
Master Degree Course in Computer Engineering

Master Degree Thesis

A framework for automatic
Network Security Functions selection
and placement in NFV/Cloud context

Supervisors
prof. Riccardo Sisto
prof. Guido Marchetto
dott. Fulvio Valenza
dott. Jaloliddin Yusupov

Candidate
Giuseppe Sisinni
student ID: 241932

Academic Year 2018-2019

This work is subject to the Creative Commons Licence

Summary

Nowadays, electronic device are increasingly widespread and used by all, young and old.
They allow us to satisfy our desire to know, who has never done a search on the Web?
They give us the opportunity to work remotely and, moreover, we use them for online
shopping and to follow our team of the heart. But the most important thing is that they
allow us to stay in contact with our loved ones that very often are miles from us. All these
things are made possible by the fact that all devices are connected in the world through a
large network: the Internet.

None of us care how this is possible but setting up the network to allow this is not easy
at all. This is the task of the network administrators and their work is not so easy. The
network is huge and consists of many and many devices mostly different and proprietary.
Each device, therefore, requires specific knowledge to be configured. As a consequence of
this, the network appears to be difficult tomanage,monitor and slow to react to failures and
security attacks. These motivations have led, in recent years, the development of two new
paradigms: Network Function Virtualization (NFV) and Software-Defined Networking
(SDN).

Network functions become virtual (VNFs): the software part, decoupled from the
hardware, is allocated in virtual machines. The network becomes centralized: the control
plane is separated from the data plane. In these ways the functions can be dynamically
added and removed on-demand of customers needs. The whole network is under one con-
trol point. These are a great advantages because the operational cost, the response time
and the administration tasks are reduced and the limits of the current network infrastruc-
ture are bypassed.

In each sub-network, managed by an administrator, there are a number of users, each
with different requests and specific needs. Each user can request special care and the
administrator has to satisfy them by treating them independently. He can do this writing a
security policy for each of them. The security policy is a collection of policy rules where
each rule is designed to handle a particular request. As an example, the administrator will
write a policy dedicated to a father in order to forbid his child to go to social networks. But
thework does not end here. In fact, after having defined the various policies, it is necessary
to choose the network functions suitable for this purpose. This choice must be the best
possible and this is not simple because every network function has costs: economic and
physical resources used, such as ram, cpu and disk. Once selected, the functions have to
be allocated between the available physical hosts and this is not an easy choice because it
is necessary to ensure that the chosen hosts have the required resources available.

Nowadays an automatic mechanism does not exist to easily manage this situation and
from this consideration comes the inspiration that has led to this thesis which proposes

III

a framework that can meet the work of network administrators, helping them to define
policies and choose the functions to be used. Proposing an innovative way to address
customer needs and to automatically configure the Service Chain.

The developed framework, Verifuse (VERInet FUnction SElection and placement),
can automatically choose how many and which security functions are needed, after hav-
ing defined a set of policies written by one or more administrators for all users of the same
network, and to allocate them among the physical servers available. Therefore, this thesis
also proposes the following models made using the XML language: the Policy Reposi-
tory, to allow administrators to express policies using the HPL language; the Catalog of
NSFs, containing the list of all available network functions; Capability, key concept of
the approach developed; Hosts, the physical servers available.

The idea is based on the concept of Capability: a set of features that share network
functions and that enable certain policies to be met. Each network function supports one
ormore capabilities and each policy rule requires one. For example, Internet traffic control
requires the capability Packet Filter.

The framework first allows administrators to define the policies and to list functions
and hosts available, then analyzes the policies to derive the capabilities and finally selects
and allocates the necessary network functions between physical hosts, optimizing the
choice according to the parameters chosen by the user.

The selection and optimization phase is carried out using the ILP (Integer Linear Pro-
gramming) solver Gurobi. Capabilities, functions, hosts and the relationships between
them have been modelled using mathematical formulas and models that Gurobi tries to
solve by looking for the best solution. The choice of the solution is guided by the param-
eters that the user chooses to optimize, for example the RAM consumption by functions.

The framework provides everything you need to define and analyze policies, allowing
you to create your own catalog of functions and your physical host infrastructure. After
choosing the optimization criterion, Verifuse automatically selects which network func-
tions are needed to meet the policies. Therefore, it chooses functions, starting with policy
analysis, and allocate them among the available hosts. The choice is optimized, it is the
user who defines the parameters and the priorities. The modules scale very well and have
been designed in such a way as to be independent and to be easily expandable in the fu-
ture. In the future, in fact, we could improve the model of the hosts in such a way as to
allow a better selection in the phase of optimization.

IV

Acknowledgements

First of all, I want to acknowledge the supervisors of my thesis that are the professor Sisto
and the professor Marchetto. I also want to thank Fulvio and Jalol who were extremely
available every day and helped me a lot with their important advice.

I would like to thank all those people who believed in me during all these years. Especially
to my family and in particular to my father and my mother who, with their countless
sacrifices, allowed me to study so far from home, allowing this great moment in my life
to become a reality. They support me every moment of my life, I will never stop thanking
them.

Then, I thank my brother Daniele, my cousin Giuseppe, all my friends and all my col-
leagues who made these years easier by making the lessons more fun.

And last, but not the last, I would like to thank my love Roberta who with her love and
patience has always been close to me, especially in the most difficult moments where
everything seemed lost giving me the strength to go on.

I ended a phase of my life. They have been difficult years, leaving home so young is not
easy especially if you find yourself in a city a thousand kilometers away from home with
no family near. They have been years that have marked me and changed a lot. I will never
forget them. It has been a path that I would do again, I would recommend it to everyone.

V

Contents

List of Figures 9

List of Tables 11

1 Introduction 1

2 Background 5
2.1 Software and Virtualized Network . 5

2.1.1 Network Function Virtualization (NFV) 5
2.1.2 Software-Defined Networking (SDN) 9
2.1.3 Service Function Chaining (SFC) 13

2.2 Policy languages and Specifications 15
2.2.1 Definition . 15
2.2.2 Policy framework architecture 17
2.2.3 Policy languages . 19

2.3 Tools . 21
2.3.1 Z3 . 21
2.3.2 Gurobi . 22

3 Problem Statement 25

4 Approach 29
4.1 Workflow . 29
4.2 Policy Languages . 34

4.2.1 High-level Policy Language (HPL) 34
4.2.2 Medium-level Policy Language (MPL) 36
4.2.3 Low-level Policy Language (LPL) 42

4.3 Capability Identification . 43
4.4 Selection, Optimization and Placement 47
4.5 Example . 51

5 Policy and Function Models 61
5.1 Policy Repository . 61

5.1.1 KnowledgeBase . 62
5.1.2 BlackList . 63
5.1.3 TrafficTargets . 65

VI

5.1.4 Users . 68
5.1.5 PolicyRepositoryHPL . 70
5.1.6 Templates . 71
5.1.7 Operation . 72
5.1.8 Action . 76
5.1.9 Object . 77
5.1.10 Field . 78
5.1.11 PoliciesHP . 82
5.1.12 PolicyRuleHPL . 83

5.2 NSF Catalog . 84
5.2.1 NSF . 84
5.2.2 GeneralInfo . 85
5.2.3 SoftwareInfo . 86
5.2.4 HardwareInfo . 90
5.2.5 Functionality . 93

5.3 Capabilities . 95
5.4 Hosts . 100

6 Selection and Optimization phase 101
6.1 Constraints and Objectives . 101

6.1.1 Constraints . 101
6.1.2 Multiple-Objectives . 102

6.2 Z3 formulation . 103
6.2.1 Z3 Symbols . 103
6.2.2 Z3 Hard-Constraints . 104
6.2.3 Z3 Soft-Constraints . 105

6.3 Gurobi formulation . 106
6.3.1 Gurobi Symbols . 106
6.3.2 Gurobi Constraints . 107
6.3.3 Gurobi Multi-Objectives . 109

6.4 Comparison and final discussion . 110
6.5 Further development . 113

7 Implementation 115
7.1 Installation Guidelines . 115

7.1.1 JAVA JDK 8 SE . 115
7.1.2 Apache Ant . 115
7.1.3 Apache Tomcat . 116
7.1.4 Neo4j . 117
7.1.5 Gurobi . 117

7.2 Folders organization . 119
7.3 REST API . 120

7.3.1 Service Design . 120
7.3.2 API Description . 128
7.3.3 Service Deployment . 139

VII

8 Evaluation 141
8.1 Tests on CAID . 141
8.2 Tests on SAP . 144

9 Conclusion 153

Bibliography 155

Index 157

VIII

List of Figures

2.1 High-level NFV framework . 7
2.2 NFV MANO . 8
2.3 Traditional Network . 9
2.4 SDN architecture . 10
2.5 SDN architecture, layer view . 12
2.6 Service Function Chains . 13
2.7 Policy framework architecture . 18

4.1 Framework’s workflow . 33
4.2 Capability hierarchy in SECURED . 40
4.3 Categories of PSA in SECURED . 41
4.4 Example: Three Policies with four Capabilities 52
4.5 Example: Four Capabilities supported by three NSFs 54
4.6 Example: Two Host . 55
4.7 Example: Capabilities instances with instances of NSFs which could al-

locate them . 57
4.8 Example: Capabilities instances with instances of NSFs which could al-

locate them and hosts available . 58
4.9 Example: Solution 1 . 58
4.10 Example: Solution 2 . 59

5.1 The object compatible actions . 74
5.2 The object compatible fields . 75

6.1 Truth table of OR . 111
6.2 Truth table of equivalence . 111

7.1 Implementation design . 121
7.2 Resources . 122
7.3 Operation on Verifuse . 128
7.4 Operation on CAID (1) . 129
7.5 Operation on CAID (2) . 130
7.6 Operation on SAP (1) . 133
7.7 Operation on SAP (2) . 134

8.1 Time per number of policies . 142
8.2 Time per number of policies, zoom . 143

IX

8.3 Time per number of capabilities . 145
8.4 Time per number of nsfs . 147
8.5 Time per number of nsfs, zoom . 148
8.6 Time per number of hosts . 150
8.7 Time per number of hosts, zoom . 151

X

List of Tables

4.1 The map between Field and Capability 43
4.2 The map between <Action:Object> and Capability 46

6.1 The symbols used by Z3 . 103
6.2 The Hard-Constraints of Z3 . 105
6.3 The Soft-Constraints of Z3 . 105
6.4 The symbols used by Gurobi . 106
6.5 The Hard-Constraints of Gurobi . 108
6.6 The objectives of Gurobi . 109

XI

Chapter 1

Introduction

Nowadays electronic devices, such as computers and mobile phones, are used at any time
of the day, both in our private life and in our working life. They allow us to satisfy our
desire to know, who has never done a search on the Web? They give us the opportunity
to work remotely and, moreover, we use them for online shopping and to follow our team
of the heart. But the most important thing is that they allow us to stay in contact with our
loved ones that very often are miles from us, in most cases we address them through a
video call to feel them closer unlike the classic telephone call. All these things are made
possible by the fact that all devices are connected in the world through a large network:
the Internet.

Each of us uses the network to do these things easily, without worrying about how it
happens and how it is possible all this. But setting up the network to allow this is not
easy at all. Network administrators have a lot to do every day. This is because the net-
work consists of countless devices that need to be added and configured according to
user requests. The configuration and management of these devices is not simple and this
is because the applications can be innumerable and very different from each other. There
are also distinct types of devices and each requires specific knowledge to be configured
correctly. The network is, therefore, difficult to manage, monitor and slow to react to fail-
ures and security attacks. These motivations have led, in recent years, the development of
two new paradigms: Network Function Virtualization (NFV) and Software-Defined Net-
working (SDN).

The NFV aims to virtualize the network functions, which take the name of Virtual Net-
work Functions (VNFs). The functions are allocated in virtual machines therefore they
are separated from the hardware that becomes a simple host. In this way they can be dy-
namically added and removed on-demand of customers needs. This is a great advantage
because the operational cost, the response time and the administration tasks are reduced.

The SDN has the aim to make the network directly programmable in order to improve
network performance and monitoring, bypassing the limits of the current network infras-
tructure. To achieve this goal, it breaks the vertical integration and divides the control
plane from the data plane. Therefore, the control logic (control plane) is centralized and
is entrusted to a specific unit that takes the name of SDN Controller.

1

Introduction

Each network administrator is responsible for setting up a given subnet where there are
numerous users. Each user can request special care and it is the task of the administra-
tor to satisfy them. Each user must therefore be treated independently. That is why the
administrator must write a security policy for each of them.

The security policy is a collection of policy rules where each rule is designed to handle a
particular request. As an example, how can the network be configured by an administrator
if a father wants to forbid his child to go to social networks? The administrator will write
a policy dedicated to the father. This policy will consist of a set of rules, including the
one that prevents the child from misusing social networks.

But the work does not end here. In fact, after having defined the various policies, it is nec-
essary to choose, among the available network functions, those suitable for this purpose.
This choice must be the best possible and this is not simple because every network func-
tion has costs: economic and physical resources used, such as ram, cpu and disk. Once
selected, the functions have to be allocated to the available physical hosts and this is not
an easy choice because it is necessary to ensure that the chosen hosts have the required
resources available.

Managing each customer individually is difficult and much more when the number of
users increases. The context gets more complicated from an administrative point of view
and can lead to the allocation of an improper number of necessary resources. To this end,
nowadays an automatic mechanism does not exist to easily manage this situation and from
this consideration comes the inspiration that has led to this thesis.

The aim of this thesis is precisely to propose a framework that can meet the work of
network administrators, facilitating them in their task, proposing an innovative way to
address customer needs and to automatically configure the Service Chain. In other word,
to offer the Verifuse (VERInet FUnction SElection and placement) framework that can
automatically choose how many and which security functions are needed, after having
defined a set of policies written by one or more administrators for all users of the same
network, and to allocate them among the physical servers available. Therefore, this thesis
also proposes the models of the policy repository, the catalogue of functions, capabilities
and hosts.

The thesis is structured in the following chapters:

• Chapter 2, will describe the background inwhich this thesis has been developed.We
will talk about virtualized networks (NFV, SDN, Service Chain), network security
policies, Z3 and Gurobi tools;

• Chapter 3, the problem will be introduced and will be described in which chapters
it has been approached;

• Chapter 4, will describe the approach used to implement the framework;

2

Introduction

• Chapter 5, the models realized through the use of the XML language will be shown.
Models make up the policy repository, function catalog, capabilities and hosts;

• Chapter 6, will describe the selection and optimization phase implemented in the
SAP module;

• Chapter 7, will be shown the implementation, will be analyzed the packages and
will be presented the REST API;

• Chapter 8, will be analyzed the results obtained after performing scalability tests;

• Chapter 9, the conclusions on the carried out job will be written.

3

4

Chapter 2

Background

This chapter will describe the background in which this thesis has been developed. In
particular, the new paradigms of NFV and SDN will be analysed in detail because they
are the two technologies that are having the power to change significantly the computer
networks in recent years. They are two very different but perfectly complementary tech-
nologies, from their synergy comes the concept of Service Chain. The concept of policy
will then be introduced and it will be discussed how it can be used in the area of security
and access control. As last thing they will come introduced the two tools Z3 and Gurobi
that constitute the heart of the developed framework.

2.1 Software and Virtualized Network

2.1.1 Network Function Virtualization (NFV)
Nowadays computer networks continue to grow in size quickly and their management,
by the various Internet Service Provider (ISP), is increasingly difficult and slow. For this
reason a new paradigm that tries to solve these disadvantage was born: Network Function
Virtualization is also known as NFV.

The traditional network is composed of numerous devices, each of which is dedicated
to a specific function (e.g. firewall, NAT, proxy, VPN, etc.). For this reason the manage-
ment as well as the configuration of the network, based on customers needs, are laborious
and expensive. Indeed, whenever the demand for a new service occurs, it is necessary to
redeploy the network or to add more physical and dedicated devices. This also implies to
find power and space in which allocate the boxes.

In this scenario, the possibility of being able to virtualize network and devices becomes
a great advantage. Network Function Virtualization exploits the benefits deriving from the
virtualization changing the way in which the network is conceived. Defines a virtualized
infrastructure for network functions so, in this way, is possible to reach the main objective:
decoupling software from hardware.

These functions are named Virtual Network Functions (VNF) and are implemented
as virtual machines. In this way they can be dynamically added and removed on-demand
of customers needs. This is a great advantage because the operational cost, the response
time and the administration tasks are reduced.

5

Background

When the request for a new service occurs, is not necessary, adding a new hardware
but just starting a new instance of a VNF. Therefore, is also possible testing an innovative
service at lower risk because is not necessary to change the architecture of the network
but only starting the virtual machine dedicated.

The NFV allows great advantages in various aspects:

• FlexibilityAdministrators can easily and quickly deploy ormodify services. Providers
can now choose between many vendors and have the flexibility to select the hard-
ware capacities that are optimal for their network architecture and planning. They
are not bound to choose a specific vendor and his proprietary hardware;

• Cost Maintain a network is very expensive, in this way is possible reduce manage-
ment and hardware costs since all the functions are virtualized on virtual machines.
NFV uses regular COTS (Commercial Off-the-Shelf component) hardware, network
operators have the freedom to choose and build the hardware in the most efficient
way to satisfy their needs and requirements. This allows ISPs to provide services to
customers at a lower price;

• Scalability Until this moment, increasing the traditional network equipment’s ca-
pacity has taken time, planning, and money. But, with this new approach, the net-
work is now able to scale autonomously on-demand of needs. In fact, if any, of the
VNFs requires additional CPU, storage, or bandwidth it can be requested from the
VIM and allocated to the VNF. All this reduces also the time needed to deploy a
service;

• Security This is one of the major challenges in networking and this new paradigm
tries to help with the possibility to add easily new security function without having
to buy a specific physical device.

It’s possible to conceive that this new approach can be used to manage also Network
Security Functions (NSF) but automating their support and configuration is fundamental.
This is the aim of Thesis.

Framework

Inside the European Telecommunication Standards Institute (ETSI)1, which is an inde-
pendent standardization group, was formed the working group ETSI Industry Specifica-
tion Group for Network Functions Virtualization (ETSI ISG NFV) which is in charge
to develop requirements and architecture for virtualization of various functions within
telecommunications networks.

1ETSI was created in 1988 by the European Conference of Postal and Telecommunications Adminis-
tration (CEPT) and is officially recognized by the European Commission and the EFTA Secretariat. It is
composed of more than 800 member organizations distributed in 65 counties and five continents. One of
its main aims is to enable interoperability in a multi-vendor, multi-network, multi-service environment for
this purpose its standards are designed for interoperability from the very beginning.

6

2.1 – Software and Virtualized Network

The ETSI ISG NFV helps, by setting terminology[1], requirements and architecture
specifications for hardware and software infrastructure needed, to make sure virtualized
functions are maintained how described in [2].

Figure 2.1: High-level NFV framework

As it is possible to see in the Fig. 2.1, the framework proposed by ETSI ISG NVF is
composed at a high-level view of the following blocks:

• Virtualised Network Functions (VNFs) that are the software implementation of the
various network functions that were physical devices until today. They are allocated
in the NFVI;

• NFV Infrastructure (NFVI) that represent the infrastructure, and so the physical
resources, in which the VNFs can be executed. In fact, the hardware resources, as
compute, storage and network, are in common andmust be shared between the VNFs
to be instantiated. Above these physical resources there is a Virtualization Layer with
the aim to virtualize the resources. In this way each VNF can access it in reserving
way;

• NFV Management and Orchestration (NFV MANO) it is in charge of monitor,
manage and orchestrate all elements inside the framework: computing, networking,
storage and virtual machine (VM) resources. It also manages the life-cycle of VNFs.

7

Background

In particular, as described in Fig. 2.2 it is composed by the following elements:

– NFV Orchestrator (NFVO) it is in charge of the resource orchestration in or-
der to ensure that there are adequate compute, storage and network resources
available to provide a network service. At this aim it can work with the VIM
or directly with NFVI. In this case it can coordinate, authorize, release, and
engage them without interacting with any specific VIM. It is responsible for
loading new network services (NS) and managing its life-cycle as well as up-
loading VNF packages.

– VNF Manager (VNFM) it is responsible for the lifecyclemanagement of VNFs.
In particular, it is in charge to instantiate new VNFs, to scaling them, to update
or upgrade them and to terminate them.

– NFV Virtualized Infrastructure Manager (VIM) it is responsible for man-
aging the virtualized infrastructure. It holds traces of the physical resources de-
voted to those virtual by the NFVI so it is able to orchestrate the allocation, the
updating, the release and the recovery of the resources in a way to optimize their
use. It manages security group policies to ensure access control. It also deals
with collecting information on performance and failures through notifications
and managing catalogs of hardware and software resources.

Figure 2.2: NFV MANO

8

2.1 – Software and Virtualized Network

2.1.2 Software-Defined Networking (SDN)

The birth of first computers, which was followed by their rapid spread in universities and
research labs, soon led to the need to be able to share documents in the same room for
research purposes. For this reason, in the late 1960s was born Internet in the form of
LAN(Local Area Network).

For the first time computers were connected together and, since this happened in a lim-
ited area, therewere notmany problems related to the safety or to the quality of the service.
In fact, many protocols were created without taking into consideration these problems,
which have become big and open issues today.

From that moment, the Internet has spread more and more over the course of time
becoming a worldwide phenomenon that has forever changed the history of man.

All this has led to the creation of a digital society where anything is connected and
accessible from everywhere in an easy way by all the people; in fact no special techni-
cal knowledge is required to use the various network services. Just think of the fact that
nowadays also the children are able to use the Internet without critical problems.

But for the network administrators this is not so easy. In fact, even if in the original
idea Internet was conceived to be simple as possible, in reality the traditional IP networks
are complex and very difficult to manage. This because the Internet network is composed
of packets that travel in the world through network devices connected between them by
complex rules.

Network operators must configure individual network device separately, using low-
level and often vendor-specific commands, making difficult configure the network, ac-
cording to predefined policies and to reconfigure it to respond to faults. Indeed, the current
network is not in charge to respond automatically and to configure itself autonomously.

Control Plane

Data Plane

Figure 2.3: Traditional Network

In the traditional network, Fig. 2.3, the movement of packets, and so the traffic plane, is
managed by each single network device that therefore performs three distinct activities:

• Control plane is the part of a network that carries signaling traffic. The knowledge of
the topology of the network, obtained by exchanging information through protocols,
allows it to be responsible for the routing and so to route packets by establishing
connections between routers in the network;

9

Background

• Data plane also known as forwarding plane, it is in charge of actually forwarding
packets according to the decision made from the control plane;

• Management plane is considered a subset of the control plane because carries ad-
ministrative traffic with the aim to provide management, monitoring and configura-
tion services.

The traditional network is, therefore, vertically integrated. That means that the control
plane and the data plane are wrapped together, in the same device, and this reduces the
flexibility of the network. In this context was born the idea that led to a new way to see
the network: Software-Defined Networking (SDN).

The SDN has the aim to make the network directly programmable in order to improve
network performance and monitoring, bypassing the limits of the current network infras-
tructure. To achieve this goal, it breaks the vertical integration and divides the control
plane from the data plane. Therefore, the control logic (control plane) is centralized and
is entrusted to a specific unit that takes the name of SDN Controller.

The SDN Controller communicates with the devices distributed on the network that,
from network switches, become simple forwarding devices with the only aim to forward
packets based on some rules defined by the controller. As shown in Fig. 2.4.

Figure 2.4: SDN architecture

In this way the policy enforcement, the network configuration and its evolution are sim-
plified.

In fact, the configuration of the whole network can be carried out, in a programmatic
way, in an only node that is the controller. It is important to emphasize that a logically
centralized model does not postulate a physically centralized system. Indeed, if it was so,

10

2.1 – Software and Virtualized Network

would be problems regarding performance, scalability and reliability of the network. For
these reasons the control plane should be physically distributed.

As a direct consequence of the fact that there is an only centralized logical node, the
whole network is capable to respond automatically to the traffic needs and to reconfigure
itself in case of faults. But if all this leads to significant advantages, on the other hand,
there are some disadvantages regarding scalability and, particularly, security: there is a
single point of failure. This poses new issues and opens up new controversies on this
new paradigm, which is revolutionizing networks and opening up new possibilities. As a
simple example, just think of the fundamental contribution to the development of 5G.
As can be seen better in Fig. 2.5, the SDN architecture is composed of three layers:

• Application Layer can be considered the brains of the network. Includes the appli-
cations, programs, that via northbound application programming interfaces (APIs)
require the necessary resources to use by the SDN controller;

• Control Layer contains the SDN controller, so this layer receives requirements
from the SDN Application layer and forwards them to the networking components
through southbound API, the most adopted is OpenFlow2;

• Infrastructure Layer is composed of a set of networking equipment (switches,
routers, etc.) with the only aim to forward packets, without the competence to take
autonomous decisions.

2The OpenFlow, developed by the Open Networking Foundation (ONF), is a programmable network
protocol for SDN environment, which is used for communication between switches and controllers. Open-
Flow supports switches of different vendors that are called OpenFlow switches. The switch is composed by
flow and group tables, which exploits to search and forward packets. It is also made up of OpenFlow chan-
nels that link it to an external controller. Using the OpenFlow switch protocol, the controller can modify,
add, update, and delete flow entries in flow tables [3].

11

Background

Figure 2.5: SDN architecture, layer view

12

2.1 – Software and Virtualized Network

2.1.3 Service Function Chaining (SFC)
As seen in the previous section, Software-Defined Networking and Network Function
Virtualization are two new paradigms that are revolutionizing, in a completely different
way, the network idea. Both SDN and NFV aim to develop a software-based approach to
networking for more scalable, agile3, and innovative networks.

These paradigms aremutually useful, but are independent of one another, or better they
are perfectly complementary. For this reason, the idea of ��combining synergies within the
network was born. The power of their union is seen more and is fully exploited with the
concept of Service Function Chaining (SFC).

Whenever a demand for a new service occurs by the customers, operators must choose
the best plan to satisfy them. This requires a lot of time and costs, but the advent of these
new paradigms (Agile, SDN and NFV) brought significant advantages.

The Network Service offered to end users is composed by a various number of Service
Function, which is a function that is responsible to manage the incoming packets and
can act at different level and layers of a protocol stack. It is important that these Service
Functions are ordered in a specific and logical way, because there are some constraints to
be satisfied. For example, as is possible to see in Fig. 2.6, in this scenario it is important
that the DPI is applied after the Firewall. The ordered set, of Service Function to be
satisfied, takes the name of Service Function Chains[5].

Figure 2.6: Service Function Chains

In this context is possible to see how the Software-Defined Networking and the Network
Function Virtualization work perfectly together and are fully complementary.

3Agile is a software development strategy that involves the customer from the beginning and in each of
its development phases, in order to obtain a high response to its requests and a rapid development of the
final product [4].

