). Generally an
acceptable IoU is considered over 0.5.

Figure 4.1: IoU application on a person. The red box is the predicted,
differently the blue one is the ground-truth [27].

(a) IoU calculus. (b) Examples of IoU results.

Figure 4.2: IoU computation and evaluation [26].

Ground-truth

The real problem of the IoU computation is related to the ground-truth bounding
boxes because each algorithm requires a specific ground-truth format file. There are
some programs that are able to give also different outputs for the selected dataset, so

34

Chapter 4. Metrics

it is possible to choose the one compatible with the ground-truth request. However,
not all the networks can give a specific output format and it is necessary to create
autonomously the ground truth files starting from the predicted output files of the
network. This is why, before, it has been said that the ground truths are hand labelled.

4.1.2 Mean Average Precision
The mean Average Precision evaluates the general performance of the network, so it
is not referred to a single prediction, as for IoU computation. In order to understand
how it is computed it is necessary to firstly recap the definition of Precision and Recall
factors.

Precision & Recall

The Confusion Matrix is a table used to evaluate the correctness of an object detection
network.

Predicted
P N

Real

P
True

Positive
(TP)

False
Negatives
(FN)

N
False
Positive
(FP)

True
Negatives
(TN)

Each Predicted result of a network enters into the confusion matrix and is compared
to the Real one, obtaining as output one of the following four combinations:

- TP = True positive (positive predicted and positive real);

- TN = True negative (negative predicted and negative real);

- FP = False positive (positive predicted and negative real);

- FN = False negative (negative predicted and positive real).

By doing this operation for all the predicted values of the network we obtain the global
values of the TP , TN , FP and FN , so they can be used to compute the evaluation
criteria as for example the precision factor and the recall factor.

• Precision (True Positive Rate): it evaluates the correctness or the prediction

TP

TP + FP

35

Chapter 4. Metrics

• Recall (Sensitivity): is the ratio between the predicted positives and the possible
positives

TP

TP + FN

These factors depend on the pre imposed threshold as the IoU detection (generally
IoU>0.5) because it determines the results of the detections. In fact, if a box has a
IoU under the threshold it is TN, differently if its IoU is over the threshold it is TP.
This affects the performance of a classifier, which can be evaluate considering how the
threshold changing affects the precision and recall factors.
In case of a good classifier the precision will remain high when the recall increases. If
the classifier is weak a loss of precision is required to have a high recall.
This behaviour can be shown using the Precision-Recall curve (figure 4.3).

Figure 4.3: Example of a Precision-Recall graph [28].

AP

The Average Precision is an important value used to make the comparison of the results
graphs of different algorithms possible.
The rigorous definition of the AP said that it is the area under the Precision-Recall
curve. However, this can give strange results with few variations, so the solution is to
use the interpolated precision technique. This method is very common and usually it
is used to indicate the AP. In this case it is not considered exactly the area under the
curve, but an approximation of it. In the figure 4.4 it is shown the area considered (the
one under the green line) using the interpolation method.

36

Chapter 4. Metrics

Figure 4.4: Example of a Precision-Recall approximated graph with
interpolation technique [28].

mAP

It is possible to evaluate all the classes of the network using the AP of each one. The
mean of all the classes considered is called mAP (figure 4.5). This value depends on
the IoU predefined value.

(a) False and True predictions of the whole de-
tected classes.

(b) mAP and the AP related to each class.

Figure 4.5: AP and mAP example results [29].

In this work thesis the mAP is used to evaluate the results of the networks chosen. This

37

Chapter 4. Metrics

value is calculated both with IoU=0.5 (that is the same of AP) and with IoU=0.75 for
the networks pre-trained with COCO dataset and these values are compared with the
same ones obtained after the retraining of these networks just for the class person.

38

Chapter 5

Robot

5.1 Introduction
A Robot is a programmable machine, autonomous or semi-autonomous, capable of
performing a series of tasks alongside or in the place of a man. It can perform ex-
clusively mechanical and repetitive tasks or adapt its behaviour to the surrounding
environment, learning from experience. A robot is composed by a hardware part and
a software part. Everything related to motors, circuits, mechanism and sensors is
part of the hardware. Differently, the components of the software are: microcontroller
firmware and map building software. Dependently on which part we have to operate
in, there are different platforms. The Robot software platform contains many tools
used in robot application programs. The hardware platforms are not only study, but
also commercial platforms. The most important software platform used to control the
robot is ROS, that is the acronym of Robot Operating System. It is an open source
framework used to control robots’ tasks, motions and other operations. It is very sim-
ple to use, so it is perfect not only for people that daily work with robots, but also for
the beginners.
The most important robot packages are two:

- PR2 for mobile-based humanoid robot. It is really performant, but quite expen-
sive;

- TurtleBot is the most used such that increases the market of ROS.

The TurtleBot package exists in three versions. The first one is followed by TurtleBot2,
where the mobile platform adopted is KOBUKI, and then there is TurtleBot3 developed
in collaboration between Open Robotics and ROBOTIS.
There are other many robots used for different applications, the most important are
set in the following list:

• Industrial robots: similar to a human arm with wrists and an arm;

39

Chapter 5. Robot

• Humanoid robots: similar to a human body with a torso, two legs, two arms and
2-5 fingered hands;

• Biomimetic robots: similar to animals;

• Service robots: they have different structures, but the most popular is wheeled;

• UAVs: Unmanned Aerial (or Autonomous) Vehicles, the most common are the
quadcopters;

• Exploration robots: used during planetary or deep space exploration.

5.2 Sensors
Sensors are devices able to give a miserable response to a change in physical quantity
related to the robot itself or to the external environment. Generally, sensors convert
the physical quantity into a signal that can be measured electrically. The sensors are
divided in classes using some criteria:

- Applications;

- Primary Input quantity;

- Transduction principles;

- Used technology and material;

- Various measured property.

All the information collected from the sensors is used by the robot in order to perform
actions or other operations as for example generating a map or interacting with objects
or humans.
The most used sensors are the ones related to the mobile robots that collect informa-
tion from the environment, so they could have some problem related to the dynamic
changing of the environment or they could be affected by the noise.

The most common sensors are: encoders, resolvers, inertial sensors, inclinometers,
gyroscopes, IMUs (Inertial Measurement Units), accelerometers, MEMs, beacons, GPS,
distance sensors such as LDS (Laser Distance Sensor), LiDAR (Light Detection and
Ranging) or LRF (Laser Range Finders), ultrasonic sensors, laser sensors, IR sensors,
3D sensors, vision sensors, inertial sensors, microphones and torque sensors.
Depending on the type of sensor used for a specific topic, the robot receives different
data information with a specified frequency that has to be inside the limit of the
microprocessor. For example, 1D or 2D sensors do not send heavy data, differently,
from the camera that needs a high processing power microprocessor able to collect and
analyse a lot of data.

40

Chapter 5. Robot

There are many ROS packages related to the sensors, which are classified in 1D range
finders (as Infrared distance sensor), 2D range finders (as LDS generally used in nav-
igation), 3D sensors (as Intel RealSense), pose estimation (GPS+IMU), cameras, au-
dio/speech etc...

5.2.1 Cameras
The vision is the most important human sense and it is also very important in robotics
because it is not expensive and gives many data information of different type. The
images taken from the camera sensors are used to recognise the objects and all the
environment around the robot.
There are many applications [30] both in 2D (as for example object detection, colour
recognition) and 3D (as for example distance evaluation) even if the 3D collected data
generate a more robust system. In fact, as many 2D information of the environment
could rapidly change, the 3D data are invariant, so many algorithms are interested in
3D.

5.2.2 Depth Camera
As it is anticipated many algorithms work better with 3D data and that increases the
big progress in low-cost depth cameras. These are active devices.
The ToF (Time of Flight) cameras is one application of the depth camera in which a
transmitter emits a modulated light. This light is reflected by t he o bjects a nd i t is
received by a sensor, in this way it is possible to measure the distance from each pixel.
This is an efficient algorithm; however, it is too expensive because it needs the use of
a complex hardware.
Other depth cameras are based on the method of the structured light. This consists
in illuminating the object with structured light and using 2D image sensor in order to
detect the reflected p attern. In this way the depth camera is composed by an infrared
projector and an infrared camera, which uses a coherent radiation pattern, differently
from the ToF. This method is cheaper than the previous analysed, so it is generally
used for low-cost robot.
The last depth camera method is the stereo-camera. It is based on the work of left
and right eyes of the people. The stereo-camera is composed by two image sensors for
capturing the image. The distance between the two lens is important to calculate the
grid value using the difference between the two images. To compute the distance value
between the camera and the object the stereo-camera uses the triangulation method.
It consists in an infrared projector which emits IR with a coherent method and two
infrared image sensors have to collect the receiving infrared rays to recreate an image.

41

Chapter 5. Robot

5.2.3 Laser Distance Sensor
Laser Distance Sensor (LDS) is a series of different sensors as for example: Light
Detection and Ranging (LiDAR), Laser Scanner and Laser Range Finder (LRF).
LDS measures the distance from the reflecting obstacles on a plane and gives high
performance with real-time data acquisition that is why it is commonly used in robotic
applications to find the distance between the robot and a person or an object in the
environment.
LDS is constructed by a laser source, a motor and a reflective mirror. The motor
rotates the mirror around an axis while it is scanning by using the laser. The typical
range of a LDS goes from 180◦ to 360◦. The object is scanned in the horizontal plane,
so the objects are better detected and the accuracy is inversely proportional to the
increasing distance.
There are some problems in the use of the LDS. The first is that not all the objects
of the environment are able to reflect the laser correctly. In fact, there are some
objects made in plastic or transparent glass that spread the laser in other directions
generating a wrong or not accurate distance measurement. The second problem is that
the acquisition of the data is done only in 2D, so it is a sort of limit of the sensor.
The last is about the possible damage on eye risk. The lasers used from the LDS are
classified with a number between 1 and 4, small numbers correspond to minor damage.
The data collected with these sensors can be used in order to create a map of obstacles
around the robot and to understand the pose of the robot inside it. One of the main
program used to elaborate the LDS data is SLAM (Simultaneous Localization and
Mapping).

