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Summary

Nowadays many activities of our daily lives are essentially based on the Internet.
Information and services are available at every moment and they are just a click
away. Wireless connections, in fact, have made these kinds of activities faster and
easier. Nevertheless, security remains a problem to be addressed. If it is compro-
mised, you can face severe consequences. When connecting to a protected Wi-Fi
network a handshake is executed that provides both mutual authentication and ses-
sion key negotiation. A recent discovery proves that this handshake is vulnerable
to key reinstallation attacks. In response, vendors patched their implementations
to prevent key reinstallations (KRACKs). However, these patches are non-trivial,
and hard to get correct. Therefore it is essential that someone audits these patches
to assure that key reinstallation attacks are indeed prevented.

More precisely, the state machine behind the handshake can be fairly complex.
On top of that, some implementations contain extra code to deal with Access
Points that do not properly follow the 802.11 standard. This further complicates
an implementation of the handshake. All combined, this makes it difficult to reason
about the correctness of a patch. This means some patches may be flawed in
practice.

There are several possible techniques that can be used to accomplish this kind
of analysis such as: formal verification, fuzzing, code audits, etc. Among all of
these, software fuzzing is, de facto, one of the most popular vulnerability discovery
solutions and for this reason has been selected. Feasibility and methodology on how
to fuzz an open-source implementation with a goal to detect potential flaws will
be discussed and presented. The goal of this thesis is then to define whether it is
possible to detect software bugs in a protocol implementation, including protocol-
level vulnerabilities like KRACK, using a systematic approach and in an automated
way.
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Chapter 1

Introduction

Nowadays many activities in our daily lives are essentially based on the internet.
Information and services can be accessed with one click, making life easier. Various
forms of communication, online shopping, financial services, entertainment and ad-
ministration are condensed in one place. Along with the bright side of the internet,
it hosts a dark side as well. The risks of using it are real and boundless. Whenever
personal information, messages, banking information, picture or videos are sent via
the internet, one can expect those to be secure and private. For the most part,
internet is indeed secure and private, however there are still a number of severe
security risks.

Many methods are used to protect against these dangers to the multiple layers
of the internet, to try and ensure a certain degree of security. At network layer,
for example TCP/IP protocol, can be protected using cryptographic methods and
security protocols. Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
are two clear example of this kind of security protocol. These two cryptographic
protocols are designed to provide communications security over a computer net-
work. The TLS protocol finds its major use in providing privacy and data integrity
between different computer applications. For instance, several versions of the pro-
tocol are used in applications such as web browsing, email, messaging and Voice
over IP (VoIP) [1].

In the last few years, we have witnessed a wide spread of Wi-Fi networks all over
the world. Of course, there are security protocols specifically designed to protect
this kind of communication. These protocols are WPA1 and WPA2, and more
recently WPA3. On a physical layer, in order to establish a connection, an Access
Point (AP) is necessary. This device allows other Wi-Fi devices to connect to a
wired network.

Usually, an access point is connected to a router via wired network, but can
be also an integral component of the router itself. Since wireless networks do not
require physical access to network equipment, unlike wired networks, it became
easier for unauthorized users to passively monitor a network and capture all trans-
mitted packets. To avoid this kind of situation, link-layer encryption can be used

1Wi-Fi Protected Access
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1 – Introduction

and provide a layer of security for wireless networks also. After the initial usage of
WEP (Wirless Equivalent Privacy) proved to be flawed, WPA and IEEE 802.11i
amendments to the wireless LAN standard introduced a much improved mechanism
for securing wireless networks. Exploiting encryption mechanisms based on strong
cryptographic algorithms, for example AES(CCMP), ensured a greater efficiency
in protection against unauthorised access. The software implementation that is in
charge of taking care of all these issues is the wpa supplicant. As a matter of fact, it
implements WPA key negotiation with a WPA Authenticator and EAP authenti-
cation with an Authentication Server. It is designed to be a daemon program that
runs in background and act as back-end component able to control the wireless con-
nection. Of course, the supplicant can do its work whenever the network interface
is available, meaning that the physical device must be present and enabled. The
wpa supplicant has a primary role in the wireless connection making it a crucial
component when considering security[2].