13

Background

Indeed, the administrator defines for each user, based on his needs, the Network Ser-
vice, which is expressed as a chain of service functions. The service chain represents the
application level in the SDN context, so this request is handled by the SDN controller.
The SDN controller forwards to the lower infrastructure the correct commands to satisfy
the chain and which network functions must be enabled. The infrastructure is composed
of SDN switches containing the instances of the network function to be enabled to meet
the requirements.

Thanks to this new approach the network results more dynamic and easy to manage.
Also customer needs result easier to meet.

In this new complex scenario, is possible to set up and choose which NFV are nec-
essary on any policy rule expressed by end users. As an example, how can the Service
Function Chain be configured if a father wants to forbid his child to go to social networks?

The many problems, related to this scenario, will be addressed in details during the
drafting of the thesis. In particular, they will be discussed in depth with importance in
Chapter 4 while they will be introduced summarily in the next section.

14

2.2 – Policy languages and Specifications

2.2 Policy languages and Specifications
This section begins with the final question of the previous one; is it possible to configure
the network in order to allow a father to monitor his child by prohibiting him access to
social networks, in such that to do not distract himself during the study in the afternoon?
In other word, is possible for the network administrator configure the network, or better
the Service Chains, in order to satisfy all the additional requests made by customers?

Therefore, the network administrator is forced to accommodate many additional re-
quests coming from the various customers. In fact, the administrator not only has to con-
figure the network in order to guarantee the access to the Internet to the own customers
and therefore that they are able to use the various services but he must also take into ac-
count further demands, and therefore constraints, which change the basic behaviour of
the services offered. This is because now the administrator will not simply have to guar-
antee his client are able to access to the Internet, but will have to bind him to particular
conditions (for example block specifics sites).

Managing all these possible situations is not so easy for the network administrator as
each client may have different needs that need to be taken into account and met.

Moreover, the evolution of technology has led to the creation of increasingly complex
systems and the management of these tools has also evolved. This last motivation has
given a strong push towards the introduction of abstract models that allow the description
and the management of the systems without going into details that are too specific for the
administrator

The necessity of abstraction so that these situations are better managed by the system
administrator has led to the definition of the concept of Policy.

2.2.1 Definition
The concept of Policy is, therefore, abstract and depends on the context of use; in this
thesis we will deal with this concept in relation to computer network systems.

To define in precise way this concept is not much simple, in literature there are several
definitions, the more important are the following:

• The current definition is given by the IETF (Internet Engineering Task Force) in the
RFC-3198 [6]:

“Policy can be defined from two perspectives: (i) A definite goal, course or method
of action to guide and determine present and future decisions. “Policies” are im-
plemented or executed within a particular context (such as policies defined within
a business unit); (ii) Policies as a set of rules to administer, manage, and control
access to network resources [7]”

• Another definition is given in [8] by D.Clark e D.Wikson in the article “A Compar-
ison of Commercial and Military Computer Security Policies”:

15

Background

“Any discussion of mechanisms to enforce computer security must involve a partic-
ular security policy that specifies the security goals the system must meet and the
threats it must resist. For example, the high-level security goals most often specified
are that the system should prevent unauthorized disclosure or theft of information,
should prevent unauthorized modification of information, and should prevent denial
of service”;

• Another definition is given in [9] by D. C. Robinson e M. S. Sloman in the article
“Domains: a new approach to distributed system management”:
“A management policy defines the set of rules to achieve certain objectives. For ex-
ample, an access control policy‘and a set of rules that define the resources that a user
can access and a fault management policy defines where a fault should be reported
and some recovery actions. The policy is defined by the system administrator”.

The definition that best fits the purpose of this thesis is the first. For this reason, during
the development of this thesis, when we talk about Policy we will refer to it as a set of
Policy Rules, written by administrators, with the aim of monitoring and managing user
requests.

This definition was in fact presented for the first time in theRFC3060[7], “Policy Core
Information Model” (PCIM), which represents the object-oriented information model for
representing policy information.

The PCIM defines two hierarchies of object classes:

• structural classes representing policy information and control of policies;

• association classes that indicate how instances of the structural classes are related to
each other.

As described in the RFC3060, a network, which implements the policies, can be modelled
as a statemachine that uses policies to control, at all times, what is the status of the devices.
The key points in the definition of the policy are as follows:

• Each policy is composed by a set of policy rules enabling its application;

• Each policy rule consists of a set of conditions and a set of actions;

• Multiple rules can be aggregated into policy groups;

• Multiple groups may be nested in a hierarchic way.

Let’s see their meaning.

Conditions set

The set of conditions is constituted from that set of conditions that, if triggered, allow the
execution of the rule. Therefore they specify the moment of application of the rule itself.

If they are assessed positively, the corresponding set of actions will be executed.

16

2.2 – Policy languages and Specifications

Actions set

The set of actions is constituted from that set of actions that are executed by the rule. It
is possible to define a specific order in which actions should be executed or declare that
the order does not affect execution

Hierarchic

The rules defined in the set can be characterized by a priority which allows to declare,
therefore, a general main rule followed by more specific underlying rules. In this way you
get a hierarchy of rules. This allows you to execute only the actions of the rule with greater
priority when more rules are met.

Policy groups

Policies can be used individually or grouped together in groups called policy groups.
These allow to represent the interactions between objects and their dependencies.

Categories

Policy groups and policy rules are divided by category according to their purpose: con-
figuration policies, installation policies or security policies.

The aim of this thesis has been to place particular attention on those related to security in
such a way as to allow or deny access to a specific resource by an applicant. Rules, con-
ditions, actions and related data are kept in a logical container called Policy Repository.

2.2.2 Policy framework architecture
In the RFC-2753 [10] is shown how a policy framework can be implemented using the
following components:

• Policy Repository, this is the logical container. It is composed by rules, conditions,
actions and related data. It contains all the policies of the system;

• Policy Decision Point (PDP), it is a logical entity that makes policy decisions for
other network elements that require these decisions. It is in charge of establishwhether
or not a person has a permit, if it is legal or false, if it is still valid or revoked and so
on. It is the point where policy decisions are made;

• Policy Enforcement Point (PEP), it is a logical entity that applies policy decisions.
Therefore, it is a single point of access where the policy decisions are actually en-
forced. It defends the resource;

• Policy Information Point (PIP), it is a logical entity that provides the requested
access information. This additional information depends on the context;

• Policy Access Point (PAP), it is responsible for providing the policy applicable to
the requested access;

17

Background

• Subject, he is the one who wants to access a particular resource. It is necessary to
verify if there is a policy directed to him that manages his access to the resource;

• Resource, it is the object the user wants to access.

The workflow, visible in Fig. 2.7, consists of the following steps:

1. A subject applies to PEP for access to a given resource;

2. PEP to decide whether to allow access or not, communicate with the PDP;

3. PDP asks PIP for further information about the context;

4. PDP asks PAP if there are any policies that regulate the access of the subject on
the resource in question. It is important to note that the PAP manages the policy
repository, containing all policies. These last ones have been inserted in a time ”0”,
that is to the birth of the system;

5. PEP receives from PDP the outcome of the decision;

6. PEP shall communicate the decision to the subject.

Figure 2.7: Policy framework architecture

18

2.2 – Policy languages and Specifications

This implementation gives a high-level view of the policy concept and how it can be used
in practice. It helps us understand how important this concept is and how this mechanism
can be used to enable or not an user to access a particular resource.

The work carried out by Firmato [11] and Policy Manager [12] has its roots precisely in
this.

2.2.3 Policy languages
Now that it is clear how this mechanism uses policies as a key element in security and
access control, the question is: how are these policies expressed? What kind of language
is needed? Should the language used be closer to users (and in particular to the adminis-
trators) or to machines?

The answer is not as obvious as you might think. This is because if the language used
is very close to the machine, then at a low level, it is difficult to understand for those who
are not experienced. Also, on the market there are countless devices and each with its
own proprietary language (e.g. Cisco) and this further complicates the situation.

On the other hand, if the language used is closer to the humans, surely it is understand-
able also for those who have no experience but it can be difficult, and not always possible,
to adapt it for various devices.

One of the aims of this thesis has been precisely to deepen the study of the various lan-
guages in such a way as to model the policy repository and the catalogue of network
functions. In such a way as to allow the use of these devices to all users, from those
without experience to those who use these devices every day.

The languages used are divided into:

• High-level Policy Language(HPL), is an authorization language with the aim of
expressing the user requirements by hiding the configuration details during the def-
inition of the policies. It has been idealized as an user-oriented policy language that
exploits sentences close to the natural language.
For instance: “User A cannot access the Internet on Monday afternoon”;

• Medium-level Policy Language(MPL), is an authorization language addressed to
end users with good technical knowledge. It is an abstract language that is still
vendor-independent, but allows expressing specific configurations in a generic for-
mat. Therefore, these configurations must then be translated into the proprietary
language of the device to be configured;

• Low-level Policy Language(LPL), it represents the proprietary language that must
be manually configured in the devices.

These languages will be discussed and studied with particular attention in the Sec. 4.2.

This problem, that is the choice of the language to be used so that policies can be ex-
pressed clearly and simply, has taken importance in recent times and many are the works

19

Background

carried out in literature that guide them. One of these is definitely the European project
SECUREDwhich is the starting point of this thesis. It uses these languages in the field of
security so much that it manly talks about High-level Security Policy Language (HSPL)
and Medium-level Security Policy Language (MSPL). Security rules can be expressed ei-
ther through the use of a high level language (the HSPL, easy for everyone) or through
a medium level language (the MSPL, suitable only for experienced people in the field).
In both cases the rules are expressed independently of the device and must be adapted.
This introduces a level of abstraction that allows network administrators to focus only on
policy rules.

A bit different is the concept of language implemented by Firmato [11] where a
medium-level language is used. It tries to abstract the guidelines for firewalls making
them regardless of the seller. These rules are then translated to a low level by a compiler
that is responsible for generating configuration files based on the device. This mechanism
introduces a new level of abstraction that leads network administrators to focus exclu-
sively on firewall rules regardless of network topology.

20

2.3 – Tools

2.3 Tools

2.3.1 Z3
Z3 is a tool developed byMicrosoft Researchwith the aim of solving Satisfiability Modulo
Theories (SMT) problems [13].

The SMT problem is a decision problem4 for logical formulas expressed in first-order
logic. These formulas are composed of sentences which are logically combined exploit-
ing quantified variables. Each sentence consists in a predicate and a subject, which is
represented by a variable.

As an example, if we have the following predicates:

P ≜ Socrate is a man
Q ≜ is mortal

R ≜ Socrate is mortal

If we want generalize in order to obtain

S ≜ every man is mortal

We can declare the x variable obtaining:

P ≜ is a man ⇒ 𝑚𝑎𝑛(𝑥)
S ≜ is mortal ⇒ 𝑚𝑜𝑟𝑡𝑎𝑙(𝑥)

Q ≜ every man is mortal ⇒ ∀𝑥(𝑚𝑎𝑛(𝑥) → 𝑚𝑜𝑟𝑡𝑎𝑙(𝑥))

Z3 is able to solve much more complicated formulas, consisting of variables (numeric or
Boolean) and logical or mathematical expressions.

As an instance, if we define the integer variables x and y, we can write the following
formula:

𝑥 + 𝑦 < 10 (3.3)

Z3 is able to determine if this equation is Satisfiable (SAT), which means if there are
values to assign to the variables x and y in order to satisfy the inequality and in this
case is also able to provide a use case (as an instance: x=5, y=3) or if it is Unsatisfiable
(UNSAT) and which therefore cannot be satisfied.

Z3 allows also to impose some constraints which can be hard or soft.

• Hard-Constraint: they must be met obligatorily and therefore in case they cannot
be satisfied the whole expression turns out to be UNSAT;

4A problem is decisional if it can be posed as a yes-no question of the input values.

21

Background

• Soft-Constraint: Z3 tries to fulfill them after having satisfied those hard, in case
it is not possible the expression is still SAT. This constraint is used to optimize the
result.

Taking into consideration the formula (3.3) we can add the Hard-Constraint:

𝑥 ≠ 5 (3.3.1)

In order to oblige Z3 to do not use this value to solve the formula.

Therefore, we can define variables which take into account policies, capabilities, func-
tions, servers and define predicate for their relationships. At this point we can define hard
constraints in order to impose certain conditions (as an example: so that an NSF to be
chosen it is necessary that it supports at least one required capability) and soft constraints
in order to optimize the choice of functions (as an instance: to reduce the cost) and leave
to z3 the task of finding a solution that is satisfiable.

2.3.2 Gurobi
Gurobi is a commercial optimization solver for linear programming (LP), quadratic pro-
gramming (QP), quadratically constrained programming (QCP), mixed integer linear
programming (MILP),mixed-integer quadratic programming (MIQP), andmixed-integer
quadratically constrained programming (MIQCP).

It was developed in 2008 from a group of persons whose initials constitute its name:
Zonghao Gu, Edward Rothberg and Robert Bixby.

It is the fastest and most powerful mathematical programming solver, available for all
operating systems and programming languages. It enables users to state their toughest
business problems as mathematical models and then finds the best solution out of trillions
of possibilities.

As mentioned above, Gurobi is able to solve the following mathematical problems:

• LP, solves the mathematical model whose requirements are represented by linear
relationships. Therefore, linear programming allows the optimization of a linear ob-
jective function, subject to linear parity and constraints of linear inequality. Its prac-
ticable region is a convex polytope and its objective function is a related function
of real value defined on this polyhedron. A linear programming algorithm finds the
point, in the polyhedron, where this function has the smallest (or greatest) value.
The canonical form of a linear program model is the following:

Maximize 𝑐𝑇𝑥
subject to 𝐴𝑥 ≤ 𝑏 and 𝑥 ≥ 0

Where:

– Maximize/Minimize is the aim;

22

2.3 – Tools

– x represents the vector to be determined;
– c and b are vectors of known coefficients;
– A is a matrix of known coefficients;

• QP, solves the mathematical model where the objective is to maximize/minimize
a quadratic function of several variables subject to linear constraints on these vari-
ables.
The canonical form of a quadratic program model is the following:

Maximize 1
2𝑥𝑇𝑄𝑥 + 𝑥𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏

Where:

– Maximize/Minimize is the aim;
– x represents the vector to be determined;
– Q is a real symmetric matrix;
– c and b are vectors of known coefficients;
– A is a matrix of known coefficients;

• QCP, solves the mathematical model where the objective is to maximize/minimize
a quadratic function of several variables subject to quadratic constraints on these
variables.
The canonical form of a quadratic program model is the following:

Maximize 1
2𝑥𝑇𝑃0𝑥 + 𝑞𝑇

0 𝑥
subject to 1

2𝑥𝑇𝑃𝑖𝑥 + 𝑞𝑇
𝑖 𝑥 + 𝑟𝑖 ≤ 0 for 𝑖 = 1, ...,𝑚

and 𝐴𝑥 = 𝑏

Where:

– Maximize/Minimize is the aim;
– x represents the vector to be determined;
– 𝑃𝑖 are matrix;
– 𝑃𝑖 and b are vectors of known coefficients;
– A is a matrix of known coefficients;

• MILP, solves the mathematical problem similar to LP but the variables are not dis-
crete;

• MIQP, solves the mathematical problem similar to QP but the variables are not
discrete;

23

Background

• MIQCP, solves the mathematical problem similar to QCP but the variables are not
discrete.

Gurobi is used within the framework to solve a particular case of the ILP problem, the
variables used are binary and only allow values 0 and 1.

Gurobi assigns unknown values by optimizing an objective function, can maximize or
minimize it. The values assigned may be subject to constraints, for example, it can be
imposed that they must be strictly positive.

Gurobi, unlike Z3, is optimized to solve multi-objectives. You can specify multiple ob-
jectives and decide whether to meet them hierarchically, blending them or mixing the two
approaches. The difference is as follows:

• Blended Objectives, this approach creates a single objective by taking a linear com-
bination of your objectives. This is possible providing a weight for each objective.
As an example, if the model has the two objectives:

5 + 2𝑥 + 3𝑦 (2.3.2.1)

𝑥 − 𝑦 + 8 (2.3.2.2)

If weight -1 is assigned to equation 2.3.2.1 and weight 2 to equation 2.3.2.2, the
following equation resulting to be optimized will be obtained:

(−1) ∗ (5 + 2𝑥 + 3𝑦) + 2 ∗ (𝑥 − 𝑦 + 8) = −5 − 2𝑥 − 3𝑦 + 2𝑥 − 2𝑦 + 16
= 11 − 5𝑦

(2.3.2.3)

• Hierarchical Objectives, the hierarchical or lexicographic approach assigns a pri-
ority to each objective, and optimizes for the objectives in decreasing priority order.
At each step, it finds the best solution for the current objective, but only from among
those that would not degrade the solution quality for higher-priority objectives.
You can also specify a degree of degradation. That is, it is possible to choose as the
final solution, the solution obtained by optimizing the subsequent objectives, which
has degraded the primary objective by a chosen value;

• Combining Blended and Hierarchical Objectives, it is also possible to set both
a weight and a priority for each objective. This allows you to combine the blended
and hierarchical approaches.

24

Chapter 3

Problem Statement

The aim of this thesis is to propose a framework that can meet the work of network admin-
istrators, facilitating them in their task, proposing an innovative way to address customer
needs and to automatically choose which network functions are needed and where to al-
locate them. Allowing the administrators to define the policy repository, to create the
catalog of functions available in the system and specify the physical hosts where virtual
functions can be allocated.

The purpose was, therefore, to develop the Verifuse (VERInet FUnction SElection and
placement) framework that can automatically choose how many and which functions are
needed, after having defined a set of policies written by one or more administrators, for
all users of the same network, and to allocate them among the physical servers available.

All this has been possible through a long study of policies and previous works in literature.
This study has led me to a new way of seeing policies and a revolutionary new way of
associating policies with security functions. How this has been made possible and how
it works will be better described in the Chapter 4 but the basic idea is in the concept
of Capability. By analyzing the various network functions I realized that they can be
divided into groups because they share common characteristics. For example, firewalls
are nothing more than packet filters. All network functions that have the characteristic of
working at level 4 and filtering packets then have the Capability to be Packet_Filter_L4.
Each capability is therefore characterized by a series of features that make it unique, it
represents all those functions that have a certain characteristic. Each network function
can support multiple capabilities, one necessarily.

The capabilities allow, therefore, a connection with the network functions but what about
the policies? The network administrator must write a security policy for each user who
belongs to the network in such a way as to satisfy its requests. The security policy is com-
posed by a collection of policy rules where each rule is designed to handle a particular
request. Each rule is represented by a condition and an action that has to be performed
(for example, block internet traffic) that in fact connects to a specific capability (as an
instance, packet filter) and then to the use of a function (e.g., Iptable).

25

Problem Statement

Therefore, starting from the policies the necessary capabilities are identified and from
these they come to select the necessary functions. But how does this choice occur? Ac-
cording to which constraints the functions are chosen? Once chosen, where are they al-
located? Is it possible to optimize these choices? All these questions will be answered in
depth in the Chapter 6. What we need to know is that all this has been made possible by
the use of the Gurobi Integer Linear Programming (ILP) Solver. Gurobi associates
binary variables, with value 1 (in case of choice) and 0 otherwise, to the various elements
(Network Functions, Capability and Host) and relationships between them. It assigns to
all there variables some values which depend on some constraints expressed by mathe-
matical formulas, systems of linear equations, that Gurobi tries to solve.

All these elements (Policy Repository, Catalog of Network Functions, Capabilities and
Hosts), which will be presented in detail in the Chapter 5, have been modelled through
the eXtensible Markup Language (XML) language. This is a markup language that
allows to model in a very precise way, thanks to the use of constraints, all necessary data
structures. For the realization of these models, of great importance was the use of the
High-level Policy Language (HPL). Its use has been analyzed in the European project
SECURED and improved. It has been expanded to allow detailed policy modelling. Now
the network administrator can, with simplicity, write various and precise policies. Support
any kind of situation that might occur.

As described in the Chapter 7, the framework has been implemented by exploiting the
Java language, in particular the platform JAVA JDK 8 SE with the external tools Ant,
Tomcat, Neo4j and Gurobi. REST APIs have also been developed to offer the potential of
the framework to the outside. The framework has been designed to be fast, scalable and
modular. For these reasons it has been divided into two key modules:

1. CAID (CApability IDentifier) which has the aim to analyze the policies, expressed
by HPL, to identify which capabilities are needed to satisfy them.

2. SAP (Selection And Placement) which has the purpose to determine and select how
which network functions are required to meet the required capabilities. It has also
the task to allocate the instances of the functions between the available physical host.

The two modules have been developed to be completely independent, they do not com-
municate directly because the result produced by CAID turns out to be the input of a mod-
ule external to the framework. The external module sends new data to the SAP module.
The SAP module selects the necessary functions and allocates them among the available
hosts. The presence of another module outside the framework justified the choice of the
two modules in such a way as to ensure maximum modulation and interoperability.

The framework has been created to be practical and fast without penalizing the good-
ness of the solution. The synergy between the modules has led to excellent results that
will be shown in the Chapter 8. Scaleability tests have been performed by varying the
number of: policies, capability instances, functions and hosts. The number of inputs has
been progressively increased up to one million. The large quantity of entries, resolved in

26

Problem Statement

reasonable time, demonstrated the goodness of the solution and and the execution speed
of the framework.

The thesis work has achieved the goal of developing the Verifuse framework. It provides
everything you need to define and analyse policies, allowing you to create your own cat-
alog of functions and your physical host infrastructure. After choosing the optimization
criterion, Verifuse automatically selects which network functions are needed to meet the
policies and allocate them among the available hosts. The choice is optimized, it is the
user who defines the parameters and the priorities. The final considerations and possible
future developments will be shown in the last Chapter 9.

27

28

Chapter 4

Approach

In this chapter, the approach taken to solve the problemsmentioned in the previous chapter
will be addressed. In particular, the adopted model, which concurs to formalize the secu-
rity policies in order to be able to choose the network functions to use, will be described
in the detail.

It will be discussed both how the High-level Policies Language (HLP) can be used to
express the safety requirements of non-technical users and how theMedium-level Policies
Language (MLP), on the other hand, allows experienced users in the area to express their
configurations.

Particular attention will then be given to the innovative approach allowing to com-
plete the refinement process, which determines which network functions must be enabled,
among those available, according to the policies required and where to allocate them in
the physical servers. At the end of the chapter, it will be discussed the strategy used to
optimize these choices.

4.1 Workflow
The main problem, which led to the study of this thesis and that guided its development,
was to propose a new and innovative framework in order to help network administrators
to configure the network and so to choose automatically which network functions must
be enabled to meet the security policies requested by users and to take care to allocate
them among the available physical servers.

The Verifuse (VERInet FUnction SElection and placement) framework was developed in
order to solve this problem. The framework consists of two modules that are:

• CAID (CApability IDentifier) which has the aim to analyze the policies, expressed
by HPL, to identify which capabilities are needed to satisfy them.

• SAP (Selection And Placement) which is intended to determine and select howmany
and which instances of the network functions are required to meet all the instances of
the required capabilities. It has also the task to allocate the instances of the functions
between the available physical servers. In fact, the choice of functions is dictated by
both the necessary capabilities and the available physical resources.

29

Approach

In the Fig. 4.1 is possible to see what is the workflow, which is summarized in the follow-
ing points:

1. CAID receives in input the repository, containing all the policies to satisfy, and the
list which all the capabilities defined;

2. CAID analyzes the policies in order to determine which capabilities are necessary;

3. CAID sends the set of the capabilities required to another module which has the aim
to determine how many instances, for each capability, are necessary;

4. SAP receives in input the catalog of all the available network functions, the informa-
tion on the physical infrastructure and the set of all the instances of the capabilities
that are required which has been chosen by another component;

5. SAP chooses, optimally, which sub-set of functions is needed in order to meet all
the policies and allocates the functions into the physical servers.

Therefore, the framework analyzes the policies expressed in the Policy Repository, which
was received as input, by means of the CAID module in order to understand what are the
capabilities necessary to satisfy all the policies based on the Capabilities Defined. At this
point, it sends to another component the list of Capabilities Required.

Then, it receives, from a module outside the framework, the list of the instances of
the capabilities required and it searches between the functions present in the VNF Cat-
alogue which one support the requested capabilities and selects the optimal functions,
taking into account available physical resources, so as to be able to allocate them in the
physical servers. The selection of functions is subject to the conditions imposed, in the
first place the functions must be able to support the capabilities but it is also necessary
that certain physical resources are available in order to be able to allocate the functions in
the servers.In addition, the choice is subject to optimizations, you can choose to reduce
the cost of the functions as well as reduce the amount of ram needed and so on.

It should be taken into account that this framework is part of a larger project under
publication and that the PolicyRepository and the VNFCatalogue schemas, as defined,
provide a tool to expand and improve the two modules CAID and SAP in the future.

In order to select the required network functions starting from the definitions of the poli-
cies, the framework implements the phase named Policy Refinement [14].

The Policy Refinement is the process to determine the resources needed to satisfy
policy requirements by translating high-level policies into operational policies. This ap-
proach allows the separation between the policy specification and the real configuration
of network functions. The administrator can fully focus on policy-making, excluding low-
level configuration, because the framework provides him with a high-level view of system
behavior.

Therefore, the idea is to analyze the policies, which have been expressed through the
HPL, in order to extrapolate the necessary capabilities and then use them to select the
network functions to be used.

To achieve these goals, first of all it was necessary to formalize both a model that clearly
represents the exhaustive catalogue of security functions and a model that allows network

30

4.1 – Workflow

administrators, even without specific technical knowledge, to express security policies in
a simple, unlimited way.

In order to realize the structure of complete and exhaustive models that are easily
expandable in the future, with the possibility to customize and constrain every choice,
was used the eXtensible Markup Language (XML) language5. In fact, this language is a
markup language and therefore allows the definition of new languages, which can be used
to define these new models, also allowing the expression of links and constraints between
the different parts.

Although all the XML Schemas of these models will be presented in detail in the Chapter
5, we can now focus on the following concepts:

• CapabilitiesDefined, represents all the Capabilities supported by the framework;

• Policy Repository, allows network administrators to define, in a simple but complete
way, all the policies necessary to meet user needs;

• VNFCatalog, represents the catalog of the network functions which are available in
the system;

• Hosts, represents the physical server where it is possible to allocate the instances of
network functions.

In particular, the Policy Repository allows network administrators to define, in a simple
but complete way, all the policies necessary to meet user needs.

For instance, if a father wants to monitor his child by prohibiting him access to social
networks or blocking him access to illegal sites, the network administrator must configure
the network and then enable all those network functions that are useful for these purposes.
The parent may also want to limit the Internet connection only at certain times of the day,
so that the son does not distract himself during those afternoon hours that he should devote
to the study.

Selecting the necessary network functions in order to properly meet these requests
and, at the same time, the other from all users is a very complicated task to be fulfilled
by network administrators.

Therefore, the work of administrators is helped and reduced if they have at their dis-
posal a simple way to express policies. So the aim of this model is precisely this, to offer
a tool that facilitates as much as possible the writing of these policies.