5.2.4 ROS Motor Controller Drivers
Dynamixel is an high-performance actuator designed for robots, that has been created
by the ROBOTIS company [31].
It has many features:

- Versatile because it has a vast range of applications;

- All of its parts are integrated in one module;

- Easily to be modified because it is reconfigurable and modular so many dynamix-
els can be chained together;

- Some of its registers contain information about its internal and external condi-
tions;

- Stable and too efficient.

There are three different versions of Dynamixel as it is shown in the figure 5.1.
Dynamixel is used in robotics applications principally because it can give information
about the torque control, the speed and the position.

42

Chapter 5. Robot

Figure 5.1: Types of dynamixel [31].

5.3 Embedded System
An embedded system is a microprocessor or microcontroller based system that is real-
ized to execute some determined tasks. It has three components: a hardware part, a
software platform and a real time operating system.
Generally, many embedded systems are necessary to implement the tasks of the robots
and to control real-time the actuators and the sensors of the robots.
In the TurtleBot3 there is as microcontroller an ARM Cortex-M7 to control the sensors
and the actuator.

5.3.1 OpenCR
OpenCR (Open-source Control Module) is the embedded board used to control the
operation of the TurtleBot3 robots and is developed to be compatible with ROS. The
MCU supported by OpenCR is the STM32F7. That is a powerful microcontroller able
to elaborate many data also with floating point computation.
There are many peripherals used to connect and control many devices as for example it
makes possible the communication with Dynamixel of the Robot or sensors as LiDAR
or camera.
The chip fixed in the middle of the OpenCR board integrates in one chip triple-axis
accelerometer, gyroscope and magnetometer sensor, so has different uses (figure 5.2).

43

Chapter 5. Robot

Figure 5.2: OpenCR interface configuration [32].

5.4 TurtleBot
TurtleBot is a standard platform of ROS and stands for the homonym robot used
for many applications by students, developers and also beginners, in fact it is easy to
understand. The name and the logo are inspired on the turtle animal.
Actually the used version is the third: TurtleBot3, which try to solve the problems
or lacks of the previous versions and also to satisfy the user’s requests. It uses the
actuator seen in the previous chapter: Dynamixel for driving motions. Three are the
robots of the third version: TurtleBot3 Burger, Waffle and Waffle Pi.
TurtleBot3 is a small programmable robot easy to modify, in fact, it is possible to
realize different configurations of the robots adding or eliminating some sensors or
changing the mechanical part structure (figure 5.3). Its low-cost price does not affect
quality and performance.

44

Chapter 5. Robot

Figure 5.3: TurtleBot3 Hardware components [33].

45

Chapter 5. Robot

5.5 Hardware components used
The problem of this thesis comes from the necessity of a real-time algorithm that is
able to do person detection and elaborate these data to move the robot and doing
person tracking. Of course all of these operations must be as instantaneous as possible
because the risk is to lose the person to follow in case the robot moves away from the
person’s view.
A set of possible hardware has been analysed in order to find the best solution for
this specific application. In the following paragraph the various combinations adopted
depending on the different type of algorithm are explained and the reason why each of
them is usable or it could be discarded.

5.5.1 Object detection hardware
In order to run the object detection algorithms more configurations have been tried:

1. Intel R¥ RealSenseTM Depth Camera D435i and the first configuration of Intel R¥
Compute Stick (A+B1);

2. Intel R¥ RealSenseTM Depth Camera D435i and the second configuration of Intel R¥
Compute Stick (A+B2);

3. Intel R¥ RealSenseTM Depth Camera D435i and NVIDIA R¥ JetsonTM (A+C).

A) Intel R¥ RealSenseTM Depth Camera D435i

Figure 5.4: Intel R¥ RealSenseTM Depth Camera D435i [34].

It is used replacing the Intel R¥ RealSenseTM Camera R200 given inside the TurtleBot
set. It is a stereo-camera able to guarantee high quality depth for many applications
[34].
A vision processor and an Intel module are put united into a small form factor yields to
guarantee an optimal device, which can be use both by developers and for production.
In fact, it is a low-cost camera able to interact with the environment. As it belongs

46

Chapter 5. Robot

to the D400 series of cameras, it can be integrated easily and has as support platform
Intel RealSense SDK 2.0.
It is ideal for robotic applications such as navigation or object recognition.
The i at the end of the camera serial name stands for the presence of IMU in the
camera, which puts together many sensors with gyroscopes to detect both movements
and rotations in 6DoF.

Figure 5.5: Internal hardware components of Intel R¥ RealSenseTM

Depth Camera D435i [34].

With a D4 processor the D435i camera is composed by a RGB module, a left and a
right infrared cameras separated by a wide IR projector, so it is possible to use four
different camera types:

• RGB with resolution up to 1920x1080;

• Infrared 1;

• Infrared 2;

• Depth (made using the two infrared cameras as stereo-camera) with resolution
up to 1280x720, 90◦ of diagonal FOV and reaches at most 90 FPS.

The images from the stereo-camera are already rectified from the camera, so it is not
necessary the use of algorithm for the rectification.
The range of application of this camera depends on the lighting condition, but generally
is from 0.105 [m] to 10 [m].
In the figure 5.6 it is shown the main important technical specifics of this camera, for
any other detailed information see the complete datasheet [35].
In order to not lose information from the streaming of the D435i camera it is necessary
to connect it to other devices using a USB 3.1 Gen 1, this has been one of the problems
to be solved in this thesis. In fact, to do person tracking in the indoor environment it
has been chosen a TurtleBot3, but it has as single board computer: a Raspberry Pi,

47

Chapter 5. Robot

Figure 5.6: Technical specifications of Intel R¥ RealSenseTM Depth
Camera D435i [34].

which does not support this type of USB, so it has been necessary to find a solution
using a different hardware. Three solutions have been taken in consideration and here
they are showed detailed including the reason that led to the choice of one of them
only.

B) Intel R¥ Compute Stick

It is a small device able to convert the HDMI desktop into a complete computer. It
is wireless connected. Its RAM memory reaches 4GB and is as an integrate storage of
64GB.
The small dimensions are optimal for its use, in fact, it is easily integrated in the
TurtleBot3 structure. Moreover, it has a USB 3.0 port, so it is possible to connect the
camera to it and to process the image data without losing information.
The Intel Compute Stick (figure 5.7) has been used as an image processing computer
in the TurtleBot3 supported by wireless connection of a Remote PC in two different
configurations in order to find which has been the best solution to use:

48

Chapter 5. Robot

Figure 5.7: Intel R¥ Compute Stick.

1. The master has been set in the Remote PC, from which also the algorithm has
been launched and run. In the Intel Compute Stick only the camera has been
run;

2. The master has been set in the Remote PC and both the camera and the algo-
rithm have been run in the Intel Compute Stick.

Before the related explanation it is important to underline that these tests have been
done using the TurtleBot3 Burger present on the LIM and only the Haarcascade clas-
sifier algorithm because Y.O.L.O. needs different hardware component to run, Intel
Compute Stick is not sufficient, so it is necessary another solution to run the deep
learning algorithm in real-time.

First solution result:
The camera and the classifier have been mostly synchronized: the execution frequency
of the algorithm has been often lower than the one necessary by the camera to refresh
the image, so the movements of the robot have been fluid and fast. However, the
movement of the Burger has been not coherent with the developed algorithm and that
has been particularly evident in the linear velocity. In fact, sometimes the detection
algorithm has not worked correctly because the Intel Compute Stick needed more time
to update the depth camera matrix values. In this case, the distance robot-person
detected has been closed to 0 [m], so there are two consequences:

- if the person is too near the robot, the robot moves rightly;

- if the person is far away from the robot, the robot moves intermittently forward
and backward.

This problem was not noticed before in the simulation environment because the camera
has been directly connected to the PC with an extremely performant graphics card, so
the RealSense has run in real-time ensuring proper TurtleBot3 movements.

49

Chapter 5. Robot

It has not been possible to solve this problem in any way, not even trying to adjust the
frequency of the algorithm or stopping it for a set time. It cannot be usable.

Second solution result:
The camera and the classifier have run correctly. The control algorithm has given op-
timal result, but the computational time has been extremely high, so the movements
of the robot have been too slow even if coherent with the detected distance both in
linear velocity and angular velocity, exactly as during the virtual simulations. This
problem is related to the absence of a video card in the Intel Compute Stick, so the
algorithm runs only at computational level increasing the run time mostly when the
classifier detects the person. Differently when the person has not been detected the
run time has been too fast. Also this problem has not been possible to solve, so this
solution is not performant.

According to the explained experiments, even if the use of the Intel Compute Stick
could seem to solve the Intel R¥ RealSenseTM Depth Camera D435i necessity of a USB
3.0, both these configurations cannot be used for this thesis. The request of a real-time
response of all the hardware components, software platform and algorithms is the most
important thing to be respected, so it has been necessary to find a new device.

C) NVIDIA R¥ JetsonTM

The NVIDIA R¥ JetsonTM is a System-on-Module able to guarantee high power effi-
ciency and performance. Inside it contains DRAM, CPU, PMIC, flash memory storage
and GPU.
The Jetson presentations are too high even if it has a small form factor, so that it is
able to run algorithm of deep learning at high level performance. Depending on the
applications there are many types of Jetson.
In this work thesis the necessity of an accurate and real-time execution is fundamental,
so combining this with the hardware availability of the LIM it has been chosen the
NVIDIA Jetson AGX Xavier developer kit.