A lot of effort has been made in order to provide and ensure security when
communicating on the internet, both wired and wireless. Nevertheless, in the last
few years, several major attacks have been made against the internet, exploiting
flaws and vulnerabilities. One of the most serious is the “Heartbleed” bug, a vul-
nerability found in the popular OpenSSL cryptographic software library. This flaw
allows the attacker to steal the information protected by SSL/TLS encryption used
to secure the internet. Basically, anyone on the internet can read the memory of
the system protected by the vulnerable versions of the OpenSSL software. This
compromises the secret key used to identify the service providers and to encrypt
the traffic, names and passwords. Thereby, the attacker is able to eavesdrop on
communications and steal data impersonating both the user and the provider itself
[3]. Another example is “CloudBleed”, a security bug affecting Cloudflare’s reverse
proxies. This vulnerability caused edge servers to run past the end of buffer (i.e.
buffer overrun) and return a portion of memory that was intended to store private
information such as HTTP cookies, authentication tokens, etc. [4]. These are just
two examples of the many software bugs that can affect the internet.

Even internet protocols can suffer from vulnerabilities and a clear example is
the WPA2. Recent discoveries have proved that the WPA2 protocol and its im-
plementation are not as secure as initially thought. The “(K)ey (R)einstallation
(A)tta(CK)” abuses features of the protocol to reinstall an already in-use key, reset-
ting the nonce and the replay counter associated to this key. The attack has been
proved to be devastating with severe consequences on a large number of Linux and
Android devices using the wpa supplicant. In response to this discovery, vendors
patched their implementations to prevent key reinstallation. Clearly, these patches
are not simple at all, neither are they all-encompassing, meaning that flaws can
still be around. In this work we propose a security analysis of one of the patches
released by Intel.

2



1 – Introduction

Main research questions for this work are the following:

• If and how it could be possible to find software bugs, in a protocol implemen-
tation, using a systematic approach and in automated way?

• Is it possible to find protocol-level vulnerabilities, like KRACK, exploiting
fuzzer analysis?

• Is it possible to devise a generalised methodology to apply automated vulner-
ability detection to cryptographic protocol implementations?

An established approach to automate the search for vulnerabilities is software
fuzzing. Fuzzing, for instance, is an automated software testing technique that
allows the tester to provide either invalid, unexpected or random data inputs to
a target program. In doing so, the program is monitored for exceptions such as
crashes, failing built-in code assertions, and potential memory leaks. The way the
fuzzer performs its analysis differs based on what kind of strategies it uses [5]. In
this work we focus on evaluating how American Fuzzy Lop (AFL) can be applied
to protocol implementation with respect to the above research questions.

We have proved that is possible to devise a methodology to allow software
fuzzing with the intent of detecting software vulnerabilities and protocol-level vul-
nerabilities in an open-source implementation of the 4-Way Handshake. By turning
unit tests into test harnesses for a fuzzer it is possible to analyse, and eventually
identify, potential flaws in this kind of implementation.

The thesis is structured as follows: a background overview about well-known
vulnerabilities, WPA2, 4-Way Handshake and KRACK will be given. Subsequently
a background overview about discovery techniques will be presented, stressing the
concept of fuzzing and discussing AFL in detail. Eventually the attention will be
focused on the methodology needed to prepare Inet Wirless Deamon, the successor
of wpa supplicant, to be fuzzed in order to discover software vulnerabilities. In
the end, a potential approach to fuzzing protocol-level vulnerabilities will be given
along with the implementation needed to do so.