How can a model simplify the drafting of policies? If the network administrator follows
a guided and precise scheme, the definition of these policies turns out to be simpler and
manageable.

5The XML language, acronym of Extensible Markup Language, is a metalanguage developed by
W3C6 in 1998. As a metalanguage, this language aims to define other languages.

6The World Wide Web Consortium (W3C) is an international community, founded in 1994 with the
aim to develop open standards to ensure the long-term growth of the Web.

31

Approach

To this purpose, to formalize the scheme, so that it is simple and easy to understand
for most end-users (even those who do not have particular technical knowledge), a user-
oriented language has been used: the High-level Policy Language (HLP) as suggested in
[15] and [16].

This language, as better described in the next section, allows administrators to impose
their policies without worrying about the low-level configuration part of the network func-
tions. In fact, nowadays the work of administrators is difficult precisely because, besides
having to worry about the definition of policies, they also have to take care of the ap-
propriate configuration of the network functions; For instance, the network administrator
must properly configure the firewall so that, according to the agreed policies, the packet
in transit is intercepted and analyzed (IP source, IP destination, protocol, etc.) for being
allowed or not to reach certain web addresses.

The Low-level network function configuration limits the capacity of network admin-
istrators as each security function requires a specific language to be configured. The pur-
pose of this model is to divide the two parts so that the network administrator can focus
only on the writing of policies without considering how to actually configure the network
functions.

Therefore, the network administrator, using this model, can write the policies in an
High-level language without worrying about the low-level configuration, which will then
be translated using an appropriate tool, fully focusing his attention on policies. In this way
there is no need that the network administrator has got particular low level knowledge.

In order to formalize the model of the Policy Repository, as suggested in [15] and [16], a
new and specific language was used. In the following sections the HPL, the MPL and the
LPL will be analyzed in detail.

The thesis more focused on the use of the High-level Policy Language (HPL) as a key
language to be used by administrators but internally also the Medium-level Policy Lan-
guage (MPL) is used; Furthermore, the model allows experienced network administrators
to express policies directly in this last language although the framework currently does
not fully support it. It can be considered as a possible future expansion.

32

4.1 – Workflow

Figure 4.1: Framework’s workflow33

Approach

4.2 Policy Languages

4.2.1 High-level Policy Language (HPL)
Introduction

The High-level Policy Language (HPL) is an authorization language, proposed in the
European project SECURED7, with the aim of expressing the user security requirements
by hiding the configuration details during the definition of the policies. For this purpose
it has been idealized as an user-oriented policy language that exploits sentences close to
the natural language.

Therefore, the HLP aims to be:

• Simple The use of predefined sentences close to the natural language aims to be
intuitive even for those users without particular technical knowledge. The end-user
appears to be assisted during the writing of the policies by sentences as “enable
antivirus” or “Bob is authorized to access Internet”;

• Flexible The model of the Policy Manager by exploiting this language results to be
very flexible and customizable. It appears to be open to any scenario and there are
no particular limits on policy conditions. It is possible to express conditions about
time, urls, IP addresses and so on;

• Extensible It is easy in the future to extend the model or adapt it to your needs
without completely revolutionizing it.

The HPL has played a key role in the thesis; it has been expanded and improved so that
the Policy Repository was modeled in the best way.

Structure

The Policy Repository wants to be a model simple and easy to use. At this aim, it is
based on the HPL which uses predefined sentences close to the natural language to be
immediate. How these sentences are composed?

In the basic version of the HPL of reference the predefined sentences were formulated in
this way:

[sbj] action obj [(field_type, value) ... (field_type, value)]
(3.1)

Where:

• sbj is the user to whom the policy is dedicated and so that needs to access or perform
an action on an object; Can be omitted if the subject corresponds to the user that
defines the HPL;

7SECURED is a project funded by the European Commission with the aim to develop a trusted and
virtualized execution environment that allows the users to execute security applications on the network
edge device to protect their traffic.

34

4.2 – Policy Languages

• action is the operation (e.g. enable, protect, authorized) that must be performed on
the object;

• obj is the resource (e.g. Internet, antivirus, DNS, IDS) that is the target of the action;

• (field_type, value) is an optional condition (e.g. time, traffic target, content type)
that allow to better specify the action on the object.

This is the basic structure, which does not allow a clear and complete description of
policies. It has a number of limitations:

• the policy does not have a key which uniquely identifies it;

• it does not allow to correctly specify the difference between author and subject of
the policy;

• the concept of the template is not well explained and difficult to use;

• the difference between a specific user or a group of users is not well formulated;

• the meaning and the use of some fields are not well specified, in some cases are
abstract information: what is the meaning of traffic target or content type? What is
behind it?.

For these reasons the structure has been updated, now is more articulated and it has al-
lowed to model the Policy Repository by different layers.

The key points are as follows:

• each policy is written by an Author and is addressed to a Subject, which can be a
specific user or a user groups;

• each policy consists of a set of rules addressed to the specified subject. These rules
take the name of Policy Rules;

• each Policy Rule consists of an Operation or a Template to execute;

• each Template consists of a series of Operations;

• each Operation consists of the Action to be performed, the Object to which it is
addressed and any Fields used to specify further conditions.

This model will be presented and analyzed in detail, with examples, in the Chapter 5.

35

Approach

4.2.2 Medium-level Policy Language (MPL)

Introduction

The Medium-level Policy Language (MPL) is an authorization language, which was pro-
posed in the European project SECURED like the High-level Policy Language (HPL).

The MPL, unlike the HPL, it is not addressed to end users without technical knowl-
edge but at experienced administrators. It is an abstract language that is still vendor-
independent, but allows expressing specific configurations in a generic format. Therefore,
these configurations must then be translated into the proprietary language of the device
to be configured, so that they are actually used.

Therefore, the MLP aims to describe the configuration settings of groups of devices
having some characteristic in common (features that during this thesis have taken the
name of Capabilities and which will be better described in the next section) and so that
can perform typical actions. For example, all firewalls, regardless of vendor, have the task
of allowing or blocking the passage of a packet in transit by observing specific fields in
the packet, executing precise rules defined by the administrator. But only the rules are
actually expressed using the proprietary language which changes from device to device.

The HPL is an authoritative language useful in the description of policies whose use,
as it uses sentences very close to human language, is simple and immediate. However,
this advantage turns out to be also a disadvantage as it cannot be used directly to config-
ure network functions. They must be converted into an intermediate language (MLP) or
directly into a low level language (as LPL).

The MLP, on the other hand, allows to express the same information as HLP, but
through operational policies in order to directly exploit this information in order to con-
figure network functions. For this reason, specific technical knowledge is required to be
able to use this language. As an instance, the network administrator must know how the
firewall works and what information is needed to configure it directly.

Therefore, the MLP allows to express security configurations for function classes in-
dependently from the vendor or manufacturer. It is flexible and extensible. It ensures that
the policies can be converted from HPL or written directly with this language.

Capability

As mentioned in the previous subsection, the MPL allows to describe the configuration
settings of groups of devices having some characteristic in common. These characteristic
can be expressed through the idea of Capability.

The concept of “Capability” is very abstract and has been very difficult to formalize it
during the course of the thesis, it has been a cornerstone of development. This is because
the choice of the network functions to satisfy defined policies is driven by the capabilities,
so they play a fundamental part.

The Capability represents the intrinsic characteristic of a network function and so pre-
cisely and unequivocally clarify what the function can do, how can act and what differ-
entiates it from other functions.

It is important to note that a single VNF can support more functionality and therefore
more capability.

36

4.2 – Policy Languages

For example, if a network function is able to analyze IP packets in transit in a given
network node (which can be an endpoint as well as an intermediate node) then this means
that it supports the “Packet_Filter_L4_Statefull” capability. If the network function can
be enabled to act only at certain times in specific days of the week, it also supports the
“Time_Filter” capability.

As is possible to see in the model defined through the use of the Unified Modelling Lan-
guage (UML)8 shown in the Fig. 4.2, in the European project SECURED the concept of
Capability is very articulate.

In this scenario the model of Capability is hierarchical. There is a root element, called
“Capability”, which is an abstract class that denotes any capability supported by a class of
functions. As an instance, classes can be: traffic filter, spam detector, IDS, IPS, malicious
file analyzer and so on. All these classes, or better categories, can be seen in Fig. 4.3.
where for each category of Personal Security Application (PSA)9 is done the mapping
with the corresponding capabilities.

This idea of the concept of Capability turns out to be so complicated that it is difficult to
use it in practice. This thesis aims to develop a framework in which capability must be
mapped both with policies contained in the Policy Repository and with functions defined
in the catalogue VNFCatalog. This is because the framework extracts from policies, ex-
pressed in HPL, the required capabilities and proceeds looking for those functions that
support them.

Therefore, a new model of capability had to be devised. With this aim, the most com-
mon network functions were analyzed (e.g., firewall, packet filter, IDS, IPS, etc.), trying
to understand how they work at a low level in order to trace the formulation of a model
that unites all those functions that, independently from the vendor, belong to a given class.

As an instance, a packet filter level 411, can Allow, Block or Log the IP packets in
transit and, to decide what action to take, compares the fields: IP source, IP destination,
Port source, Port destination and Protocol; to check if any of these fields fit the rules,
written by the administrator who configured the device.

8The Unified Modelling Language (UML) was developed by Grady Booch, Ivar Jacobson and James
Rumbaugh at Rational Software in 1994, it is a modeling language that, in the area of software engineering,
aims to provide a standard way to visualize the design of a system [17].

9The Personal Security Application (PSA) is a software that is executed on a Network Edge Device
(NED)10 . It contains one or more security controls in order to implement security policies and allowing to
offload the security from the end-nodes of the network.

10The Network Edge Device (NED) is a device which connects a Local Area Network (LAN) to a Wide
Area Network (WAN). Therefore, is the first point of the network that is met when an end-node (e.g.,
personal computer, smart-phone, smart TV) tries to access the internet.

11Level 4 means that it works at this layer in the OSI model12.
12The OSI model, aka ISO/OSI Model, is a conceptual framework, proposed by International

Organization for Standardization (ISO) and Comité Consultatif International Téléphonique et Télé-
graphique(CCITT), which imagines the network divided into 7 levels explaining how diverse communi-
cation systems can communicate in it using standard protocols. So it aims is the worldwide interoperability
[18].

37

Approach

The deep study on the common functions has therefore led to the formulation of a model
for the capabilities, which takes into account the intrinsic characteristics of the functions.
Therefore, each function class is characterized by a precise capability.
The Capability model is so defined:

Model

𝐶
def
= {𝑓1, 𝑓2,… , 𝑓𝑛} 𝑤ℎ𝑒𝑟𝑒 𝑓𝑖 ≠ 𝑓𝑗, ∀(𝑖, 𝑗) ∈ ℕ2

1→𝑛, 𝑖 ≠ 𝑗 (3.2)

• Each Capability 𝐶 consists of a series of different features 𝑓𝑖, which uniquely
identify it;

Constraints

𝐶1 ≠ 𝐶2 (3.2.1)

• Each capability is unique, there can not be two capabilities consisting of the
same set of features;

𝐶1 ⊄ 𝐶2 (3.2.2)

• The capabilities are unique and cannot be completely included in each other.
This means that the feature set is unique for each capability. Different capa-
bilities may have common features, but may not include the whole set;

𝐶1 ≠ 𝐶2 ∪ 𝐶3 (3.2.3)

• Each capability is unique, Each capability is unique, can not be achieved by
combining different capabilities;

Since capabilities have been defined to reflect a specific class of functions, each network
function, which is present in the VNF Catalog function catalogue, must support one or
more capabilities.

The capabilities have been chosen so as to be perfectly compatible also with the HPL
model that allows to express security policies through the Policy Repository.

38

4.2 – Policy Languages

An example of capabilities is shown below, the full list will be shown in the Chapter 5 as
it was thought.

1 <Capabilities>
2 <Capability CapabilityID=‘‘Packet_Filter_L4_Statefull’’>
3 <Features>
4 <Feature>Packet_Filter</Feature>
5 <Feature>L4</Feature>
6 <Feature>Statefull</Feature>
7 </Features>
8 </Capability>
9
10 <Capability CapabilityID=‘‘Packet_Filter_L4_Stateless’’>
11 <Features>
12 <Feature>Packet_Filter</Feature>
13 <Feature>L4</Feature>
14 <Feature>Stateless</Feature>
15 </Features>
16 </Capability>
17 </Capabilities>

As is possible to see in the instance, there are present two capabilities:

1. C1 = {Packet_Filter, L4, Statefull}, which is a Packet_Filter_L4_Statefull.

2. C2 = {Packet_Filter, L4, Stateless}, which is a Packet_Filter_L4_Stateless;

These two capabilities describe the behaviour of a generic Packet Filter, which works
at level 4 of the ISO/OSI protocol stack. The difference between the two Packet Filter
lies in the fact that C1 supports connection status, so it can track of the state of network
connections (such as TCP streams or UDP communication), while C2 does not.

Inasmuch as the two set di features contain the two common feature (Packet_Filter, L4)
but the last one is different (Statefull for C1 and Stateless for C2), the constraints (3.2.1),
(3.2.2) and (3.2.3) are respected, as the two capabilities are unique as the features set in
them are different and the one does not completely include the other.

39

ApproachD4.1 – Policy specification

C
ap

ab
ili

ty
- N

am
e

: s
tri

ng

Au
th

or
iz

at
io

nC
ap

ab
ili

ty

Fi
lte

rin
gC

ap
ab

ili
ty

+
st

at
ef

ul
 :

bo
ol

ea
n

Au
th

en
tic

at
io

nC
ap

ab
ili

ty

D
at

aP
ro

te
ct

io
nC

ap
ab

ili
ty

+
su

pp
or

ts
D

at
aA

ut
he

nt
ic

at
io

n.
..

+
su

pp
or

ts
D

ig
ita

lS
ig

na
tu

re
 :

b.
..

+
su

pp
or

ts
En

cr
yp

tio
n

: b
oo

le
an

+

su
pp

or
ts

Ke
yE

xc
ha

ng
e

: b
oo

l..
.

Lo
gg

in
gC

ap
ab

ili
ty

Ad
dr

es
sT

ra
ns

la
tio

nC
ap

ab
ili

ty

R
ou

tin
gC

ap
ab

ili
ty

Fo
rw

ar
dP

ro
xy

C
ap

ab
iit

y
R

ev
er

se
Pr

ox
yC

ap
ab

iit
y

U
R

LR
ew

rit
in

gC
ap

ab
ili

ty
N

at
tin

gC
ap

ab
ili

ty

C
ha

nn
el

Au
th

or
iz

at
io

nC
ap

ab
ili

ty

Au
th

zE
nf

or
ce

m
en

tC
ap

ab
ili

ty

Au
th

cE
nf

or
ce

m
en

tC
ap

ab
ili

ty

Au
th

cD
ec

is
io

nC
ap

ab
ili

ty
+

au
th

en
tic

at
io

nM
et

ho
ds

 :
st

rin
g

En
cr

yp
tio

nC
ap

ab
ili

ty

Au
th

zD
ec

is
io

nC
ap

ab
ili

y

Ta
rg

et
Au

th
zC

ap
ab

ili
ty

Tr
af

fic
An

al
ys

is
C

ap
ab

ili
ty

+
su

pp
or

tO
nl

in
eT

ra
fic

An
al

ys
is

 :
bo

ol
ea

n
+

su
pp

or
tO

ffl
in

eT
ra

fic
An

al
ys

is
 :

bo
ol

ea
n

La
w

fu
lIn

te
rc

ep
tio

nC
ap

ab
ili

ty
+

tra
ffi

cT
yp

e
: s

tri
ng

+

C
ou

nt
ry

 :
st

rin
g

M
al

w
ar

es
An

al
ys

is
C

ap
ab

ili
ty

M
al

ic
io

us
Fi

le
An

al
ys

is
C

ap
ab

ili
ty

+
fil

eT
yp

e
: s

tri
ng

R
es

ou
rc

eS
ca

nn
er

C
ap

ab
ili

ty
+

re
so

ur
ce

Ty
pe

 :
st

rin
g

Vu
ln

er
ab

ili
tie

sS
ca

nn
er

C
ap

ab
ili

ty

B
ot

ne
tD

et
ec

to
rC

ap
ab

ili
ty Tr

af
fic

R
ec

or
dC

ap
ab

ili
ty

ID
SC

ap
ab

ili
ty

IP
SC

ap
ab

ili
ty

Id
en

tit
yP

ro
te

ct
io

nC
ap

ab
ili

ty

An
on

im
iz

er
C

ap
ab

ili
ty

Pa
ch

et
Fi

lte
rin

gC
ap

ab
ili

ty
Ap

pl
ic

at
io

nL
ay

er
Fi

lte
rin

gC
ap

ab
ili

ty
+

pr
ot

oc
ol

Ty
pe

 :
st

rin
g

[1
..*

]

0.
.1

+
m

ay
Af

fe
ct

0.
.1

Figure 1: Capability hierarchy.

SECURED D4.1 page 13 of 38

Figure 4.2: Capability hierarchy in SECURED

40

4.2 – Policy Languages

D4.1 – Policy specification

3.3 Mapping security capabilities onto PSAs

As widely discussed in D5.1 [17], each PSA implements one or more security capability. This sections
discusses a mapping of capabilities onto the different PSA categories.

Figure 2 depicts the PSA categories, organized by using a hierarchical structure.

Figure 2: PSA categories.

SECURED D4.1 page 18 of 38

Figure 4.3: Categories of PSA in SECURED

41

Approach

4.2.3 Low-level Policy Language (LPL)
The Low-level Policy Language (LPL) represents the proprietary language that must be
manually configured in the devices. In fact, HPL is a high-level language that has been
created to allow administrators to focus on policy-making without taking into account
how these are actually implemented by the various functions of the network. Similarly,
MLP allows administrators to configure network devices (for example, by configuring
firewalls to block or forward IP packets that are in transit) but always in a generic way
that is common to a given device class but without going into actual configuration de-
tails. Therefore, HLP and MLP are languages that cannot be used to actually configure
devices (as an instance, a ”Cisco” router needs instructions in its own language to be con-
figured). It is for these reasons that a second phase is necessary in which these medium
and high level languages are converted into proprietary languages and therefore low level
languages.

This aim, however, appears to be outside the context of this thesis since the network
functions, which are selected and selected to meet policy, are software functions.

42

4.3 – Capability Identification

4.3 Capability Identification
As we have seen in the previous paragraphs, the CAID module, which has been devel-
oped, receives in input the Policy Repository and the list of Capabilities Defined in the
framework producing as output the list of Capabilities Required to satisfy all the policies.

The CAID module does the Capability Identification starting the process of Policy
Refinement, whose overall purpose is to determine the network functions needed to satisfy
all the policy requirement.

Therefore, the CAID module analyzes all the policies present in the policy repository,
which have been expressed through theHPL, and decides which capabilities are necessary
to satisfy them.

The module, to extrapolate capabilities correctly, uses an internal mapping consisting of
a map which associates the Operation expressed by the policy with the relative Capacity
that supports it. In particular, the framework analyzes the Operation in order to verify
which Action to execute, on which Object and if there are some Field to hold in consider-
ation. This is because the map associates both each <Action, Object> pair and each Field
with the respective capability.
As an instance,

<Action, Object> : <AUTHORIZED_ACCESS, VO_IP_TRAFFIC>
is mapped to: Capability: FW_Application

while

the Field: TIME_PERIOD
is mapped to: Capability: Time_Filter

The complete list is shown below, in the Tab. 4.1 and the Tab. 4.2.

In this way the framework is able to identify all the capabilities that are needed to meet
all the policies correctly. At this point it is necessary to select, and therefore to choose,
which functions contained in the catalogue of the network functions, to allocate.

Field Capability

TIME_PERIOD Time_Filter
TRAFFIC_TARGET Packet_Filter_L4_Statefull
SPECIFIC_URL FW_Web_Application
TYPE_OF_CONTENT Packet_Filter_L4_Statefull
PURPOSE Antivirus
BANDWIDTH BandwidthManagement

Table 4.1: The map between Field and Capability

43

Approach

Action Object Capability

NOT_AUTHO-
RIZED_ACCESS

VO_IP_TRAFFIC FW_Application

AUTHORIZED_AC-
CESS

VO_IP_TRAFFIC FW_Application

NOT_AUTHO-
RIZED_ACCESS

P_2_P_TRAFFIC FW_Application

AUTHORIZED_AC-
CESS

P_2_P_TRAFFIC FW_Application

NOT_AUTHO-
RIZED_ACCESS

TRAFFIC_3_G FW_Application

AUTHORIZED_AC-
CESS

TRAFFIC_3_G FW_Application

NOT_AUTHO-
RIZED_ACCESS

TRAFFIC_4_G FW_Application

AUTHORIZED_AC-
CESS

TRAFFIC_4_G FW_Application

NOT_AUTHO-
RIZED_ACCESS

INTERNET_TRAFFIC Packet_Filter_L4_State-
full

AUTHORIZED_AC-
CESS

INTERNET_TRAFFIC Packet_Filter_L4_State-
full

NOT_AUTHO-
RIZED_ACCESS

INTRANET_TRAFFIC Packet_Filter_L4_State-
full

AUTHORIZED_AC-
CESS

INTRANET_TRAFFIC Packet_Filter_L4_State-
full

NOT_AUTHO-
RIZED_ACCESS

DNS_TRAFFIC Packet_Filter_L4_State-
full

AUTHORIZED_AC-
CESS

DNS_TRAFFIC Packet_Filter_L4_State-
full

NOT_AUTHO-
RIZED_ACCESS

DNS_REQUEST Packet_Filter_L4_State-
full

AUTHORIZED_AC-
CESS

DNS_REQUEST Packet_Filter_L4_State-
full

NOT_AUTHO-
RIZED_ACCESS

DNS_RESPONSE Packet_Filter_L4_State-
full

AUTHORIZED_AC-
CESS

DNS_RESPONSE Packet_Filter_L4_State-
full

NOT_AUTHO-
RIZED_ACCESS

ALL_TRAFFIC Packet_Filter_L4_State-
full

AUTHORIZED_AC-
CESS

ALL_TRAFFIC Packet_Filter_L4_State-
full

ENABLE FILE_SCANNING FileScanning
ENABLE EMAIL_SCANNING EmailScanning
ENABLE ANTIVIRUS Antivirus

44

4.3 – Capability Identification

ENABLE IDS IDS
ENABLE IPS IPS
ENABLE D_DOS_ATTACK_PRO-

TECTION
DDosAttackProtection

ENABLE LOGGING Logging
ENABLE BA-

SIC_PARENTAL_CON-
TROL

Parental_Control

ENABLE AD-
VANCED_PARENTAL_CON-
TROL

Parental_Control

REMOVE PUBLIC_IDENTITY IdentityProtection
REMOVE TRACKING_TECH-

NIQUES
BlockTracking

REMOVE ADVERTISEMENT BlockAdvertisement
REDUCE BANDWIDTH BandwidthManagement
CHECK_OVER SECURITY_STATUS Antivirus
COUNT DNS_TRAFFIC Packet_Filter_L4_State-

full
COUNT DNS_REQUEST Packet_Filter_L4_State-

full
COUNT DNS_RESPONSE Packet_Filter_L4_State-

full
COUNT CONNECTION Packet_Filter_L4_State-

full
PROTECT_CONFIDEN-
TIALITY

VO_IP_TRAFFIC ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

P_2_P_TRAFFIC ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

TRAFFIC_3_G ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

TRAFFIC_4_G ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITYS

INTERNET_TRAFFIC ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

INTRANET_TRAFFIC ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

DNS_TRAFFIC ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

DNS_REQUEST ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

DNS_RESPONSE ProtectConfidentiality

PROTECT_CONFIDEN-
TIALITY

ALL_TRAFFIC ProtectConfidentiality

45

Approach

PROTECT_INTEGRITY VO_IP_TRAFFIC ProtectIntegrity
PROTECT_INTEGRITY P_2_P_TRAFFIC ProtectIntegrity
PROTECT_INTEGRITY TRAFFIC_3_G ProtectIntegrity
PROTECT_INTEGRITY TRAFFIC_4_G ProtectIntegrity
PROTECT_INTEGRITY INTERNET_TRAFFIC ProtectIntegrity
PROTECT_INTEGRITY INTRANET_TRAFFIC ProtectIntegrity
PROTECT_INTEGRITY DNS_TRAFFIC ProtectIntegrity
PROTECT_INTEGRITY DNS_REQUEST ProtectIntegrity
PROTECT_INTEGRITY DNS_RESPONSE ProtectIntegrity
PROTECT_INTEGRITY ALL_TRAFFIC ProtectIntegrity

Table 4.2: The map between <Action:Object> and Capability

46

4.4 – Selection, Optimization and Placement

4.4 Selection, Optimization and Placement
The SAP module receives in input the list containing for each capability the number of its
instances that are necessary and also receives the catalogue of network functions avail-
able in the system (VNF catalog) together with the list of usable physical hosts. It also
receives a configuration file that contains the settings that will be used in the selection
and optimization phase. It contains, for example, the priorities with which the resources
must be optimized: is it necessary to choose the network functions in such a way as to
reduce the cost or the cpu used?

The aim of the module is to select the best subset of functions, among those available,
according to the chosen optimization policy (e.g. fewer functions used, reduce the con-
sumption of CPU and RAM used, reduce the Disk and bandwidth required, etc.) so as
to satisfy all the required capabilities. This is possible because each function, defined in
the catalog, supports one or more capabilities. So the purpose of the module is first to
identify which functions support the necessary capabilities and, among them, to choose
a subset. The selection of this subset is part of the optimization phase, the module tries
to choose the best subset according to some criteria.

As an instance: use fewer functions, minimize the cost, minimize the use of ram and
so on.

Actually the module does not simply select the functions but decides howmany instances,
of the function in question, are necessary.

As an instance: if two instances of C1 capability are to be supported and if the F1 func-
tion supporting C1 is present in the function catalogue, then F1 will need two instances.

After selecting the necessary instances of functions, the framework proceeds with their
actual allocation in the physical servers available. Actually these two phases (choice of
functions and their placement) are executed at the same time. This is because the choice of
functions is dictated by the availability of physical servers. For example, a given function
is not selected if there is no physical server available with adequate ram capacity.

In order to choose which network functions to allocate, first of all it is necessary that the
functions available implement at least one of the necessary capabilities. If there are more
functions in the catalogue that implement the same capabilities then the choice becomes
difficult and almost impossible to do ”by hand” or in ”static” mode, it should be noted
that since you have a catalog then you can also have hundreds of functions to choose from
and you also have to be able to place functions between the available servers.

To overcome this problem, it was decided to use the ILP tool and in particular the Gurobi
Solver. Initially the SMT solver z3, offered by Microsoft, had been used but then every-
thing was converted into ILP in order to use Gurobi.