Jetson AGX Xavier Series
It is a computer whose first application was destined to robots, drones and autonomous
machines. It contains a set of AI tools able to train and run neural networks rapidly.
The developer kit of the Jetson Xavier (figure 5.8) makes possible many types of AI
robotic applications. The kit is supplied with many software libraries as NVIDIA
JetPack, DeepStream SDKs, CUDA R¥, cuDNN, and TensorRT, so it is ready to be
used.
In the following figure 5.9 the technical specifications of the used card are shown.
The use of the NVIDIA Jetson AGX Xavier developer kit solves some problems pre-
viously analysed. In fact, the presence of an USB type C guarantees the RealSense

50

Chapter 5. Robot

Figure 5.8: Jetson Xavier Developer Kit [36].

optimal operation during both the simulation environment and the tests on the robot.
It is used as the PC of the TurtleBot3 with a support Remote PC wirelesses connected.
This is the optimal solution found for this thesis project because, with the use of only
one hardware, it is possible to run the two selected algorithms with a great efficiency
also in the one of deep neural networks. However, the dimensions of this Jetson are
not so limited, so there has been the necessity to change the TurtleBot3 components
and structure in order to integrate perfectly all of them in the robot. Of course,
the TurtleBot3 Burger could not be used anymore due to its compact and reduced
dimensions, so the changes have been applied only in the TurtleBot3 Waffle and the
result has been a creation of a new robot called Jaffle.

51

Chapter 5. Robot

Figure 5.9: Technical specifications of the Jetson Xavier Developer
Kit [37].

52

Chapter 5. Robot

5.5.2 Person tracking hardware

JAFFLE

The name Jaffle comes from the union between the Jetson and the Waffle.
It is an improvement of the TurtleBot3 Waffle in hardware and structure. The new
robot uses the Jetson Xavier developer kit as PC which takes the data information
from the RealSense depth camera D435i and the LiDAR and is able to communicate
to the OpenCR card, which gives the command of movements to the motors.
In the Jetson integration we have three main problems:

1. the necessity of a Wi-Fi connection instead of the classical used of the Ethernet
cable;

2. the problem of power supply without cable connection to the plug;

3. the not immediate compatibility between the Jetson and the RealSense camera
used.

Solutions:

1. The Wi-Fi necessity has been easily solved using a USB Wi-Fi.

2. The power supply problem has been exceeded using an old battery which has been
modified in order to respect the technical specifications required from the Jetson
Xavier developer kit. The battery used is a LiPo 4S and in order to guarantee its
correct work it has been created a sensor relevant battery discharge, which emits
sounds when the battery needs to be recharged.

3. Many attempts have been done in order to solve the problem of compatibility of
these two devices. In fact, to work with ROS the RealSense camera needs some
packages and installations which are easy to obtain for common PC or Jetson
TX1 or TX2, but too complicated for the Jetson Xavier. However, in the end
they have been able to communicate and work together.

The result is the Jaffle (figure 5.10).

53

Chapter 5. Robot

Figure 5.10: Jaffle.

5.5.3 Final choice Hardware components
The previous hardware component analysis has given as final result the union of the
following hardware elements:

• Turtlebot3 waffle;

• Jetson Xavier Developer Kit;

• Intel R¥ RealSenseTM Depth Camera D435i;

• Battery LiPo 4S + sensor relevant battery discharge.

This has been considered the best choice to adopt in this work thesis.

5.6 Software used

5.6.1 Operating system and ROS platforms
Ubuntu is a free open-source operating system based on the Debian GNU/Linux dis-
tribution. The Ubuntu release used in this project is Ubuntu 16.04 LTS with the ROS
Kinetic Klame platform installed inside.
ROS is a meta-operating system used for many combinations of hardware implemen-
tation. It has five characteristics:

1. Re-usability;

54

Chapter 5. Robot

2. Communication-based program;

3. Support of development tools (visualization and simulation tools);

4. Active community;

5. Construction of an ecosystem.

The organization of the code must followed this scheme (figure 5.11):

Figure 5.11: ROS code building organization.

• Metapackage: is a set of packages with the same purpose;

• Package: is a folder of files that are used for specific purpose. The files are
executables, make-files or files indicating dependencies;

• Node: executable file that publishes a topic or subscribes to another.

The ROS execution structure is the following (figure 5.12):

• Master: is the top node which controls the topics and connects Subscribers with
the Publishers;

• Node: process that performs the calculation. The ROS node is written using
the library roscpp (C++) or rospy (Python);

• Message: is a data used in the topic.

55

Chapter 5. Robot

Figure 5.12: ROS execution structure.

5.6.2 Packages used in the project
• librealsense2: SDK 2.0 package used to communicate with the Intel R¥ RealSenseTM

Depth Camera D435i [38];

• realsense2_camera: it is used for publishing the camera data using libre-
alsense2 [39];

• darknet_ros: it is the package used for run Y.O.L.O. in ROS [40];

• turtlebot3: it is a meta-package containing many other packages internally used
for configuring the robot motor and sensors and moving it [41].

5.6.3 Gazebo
Gazebo is a 3D environments simulator with high-quality graphics used especially in
the robot navigation. It can run easily in the PC devices with ROS installed.
Gazebo provides robots, sensors and different choices of environments to have a realistic
simulation of the robots’ movement with its physics engine and the results are accurate.
For this reason, it is the most used simulator for robotic applications.
It is possible to set different environments and light condition. The most common
robots and sensors are already supported in this simulator, so it is possible to choose
them or configured new ones, using a SDF file.
This simulator is used in this work thesis to test the correctness of the developed control
algorithm.

5.6.4 RViz
RViz is the 3D visualization tool of ROS. It can display live the sensor information
published into the ROS topics related to the active sensors (camera, LiDAR, IMU, ...).

56

Chapter 5. Robot

It is usually used in the navigation applications, as for example obstacle avoidance,
because it can construct a map and localize it inside the robot, so giving a goal the
robot can move inside the map autonomously.
This visualization tool is used both for the live visualization of the topics of the Intel R¥
RealSenseTM Depth Camera D435i and for the obstacle avoidance part.

57

Chapter 6

Implementation

The implementation of a person tracking code consists of the union between an object
detection algorithm and a control and regulation algorithm of the robot movements.
As in the previous chapters §2 §3 is anticipated, the object detection algorithms used
for this work thesis are, for the already explained reasons, two types:

• Haarcascade classifier : cascade real-time algorithm belonging to the classical
machine learning algorithms;

• Y.O.L.O.: Deep Neural Network real-time algorithm.

The movements of the Jaffle are controlled by the combination of linear and angular
velocity regulation.
In the rest of the chapter it is explained how the implementation of the whole code is
realized.

6.1 Person Detection

Person detection is done using the Intel R¥ RealSenseTM Depth Camera D435i. The
camera is launched with ROS and many of its topics are used in the following algo-
rithms.

6.1.1 Haarcascade Classifier
The Haarcascade Classifier is a real-time object detection method too old compared
to the deep neural networks technology. However, from the previous analysis on the
object detection algorithm, it seems to have a great performance and a low price, so it
is the first algorithm developed and tried for this thesis.
As it has some troubles with the brightness, both RGB camera and Infrared camera are
used in the code to avoid the not detected object problem. The Haarcascade classifier
does person detection in two different, but parallel ways:

58

Chapter 6. Implementation

• Using RGB camera as first choice because it guarantees the best detection (the
auto-exposure setting guarantees the best result also in backlight condition) and
the depth camera set aligned− to− color in order to obtain the same FOV and
a match in the pixels.

• Using Infrared camera as second choice (generally it is used for all the distance
detection and in darkness condition) and the depth camera set as image− rec−
raw in order to obtain the same FOV and a match in the pixels.

Independently from this choice it is found the position of the person in the space from
the centre of the frame. The X and Y coordinates are in pixel instead the Z coordinate
is in mm.
The Haarcascade classifier is introduced in the code simply uploading it as a .xml file
with a cv2 function:

<variable_1> = cv2.CascadeClassifier(<path>/<classifier-name>.xml)

If the upload operation gives a positive result the video frames of the RealSense cam-
era are converted in greyscale, eliminating many information, to facilitate subsequent
operations. As both RGB and Infrared cameras are used in the algorithm, only the
RGB one must be converted in greyscale. The other is already in this requested colour
mode.
Then it is used another cv2 function in which many detection parameters are given to
the classifier:

<variable2> = <variable1>.detectMultiscale(<grey-frame>,<scale_Factor>,
<min_Neighbours>,<min_Size>,<flags>)

the <max_size> parameter is not specified in this case, so it is automatically set to the
default value.
The parameters set in the function are the detection settings, so they are calibrated
dependently on the classifier used:

• <scale_Factor> : it indicates the factor of the image reduction.

• <min_Neighbours> : it is the number of neighbours that each rectangle should
keep. It determines the quality of the detection: increasing this value means
higher quality, but lower detections.

• <min_Size> : it is the maximum size of the detected object, so the larger objects
are discarded.

• <flags> : it indicates the operation mode.

59

Chapter 6. Implementation

Person’s 2D coordinates in the video frame

When the classifier detects a person in the video frame it is possible to compute the
relative 2D coordinates. The operations are the same independently from the camera
used (RGB or Infrared).
By using a cv2 function it is possible to design a rectangle around the person detected
and know (see the figure 6.1) its left edge coordinates in pixel respect to the reference
frame R0, the weight and the height, so consequently also the middle point of the
bounding box respect to R0.

Figure 6.1: RF of the video frame.

By using the coordinates of the centre respect to R0 it is possible to calculate the
coordinates of the centre of the person respect to the new reference frame R1:

xp = xc −
3
x+ w

2

4

yp = yc −
A
y + h

2

B

where xc and yc are respectively 319 [pixel] and 239 [pixel] because the image resolution
considered is 640x480.
The x and y coordinates of the person are necessary to locate the person in the 2D
space and are fundamental to create the angular control algorithm, so to adjust the
rotation of the robot (yaw).

60

Chapter 6. Implementation

Distance between the robot and the person

It is extracted from the depth camera topics, both the one aligned to the RGB camera
and the one related to the infrared camera, the image in terms of matrices of values.
The dimension of each matrix is the same of the resolution of the image acquired and
in each pixel position there is a value in millimetres representing the distance between
the camera and the object or walls found by the depth camera.
In order to find the right value of the distance between the camera and the person
detected by the classifier is enough to have the depth matrix and the 2D coordinates
in pixel of the centre of the person’s bounding box, previously computed. The distance
requested is the value of the depth matrix in the coordinate of the person’s centre.
During the code developing, it has been tried to find the depth position of the person
using as right distance the one calculated using the average of the depth matrix values
related to the whole bounding box of the person. However, this solution has been
discarded because sometimes the distance computed had completely incorrect values
and also created discrepancies in the parallel use of the depth camera aligned to the
RGB and the one related to the infrared.
The z coordinate completes the 3D localization of the person in the space and it is
important to realize a linear velocity control algorithm that regulates the forward or
backward movement of the Jaffle.

