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In the last years autonomous driving has been, and continues to be, one of the most
trending topics in the automotive environment. The progresses performed in this
field are continuous and the main car manufacturers are pushing to overcome all
the limits of the current technologies through a huge amount of investments. Vision
systems play a key role inside this process of driving automation, for this reason
during this work will be performed an accurate analysis about the effects of the en-
vironmental conditions on the performances of two of them. The two systems that
will be analyzed are a lane detection system and an object detection system; this
choice is mainly due to the fact that these two systems allow to implement some
crucial functions for autonomous driving. For example the lane detection system
can be used to implement the automatic lane keeping, while the object detection
system can be used to implement a lot of other functions like the emergency braking
or the recognition of road signs and pedestrians. Moreover, since the two systems
are based on two different techniques, i.e. image processing and neural networks,
this choice allowed to analyze a wider range of technologies. The lane detection
system has been implemented in Matlab® using the same working principle of the
GOLD system developed by Massimo Bertozzi and Alberto Broggi. The object
detection system, instead, is YOLOv3, which is the most powerful algorithm for
object detection in real time currently available, it uses neural networks to detect
objects and has been developed by Joseph Redmond et al. .

The validation procedure has been done through a series of tests performed us-
ing specific datasets, which have been developed taking into account the following
parameters: lighting condition, presence of defects and weather conditions. The
lighting conditions were evaluated through a set of images taken in different mo-
ments of the day, allowing to consider different orientations and amounts of light.
Then a synthetic dataset has been obtained by modifying appropriately these im-
ages in order to evaluate also the effects of micro and macro defects and of different
weather conditions. Moreover, in addition to these tests, some corner cases have
been considered in order to evaluate the performances in some infrequent but par-
ticularly critical conditions.

The main aim of this work is to evaluate how and if these parameters influence
the performances of the systems under test, in order to understand what must be
improved and what, instead, has reached a sufficient level of maturity.
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Chapter 1

Detection of road features through
image processing

1.1 Introduction

The ability of understanding the characteristics of the road we are driving in is a
fundamental feature to achieve autonomous driving. Computer vision represents
a key tool for this purpose since it allows to extract many road features through
the execution of specific algorithms. Inside this chapter the basic concepts of com-
puter vision will be explained together with the analysis of some interesting ADAS
implementations.

1.2 Image processing and edge detection

Artificial vision is performed through a hierarchical organization which is com-
posed by the following steps: perception, pre-processing, segmentation, description,
recognition and interpretation. Perception is the process where the input image is
acquired by means of specific sensors, pre-processing is the phase where the input
image is prepared for the following steps, it deals with noise reduction and detail
enhancement. After the pre-processing, the image is divided into objects of inter-
est through the segmentation phase, then the features of each object are extracted
during the description phase. Depending on these features objects identification
is performed by means of the recognition phase, the results of this operation are
then evaluated during the interpretation phase, where a meaning is given to the
recognized objects.

Each level of the hierarchy described previously provides the input for the following
one. Between these levels probably one of the most important is the pre-processing,
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1 – Detection of road features through image processing

in fact this step is crucial to achieve good performances. Pre-processing is typi-
cally performed through histogram manipulations (e.g. equalization) and filters
application, the aim of these procedures is to improve image quality highlighting
specific features of the image in order to achieve better results in the following steps.

An important operation that can be performed into the pre-processing phase is
the edge detection, which has a key role for many algorithms since it allows to
highlight the shape of the elements contained inside the input image. There are
several algorithms which implement edge detection, most of them use gradient and
laplacian operators to detect intensity variations which often corresponds to an
edge. In most of the cases, the application of these operators is not sufficient since
input images are affected by noise and other disturbs, e.g. non-uniform illumina-
tion. In order to obtain better results, several techniques have been developed. For
example, a possible solution is represented by the canny method, where the image
gradient is computed after the application of a Gaussian filter. Depending on the
values of the gradient, two thresholds are defined in order to have two possible kind
of edges: strong edges and weak edges, a weak edge will be taken into account only
if it is connected to a strong one.

In general there are two possible approaches: a local analysis or a global anal-
ysis. The local analysis is performed dividing the image into regions which are
processed one by one connecting the points with similar features, e.g. direction and
magnitude of the gradient vector. Global analysis instead takes into account the
entire image to understand how to connect the edges, in particular we have that
contour points are connected only if they belong to a predefined curve. An im-
plementation which uses this kind of approach is the Hough transform [12], where
only a set of parameterized curves is considered to reduce the computational cost.

1.3 Image processing for autonomous driving pur-
poses: The GOLD system

1.3.1 Introduction

Now that a brief introduction to image processing has been given, the following
section will explain how it can be used for ADAS (Advanced Driver Assistance Sys-
tems) implementations, in particular the GOLD lane and object detection system
will be analyzed. The decision of focusing on a lane detection system is mainly due
to the fact that it is one of the systems where image processing is most involved.
The choice of GOLD, instead, is related to the fact that the working principle of
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this algorithm is simpler with respect to others lane detection systems (e.g. LOIS,
ARCADE, LANA, RALPH), making it easier to re-implement. So, even if there are
more sophisticated systems based, for example, on shape hypothesis and frequency
domain features [2], GOLD can be analyzed in a more intuitive way since the causes
of eventual fails during the validation procedure are easier to be understood.

1.3.2 System description

GOLD stands for Generic Obstacle and Lane Detection [1], it has been developed
by Massimo Bertozzi and Alberto Broggi and it allows to perform both lane and
obstacle detection (on flat roads with visible markings) by using only visual data
acquired through standard cameras directly installed on the vehicle. In particular,
since a stereoscopic view is necessary to implement both lane and obstacle detec-
tion, two cameras are used.

The first issue that GOLD has to deal with is that, because of perspective effects,
it is not possible to perform efficiently low-level processing with SIMD (Single In-
struction Multiple Data) systems on the images acquired by the cameras. In fact,
these kind of systems perform the same operation on each pixel of the image, while
the perspective effect gives a different meaning to each image pixel depending on its
position. In order to overcome this limit, Bertozzi et al. developed a system able
to remove the perspective effect allowing to process input images in an easier way.
In order to do that each pixel of the input image must be remapped into a new 2D
image which represents a top view of the region in front of the vehicle. As reported
in [1], two Euclidean spaces W = {(x, y, z)} and I = {(x, y)} are defined, the I
space is the space that contains the images acquired by the cameras, while the W
space is the 3D space that represents the real world, the remapped image will be-
long to the plane ofW such that z = 0. The mathematical relationship between the
two spaces depends on several variables: the camera position C(l, d, h) ∈ W , the
viewing direction, the camera angular aperture and the camera resolution n × n.
By applying this relationship it’s possible to move from one Euclidean space to
another, in particular it is used to move from I to W , with the resolution of the
remapped image that is chosen as a trade-off between information loss and process-
ing time.

Once that the perspective effects have been removed, it is possible to process the
remapped image in order to perform lane detection. Assuming that a road marking
can be considered as an almost vertical bright line of constant width surrounded by
darker regions, we can consider that pixels belonging to a road marking will have an
higher brightness with respect to their right and left neighbours at a given horizon-
tal distance. So Bertozzi et al. propose the following process which allows to detect
dark-bright-dark transitions: considering the brightness value b(x, y) of a generic
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pixel belonging to the remapped image, each pixel is compared with its right and
left neighbours at a specified distance m with m ≥ 1. The result of this comparison
is a new image that encodes the presence of a road marking, as explained in [1],
each value r(x, y) of that image is computed according to the following expression:

r(x, y) =

(
d+m(x, y) + d-m(x, y), if (d+m(x, y) > 0) ∧ (d-m(x, y) > 0)

0, otherwise

with

d+m(x, y) = b(x, y)− b(x, y +m)

d-m(x, y) = b(x, y)− b(x, y −m)

where b(x, y +m) and b(x, y −m) are the values of the right and left neighbours
respectively.

In order to reduce the effects of a non uniform illumination, for example because
of shadows, a geodesic morphological dilatation is performed on the filtered image.
The effect of this process is to make the levels of brightness more uniform for all
the elements of the image with a non-null value. At this point the enhanced image
is binarized using an adaptive threshold and then scanned row by row in order
to detect the road features, in particular all the pixels with a value different from
zero are considered. Each of these pixels can represent the right/left edge of the
street or the center line, so the road can be identified by a set of three non-zero
pixels. Every set of pixels will represent a road hypothesis that specifies which is
the width wi and where is the center ci; in order to understand which set of pixels
must be considered and which one must be discarded some constraints based on
the image horizontal size are taken into account. Moreover a histogram containing
the values of wi for each line is generated and it is used to determine which is the
most frequent value W , then only the set of pixels with W −W/4 < wi < W +W/4
are considered to reconstruct the shape of the road.

For what concerns obstacle detection, the starting point is the same described for
lane detection, i.e. the remapped image. In fact it can be shown that, computing
the difference between the remapped images obtained from the left and the right
cameras, a square obstacle in front of the vehicle is transformed in two triangles. In
order to detect these triangles a polar histogram is computed from the "difference
image", the presence of a triangle will be indicated by a peak inside this histogram.
Since an obstacle corresponds to two triangles, two consecutive peaks will corre-
spond to an obstacle. This approach is based on the hypothesis that we are looking
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for obstacles with quasi-vertical edges, so it wont work as expected for other kind
of objects, e.g. objects with a triangular or pyramidal shape.

1.3.3 System performances

The GOLD system runs on a specific hardware which uses a SIMD (Single Instruc-
tion Multiple Data) [1] computing architecture to achieve real time performances
with low power consumption. This kind of architecture uses small processing ele-
ments in parallel to reduce the power consumption without sacrificing the compu-
tational speed. For what concerns the performances in terms of precision, we have
that, if the system is used on a road that is compliant with the initial assumptions,
i.e. flat road with visible markings and square obstacles, satisfactory results can be
achieved (at least for lane detection). Once these assumptions are not valid any-
more, performances degrade and the quality of the results becomes unacceptable
for automotive standards.

1.4 Conclusion
What has been seen inside this chapter allows to understand the key concepts of
image processing showing how it can be used for autonomous driving purposes
through the analysis of a possible approach for lane and object detection. These
informations represent the starting point for what will be done later on, that is the
development, and above all the validation, of a lane detection algorithm based on
the GOLD approach.
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Chapter 2

Object detection based on machine
learning

2.1 Introduction

Object detection represent one of the most interesting challenges for what concerns
computer vision. The main problem of object detection is that it is infeasible to
develop an algorithm for this task made with specific instructions. In order to over-
come this limit, machine learning can be used as a solution to build a mathematical
model through ad-hoc training data sets. The aim of this chapter is to report the
most effective approaches developed so far for object detection through machine
learning, all of them will be briefly described in order to understand how they work
and what their limits are.

2.2 Deformable Parts Models

2.2.1 Introduction

One of the simplest approaches to object detection is the sliding window approach.
In this kind of technique we basically "slide" a box inside an input image analyzing
the content of each box to determine if it contains an object and, if yes, to recognize
it. Typically the object detection inside each box is performed through filters
applied to HOGs (Histogram of Oriented Gradient). These kind of histograms
represents a very good method to extract salient features about the morphology
of an image, so they are perfect to represent object categories. One of the biggest
problems of using this approach to represent an object category is that often objects
belonging to the same category can differs in a lot of aspects. For example: SUV,
coupé and station wagons belong to the category "car" even if they have a very
different aspect. In order to overcome this problem, deformable part models use a
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Figure 2.1. Example of an HOG overlapped to the original image

collection of parts arranged in a deformable configuration to represent objects.