All formulas will still be shown in the Chapter 6

Gurobi Solver, of all his functions, is able to solve mathematical model whose require-
ments are represented by linear relationships, how can this feature be used to decide which

47

Approach

functions to use and where to allocate them?
This is possible if to every instance of the network function we associate a binary

variable that assumes value 1 if it is used and value 0 in otherwise case. The same thing
can be done for hosts and for relations between both Capability and VNF and VNF and
hosts: it is used a new variable that is 1 if the function is allocated to that host and 0
otherwise.

As an instance, if we have a scenario composed by the following elements:

• C11 and C12: two instances of the capability C1;

• VNF1: VNF that support the capability C1;

• HostA: physical host available in the system;

We can consider the following binary variables:

• 𝑥𝑐
1,1 = {1 if C11 is used

0 otherwise

• 𝑥𝑐
1,2 = {1 if C12 is used

0 otherwise

• 𝑥𝑛
1,1 = {1 if VNF11 is used

0 otherwise

• 𝑥𝑛
1,2 = {1 if VNF12 is used

0 otherwise

• 𝑦1,1
1,1 = {1 if C11 is assigned to VNF11

0 otherwise

• 𝑦1,2
1,1 = {1 if C11 is assigned to VNF12

0 otherwise

• 𝑦1,1
1,2 = {1 if C12 is assigned to VNF12

0 otherwise

• 𝑦1,2
1,2 = {1 if C12 is assigned to VNF12

0 otherwise

• 𝑧1
1,1 = {1 if N11 is assigned to HostA

0 otherwise

• 𝑧1
1,2 = {1 if N12 is assigned to HostA

0 otherwise

48

4.4 – Selection, Optimization and Placement

Now that the variables have been created, Gurobi can proceed. The task of the tool is to
assign to each variable the value 0 or 1, respecting certain constraints imposed and trying
to optimize the choice according to the parameters defined by the user.

As an instance, starting from the following formula:

𝑦1,1
1,1 + 𝑦1,2

1,1 = 1; (4.1)

Gurobi tries to assign the values to the variables making sure that only one of the two
variables assumes value 1. This is because every instance of capability must be assigned
to a single instance of function.

The notation used and the complete list of defined symbols and constraints regarding
Gurobi will be discussed and analyzed in detail in the Chapter 6. Now we can introduce
the argument by showing the Configuration file:

1 <?xml version=”1.0” encoding=”utf-8” ?>
2 <!DOCTYPE properties SYSTEM ”http://java.sun.com/dtd/properties.dtd”>
3 <properties>
4 <!-- Paths where the xml files are located -->
5 <entry key=”pathXMLPolicyRepository”>xsd/PolicyRepository.xml</entry>
6 <entry key=”pathXMLVNFCatalog”>xsd/VNFCatalog.xml</entry>
7 <entry key=”pathXMLHosts”>xsd/hosts.xml</entry>
8
9 <!-- Configuration parameters concerning the use of a function -->
10 <entry key=”VNFmustBeSupportedByHost”>true</entry>
11
12 <!-- Configuration parameters concerning the optimization of resources

↪ -->
13 <entry key=”cpu”>10</entry>
14 <entry key=”ram”>20</entry>
15 <entry key=”disk”>5</entry>
16 <entry key=”bandwidth”>2</entry>
17 <entry key=”cost”>30</entry>
18 </properties>

The Configuration file contains a number of useful information that will then be used to
express constraints and guide optimization choices. The file is in XML format, so the
framework can access the variables as properties.

The entries in the file are:

• pathXMLPolicyRepository, string variable, represents the path on the disk where
the Policy Repository is present;

• pathXMLVNFCatalog, string variable, represents the path on the disk where the
VNFCatalog is present;

49

Approach

• pathXMLHosts, string variable, represents the path on the disk where theHosts are
present;

• VNFmustBeSupportedByHost, boolean variable, it is true if the host must support
the function in order to allocate it.
For example, if you need to allocate the N1 function and physical hosts H1 and H2
are available but only H1 supports N1 then, if the variable is true, only the latter can
allocate it otherwise both can allocate it;

• cpu, integer variable, expresses CPU priority during resource optimization;

• ram, integer variable, expresses ram priority during resource optimization;

• disk, integer variable, expresses disk priority during resource optimization;

• bandwidth, integer variable, expresses bandwidth priority during resource opti-
mization;

• cost, integer variable, expresses cost priority during resource optimization;

The priority given to each resource is very important during the optimization phase.
This is because the framework supports the multi-objectives: it seeks the best solution

obtainable by optimizing the resource with maximum priority but, in case there are more
solutions with this resource then the framework tries to optimize the other resources and
so on, everything hierarchically.

50

4.5 – Example

4.5 Example
As an instance, we can consider the scenario composed by the following element:

• Policy1:

1 <PolicyHPL PolicyID=”Policy1”>
2 <Author>Admin</Author>
3 <PolicyRuleHPL>
4 <Subject>
5 <SpecificUser>User 1</SpecificUser>
6 </Subject>
7 <Operation>
8 <Action>authorized_access</Action>
9 <Object>VoIP_traffic</Object>
10 </Operation>
11 </PolicyRuleHPL>
12 </PolicyHPL>

The Admin who is the Author of the Policy1 wrote a PolicyRule addressed to the
User1 with the aim to authorized him to use VoIP traffic.

• Policy2:

1 <PolicyHPL PolicyID=”Policy2”>
2 <Author>Admin</Author>
3 <PolicyRuleHPL>
4 <Subject>
5 <SpecificUser>User2</SpecificUser>
6 </Subject>
7 <Operation>
8 <Action>enable</Action>
9 <Object>email_scanning</Object>
10 </Operation>
11 </PolicyRuleHPL>
12 </PolicyHPL>

The Admin who is the Author of the Policy2 wrote a PolicyRule addressed to the
User2 with the aim to enable his email scanning.

51

Approach

• Policy3:

1 <PolicyHPL PolicyID=”Policy3”>
2 <Author>Admin2</Author>
3 <PolicyRuleHPL>
4 <Subject>
5 <SpecificUser>User2</SpecificUser>
6 </Subject>
7 <Template>Template1</Template>
8 </PolicyRuleHPL>
9 </PolicyHPL>

The Admin2 who is the Author of the Policy3 wrote a PolicyRule addressed to the
User2 with the aim to execute the Template1, which enables email scanning and
antivirus.

Therefore, exploiting the mapping described in the Tab. 4.2 and Tab. 4.1 we can say that:

• to satisfy the Policy1 we need the Capability FW_Application because it maps the
tupla AUTHORIZED_ACCESS : VO_IP_TRAFFIC;

• to satisfy the Policy2 we need the Capability EmailScanning, which supports the
couple ENABLE : EMAIL_SCANNING;

• to satisfy the Policy3 we need the Capabilities EmailScanning and Antivirus which
implement the related actions.

As it is possible to see in the Fig. 4.4.

Figure 4.4: Example: Three Policies with four Capabilities

52

4.5 – Example

To support these capabilities, the NSFs catalog consists of a series of functions, including
the following, which support the above defined capabilities:

• NSF1:

1 <NSF NSF_ID=”NSF1”>
2 <HardwareInfo>
3 <RAM value=”4” unit=”GB”/>
4 <Disk value=”4” unit=”GB”/>
5 <Cost>2</Cost>
6 </HardwareInfo>
7 <Functionality>
8 <CapabilitiesRef>
9 <CapabilityRef CapabilityID=”Antivirus”/>
10 <CapabilityRef CapabilityID=”EmailScanning”/>
11 </CapabilitiesRef>
12 </Functionality>
13 </NSF>

The NSF1 requires 4GB of RAM, 4 GB of Disk and coast 2. It is able to support the
capabilities Antivirus and EmailScanning;

• NSF2:

1 <NSF NSF_ID=”NSF2”>
2 <HardwareInfo>
3 <RAM value=”6” unit=”GB”/>
4 <Disk value=”2” unit=”GB”/>
5 <Cost>4</Cost>
6 </HardwareInfo>
7 <Functionality>
8 <CapabilitiesRef>
9 <CapabilityRef CapabilityID=”Antivirus”/>
10 <CapabilityRef CapabilityID=”EmailScanning”/>
11 </CapabilitiesRef>
12 </Functionality>
13 </NSF>

The NSF2 requires 6GB of RAM, 2 GB of Disk and coast 4. It is able to support the
capabilities Antivirus and EmailScanning;

53

Approach

• NSF3:

1 <NSF NSF_ID=”NSF3”>
2 <HardwareInfo>
3 <RAM value=”2” unit=”GB”/>
4 <Disk value=”4” unit=”GB”/>
5 <Cost>4</Cost>
6 </HardwareInfo>
7 <Functionality>
8 <CapabilitiesRef>
9 <CapabilityRef CapabilityID=”FW_Application”/>
10 </CapabilitiesRef>
11 </Functionality>
12 </NSF>

The NSF3 requires 2GB of RAM, 4 GB of Disk and coast 4. It is able to support the
capability FW_Application.

As it is possible to see better in the Fig. 4.5.

Figure 4.5: Example: Four Capabilities supported by three NSFs

It is also necessary that the functions, or rather their instances, are physically located
among the physical servers available.
The following hosts are available for this purpose:

• host1:

1 <Host HostID=”host1” cpu=”10” ram=”30000” disk=”300000” bandwidth
↪ =”100”>

2 <SupportedVNF>NSF1</SupportedVNF>
3 <SupportedVNF>NSF3</SupportedVNF>
4 </Host>

54

4.5 – Example

The host1 has at is disposal 10 Ghz of Cpu, 30 GB of Ram, 300 GB of Disk and 100
Mb/s of Bandwidth at most.

• host2:

1 <Host HostID=”host2” cpu=”50” ram=”60000” disk=”500000” bandwidth
↪ =”80”>

2 <SupportedVNF>NSF1</SupportedVNF>
3 <SupportedVNF>NSF2</SupportedVNF>
4 </Host>

The host2 has at is disposal 50 Ghz of Cpu, 60 GB of Ram, 500 GB of Disk and 80
Mb/s of Bandwidth at most.

• host3:

1 <Host HostID=”host3” cpu=”30” ram=”8000” disk=”50000” bandwidth=”
↪ 50”>

2 <SupportedVNF>NSF1</SupportedVNF>
3 <SupportedVNF>NSF2</SupportedVNF>
4 <SupportedVNF>NSF3</SupportedVNF>
5 </Host>

The host3 has at is disposal 30 Ghz of Cpu, 8 GB of Ram, 50 GB of Disk and 50
Mb/s of Bandwidth at most.

As it is possible to see in the Fig. 4.6.

Figure 4.6: Example: Two Host

Now, in this scenario, the question is: how many and which instances of functions are
needed to meet capabilities? Where do you physically allocate them?

In order to be able to answer these questions first of all it is necessary to note that there
are conditions that must be fulfilled: the Hard-Constraints, which will be explained in
detail in the Chapter 6.

The key points are as follows:

1. In order to satisfy the policy one or more capabilities are necessary and so their
instances;

2. All the capabilities required must be supported;

55

Approach

3. For each capability instance a function instance is required;

4. A single function instance can support multiple instances of capabilities if they refer
to different capabilities;

5. A single function instance is used if and only if there is an instance of capability
which use it;

6. Each host can support different function instances.

7. Each host is used if and only if there is an instance of function which use it.

Therefore:

• The Policy1 requires the Capability FW_Application;

• The Policy2 requires the Capability EmailScanning;

• The Policy3 also requires the Capability EmailScanning and the Capability An-
tivirus.

It is important to keep in consideration that the developed framework for this thesis, does
not include the part of ”Allocation and Distribution” which is carried out by the Verefoo
framework. For this reason, the list of the instances of the capabilities to be allocated is
given by the other module. This is because Verefoo is aware of the network infrastructure
and therefore can decide that a given capacity is needed at multiple points of the network
and therefore request an additional instance.

At this point, imagining that from Verifoo we received the following list of capability
instances:

• FW_Application: 1 instance;

• EmailScanning: 2 instances;

• Antivirus: 1 instances;

Therefore, as it is possible to see in the Fig. 4.7, the instances of the functions which could
be allocated are the following:

• NSF1_1 and NSF1_2: the function NSF1 could theoretically require two instances
because there are two instances of the same capability (EmailScanning) and each
requires a different instance of the function to be allocated. The function NSF1 sup-
ports also the capability Antiviruswhich can be allocated in one of the two instances;

• NSF2_1 and NSF2_2: the function NSF2 could theoretically require two instances
for the same reason as NSF1;

• NSF3_1: the functionNSF3 requires one instance because it supports only theFW_Ap-
plication of which only one instance is required.

56

4.5 – Example

Figure 4.7: Example: Capabilities instances with instances of NSFs which could allocate
them

It is important to note that functions NSF1 and NSF2 require theoretically two instances
each, because three capabilities are required to be allocated of which only two are in con-
flict (instances of the same capability) but we don’t know where they will come allocated
even if in practice a maximum of three are required.

Which of the available instances will be chosen? This decision depends on the soft
constraints that you want to impose. For example, do you want to optimize the consump-
tion of ram or cpu? Or the cost of the function?

The selection of functions also depends on another factor, namely the amount of physical
servers that are available. In fact for a function to be selected it is necessary that it is
allowable in a physical server, therefore there must be a host that can support it and that
has adequate capacities in terms of available resources.

Since the choice of functions is closely connected to the capabilities and hosts, it is
executed taking into account both so much that this phase takes the name of ”Selection
and Placement”.

Therefore, the scenario to be optimized is the one shown in the Fig. 4.8.

At this point we can proceed with the selection and placement of functions. If we plan
to optimize the cost of the functions, the solution is the one shown in the Fig. 4.9, where
between the functions NSF1 and NSF2 has been chosen the NSF1 which has a lower cost.

While if we wanted to optimize the consumption of ram the solution would be the one
reported in the Fig. 4.10, where the function NSF2 has been chosen instead of the NSF1
but at the expense of the other resources, in fact it has been allocated, besides the host1,
also the host2 because the first does not support the function NSF2.

57

Approach

Figure 4.8: Example: Capabilities instances with instances of NSFs which could allocate
them and hosts available

Figure 4.9: Example: Solution 1

58

4.5 – Example

Figure 4.10: Example: Solution 2

59

60

Chapter 5

Policy and Function Models

In this chapter we will describe and analyze the XML files that serve as a model for the
Policy Repository, for the NSF Catalog, for the Capability and for the Hosts. Some use
cases will also be shown.

5.1 Policy Repository
The Policy Repository allows network administrators to define, in a simple but complete
way, all the policies necessary to meet user needs.

As extensively described in chapter 3, to better model the policy repository we fol-
lowed the approach taken in the European project SECURED and therefore formalized
and modelled it using a high-level language that is easy to understand for end users: the
HPL. To this end, we started from the basic version described in the European project and
expanded, making it more general and filling it with information.

The fundamental point was to divide it by levels, there is no longer a single expression
as in the formula 3.1. Although the “heart” remained this, the formulation of the model
has changed completely in order to include additional information in a simple way.

The root element is the “PolicyRepository”.

1 <element name=”PolicyRepository”>
2 <complexType>
3 <sequence>
4 <element name=”KnowledgeBase”
5 type=”tns:KnowledgeBase” minOccurs=”0” maxOccurs=”1”/>
6 <element name=”PolicyRepositoryHPL”
7 type=”tns:PolicyRepositoryHPL” minOccurs=”0” maxOccurs=”1”/

↪ >
8 <element name=”PolicyRepositoryMPL”
9 type=”tns:PolicyRepositoryMPL” minOccurs=”0” maxOccurs=”1”/

↪ >
10 </sequence>
11 </complexType>
12 </element>

61

Policy and Function Models

It is composed by:

• the KnowledgeBase, which is a common database;

• the PolicyRepositoryHPL, which contains the real policies expressed by the High-
level Policy Language;

• the PolicyRepositoryMPL, which is an empty element and has been inserted to allow
compatibility for future expansions. In fact, the current framework does not manage
the MPL language but it lays the foundations for doing so.

Let’s go see all the elements.

5.1.1 KnowledgeBase

1 <complexType name=”KnowledgeBase”>
2 <sequence>
3 <element name=”BlackList”
4 type=”tns:BlackList” minOccurs=”0” maxOccurs=”1”/>
5 <element name=”TrafficTargets”
6 type=”tns:TrafficTargets” minOccurs=”0” maxOccurs=”1”/>
7 <element name=”Users”
8 type=”tns:Users” minOccurs=”1” maxOccurs=”1”/>
9 </sequence>
10 </complexType>

The KnowledgeBase is a kind of database which contains all the knowledge that is shared
and that can be exploited by all the policies.

It is composed by:

• the BlackList, which contains information about all the sites, domains, urls and ports
which must be blocked;

• the TrafficTargets, which contains information on all the IP addresses which consti-
tute a target to be blocked;

• the Users, are the users of the network, may be the authors of the policies or users
to whom they are addressed.

62

5.1 – Policy Repository

5.1.2 BlackList

1 <complexType name=”BlackList”>
2 <sequence>
3 <element name=”Association”
4 type=”tns:Association” minOccurs=”0” maxOccurs=”unbounded”/

↪ >
5 </sequence>
6 </complexType>

The BlackList consists of a series of Associations, each of which is characterized by a
unique identifier: the AssociationID.

The idea is to identify a group of sites, whose domain or url is known, having a feature
in common so that you can identify them with a keyword. By doing so, it is possible to
block or allow certain categories of addresses in a simple way.

For example, you can define the association “social networks” and associate it with
the urls of all social networks (such as Facebook, Twitter, Linkedin, etc.) that you want to
block.

In this way, the network administrator can easily help the parent who wants to deny the
child access to these sites at certain times. It is necessary that he compiles a policy for him
in which “does not authorize access to social networks in certain hours” and automatically
connects with all registered sites under “social network”.

In addition to domains and urls, you can also associate the identifier to the ports. In
this way the administrator can decide to block all those services that try to access the
specified port and this simplifies and makes it safer to control certain traffic flows [19].
As an instance, it is possible to block all http traffic by blocking port 80.

An important thing to consider is that this database of associations can be dynamic and
therefore can be thought of as a remote repository that will update automatically. In fact
there are some software, including “E2Guardian”, that offer these common repositories
to download and update. This is certainly an advantage as it is common to all inexorably
richer in information and also takes away from administrators the task of creating it.

This is the scheme of the Association:

1 <complexType name=”Association”>
2 <sequence>
3 <element name=”Domains”
4 type=”tns:Domains” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”URLS”
6 type=”tns:URLS” minOccurs=”1” maxOccurs=”1”/>
7 <element name=”Ports”
8 type=”tns:Ports” minOccurs=”1” maxOccurs=”1”/>
9 </sequence>
10 <attribute name=”AssociationID” type=”string” use=”required”/>
11 </complexType>

63

Policy and Function Models

It is characterized by the attribute AssociationID which uniquely identifies it and consist
of the following elements:

• Domains :

1 <complexType name=”Domains”>
2 <sequence>
3 <element name=”Domain”
4 type=”Domain” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

It is composed by a sequence of Domain:

1 <complexType name=”Domain”>
2 <attribute name=”DomainValue” type=”anyURI” use=”required”/>
3 </complexType>

Each Domain is characterized by the attribute DomainValue which identify the URI
of the Domain to block.

• URLS :

1 <complexType name=”URLS”>
2 <sequence>
3 <element name=”URL”
4 type=”URL” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

It is composed by a sequence of URL:

1 <complexType name=”URL”>
2 <attribute name=”URLValue” type=”anyURI” use=”required”/>
3 </complexType>

Each URL is characterized by the attribute URLValue which identify the URI of the
URL to block.

• Ports :

1 <complexType name=”Ports”>
2 <sequence>
3 <element name=”Port”
4 type=”Port” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

64

5.1 – Policy Repository

It is composed by a sequence of Port:

1 <simpleType name=”Port”>
2 <restriction base=”integer”>
3 <minInclusive value=”0”/>
4 <maxInclusive value=”65535”/>
5 </restriction>
6 </simpleType>

Each Port is represented by an integer value belonging to a predefined range [19].

5.1.3 TrafficTargets

1 <complexType name=”TrafficTargets”>
2 <sequence>
3 <element name=”TrafficTarget”
4 type=”tns:TrafficTarget” minOccurs=”1” maxOccurs=”unbounded

↪ ”/>
5 </sequence>
6 </complexType>

The TrafficTargets consists of a series of TrafficTarget, each of which is characterized by
a unique identifier: the TrafficTargetID.

The idea is similar to that related to the BlackList element: identify groups with a
unique name so that they can be used.

This is addressed to experienced users who want to express particular policies related
to IP addresses. In fact, each TrafficTarget consists of a Targets element formed in turn by
a series of Target where each can be an IPv4 address, IPv6 or their range.

In this way the network administrator can easily block all traffic directed, for example,
to a particular company or constrain it to the private network.

TrafficTarget

1 <complexType name=”TrafficTarget”>
2 <sequence>
3 <element name=”Targets”
4 type=”Targets” minOccurs=”1” maxOccurs=”1”/>
5 </sequence>
6 <attribute name=”TrafficTargetID” type=”string” use=”required”/>
7 </complexType>

It is characterized the attribute TrafficTargetID which uniquely identifies it and is com-
posed by the Targets element.

65

Policy and Function Models

Targets

1 <complexType name=”Targets”
2 minOccurs=”1” maxOccurs=”1”>
3 <sequence>
4 <element name=”Target”
5 type=”tns:Target” minOccurs=”0” maxOccurs=”unbounded”/>
6 </sequence>
7 </complexType>

The Targets element is composed by a sequence of Target.

Target

1 <complexType name=”Target”>
2 <choice>
3 <element name=”IPv4Address”
4 type=”tns:IPv4Address” minOccurs=”0” maxOccurs=”unbounded”/

↪ >
5 <element name=”IPv6Address”
6 type=”tns:IPv6Address” minOccurs=”0” maxOccurs=”unbounded”/

↪ >
7 <element name=”IPv4AddressPool”
8 type=”tns:IPv4AddressPool” minOccurs=”0” maxOccurs=”

↪ unbounded”/>
9 <element name=”IPv6AddressPool”
10 type=”tns:IPv6AddressPool” minOccurs=”0” maxOccurs=”

↪ unbounded”/>
11 </choice>
12 </complexType>

Each Target can be a choice between the following elements:

• IPv4Address, represents an IPv4 address. The type is obtained by regular expression;

• IPv6Address, represents an IPv6 address. The type is obtained by regular expression;

• IPv4AddressPool, represents a pool of IPv4 addresses. It consists of an initial IPv4
address and a final IPv4 address;

• IPv6Address, represents a pool of IPv6 addresses. It consists of an initial IPv6 ad-
dress and a final IPv6 address.

66

5.1 – Policy Repository

1 <simpleType name=”IPv4Address”>
2 <annotation>
3 <documentation>IPv4 address in dot-decimal notation. Equivalent to

↪ [0-255].[0-255].[0-255].[0-255]</documentation>
4 </annotation>
5 <restriction base=”string”>
6 <pattern value=”((1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.)

↪ {3}(1?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])” />
7 </restriction>
8 </simpleType>

1 <simpleType name=”IPv6Address”>
2 <annotation>
3 <documentation>IPv6 address in dot-hexadecimal notation.

↪ Equivalent to [0-ffff].[0-ffff].[0-ffff].[0-ffff]</
↪ documentation>

4 </annotation>
5 <restriction base=”string”>
6 <pattern value=”([A-Fa-f0-9]{1,4}:){7}[A-Fa-f0-9]{1,4}” />
7 </restriction>
8 </simpleType>

1 <complexType name=”IPv4AddressPool”>
2 <sequence>
3 <element name=”IPv4Starting”
4 type=”tns:IPv4Address” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”IPv4Ending”
6 type=”tns:IPv4Address” minOccurs=”1” maxOccurs=”1”/>
7 </sequence>
8 </complexType>

1 <complexType name=”IPv6AddressPool”>
2 <sequence>
3 <element name=”IPv6Starting”
4 type=”tns:IPv6Address” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”IPv6Ending”
6 type=”tns:IPv6Address” minOccurs=”1” maxOccurs=”1”/>
7 </sequence>
8 </complexType>

67

Policy and Function Models

5.1.4 Users

1 <complexType name=”Users”>
2 <sequence>
3 <element name=”Authors”
4 type=”tns:Authors” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”Subjects”
6 type=”tns:Subjects” minOccurs=”1” maxOccurs=”1”/>
7 </sequence>
8 </complexType>

The Users represent the “people” in the network, could be the Authors, who are network
administrators and in particular those who write policies, or the Subjects, who are the
target of policies.

It is important to keep in mind that each author can write policies addressed to different
subjects, as well as to different subjects may be directed policies by different authors.

Authors

1 <complexType name=”Authors”>
2 <sequence>
3 <element name=”Author”
4 minOccurs=”1” maxOccurs=”unbounded”>
5 <complexType>
6 <attribute name=”AuthorID” type=”string” use=”required”/>
7 </complexType>
8 </element>
9 </sequence>
10 </complexType>

It is composed by a sequence of Author.

The Author represents the person who writes a policy, he is characterized by the attribute
AuthorID which uniquely identifies him.

In the future it could be characterized by other elements such as the Degree and Rights.

68

5.1 – Policy Repository

Subjects

1 <complexType name=”Subjects”>
2 <sequence>
3 <element name=”SpecificUser”
4 type=”tns:SpecificUser” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”UserGroup”
6 type=”tns:UserGroup” minOccurs=”1” maxOccurs=”1”/>
7 </sequence>
8 </complexType>

The Subjects represent the people to whom policies are directed.

Are divided in:

• SpecificUser:

1 <complexType name=”SpecificUser”>
2 <sequence>
3 <element name=”User”
4 type=”User” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

The SpecificUsers are users (for example: a parent, a child, etc.). The element is
composed by a sequence of User.

1 <complexType name=”User”>
2 <attribute name=”UserID” type=”string” use=”required”/>
3 <attribute name=”Username” type=”string” use=”optional”/>
4 <attribute name=”AddressIPv4” type=”tns:IPv4Address” use=”

↪ optional”/>
5 <attribute name=”AddressIPv6” type=”tns:IPv6Address” use=”

↪ optional”/>
6 </complexType>

The User is characterized by the attribute UserID which uniquely identifies him and
optionally by a name (Username), an IPv4 or an IPv6 address.
In the future it could be characterized by other elements such as Degree, Rights,
Priority and so on.

69

Policy and Function Models

• UserGroup:

1 <complexType name=”UserGroup”>
2 <sequence>
3 <element name=”Group”
4 type=”Group” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

They are groups made up of users defined before. The element UserGroup is composed
by a sequence of Group.

1 <complexType name=”Group”>
2 <sequence>
3 <element name=”UserRef”
4 type=”UserRef” minOccurs=”1” maxOccurs=”unbounded”/>
5 </sequence>
6 <attribute name=”GroupID” type=”string” use=”required”/>
7 </complexType>

Each Group is characterized by the attribute GroupID which uniquely identifies it and
contains a reference (UserRef) for each user that is part of it.

1 <complexType name=”UserRef”>
2 <attribute name=”UserID” type=”string” use=”required”/>
3 </complexType>

The UserRef refers to the User by the attribute UserID.