Detection situations

1. NOTHING DETECTED: if nothing is detected the robot stops. Differently, if
the robot loses the person, it stops after some seconds in which it continues to
run with the previous velocity commands;

2. ONE PERSON DETECTED: the robot follows the movement of the person.

It should be considered also a third situation: MORE THAN ONE PERSON SIMUL-
TANEOUSLY DETECTED, but the Haarcascade classifier is unable to recognise the
presence of more people. It generally detects one of them in a not deterministic order,
so for example if there are two people in the indoor environment, during the first al-
gorithm cycle it is detected the person1, at the second is detected the person2, at the
third person2, at the fourth person2, at the fifth person1 etc. . . This causes a quick
inversion of the robot movement because it does not understand which person has to
follow. For this reason, this third case cannot be taken into account and in case of the
use of this algorithm for person tracking it is necessary the presence of only one person
in the indoor environment.

Two-code approach

The Haarcascade classifiers available for the person are many because also different
type of face classifiers is included. However, as the robot has to follow the person, it is

61

Chapter 6. Implementation

assumed that the person is often identified with a back turn, so all the face classifiers
became useless and therefore they have been discarded.
The remaining classifiers are: upper-body, lower-body and full-body. Depending on
the depth camera used it is difficult to detect the complete person body on its range,
so the full-body classifier is the weakest between the three and the most robust one is
the upper-body because it is a small part of the body and the position and inclination
of the RealSense camera increase its performance.
Two codes have been implemented:

1. Using only the upper-body Haarcascade classifier;

2. Using the three listed classifiers in decreasing cascade: full-body, lower-body and
upper-body to try to increase the global robustness of the person detection. The
cascade order of these classifiers is shown in the figure 6.2.

Both the two codes have been tested in simulation and in real indoor environment,
but they are more or less the same. In fact, as the more robust cascade classifier is
the upper-body one, it should be the only one that would detect the person in the
frames in both the two codes. No detection related to the other two classifiers have
been registered during the tests.
Moreover, the use of three classifiers in cascade makes the algorithm slow and not
real–time, so it is better to use the code with only one classifier to have better results
and performance.

In order to clarify all other doubts about the use of the Haarcascade classifier in this
thesis it is reported the Flow Chart (figure 6.3) of the developed algorithm.

62

Chapter 6. Implementation

Figure 6.2: Scheme of the three Haarcascade classifiers in cascade.

63

Chapter 6. Implementation

Figure 6.3: Flow Chart of the ’Haarcascade classifier’ algorithm.

64

Chapter 6. Implementation

6.1.2 Y.O.L.O.
Y.O.L.O. is a Deep Neural Network real-time object detection method extremely ac-
curate.
It operates applying a neural network to the full image, which is divided into regions.
In each region the bounding boxes are weighted by the predicted probabilities and the
predictions are made with a single network evaluation. This means that is extremely
fast.
Its version 3 is considered by now the fastest and most performing network tested on
COCO dataset.
Surely it is more complicated than the Haarcascade method because needs more com-
putation time and it is more expensive because it runs with the support of high level
hardware components. In fact, to run this algorithm it has been used the Jetson Xavier
developer kit §5.5.1.
In this method only the RGB camera topic and its related depth camera are used, so
the Infrared camera information are not considered for two main reasons:

• Firstly, because the results of the only RGB camera are already too accurate and,
as the network computations are too complex, it is preferable to not increase
the computational time with other calculations, which could affect making the
algorithm no longer real-time;

• Secondly, because, even if from the tests carried out it is possible to see the good
behaviour of the network in Infrared mode, the number of correct detections are
inferior. This happens because the network is trained and tested with the COCO
dataset, which contains only coloured images, so it should be necessary to make
a new dataset of infrared images and retrain and test the network with it. This
operation is too long and not necessary in this thesis project.

How Y.O.L.O. works in ROS

The use of Y.O.L.O. network inside ROS platform is not so intuitive. The problem
is solved using a GitHub package called darknet_ros [40]. This package subscribes
to the topic of the camera and using Y.O.L.O. it publishes some topics related to the
detections:

• found_object : it gives the value related to the number of objects detected in
the frame.

• bounding_boxes : it is an array containing the information of the class detected
with its related probability and the position and size of the bounding boxes in
pixel dimension.

• detection_image : it publishes the initial image including the bounding box of
the objects detected.

65

Chapter 6. Implementation

• check_for_objects : there are some further information about the detections,
as the status, the feedback and the result. These depend mainly on the detection
percentage set as a parameter before launching the node.

It is possible to launch the darknet_ros node using different versions of Y.O.L.O. To
do that, it is necessary to set the weight and configuration files related to the version
chosen in the correct folders and launch the node.
In this project the version of Y.O.L.O. used are three:

• Y.O.L.O.v2;

• Tiny-Y.O.L.O.v3;

• Y.O.L.O.v3.

These versions are chosen in order to guarantee optimal real-time performances of the
detection.

Dataset

The dataset chosen affects the results because it contains all the resources used during
the training phase of the network. For this thesis the use of a huge dataset of images
which contains different classes other than person is fundamental because the network
can learn to identify also different elements, edges and reduce the wrong detections.

- COCO
Common Object in COntext (COCO) is one of the most common dataset used for the
training of the neural networks for object detection applications. It contains 80 classes
of objects with their respectively marks and bounding boxes.

Re-Training

The training of a network from a scratch requires a lot of time and a huge computa-
tional time. Moreover, the dataset adopted has to be extended enough to include also
the classes that do not need to be recognised. To avoid that problem a pre-trained
model is used as the starting point and then it is re-used for other purposes. This ap-
proach is called Transfer Learning: "Transfer learning is the improvement of learning
in a new task through the transfer of knowledge from a related task that has already
been learned." [42]. The idea is that the whole objects in the images are defined from
shadows, edges and colours, so the first part of different networks is similar. Then the
network can be re-trained for different specific tasks, so to recognise specific classes.
In this way the user could do a re-training with low-powered computer and a smaller
dataset.

66

Chapter 6. Implementation

As the scope of the thesis is doing person tracking, the use of the pre-trained networks
for the entire COCO dataset is not necessary, so it is done a Transfer Learning re-
training of the networks Y.O.L.O.v2, Tiny-Y.O.L.O.v3 and Y.O.L.O.v3 just for the
class person.

The hardware used for the re-training is a machine mounted an i7-9700K Intel CPU,
32 GB of RAM memory and 32 GB of swap memory. The most important components
of the systems are the two available GPUs:

• #1 NVIDIA GeForce RTX 2080 Ti with 11 GB GDDR6 memory;

• #1 NVIDIA GeForce RTX 2080 with 8 GDDR6 memory.

The realization of a good re-training of the networks depends on the creation of a
dataset of people and on the light modification of the network [43].

- Dataset of People
Even if the first training of the three Y.O.L.O. networks used was done using the COCO
dataset, which contains 80 classes of object including person, it has been necessary to
re-train the networks just for the class person hoping to obtain better mAP results and
a more robust system. The creation of a new dataset has been done selecting a set
of figures in .jpg format and making bounding box around the people. The bounding
boxes related to each image are defined into a .txt file using the following format:

<object-class> <x> <y> <width> <height>

where:

• <object-class> is an integer number referred to the object from 0 to (classes-1);

• <x> <y> <width> <height> are normalized float values referred to the centre of
the rectangle bounding box, the width and the height of the image which can be
equal to [0.0 ÷ 1.0].

The images of person used to create the People dataset were extracted from Open Im-
ages v4 [44]. Open Images v4 is a 9 million images dataset with their related labels
and objects bounding boxes. These images are too different and contains many objects
for each one in several scenarios. The dataset is divided into train, validation and test
to prevent overlaps.

The extraction of the person class images has been done using OIDv4_ToolKit [45].
The toolkit is able to download both a single image and the images related to one class
or more specific classes of objects providing also the .txt files of information of the
respectively labels with the correct format.

The images used for the re-training were 6001: 5401 images for the train phase and
600 images for the test phase.

67

Chapter 6. Implementation

- Network Modifications
During the re-training the networks used have to be modified to detect only people.
The number of classes inside the .cfg file has been reduced from 80 classes of the COCO
dataset to 1 class (person), so the output of the network can be only person or nothing
in order to increase the accuracy of the object detection for this specific class. Also
other parameters have been modified:

- batch: it is the set of images used during the training of each epoch. In Y.O.L.O.v2
and Tiny-Y.O.L.O.v3 this value is equal to 64 instead in Y.O.L.O.v3 it is 32 and
the subdivisions value has been modified depending on the memory available and
on the type of networks. The subdivisions values used are: 8 for Y.O.L.O.v2; 4
for Tiny-Y.O.L.O.v3; 8 for Y.O.L.O.v3.

- max_batches: it is the max number of batches used and it is equal to
(classes ∗ 2000).

- filters: it is the value of filters in the 3 convolutional networks before each
Y.O.L.O. level and it is equal to (classes+ 5) ∗ 3.

- input image dimension: every networks have a predefined dimension which de-
pends on the dimension of the images used. In this project the image taken from
the Intel R¥ RealSenseTM Depth Camera D435i had dimension 480x640, so the
input image dimensions of the networks were imposed equal to 416x416.

- learning rate: this parameter changes in different ways during the training, so
it is possible to identify three steps depending on the descent theory: until the
200th step it is multiply by 10; from 200th to the 500th step it is reduced by 10;
from 500th to 700th is again reduced by 10.

Person’s 2D coordinates in the video frame

As it is explained above, the results of the detection are published by the darknet_ros
node in differents topics. The topic of darknet_ros/bounding_boxes gives directly
the pixel values of the angles of the bounding box, related to the detected object,
respect to the R0 reference frame (figure 6.1). Using the same equation explained for
the Haarcascade algorithm §6.1.1 it is possible to find xp and yp coordinates of the
centre of the person respect to R1 (figure 6.1) and use them in the control algorithm.