2.2.2 Models description

In DPM models [3] we have that linear filters are applied to dense feature maps,
these maps are an array whose entries are d-dimensional feature vectors computed
starting from the locations of the original image. Each linear filter has a rectangu-
lar shape and is defined by an array of n-dimensional weight vectors. As reported
in [3], considering a filter F, we have that its score at a position (x, y) in a feature
map G is given by the dot product of the filter and a sub-window of the feature
map with top-left corner at (x, y):

X
x0,y0

F [x0, y0] ·G [x+ x0, y + y0]

Since during the detection there is the need of defining a score at different po-
sitions and scales inside the image, a feature pyramid is used. Feature pyramids

26



2.2 – Deformable Parts Models

specifies a finite number of feature maps with different scales, each level of the
pyramid will represent the same image but with a different resolution. The more
we go deep into the pyramid levels, the higher resolution we have.

Figure 2.2. Sample image of a feature pyramid

For what concerns the objects, they are represented through a star-structured part
based model, these kind of models are defined by a "root" filter accompanied by a
set of "part" filters with an associated deformation model. The root filter is used to
approximatively identify the entire object, while part filters cover smaller parts of
the object with a higher resolution. In order to apply the filters to the input image
with different resolutions, we just have to apply them to a different level of the
feature pyramid. Root filters will be applied to upper levels of the pyramid, while
part filters will be applied to deeper levels. The fact that part filters are defined
with a higher resolution is fundamental for deformable parts models to achieve good
recognition performances.

Given a certain position, the score of each star model is given by the score of
the root filter plus the scores of the part filters minus a deformation cost. The
value of the deformation cost depends on where parts are placed with respect to
the root filter, the more they will be far from the "ideal" position, the higher will
be the deformation cost value.
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Going a bit more into details, in [3] is explained that in deformable parts mod-
els each object with n parts is modelled through a (n+2)-tuple (F0, P1, ... , Pn, b):
F0 is the root filter, Pi is the i-th part filter while b is a bias. Each part is modelled
with a 3-tuple (Fi,vi,di): Fi is the part filter, vi is a two-dimensional vector which
specify an "anchor" for the part and di is a four-dimensional vector that contains
the coefficients of a quadratic function used to compute the deformation cost. Ev-
ery time we have an object hypothesis, the location pi = (xi, yi, li) of each filter
in the model is indicated. For each location xi and yi specify the position while
li specifies the level inside the feature pyramid. So the object hypothesis will be
given by an array z = (p0, ... , pn) where p0 is the location of the root filter and pi
is the location of the i-th part filter. An important aspect that must be highlighted
is that the level of part filters is chosen such that the resolution is the double with
respect to the root filter.

At this point, considering a filter F with size w × h, a feature pyramid H and
a position p = (x, y, l), in [3] we have that the score of the filter will be:

F 0 · φ (H, p, w, h)

Where F’ is the vector obtained by concatenating the weight vectors of the filter
F and φ (H, p, w, h) is the vector obtained by concatenating the feature vectors in
the w×h sub-window of the feature pyramid H with top-left corner at the p position.

The score of each object hypothesis, according to what is reported in [3], will
be given by:

score (p0, ..., pn) =
nX

i=0

F 0 · φ (H, p, w, h)−
nX

i=1

di · φd (dxi, dyi) + b

Where the first summation is the score of the filter F, the second one is the defor-
mation cost and b is a bias term. The term φd represents the deformation features
of the i-th part for a distance (dxi, dyi) with respect to the anchor.

Depending on the score of each object hypothesis, bounding boxes are placed into
the image to highlight the presence of a certain class of objects. Multiple detections
of the same object are rejected through non-maximum suppression.

2.2.3 Method performances

Deformable parts models represent a valid method for object detection for what
concerns the performances in terms of average precision, but, like all the methods
based on the sliding window approach, they require a very long time to extract
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features from an input image. Even if there are several implementations of this
method (e.g. Branch-Bound, Cascade, FFT, Coarse-to-fine ecc... ecc..), none of
them is fast enough to provide real time performances. In any case, there are some
new proposed implementations that shown to have promising results in terms of
speed but poor performances in terms of precision.

2.3 R-CNN

2.3.1 Introduction

One of the most effective way to extract features from an image is the use of a
CNN (Convolutional Neural Network). CNNs are basically used to perform opera-
tions on an input image through a series of multilayer perceptrons, these networks
are composed by an input layer and an output layer with several "hidden" layers
between them. Each layer performs a different kind of operation on the output
of previous layers, in the end we obtain a processed image which can also have a
different resolution with respect to the original one. The key concept of R-CNN is
to use region proposals as input for a CNN, performing object detection depending
on the features extracted from each proposed region.

2.3.2 Method description

As reported in [5], R-CNN object detection is basically based on three fundamental
steps: 1) generation of region proposals starting from the input image, 2) features
extraction from each proposed region through CNN, 3) analysis of the extracted
features for each class through SVM (Support-Vector Machines).

The generation of region proposals is very important to obtain a more efficient
detection, in fact, performing object detection through an exhaustive search is in-
feasible from the computational point of view. Region proposals can be obtained
in several ways, in R-CNN a "selective search" algorithm is used.

As explained in [4], the main goal of selective search is to reduce the number of
analyzed locations allowing to save time which can be spent to perform a more ac-
curate detection during next steps. In order to do that, a graph-based segmentation
of the image is performed to find a set of small initial regions in a fast way. Starting
from these regions a grouping procedure based on similarities is performed. In few
words, the similarities between all neighbouring regions are computed, then the two
most similar regions are grouped and the process is repeated until a single region is
obtained. In the end of the selective search a set of about 2000 regions is generated.
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After the generation of region proposals, the feature extraction is performed on
each proposed region. In particular a 4096-dimensional feature vector is extracted
using a CNN composed by five convolutional layers and two fully connected layers
which takes as input a 227 × 227 RGB image. Since proposed regions can have a
resolution that is not compatible with the CNN, regardless of the region size, input
images are warped in order to fit into the network.

The extracted features are then scored for each object class using a Support-Vector
Machine (SVM) specifically trained for that class. SVMs are learning models used
to perform classification and regression analysis [16]. In SVMs data are repre-
sented as points belonging to n-dimensional spaces, the aim of this machine learn-
ing method is to find a set of hyperplanes that identify all the considered objects
classes. Once the score has been computed for each proposed region, non maximum
suppression is performed to avoid multiple detections of the same object, then, de-
pending on the score, each region is associated to an object class.

To perform this association an IoU (Intersection over Union) overlap threshold
is chosen, which means that regions are labeled only if their score overcomes a cer-
tain value. It’s worth noting that the choice of the threshold value has a significant
impact for what concerns the performances in terms of mean Average Precision
(mAP). Choosing an appropriate value can make this method much more precise
while a wrong one can lead to poor performances.

2.3.3 Fast R-CNN

R-CNN represents an effective method for object detection, it allows to achieve a
good level of precision in a reasonable amount of time, even when a big amount
of classes is considered. As reported by Ross Girshick et al. [5], the developers
of this method, considering 10.000 classes, object detection on VOC 2007 can be
performed in about one minute with a mAP of 59%.

The limit of R-CNN is that it is too slow to perform real-time object detection,
moreover the training phase requires a long amount of time and a lot of storage
to be performed. In order to improve the performances of this method, the same
author of R-CNN has developed a reviewed version called Fast R-CNN [6].

The main reason that makes R-CNN slow, is that it requires to pass each ob-
ject proposal through a convolutional network to extract features from it. To solve
this problem Fast R-CNN uses a more efficient network architecture which allows
to achieve better performances. Basically the entire image is passed through a se-
ries of convolutional and max pooling layers to produce a feature map, for each
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object proposal a region of interest (RoI) pooling layer is then used to extract a
fixed-lenght feature vector. At this point, each feature vector is fed into a series of
fully connected layers that finally split in two branches: one pass through a softmax
layer which estimates the predicted class while the other produces as output the
offset values for the bounding box.

As explained in [6], RoI pooling layers are very important in this method since
they allows to express the features of each region of interest with small sized fea-
ture vectors. Each region of interest is defined by a four-tuple (r, c, h, w), where
(r, c) specifies the top-left corner and (h,w) the height and width. RoI pooling lay-
ers take as input these regions and divide them into a H ×W grid of h/H ×w/W
sub-windows, then max-pooling is performed for each sub-window obtaining as out-
put the feature vector for the considered region of interest.

Using this network architecture, the entire image pass through a convolutional
network only one time instead of repeating the procedure for all the 2000 proposed
regions. These regions, instead, are analyzed through non-convolutional layers,
which are less expensive from the computational point of view. The tests performed
by Ross Girshick et al. and reported on its paper shown that Fast R-CNN requires
only about 0.3 seconds to process an image (excluding region proposals generation),
against the 47 seconds required by "slow" R-CNN. Moreover Fast R-CNN shown
significant improvements also for what concerns training time and mAP.

2.3.4 Faster R-CNN

Even if Fast R-CNN is much faster with respect to R-CNN, if we take into account
also the region proposals generation, it requires about 2.3 seconds to process an
image, so it cannot be used for real time object detection. Both R-CNN and Fast
R-CNN, in fact, use selective search to generate region proposals, which is a slow
process where no kind of machine learning is performed. In order to overcome the
limits introduced by selective search, Shaoqing Ren et al. developed another alter-
native implementation of R-CNN called "Faster R-CNN" [7].

The key idea of Faster R-CNN is to obtain proposals through a deep convolu-
tional network instead of a time consuming algorithm, these kind of convolutional
networks are called Region Proposal Networks (RPNs). One of the advantages of
using RPNs is that they can share convolutional layers with other networks, e.g.
the object detection network, allowing to reduce the overall computational cost for
region proposals generation.

Faster R-CNN is composed of two modules: a deep fully convolutional RPN and
the Fast R-CNN detector. These two modules are merged together into a single
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network where convolutional layers are shared to reduce the computational cost.
So, a common set of convolutional layers is used to produce a feature map from the
input image, this feature map is then used by the RPN to generate a set of region
proposals which are finally used to feed the Fast R-CNN network.

Thanks to its efficient architecture, which allows to get rid of selective search,
Faster R-CNN is able to perform object detection on an image in about 0.2 sec-
onds, fast enough to use this method for real time purposes.

2.4 OverFeat

Another interesting method that uses CNNs to perform object detection is Over-
Feat. This method, developed by Pierre Sermanet et al. [8], uses three networks
specifically trained to perform object classification, localization and detection re-
spectively. Each of these three networks performs a specific task which can be
considered as a sub-task for the next network, so they can be merged into a single
CNN, which is applied to the input image in a sliding window fashion.

Even if OverFeat introduces a lot of interesting solutions for object detection, it is
not very efficient and its performances are not so brilliant. With a mAP of about
24%, it is way less precise with respect to the other methods reported previously,
so it won’t be explained in detail. In any case, since it is often used as a term of
comparison, it has been reported for the sake of completeness.