5.1.5 PolicyRepositoryHPL

1 <complexType name=”PolicyRepositoryHPL”>
2 <sequence>
3 <element name=”Templates”
4 type=”tns:Templates” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”PoliciesHPL”
6 type=”tns:PoliciesHPL” minOccurs=”1” maxOccurs=”1”/>
7 </sequence>
8 </complexType>

The PolicyRepositoryHPL is the main element, contains the policies expressed in High-
level Policy Language.

It is composed by Templates and PoliciesHP.

70

5.1 – Policy Repository

5.1.6 Templates

1 <complexType name=”Templates”>
2 <sequence>
3 <element name=”Template”
4 type=”tns:Template” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

It consists of a series of Template.

Template

1 <complexType name=”Template”>
2 <sequence>
3 <element name=”Operation”
4 type=”tns:Operation” minOccurs=”1” maxOccurs=”unbounded”/>
5 </sequence>
6 <attribute name=”TemplateID” type=”string” use=”required”/>
7 </complexType>

The basic structure of politics, as seen in 3.1, in this framework takes the name of Oper-
ation, which will be described in detail shortly.

The idea of the Template is to merge multiple Operations together so as to simplify the
process of writing complicated policies, as each template is characterized by an identifier
and therefore you can refer to it immediately.

As an instance, consider the scenario in which the network administrator must write
a set of policies for the IDP and IPS prevention software to be activated simultaneously
and that an antivirus check is started to scan all files and emails for malware.

Therefore, the administrator must write for each user:

1. a policy to start the IDS;

2. a policy to start the IPS;

3. a policy to start the antivirus;

4. a policy to start file checking;

5. a policy to start email checking;

Doing so the administrator wastes a lot of time to write repetitive policies, time that
could take to focus on the goal.

For this need to be resolved, the Template concept has been introduced.
The administrator can enter all these operations in a single Template and then write

for each user a single policy in which he says: “enable the Template 1”.

71

Policy and Function Models

So far we’ve talked about Operations, we’ve seen that the template can merge more
together but what are they in practice?

5.1.7 Operation

1 <complexType name=”Operation”>
2 <sequence>
3 <element name=”Action”
4 type=”tns:Action” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”Object”
6 type=”tns:Object” minOccurs=”1” maxOccurs=”1”/>
7 <element name=”Field”
8 type=”tns:Field” minOccurs=”0” maxOccurs=”unbounded”/>
9 </sequence>
10 </complexType>

The structure is similar to that described in 3.1, it is the heart of the High-level Policy
Language.

Action Object [Field ... Field] (4.1)

Therefore, we have the Action, the Object and an optional list of Field.

For example, if we want to block the Internet traffic we can use the expression:

not_authorized_access Internet_traffic

Where:

• “not_authorized_access” is the Action

• “Internet_traffic” is the Object

If we want to block internet traffic towards social networks:

not_authorized_access Internet_traffic social_network

Where:

• “not_authorized_access” is the Action

• “Internet_traffic” is the Object

• “social_network” is the Field, in particular it is the ContentType

72

5.1 – Policy Repository

If we want to block internet traffic towards social networks in a certain time:

not_authorized_access Internet_traffic social_network
Monday from 2 p.m. to 7 p.m.

Where:

• “not_authorized_access” is the Action

• “Internet_traffic” is the Object

• “social_network” is the Field, in particular it is the ContentType

• “Monday from 2 p.m. to 7 p.m.” is the Field, in particular it is the Time

Nowwe analyze the previous elements in detail, but it is important to take in consideration
that not all the elements are compatible. There are some restrictions to consider as the
Objects cannot be associated with all the Actions and nor with all the Fields.

The full list of Object compatible Actions is shown in the Fig. 4.4 while the other in the
Fig. 4.4.

73

Policy and Function Models

D4.1 – Policy specification

Object Action is
/a

re
no

ta
ut

ho
ri

ze
d

to
ac

ce
ss

is
/a

re
au

th
or

iz
ed

to
ac

ce
ss

en
ab

le
(s

)

re
m

ov
e(

s)

re
du

ce
(s

)

ch
ec

k(
s)

ov
er

co
un

t(
s)

pr
ot

ec
t(

s)
co

nf
.

pr
ot

ec
t(

s)
in

te
gr

.

pr
ot

ec
t(

s)
co

nf
.in

te
gr

.

VoIP traffic + + + + +

P2P traffic + + + + +

3G/4G traffic + + + + +

Internet traffic + + + + +

intranet traffic + + + + +

DNS traffic + + + + + +

all traffic + + + + +

public identity +

Resource ’X’ + +

file scanning +

email scanning +

antivirus +

basic parental control +

advance parental control +

IDS/IPS +

DDos attack protection +

tracking techniques +

advertisement +

bandwidth +

security status +

connection +

logging +

Table 1: Combining actions and objects.

SECURED D4.1 page 6 of 38

Figure 5.1: The object compatible actions

74

5.1 – Policy Repository

D4.1 – Policy specification

Object Field tim
e

pe
ri

od

tr
af

fic
ta

rg
et

sp
ec

ifi
c

U
R

L

ty
pe

of
co

nt
en

t
pu

rp
os

e

ba
nd

w
id

th
va

lu
e

re
so

ur
ce

va
lu

e

VoIP traffic + +

P2P traffic + +

3G/4G traffic + +

Internet traffic + + + +

intranet traffic + + + +

DNS traffic + + + +

all traffic + + + +

public identity + + +

Resource +

file scanning +

email scanning +

antivirus +

basic parental control

advance parental control + +

IDS/IPS +

DDos attack protection +

tracking techniques +

advertisement +

bandwidth + + +

security status

connection + +

logging + + + +

Table 2: Combining objects and fields.

SECURED D4.1 page 7 of 38

Figure 5.2: The object compatible fields

75

Policy and Function Models

5.1.8 Action

1 <simpleType name=”Action”>
2 <restriction base=”string”>
3 <enumeration value=”authorized_access”/>
4 <enumeration value=”not_authorized_access”/>
5 <enumeration value=”enable”/>
6 <enumeration value=”remove”/>
7 <enumeration value=”reduce”/>
8 <enumeration value=”check_over”/>
9 <enumeration value=”count”/>
10 <enumeration value=”protect_confidentiality”/>
11 <enumeration value=”protect_integrity”/>
12 </restriction>
13 </simpleType>

It is the deed (e.g. enable, protect, authorized) that the administrator wants must be per-
formed on the object.

76

5.1 – Policy Repository

5.1.9 Object

1 <simpleType name=”Object”>
2 <restriction base=”string”>
3 <enumeration value=”Internet_traffic”/>
4 <enumeration value=”P2P_traffic”/>
5 <enumeration value=”DNS_traffic”/>
6 <enumeration value=”DNS_request”/>
7 <enumeration value=”DNS_response”/>
8 <enumeration value=”Intranet_traffic”/>
9 <enumeration value=”VoIP_traffic”/>
10 <enumeration value=”traffic_3G”/>
11 <enumeration value=”traffic_4G”/>
12 <enumeration value=”all_traffic”/>
13 <enumeration value=”public_identity”/>
14 <enumeration value=”resource”/>
15 <enumeration value=”basic_parental_control”/>
16 <enumeration value=”advanced_parental_control”/>
17 <enumeration value=”antivirus”/>
18 <enumeration value=”logging”/>
19 <enumeration value=”IDS”/>
20 <enumeration value=”IPS”/>
21 <enumeration value=”DDos_attack_protection”/>
22 <enumeration value=”email_scanning”/>
23 <enumeration value=”file_scanning”/>
24 <enumeration value=”tracking_techniques”/>
25 <enumeration value=”advertisement”/>
26 <enumeration value=”bandwidth”/>
27 <enumeration value=”connection”/>
28 <enumeration value=”security_status”/>
29 </restriction>
30 </simpleType>

It is the resource (e.g. Internet, antivirus, DNS, IDS) that is the target of the Action.

77

Policy and Function Models

5.1.10 Field

1 <complexType name=”Field”>
2 <choice>
3 <element name=”Time”
4 type=”tns:Time” minOccurs=”0” maxOccurs=”1”/>
5 <element name=”SpecificURL”
6 type=”tns:ListURL” minOccurs=”0” maxOccurs=”1”/>
7 <element name=”ContentType”
8 type=”tns:ContentType” minOccurs=”0” maxOccurs=”1”/>
9 <element name=”TrafficTarget”
10 type=”string” minOccurs=”0” maxOccurs=”1”/>
11 <element name=”Purpose”
12 type=”tns:Purpose” minOccurs=”0” maxOccurs=”1”/>
13 <element name=”Bandwidth”
14 type=”tns:Bandwidth” minOccurs=”0” maxOccurs=”1”/>
15 </choice>
16 </complexType>

It is an optional condition (e.g. time, traffic target, content type) that allow to better specify
the action on the object. It can be chosen from the following element.

Time

1 <complexType name=”Time”>
2 <sequence>
3 <element name=”TimeInterval”
4 type=”tns:TimeInterval” minOccurs=”1” maxOccurs=”unbounded”

↪ />
5 </sequence>
6 </complexType>

The Time element is used to express conditions linked to the passage of time. It consists
of a sequence of intervals.

TimeInterval:

1 <complexType name=”TimeInterval”>
2 <sequence>
3 <element name=”DayOfWeek”
4 type=”tns:Day” minOccurs=”0” maxOccurs=”1”/>
5 <element name=”TimePeriod”
6 type=”tns:TimePeriod” minOccurs=”0” maxOccurs=”1”/>
7 </sequence>
8 <attribute name=”timezone” type=”string” use=”required”/>
9 </complexType>

78

5.1 – Policy Repository

Each TimeInterval is characterized by an information about the reference timezone and
consists of a sequence of days (DayOfWeek) and time slots (TimePeriod).

DayOfWeek:

1 <simpleType name=”Day”>
2 <restriction base=”string”>
3 <enumeration value=”Monday”/>
4 <enumeration value=”Tuesday”/>
5 <enumeration value=”Wednesday”/>
6 <enumeration value=”Thursday”/>
7 <enumeration value=”Friday”/>
8 <enumeration value=”Saturday”/>
9 <enumeration value=”Sunday”/>
10 <enumeration value=”Weekend”/>
11 </restriction>
12 </simpleType>

The DayOfWeek is the day and it can be a day of the week or the keyword “Weekend”
identifying a particular set of days.

TimePeriod:

1 <complexType name=”TimePeriod”>
2 <sequence>
3 <element name=”StartTime” type=”tns:myTime”/>
4 <element name=”EndTime” type=”tns:myTime”/>
5 </sequence>
6 </complexType>

The TimePeriod element is used to represent a specific time frame, which is characterized
by a beginning and an end. Both are expressed with a particular type.

79

Policy and Function Models

myTime:

1 <complexType name=”myTime”>
2 <attribute name=”date” type=”tns:regExrDate” use=”optional”/>
3 <attribute name=”time” type=”tns:regExrTime” use=”required”/>
4 </complexType>
5
6 <simpleType name=”regExrDate”>
7 <restriction base=”string”>
8 <pattern value=”
9 (\d{4})
10 (\.|:|\\)
11 (([0]{0,1}[1-9])|(1{1}[0-2]{1}))
12 (\.|:|\\)
13 (([0-2]){0,1}[0-9]{1}|(3{1}[0-1]{1}))
14 ”/>
15 </restriction>
16 </simpleType>

It is the type of data used to specify the time interval, it uses a particular regular expres-
sion.

ContentType

1 <complexType name=”ContentType”>
2 <sequence>
3 <element name=”SpecificContent”
4 minOccurs=”1” maxOccurs=”unbounded”>
5 <complexType>
6 <attribute name=”associationID” type=”string” use=”required

↪ ”/>
7 </complexType>
8 </element>
9 </sequence>
10 </complexType>

The Field ContentType is used to specify one or more specific content. Each character-
ized by the associationID, which refers to the Association defined above. Indeed, in the
BlackList (5.1.2), belonging to the KnowledgeBase, all the Associations are declared so
that they can be used here.

As an example, the network administrator can block the Internet traffic directed to
“Social Networks” by simply specifying it with the Field ContentType as it has previously
created an Association that links the word “Social Network” to all urls or domains to
block.

80

5.1 – Policy Repository

SpecificURL

1 <complexType name=”ListURL”>
2 <sequence>
3 <element name=”URL”
4 minOccurs=”0” maxOccurs=”unbounded”>
5 <complexType>
6 <attribute name=”URLValue” type=”anyURI” use=”required”/>
7 </complexType>
8 </element>
9 </sequence>
10 </complexType>

The Field SpecificURL is used if we want to specify one or more URL addresses. For
example, when we want to block the Internet traffic to a particular address.

TrafficTarget
The Field TrafficTarget is a string, which refers to the traffic target described in (5.1.3).
In this way it is possible to operate on the previously defined IP addresses, simply acting
on this Field.

Bandwidth

1 <complexType name=”Bandwidth”>
2 <attribute name=”Value” type=”integer” use=”required”/>
3 <attribute name=”Unit” type=”tns:Bandwidth_Unit” use=”required”/>
4 </complexType>
5
6 <simpleType name=”Bandwidth_Unit”>
7 <restriction base=”string”>
8 <enumeration value=”Kbit/s”/>
9 <enumeration value=”Mbit/s”/>
10 <enumeration value=”Gbit/s”/>
11 </restriction>
12 </simpleType>

The Field Bandwidth is used when we want specify the bandwidth to reduce.

81

Policy and Function Models

Purpose

1 <complexType name=”Purpose”>
2 <sequence>
3 <element name=”PurposeDetection”
4 minOccurs=”1” maxOccurs=”unbounded”>
5 <complexType>
6 <attribute name=”detection” type=”tns:Detection” use=”

↪ required”/>
7 </complexType>
8 </element>
9 </sequence>
10 </complexType>
11
12 <simpleType name=”Detection”>
13 <restriction base=”string”>
14 <enumeration value=”adware”/>
15 <enumeration value=”backdoor”/>
16 <enumeration value=”botnet”/>
17 <enumeration value=”dialers”/>
18 <enumeration value=”exploit”/>
19 <enumeration value=”keylogger”/>
20 <enumeration value=”hijackers ”/>
21 <enumeration value=”malware”/>
22 <enumeration value=”ransomware”/>
23 <enumeration value=”rogueware”/>
24 <enumeration value=”rootkit”/>
25 <enumeration value=”spam”/>
26 <enumeration value=”spyware”/>
27 <enumeration value=”trojan”/>
28 <enumeration value=”virus”/>
29 <enumeration value=”worm”/>
30 </restriction>
31 </simpleType>

The Field Purpose is used if we want to specify one or more target to detect.
For example, we can run a scan with the purpose of detecting in particular “malware”.

5.1.11 PoliciesHP

1 <complexType name=”PoliciesHPL”>
2 <sequence>
3 <element name=”PolicyHPL”
4 type=”tns:PolicyHPL” minOccurs=”1” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

82

5.1 – Policy Repository

It consists of a series of PolicyHPL:

PolicyHPL

1 <complexType name=”PolicyHPL”>
2 <sequence>
3 <element name=”Author”
4 type=”string” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”PolicyRuleHPL”
6 type=”tns:PolicyRuleHPL” minOccurs=”1” maxOccurs=”unbounded

↪ ”/>
7 </sequence>
8 <attribute name=”PolicyID” type=”string” use=”required”/>
9 </complexType>

The PolicyHPL is the key concept of the repository. It is characterized by:

• The attribute PolicyID which uniquely identifies it in the whole repository;

• The element Author which represents the person who writes the policy. It is a string
that makes reference to a user which is an “Author” defined before in (5.1.4).

• The list of all the PolicyRuleHPL wrote by this Author.

5.1.12 PolicyRuleHPL

1 <complexType name=”PolicyRuleHPL”>
2 <sequence>
3 <element name=”Subject”
4 type=”tns:Subject” minOccurs=”1” maxOccurs=”1”/>
5 <choice>
6 <element name=”Operation”
7 type=”tns:Operation” minOccurs=”0” maxOccurs=”1”/>
8 <element name=”Template”
9 type=”string” minOccurs=”0” maxOccurs=”1”/>
10 </choice>
11 </sequence>
12 </complexType>

The PolicyRuleHPL represents one of the Rules wrote by an Author. It is addressed to a
Subject, who, as seen in 5.1.4, can be a specific user or a group of users.

The PolicyRuleHPL can be:

• an Operation, as described in 5.1.7, in this way the author can address to the Subject
a precise Action;

• a Template, as described in 5.1.6, in order to specify a set of Actions for this Subject;

83

Policy and Function Models

5.2 NSF Catalog
The NSF Catalog represents the catalog of the network functions which are available in
the system. This catalog was created with the aim of giving administrators a way to easily
list in a complete and detailed way all the network functions available in the system. The
catalogue has been designed to contain all the information related to the functions, so as
to have a full awareness when you then go to choose them.

It is presented in this way:

1 <element name=”NSFCatalog”>
2 <sequence>
3 <element name=”Capabilities”
4 type=”tns:Capabilities” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”NSFs”
6 type=”tns:NSFs” minOccurs=”0” maxOccurs=”1”/>
7 </sequence>
8 </element>

It is composed by the NSFs, which represents the real catalogue, it contains all the func-
tions NSF that make up the catalog of the system.

1 <complexType name=”NSFs”>
2 <sequence>
3 <element name=”NSF”
4 type=”tns:NSF” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

5.2.1 NSF

1 <complexType name=”NSF”>
2 <sequence>
3 <element name=”GeneralInfo”
4 type=”tns:GeneralInfo” minOccurs=”1” maxOccurs=”1”/>
5 <element name=”SoftwareInfo”
6 type=”tns:SoftwareInfo” minOccurs=”1” maxOccurs=”1”/>
7 <element name=”HardwareInfo”
8 type=”tns:HardwareInfo” minOccurs=”1” maxOccurs=”1”/>
9 <element name=”Functionality”
10 type=”tns:Functionality” minOccurs=”1” maxOccurs=”1”/>
11 </sequence>
12 <attribute name=”NSF_ID”
13 type=”string”
14 use=”required”/>
15 </complexType>

84

5.2 – NSF Catalog

Each function NSF that belongs to the catalog is characterized by the attribute NSF_ID
that uniquely identifies it. It contains a range of information of various kinds that allow
you to make an informed choice at the moment when you go to choose it.

This is because the choice of functions could be dictated by particular conditions. For
example, you want to choose functions so as to reduce the overall cost or minimizing the
amount of resources (e.g. ram, disk, cpu, etc.) needed.

The most important motivation that leads a function to be chosen is its ability to satisfy
a certain policy. Therefore, each function must contain within it a clear list of what it is
in case to support.

Therefore, it contains inside it:

• GeneralInfo: all the information about the vendor and the website;

• SoftwareInfo: all the information concerning the software part as author, developers,
release and version, repository, licence, Operating Systens supported and program-
ming languages used in the code;

• HardwareInfo: all the information concerning the resources hardware as cpu, ram
and disk but also information regarding the bandwidth and delay;

• Functionality: it is the key information, it contains the knowledge about the “capa-
bilities” that are supported by the NSF (Network Security Function). The capability
represents the intrinsic feature of the network function, that is what that function
knows and can do.

5.2.2 GeneralInfo

1 <complexType name=”GeneralInfo”>
2 <sequence>
3 <element name=”Vendor” type=”string” minOccurs=”0” maxOccurs=”1”/>
4 <element name=”WebSite” type=”anyURI” minOccurs=”0” maxOccurs=”1”/

↪ >
5 </sequence>
6 </complexType>

The GeneralInfo represents the information about the vendor and the website. It is com-
posed by the following elements:

• Vendor, it is a string representing the name of the seller;

• WebSite, it is the URI where it is possible to find additional information about the
NSF.

85

Policy and Function Models

5.2.3 SoftwareInfo

1 <complexType name=”SoftwareInfo”>
2 <sequence>
3 <element name=”Author”
4 type=”string” minOccurs=”0” maxOccurs=”1”/>
5 <element name=”Developers”
6 type=”Developers” minOccurs=”0” maxOccurs=”1”/>
7 <element name=”VersionInfo”
8 type=”VersionInfo”minOccurs=”0” maxOccurs=”1”/>
9 <element name=”Repository”
10 type=”anyURI” minOccurs=”0” maxOccurs=”1”/>
11 <element name=”ProgrammingLanguagesUsed”
12 type=”ProgrammingLanguagesUsed” minOccurs=”0” maxOccurs=”1”/>
13 <element name=”OperatingSystemsSupported”
14 type=”OSSupported” minOccurs=”0” maxOccurs=”1”/>
15 <element name=”Licence”
16 type=”tns:Licence” minOccurs=”0” maxOccurs=”1”/>
17 </sequence>
18 </complexType>

The SoftwareInfo element contains information about the software. It is composed by the
following elements:

• Author, he is the author and so the owner of the software;

• Developers, they are those who have helped to develop the software;

• VersionInfo, information about the version;

• Repository, that is the link to the repository of the code;

• ProgrammingLanguagesUsed, all the programming languages used in the develop-
ment;

• OperatingSystemsSupported, all the Operating Systems supported by the NSF;

• Licence, the licence of publication;

Author
The Author is represented by the string with his name.

86

5.2 – NSF Catalog

Developers

1 <complexType name=”Developers”>
2 <sequence>
3 <element name=”Developer”
4 type=”string” minOccurs=”1” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

They are those who have helped to develop the software, can be one or more.

VersionInfo

1 <complexType name=”VersionInfo”>
2 <attribute name=”version” type=”tns:regExrVersion” use=”required”/>
3 <attribute name=”release” type=”tns:regExrVersion” use=”required”/>
4 <attribute name=”releaseDate” type=”tns:regExrDate” use=”required”/>
5 </complexType>
6
7 <simpleType name=”regExrVersion”>
8 <restriction base=”string”>
9 <pattern value=”((\d+)(\.\d+)*)”/>
10 </restriction>
11 </simpleType>
12
13 <simpleType name=”regExrDate”>
14 <restriction base=”string”>
15 <pattern value=”(\d{4})(\.|:|\\)(([0]{0,1}[1-9])|(1{1}[0-2]{1}))

↪ (\.|:|\\)(([0-2]){0,1}[0-9]{1}|(3{1}[0-1]{1}))”/>
16 </restriction>
17 </simpleType>

The information about the version are contained in the following attributes:

• version, the number of the version;

• release, the number of the release;

• releaseDate, the date on which the release was issued;

87

Policy and Function Models

OperatingSystemsSupported

1 <complexType name=”OSSupported”>
2 <attribute name=”OS_Type” type=”tns:OS_Type”/>
3 <attribute name=”OS_Version” type=”string”/>
4 <attribute name=”OS_Architecture” type=”tns:Architecture”/>
5 </complexType>
6
7 <simpleType name=”OS_Type”>
8 <restriction base=”string”>
9 <enumeration value=”ARM”/>
10 <enumeration value=”Android”/>
11 <enumeration value=”BSD”/>
12 <enumeration value=”CentOS”/>
13 <enumeration value=”Debian”/>
14 <enumeration value=”Fedora”/>
15 <enumeration value=”Fink”/>
16 <enumeration value=”FreeBSD”/>
17 <enumeration value=”OpenBSD”/>
18 <enumeration value=”Gentoo”/>
19 <enumeration value=”IBM”/>
20 <enumeration value=”iOS”/>
21 <enumeration value=”Linux”/>
22 <enumeration value=”macOS”/>
23 <enumeration value=”Maemo”/>
24 <enumeration value=”Mandriva”/>
25 <enumeration value=”NetBSD”/>
26 <enumeration value=”Slackware”/>
27 <enumeration value=”SLES”/>
28 <enumeration value=”Solaris”/>
29 <enumeration value=”Ubuntu”/>
30 <enumeration value=”Unix”/>
31 <enumeration value=”Windows”/>
32 <enumeration value=”Other”/>
33 <enumeration value=”Unspecified”/>
34 </restriction>
35 </simpleType>
36
37 <simpleType name=”Architecture”>
38 <restriction base=”string”>
39 <enumeration value=”x86”/>
40 <enumeration value=”x64”/>
41 <enumeration value=”ARM”/>
42 <enumeration value=”Unspecified”/>
43 </restriction>
44 </simpleType>

The information about the operating systems supported are expressed by the following
attributes:

88

5.2 – NSF Catalog

• OS_Type, the enumerative rapresenting the ownership;

• OS_Version, the version of the OS;

• OS_Architecture, the architecture of the current version of the OS;

ProgrammingLanguagesUsed

1 <complexType name=”ProgrammingLanguagesUsed”>
2 <sequence>
3 <element name=”ProgrammingLanguage”
4 type=”tns:ProgrammingLanguage” minOccurs=”1” maxOccurs=”unbounded”

↪ />
5 </sequence>
6 </complexType>
7
8 <simpleType name=”ProgrammingLanguage”>
9 <restriction base=”string”>
10 <enumeration value=”Assembly”/>
11 <enumeration value=”C”/>
12 <enumeration value=”C++”/>
13 <enumeration value=”C#”/>
14 <enumeration value=”Delphi”/>
15 <enumeration value=”Java”/>
16 <enumeration value=”JavaScript”/>
17 <enumeration value=”Matlab”/>
18 <enumeration value=”Perl”/>
19 <enumeration value=”Python”/>
20 <enumeration value=”R”/>
21 <enumeration value=”Ruby”/>
22 <enumeration value=”SQL”/>
23 <enumeration value=”Visual Basic”/>
24 <enumeration value=”Other”/>
25 <enumeration value=”Unspecified”/>
26 </restriction>
27 </simpleType>

The information about the programming languages used are expressed by enumeratives.

89

Policy and Function Models

5.2.4 HardwareInfo

1 <complexType name=”HardwareInfo”>
2 <sequence>
3 <element name=”CPU”
4 type=”tns:CPU” minOccurs=”0” maxOccurs=”1”/>
5 <element name=”RAM”
6 type=”tns:RAM” minOccurs=”0” maxOccurs=”1”/>
7 <element name=”Disk”
8 type=”tns:Disk” minOccurs=”0” maxOccurs=”1”/>
9 <element name=”Bandwidth”
10 type=”tns:Bandwidth” minOccurs=”0” maxOccurs=”1”/>
11 <element name=”Cost”
12 type=”integer” minOccurs=”0” maxOccurs=”1”/>
13 <element name=”Delay”
14 type=”tns:Delay” minOccurs=”0” maxOccurs=”1”/>
15 </sequence>
16 </complexType>

The HardwareInfo element contains information about the hardware. It is composed by
the following elements:

• CPU, represents the CPU used by the NSF;

• RAM, represents the RAM required by the NSF;

• Disk, represents the Disk required by the NSF;

• Bandwidth, represents the max bandwidth used by the NSF;

• Cost, represents the Cost of the NSF;;

• Delay, represents the max delay of the NSF.