Distance between the robot and the person

The computation of the z coordinate of the person detected is done in the same way of
the Haarcascade algorithm §6.1.1. The only difference is that it is related only to one
depth camera topic: the one aligned to the RGB camera, so it does less computations.

68

Chapter 6. Implementation

Detection situations

There can be three possible detection situations:

1. NOTHING DETECTED: if nothing is detected the robot stops. Differently if
the robot loses the person, it stops after some seconds in which continues to run
with the previous velocity commands;

2. ONE PERSON DETECTED: the robot follows the movement of the person;

3. MORE THAN ONE PERSON SIMULTANEOUSLY DETECTED: the robot
stops for 15 min. After that, it restarts the detection and continues to remain
stopped if it finds again more than one person.

In order to clarify all other doubts about the use of Y.O.L.O. networks in this thesis
it is reported the Flow Chart (figure 6.4) of the developed algorithm.

69

Chapter 6. Implementation

Figure 6.4: Flow Chart of the algorithm of the ’Y.O.L.O.’ networks.

70

Chapter 6. Implementation

6.2 Control Algorithm

6.2.1 Introduction
The control of a dynamic system is one of the most important thing to do in order to
limit the wrong behaviour of the automated objects. The input data of a system must
be controlled continuously in order to have right output values.
In this thesis work the control algorithm developed is able to regulate the movements
of the Jaffle according to the tracking necessity. The input data are the information
receiving from the object detection algorithms, so in this case the position of the person
in the space and the output are the computed values of angular and linear velocities
of the robot.
The angular and linear velocity are regulated in different ways and the movement of
the Jaffle is the result of the combination of both of them simultaneously.

6.2.2 Angular Velocity
The angular velocity is regulated by using the information of the dx position in pixel
of the person detected in the video frame.
According to the green reference frame of the stereo-camera, shown in the figure 6.5,
the dx position is considered positive when the person is on the left side of the video
frame, differently on the right side it is a negative value. Consequently, when the centre
of the person detected is in the upper side dy is positive, differently is negative.

Figure 6.5: 2D pixel coordinates of the person in the video frame.

71

Chapter 6. Implementation

The dy position value is not important for the angular velocity computation because
the robot cannot move up or down in the Y-axis, but only in the X or Z axes.
The rotation around the Y-axis has been set with a parabolic course because this makes
the movements of the Jaffle smooth without jerks.
The function generated has as input the dx position in pixel and gives as output the
angular velocity according to the following formulas:

vangularθ =
maxvel ∗ dx2

pixel

3202

C
rad

s

D
ifdxpixel > 0

vangularθ =
minvel ∗ dx2

pixel

3202

C
rad

s

D
ifdxpixel < 0

vangularθ = 0
C
rad

s

D
ifdxpixel = 0

The terms maxvel = 1.8 [rad/s] and minvel = -1.8 [rad/s] are the upper and the lower
limit of the angular velocity of a TurtleBot3 Waffle, so consequently of also the Jaffle.
The number 320 [pixel] stands for the max number of pixels for each side (left and right)
of the video frame because the resolution of the image received from the RealSense
camera is 640x480.
In the following figure 6.6 is represented the angular velocity behaviour developed:

Figure 6.6: Angular velocity control behaviour.

The whole values and robot movements are coherent to the movements of the person
both in simulation environment and in tests environment.

72

Chapter 6. Implementation

6.2.3 Linear velocity
The linear velocity is more trivial to compute because there has been the necessity to
set optimally two limit distances behind which the robot changes its movement. This
is why this control can be divided in three regions, depending on the distance between
the Jaffle and the person detected. In the first one this distance is superior compared
to the set upper-limit, so the robot moves straight on in a linear proportional way
until it reaches the maximum speed of the robot and saturate at that value. In the
second region there is a stop condition, in fact, the robot is not so distant nor near
the person and remains at that distance to avoid losing the person to track. The zero
value is also assigned when the distance is 0 [m] only to avoid special case in the code.
In fact, the depth value obtained from the Intel R¥ RealSenseTM Depth Camera D435i
has a limit of 0.105 [m], so nothing should be detected at a lower distance. The final
region is between the limit of the camera: 0.105 [m] and the distance lower-limit. In
this condition the Jaffle goes back in a linear proportionally way until it reaches its
minimum speed and saturated at this value.
As it is explained the linear velocity is just a matter of distance between the robot and
the person detected. This information is received from the stereo-camera and it is the
linear velocity control function. Depending on it, the velocity is in a precise region,
so it is possible to compute the linear velocity using the depth measure as unknown.
Here are reported the formulas responsible of these computations:

vlinearx = depthm ∗m1 + q1
5
m

s

6
ifdepthm > mvelupperlimit

vlinearx = 0
5
m

s

6
ifmvellowelimit

< depthm ≤ mvelupperlimit

vlinearx = 0
5
m

s

6
ifdepthm = 0[m]

vlinearx = depthm ∗m2 + q2
5
m

s

6
ifdepthm ≤ mvellowelimit

At the beginning the lower and upper distance limits have been clumsily estimated,
but then, during the tests, they have been changed and the optimal values are found
(table 6.1)

Limits Haarcascade classifier Y.O.L.O.
m_vel_upperlimit 1.2 [m] 1.9 [m]
m_vel_lowerlimit 0.9 [m] 1.7 [m]

Table 6.1: Lower and upper distance limits.

The values m1, q1, m2 and q2 are found using the equation of the straight line passing
through two points. In the following table 6.2 it is shown the final value chosen:

73

Chapter 6. Implementation

Straight line Points Haarcascade classifier Y.O.L.O.

1◦ : (m1, q1) P1 (1 [m], 0.13 [m/s]) (1 [m], 0.23 [m/s])
P2 (3 [m], 0.26 [m/s]) (3 [m], 0.26 [m/s])

2◦ : (m2, q2) P1 (1 [m], -0.13 [m/s]) (1 [m], -0.23 [m/s])
P2 (0.3 [m], -0.26 [m/s]) (0.3 [m], -0.26 [m/s])

Table 6.2: From points to straight lines.

The behaviour of the linear velocity for the Haarcascade classifier and the Y.O.L.O.
application is reported respectively in the figures 6.7 and 6.8.

Figure 6.7: Linear velocity control behaviour in Haarcascade algo-
rithm.

74

Chapter 6. Implementation

Figure 6.8: Linear velocity control behaviour in Y.O.L.O. algorithm.

75

Chapter 7

Obstacle Avoidance

One of the limits of the developed algorithms is the presence of obstacles. In fact, when
the Jaffle tracks the person in the indoor environment could find some obstacles in its
path, so it is necessary to prevent the robot from colliding with obstacles and therefore
losing the person it has to follow.
For these reasons, the introduction of a real-time obstacle avoidance support to the
algorithms used so far can be considered a great upgrade of this project.

7.1 Introduction
The Obstacle Avoidance topic is one of the main problem in mobile robotics. The goal
of the autonomous navigation is to find the best and optimized path from the initial
position of the robot to the goal to reach, taking into account the presence of object
in the environment, so supporting the algorithm with obstacle avoidance competence.
The autonomous navigation algorithms can be divided in two main categories depend-
ing on the type of control that is adopted:

1. Global Path Planning Method;

2. Local Motion Control.

7.1.1 Global Path Planning Method
Global path planning needs the a priori model of the map of the environment, on which
the robot moves, and computes the shortest path from the initial pose of the robot in
this map to the goal it has to reach.
Generally, it is used in the indoor environments or in the partially or totally known
outdoor environments. Once known the map, these algorithms are able to update real-
time the information on the map, in case the environment information rapidly changes,
so to recalculate the path to follow in order to reach the goal.
The algorithms related to this method are A*, which gives an optimal global path in
the static environment, and D*, an upgrade of A* used in the dynamic environment.

76

Chapter 7. Obstacle Avoidance

7.1.2 Local Motion Control
The local motion control is generally used for real-time motion of the robot inside
unknown environment with the sensors, that are able to identify the obstacle and
generate a motion path able to avoid collisions.
This method does not need the a priori knowledge of the environment map, so it can
generate a new path when the environment changes.
The obstacle avoidance in an unknown environment is more complex to realize because
a small position error can affect in the wrong movement of the robot, so a wrong map is
reconstructed and a wrong path is generated. Regardless of this limitation, the obstacle
avoidance techniques are usually faced in absence of environment information, so this
method is the most common used.
These algorithms can be divided in two types depending on their adopted approach:

• Directional: Potential field method, Virtual Force Field, Vector Field Histogram
and Nearness Diagram algorithm;

• Velocity space-based: Curvature Velocity method and Dynamic Window method.

7.2 Obstacle Avoidance Implementation
A great autonomous navigation robot should have the integration of a global path
planning algorithm supported by a local motion control, so that the global system
with a priori map can estimate the optimized path inside the map and the local system
modifies this path in case of presence of further unpredicted obstacles, using sensors.

In this project the methods based on global path planning have been discarded because
the best idea is to create a system that works well in any indoor environment, without
having a priori information about the map. The absence of this constraint generates a
global solution, more practical because it does not require specific modifications based
on the different surrounding environments.
Moreover, the obstacle avoidance integration must not affect the performance of the
person tracking execution, so it is necessary a real-time algorithm with local motion
control.

The best idea found is to integrate an obstacle avoidance algorithm with dynamic and
real-time goal. The dynamic goal is the position of the person’s centre respect to
the robot, so, as the goal changes with the movement of the person, also the robot
modifies its path depending on it and avoiding the obstacles. The update goal replaces
the previous one, so the robot does not reach the goal even if the person stops.
Obviously, some limits are set on the robot, which can never reach the position of the
person, but remains at a certain distance between the goal:
yaw_goal_tolerance=0.05 [rad] and xy_goal_tolerance=0.5 [m].

77

Chapter 7. Obstacle Avoidance

The obstacle avoidance integration is done simply using the move_base node provided
into the turtlebot3_navigation package.
Here is shown the high-level view of the move_base node (figure 7.1).

Figure 7.1: Move_base navigation stack [46].