2.5 Single Shot MultiBox Detector (SSD)

2.5.1 Introduction

The methods reported so far allow to perform object detection with a good level of
precision, however, they have poor performances in terms of speed (most of them are
way far from real time object detection, with the only exception of Faster R-CNN,
which is able to run at most at 7 FPS). In order to speed up the detection without
sacrificing the accuracy, "single shot" methods have been developed. These kind of
methods are able to perform object localization and classification through a neural
network with a single forward pass, allowing to achieve significant improvements
in terms of speed. One of the most famous methods belonging to this category is
Single Shot MultiBox Detector, better known as SSD [10].
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2.5.2 Method description

SSD uses a feed-forward convolutional network to produce a set of fixed-size bound-
ing boxes from a given input image, non-maximum suppression is then performed
depending on the score of each bounding box to obtain the final detections. The
VGG-16 network, truncated before classification layers, is used by SSD as "base
network", other auxiliary layers are then added to improve the detection features.
To obtain predictions of detections at multiple scales, a series of convolutional fea-
ture layers with a progressively decreasing size is added to the base network. Each
of these layers uses a set of convolutional filters to produce a fixed set of detection
predictions, so, every feature map cell of each feature map is associated to a default
set of bounding boxes. Since each bounding box is defined by 4 offset values and c
class scores, considering a set of k bounding boxes for each feature map cell into a
m × n map, every feature map will return a set of (c + 4)kmn values. The offset
values are used to express the position and the dimension of each bounding box,
these values are measured with respect to "default" bounding boxes similar to the
anchor boxes used in R-CNN.

2.5.3 Method performances

SSD represents a significant step forward in terms of performances. As reported
in [10], it is able to perform object detection at 59 FPS achieving 74.3% of mAP
with a 300× 300 input image, which becomes 76.9% when the resolution grows to
512 × 512. With these features SSD outperforms all the methods seen previously,
introducing a valid object detection system for real time purposes.

2.6 YOLO (You Only Look Once)

2.6.1 Introduction

The meaning of the acronym YOLO is "You Only Look Once", as suggested by
the name itself, YOLO is a single shot object detection system that uses a single
convolutional network to obtain simultaneous bounding boxes predictions and class
probabilities for each of them.

2.6.2 Method description

As mentioned before and reported in [9], YOLO uses a single convolutional network
that processes the entire image at the same time to perform object detection. In
order to do that, the input image is divided into a S × S grid and B bounding
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boxes are predicted for each cell of this grid. Each bounding box is composed by
5 predictions: x, y, w, h and a confidence score, x and y are the coordinates of the
center while w and h specify the width and the height respectively. The confidence
score is defined as Pr(Object)∗IoU , where Pr(Object) is the probability estimated
by the model of having an object inside the box, while IoU is the intersection over
union between the predicted box and the ground truth.

Regardless of the number of bounding boxes B, a set of C conditional class probabili-
ties is predicted for each grid cell. These probabilities are computed as Pr(Classi|Object),
which is the probability of having an object belonging to the i-th class inside a cell,
conditioned by the probability of actually having an object inside it. Taking into
account all the parameters mentioned so far, we have that with this model predic-
tions are encoded as a S × S × (B ∗ 5 + C) tensor.

As explained in [9], at test time the conditional class probabilities and the con-
fidence score are multiplied, so we have:

Pr(Classi|Object) ∗ Pr(Object) ∗ IoU = Pr(Classi) ∗ IoU

The result of this product gives the class-specific confidence score for each bounding
box. At training time, since YOLO predicts a set of bounding boxes for each grid
cell, in order to avoid having more than one bounding box to be responsible for the
prediction of the same object, a loss function is used to select only one bounding
box for each object prediction.

For what concerns the network architecture, YOLO is implemented through 24
convolutional layers followed by two fully connected layers: the convolutional lay-
ers are used to extract features from the input image while the fully connected
layers are used to generate predictions. To obtain an even faster implementation,
called Fast YOLO, a smaller architecture with only 9 convolutional layers can be
used. The main drawback of this implementation is that it is less precise compared
to the "slow" version.

Requiring only a single network evaluation, YOLO is extremely fast. The results
reported in [9] show that it is able to perform object detection at 45 FPS with a
mAP of 63.4%. Fast YOLO pushes the speed up to 155 FPS without sacrificing too
much the mAP score, which decreases to 52.7%. The main limit of YOLO is that,
because of its strong spatial constraints which impose a fixed number of bounding
box and classes for each grid cell, it struggles with groups of small objects, e.g. a
flock of birds.
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2.6.3 YOLOv3

Several "improved" versions of YOLO have been developed after the original ver-
sion, the latest one is called YOLOv3 [11]. The first difference from previous
versions is about bounding box predictions. While YOLO uses two fully connected
layers to predict bounding boxes from the features map, in YOLOv3 these layers
are removed and predictions are made using dimension clusters as anchor boxes.
According to [11], in YOLOv3 the network predicts 4 coordinates for each bounding
box: tx, ty, tw, th. If the offset of a cell with respect to the top left corner is (cx, cy)
and previous bounding box has a width pw and a height ph, the prediction is given
by:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

where σ() is a sigmoid function used to predict the center coordinates of the box.

During training, a sum of squared error loss is used, where the error is given by the
difference between the prediction t̂* and the ground truth t*. For each bounding
box an "objectness" score is predicted using logistic regression, the value of this
score is 1 if the considered bounding box overlaps a ground truth object more than
any other [11].

The convolutional feature extractor used in YOLOv3 is more complex compared
to the one used in YOLO. It is composed by 53 convolutional layers, instead of 24,
and its name is Darknet-53 [11]. Starting from the feature map generated by this
network, class predictions are performed. Rather than using a softmax layer, each
bounding box performs a multilabel classification done with independent logistic
classifiers. These predictions are performed for 3 different scales, so the last layer
of the classifier generates a 3-d tensor that encodes bounding boxes, objectness and
class predictions.

While YOLO struggled with small objects, thanks to multi-scales predictions,
YOLOv3 shown to have better performances with small objects with respect to
large and medium ones. In general YOLOv3 represents a significant improvement,
it is three times faster than SSD with the same level of precision, making YOLO
one of the best methods for object detection.
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2.7 Conclusion
All the methods seen so far represent approximatively the state of the art in object
detection. In the following chapters we will focus on YOLOv3, which is the system
that shown to have the best trade off between real time performances and precision.
A validation process will be performed to measure the robustness of this system
discovering its limits with a particular focus on automotive environments.
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Development and validation of a
lane detection algorithm based on

image processing
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Chapter 3

Algorithm description and
implementation

3.1 Introduction
There are several approaches that can be followed to implement a lane detection
system. During the bibliographic analysis the focus has been set on GOLD be-
cause of its intuitive working principle and of its relatively good performances, but
many other possible solutions can be adopted. Some of these solutions are very
effective to perform lane detection, however they can involve the use of complex
techniques which often are not very easy to be interpreted in case of malfunctioning
(e.g. image processing in the frequency domain). So, since the main goal of this
work is to highlight the limits and the main issues of vision systems for autonomous
driving introduced by the environmental conditions, the validation process will be
performed on an algorithm for lane detection based on the working principle of
GOLD, which represents a good tradeoff between simplicity of the algorithm and
quality of the performances.

3.2 Algorithm description
Since GOLD has been developed on a custom hardware architecture, it is almost
impossible to find an implementation that can run on a standard PC. To overcome
this problem a new algorithm has been implemented in Matlab® following the
working principle of GOLD as a guide line. This "GOLD-based" algorithm per-
forms the following steps:

1. Production of a greyscale "Bird’s eye view" of the road;
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2. Filtering and thresholding of the produced image to highlight road lanes;

3. Histogram-based generation of road lanes;

The first step has been performed using a specific function belonging to the Mat-
lab® Automated Driving Toolbox called transformImage() [13]. This function is
able to obtain a bird’s eye view using inverse perspective mapping starting from: a
2D image, a birdsEyeView object containing the camera properties (incapsulated
into a monoCamera object), the portion of the camera view that will be trans-
formed into a bird’s eye view (provided in vehicle coordinates) and the size in pixel
of the output image.

For what concerns the second step, it includes many processes performed to detect
vertical lanes inside the top view image of the road following the same approach
used in GOLD, that is the search of horizontal dark-bright-dark transitions. This
search is performed scanning the bird’s eye view pixel by pixel and applying a rule
similar to the one proposed by Bertozzi et al. for GOLD [1], which is based on the
comparison between the level of brightness of the i-th pixel b(x, y) and of its right
and left neighbours b(x, y +m) and b(x, y −m). The variable m can be modified
in order to change the width of the lines that must be detected by the algorithm,
so a bigger value of m will lead the system to look for thicker lines while a smaller
one will have the opposite effect. The result of this comparison allows to produce
a remapped image r whose values are obtained as follow:

r(x, y) =

(
d+m(x, y) + d-m(x, y), if ((d+m(x, y) > threshold) ∧ (d-m(x, y) > threshold))

0, otherwise

with

d+m(x, y) = b(x, y)− b(x, y +m)

d-m(x, y) = b(x, y)− b(x, y −m)

The threshold variable is used to specify the sensitivity of the detection system, a
smaller threshold value will lead to consider also "softer" dark-bright-dark transi-
tions, while a higher one will lead the system to detect only "strong" transitions.
A similar expression has been already explained inside the bibliographic analysis,
in this case the main difference with respect to GOLD is that the threshold value
is not always 0 but can be set by the user in order to choose a certain level of
sensitivity.

After this first process, in order to remove spurious detections, a median filter
with a 3 × 3 structuring element is applied, then a thresholding procedure is per-
formed to obtain a binary image where all the pixels with a low value are cutted off.

40



3.2 – Algorithm description

At this point a last process is performed to detect and remove the pixels that does
not belong to a road marking with a "vertical" analysis instead of a "horizontal"
one. For each pixel of the remapped image r(x, y), a check is performed on the
pixels belonging to the same column applying the following rule:

rfiltered(x, y) =

(
255, if (r(x, y) = 255) ∧ ((r(x+m, y) = 255) ∨ (r(x−m, y)) = 255))

0, otherwise

So, in few words, considering a pixel belonging to the i-th row and the j-th column
of r, if it has a value equal to 255 (logic 1) and the pixel above (same column and
(j −m)-th row) or below (same column and (j +m)-th row) has a value equal to
255, the pixel keeps its value, otherwise it is considered null. Naturally the value
of each pixel is stored into a new remapped image called rfiltered. The main aim
of this sort of custom filter is to detect, and eventually remove, all the pixels with
a positive value that do not belong to a line. The process is iterated twice with
two different values of m in order to perform a check that consider two different
distances. The first iteration is performed using a longer "step" with respect to the
second one, in this way the pixels are checked with an increasing level of "rigidity".

Figure 3.1. Sample of an area inside the remapped image r

Just to make an explanatory example, Figure 3.1 shows a sample of an area inside
r where every square represents a pixel. It is possible to see that on the left there
is a well defined line while on the right there are some white pixels due to spurious
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detections. Considering m = 4, the resulting image rfiltered, which is shown in Fig-
ure 3.2, will keep the pixels belonging to the line discarding all the others.

Figure 3.2. Output image considering the one reported in Figure 3.1 as input

In the end, in order to have an image with lines composed only by segments of
a certain length, the third step is performed. During this last process the image is
subdivided in horizontal slices with a height of h pixels, for each of these slices a
histogram containing the number of pixels with a value equal to 255 (i.e. the logic
”1”) inside each column is computed. If the number of "positive" pixels overcomes
a threshold value, all the pixels inside the column are set to 255, otherwise they
are set to 0. The result of this process is a final image rfinal that does not con-
tain any isolated spurious pixel but only little segments with a length equal to h
composing the road markings detected by the system. This final image can then
be used to compute the position of the lanes with respect to the vehicle reference
frame through the imageToVehicle() Matlab® function, which allows to convert
the bird’s-eye-view image coordinates to vehicle coordinates [13].