CPU

1 <complexType name=”CPU”>
2 <attribute name=”value” type=”decimal” use=”required”/>
3 <attribute name=”unit” type=”tns:CPU_Unit” use=”required”/>
4 </complexType>
5
6 <simpleType name=”CPU_Unit”>
7 <restriction base=”string”>
8 <enumeration value=”Ghz”/>
9 <enumeration value=”Mhz”/>
10 </restriction>
11 </simpleType>

90

5.2 – NSF Catalog

The CPU is represented by the following attributes:

• value, it is a decimal;

• unit, it is a CPU_Unit which can be Ghz or Mhz.

Cost
The Cost of the NSF is represented by the integer, it is the market price.

RAM

1 <complexType name=”RAM”>
2 <attribute name=”value” type=”integer” use=”required”/>
3 <attribute name=”unit” type=”tns:RAM_Unit” use=”required”/>
4 </complexType>
5
6 <simpleType name=”RAM_Unit”>
7 <restriction base=”string”>
8 <enumeration value=”KB”/>
9 <enumeration value=”MB”/>
10 <enumeration value=”GB”/>
11 </restriction>
12 </simpleType>

The RAM is represented by the following attributes:

• value, it is an integer;

• unit, it is the enumerative RAM_Unit which can be KB, MB or GB.

Disk

1 <complexType name=”Disk”>
2 <attribute name=”value” type=”integer” use=”required”/>
3 <attribute name=”unit” type=”tns:Disk_Unit” use=”required”/>
4 </complexType>
5
6 <simpleType name=”Disk_Unit”>
7 <restriction base=”string”>
8 <enumeration value=”KB”/>
9 <enumeration value=”MB”/>
10 <enumeration value=”GB”/>
11 <enumeration value=”TB”/>
12 </restriction>
13 </simpleType>

91

Policy and Function Models

The Disk is represented by the following attributes:

• value, it is an integer;

• unit, it is the enumerative Disk_Unit which can be KB, MB, GB or TB.

Bandwidth

1 <complexType name=”Bandwidth”>
2 <attribute name=”value” type=”integer” use=”required”/>
3 <attribute name=”unit” type=”tns:Bandwidth_Unit” use=”required”/>
4 </complexType>
5
6 <simpleType name=”Bandwidth_Unit”>
7 <restriction base=”string”>
8 <enumeration value=”Kb/s”/>
9 <enumeration value=”Mb/s”/>
10 <enumeration value=”Gb/s”/>
11 </restriction>
12 </simpleType>

The Bandwidth is represented by the following attributes:

• value, it is an integer;

• unit, it is the enumerative Bandwidth_Unit which can be Kb/s, Mb/s or Gb/s.

Delay

1 <complexType name=”Delay”>
2 <attribute name=”value” type=”integer” use=”required”/>
3 <attribute name=”unit” type=”tns:MaxDelay_Unit” use=”required”/>
4 </complexType>
5
6 <simpleType name=”MaxDelay_Unit”>
7 <restriction base=”string”>
8 <enumeration value=”ms”/>
9 </restriction>
10 </simpleType>

The Delay is represented by the following attributes:

• value, it is an integer;

• unit, it is the enumerative Delay_Unit which can be ms.

92

5.2 – NSF Catalog

5.2.5 Functionality

1 <complexType name=”Functionality”>
2 <sequence>
3 <element name=”CapabilitiesRef”
4 type=”CapabilitiesRef” minOccurs=”1” maxOccurs=”1”/>
5 </sequence>
6 </complexType>

TheFunctionality element contains information aboutCapabilities supported by the NSF.
It is composed by the element CapabilitiesRef.

CapabilitiesRef

1 <complexType name=”CapabilitiesRef”>
2 <sequence>
3 <element name=”CapabilityRef” minOccurs=”1” maxOccurs=”unbounded”>
4 <complexType>
5 <attribute name=”CapabilityID” type=”tns:Capability” use=”

↪ required”/>
6 </complexType>
7 </element>
8 </sequence>
9 </complexType>

TheCapabilitiesRef is composed by a sequence ofCapabilityRef, each ofwhich is charac-
terized by the attributeCapabilityIDwhich is an enumerative that represents the identifier
of the capability.

93

Policy and Function Models

Capability
The enumerative Capability may currently be one of the following:

1 <simpleType name=”Capability”>
2 <restriction base=”string”>
3 <enumeration value=”Packet_Filter_L4_Stateless”/>
4 <enumeration value=”Packet_Filter_L4_Statefull”/>
5 <enumeration value=”FW_Application”/>
6 <enumeration value=”FW_Web_Application”/>
7 <enumeration value=”Time_Filter”/>
8 <enumeration value=”Proxy_Forward”/>
9 <enumeration value=”Proxy_Reverse”/>
10 <enumeration value=”ProtectConfidentiality”/>
11 <enumeration value=”ProtectIntegrity”/>
12 <enumeration value=”Parental_Control”/>
13 <enumeration value=”Logging”/>
14 <enumeration value=”IDS”/>
15 <enumeration value=”IPS”/>
16 <enumeration value=”Antivirus”/>
17 <enumeration value=”FileScanning”/>
18 <enumeration value=”EmailScanning”/>
19 <enumeration value=”WebScanning”/>
20 <enumeration value=”DDosAttackProtection”/>
21 <enumeration value=”BlockAdvertisement”/>
22 <enumeration value=”BlockTracking”/>
23 <enumeration value=”IdentityProtection”/>
24 <enumeration value=”BandwidthManagement”/>
25 </restriction>
26 </simpleType>

Their origin is explained in the next section.

94

5.3 – Capabilities

5.3 Capabilities
The Capabilities collects all the Capability which constitutes the key concept underlying
the selection of functions;

1 <complexType name=”Capabilities”>
2 <sequence>
3 <element name=”Capability”
4 type=”tns:Capability” minOccurs=”1” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

The Capabilities element represents a collection of Capability.

1 <complexType name=”Capability”>
2 <sequence>
3 <element name=”Features”
4 type=”tns:Features” minOccurs=”1” maxOccurs=”1”/>
5 </sequence>
6 <attribute name=”CapabilityID” type=”string” use=”required”/>
7 </complexType>

EachCapability is characterized by an identifier (CapabilityID) that uniquely identifies. It
represents the implicit characteristic of a class of functions, as “Packet_Filter_L4_State-
less”.

It consists of a series of features as described in (4.2.2).

1 <complexType name=”Features”>
2 <sequence>
3 <element name=”Feature”
4 type=”string” minOccurs=”0” maxOccurs=”unbounded”/>
5 </sequence>
6 </complexType>

Each Feature is a string which represents a detail of the capability. As an instance, the
Capability “Packet_Filter_L4_Stateless” contains the “Packet_Filter” as Feature.

95

Policy and Function Models

The full list of currently supported capabilities is described below:

1 <Capabilities>
2 <Capability CapabilityID=‘‘Packet_Filter_L4_Stateless’’>
3 <Features>
4 <Feature>Packet_Filter</Feature>
5 <Feature>L4</Feature>
6 <Feature>Stateless</Feature>
7 </Features>
8 </Capability>
9
10 <Capability CapabilityID=‘‘Packet_Filter_L4_Statefull’’>
11 <Features>
12 <Feature>Packet_Filter</Feature>
13 <Feature>L4</Feature>
14 <Feature>Statefull</Feature>
15 </Features>
16 </Capability>
17
18 <Capability CapabilityID=‘‘FW_Application’’>
19 <Features>
20 <Feature>Firewall</Feature>
21 <Feature>L7</Feature>
22 </Features>
23 </Capability>
24
25 <Capability CapabilityID=‘‘FW_Web_Application’’>
26 <Features>
27 <Feature>Firewall</Feature>
28 <Feature>HTTP_traffic</Feature>
29 </Features>
30 </Capability>
31
32 <Capability CapabilityID=‘‘Time_Filter’’>
33 <Features>
34 <Feature>Time</Feature>
35 </Features>
36 </Capability>
37
38 <Capability CapabilityID=‘‘Proxy_Forward’’>
39 <Features>
40 <Feature>Proxy</Feature>
41 <Feature>Forward</Feature>
42 </Features>
43 </Capability>
44
45
46
47
48

96

5.3 – Capabilities

49
50 <Capability CapabilityID=‘‘Proxy_Reverse’’>
51 <Features>
52 <Feature>Proxy</Feature>
53 <Feature>Reverse</Feature>
54 </Features>
55 </Capability>
56
57 <Capability CapabilityID=‘‘ProtectConfidentiality’’>
58 <Features>
59 <Feature>Protect</Feature>
60 <Feature>Confidentiality</Feature>
61 </Features>
62 </Capability>
63
64 <Capability CapabilityID=‘‘ProtectIntegrity’’>
65 <Features>
66 <Feature>Protect</Feature>
67 <Feature>Integrity</Feature>
68 </Features>
69 </Capability>
70
71 <Capability CapabilityID=‘‘Parental_Control’’>
72 <Features>
73 <Feature>Parental_Control</Feature>
74 </Features>
75 </Capability>
76
77 <Capability CapabilityID=‘‘Logging’’>
78 <Features>
79 <Feature>Logging</Feature>
80 </Features>
81 </Capability>
82
83 <Capability CapabilityID=‘‘IDS’’>
84 <Features>
85 <Feature>IDS</Feature>
86 </Features>
87 </Capability>
88
89 <Capability CapabilityID=‘‘IPS’’>
90 <Features>
91 <Feature>IPS</Feature>
92 </Features>
93 </Capability>
94
95
96
97
98

97

Policy and Function Models

99
100 <Capability CapabilityID=‘‘Antivirus’’>
101 <Features>
102 <Feature>Antivirus</Feature>
103 </Features>
104 </Capability>
105
106 <Capability CapabilityID=‘‘FileScanning’’>
107 <Features>
108 <Feature>File</Feature>
109 <Feature>Scanning</Feature>
110 </Features>
111 </Capability>
112
113 <Capability CapabilityID=‘‘EmailScanning’’>
114 <Features>
115 <Feature>Email</Feature>
116 <Feature>Scanning</Feature>
117 </Features>
118 </Capability>
119
120 <Capability CapabilityID=‘‘WebScanning’’>
121 <Features>
122 <Feature>Web</Feature>
123 <Feature>Scanning</Feature>
124 </Features>
125 </Capability>
126
127 <Capability CapabilityID=‘‘DDosAttackProtection’’>
128 <Features>
129 <Feature>Attack</Feature>
130 <Feature>DDos</Feature>
131 <Feature>Protection</Feature>
132 </Features>
133 </Capability>
134
135 <Capability CapabilityID=‘‘BlockAdvertisement’’>
136 <Features>
137 <Feature>Block</Feature>
138 <Feature>Advertisement</Feature>
139 </Features>
140 </Capability>
141
142 <Capability CapabilityID=‘‘BlockTracking’’>
143 <Features>
144 <Feature>Block</Feature>
145 <Feature>Tracking</Feature>
146 </Features>
147 </Capability>
148

98

5.3 – Capabilities

149
150 <Capability CapabilityID=‘‘IdentityProtection’’>
151 <Features>
152 <Feature>Identity</Feature>
153 <Feature>Protection</Feature>
154 </Features>
155 </Capability>
156
157 <Capability CapabilityID=‘‘BandwidthManagement’’>
158 <Features>
159 <Feature>Bandwidth</Feature>
160 <Feature>Management</Feature>
161 </Features>
162 </Capability>
163 </Capabilities>

99

Policy and Function Models

5.4 Hosts
In this session will be shown the Hosts element, it represents the physical server where it
is possible to allocate the instances of functions.

1 <element name=”Hosts”>
2 <complexType >
3 <sequence>
4 <element ref=”tns:Host”
5 minOccurs=”0” maxOccurs=”unbounded”/>
6 </sequence>
7 </complexType>
8 </element>

It is composed by a sequence of Host.

Host

1 <element name=”Host”>
2 <complexType>
3 <sequence>
4 <element name=”SupportedVNF”
5 type=”string” minOccurs=”0” maxOccurs=”unbounded”/>
6 </sequence>
7 <attribute name=”HostID” type=”string” use=”required”/>
8 <attribute name=”cpu” type=”integer” use=”required”/>
9 <attribute name=”ram” type=”integer” use=”required”/>
10 <attribute name=”disk” type=”integer” use=”required”/>
11 <attribute name=”bandwidth” type=”integer” use=”required”/>
12 </complexType>
13 </element>

Each Host is characterized by the following attributes:

• HostID, it is the identifier that uniquely identifies it;

• cpu, is the maximum value of CPU available and usable by the functions;

• ram, is the maximum value of RAM available and usable by the functions;

• disk, is the maximum value of Disk available and usable by the functions;

• bandwidth, is the maximum value of Bandwidth available and usable by the func-
tions;

Additionally, zero or more SupportedVNF elements may be present. They are string ele-
ments which represent which network functions (e.g. Squid, Iptable, etc.) are supported
by the host.

100

Chapter 6

Selection and Optimization
phase

This chapter will describe the constants and formulas used by Gurobi to perform the
selection, allocation and optimization step within the framework, performed by the SAP
module. Will also be presented those that were used by z3 so as to make a comparison.

6.1 Constraints and Objectives
As discussed in previous chapters, the SAP (Selection And Placement) module carry out
the following tasks:

1. Select how many and which instances of network functions are needed to satisfy the
capability instances received as input;

2. Allocate selected instances among the physical hosts available;

3. Optimize these choices based on the information contained in the configuration file.

These tasks are performed using the Gurobi tool. Gurobi allows to automate these tasks
associating binary variables, with value 1 (in case of choice) and 0 otherwise, to the
various elements (NSF, capability and Host) and relationships between them. The choice
of values, assigned to variables, depends on some constraints expressed by mathematical
formulas that Gurobi tries to solve.

In order to optimize these values one or more objectives are expressed. Also these
objectives (for example minimizing the cost of functions) are expressed by mathematical
models that Gurobi tries to solve.

6.1.1 Constraints
The constraints to be met during the assignment of the variables are as follows:

1. Each instance of the NSF is used and must be allocated if and only if there at least
one instance of Capability that use it;

101

Selection and Optimization phase

2. Each instance of the capabilities must be assigned only once. Therefore, each of it
can be allocated in one and one instance of NSF;

3. All the instances of the same capability must be allocated in different instances of
function. Therefore, in each instance of a function is possible to allocate only zero
or one instance of the same capability. It should be noted that a function instance
can allocate multiple instances of capability as long as the capabilities are different.
As an instance, if we have the scenario composed by the following elements:

• C1_1, C1_2, C2_1, which are two instances of the capability C1 and one in-
stance of the capability C2;

• NSF1_1, which are one instance of the NSF1.

Only one between the two capabilities C1_1 and C1_2 may be associated with
NSF1_1 but C2_1 can be associated without problems.

4. Each function instance is allocated in a host only if used;

5. Each instance of function, if used, must be allocated in only an host;

6. Each host is used if and only if there is at least one function which is allocated in it;

7. The sum of all the resources required by the functions to be allocated must be less
or equal than the maximum supported by the host;

8. If the variable “VNFmustBeSupportedByHost” in the configuration file is true, the
instance of an NSF can be allocated in the host if and only if the host supports it;

All these constraints must be respected in the final solution. In case at least one is not
complied, then the whole solution is unsatisfiable.

6.1.2 Multiple-Objectives
The objectives that Gurobi tries to achieve are the following:

• Minimize the cost of the functions used;

• Minimize the cpu of the functions used;

• Minimize the ram of the functions used;

• Minimize the disk of the functions used;

• Minimize the bandwidth of the functions used;

• Minimize the number of the functions used;

• Minimize the number of the hosts used;

It is important to note that each of these objectives can be associated with a priority.
Gurobi manages the multi-objectives and then will try to solve all the objectives hierar-
chically starting from the one with the highest priority

102

6.2 – Z3 formulation

6.2 Z3 formulation
As mentioned above, initially the selection and optimization part was carried out through
the use of the z3 tool. In this section the formulas and notations used by z3 will be shown.

6.2.1 Z3 Symbols
Table 6.1 defines all symbols constituting the elements and relationships used by z3.

Symbols Notations

C Set of capabilities

𝑐𝑖,𝑗 The 𝑗-th instance of the 𝑖-th capability ∈ 𝐶

𝑥𝑐
𝑖,𝑗 Boolean variable, true if the instance 𝑐𝑖,𝑗 is requested

N Set of NSFs

𝑛𝑙,𝑚 The 𝑚-th instance of the 𝑙-th NSF ∈ 𝑁
𝑥𝑛

𝑙,𝑚 Boolean variable, true if the instance 𝑛𝑙,𝑚 is used

𝑦𝑙,𝑚
𝑖,𝑗 Boolean variable, true if the 𝑐𝑖,𝑗 is supported and assigned to 𝑛𝑙,𝑚

𝑟𝑘 String variable, represents the resource; 𝑟𝑘 =

⎧{{
⎨{{⎩

𝑐𝑝𝑢 if 𝑘 = 0
𝑑𝑖𝑠𝑘 if 𝑘 = 1
𝑟𝑎𝑚 if 𝑘 = 2
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ if 𝑘 = 3

𝑤𝑘,𝑙
Integer variable, it is the weight associated with the resource 𝑟𝑘 of
the function 𝑛𝑙

H Set of hosts

𝑤𝑛
𝑙

Integer variable, it is the weight (cost) associated with the function
𝑛𝑙

ℎ𝑠 The 𝑠-th host ∈ 𝐻

𝑥ℎ
𝑠 Boolean variable, true if the ℎ𝑠 host is used

𝑁ℎ
𝑠 Set of NSFs supported by the ℎ𝑠

𝑧𝑠
𝑙,𝑚 Boolean variable, true if the instance 𝑛𝑙,𝑚 is allocated in ℎ𝑠

𝑊 𝑠
𝑘

Integer variable, it is the weight associated with the resource 𝑟𝑘 of
the host ℎ𝑠

𝑊 𝑙
𝑎,𝑏 Integer variable, it is the weight associated with the link 𝑙𝑎,𝑏

bool_to_int(𝛼) Function, converts the 𝛼 value from boolean to integer

Table 6.1: The symbols used by Z3

103

Selection and Optimization phase

6.2.2 Z3 Hard-Constraints
Table 6.2 defines all the hard-constraints defined in 6.1.1 and implemented by z3.

Hard-Constraints Meaning

⋁
(𝑖,𝑗)|𝑐𝑖,𝑗∈𝐶

𝑦𝑙,𝑚
𝑖,𝑗 ⟺ 𝑥𝑛

𝑙,𝑚 ∀(𝑙,𝑚) | 𝑛𝑙,𝑚 ∈ 𝑁

Each instance of the
NSF is used if and
only if there is at
least one Capability
that use it

∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑏𝑜𝑜𝑙_𝑡𝑜_𝑖𝑛𝑡(𝑦𝑙,𝑚
𝑖,𝑗) = 1 ∀(𝑖, 𝑗) | 𝑐𝑖,𝑗 ∈ 𝐶

Each instance of the
sameCapabilitymust
be used and allocated
in a single instance of
the available NSFs

∑
𝑗|𝑐𝑖,𝑗∈𝑐𝑖

𝑏𝑜𝑜𝑙_𝑡𝑜_𝑖𝑛𝑡(𝑦𝑙,𝑚
𝑖,𝑗) ≤ 1 ∀(𝑙,𝑚) | 𝑛𝑙,𝑚 ∈ 𝑁,

∀𝑖 | 𝑐𝑖 ∈ 𝐶

All the instances of
the same capability
must be allocated in
different instances of
the same function.
This means that in
each instance of a
function is possible
to allocate only zero
or one instance of the
same capability

⋁
𝑠|ℎ𝑠∈𝐻

𝑧𝑠
𝑙,𝑚 ⟺ 𝑥𝑛

𝑙,𝑚 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈ 𝑁
Each function in-
stance is allocated in
a host only if used

∑
𝑠|ℎ𝑠∈𝐻

𝑏𝑜𝑜𝑙_𝑡𝑜_𝑖𝑛𝑡(𝑧𝑠
𝑙,𝑚) ≤ 1 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈ 𝑁

If used, each instance
of the function must
be allocated in only
an host

⋁
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑧𝑠
𝑙,𝑚 ⟺ 𝑥ℎ

𝑠 ∀𝑠|ℎ𝑠 ∈ 𝐻

Each host is used if
and only if there is
at least one function
which is allocated in
it

104

6.2 – Z3 formulation

∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑤𝑘,𝑙 ∗ 𝑏𝑜𝑜𝑙_𝑡𝑜_𝑖𝑛𝑡(𝑧𝑠
𝑙,𝑚) ≤

𝑊 𝑠
𝑘

∀𝑠 | ℎ𝑠 ∈ 𝐻,
∀𝑘 ∈ 𝑁0→3

The sum of all the
resources required
by the function to
be allocated must be
less or equal than the
maximum supported
by the physical server

𝑧𝑠
𝑙,𝑚 ⟺ 𝑛𝑙 ∈ 𝑁ℎ

𝑠 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈ 𝑁

If set, the instance of
an NSF can be allo-
cated in the host if
and only if the host
supports it

Table 6.2: The Hard-Constraints of Z3

6.2.3 Z3 Soft-Constraints
Table 6.3 defines all the soft-constraints defined in 6.1.2 and implemented by z3. These
constraints seek to optimize choices.

Soft-Constraints Meaning

Soft(!𝑥𝑛
𝑗 ,𝑤𝑛

𝑗 , “cost”)
The soft constraint to minimize the number of NSFs used. Each
𝑛𝑗 has a cost 𝑤𝑛

𝑗

Soft(!𝑥𝑛
𝑗 ,𝑤𝑘,𝑗, “resource”)

The soft constraint to minimize the use of 𝑛𝑗 based on 𝑤𝑘,𝑗
of the 𝑟𝑘 chosen. If more resources are chosen, the respective
weights are added up

Table 6.3: The Soft-Constraints of Z3

105

Selection and Optimization phase

6.3 Gurobi formulation
In this section will be shown the formulas and notations used by Gurobi in the SAP mod-
ule. These formulations allow to do the selection and optimization phase.

6.3.1 Gurobi Symbols
Table 6.4 defines all symbols constituting the elements and relationships used by Gurobi.

Symbols Notations

C Set of capabilities
𝑐𝑖,𝑗 The 𝑗-th instance of the 𝑖-th capability ∈ 𝐶
𝑥𝑐

𝑖,𝑗 Binary variable, 1 if the instance 𝑐𝑖,𝑗 is requested
N Set of NSFs
𝑛𝑙,𝑚 The 𝑚-th instance of the 𝑙-th NSF ∈ 𝑁
𝑥𝑛

𝑙,𝑚 Binary variable, 1 if the instance 𝑛𝑙,𝑚 is used
𝑦𝑙,𝑚

𝑖,𝑗 Binary variable, 1 if the 𝑐𝑖,𝑗 is supported and assigned to 𝑛𝑙,𝑚

𝑟𝑘 String variable, represents the resource; 𝑟𝑘 =

⎧
{{{
⎨
{{{
⎩

𝑐𝑜𝑠𝑡 if 𝑘 = 0
𝑐𝑝𝑢 if 𝑘 = 1
𝑟𝑎𝑚 if 𝑘 = 2
𝑑𝑖𝑠𝑘 if 𝑘 = 3
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ if 𝑘 = 4

𝑤𝑘,𝑙
Integer variable, it is the weight associated with the resource 𝑟𝑘 of
the function 𝑛𝑙

H Set of hosts
𝑤𝑛

𝑙 Integer variable, it is the weight associated with the function 𝑛𝑙

ℎ𝑠 The 𝑠-th host ∈ 𝐻
𝑥ℎ

𝑠 Binary variable, 1 if the ℎ𝑠 host is used
𝑁ℎ

𝑠 Set of NSFs supported by the ℎ𝑠

𝑧𝑠
𝑙,𝑚 Binary variable, 1 if the instance 𝑛𝑙,𝑚 is allocated in ℎ𝑠

L Set of links
𝑙𝑎,𝑏 Binary variable, 1 if the host ℎ𝑎 and ℎ𝑏 are linked

𝑊 𝑠
𝑘

Integer variable, it is the weight associated with the resource 𝑟𝑘 of
the host ℎ𝑠

𝑊 𝑙
𝑎,𝑏 Integer variable, it is the weight associated with the link 𝑙𝑎,𝑏

𝑝𝑜 Integer variable, it is the priority assigned to the 𝑜-th Objective

Table 6.4: The symbols used by Gurobi

106

6.3 – Gurobi formulation

6.3.2 Gurobi Constraints
Table 6.5 defines all the constraints defined in 6.1.1 and implemented by Gurobi.

Number Hard-Constraints Meaning

1.a
𝐾1

∑
(𝑖,𝑗)|𝑐𝑖,𝑗∈𝐶

𝑦𝑙,𝑚
𝑖,𝑗 ≤ 𝐾1 ∗ 𝑥𝑛

𝑙,𝑚 ∀(𝑙,𝑚) | 𝑛𝑙,𝑚 ∈
𝑁

Each instance of the
NSF is used if and only
if there is at least one
Capability that use it

1.b 𝑥𝑛
𝑙,𝑚 ≤ ∑

(𝑖,𝑗)|𝑐𝑖,𝑗∈𝐶
𝑦𝑙,𝑚

𝑖,𝑗 ∀(𝑙,𝑚) | 𝑛𝑙,𝑚 ∈
𝑁

The constraint 1.b is
required because if the
sum of the left side is
null then the right side
must also be null in
the 1.a. Without this
constraint the right
side could have a value
greater than 0

2 ∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑦𝑙,𝑚
𝑖,𝑗 = 1 ∀(𝑖, 𝑗) | 𝑐𝑖,𝑗 ∈ 𝐶

Each instance of the
same Capability must
be used and allocated in
a single instance of the
available NSFs

3 ∑
𝑗|𝑐𝑖,𝑗∈𝑐𝑖

𝑦𝑙,𝑚
𝑖,𝑗 ≤ 1 ∀(𝑙,𝑚) | 𝑛𝑙,𝑚 ∈ 𝑁,

∀𝑖 | 𝑐𝑖 ∈ 𝐶

All the instances of the
same capability must
be allocated in different
instances of the same
function. This means
that in each instance of
a function is possible
to allocate only zero or
one instance of the same
capability

4.a
𝐾2

∑
𝑠|ℎ𝑠∈𝐻

𝑧𝑠
𝑙,𝑚 ≤ 𝐾2 ∗ 𝑥𝑛

𝑙,𝑚 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈ 𝑁
Each function instance
is allocated in a host
only if used

107

Selection and Optimization phase

4.b 𝑥𝑛
𝑙,𝑚 ≤

𝐾2

∑
𝑠|ℎ𝑠∈𝐻

𝑧𝑠
𝑙,𝑚 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈

𝑁

The constraint 4.b is
required because if the
sum of the left side is
null then the right side
must also be null in
the 4.a. Without this
constraint the right
side could have a value
greater than 0

5 ∑
𝑠|ℎ𝑠∈𝐻

𝑧𝑠
𝑙,𝑚 ≤ 1 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈

𝑁

If used, each instance of
the function must be al-
located in only an host

6.a
𝐾3

∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑧𝑠
𝑙,𝑚 ≤ 𝐾3 ∗ 𝑥ℎ

𝑠 ∀𝑠|ℎ𝑠 ∈ 𝐻

Each host is used if and
only if there is at least
one function which is
allocated in it

6.b 𝑥ℎ
𝑠 ≤ ∑

(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁
𝑧𝑠

𝑙,𝑚 ∀𝑠|ℎ𝑠 ∈ 𝐻

The constraint 6.b is
required because if the
sum of the left side is
null then the right side
must also be null in
the 6.a. Without this
constraint the right
side could have a value
greater than 0

7 ∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑤𝑘,𝑙 ∗ 𝑧𝑠
𝑙,𝑚 ≤ 𝑊 𝑠

𝑘
∀𝑠 | ℎ𝑠 ∈ 𝐻,
∀𝑘 ∈ 𝑁0→3

The sum of all the re-
sources required by the
functions to be allo-
cated must be less or
equal than the maxi-
mum supported by the
physical server

8 𝑧𝑠
𝑙,𝑚 ⟺ 𝑛𝑙 ∈ 𝑁ℎ

𝑠 ∀(𝑙,𝑚)|𝑛𝑙,𝑚 ∈
𝑁

If set, the instance of an
NSF can be allocated in
the host if and only if
the host supports it

Table 6.5: The Hard-Constraints of Gurobi

108

6.3 – Gurobi formulation

6.3.3 Gurobi Multi-Objectives
Table 6.6 defines all the objectives defined in 6.1.2 and implemented by Gurobi.

Objectives Meaning

Obj(min(∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑛𝑙,𝑚 ∗ 𝑤0,𝑙), 𝑝0)
It is the objective to minimize the 𝑐𝑜𝑠𝑡 of the
𝑛𝑙,𝑚s used. The objective has the priority 𝑝0 cho-
sen by the user

Obj(min(∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑛𝑙,𝑚 ∗ 𝑤1,𝑙), 𝑝1)
It is the objective to minimize the 𝑐𝑝𝑢 of the
𝑛𝑙,𝑚s used. The objective has the priority 𝑝1 cho-
sen by the user

Obj(min(∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑛𝑙,𝑚 ∗ 𝑤2,𝑙), 𝑝2)
It is the objective to minimize the 𝑟𝑎𝑚 of the
𝑛𝑙,𝑚s used. The objective has the priority 𝑝2 cho-
sen by the user

Obj(min(∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑛𝑙,𝑚 ∗ 𝑤3,𝑙), 𝑝3)
It is the objective to minimize the 𝑑𝑖𝑠𝑘 of the
𝑛𝑙,𝑚s used. The objective has the priority 𝑝3 cho-
sen by the user

Obj(min(∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑛𝑙,𝑚 ∗ 𝑤4,𝑙), 𝑝4)
It is the objective to minimize the 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ of
the 𝑛𝑙,𝑚s used. The objective has the priority 𝑝4
chosen by the user

Obj(min(∑
(𝑙,𝑚)|𝑛𝑙,𝑚∈𝑁

𝑥𝑛
𝑙,𝑚), 𝑝5)

It is the objective to minimize the number of
𝑛𝑙,𝑚s used. The objective has the priority 𝑝5

Obj(min(∑
𝑠|ℎ𝑠∈𝐻

𝑥ℎ
𝑠), 𝑝6) It is the objective to minimize the number of ℎ𝑠s

used. The objective has the priority 𝑝6

Table 6.6: The objectives of Gurobi

109

Selection and Optimization phase

6.4 Comparison and final discussion
As seen in the previous sections, the symbols defined for Z3 (6.2.1) and Gurobi (6.3.1) are
similar but have substantial differences. Z3 is a SMT solver and as such works mainly on
boolean variables while Gurobi is an ILP solver and works with integer variables. This is
a very important discrepancy because it entails a substantial difference in the formulation
of the model and in the internal functioning of the tools. In fact, the constraints, although
having the same meaning, have been defined differently for Z3 and Gurobi.