By running this node, the robot tries to reach the dynamic goal with a pre-set toler-
ance. In absence of dynamic obstacles, the robot movement will be linear optimized,
differently when the robot is stuck it performs recovery behaviours. In fact, it does an
in-place rotation in order to find free space and if this does not end correctly, the robot
removes the obstacles from the map and performs another in-place rotation. Now, if
the robot fails, it advises the user about the impossibility to reach the goal and it stops
its navigation, differently it finds another path and reaches the goal.

7.2.1 Estimation of the goal-pose of the person
The main problem faced is the computation of the pose of the person in the 3D envi-
ronment in order to give the correct goal to the robot for the autonomous navigation.
As it is explained before §6, the person is localized in the space, but not all the 3D
coordinates are expressed in meters. In fact, for now the X and Y coordinates in the
frame are measured in pixel and only the depth distance is in meters.
To compute the position of the person in the space is necessary to:

• convert the pixel coordinates into the camera coordinates to compute the position
of the goal respect to the base_footprint RF;

• compute the YAW angle and consequently the quaternion of the goal respect to
the base_footprint RF;

• with some transformation matrices calculate the goal position referred to the map
RF.

78

Chapter 7. Obstacle Avoidance

From Pixel coordinates to Camera coordinates

By considering the figure 7.2 it is possible to obtain the 3D coordinates (X, Y, Z) of an
object in the space through two conversions:

1. from Pixel coordinates (u, v) to Image coordinates (x, y);

2. from Image coordinates (x, y) to Camera coordinates (Xcam, Y cam,Zcam).

Figure 7.2: From 2D image projection to 3D coordinates.

1. From Pixel coordinates (u, v) to Image coordinates (x, y):

Figure 7.3: From pixel coordinates to image coordinates.

This conversion is simple; it is necessary only to do a subtraction operation in pixel
using the following equations: xp = −(up −Ox)[pixel]

yp = −(vp −Oy)[pixel]

79

Chapter 7. Obstacle Avoidance

2. From Image coordinates (x, y) to Camera coordinates (Xcam, Y cam,Zcam):
The Z coordinate is the value obtained from the depth camera matrix §6.1.1, instead
fx = 613.2378540039062[pixel] and fy = 612.938232421875[pixel] are the focal lengths
of the Intel R¥ RealSenseTM Depth Camera D435i in the pinhole model respectively of
the x and y axis.

Figure 7.4: From image coordinates to camera coordinates.



X = xp ∗ Z
fx

[m]

Y = yp ∗ Z
fy

[m]

Z = Zdepth−camera[m]

From Camera coordinate to base_footprint RF

Once obtained the X,Y,Z coordinates in meters of the centre of the person to track,
it is possible to compute the goal respect to the base_footprint reference frame. This
goal must be published giving these information:

• Position: x = Z [m], y = X [m], z = 0 [m] because no vertical movement;

• Orientation: x, y, z, w. These are the quaternions, easily computed using a
python function: <quaternion=trans.quaternion_from_euler(0,0,yaw)>, re-
lated to the position of the centre of the person respect to the base_footprint
reference frame. In this case, as the robot does not move in vertical direction, x
= 0 and y = 0, differently z and w depend on the YAW angle (see the figure 7.5).

The YAW angle is equal to:

Y AW = atan
1y
x

2
[rad] (7.1)

where x is a depth distance, so always positive (≥ 0.105 [m], which is the limit of the
Intel R¥ RealSenseTM Depth Camera D435i), and y is positive if the person is on the
left and negative if the person is on the right.

By using the coordinate position of the goal and its yaw angle it is possible to compute
the transformation matrix from the base_footprint RF to the goal:

80

Chapter 7. Obstacle Avoidance

Figure 7.5: RFbase_footprint and YAW angle.

Tbasefootprint_goal =


cos(ψbg) −sin(ψbg) 0 x

sin(ψbg) cos(ψbg) 0 y

0 0 1 0
0 0 0 1



Goal in map RF

The next passage to do is to compute the position of the goal respect to the map
reference frame.
The transformation tree is the following:

- /map: the coordinate frame fixed to the map;

- /odom: the coordinate frame related to the odometry only;

- /base_footprint: the base of the robot on the floor.

The /odom data are just respect to the map, so using the transformation matrices from
odom to base_footprint and from base_footprint to the goal it is possible to compute
the person’s pose, so the goal respect to the map:

Tmap_goal = Tmap_odom ∗ Todom_basefootprint ∗ Tbasefootprint_goal (7.2)

Now from the Tmap_goal it is possible to find the position of the centre of the person
as position and orientation coordinates respect to the map RF and this information is
published into the /move_base_simple/goal and updated at each detection.

81

Chapter 7. Obstacle Avoidance

7.2.2 Detection situations
There can be three possible detection situations:

1. NOTHING DETECTED: if nothing is detected the robot stops. Differently, if
the robot loses the person, it stops after some seconds in which continues to run
with the previous velocity commands trying to reach the last goal received;

2. ONE PERSON DETECTED: the robot follows the movement of the person using
the obstacle avoidance algorithm, setting as goal the person’s centre;

3. MORE THAN ONE PERSON DETECTED: the robot stops for 15 min. After
that, it restarts the detection and continues to remain stopped if it finds again
more than one person.

82

Chapter 8

Results and Conclusions

In this section are presented the results obtained from the different object detection
techniques, comparing them and founding the best one to use for this scope, and also
from the integration of an obstacle avoidance support.

8.1 Haarcascade Classifier algorithm
As it is explained previously §6.1.1, the implementation of the Haarcascade Classifier
has been done using both RGB camera and infrared camera. This double cameras
approach increases the efficiency of the detection, also solving the back-light problem.
The idea of the use of three Haarcascade Classifiers in cascade has not been suitable
because the detections are always obtained with the upper-body classifier, the most
robust one, moreover this solution increases drastically the computational time of the
algorithm, so the movement of the robot are too slow.
In order to optimize the performance of the algorithm the best solution is to use only
the upper-body classifier.
The tests of this method are done firstly on Gazebo simulator and then on the Jaffle,
using for simplicity also the frontal face classifier.

8.1.1 Qualitative Results
The results obtained are the best reachable with the classical machine learning algo-
rithms. In fact, using the frontal face classifier the algorithm runs extremely fast on
the Jetson Xavier Developer Kit and the movements of the robot are coherent with the
control algorithm implemented.
The main problem is due to the presence of false positives, generally detected at low
depth distance, which makes the movement of the robot not fluid.
By using the upper-body classifier the algorithm is not robust because the person is
not always detected and even if it runs on the Jetson Xavier Developer Kit, it is slow
and not performant.

83

Chapter 8. Results and Conclusions

As the request of the project is to create an algorithm able to do person tracking
generally the person is followed by behind and the face is seen only in case of inversion
of direction movement of the person, so the frontal face classifier is not sufficient for
this application. Moreover, even if this classifier would be enough, the problem of
false positives would make this approach unusable anyway for this application, so this
method is discarded.
Here are shown some results obtained with this algorithm. Each figure has the same
structure:

- on the top the detections both in Infrared and RGB mode are displayed;

- on the left the velocity commands given to the robot are provided;

- on the right the information about the detection and the position of the person,
if it is found, are supplied.

Figure 8.1: Haarcascade classifier: RGB detection.

84

Chapter 8. Results and Conclusions

Figure 8.2: Haarcascade classifier: Infrared detection.

Figure 8.3: Haarcascade classifier nothing detected.

85

Chapter 8. Results and Conclusions

Figure 8.4: Haarcascade classifier: two people detected. The detection
is casual, there is not alternation, but randomly it detects previously one
person and then another, as it can see in the underlined values of the
depth distance. The light blue are the detections referred to the right
person and the orange ones are referred to the left person. This is the
reason of the impossibility of knowing the number of people present in

the frame.

Figure 8.5: Haarcascade classifier: example of false positive.

86

Chapter 8. Results and Conclusions

8.2 Y.O.L.O.
Three types of Y.O.L.O. are used in this project:

1. Y.O.L.O.v2;

2. Tiny-Y.O.L.O.v3;

3. Y.O.L.O.v3.

8.2.1 Results post re-training

AP and mAP

As it has been anticipated in the §6.1.2 the three Y.O.L.O. networks used are re-trained
for just the class person and in the following table 8.1 is shown the mAP and AP results
of this operation (see §4.1.2 and §4.1.2):

Architecture
Dataset

COCO Person
AP mAP AP mAP

Y.O.L.O.v2 56.81% 23.30% 54.65% 16.24%
Tiny-Y.O.L.O.v3 19.21% 5.16% 49.30% 8.17%

Y.O.L.O.v3 69.11% 28.99% 68.64% 28.46%

Table 8.1: AP and mAP of each network related to COCO and Person
datasets.

From the table it is possible to see that only the smallest network (Tiny-Y.O.L.O.v3)
has a good improvement on the AP and mAP. This happens because the "big" networks
are just too robust and give great result also before the re-training. It is possible to
highlight decreasing results on both the Y.O.L.O.v2 and Y.O.L.O.v3 networks that can
be easily justify. In fact, the networks trained for a huge number of classes are able to
associate all the other features or edge in the image to something, so the model is very
robust. With the re-training this capacity can be partially lost and this is why the AP
and mAP suffer a small percentage reduction in Y.O.L.O.v3 and a more substantial one
in Y.O.L.O.v2. Anyway, the re-training is important because reduces the processing
image time with a consequent rising up of the FPS for the real-time applications.

87

Chapter 8. Results and Conclusions

FPS improvements

Testing the networks on the Jetson Xavier Developer Kit it is possible to obtain the
following FPS results (table 8.2):

Architecture Frames per second
Y.O.L.O.v2 7.3 - 9.0 FPS

Tiny-Y.O.L.O.v3 18.0 - 27.0 FPS
Y.O.L.O.v3 3.5 - 5.0 FPS

Table 8.2: FPS obtained by each network.

These results affect the velocity of the detection algorithm and consequently make the
person tracking application real-time.

Precision, Recall, F1-score and average IoU

Other parameters are extrapolated from the re-training of the networks: precision,
recall, F1-score and average IoU (see §4.1.2 and §4.1.1) and are shown in the following
tables: 8.3 and 8.4.