3.3 Camera calibration

As already explained in the previous section, the bird’s eye view of the road is
obtained using the transformImage() Matlab® function. This function requires
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multiple inputs, one of them is a monoCamera object that contains all the prop-
erties of the camera used to take the input pictures, including the intrinsic camera
parameters [14]. These parameters are: focal length, principal point and image size.
The focal length is specified as a two-element vector [fx, fy] with fx = F × sx and
fy = F × sy, where F is the focal length in world units (usually millimeters) while
sx and sy are the number of pixels per world unit in the x and y direction respec-
tively, so both fx and fy are expressed in pixels. The principal point, instead, is
the optical center of the camera expressed in pixels and specified as a two-element
vector [cx, cy]. These parameters are fundamental to perform the inverse perspec-
tive mapping that allows to obtain the bird’s eye view image. The main problem
is that they are different for each camera and that they are not provided by cam-
era manufacturers, so the only way to compute them is by performing a camera
calibration. Luckily Matlab® includes a Camera Calibration App [15] that allows
to perform this operation, obtaining all the parameters needed to remove the per-
spective effects in an easy and fast way.

The calibration procedure is performed by taking a series of pictures of a checker-
board with a square pattern, like the one reported in Figure 3.3, from different
positions and with different angulations. In this way, providing the exact size of
the squares, the calibration app is able to compute all the extrinsic and intrinsic
camera parameters. Once that the calibration session is completed, all the com-
puted parameters are stored in the workspace and some plots are displayed. One
of these plots shows the reprojection errors for each input image, which is the error
(expressed in pixels) between the real and the estimated projection of a world point
on the image. The mean error between all the input images should not overcome 1
pixel to achieve acceptable results. Two other interesting images are the "pattern-
centric" and the "camera-centric" views, which show respectively the estimated
positions of the camera with respect to the checkerboard and the estimated posi-
tions of the checkerboard with respect to the camera for each input picture. Figure
3.4 reports the pattern-centric view, which shows the checkerboard in a fixed po-
sition and the camera in all the positions used to take each of the pictures needed
for the calibration.
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Figure 3.3. Checkerboard provided by Matlab®

Figure 3.4. Pattern-centric view
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Chapter 4

Algorithm validation

4.1 Introduction

Now that the working principle of the lane detection algorithm has been explained,
the following part will focus on its validation. The validation process is crucial to
understand the reliability and the robustness of any system, especially for a system
designed for safety purposes, where there is the need to guarantee an almost null
fail probability. During this procedure many different scenarios will be evaluated to
understand how system performances change depending on several factors like, for
example, weather conditions and illumination. The data set needed to perform the
validation procedure has been entirely developed in Turin using a GoPro® Hero 7
Black edition camera mounted on an easel with a height of about 1,5 meters and a
pitch of about 8. The height and the pitch have been set in a way that reproduces
the typical position used for cameras inside vehicles, i.e. near to the rearview mir-
ror. The main street that has been used as a "benchmark" is Corso Castelfidardo
in Turin (Italy), this choice is mainly due to the fact that the characteristics of
this road are compliant with the requirements of the implemented lane detection
system (it is almost straight with clear road markings), moreover the traffic condi-
tions allowed to take pictures in a safe way. In order to evaluate the performances
with different light conditions, a picture has been taken for every different moment
of the day: morning, afternoon, nightfall and night. Starting from this initial data
set other synthetic images have been developed to evaluate different weather condi-
tions and to add micro and macro defects. For the sake of completeness also a more
"critical" environment with bad asphalt conditions and colored road markings has
been considered, so some pictures have been taken in Via Sant’Antonio da Padova
(always in Turin, Italy), which is a street that has the aforementioned characteris-
tics. As anticipated previously, the following sections will analyze the behaviour of
the lane detection algorithm in different scenarios. First of all the original images
will be used, subsequently the synthetic images derived from the original ones will
be evaluated.
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4.2 Light conditions

One of the main variables for every vision process is the environmental illumi-
nation. Especially when working outdoor, these conditions change hour-by-hour
because of the cyclic alternation of day and night. So, in order to evaluate the level
of sensitivity (with respect to lighting variations) of the implemented lane detec-
tion algorithm, a picture has been taken for each moment of the day: morning,
afternoon, nightfall and night.

4.2.1 Morning

Just to follow a sort of chronological order, the first part of the day that will be
considered is the morning. Theoretically this is the moment of the day with the best
possible illumination, i.e. it is uniform and mostly free from any kind of shadow
due to the inclination of the sunshine. Figure 4.1 shows Corso Castelfidardo during
the morning, as expected the quality of the input image is pretty good: the road
markings are clear and shadows are almost absent. After a first calibration of the
parameters used by the algorithm, i.e. the "step" m and the threshold value, the
image reported in Figure 4.1 has been used as input obtaining the results reported
in Figure 4.2. The Matlab® script has been developed in a way such that it
shows in the same image all the intermediate passages, which are: the bird’s eye
view, the binary image r filtered (obtained through the initial filtering procedures),
the final result contained in the image r final (obtained through an histogram-
based procedure starting from r filtered) and the overlap of the bird’s eye view and
the final output image to check the goodness of the detected lanes (highlighted in
green). Since all the road marking have been correctly detected, the final output can
be considered acceptable. The only imperfection is represented by some spurious
detections due to the fact that the sidewalks are very close to the borders of the lane,
in fact, since the edges of the sidewalks are brighter than their surroundings, they
can be mistakenly detected as part of a lane by the algorithm. Another thing that
it is worth noting is that, when the system tries to reconstruct the bird’s eye view
of the most distant parts of the road, the corresponding part of the reconstructed
image is a bit blurred and the shape of the road markings becomes distorted. This
effect is mainly due to the fact that, as the distance increase, the algorithm has less
available pixels to reconstruct the road, so the level of definition is clearly reduced.
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Figure 4.1. Input picture of Corso Castelfidardo during the morning

Figure 4.2. Output images obtained using as input the image reported in Figure 4.1

47



4 – Algorithm validation

4.2.2 Afternoon

While the morning was an "ideal" condition because of the reasons mentioned pre-
viously, during the afternoon, even if the luminosity is still high, the position of
the sun is such that the road is not lighted uniformly, producing shadows that can
somehow disturb the lane detection process. Figure 4.3 shows a pictures of Corso
Castelfidardo taken from the same position of Figure 4.1 but during the afternoon
instead of the morning.

As it is possible to see, because of the shadows, some areas are darker with re-
spect to the ones directly lighted by the sunlight. Despite these darker areas, the
results reported in Figure 4.4 are still good but not as good as the ones obtained in
the morning. For example, some of the dashed lines on the right were not detected,
in particular the ones that belong to the brighter road areas. Moreover, probably
because of the different sunlight angulation, the amount of spurious detections due
to the sidewalks is higher with respect to the morning. In addiction to this, there is
a spurious detection inside the left part of the lane, which is due to the fact that the
sunlight highlights a clearer area of the asphalt that looks like a horizontal stripe.
The last thing that is worth reporting can be noticed in Figure 4.4, on the top-left
corner of the overlap between the bird’s eye view and the detected lanes. Inside
this area, because of a tree with a particularly "intense" shadow, the thickness of
the detected lane results reduced. It is reasonable to think that, in worse light
conditions, the system will not be able to detect the road marking inside this area
producing an interruption.

To conclude, it is possible to say that, since the borders of the lane have been
detected properly despite some little imprecisions, the overall quality of the results
can be considered satisfactory.
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Figure 4.3. Input picture of Corso Castelfidardo during the afternoon

Figure 4.4. Output images obtained using as input the image reported in Figure 4.3
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4.2.3 Nightfall

As the night approaches, the light conditions becomes more critical hour after hour.
One of the worst moments from this point of view is the nightfall, where the road
lights are still off and there is not direct sunlight. A positive aspect of this condition
is that shadows are almost absent with respect to the afternoon, unfortunately the
price to pay is a much lower illumination. Figure 4.6 shows a picture of Corso
Castelfidardo during the nightfall, the conditions of the road are coherent with
respect to what has been previously mentioned, i.e. low illumination and only light
shadows. The outputs provided by the lane detection system are shown in Figure
4.7. As it is possible to see, also in this case, the quality of the results is not
bad and the system detected correctly the borders of the lane. Nevertheless, the
lower illumination led to an overall worsening of the performances and, even if the
spurious detections due to the sidewalks are reduced with respect to the previous
cases, most of the dashed lines on the right were not detected. This is mainly due
to the fact that these lines are not as clear as the other road markings, so, with a
poor illumination, the system is not able to detect them. Moreover, as supposed
during the analysis of the results obtained in the afternoon, at first the continuous
line on the left was not detected in the proximity of the shadow produced by a
tree (Figure 4.5). So, in order to improve the performances, the sensitivity of the
system has been increased by reducing the threshold parameter from 8 to 6. In
this way it has been possible to compensate the worsening of the light conditions
keeping an acceptable level of performance.

Figure 4.5. Final result during the nightfall with threshold = 8, (lower sensitivity)
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Figure 4.6. Input picture of Corso Castelfidardo during the nightfall

Figure 4.7. Output images obtained using as input the image reported in Figure 4.6
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4.2.4 Night

Let’s now consider the worst possible scenario in terms of light conditions: the
night. The main problems linked to this part of the day are the low lighting and
the non homogeneous illumination generated by the artificial lights. Figure 4.8
shows a picture of Corso Castelfidardo taken during the nighttime, in order to eval-
uate the worst possible condition in terms of illumination, the car lights have been
considered turned off.

The final results obtained using Figure 4.8 as input are reported in Figure 4.9.
As done for the nightfall, in order to achieve better performances, the sensitivity
has been increased by reducing the threshold value to 4. With this level of sensitiv-
ity, despite the worse lighting, the final results are even better with respect to the
ones obtained during the nightfall. Anyway, also in this case some of the dashed
lines on the right were not detected, moreover the high sensitivity increased the
amount of spurious detections due to the sidewalks. In any case, even if the quality
of the results is certainly inferior with respect to the morning and the afternoon, the
system detected very well the continuous line on the left and struggled only with
the dashed line on the right, so the performances can be considered satisfactory.
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Figure 4.8. Input picture of Corso Castelfidardo during the night

Figure 4.9. Output images obtained using as input the image reported in Figure 4.8
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4.3 Image defects
While the previous sections considered the robustness of the lane detection system
with respect to different lighting conditions, now the focus is moved to the effect of
image defects. In fact, when an outdoor environment is considered, the hypothesis
of having an image affected by defects due to dust particles or any other kind of
dirt cannot be neglected. The two following sections will evaluate the robustness
of the system when there are micro and macro defects on the input image, trying
to evaluate their impact on the performances taking also into account the quality
of the illumination.

4.3.1 Micro defects

Micro defects means a small imperfection with an order of magnitude of few pixels,
these defects can be "hot pixels", i.e. damaged pixels, or, for example, defects gen-
erated by dust or other small particles. In order to simulate these defects a "salt &
pepper" noise has been added to the original images using the imnoise() Matlab®
function.