As first thing you can observe that the number is slightly different, this because z3 makes
use also of logical formulas while Gurobi only of mathematical formulas.

To this purpose in z3 all the logical symbols appear as “⋁” and “ ⟺ ” while in Gurobi
the “∑” appears and that is why in Gurobi there are additional formulas to express the
concept of ”if and only if”.

As an instance, if we have the scenario composed by the following elements:

• 1 instance of the function N1;

• 2 instances of the capability C1. These two capabilities are supported by N1.

To express the 1st hard-constraint:

• in Z3:
We have to impose the following variables:

– 𝑥𝑛
1,1, boolean variable which represents the instance of the function N1;

– 𝑦1,1
1,1 and 𝑦1,1

1,2 , boolean variables which represent the two instances of the capa-
bility C1, assigned to N1.

The formula 6.1 allows to impose the 1st constraint.

𝑦1,1
1,1 ∨ 𝑦1,1

1,2 ⟺ 𝑥𝑛
1,1 (6.1)

In fact, as you can see in Fig. 6.2, if at least one variable between “𝑦1,1
1,1” and “𝑦

1,1
1,2”

is TRUE then necessarily also “𝑥𝑛
1,1” is TRUE and equally, if “𝑥𝑛

1,1” is TRUE then at
least one between “𝑦1,1

1,1” and “𝑦
1,1
1,2” must be TRUE. In all other cases the variables

shall be FALSE.

110

6.4 – Comparison and final discussion

Figure 6.1: Truth table of OR

Figure 6.2: Truth table of equivalence

• in Gurobi:

We have to impose the following variables:

– 𝑥𝑛
1,1, binary variable which represents the instance of the function N1;

– 𝑦1,1
1,1 and 𝑦1,1

1,2 , binary variables which represent the two instances of the capability
C1, assigned to N1.

The formula 6.2 allows to impose part of the 1st constraint.

𝑦1,1
1,1 + 𝑦1,1

1,2 <= 2 ∗ 𝑥𝑛
1,1 (6.2)

In fact, if at least one between “𝑦1,1
1,1” and “𝑦

1,1
1,2” is 1 then also “𝑥𝑛

1,1” is set to 1 in
order to respect the inequality. The number “2” which represents the cardinality of
the instances it is important because if both the instances of capability are equal to
1 then the right part of the mismatch must be equal to 2 and the variable “𝑥𝑛

1,1” is
obliged to be 1. If the cardinality multiplying the variable is not present, then the
inequality cannot be satisfied.

111

Selection and Optimization phase

But what if both variables “𝑦1,1
1,1” and “𝑦

1,1
1,2” are equal to 0? “𝑥𝑛

1,1” can assume any
value. In fact, whether it is 0 or 1, the inequality is respected. We do not want this be-
havior, in fact if there are no instances of capabilities assigned to a function instance
then the function instance must not be used.
For this reason the formula 6.3 has been added:

𝑥𝑛
1,1 <= 𝑦1,1

1,1 + 𝑦1,1
1,2 (6.3)

In this way, if the two variables are null then so does “𝑥𝑛
1,1”.

The differences continue and are centralized with the phase of optimization:

• Z3 does not support a true optimizationmechanism.What it can do is to define “soft-
constraints”, which are some constraints that it tries to respect. Each constraint has
a weight that penalizes the solution.
Each constraint is associated with a group. In the event that there are more ties asso-
ciated with the same group then Z3 tries to satisfy all the constraints, blending and
considering them as a single constraint.
If different groups are specified there is no a precise way to assign a priority to one
or the other and this is certainly a limitation of the tool because there is no way to
better manage the multi objectives.

• Gurobi supports a realmechanism tomanage objectives. It is able tomanagemultiple-
objectives, it allows to associate a weight and a priority to each objective and to meet
them hierarchically, blending them or mixing the two approaches.
The hierarchical mode is the one implemented in the framework. Each objective
has a priority. This allows Gurobi to solve as much as possible starting from the
one with the highest priority and gradually going down, trying to reach the others
without degrading the solution. This is definitely a strong point of the tool.

Another substantial difference concerns the goodness and speed of execution. Z3 is a
SAT solver, Gurobi is an ILP solver. This difference is substantial. Gurobi produces better
results in a shorter time and this is because the model to be solved is completely different.

The important differences analyzed so far have led to the choice of Gurobi as solver of the
framework. Its speed of execution, the goodness of the solution and the ability to manage
optimally multiple objectives contributed definitively to the choice.

112

6.5 – Further development

6.5 Further development
As described in the sections above, the framework, and therefore the SAP module, at
this time is able to determine how many and which instances of network functions are
necessary, to satisfy the instances of capability received as input, and to allocate them
among the physical hosts available.

The module is able to optimize the choice according to the parameters defined by the user,
in order to:

• reduce the number of functions;

• reduce the cost of the functions;

• reduce the resources used by the functions.
E.g. cpu, ram, disk and bandwidth;

• reduce the number of hosts;

All these objectives are managed simultaneously hierarchically according to the priority
that the user associates them. In fact we are talking about multi-objectives.

In the future, these features could be improved and new ones could be added. For example,
we could think of improving the host model. In fact, right now the hosts are simply listed.

We could think of linking them together via links and to assign a weight to each of
them, weight representing its latency. This could lead to a further goal in the optimization
phase: Choose hosts in such a way that they are linked with lower weight links so as to
reduce latency.

113

114

Chapter 7

Implementation

7.1 Installation Guidelines
This chapter will show and describe the procedure for using the framework in the cor-
rect way. All additional tools to download and install will be shown in order to run the
framework correctly.

7.1.1 JAVA JDK 8 SE
The Java Platform SE (Standard Edition) lets to develop and deploy Java applications on
desktops and servers. To achieve this result it offers the rich user interface, performance,
versatility, portability, and security that today’s applications require. The JDK (Java De-
velopment Kit) includes tools useful for developing and testing programs written in the
Java programming language and running (it includes also the JRE, Java Runtime Envi-
ronment) on the Java platform.

At the following links you can find further documentation and download the development
environment:

• https://www.oracle.com/technetwork/java/javase/documentation/index.html, to
which it is possible to find all the documentation;

• https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html, to which it is possible to download the JDK. For compatibility with
other tools, Java JDK SE 8 was chosen;

After downloading the JDK, it is necessary to set the environment variable JAVA_HOME
to the folder where the JDK was unpacked.

E.g., {JAVA_HOME} = “C:/ProgramFiles/ Java/jdk1.8.0/ 221”

7.1.2 Apache Ant
Apache Ant is a Java library and command-line tool for automating software build pro-
cesses. Ant uses XML to describe the code build process and its dependencies. By default,

115

https://www.oracle.com/technetwork/java/javase/documentation/index.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
C:/Program Files/Java/jdk1.8.0/221

Implementation

the XML file is named build.xml.

At the following links you can find further documentation and download the development
environment:

• https://ant.apache.org/manual/index.html, to which it is possible to find all the
documentation about the line 1.10.x. ;

• https://ant.apache.org/bindownload.cgi, to which it is possible to download the
binary distribution. For compatibility with other tools, the release 1.10.6was chosen.
Make sure you choose the development line 1.10.x and not 1.9.x as the Java8 library
was chosen;

After downloading theApacheAnt, it is necessary to set the environment variableANT_HOME
to the folder where it was installed.

E.g., {ANT_HOME} = “C:/ProgramFiles/ Java/apache-ant-1.10.6”

7.1.3 Apache Tomcat
Apache Tomcat is an open source web server from Apache. It implements Java Servlet,
Java Server Pages (JSP), Java EL and WebSocket and provides an environment in which
JAVA code can run as well as HTTP web server. Its servlet container is Catalina.

At the following links you can find further documentation and download it:

• http://tomcat.apache.org/tomcat-8.5-doc/index.html, to which it is possible to find
all the documentation about the line 8.5.x;

• https://tomcat.apache.org/download-80.cgi, to which it is possible to download
the binary distribution. For compatibility with other tools, the release 8.5.35 was
chosen.

After downloading the Apache Tomcat, it is necessary to set the environment variable
CATALINA_HOME to the folder where it was installed.

E.g., {CATALINA_HOME} = “C:/ProgramFiles/ Java/apache-tomcat-8.5.35”

It is also required to modify the $CATALINA_HOME$/conf/tomcat-users.xml file.
Under the tomcat-users tag place the following code:

1 <role rolename=”manager-gui”/>
2 <role rolename=”manager-script”/>
3 <role rolename=”admin”/>
4
5 <user username=”tomcat” password=”tomcat” roles=”admin,manager-gui,

↪ manager-script”/>

116

https://ant.apache.org/manual/index.html
https://ant.apache.org/bindownload.cgi
C:/Program Files/Java/apache-ant-1.10.6
http://tomcat.apache.org/tomcat-8.5-doc/index.html
https://tomcat.apache.org/download-80.cgi
C:/Program Files/Java/apache-tomcat-8.5.35

7.1 – Installation Guidelines

Finally, you also need to edit the file tomcat-build.xml by changing the contents of the
“to_be_defined” tag with the credentials defined before.

7.1.4 Neo4j
Neo4j is a NoSQL graph database management system. It uses graphs to represent data
and the relationships between them. A graph is defined as any graphical representation
that consists of vertices (shown by circles) and edges (shown with intersection lines).
At each vertice or edge it is possible to associate any number of attributes. This tool is,
therefore, particularly useful in debugging because it gives a clear and simplified view of
the data.

At the following links you can find further documentation and download it:

• https://neo4j.com/docs/operations-manual/current/introduction/, to which it is
possible to find all the documentation;

• https://neo4j.com/download/, to which it is possible to download the binary distri-
bution. For compatibility with other tools, the release 3.5.x was chosen.

After downloadingNeo4j, it is necessary to set the environment variableNEO4J_HOME
to the folder where it was installed.

E.g., {NEO4J_HOME} = “C:/neo4j-community-3.5.5”

To be able to start the Neo4j Server using the ant file in the framework, you must first
enable the corresponding service: go to the bin folder and exec neo4j with the argument
install-service.

7.1.5 Gurobi
Gurobi, whose name stands for its founders Zonghao Gu, Edward Rothberg and Robert
Bixby, is a commercial state-of-the-art solver for mathematical programming. It is able to
solve linear programming (LP), quadratic programming (QP), quadratically constrained
programming (QCP), mixed integer linear programming (MILP), mixed-integer quadratic
programming (MIQP), andmixed-integer quadratically constrained programming (MIQCP).

It was fouded in 2008 and supports a variety of programming and modeling languages.

At the following links you can find further documentation and download it:

• https://www.gurobi.com/documentation/quickstart.html, to which it is possible to
find all the documentation;

• https://www.gurobi.com/downloads/, to which it is possible to download the binary
distribution.

117

https://neo4j.com/docs/operations-manual/current/introduction/
https://neo4j.com/download/
C:/neo4j-community-3.5.5
https://www.gurobi.com/documentation/quickstart.html
https://www.gurobi.com/downloads/

Implementation

After downloadingGurobi, in order to use it, a licencemust be obtained and it is necessary
to proceed with a series of configurations according to your operating system.

Windows

• Set the environment variableGUROBI_HOME to the folder where it was installed.

E.g., {GUROBI_HOME} = “C:/gurobi811/win64”

• Add the bin path to the PATH variable:

E.g., PATH = “C:/gurobi811/win64/bin”

Linux

• Set the environment variableGUROBI_HOME to the folder where it was installed.

1. sudo nano /etc/environment
2. {GUROBI_HOME} = “C:/gurobi811/linux64”

• Add the bin path to the LD_LIBRARY_PATH variable:

1. sudo nano /.bashrc
2. {GUROBI_HOME} = “C:/gurobi811/linux64”
3. export LD_LIBRARY_PATH = $LD_LIBRARY_PATH:${GUROBI_HOME}/lib
4. export PATH = $PATH:${GUROBI_HOME}/bin

• You need to copy the file “libgurobi81.so” and “libGurobiJni81.so” to the folder
/usr/lib/

118

C:/gurobi811/win64
C:/gurobi811/win64/bin
C:/gurobi811/linux64
C:/gurobi811/linux64

7.2 – Folders organization

7.2 Folders organization
In this chapter will be presented the packages containing the classes and methods that
make up the framework. The framework includes also a detailed javadoc which describe
all the classes and methods in detail.

Project folders are organized this way:

1. The src folder contains all the packages regarding the framework;
In particular:

(a) The package it.polito.verifuse.main contains the entry point of the framework;
(b) The package it.polito.verifuse.modules contains the classes of the two mod-

ules;
(c) The package it.polito.verifuse.rest contains the classes constituting the REST

API;
(d) The packages it.polito.verifuse.rest.framework.resources, it.polito.verifuse.rest.frame-

work.service and it.polito.verifuse.rest.framework.db contain the classes of
the Server.

(e) The package it.polito.verifuse.rest.framework.client contains the classes of
the Client

(f) The packages it.polito.verifuse.factory and it.polito.verifuse.utility contains
the classes of utility used in the framework.

2. The xsd folder contains XML schemas representing the data structures used;

3. The gen-src folder will contain all data structures generated by the JAXB framework
starting from the XML schemas;

4. The lib folder contains the libraries used by the framework;

5. The test folder contains the packages which the tests;
In particular:

(a) The package it.polito.verifuse.framework.test contains the tests regarding the
two modules;

(b) The package it.polito.verifuse.rest.test contains the tests regarding the web
server.

6. The WebContent folder contains all the files of the web module;

7. The build.xml file allows to start the framework;

8. The tomcat-build.xml file allows to manage tomcat;

9. The service-build.xml file allows to manage the deployment of the Web REST
Server;

10. The neo4j-build.xml file allows to manage neo4j;

11. The config.xml file which is a file of configuration.

119

Implementation

7.3 REST API
The REST (REpresentational State Transfer) is an architecture for distributed systems
that allows clients to exchange information with the server using HTTP protocol methods
such as GET, POST, UPDATE, DELETE, etc. The information that is exchanged concerns
the representation of the resourcesmade available by the web server, so what is exchanged
is the representational state13.

REST APIs have been developed to provide the functionality of the framework outdoors.
In particular, to allow the access to CAID and SAP modules in order to exploit their
potential.

7.3.1 Service Design
The RESTful Web Server has been implemented following the paradigm: Resources -
Service - Database.

• Resources: represent all the resources of the service to which identifies the allowed
HTTP methods; It is implemented by the VerifuseResources class.

• Service: contains the implementation of the HTTP methods and then what action to
perform. As the framework deals with the management of CAID and SAP modules,
to manage them better, the management part of the services has been divided into
two. Therefore, the service is implemented by the CAIDService and SAPService
classes.

• Database: contains the database and so all the data structures used by the service.
Each class representing the service has its own dedicated database, so they are rep-
resented by the CAIDDB and SAPDB classes.

As it is possible to see in Fig. 7.1.

13The REST principles were discussed by Roy Thomas Fielding in his doctoral dissertation in 2000 [20].

120

7.3 – REST API

Figure 7.1: Implementation design

121

Implementation

Resources

The verifuse framework provides the following resources so that it is possible to interact
with the main resource (the framework itself) and its modules CAID and SAP.

Figure 7.2: Resources

122

7.3 – REST API

Verifuse Resources

The Verifuse Resources is the class which manage the REST resources. It responds to
requests for resources, previously defined in the design, by HTTP methods and manages
them by generating appropriate responses.

Below you can see some code fragments that show how they work.

@Path(”/verifuse”)
@Api(value = ”/verifuse”)
public class VerifuseResources {

public UriInfo uriInfo;
private CAIDService caidService;
private SAPService sapService;

public VerifuseResources() {
}

/**
* The constructor, receives the uriInfo by the context: JAX-RS

↪ runtime.
*
* @param uriInfo the uriInfo
*/
public VerifuseResources(@Context UriInfo uriInfo) {

this.uriInfo = uriInfo;
try {

this.caidService = new CAIDService(uriInfo.getBaseUriBuilder()
↪ .clone().path(”verifuse”).path(”caid”));

this.sapService = new SAPService(uriInfo.getBaseUriBuilder()
↪ .clone().path(”verifuse”).path(”sap”));

} catch (Exception e) {
throw new InternalServerErrorException();

}
}

}

This piece of code shows how the allocation, by constructor, of the main resource takes
place and how the services are initialized.

123

Implementation

/**
* @return the main resource: Verifuse
*/
@GET
@ApiOperation(value = ”getVerifuse”, notes = ”Reads the main resource.”
)
@ApiResponses(value = {

@ApiResponse(code = 200, message = ”OK”),
})
@Produces({MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML})
public it.polito.verifuse.rest.jaxb.verifuse.VerifuseResponse

↪ getVerifuse() {
try {

// Create the URI
UriBuilder root = uriInfo.getAbsolutePathBuilder();
UriBuilder caid = root.clone().path(”caid”);
UriBuilder sap = root.clone().path(”sap”);

// Create a representation of the main resource
it.polito.verifuse.rest.jaxb.verifuse.VerifuseResponse verifuse =

↪ new it.polito.verifuse.rest.jaxb.verifuse.VerifuseResponse();

// Add the URI
verifuse.setSelf(root.toTemplate());
verifuse.setCaid(caid.toTemplate());
verifuse.setSap(sap.toTemplate());
return verifuse;

} catch (Exception e) {
throw new InternalServerErrorException();

}
}

Instead, this piece of code shows how the GET method executed on the main resource is
executed, producing the answer VerifuseResponse.

It is important to take into account that eachmethod, combinedwith resources, is enclosed
in a try-catch block so that, when some internal exception occurs, to the client is sent an
InternalServerErrorException message and not the whole stack trace (as default) that
inexorably shows the internal structure of the server, which must be kept hidden from the
client.

As it is possible to see in the previous code fragment, the instruction:

@ApiOperation(value = ”getVerifuse”, notes = ”Reads the main
resource.”)

@ApiResponses(value = { @ApiResponse(code = 200, message = ”OK”),
})

It allows the documentation of REST operations through Swagger.

124

7.3 – REST API

It is possible to post the resources using Swagger taking care to correctly specify the
namespace within the xml file.

The SwaggerUI is available at the link:

http://localhost:8080/verifuse/webapi/swagger.json.

Services

As the framework deals with the management of CAID and SAP modules, to manage
them better, the management part of the services has been divided into two.

• CAIDService handles all service requests addressed to the module CAID

• SAPService handles all service requests addressed to the module SAP

As an instance, if we want to access the resource representing a single Policy of the CAID
module the request is handled by the VerifuseResources in the following fragment:

/**
* @param policyID of the policy
* @return the Policy
*/
@GET
@Path(”/caid/policies/{policyID}”)
@ApiOperation(value = ”getCAIDPolicy”, notes = ”Reads a single policy.”
)
@ApiResponses(value = {

@ApiResponse(code = 200, message = ”OK”),
@ApiResponse(code = 404, message = ”Not Found”),

})
@Produces({MediaType.APPLICATION_XML,MediaType.APPLICATION_JSON})
public it.polito.verifuse.rest.jaxb.caid.PolicyResponse

↪ getCAIDPolicy(@PathParam(”policyID”) String policyID) {
try {

it.polito.verifuse.rest.jaxb.caid.PolicyResponse policy =
↪ caidService.getPolicy(policyID);

if (policy==null) {
throw new NotFoundException();
}
return policy;

} catch (NotFoundException e) {
throw new NotFoundException();

} catch (Exception e) {
throw new InternalServerErrorException();

}
}

125

http://localhost:8080/verifuse/webapi/swagger.json

Implementation

The request is then executed inside the CAIDService in the following way:

/**
* Gets a Policy which ’policyID’ is passed as argument.
*
* @param policyID the policyID
* @return the Policy
*/
public it.polito.verifuse.rest.jaxb.caid.PolicyResponse getPolicy(String

↪ policyID) {
return db.getPolicy(policyID);

}

The CAIDService accesses the database to satisfy the request.

Database

Each service in order to perform its functions, gives access to its own database containing
all data structures.

• CAIDDB it is database dedicated to the service CAIDService

• SAPDB it is database dedicated to the service SAPService

Both were developed implementing the Singleton pattern. Each instance is then created
only on first access (which coincides with the creation of the service) and appears to be
thread safe as the internal method is synchronized and a double check is made that avoids
2 threads (which arrive first simultaneously) to allocate it both. As it is possible to see in
the following code fragment:

// static volatile variable single_instance
private static volatile SAPDB SAPDB_instance = null;

/**
* Static method to create instance of Singleton class in a synchronized

↪ way
* @return the SAPDB singleton
* @throws GeneralException
*/
public static SAPDB getInstance() throws GeneralException
{

if (SAPDB_instance == null) {
synchronized (SAPDB.class) { //Check for the second time.
//if there is no instance available... create new one

if (SAPDB_instance == null) {
SAPDB_instance = new SAPDB();

}
}

}
return SAPDB_instance;

}

126

7.3 – REST API

The constructor is private and this contributes to the Singleton pattern, making possible
the creation of the instance only from the inside. The internal variable SAPDB_instance
is declared as volatile, in this way is not possible for another thread in Java to see half
initialized state of the variable. All the write will happen on volatile SAPDB_instance
before any read and this helps to get it initialized by a single thread.
This, synchronization and double internal control, before the call to the constructor, en-
sure that the class is thread safe and that a single instance is allocated.

/**
* Private constructor restricted to this class itself, it is used only a

↪ time.
* It is thread safe because it is synchronized when used.
*/
private SAPDB() {

mapCapabilitiesInstances = new ConcurrentHashMap<String,
↪ it.polito.verifuse.rest.jaxb.sap.CapabilityInstanceResponse>();

mapHosts = new ConcurrentHashMap<String,
↪ it.polito.verifuse.rest.jaxb.sap.HostResponse>();

mapNsfs = new ConcurrentHashMap<String,
↪ it.polito.verifuse.rest.jaxb.sap.NSFResponse>();

}

The constructor is responsible for initializing the data structures used by the database.
They are implemented as ConcurrentHashMap to ensure access to concurrent threads.

// synchronized data structures
private ConcurrentHashMap<String,

↪ it.polito.verifuse.rest.jaxb.sap.CapabilityInstanceResponse>
↪ mapCapabilitiesInstances = null;

private ConcurrentHashMap<String,
↪ it.polito.verifuse.rest.jaxb.sap.HostResponse> mapHosts = null;

private ConcurrentHashMap<String,
↪ it.polito.verifuse.rest.jaxb.sap.NSFResponse> mapNsfs = null;

127

Implementation

7.3.2 API Description
The Verifuse web service is a web service composed by two modules:

• CAID (CApability IDentifier) which has the task of analyzing policies and selecting
the capabilities necessary to satisfy them and to send the capabilities to the ADP
module.

• SAP (Selection And Placement) which has the task to receive the instances of the ca-
pability from the ADP module and to select the necessary network functions taking
care also to allocate them in the physical server.

Verifuse API

Figure 7.3: Operation on Verifuse

This is the main API for the Verifuse Web Service. It provides links to reach the other
modules.