Parameters Y.O.L.O.v2 Tiny-Y.O.L.O.v3 Y.O.L.O.v3
COCO Person COCO Person COCO Person

Precision 0.41 0.57 0.30 0.67 0.44 0.79
Recall 0.54 0.58 0.22 0.45 0.65 0.63
F1-score 0.47 0.57 0.25 0.54 0.53 0.70

average IoU 30.76% 41.32% 21.98% 47.80% 30.04% 60.44%

Table 8.3: Re-training parameters related to IoU=50%.

Parameters Y.O.L.O.v2 Tiny-Y.O.L.O.v3 Y.O.L.O.v3
COCO Person COCO Person COCO Person

Precision 0.23 0.24 0.15 0.24 0.26 0.46
Recall 0.30 0.24 0.11 0.16 0.38 0.36
F1-score 0.26 0.24 0.13 0.19 0.31 0.40

average IoU 18.99% 20.29% 12.43% 19.99% 21.71% 38.52%

Table 8.4: Re-training parameters related to IoU=75%.

These results highlight the importance of the re-training operation because there is an
improvement on each parameter.

88

Chapter 8. Results and Conclusions

8.2.2 Results obtained from Jaffle tests
The three networks are tested previously in Gazebo and then directly on the Jaffle and
the results are the following:

• Y.O.L.O.v2:
The person detection algorithm is fast, but not performant for one main reason:
there is a huge problem with the false positives (FP), as it is shown in figure 8.9.
For this reason the movements of the robot are mostly wrong because several
times the network detects the correct person and a false positive, so the Jaffle
stops, according to the control algorithm. This makes this network unusable for
person tracking application.

Here are reported the results obtained from this network, taking into account the
legend in the table 8.5.

Legend
yellow Detection information.

green Class detected in the frame with its percentage
and the FPS of the network.

red Number of objects detected.
blu Bounding box coordinates.
pink Velocity commands given to the robot.

Table 8.5: Legend required for a correct interpretation of the results
of the Y.O.L.O. networks.

Figure 8.6: Y.O.L.O.v2: one person detected (see the table 8.5).

89

Chapter 8. Results and Conclusions

Figure 8.7: Y.O.L.O.v2: two people detected (see the table 8.5).

Figure 8.8: Y.O.L.O.v2: nothing detected (see the table 8.5).

90

Chapter 8. Results and Conclusions

Figure 8.9: Y.O.L.O.v2: false positive detection.

• Tiny-Y.O.L.O.v3:
The person detection algorithm is extremely fast and performant. The improve-
ment given to the network by the re-training is high, so the person tracking is
done with optimal real-time results and a perfect control of the movements.

Here are reported the results obtained from this network, taking into account the
legend in the table 8.5.

Figure 8.10: Tiny-Y.O.L.O.v3: one person detected (see the table 8.5).

91

Chapter 8. Results and Conclusions

Figure 8.11: Tiny-Y.O.L.O.v3: two people detected (see the table 8.5).

Figure 8.12: Tiny-Y.O.L.O.v3: no false positive (see the table 8.5).

92

Chapter 8. Results and Conclusions

Figure 8.13: Tiny-Y.O.L.O.v3: nothing detected (see the table 8.5).

• Y.O.L.O.v3:
The person detection algorithm in not so fast because the network is very complex
and does heavy computations, differently from the other two networks, however
the results are optimal. The movement of the robot is fluent and coherent with
the displacement of the person, so it is not affected from the not so high FPS.

Here are reported the results obtained from this network, taking into account the
legend in the table 8.5.

93

Chapter 8. Results and Conclusions

Figure 8.14: Y.O.L.O.v3: one person detected (see the table 8.5).

Figure 8.15: Y.O.L.O.v3: two people detected (see the table 8.5).

94

Chapter 8. Results and Conclusions

Figure 8.16: Y.O.L.O.v3: no false positive (see the table 8.5).

Figure 8.17: Y.O.L.O.v3: nothing detected (see the table 8.5).

The results obtained highlight how the Deep Neural Network algorithms are more
robust respect to the Machine Learning classical ones. In Particular, the behaviours
of the Tiny-Y.O.L.O.v3 and Y.O.L.O.v3 are coherent with the requests of the thesis
project and the best one to use is Tiny-Y.O.L.O.v3 because reaches the same results
with higher FPS, so best performance with lower computational complexity.

95

Chapter 8. Results and Conclusions

8.3 Obstacle Avoidance
The tests of the obstacle avoidance implementation have been made in two different
steps:

1. It has been tested the correctness of the detection of the goal-person respect to
the \map RF using RViz and the robot stopped in order to evaluate the correct
update of the goal coherently to the displacement of the person;

2. It has been tested the obstacle avoidance algorithm in the indoor environment.

The obtained results are positives, the goal is updated correctly during the displace-
ment of the person and the movement control respects the three detection situations
explained in §7.2.2. The algorithm works exactly as expected, however it is not an
optimal solution. In fact, this is a basic obstacle avoidance implementation, so it is
possible to see that the trajectory is not optimized compared to the trajectory execu-
tion time and the obstacles are not separate from the compliance with kinodynamic
constraints, as it is done in more robust algorithms. For these reasons, even if the tests
have consistent results with those expected, this solution is not suitable for the person
tracking project, but needs to be improved.

Here are reported the results obtained by integrating this algorithm of obstacle avoid-
ance with the Tiny-Y.O.L.O.v3 network, taking into account the legend in the table
8.6.

Legend
light blue Configuration of the robot.
yellow Detection information.

green Class detected in the frame with its percentage
and the FPS of the network.

red RViz representation of the goal depending
on the displacement of the person.

blu Velocity commands given to the robot.
white Odometry of the robot.

Table 8.6: Legend required for a correct interpretation of the results
of the Obstacle Avoidance integration.

96

Chapter 8. Results and Conclusions

Figure 8.18: Activation of the LiDAR, detection of the person, iden-
tification of the goal, velocity commands of the robot (see the table

8.6).

97

Chapter 8. Results and Conclusions

Figure 8.19: The goal pose is changed and consequently the velocity
commands of the robot (see the table 8.6).

98

Chapter 8. Results and Conclusions

8.4 Conclusions and Future Works
The obtained results satisfy widely the requests of the thesis and are considered the
first steps of a broad project in which many other service tasks will be integrated.

Next steps can be:

• find the more suitable and optimized obstacle avoidance algorithm which could be
effectively integrated into the person tracking algorithm or use DeepQ Learning
algorithms to reinforce the autonomous navigation;

• add other tasks for monitoring elderly people as for example a motion prediction
algorithm with an integration of alarm messages in case of a domestic accident,
such as a fall;

• try to reduce the number of sensors used for the same application, optimizing
them, in anticipation of the realization of a less expensive marketable product.

99

Bibliography

[1] Oussama Khatib Bruno Siciliano. Springer Handbook of Robotics. 2nd. Springer-
Verlag Berlin Heidelberg, 2016.

[2] Intro to Deep Learning for Computer Vision. url: https://chaosmail.github.
io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-
vision/.

[3] Going deep into object detection. url: https://towardsdatascience.com/
going-deep-into-object-detection-bed442d92b34.

[4] C.P. Papageorgiou, Michael Oren, and Tomaso Poggio. “General framework for
object detection”. In: vol. 6: Feb. 1998, pp. 555–562. isbn: 81-7319-221-9. doi:
10.1109/ICCV.1998.710772.

[5] Object Detection for Dummies Part 1: Gradient Vector, HOG, and SS. url:
https://lilianweng.github.io/lil-log/2017/10/29/object-recognition-
for-dummies-part-1.html.

[6] Paul Viola and Michael Jones. “Rapid object detection using a boosted cascade
of simple features”. In: Computer Vision and Pattern Recognition, 2001. CVPR
2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1.
IEEE. 2001, pp. I–I.

[7] Haar Classifier in Face Detection. url: https://docs.opencv.org/3.4.1/d7/
d8b/tutorial_py_face_detection.html.

[8] Paul Viola and Michael Jones. “Robust Real-Time Object Detection”. In: vol. 57.
Jan. 2001.

[9] Zhihui Wang et al. “A High Accuracy Pedestrian Detection System Combining
a Cascade AdaBoost Detector and Random Vector Functional-Link Net”. In:
TheScientificWorldJournal 2014 (May 2014), p. 105089. doi: 10.1155/2014/
105089.

[10] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human de-
tection”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. Vol. 1. IEEE. 2005, pp. 886–893.

[11] Dlib 18.6 released: Make your own object detector! url: http://blog.dlib.
net/2014/02/dlib-186-released-make-your-own-object.html.

100

https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/
https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/
https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/
https://towardsdatascience.com/going-deep-into-object-detection-bed442d92b34
https://towardsdatascience.com/going-deep-into-object-detection-bed442d92b34
https://doi.org/10.1109/ICCV.1998.710772
https://lilianweng.github.io/lil-log/2017/10/29/object-recognition-for-dummies-part-1.html
https://lilianweng.github.io/lil-log/2017/10/29/object-recognition-for-dummies-part-1.html
https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html
https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html
https://doi.org/10.1155/2014/105089
https://doi.org/10.1155/2014/105089
http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html
http://blog.dlib.net/2014/02/dlib-186-released-make-your-own-object.html

Bibliography

[12] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. 1st. O’Reilly Me-
dia, Inc., 2017. isbn: 1491962291, 9781491962299.

[13] What do we learn from region based object detectors (Faster R-CNN, R-FCN,
FPN)? url: https://medium.com/@jonathan_hui/what-do-we-learn-from-
region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9.

[14] Jasper Uijlings et al. “Selective Search for Object Recognition”. In: Interna-
tional Journal of Computer Vision 104 (Sept. 2013), pp. 154–171. doi: 10.1007/
s11263-013-0620-5.

[15] Ross Girshick et al. “Rich feature hierarchies for accurate object detection and
semantic segmentation”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 580–587.

[16] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 1440–1448.

[17] Shaoqing Ren et al. “Faster R-CNN: towards real-time object detection with re-
gion proposal networks”. In: IEEE Transactions on Pattern Analysis & Machine
Intelligence 6 (2017), pp. 1137–1149.