The following figures report the results obtained using the images created as previ-
ously described, different tests have been performed considering different moments
of the day. The results obtained during the morning (Figure 4.10, 4.11) shown
that, in a scenario with a strong illumination, the level of performance is almost
unchanged. A similar result has been obtained during the nightfall (Figure 4.14,
4.15) but only with a higher level of sensitivity, achieved by reducing the threshold
value from 6 to 4. A light performance degradation occurred in the afternoon (Fig-
ure 4.12, 4.13) and in the night (Figure 4.16, 4.17) with an increase of the spurious
detections. In general, the main effect of this kind of defect is the generation of
small spots inside the bird’s eye view, which become more elongated in the vertical
direction as one consider the reconstruction of a farther part of the road. At a
certain point, these "elongated spots" are so long that they can be considered like
short vertical stripes, which luckily are too thin to be detected as road markings
by the system.
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Figure 4.10. Input picture of Corso Castelfidardo during the morning
with micro defects

Figure 4.11. Output images obtained using as input the image reported in Figure 4.10
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Figure 4.12. Input picture of Corso Castelfidardo during the afternoon
with micro defects

Figure 4.13. Output images obtained using as input the image reported in Figure 4.12
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Figure 4.14. Input picture of Corso Castelfidardo during the nightfall
with micro defects

Figure 4.15. Output images obtained using as input the image reported in Figure 4.14
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Figure 4.16. Input picture of Corso Castelfidardo during the night with micro defects

Figure 4.17. Output images obtained using as input the image reported in Figure 4.16
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4.3.2 Macro defects

Now that the effects of micro defects have been evaluated, it is time to perform the
same procedure for macro defects. Macro defects means any kind of image defect
with considerable size, e.g. a spot with a size in the order of magnitude of the
squared centimeters. This kind of defect can be produced by several causes like,
for example, mud or any kind of dirt on the glass of the camera sensor. In order to
evaluate how macro defects affect the performances of the developed lane detection
system, a series of synthetic images has been developed using Adobe® Photoshop,
in particular, as done for micro defects, all the different moment of the day have
been taken into account. A sample of one of these synthetic images is reported
in Figure 4.18, where four dark spots with a random shape are placed in different
areas of the image.

The performed tests shown that the quality of the illumination does not affect
in any way the outcome of the detection, in fact in every light condition the macro
defects produced always the same effect. Figure 4.19 shows the output produced
using as input the image reported in Figure 4.18, as expected, only the spots that
cover a part of the road affected the lane detection process, preventing the detection
of the underlying road markings.
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Figure 4.18. Input picture of Corso Castelfidardo during the morning
with macro defects

Figure 4.19. Output images obtained using as input the image reported in Figure 4.18
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4.4 Weather conditions
At this point of the validation procedure the focus is set on the weather conditions,
for reasons of safety and feasibility it was not possible to directly take pictures of
the street in critical weather conditions. In order to overcome this problem a set
of synthetic images has been created using Adobe® Photoshop, in particular fog
and heavy rain have been added to the images of Corso Castelfidardo considering
different moments of the day.

4.4.1 Fog

One of the worst weather conditions for what concerns the visibility is the presence
of fog. Depending on its intensity, the fog can considerably reduce the field of view,
leading in the worst cases to an almost total loss of information. During the tests
four conditions have been taken into account: daytime with light fog, daytime with
thick fog, nighttime with light fog and nighttime with thick fog.

Figure 4.20 shows Corso Castelfidardo during the daytime with light fog, in this
case the field of view is not very reduced but the sharpness of the image is worse. As
can be seen from Figure 4.21, using a very high sensitivity (i.e. with the threshold
value set to 4), the level of performance in this weather conditions is not reduced
that much and is comparable with the "standard" conditions. Moreover, in this par-
ticular case, the fog has brought a beneficial effect reducing the amount of spurious
detections due to the sidewalks. Considering a more critical situation, Figure 4.22
shows Corso Castelfidardo during the daytime with a thick fog that considerably
reduces the field of view. In this case, as reported in Figure 4.23, the performance
degradation noticed during the tests has been very high, in fact, even with a high
level of sensitivity, after a certain point the lines were not detected. Once again,
the detection of the dashed lines on the right has been the most problematic and
the one where the system shown the worst performances. Passing to the nighttime,
in general, the tests shown a significant drop in performance. With light fog, as
shown in Figure 4.25, the continuous line on the left was only partially detected
while the dashed lines were not detected at all. However, the worst results came
out during the tests with thick fog (Figures 4.26 and 4.27), where the system, even
with the highest sensitivity available, did not detect nothing. The only improve-
ment brought by the night is that, with light fog, the spurious detections were
almost absent.
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Figure 4.20. Input picture of Corso Castelfidardo during the daytime with light fog

Figure 4.21. Output images obtained using as input the image reported in Figure 4.20
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Figure 4.22. Input picture of Corso Castelfidardo during the daytime with thick fog

Figure 4.23. Output images obtained using as input the image reported in Figure 4.22
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Figure 4.24. Input picture of Corso Castelfidardo during the nighttime with light fog

Figure 4.25. Output images obtained using as input the image reported in Figure 4.24
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Figure 4.26. Input picture of Corso Castelfidardo during the nighttime with thick fog

Figure 4.27. Output images obtained using as input the image reported in Figure 4.26
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4.4.2 Heavy Rain

As anticipated during the introduction to this section, besides the fog, also the
heavy rain will be considered. This particular weather condition can dramatically
affect the visibility because of the water drops, which can reduce the field of view,
and of the water on the camera glass, which can introduce an additional distortion
to the image. In order to reproduce the rain a custom filter has been developed,
then, to reproduce the effect generated by the water on the camera glass, the image
has been slightly blurred. As done with the fog, also in this case both the day-
time (Figure 4.29, 4.30) and the nighttime (Figure 4.31, 4.32) have been considered.

The results of the tests shown that in rainy conditions there is a significant degra-
dation of the performances. Looking at figures 4.29 and 4.31 it is possible to see
that, as happened with the thick fog, after a certain point the system is not able to
detect the lane. Moreover, the tests shown that, especially during the nighttime,
passing from the original image to the bird’s eye view, the rain produces some ver-
tical lines that can generate spurious detections. In order to reduce these spurious
detections and improve the overall performances, the sensitivity has been reduced
using a threshold value equal to 8, allowing the system to reject a bit more the lines
generated by the rain. The results obtained with a higher sensitivity (threshold
= 4) can be seen in Figure 4.28, which shows the overlap of the detected lines
(highlighted in green) and the bird’s eye view. It is immediate to see that there are
much more spurious detections and that the performances using a lower sensitivity
are considerably better. During all these tests the input images have been pro-
duced introducing just a soft blur trying to reproduce the effect of the water on the
camera glass. It is clear that, for a vehicle that travels during a violent rainstorm,
the water that covers the camera glass can produce a significantly stronger distor-
tion on the input image with respect to one that has been considered during the
tests. However, since the results obtained until now shown that the system does
not provide sufficient performances to work in rainy conditions, were not considered
further worse cases.

66



4.4 – Weather conditions

Figure 4.28. Final result in heavy rain conditions during daytime with
threshold = 4, (higher sensitivity)
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Figure 4.29. Input picture of Corso Castelfidardo during the daytime with heavy rain

Figure 4.30. Output images obtained using as input the image reported in Figure 4.28
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Figure 4.31. Input picture of Corso Castelfidardo during the nighttime with heavy rain

Figure 4.32. Output images obtained using as input the image reported in Figure 4.30
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4.5 Bad asphalt conditions and colored road mark-
ings

During the previous phases of this validation procedure, several atmospheric con-
ditions have been taken into account considering always a street in good conditions
with clear road markings. In this last part instead, the goal is to evaluate the ef-
fects of a ruined asphalt with colored road markings in optimal weather conditions.
In order to do that, since the characteristic of the road are almost perfect for the
purposes explained previously, a picture of Via Sant’Antonio da Padova (Figure
4.33) has been taken during the daytime. The results obtained using this picture
as input are reported in Figure 4.34, the first thing that can be noticed is the fact
that only the yellow lines have been properly detected while the blue ones were not
individuated by the system. Another thing that it is worth noting is that, since
they are parked very close to the lane, the vehicles along the sides of the road
produced some dark shapes on the bird’s eye view, leading to spurious detections
that could not be removed even reducing the sensitivity of the system. In general,
the performances of the algorithm in this kind of scenario cannot be absolutely
considered satisfactory, the only positive thing that can be noticed from this test
is that the bad asphalt conditions did not lead to any spurious detection.

4.6 Conclusion
Even if many other possible scenarios with many other variables can be considered,
this validation procedure allowed to evaluate the robustness of this lane detection
system and to highlight its limits. In general the quality of the results was good,
with an acceptable level of efficiency for most of the "standard" conditions. Nev-
ertheless, all the limits of an ADAS based exclusively on vision came out, with a
degradation of the performances every time that there was a significant reduction of
the visibility (e.g. macro defects, fog or heavy rain). Moreover, the performances
in streets with bad asphalt conditions and unclear road markings was very bad,
with the system that has not detected most of the lines. Another aspect that was
highlighted by the tests is the fact that, in order to obtain the best possible per-
formances, there is the need of a sensors system which allows to set the level of
sensitivity depending on the different scenarios.

At the end of this validation procedure it is possible to conclude that, considering
the level of performance obtained in all the different conditions, the system can
be used only in streets with very good asphalt conditions and only in non-critical
situations, where the visibility is just slightly reduced.
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Figure 4.33. Input picture of Via Sant’Antonio da Padova

Figure 4.34. Output images obtained using as input the image reported in Figure 4.33
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Part IV

Validation of the YOLOv3 object
detection system
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Chapter 5

Introduction

One of the main goals of this work is to analyze vision processes used to achieve
a certain level of autonomous driving in order to evaluate their robustness. While
previously the focus has been set on the lane detection process, in this second
part object detection will be considered. Since it allows to detect and recognize
different classes of objects inside an input image, the capability of perform this
process represents a crucial feature for what concern autonomous driving. During
the bibliographic analysis several object detection methods have been considered,
explaining their working principles and reporting their performances in terms of
speed and precision. Between all the methods seen during this analysis the one
with the best overall performances is YOLOv3, which is the latest version of the
YOLO object detection system. One of the features that makes YOLOv3 partic-
ularly interesting is its speed, in fact it is one of the few object detection systems
able to work in real time with a decent level of mAP. The ability of working in
real time is a must when one works inside the automotive field, especially for safety
applications, where there are stringent constraints for what concerns timing.

Usually, the approach adopted to validate systems that use neural networks is
based on the analysis of huge datasets. Considering object detection, after a cer-
tain period of training, the system is tested using a series of input images, which
allow to estimate the mean average precision (mAP) for each considered object
class. Both the processes of training and validation require a lot of time, even
when are used machines with a very high computational power. Moreover, since
the input images used for training cannot be used again for the validation process,
in order to avoid overfitting, the creation of a training dataset can be very long.
Overfitting is a phenomenon where the system shows better performances than the
actual ones. This is mainly due to the fact that, when one uses images belonging
to the training dataset, the system already "knows" these images and can indi-
viduate all the objects easily. The results of many validation processes performed
in this "traditional" way can be found in the bibliography, for example Figure 5.1
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[9] shows the scores obtained by many different object detection systems with the
Pascal VOC 2012 challenge. Since the main goal of this work is to evaluate how

Figure 5.1. Pascal VOC 2012 Leaderboard taken from [9]

the system under test reacts in terms of performances to the variation of different
parameters, the validation process will be performed with an approach similar to
the one used previously for the lane detection system. In particular, instead of
considering thousands of different input images, a small but much more specific
dataset has been produced. In order to do that in a safe way, a generic automotive
scenario has been recreated inside a parking area, then a picture has been taken
for each different moment of the day, allowing to consider all the possible lighting
conditions. The final dataset has been finally obtained modifying these images to
take into account also the effects of micro and macro defects, different resolutions
and different weather conditions.