Example request

• GET http://localhost:8080/verifuse/webapi/verifuse

• Accept: APPLICATION_XML;

Example response

• 200: OK

• Content-Type: APPLICATION_XML;

• Content: XML file which allows navigation between resources.

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <VerifuseResponse xmlns=”http://www.verifuse.polito.it/rest”>
3 <self>http://localhost:8080/verifuse/webapi/verifuse</self>
4 <caid>http://localhost:8080/verifuse/webapi/verifuse/caid</caid>
5 <sap>http://localhost:8080/verifuse/webapi/verifuse/sap</sap>
6 </VerifuseResponse>

128

7.3 – REST API

CAID API

The following APIs represent the module CAID, by accessing this resource it is possible
to use its functionality.

Figure 7.4: Operation on CAID (1)

129

Implementation

Figure 7.5: Operation on CAID (2)

As an example, in the following way it is possible to access the representation of the
module:

Example request

• GET http://localhost:8080/verifuse/webapi/verifuse/caid

• Accept: APPLICATION_XML;

Example response

• 200: OK

• Content-Type: APPLICATION_XML;

• Content: XML file which allows navigation between resources.

130

7.3 – REST API

The body content of the response is as follows:

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <CAIDResponse xmlns=”http://www.verifuse.polito.it/rest/caid”>
3 <self>http://localhost:8080/verifuse/webapi/verifuse/caid</self>
4 <capabilities>http://localhost:8080/verifuse/webapi/verifuse

↪ /caid/capabilities</capabilities>
5 <capabilitiesRequired>http://localhost:8080/verifuse/webapi/verifuse

↪ /caid/capabilitiesRequired</capabilitiesRequired>
6 <policies>http://localhost:8080/verifuse/webapi/verifuse

↪ /caid/policies</policies>
7 <templates>http://localhost:8080/verifuse/webapi/verifuse

↪ /caid/templates</templates>
8 </CAIDResponse>

This allows to access the other resources contained in the module:

• capabilities which contains all the static capabilities that are defined in the module.

– allows only the GET operation in order to be able to access the list.

• capabilitiesRequired which allows access to the key function of the module. Iden-
tify the capabilities that are needed to meet current policies in the db.

– allows only the GET operation; Analyze existing policies and return identified
capabilities.

• policies representing the policies present in the module.

– GET to take the list which contains all the policies expressed;
– POST to put a new Policy in the db.

Example request
∗ POST http://localhost:8080/verifuse/webapi/verifuse/caid/policies
∗ Content-Type: APPLICATION_XML;
∗ Content: the Policy.

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the PolicyResponse, a new rapresentation of the resource contain-
ing the Self URI.

131

Implementation

Each Policy is characterized by a policyID that identifies it, this allows to per-
form the following operations on the resource at the address:
URI: http://localhost:8080/verifuse/webapi/verifuse/caid/policies/{policyID}
∗ GET to access it;
∗ UPDATE to modify it or to create it if does not exist;
∗ DELETE to delete it.

• templates representing the templates present in the module to which policies may
refer.

– GET to take the list which contains all the templates available;
– POST to put a new Template in the db.

Example request
∗ POST http://localhost:8080/verifuse/webapi/verifuse/caid/templates
∗ Content-Type: APPLICATION_XML;
∗ Content: the Template.

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the TemplateResponse, a new rapresentation of the resource con-
taining the Self URI.

Each Template is characterized by an templateID that identifies it, this allows
you to perform the following operations on the resource at the address:
URI: http://localhost:8080/verifuse/webapi/verifuse/caid/templates/{templateID}
∗ GET to access it;
∗ UPDATE to modify it or to create it if does not exist;
∗ DELETE to delete it.

132

7.3 – REST API

SAP API

The following APIs represent the module SAP, by accessing this resource it is possible
to use its functionality.

Figure 7.6: Operation on SAP (1)

133

Implementation

Figure 7.7: Operation on SAP (2)

134

7.3 – REST API

As an example, in the following way it is possible to access the representation of the
module:

Example request

• GET http://localhost:8080/verifuse/webapi/verifuse/sap

• Accept: APPLICATION_XML;

Example response

• 200: OK

• Content-Type: APPLICATION_XML;

• Content: XML file which allows navigation between resources.

The body content of the response is as follows:

1 <?xml version=”1.0” encoding=”UTF-8”?>
2 <SAPResponse xmlns=”http://www.verifuse.polito.it/rest/sap”>
3 <self>http://localhost:8080/verifuse/webapi/verifuse/sap</self>
4 <capabilitiesInstances>http://localhost:8080/verifuse/webapi

↪ /verifuse/sap/capabilitiesInstances</capabilitiesInstances>
5 <hosts>http://localhost:8080/verifuse/webapi/verifuse

↪ /sap/hosts</hosts>
6 <nsfs>http://localhost:8080/verifuse/webapi/verifuse /sap/nsfs</nsfs>
7 <result>http://localhost:8080/verifuse/webapi/verifuse

↪ /sap/result</result>
8 </SAPResponse>

This allows to access the other resources contained in the module:

• capabilitiesInstances representing the instances of the capabilities that must be as-
signed to the functions.

– GET to take the list which contains all the instances of the capabilities; It is
possible specify the query param {capabilityID} so as to request all instances
of capability with that identifier. If it is NULL then they are all returned.

Example request
∗ GET http://localhost:8080/verifuse/webapi/verifuse/sap/capabilitiesIn-
stances

∗ Accept: APPLICATION_XML;
∗ Query-Param: {capabilityID}:string.

135

Implementation

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the CapabilitiesInstancesResponse which contains a list of the
capability instances selected.

– POST to put a new CapabilityInstance in the db.

Example request
∗ POST http://localhost:8080/verifuse/webapi/verifuse/sap/capabilitiesIn-
stances

∗ Content-Type: APPLICATION_XML;
∗ Content: the CapabilityInstance.

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the CapabilityInstanceResponse, a new rapresentation of the re-
source containing the Self URI.

Each CapabilityInstance is characterized by an ID that identifies it. It consists
of the capability (capabilityID) and the instance (capabilityInstance) identifier:
{capabilityID_capabilityInstance}, which allows you to perform the follow-
ing operations on the resource at the address:
URI: http://localhost:8080/verifuse/webapi/verifuse/sap/capabilitiesInstances
/{capabilityID_instance}

∗ GET to access it;
∗ DELETE to delete it.

• hosts representing the hosts to which the NSFs can be allocated.

– GET to take the list which contains all the hosts available;

– POST to put a new Host in the db.

Example request
∗ POST http://localhost:8080/verifuse/webapi/verifuse/sap/hosts
∗ Content-Type: APPLICATION_XML;
∗ Content: the Host.

136

7.3 – REST API

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the HostResponse, a new rapresentation of the resource contain-
ing the Self URI.

Each Host is characterized by an hostID that identifies it, this allows you to
perform the following operations on the resource at the address:
URI: http://localhost:8080/verifuse/webapi/verifuse/sap/hosts/{hostID}
∗ GET to access it;
∗ UPDATE to modify it or to create it if does not exist;
∗ DELETE to delete it.

• nsfs representing the nsfs available in the system.

– GET to take the list which contains all the nsfs available;
– POST to put a new Nsf in the db.

Example request
∗ POST http://localhost:8080/verifuse/webapi/verifuse/sap/nsfs
∗ Content-Type: APPLICATION_XML;
∗ Content: the Nsf.

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the NsfResponse, a new rapresentation of the resource containing
the Self URI.

Each Nsf is characterized by an nsfID that identifies it, this allows you to per-
form the following operations on the resource at the address:
URI: http://localhost:8080/verifuse/webapi/verifuse/sap/nsfs/{nsfID}
∗ GET to access it;
∗ UPDATE to modify it or to create it if does not exist;
∗ DELETE to delete it.

137

Implementation

• result representing the result of the selection and placement of functions.

– GET to ask the module SAP to calculate the result. It is possible to specify the
following query params:
∗ VNFmustBeSupportedByHost: boolean variable, true if a host must sup-
port the function so that it can be allocated;

∗ optimizeCpu: boolean variable, true if wewant select the functions in order
to optimize the use of cpu;

∗ optimizeRam: boolean variable, true if we want select the functions in or-
der to optimize the use of ram;

∗ optimizeDisk: boolean variable, true if wewant select the functions in order
to optimize the use of disk;

∗ optimizeBandwidth: boolean variable, true if we want select the functions
in order to reduce the use of bandwidth;

∗ optimizeCost: boolean variable, true if wewant select the functions in order
to reduce the cost;

Example request
∗ GET http://localhost:8080/verifuse/webapi/verifuse/sap/result
∗ Accept: APPLICATION_XML;

Example response
∗ 200: OK
∗ Content-Type: APPLICATION_XML;
∗ Content: the Result

138

7.3 – REST API

7.3.3 Service Deployment
The Web Server has been implemented using the Jersey framework, which is the refer-
ence implementation of the Java API for RESTful Web Services (JAX-RS)14.

The Jersey RESTful Web Services framework is open source and in addition to imple-
menting the reference standards, makes available its own additional features and utilities
to further simplify RESTful service and client development.

The web server has been packaged and deployed on Tomcat which acts as a container.
The Tomcat Server is an open source web server fromApache. It implements Java Servlet,
Java Server Pages (JSP), Java EL and WebSocket and provides an environment in which
JAVA code can run as well as HTTPweb server. Its servlet containerCatalina has allowed
the deployment of theVerifuse REST Web Servermaking it reachable by clients through
the HTTP procotol.

The web server is portable (it has been tested in windows and linux environments) thanks
to the cross-platform nature of the java language.

In addition to the server part (and therefore the backend part) a REST client has also been
developed in order to test the various services.

The test implementation was possible thanks to the use of the JUnit library.

14The JAX-RS refers to the documentation JSR 311 written by the Sun Microsystems for the purpose of
drawing up specifications for the implementation of the REST paradigm in Java [21]. The new standard
JAX-RS 2.0 refers to the documentation JSR 339. The Jersey RESTful Web Services framework supports
both standards.

139

140

Chapter 8

Evaluation

A series of tests have been performed in order to evaluate the scalability and the time of
execution of the framework. Tests were performed for both modules: CAID and SAP.

The tests were carried out on a machine having the following characteristics:

• Operating Systems: Windows 10 Education N;

• CPU: Intel(R) Core(TM) i7-4700MQ CPU @ 2.40GHz;

• Architecture: x64;

• RAM: 8,00 GB Dual-Channel DDR3 @ 798MHz.

8.1 Tests on CAID
A series of tests were performed on the CAID module in order to test its scalability.
Therefore, the purpose of the tests is to progressively increase the number of incoming
policies (they start from one and ending with one million) in order to verify the execution
time.

Test results can be analyzed in the Fig. 8.1, they are very positive. Indeed, high time values
(3.6 hours) occur for one million (10 ∗ 105) of policies. While for values less than one
hundred thousand the execution time is less than one second. This last thing can be better
observed in Fig. 8.2, which represents a zoom on the first part of the graph Fig. 8.1.

Analyzing in detail both graphs, we observe the following situations:

• Between 0 and 1.000 policies, the execution time is almost constant and is about 40
ms;

• Between 1.000 and 10.000 policies, the execution time slowly increases up until it
reaches 1 s;

• Between 10.000 and 500.000 policies, the execution time begins to grow until it
reaches thirty minutes;

141

Evaluation

• After 500.000 policies, the execution time grows faster and faster. During the final
test, one million policies were analyzed in three and a half hours (132.040.686
ms).

Figure 8.1: Time per number of policies

142

8.1 – Tests on CAID

Figure 8.2: Time per number of policies, zoom

143

Evaluation

8.2 Tests on SAP
A series of tests were performed on the SAP module in order to test its scalability. There-
fore, the purpose of the tests is to progressively increase the number of incoming instances
of capabilities, network functions and hosts in order to monitor the execution time. The
tests demonstrated that the execution time is more sensitive to the number of functions
and less to the number of instances of capabilities and hosts, as shown below.

Capabilities = variable, NSFs = constant, Hosts = constant
The results in Fig. 8.3 have been obtained by varying the number of instances of capa-
bilities and keeping the number of functions and hosts constant equal to one. The idea is
to choose two capabilities and increase the number of their instances needed more and
more.

Analyzing in detail the graph with the data, we can observe that the trend is linear, in
particular we can distinguish the following situations:

• Between 0 and 2.000 capabilities, execution is very fast and requires about 50 ms;

• After 2.000 capabilities, the execution is fast and linear. During the final test, the
module receiving as input one million capabilities took only 47 s (46.857 ms).

144

8.2 – Tests on SAP

Figure 8.3: Time per number of capabilities

145

Evaluation

Capabilities = constant, NSFs = variable, Hosts = constant
The impact of the number of the NSFs in the framework is shown in the Fig. 8.4. This
graph has been obtained by varying the number of function and keeping the number of
instances of capability and hosts constant equal to one. It is important to note that the
tests have been performed by increasing the copies of the same function, this allows to
evaluate the performance of gurobi in the best way as the tool is forced to work in the
worst situation.

Examining the graph of the Fig. 8.4 and Fig. 8.5, which represents an enlargement of the
first time intervals, we can distinguish the following situations:

• Between 0 and 700 functions, the execution time is below 1 s;

• Between 800 and 1.000 functions, the execution time is maximum of 2 s (2.034 ms);

• Between 1.000 and 3.000 functions, the execution time is maximum of 10 s;

• Between 4.000 and 10.000 functions, the execution time keeps constant around 25
s;

• Between 10.000 and 40.000 functions, the execution time increases softly, coming
to 12 m (702.577 ms);

• After 40.000 functions, the execution time grows faster and faster. During the final
test, ninety thousand policies were analyzed in almost three hours (10.659.112
ms).

146

8.2 – Tests on SAP

Figure 8.4: Time per number of nsfs

147

Evaluation

Figure 8.5: Time per number of nsfs, zoom

148

8.2 – Tests on SAP

Capabilities = constant, NSFs = constant, Hosts = variable
The results in Fig. 8.6 have been obtained by varying the number of hosts and keeping
the number of instances of capability and the number of functions constant equal to one.

Examining accurately the Fig. 8.6 and Fig. 8.7, we can note the following cases:

• Between 0 and 600 hosts, the execution time is below 100 ms;

• Between 600 and 900 hosts, the execution time is below 200 ms;

• Between 1.000 and 3.000 hosts, the execution time grows softly and is below 1 s
(812 ms);

• Between 3.000 and 6.000 hosts, the execution time continues to grow very slowly
until about 2 s (2261 ms);

• Between 6.000 and 10.000 hosts, the execution time begins to grow, coming to about
7 s (6837 ms);

• After 10.000 hosts, the execution time grows faster and faster. During the last test,
with three hundred thousand hosts the time is almost three hours (9.724.580ms).

149

Evaluation

Figure 8.6: Time per number of hosts

150

8.2 – Tests on SAP

Figure 8.7: Time per number of hosts, zoom

151

152

Chapter 9

Conclusion

The development of this thesis required an in-depth theoretical study during the first
phase. A study in which much attention has been paid to the works in literature regarding
networks, security and policies. Study that led to the choice of the Capability as a fun-
damental concept around which to develop the framework. Unique concept, mentioned
in literature but which has never been used in this way. The idea of using capabilities
as a means of merging policies and network functions seems to be a winning idea and
the excellent test results confirm it. The idea of capability allows to identify the func-
tions independently from the vendor. In fact, two functions support the same capacity, for
example packet filter, if they are able to fulfill this task by their internal features.

Then, starting from the concept of capability it was possible to model the Catalogue of
Functions and the Policy Repository. The catalog is complete with all kinds of infor-
mation regarding the available functions as hardware, software ed generic information
while the policy repository contains policies expressed through HPL. This last has been
modeled to be expandable in the future. In fact, although the framework currently works
mainly on HPL, it has been prepared to contain also the policies expressed by MPL.

As last thing the physical hosts have been modeled, they are the server where to allocate
the functions. In the future it is possible to improve the model, we could add some con-
nections between the hosts in such a way as to consider the latency during the selection
and optimization phase.

All of these models have been built using the XML language, which allows to create
very precise and extended models giving also the possibility to express constraints. This
language is well supported by Java thanks to the use of the JAXB framework that allows
an easy marshal and unmarshal, from and to java classes.

The framework, through the modules CAID and SAP, analyzes the policies in income
and identifies how much and which network functions are necessary and arranges to al-
locate them between the hosts available. The identification of capabilities, starting with
policies and the choice of functions followed by their allocation, are the key points of the
framework. These last steps are carried out through the use of an external tool: Gurobi.

153

Conclusion

Gurobi is a mathematical solver that solves arithmetic equations quickly and efficiently.
The choice of values to assign to variables can be constrained and optimized based on ob-
jectives (as an instance, to maximize a value). Multi-objective management, performance
and speed of execution are the key points that make it perfect for the framework. The tests
carried out confirm this choice.

Tests of scalability have been performed to evaluate the performance of both the CAID
module and the SAPmodule. The tests, despite having been performed on an old-generation
laptop, produced excellent food for thought. The CAID module has proven that it can get
the necessary capabilities in a very good time, analyzing one million policies took only
three hours. The SAP module, on the other hand, seemed insensible to the number of in-
coming instances of capability (it produces a very good solution in forty-seven seconds,
receiving one million of capabilities in input) while it was very dependent on the number
of functions in the catalog.

Therefore, thesis work has achieved the goal of developing the Verifuse framework. The
framework, through the CAID and SAP modules, provides everything you need to define
and analyse policies, allowing you to create your own catalog of functions and your phys-
ical host infrastructure. After choosing the optimization criterion, Verifuse automatically
selects which network functions are needed to meet the policies, or better the capabili-
ties. The framework also provides a REST API interface to enable remote use. Verifuse,
therefore, has been developed to support network administrators who every day with diffi-
culty must first create policies, for various users, and then decide which network functions
are needed. Verifuse automates all of this. Choose functions, starting with policy analy-
sis, and allocate them among the available hosts. The choice is optimized, it is the user
who defines the parameters and the priorities. The modules scale very well and have been
designed in such a way as to be independent and to be easily expandable in the future.

154

Bibliography

[1] ETSI GS NFV. ”ETSI GS NFV 003 V1.4.1, Network Functions Virtualisation
(NFV); Terminology for Main Concepts in NFV”, August 2018. [Online]. Avail-
able: https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV
%20003v1.4.1%20-%20GS%20-%20Terminology.pdf.

[2] ETSI GS NFV. ”GS NFV 002 V1.1.1, Network Functions Virtualisation (NFV);
Architectural Framework.”, October 2013. [Online]. Available: https://www.etsi.o
rg/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf.

[3] Open Networking Foundation. ”OpenFlow Switch SpecificationVersion 1.5.1 (Pro-
tocol version 0x06)”, March 2015. [Online]. Available: https://www.opennetworki
ng.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[4] J. Highsmith et al. ”Manifesto for Agile Software Development”, 2001. [Online].
Available: https://agilemanifesto.org/.

[5] J. Halpern et C. Pignataro. ”Service Function Chaining (SFC) Architecture”, , rfc-
7665, October 2015. [Online]. Available: https://www.rfc-editor.org/rfc/pdfrfc/rf
c7665.txt.pdf.

[6] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A.
Huynh, M. Carlson, J. Perry and S. Waldbusser. ”Terminology for Policy-Based
Management”, rfc-3198, November 2001. [Online]. Available: https://www.rfc-ed
itor.org/rfc/pdfrfc/rfc3198.txt.pdf.

[7] B. Moore, E. Ellesson, J. Strassner and A. Westerinen. ”Policy Core Information
Model – Version 1 Specification”, rfc-3060, February 2001. [Online]. Available:
https://www.rfc-editor.org/rfc/pdfrfc/rfc3060.txt.pdf.

[8] D. D. Clark and D. R. Wilson. ”A Comparison of Commercial and Military Com-
puter Security Policies”, ieee-6234890, April 27-29, 1987. [Online]. Available:
https://ieeexplore.ieee.org/document/6234890.

[9] D. C. Robinson, M. S. Sloman. ”Domains: a new approach to distributed system
management”, ieee-26694, September 14-16, 1988. [Online]. Available: https://ie
eexplore.ieee.org/document/26694.

[10] R. Yavatkar, D. Pendarakis and R. Guerin. ”A Framework for Policy-based Admis-
sion Control”, rfc-2753, January 2000. [Online]. Available: https://tools.ietf.org/p
df/rfc2753.pdf.

[11] Y. Barthal, A. Mayer, K. Nissim and A. Wool. ”Firmato: A Novel Firewall Manage-
ment Toolkit”, February 1999.

[12] C. Basile, A. Lioy, C. Pitscheider, F. Valenza and M. Vallini. ”A novel approach
for integrating security policy enforcement with dynamic network virtualization”,
April 2015.

155

https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20003v1.4.1%20-%20GS%20-%20Terminology.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20003v1.4.1%20-%20GS%20-%20Terminology.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.01.01_60/gs_nfv002v010101p.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://agilemanifesto.org/
https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7665.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc3198.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc3198.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc3060.txt.pdf
https://ieeexplore.ieee.org/document/6234890
https://ieeexplore.ieee.org/document/26694
https://ieeexplore.ieee.org/document/26694
https://tools.ietf.org/pdf/rfc2753.pdf
https://tools.ietf.org/pdf/rfc2753.pdf

Bibliography

[13] N. Bjørner, L. Moura, L. Nachmanson and C.Wintersteiger. Microsoft Research.
”Programming Z3”. [Online]. Available: https://theory.stanford.edu/~nikolaj/progr
ammingz3.html.

[14] J.Moffett andM. Sloman. ”Policy hierarchies for distributed systemsmanagement,”
Selected Areas in Communications, IEEE Journal on, vol. 11, no. 9, pp. 1404-1414,
December 1993.

[15] M. Vallini, C. Basile, C. Pitscheider and F.Valenza. ”SECURED deliverable D4.1 -
Policy specification”, March 2015.

[16] C. Basile, A. Lioy, C. Pitscheider, F.Valenza and M. Vallini. ”A novel approach for
integrating security policy enforcement with dynamic network virtualization”, April
2015.

[17] G. Booch, J. Rumbaugh and Ivar Jacobson. ”The Unified Modeling Language User
Guide, 2nd Edition”, May 2005.

[18] ISO 7498. ”The Basic Reference Model for Open Systems Interconnection”, iso-
7498, October 1984.

[19] B. Volz, E. Cain, E. Kohler, J. Postel, M. Lottor, M. Accetta, R. Stewart, R. Adams,
R. Nethaniel, R. Thomas and R. Ullmann. IANA. ”Service Name and Transport
Protocol Port Number Registry”, May 2019. [Online]. Available: https://www.iana
.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml.

[20] Roy Thomas Fielding. ”Architectural Styles and the Design of Network-based Soft-
ware Architectures”, 2000. [Online]. Available: https://www.ics.uci.edu/~fielding/
pubs/dissertation/fielding_dissertation.pdf.

[21] M.Hadley, P. Sandoz. ”JAX-RS: Java™API for RESTfulWeb Services”, September
2008. [Online]. Available: https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-e
val-oth-JSpec/jaxrs-1.0-final-spec.pdf?AuthParam=1562875456_5646adf1e2027
45f73038a249a0bcc7f.

156

https://theory.stanford.edu/~nikolaj/programmingz3.html
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?AuthParam=1562875456_5646adf1e202745f73038a249a0bcc7f
https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?AuthParam=1562875456_5646adf1e202745f73038a249a0bcc7f
https://download.oracle.com/otn-pub/jcp/jaxrs-1.0-fr-eval-oth-JSpec/jaxrs-1.0-final-spec.pdf?AuthParam=1562875456_5646adf1e202745f73038a249a0bcc7f

Index

Action, 35, 76
Agile, 13
Application Layer, 11
Authors, 68

BlackList, 63

CAID, 29
Capability, 36, 95
CapabilityModel, 38
Catalina, 139
Constraints, 101
Control Layer, 11
Control plane, 9
Cost, 6
COTS, 6

Data plane, 10
Domains, 64

ETSI, 6
ETSI ISG NFV, 7
Extensible, 34

Feature, 95
Field, 35, 78
Flexibility, 6
Flexible, 34

Gurobi, 106

Hard-Constraint, 21

ILP, 106
Infrastructure Layer, 11
Internet, 9
IP, 9

JAX-RS, 139

Jersey, 139
JUnit, 139

KnowledgeBase, 62

LAN, 9
low-level, 9
LPL, 42

Management plane, 10
Multiple-Objectives, 102

NED, 37
NFV, 5
NFV MANO, 7
NFVI, 7
NFVO, 8
NS, 8
NSFCatalog, 84

Object, 35, 77
ONF, 11
OpenFlow, 11
Operation, 72

PCIM, 16
PoliciesHP, 82
policy, 15
policy rule, 2
PolicyHPL, 83
PolicyRepository, 31, 61
PolicyRepositoryHPL, 70
PolicyRuleHPL, 83
Ports, 64
PSA, 37

REST, 120

157

Index

SAP, 26, 29
Scalability, 6
Security, 6
SFC, 13
Simple, 34
SMT, 21, 103
Soft-Constraint, 22
Subject, 34
Subjects, 69

Template, 71
Templates, 71
Tomcat, 139
TrafficTargets, 65

UML, 37
URLS, 64
Users, 68

vendor-specific, 9
VIM, 8
VNF, 5
VNFM, 8

W3C, 31

XML, 31

z3, 103

158

	List of Figures
	List of Tables
	Introduction
	Background
	Software and Virtualized Network
	Network Function Virtualization (NFV)
	Software-Defined Networking (SDN)
	Service Function Chaining (SFC)

	Policy languages and Specifications
	Definition
	Policy framework architecture
	Policy languages

	Tools
	Z3
	Gurobi

	Problem Statement
	Approach
	Workflow
	Policy Languages
	High-level Policy Language (HPL)
	Medium-level Policy Language (MPL)
	Low-level Policy Language (LPL)

	Capability Identification
	Selection, Optimization and Placement
	Example

	Policy and Function Models
	Policy Repository
	KnowledgeBase
	BlackList
	TrafficTargets
	Users
	PolicyRepositoryHPL
	Templates
	Operation
	Action
	Object
	Field
	PoliciesHP
	PolicyRuleHPL

	NSF Catalog
	NSF
	GeneralInfo
	SoftwareInfo
	HardwareInfo
	Functionality

	Capabilities
	Hosts

	Selection and Optimization phase
	Constraints and Objectives
	Constraints
	Multiple-Objectives

	Z3 formulation
	Z3 Symbols
	Z3 Hard-Constraints
	Z3 Soft-Constraints

	Gurobi formulation
	Gurobi Symbols
	Gurobi Constraints
	Gurobi Multi-Objectives

	Comparison and final discussion
	Further development

	Implementation
	Installation Guidelines
	JAVA JDK 8 SE
	Apache Ant
	Apache Tomcat
	Neo4j
	Gurobi

	Folders organization
	REST API
	Service Design
	API Description
	Service Deployment

	Evaluation
	Tests on CAID
	Tests on SAP

	Conclusion
	Bibliography
	Index