[18] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European conference on
computer vision. Springer. 2016, pp. 21–37.

[19] Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning.
url: https://towardsdatascience.com/understanding- ssd- multibox-
real-time-object-detection-in-deep-learning-495ef744fab.

[20] Joseph Redmon et al. “You only look once: Unified, real-time object detection”.
In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 779–788.

[21] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”. In: arXiv
preprint (2017).

[22] Batch normalization in Neural Networks. url: https://towardsdatascience.
com/batch-normalization-in-neural-networks-1ac91516821c.

[23] Real-time object detection with YOLO. url: https://machinethink.net/blog/
object-detection-with-yolo/.

[24] K Means Clustering : Identifying F.R.I.E.N.D.S in the World of Strangers. url:
https://towardsdatascience.com/k-means-clustering-identifying-f-r-
i-e-n-d-s-in-the-world-of-strangers-695537505d.

[25] Joseph Redmon and Ali Farhadi. “Yolov3: An incremental improvement”. In:
arXiv preprint arXiv:1804.02767 (2018).

[26] Intersection over Union (IoU) for object detection. url: https://www.pyimagesearch.
com/2016/11/07/intersection-over-union-iou-for-object-detection/.

101

https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
https://medium.com/@jonathan_hui/what-do-we-learn-from-region-based-object-detectors-faster-r-cnn-r-fcn-fpn-7e354377a7c9
https://doi.org/10.1007/s11263-013-0620-5
https://doi.org/10.1007/s11263-013-0620-5
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/understanding-ssd-multibox-real-time-object-detection-in-deep-learning-495ef744fab
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c
https://machinethink.net/blog/object-detection-with-yolo/
https://machinethink.net/blog/object-detection-with-yolo/
https://towardsdatascience.com/k-means-clustering-identifying-f-r-i-e-n-d-s-in-the-world-of-strangers-695537505d
https://towardsdatascience.com/k-means-clustering-identifying-f-r-i-e-n-d-s-in-the-world-of-strangers-695537505d
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Bibliography

[27] A Beginner’s Guide to Object Detection. url: https://www.datacamp.com/
community/tutorials/object-detection-guide.

[28] Section 7 Advanced Evaluation Metrics. url: http://cs230.stanford.edu/
section/7/.

[29] mAP (mean Average Precision). url: https://github.com/Cartucho/mAP.
[30] Brian Gerkey & William D. Smart Morgan Quigley. Programming Robots with

ROS: A Practical Introduction to the Robot Operating System. O’Reilly Media,
2015.

[31] ROBOTIS. url: http://wiki.ros.org/action/show/robotis?action=show&
redirect=ROBOTIS.

[32] . url: http://xiaoyatec.com/wp-content/uploads/2017/07/opencr.png.
[33] Hardware Setup. url: http://emanual.robotis.com/docs/en/platform/

turtlebot3/hardware_setup/.
[34] Intel R¥ RealSenseTM Depth Camera D435i. url: https://www.intelrealsense.

com/depth-camera-d435i/.
[35] Intel R¥ RealSenseTM D400 Series Product Family. url: https://www.intelrealsense.

com / wp - content / uploads / 2019 / 07 / Intel - RealSense - D400 - Series -
Datasheet-Jun-2019.pdf?_ga=2.73594705.237534047.1567067222-646256078.
1557041861.

[36] . url: https://devtalk.nvidia.com/default/topic/1036207/nvidia-
announces-jetson-xavier/?offset=4.

[37] Jetson AGX Xavier Developer Kit. url: https://developer.nvidia.com/
embedded/jetson-agx-xavier-developer-kit.

[38] Overview. url: https://github.com/IntelRealSense/librealsense.
[39] ROS Wrapper for Intel R¥ RealSenseTM Devices. url: https://github.com/

IntelRealSense/realsense-ros.
[40] YOLO ROS: Real-Time Object Detection for ROS. url: https://github.com/

leggedrobotics/darknet_ros.
[41] TurtleBot3. url: https://github.com/ROBOTIS-GIT/turtlebot3.
[42] Jason Yosinski et al. “How transferable are features in deep neural networks?”

In: CoRR abs/1411.1792 (2014). arXiv: 1411.1792. url: http://arxiv.org/
abs/1411.1792.

[43] Yolo-v3 and Yolo-v2 for Windows and Linux. url: https : / / github . com /
AlexeyAB/darknet?files=1#yolo- v3- and- yolo- v2- for- windows- and-
linux.

[44] Ivan Krasin et al. “OpenImages: A public dataset for large-scale multi-label and
multi-class image classification.” In: (2017). url: https://storage.googleapis.
com/openimages/web/index.html.

102

https://www.datacamp.com/community/tutorials/object-detection-guide
https://www.datacamp.com/community/tutorials/object-detection-guide
http://cs230.stanford.edu/section/7/
http://cs230.stanford.edu/section/7/
https://github.com/Cartucho/mAP
http://wiki.ros.org/action/show/robotis?action=show&redirect=ROBOTIS
http://wiki.ros.org/action/show/robotis?action=show&redirect=ROBOTIS
http://xiaoyatec.com/wp-content/uploads/2017/07/opencr.png
http://emanual.robotis.com/docs/en/platform/turtlebot3/hardware_setup/
http://emanual.robotis.com/docs/en/platform/turtlebot3/hardware_setup/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel-RealSense-D400-Series-Datasheet-Jun-2019.pdf?_ga=2.73594705.237534047.1567067222-646256078.1557041861
https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel-RealSense-D400-Series-Datasheet-Jun-2019.pdf?_ga=2.73594705.237534047.1567067222-646256078.1557041861
https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel-RealSense-D400-Series-Datasheet-Jun-2019.pdf?_ga=2.73594705.237534047.1567067222-646256078.1557041861
https://www.intelrealsense.com/wp-content/uploads/2019/07/Intel-RealSense-D400-Series-Datasheet-Jun-2019.pdf?_ga=2.73594705.237534047.1567067222-646256078.1557041861
https://devtalk.nvidia.com/default/topic/1036207/nvidia-announces-jetson-xavier/?offset=4
https://devtalk.nvidia.com/default/topic/1036207/nvidia-announces-jetson-xavier/?offset=4
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/realsense-ros
https://github.com/IntelRealSense/realsense-ros
https://github.com/leggedrobotics/darknet_ros
https://github.com/leggedrobotics/darknet_ros
https://github.com/ROBOTIS-GIT/turtlebot3
https://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
http://arxiv.org/abs/1411.1792
https://github.com/AlexeyAB/darknet?files=1#yolo-v3-and-yolo-v2-for-windows-and-linux
https://github.com/AlexeyAB/darknet?files=1#yolo-v3-and-yolo-v2-for-windows-and-linux
https://github.com/AlexeyAB/darknet?files=1#yolo-v3-and-yolo-v2-for-windows-and-linux
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html

Bibliography

[45] Angelo Vittorio. Toolkit to download and visualize single or multiple classes from
the huge Open Images v4 dataset. https://github.com/EscVM/OIDv4_ToolKit.
2018.

[46] move_base. url: http://wiki.ros.org/move_base.

103

https://github.com/EscVM/OIDv4_ToolKit
http://wiki.ros.org/move_base

	Introduction
	Objective of the thesis
	Organization of the thesis

	Object Detection
	Introduction
	Evolution of Object Detection
	Viola-Jones algorithm
	Haar Feature-based Cascade Classifiers
	AdaBoost classifier
	Haarcascade Classifier

	Histograms of Oriented Gradients for Human Detection
	CNN
	Sliding-window detectors
	Selective Search (SS)
	Regional CNN (R-CNN)
	Fast R-CNN
	Faster R-CNN

	Single Shot MultiBox Detector (SSD)

	Y.O.L.O.
	How it works
	Network Design details
	Loss Function
	Localization Loss
	Confidence Loss
	Classification Loss

	Inference
	Limits

	Y.O.L.O.v2
	Accuracy Improvements
	Batch normalization
	High-resolution classifier
	Convolutional Layer with Anchor Boxes
	Dimension Clusters
	Direct Location Prediction
	Fine-Grained Features
	Multi-Scale Training
	Accuracy and Speed Comparison

	Speed
	Hierarchical Classification
	Joint classification detection

	Y.O.L.O.v3
	Prediction
	Feature Extraction
	Results

	Metrics
	Metrics used for Object Detection
	IoU
	Ground-truth

	Mean Average Precision
	Precision & Recall
	AP
	mAP

	Robot
	Introduction
	Sensors
	Cameras
	Depth Camera
	Laser Distance Sensor
	ROS Motor Controller Drivers

	Embedded System
	OpenCR

	TurtleBot
	Hardware components used
	Object detection hardware
	A) Intel® RealSense™ Depth Camera D435i
	B) Intel® Compute Stick
	C) NVIDIA® Jetson™

	Person tracking hardware
	JAFFLE

	Final choice Hardware components

	Software used
	Operating system and ROS platforms
	Packages used in the project
	Gazebo
	RViz

	Implementation
	Person Detection
	Haarcascade Classifier
	Person’s 2D coordinates in the video frame
	Distance between the robot and the person
	Detection situations
	Two-code approach

	Y.O.L.O.
	How Y.O.L.O. works in ROS
	Dataset
	Re-Training
	Person's 2D coordinates in the video frame
	Distance between the robot and the person
	Detection situations

	Control Algorithm
	Introduction
	Angular Velocity
	Linear velocity

	Obstacle Avoidance
	Introduction
	Global Path Planning Method
	Local Motion Control

	Obstacle Avoidance Implementation
	Estimation of the goal-pose of the person
	From Pixel coordinates to Camera coordinates
	From Camera coordinate to base_footprint RF
	Goal in map RF

	Detection situations

	Results and Conclusions
	Haarcascade Classifier algorithm
	Qualitative Results

	Y.O.L.O.
	Results post re-training
	AP and mAP
	FPS improvements
	Precision, Recall, F1-score and average IoU

	Results obtained from Jaffle tests

	Obstacle Avoidance
	Conclusions and Future Works

	Bibliography