Figure 5.2 shows the automotive scenario used for the tests, it contains: three
different kind of cars (i.e. a van, a station wagon and a small utilitarian car), two
different road signs and two pedestrians. All these elements have been chosen to
recreate a realistic and heterogeneous environment, trying to consider as many ob-
jects as possible. To evaluate the system range, all the different kind of objects
have been arranged at different distances: the two pedestrians are placed at about
10 and 30 meters respectively, the stop sign are placed at 10 meters while the other
road sign is 30 meters away, the yellow car is placed at 6 meters with respect to
the camera while the van and the station wagon are approximatively 10 and 17
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meters away respectively. The camera used during the tests is a Casio® Exilim
with a 12.1 Mega pixels sensor. This choice is due to the fact that both the cost
and the quality of the sensor inside this device are suitable for automotive purposes.

Each section of the following chapter will treat the effects of a different "variable"
(i.e. lighting, weather conditions, micro and macro defects) processing the images
contained into the dataset with a pre-trained version of YOLOv3. Every variable
will be analyzed considering two different resolutions, full size (4000 × 3000) and
VGA (640 × 480), in order to understand if a higher resolution leads to better
results. During this validation procedure all the critical issues will be highlighted,
trying, if possible, to speculate about how they can be solved or at least mitigated.

Figure 5.2. Automotive scenario recreated for the tests
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Chapter 6

Dependencies on image quality and
corner cases

6.1 Lighting

Like for every system based on a vision process, lighting is crucial for object de-
tection. As explained during the bibliographic analysis, object recognition is often
performed through edge detection, which is a process where the direction and the
intensity of the light can affect heavily the final result. So the first parameter that
is going to be evaluated is the lighting, in order to do that four different moments of
the day characterized by different light conditions will be considered (i.e. morning,
afternoon, sunset and night). For the tests performed in the nighttime, car lights
have been considered both on and off to evaluate how they affect the performances.

6.1.1 Morning

Let’s start in a chronological order with the first part of the day: the morning.
During the morning there are the best lighting conditions, in fact the light is strong
and uniformly distributed, an ideal condition for any vision process. Figure 6.1
shows the results of the tests performed during the morning, on the left column
there are the input images while on the right one the respective output images can
be seen. The difference between the two input images is the pedestrians orientation,
which has been changed to evaluate if the system somehow obtains better results
in one case rather than the other. As can be seen from these images, the quality
of the results is very good, in fact all the objects have been properly recognized
with the only exception of the white van, which is partially hidden by the yellow
car in the foreground, and the triangular road sign, which is evidently too far to
be recognized. The only mistake made by the system is a spurious detection of a
person inside the yellow car, which was strangely detected only in the image with
the pedestrians in profile at full resolution.
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Figure 6.1. Results of the tests performed during the morning

As mentioned previously, the tests have been performed with two different reso-
lutions (full size and VGA), in both cases the system worked approximatively in
the same way providing satisfactory results. Surprisingly the test that produced
the worst results in terms of confidence score was the one at full resolution with
the pedestrians in profile. The following table reports all the confidence scores ob-
tained during the tests ("profile" and "front" are referred to the orientation of the
pedestrians):

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 100% 100% 100% 100%
person (boy) 99% 99% 99% 98%
yellow car 87% 92% 90% 94%
black car 100% 100% 100% 98%
person (error) 64% // // //
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6.1.2 Afternoon

The second part of the day that has been considered is the afternoon, in this case
the amount of light is slightly smaller with respect to the morning but, because of
the sun position, there are more shadows and in general a worst distribution of the
light. Figure 6.2 shows the results obtained during this part of the day, as expected,
the system detected all the object that have been detected previously during the
morning. The unexpected fact, instead, is that in this case the confidence score
for every resolution and orientation of the pedestrians is higher with respect to the
morning. Probably the reason of this improvement of the results is that the sun
position made the asphalt a bit darker, increasing the contrast between the asphalt
and the contour of the objects. As done for the morning, all the results are reported
in the table below:

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 100% 100% 100% 100%
person (boy) 100% 100% 100% 100%
yellow car 97% 98% 97% 98%
black car 100% 100% 100% 99%

6.1.3 Sunset

Proceeding in chronological order, the analysis continues with the sunset. In this
case the lighting conditions are very close to those that one has during the afternoon
but a bit more emphasized (i.e. darker images and more shadows). As expected,
the quality of the results is comparable to the one obtained during the afternoon,
with just a little decrease of the confidence score, especially for the yellow car. The
results are reported in Figure 6.3 and reassumed in the following table:

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 99% 99% 100% 100%
person (girl) 100% 100% 100% 100%
person (boy) 100% 99% 99% 99%
yellow car 94% 91% 94% 92%
black car 99% 99% 99% 99%
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Figure 6.2. Results of the tests performed during the afternoon

Figure 6.3. Results of the tests performed during the sunset
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6.1.4 Night

Finally, it is time to analyze the most critical condition for what concerns the light-
ing condition, i.e. the night. In the nighttime the only sources of light are the
artificial road lights and the car lights (and sometimes the moon). As anticipated
previously the tests have been performed considering both the cases with the car
lights turned on and off, trying to evaluate how and if they can improve the per-
formances. Surprisingly the quality of the results remained mostly unchanged in
both cases, the only object that shown a reduction of the confidence score was the
yellow car, which is in shadow because of the location of the artificial lights. Any-
way the use of car lights improved the overall performances, allowing to increase
the confidence score in most of the cases. A curious thing is that, at full resolution
and with car lights turned on, the system supposed also that the yellow car could
be a truck with the 58% of probability. This is probably due to the "boxy" shape
of the car and to the low light, anyway, it is not a big issue but just an imprecision.

Figures 6.4 and 6.5 reports the results obtained with car lights turned on and
off with full resolution, figures 6.6 and 6.7, instead, reports the same results but
using images with VGA resolution. The following tables summarize the results
obtained in both the conditions:

Car lights OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 99% 99% 99% 99%
person (girl) 100% 100% 100% 100%
person (boy) 99% 99% 100% 100%
yellow car 66% 85% 58% 79%
black car 99% 99% 99% 96%

Car lights ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 99% 99% 100% 100%
person (boy) 98% 98% 98% 99%
yellow car 87% 89% 86% 84%
black car 99% 98% 99% 98%
truck 58% // // //
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Figure 6.4. Results of the tests performed during the night with full
resolution (car lights OFF)

Figure 6.5. Results of the tests performed during the night with full
resolution (car lights ON)
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Figure 6.6. Results of the tests performed during the night with VGA
resolution (car lights OFF)

Figure 6.7. Results of the tests performed during the night with VGA
resolution (car lights ON)
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6.2 Defects

Now that the impact on the performances of different lighting conditions have been
evaluated, the validation process goes on with the analysis of another important
aspect which can affect considerably the performances, that is the presence of de-
fects. When one deals with an outdoor environment, there is the possibility of
having external agents that can make the lens of the camera dirty (e.g. mud, dust
and other particles, etc...), generating some macro defect on the input images like
spots or marks. Moreover one can have also micro defects, due, for example, to
digital noise or burned pixels. During the following analysis, all these defects will
be evaluated to understand how and if they can affect the performances.

6.2.1 Micro defects

The first kind of defects that will be considered are micro defects. Even if the di-
mension of these defects is very small, when one deals with a system that analyzes
small groups of pixels, they can lead to a significant performance degradation. In
order to add micro defects to the original images the imnoise() Matlab® function
has been used, specifying a "salt & pepper" noise.

The following figures (from 6.8 to 6.15) show the results obtained with this kind
of defects considering different lighting conditions (morning, afternoon and night).
While during the previous analysis, where has been considered the effect of the
illumination, the results were mostly coherent with the expectations, in this case a
lot of curious things came out from the test results, especially concerning the tests
performed during the nighttime. In fact, if the results with a high level of illumina-
tion (morning and afternoon) were almost identical to the ones obtained without
any defects, the tests with low lights highlighted a substantial loss of performance.

As can be seen from figures 6.12 and 6.13, the system did not detect the yellow car
at every resolution, while at VGA resolution the system did not detect even the
stop sign. The black car instead were not detected only at VGA resolution with
the pedestrians oriented in front of the camera. This result is very significant if we
think that a typical micro defect is the digital noise due to low light conditions. So,
during the design procedure, a camera with a high noise rejection will be advisable
for autonomous driving purposes. Anyway, since the law imposes to have car lights
turned on during night driving, discarding the possibility of a failure, the tests
performed in this condition should be more realistic. Luckily, as it is possible to
see in figures 6.14 and 6.15, the results obtained in this case show that the better
illumination allows to improve significantly the performances. Indeed the system
detected all the objects correctly, with the only exception of the image at VGA
resolution with the pedestrians in profile, where the female pedestrian (the closer
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one) was not found by the system. Another thing that can be noticed is the fact
that, during the tests performed in the afternoon at VGA resolution, the system
assumed also the hypothesis that the yellow car could be a truck. The same thing
happened also without micro defects but only during the nighttime at full resolu-
tion and with car lights turned on.

The following tables reports all the results in terms of confidence score:

Morning)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 100% 99% 100% 100%
person (boy) 100% 97% 98% 93%
yellow car 89% 87% 83% 89%
black car 100% 100% 100% 100%

Afternoon)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 100% 99% 100% 100%
person (boy) 100% 99% 100% 99%
yellow car 77% 84% 92% 66%
black car 99% 100% 100% 99%
truck // 59% // 66%

Night with car lights turned OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 97% // 96% //
person (girl) 99% 97% 100% 99%
person (boy) 99% 97% 99% 99%
yellow car // // // //
black car 97% 65% 94% //

Night with car lights turned ON)

87



6 – Dependencies on image quality and corner cases

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 99% 100% 100%
person (girl) 98% // 100% 94%
person (boy) 98% 79% 91% 93%
yellow car 75% 64% 89% 89%
black car 96% 84% 98% 91%
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Figure 6.8. Results of the tests performed during the morning with micro
defects at full resolution

Figure 6.9. Results of the tests performed during the morning with micro
defects at RGB resolution
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Figure 6.10. Results of the tests performed during the afternoon with micro
defects at full resolution

Figure 6.11. Results of the tests performed during the afternoon with micro
defects at VGA resolution
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Figure 6.12. Results of the tests performed during the night with micro defects
at full resolution (car lights OFF)

Figure 6.13. Results of the tests performed during the night with micro defects
at VGA resolution (car lights OFF)
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Figure 6.14. Results of the tests performed during the night with micro defects
at full resolution (car lights ON)

Figure 6.15. Results of the tests performed during the night with micro defects
at VGA resolution (car lights ON)
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6.2.2 Macro defects

The second and last kind of defects that will be treated are macro defects. To re-
produce macro defects like spots and marks, the original images have been modified
using Photoshop®, in particular some brown spots have been added to partially
cover some of the objects inside the input images. The main goal of this test is
to evaluate the ability of the system to recognize objects that are not completely
visible considering different light conditions.

Figures from 6.16 to 6.23 show the results obtained, the tests have been performed
considering the same conditions evaluated during the analysis of micro defects.
Since the macro defects have been added using always the same "mask", the posi-
tion of the spots is the same in every image. The position of the objects, instead,
can be slightly different from an image to another because of the small movements
of the camera easel. So, depending on the different moment of the day, the spots
will cover the objects in a slightly different way. This thing is not necessarily bad,
in fact it allows to evaluate more levels of overlap between the objects and the
spots. In general the system produced decent results considering the entity of the
defects, however there are a lot of errors and imprecisions that have been noticed
during the tests and that it is worth to report.

Going in chronological order, during the morning (figures 6.16 and 6.17) the system
produced two overlapped bounding boxes for the yellow car: one around the visible
part of the car and another one including both the car and the spot close to it.
The curious thing is that the biggest bounding box (the one including both the car
and the spot) achieved a higher confidence score with respect to the smaller one
including only the car (which is the right bounding box). As regards the afternoon
(figures 6.18 and 6.19), the original image is such that the spots on the mask cover
in a more considerable way the farthest pedestrian and the stop sign. The result
is that, at every resolution, the stop sign were not detected while the pedestrian
were detected only when in profile. Concluding with the night (figures 6.20 and
6.21), the tests shown that in low light conditions the performance degradation is
much higher, moreover the car lights did not help to improve the results. The most
relevant errors are probably that the farther pedestrian were never detected and
that the closest pedestrian was not detected when in profile at VGA resolution.
Moreover, at full resolution with the car lights turned off and with the pedestrian
in profile, the system confused the biggest spot with a person. Another mistake
made by the system is that the stop sign, which also in this case is more covered
by the spot, was never detected (but it was predictable because it happened also
for the afternoon).

A recap of all the confidence scores is reported in the following tables:
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Morning)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 99% 100% 98%
person (girl) 96% 98% 99% 94%
person (boy) 96% 97% 98% 94%
yellow car // 80% 72% 87%
black car 99% 99% 98% 99%
person (error) 58% // // //
car (error) 74% 70% 70% 60%

Afternoon)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign // // // //
person (girl) 93% 95% 99% 96%
person (boy) 79% 77% // //
yellow car 96% 97% 97% 98%
black car 99% 98% 98% 98%

Night with car lights turned OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign // // // //
person (girl) 87% 55% 68% 78%
person (boy) // // // //
yellow car 70% 74% 69% 58%
black car 90% 97% 92% 73%
person (error) // // 51% //

Night with car lights turned ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign // // // //
person (girl) // // 74% 79%
person (boy) // // // //
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yellow car 93% 92% 94% 94%
black car 80% 50% 76% 79%
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Figure 6.16. Results of the tests performed during the morning with
macro defects at full resolution

Figure 6.17. Results of the tests performed during the morning with macro
defects at VGA resolution
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Figure 6.18. Results of the tests performed during the afternoon with macro
defects at full resolution

Figure 6.19. Results of the tests performed during the afternoon with macro
defects at VGA resolution
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Figure 6.20. Results of the tests performed during the night with macro defects
at full resolution (car lights OFF)

Figure 6.21. Results of the tests performed during the night with macro defects
at VGA resolution (car light OFF)
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Figure 6.22. Results of the tests performed during the night with macro defects
at full resolution (car lights ON)

Figure 6.23. Results of the tests performed during the night with macro defects
at VGA resolution (car light ON)
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6.3 Weather conditions
Continuing with the validation procedure, the next step is the evaluation of different
weather conditions. As done for the validation of the lane detection system, two
weather conditions have been considered: heavy rain and fog. These two particular
conditions are the most critical in terms of visibility and, in the worst cases, they can
strongly reduce the visibility. The following analysis will evaluate how the system
reacts in these cases considering each weather condition in different moments of the
day (daytime and nighttime). Also in this case, for technical and safety reasons
the dataset used for the tests has been obtained modifying with Photoshop® the
pictures used for the lighting condition analysis.

6.3.1 Fog

The first weather condition that is going to be analyzed is the fog. For each lighting
condition, two different levels of fog have been considered: light fog and thick fog.
The results obtained in both cases are reported in the figures from 6.24 to 6.30,
each of them shows the outcomes obtained at full resolution with the only exception
of Figure 6.30, which is the only case where the results produced at full resolution
(Figure 6.27) were different with respect to those at VGA resolution. From these
images it is immediate to see that with light fog (figures 6.24, 6.26 and 6.28), re-
gardless of the amount of light, the level of performance is almost unchanged. The
only mistake registered in this condition is that the stop sign in Figure 6.26 (the
one inside the image with the pedestrians in profile) was not detected. Regarding
the thick fog, during the daytime the performances are comparable with the ones
obtained in light fog conditions. Unfortunately, in low light conditions, the sys-
tem is not efficient in the same way. In fact, during the nighttime with car lights
turned off (Figure 6.27) the system did not detect the stop sign and the black car
in any of the considered cases, the yellow car, instead, has been detected only at
full resolution with the pedestrians in profile. The situation has improved with car
lights turned on, in this case system did not show any particular issue. Once again,
the tests shown that the car lights have a beneficial effect on the performances,
allowing to achieve good results also in critical situations.

For what concerns the confidence scores, as can be seen in the tables below, the
performance degradation due to the fog is very small:

Daytime with light fog)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 100% 100% 100% 100%
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person (boy) 99% 99% 98% 98%
yellow car 74% 88% 92% 93%
black car 99% 100% 99% 99%

Daytime with thick fog)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 99% 99% 100% 99%
person (girl) 99% 99% 100% 100%
person (boy) 94% 92% 91% 93%
yellow car 85% 88% 93% 91%
black car 99% 99% 98% 98%

Nighttime with light fog and car lights turned OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign // // 63% 61%
person (girl) 98% 98% 99% 99%
person (boy) 97% 97% 99% 99%
yellow car 91% 90% 89% 88%
black car 92% 92% 91% 93%

Nighttime with thick fog and car lights turned OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign // // // //
person (girl) 95% 95% 97% 97%
person (boy) 92% 94% 96% 96%
yellow car 61% // // //
black car // // // //

Nighttime with light fog and car lights turned ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 99% 98% 99% 99%
person (boy) 92% 94% 92% 95%
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yellow car 93% 93% 89% 93%
black car 93% 92% 95% 95%

Nighttime with thick fog and car lights turned ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 99% 99% 99% 98%
person (girl) 93% 91% 96% 95%
person (boy) 71% 77% 62% 80%
yellow car 81% 84% 76% 81%
black car 88% 86% 93% 92%
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Figure 6.24. Results of the tests performed during the morning with light
fog at full resolution

Figure 6.25. Results of the tests performed during the morning with
thick fog at full resolution
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Figure 6.26. Results of the tests performed during the night with light fog
at full resolution car lights OFF)

Figure 6.27. Results of the tests performed during the night with thick fog
at full resolution car lights OFF)
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Figure 6.28. Results of the tests performed during the night with light fog
at full resolution (car lights ON)

Figure 6.29. Results of the tests performed during the night with thick
fog at full resolution (car light ON)

105



6 – Dependencies on image quality and corner cases

Figure 6.30. Results of the tests performed during the night with macro defects
at VGA resolution (car lights OFF)
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6.3.2 Heavy rain

Continuing the analysis of critical weather conditions, as anticipated, after the fog
the second and last weather condition that must be evaluated is the heavy rain. As
done for the fog, both the daytime and the nighttime have been considered in order
to evaluate the performances with different light conditions. Moreover, to repro-
duce the effect of eventual water drops on the camera glass, the images previously
modified to add the rain have been blurred using a specific filter, allowing to test
the performances also with an extremely distorted input image.

All the results obtained during these tests are reported in the figures from 6.31
to 6.37. In particular figures from 6.31 to 6.33 show the results obtained introduc-
ing only the water drops and reducing a little bit the luminosity, while the others
reports the results obtained considering also the effect of the water on the camera
glass. In the first case, with the only exception of the nighttime with car lights
turned off (Figure 6.32), the quality of the results is very good, with the system
that detected the same objects detected in the absence of rain. In fact the rain acts
as a sort of micro defect, which does not affect excessively the correct functioning
of the system when there is enough light. Instead, as happened with micro defects,
without a proper illumination there is a significant performance degradation, with
the system that did not detect both the black car and the yellow car. Passing
to the second case, where the input images are heavily distorted, the tests shown
a bit more significative performance degradation also in good lighting conditions.
However, considering the extent of the disturbance, the system worked surprisingly
well despite the adverse conditions. For what concerns the effects of the resolution,
the gap between the full resolution and the VGA resolution is absolutely negligible.
The only difference that is worth reporting is the fact that, during the daytime,
considering the effect of water on the camera glass, the furthest pedestrian were
not detected when in profile at full resolution (Figure 6.34).

All the confidence scores obtained during the tests are summarized in the tables
below:

Heavy rain during the daytime)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 100% 100% 100% 100%
person (boy) 100% 100% 100% 98%
yellow car 99% 99% 99% 99%
black car 100% 100% 100% 100%
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Heavy rain during the nighttime with car lights OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 96% 94% 93% 96%
person (girl) 99% 99% 100% 100%
person (boy) 99% 99% 99% 99%
yellow car // // // //
black car // // // //

Heavy rain during the nighttime with car lights ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 99%
person (girl) 99% 99% 99% 99%
person (boy) 98% 97% 95% 93%
yellow car 80% 74% 94% 82%
black car 89% 86% 95% 93%

Heavy rain during the daytime + water distortion)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person (girl) 94% 96% 98% 99%
person (boy) // 55% 94% 97%
yellow car 98% 99% 99% 99%
black car 99% 99% 99% 99%

Heavy rain during the nighttime with car lights OFF + water distortion)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 61% 69% // //
person (girl) 96% 96% 97% 99%
person (boy) 93% 95% 97% 98%
yellow car 64% 56% // //
black car // // // //

Heavy rain during the nighttime with car lights ON + water distortion)
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Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 99%
person (girl) 68% 66% 60% 68%
person (boy) // // 60% 57%
yellow car 93% 91% 85% 82%
black car 98% 97% 98% 97%
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Figure 6.31. Results of the tests performed during the morning with heavy
rain at full resolution

Figure 6.32. Results of the tests performed during the night with heavy rain at
full resolution (car lights OFF)

110



6.3 – Weather conditions

Figure 6.33. Results of the tests performed during the night with heavy rain at
full resolution (car lights ON)
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Figure 6.34. Results of the tests performed during the morning with heavy rain
simulating the presence of water on the camera glass at full resolution

Figure 6.35. Results of the tests performed during the morning with heavy rain
simulating the presence of water on the camera glass at VGA resolution
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Figure 6.36. Results of the tests performed during the night with
heavy rain simulating the presence of water on the camera glass at
full resolution (car lights OFF)

Figure 6.37. Results of the tests performed during the night with
heavy rain simulating the presence of water on the camera glass at full
resolution (car lights ON)
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6.4 Corner cases

The last part of this validation procedure will be focused on some corner cases,
which means that some critical scenarios will be evaluated in order to see how the
system acts in the worst possible conditions. In fact, when one deals with safety,
every possibility, even if it is very infrequent, must be considered, because no errors
are admitted. During this analysis the following cases will be evaluated:

• Very low light conditions;

• Color overlapping on a white street;

• Low resolutions.

6.4.1 Very low light conditions

In the night tests previously performed, the presence of artificial lights produced a
minimal illumination that helped the system to improve the quality of the results.
However, especially during the extra-urban driving, often one drives on unlit roads,
so, with the aim of evaluating also these conditions, some tests have been performed
on a country road without artificial lights. Two scenarios were considered: cross-
road with a pedestrian dressed with dark clothes and a car in front of the driven
vehicle, crossroad without any other vehicle considering only the pedestrian. Also
in this case the car lights have been considered both turned on and off.

The results of these tests are shown in the figures from 6.38 to 6.45, where it
is possible to see that, even if the lighting was very poor, YOLO provided decent
results detecting most of the objects in all the different conditions. The most rel-
evant mistake is that in some cases the pedestrian has not been detected when in
profile (figures 6.39, 6.42 and 6.43). In general, the tests shown that the system
achieved lower confidence scores for the pedestrian every time that it was in profile.
This is not a good thing if we think that, usually, the pedestrians are in profile
with respect to the vehicle when they cross the road, so, an eventual mistake of
this kind can lead to serious accidents. Other mistakes have been registered in
the case without the second car, where YOLO produced some spurious detections,
confusing the road signs with other objects (i.e. the sports ball in Figure 6.42 and
the person in Figure 6.44).

All the confidence scores registered during the tests are reported in the follow-
ing tables (also in this case the terms "profile" and "front" are referred to the
orientation of the pedestrian):

Low light with another car in front of the vehicle and car lights turned OFF)
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Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 99% 96% 99%
person 83% // 97% 96%
car 100% 100% 100% 100%

Low light with another car in front of the vehicle and car lights turned ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 95% 100% 99%
person 51% 60% 99% 96%
car 99% 99% 100% 100%

Low light with car lights turned OFF)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person // // 94% 99%
sports ball // // 58% //

Low light with car lights turned ON)

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

stop sign 100% 100% 100% 100%
person 91% 97% 99% 100%
person (error) 57% // // //
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Figure 6.38. Results of the tests performed during the night with a car in front
of the vehicle in low light conditions at full resolution (car lights OFF)

Figure 6.39. Results of the tests performed during the night with a car in front
of the vehicle in low light conditions at VGA resolution (car lights OFF)
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Figure 6.40. Results of the tests performed during the night with a car in front
of the vehicle in low light conditions at full resolution (car lights ON)

Figure 6.41. Results of the tests performed during the night with a car in front
of the vehicle in low light conditions at VGA resolution (car lights ON)
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Figure 6.42. Results of the tests performed during the night in low light conditions
at full resolution (car lights OFF)

Figure 6.43. Results of the tests performed during the night in low light conditions
at VGA resolution (car lights OFF)
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Figure 6.44. Results of the tests performed during the night in low light conditions
at full resolution (car lights ON)

Figure 6.45. Results of the tests performed during the night in low light conditions
at VGA resolution (car lights ON)
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6.4.2 Color overlapping on a white street

Sometimes the objects inside a picture can have a colour similar to the background
or can be aligned with something that matches its colors, making it difficult to
be found. Even if this case has been partially covered in the previous subsection,
with the pedestrian dressed with dark clothes in low light conditions, it can be
interesting to perform some tests to see how YOLO reacts in this situation. For
this reason a similar test has been repeated during the daytime, with a pedestrian
dressed in white on a white street. The pedestrian has been placed at a distance
of about 30 meters, which is a reasonable braking distance, also in this case the
tests have been performed with two levels of resolution, i.e. full resolution and VGA.

The results achieved are shown by the figures 6.46 (full resolution) and 6.47 (VGA
resolution). As it is possible to see, the system did not detect the pedestrian only
when in profile at VGA resolution. This can be considered in any case a success
considering the distance of the pedestrian and the fact that, in these conditions, it
is difficult to individuate it also for a human eye. The confidence scores registered
during the tests are reported below:

Object Profile (full res) Profile (VGA) Front (full res) Front (VGA)

person 98% // 99% 81%
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Figure 6.46. Results of the tests performed during the daytime on a white street
with a pedestrian dressed in white at full resolution

Figure 6.47. Results of the tests performed during the daytime on a white street
with a pedestrian dressed in white at VGA resolution
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6.4.3 Low resolutions

During all the tests performed previously, two levels of resolution have been con-
sidered (i.e. 4000 × 3000 and 640 × 480) to understand if a very high resolution
produced significantly better results with respect to a lower one. The tests per-
formed until now shown that the gap between the two resolutions is negligible in
most of the cases, with the lower resolution that sometimes provided even better
results that the higher one. So, in order to understand the limits of this object de-
tection system, some other tests will be performed, decreasing the resolution until
a tangible performance degradation is not registered.

Three resolutions have been considered: 480 × 360, 320 × 240 and 144 × 108.
In order to evaluate only the effects of the resolution, the best possible condition
in terms of lighting has been chosen, i.e. the morning. The results are shown by
the figures 6.48 (with the pedestrians in profile) and 6.49 (with the pedestrians
in front), the images inside each figure are ordered with a descending resolution
from the left to the right, each input figure has below it the corresponding output.
Surprisingly, even at the lowest possible resolution (144 × 108), which is so low
that YOLO does not have enough pixels to place the entire bounding boxes but
only the labels, the tests provided positive results. Nevertheless, even if the results
are good, at the lowest resolution the system did not detect the farther pedestrian
when in front and confused the yellow car with a truck. This means that, if in
the best possible conditions the system did not work as expected, this level of res-
olution is not suitable for a real application. Anyway, in the light of the results
obtained during the previous tests, the 640×480 VGA resolution can be considered
a good tradeoff between computational speed and quality of the detections. At full
resolution instead, even if sometimes the system achieved better results, the time
required to process a single frame is too high to use YOLO in real time, even if it
runs on a GPU. Probably a good level of performance can be obtained also using
a 480 × 360 resolution, which allows to decrease the weight of the single frames
and so to increase the overall speed of the system, without sacrificing too much the
level of detail and, hopefully, the overall performance. In any case, this is just a
supposition that must be confirmed through further studies.

All the confidence scores registered for each resolution are reported in the tables
below:

Pedestrians in profile)

Object 480x360 320x240 144x108

stop sign 100% 100% 99%
person (girl) 100% 100% 99%
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person (boy) 100% 99% 75%
yellow car 88% 93% 53%
black car 100% 99% 97%
truck // // 91%

Pedestrians in front)

Object 480x360 320x240 144x108

stop sign 100% 100% 99%
person (girl) 100% 100% 100%
person (boy) 98% 98% //
yellow car 91% 95% //
black car 100% 100% 99%
truck // // 92%
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Figure 6.48. Results of the tests performed with different resolutions
(pedestrians in profile)

Figure 6.49. Results of the tests performed with different resolutions
(pedestrians in front)
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6.5 Conclusion
When one deals with object detection, the number of variables is too high to eval-
uate accurately every single possibility. During this validation procedure, all the
tests have been performed trying to recreate some particularly significative scenar-
ios in the most realistic manner as possible, with the main goal of evaluating the
effects of the environmental conditions on the overall performances. The results re-
ported during the tests shown that YOLO is a very robust object detection system,
capable of providing surprisingly good results even in the most adverse conditions.
However, the system shown its limits and some issues came out, like, for example,
the performance degradation in case of very low light conditions and in case of
macro defects.

In order to summarize what emerged from the tests, some graphs have been re-
ported in figure 6.50. All of them are referred to the results obtained using the
VGA resolution, this choice is mainly due to the fact that it is the most suitable
resolution for real time uses, and so, for an actual application. These graphs reports
the confidence scores achieved for each object class in all the different conditions
evaluated during the validation procedure, with the only exception of the macro
defects, which gave unrelated results in the different moments of the day because
of the little shifts of the spots and that, for this reason, must be evaluated looking
directly to the input and output images. All the reported scores have been ob-
tained computing the average between the values obtained using the images with
the pedestrians in profile and the ones obtained using the images with the pedes-
trians in front.
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Figure 6.50. Graphs that summarize some of the results obtained during the tests
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Part V

Conclusion

127





In the light of the results obtained during this work, there are many conclusions
that can be made. The first one is that both the analyzed systems cannot ac-
complish by themselves to the functions needed to implement the related ADAS.
In fact, every time that something disturbed the input provided by the camera,
e.g. defects or critical weather conditions, the loss of performance has been too
high to comply the standards needed for safety purposes. So, during the design
phase, there will be the need to find something that compensates the shortages
of all the systems based only on vision, like, for example, an additional system
which uses radars and other alternative sensors. Considering the single systems,
instead, for what concerns the lane detection one, it shown all its weaknesses when
dealing with bad asphalt conditions and unclear road markings, while achieved a
reasonable level of performance in non-critical conditions. In any case, the one
analyzed in this work, is a very basic implementation of a system based on a simple
working principle, so it is clear that, using something more sophisticated, better
results could be achieved. Nevertheless it is important to underline that the main
goal of this thesis is to evaluate the impact of the environmental conditions on vi-
sion systems for autonomous driving, regardless of their complexity. On the other
hand YOLO shown to be a much more robust and mature technology, especially
if one thinks about the fact that the tests have been performed with a pre-trained
network, which means that no specific training was performed. So it is reasonable
to think that, with a targeted training, a significative improvement in the results
could be achieved. Naturally, even if the overall performances can be considered
satisfactory, also YOLO had some issues in critical conditions, especially with low
light, where the system did some mistakes like spurious or missing detections.

All the problems and the malfunctions that came out from this analysis repre-
sent a starting point to understand where there is the need to invest in terms of
research in order to reach a higher level of efficiency. By carrying on this process
of constant improvement, one day, will be possible to reach the safety standards
needed for autonomous driving. The hope is that the conclusions and the results
obtained thanks to this work will represent a help inside this process of development
for all the coming researchers.

129



130



Bibliography

[1] Massimo Bertozzi, Alberto Broggi. GOLD: A Parallel Real-Time Stereo Vision
System for Generic Obstacle and Lane Detection. IEEE, 1998.

[2] Chris Kreucher, Sridhar Lakshmanan. LANA: A lane extraction algorithm that
uses frequency domain features. IEEE, 1999.

[3] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester and Deva Ramanan.
Object Detection with Discriminatively Trained Part-Based Models. TPAMI,
2010.

[4] J. Uijlings, K. van de Sande, T. Gevers, A. Smeulders. Selective Search for
Object Recognition. IJCV, 2013.

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik. Rich feature hier-
archies for accurate object detection and semantic segmentation. CVPR, 2014.

[6] Ross Girshick, Microsoft Research. Fast R-CNN. ICCV, 2015.
[7] Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun. Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal Networks. arXiv preprint
arXiv:1506.01497, 2015.

[8] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus,
Yann LeCun. OverFeat: Integrated Recognition, Localization and Detection us-
ing Convolutional Networks. ICLR, 2014.

[9] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. CVPR, 2016.

[10] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector.
ECCV, 2016.

[11] Joseph Redmon, Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv
preprint arXiv:1804.02767, 2018.

[12] Wikipedia: Hough transform.
"https://en.wikipedia.org/wiki/Hough_transform"

[13] Matlab: Bird’s eye view.
https://it.mathworks.com/help/driving/ref/birdseyeview.html

[14] Matlab: Camera parameters.
https://it.mathworks.com/help/vision/ref/cameraparameters.html

[15] Matlab: Camera calibration.

131



Bibliography

https://it.mathworks.com/help/vision/ug/single-camera-calibrator-app.html
[16] Wikipedia: Support Vector Machine.

"https://en.wikipedia.org/wiki/Support-vector_machine"

132