3



Chapter 2

Background on WPA2 and its
vulnerabilities

2.1 Vulnerability

The term vulnerability is rather common in the computer security field and over
the years this term has become more and more relevant and crucial. A vulnerability
is generally associated with a violation of a security policy and may be caused
due to weak security rules or just a problem within the developed software itself.
Theoretically speaking, all computer systems present some kind of vulnerabilities,
whether they are devastating or not depends on how they can be exploited to
damage the system. In the past years we have seen many attempts to clearly
define what a vulnerability means. One of the most valuable is MITRE’s one, a
US federally funded research and development group, that has its own focus on
analysing and solving critical security issues. They state that:

“A universal vulnerability is a state in a computing system (or set of systems)
which either: allows an attacker to execute commands as another user allows an
attacker to access data that is contrary to the specified access restrictions for that
data allows an attacker to pose as another entity allows an attacker to conduct a
denial of service MITRE believes that when an attack is made possible by a weak
or inappropriate security policy, this is better described as exposure.” [6]

An exposure can be seen as a precise state in a computing system which is not
meant to be considered a universal vulnerability. In fact, general exposure is either:

• a possibility for an attacker to conduct information-gathering activities aimed
to break the system;

• a possibility for an attacker to hide certain kinds of activities;

• when the inclusion of a set of capabilities behave as designed but can be easily
compromised and caused to break down;

• a primary entry point, through which an attacker may attempt to gain access
to the system or data, which is meant to be a problem according to some
reasonable security policies;

4



2 – Background on WPA2 and its vulnerabilities

• when trying to gain unauthorised access to a targeted system, an attacker
usually performs a routine scan of it, collecting any exposed data, and then
takes advantage of it exploiting security policy weaknesses and/or vulnerabil-
ities.

For this reason, vulnerabilities and exposures are therefore both crucial points
to carefully check and ensure while securing a system against unauthorised access
or potential breaks [6]. Based on this definition it is clear enough how important
it is to be able to detect these kinds of flaws and devise a plan, or a methodology,
to somehow stem them in the most appropriate way.

2.2 Low-level Software Security

Once it has been defined what a vulnerability is, it is legitimate to give a brief
overview of the well-known C language vulnerabilities and how they can be elim-
inated or at least contained. When dealing with software development many as-
sumptions are made by the programmer, both implicitly and explicitly. Those
assumptions, like concurrency, address encoding in pointers, order of heap alloca-
tion, size of a memory buffer, etc. and may lead to incorrect execution when the
environment changes, even slightly. All of the cited assumptions are strictly re-
lated to low-level software security, and each one of them may cause the software
to be unguarded towards attacks. On the other side, attackers make assumptions as
well, and low-level software attacks rely on a number of specific properties about the
hardware and software architecture of their target. Of course, also defence mech-
anisms are based on assumptions, which includes the capabilities of the attacker
himself, the likelihood of the several types of attacks, the property of the software
being defended and the execution environment. In order to have a full picture of
the topic a brief overview and analysis of four low-level softwares will be given.
These, for major class of attacks, are: stack-based buffer overflows, heap-based
buffer overflows, return-to-libc attacks and data-only attacks.

5



2 – Background on WPA2 and its vulnerabilities

Stack-based Buffer Overflows

Whenever a function is invoked at a particular call site, running until completion
without incurring any exception, it is expected that that function will return to
the instruction immediately following the caller. But, as said previously, this is an
assumption that may be wrong in the presence of software bugs. For example, if
the invoked function contains a buffer, and writes into that buffer are not guarded
in a proper way, then the return address on the stack may be altered. This means
it will be overwritten and corrupted. In such a case, if an attacker controls the
data manipulated by the function, they will be able to trigger that corruption and
change the return address to an arbitrary value. If so, on function returns, the
attacker can direct execution to a malicious code and gain full control of over the
entire behaviour of the software from that moment on [7]. Figure [2.1]1 shows an
example of that.

Figure 2.1. Buffer overflow example

Heap-based Buffer Overflows

In the C language it is rather common that data buffers and pointers into data
structure are combined. The programmer may not be aware of the fact that the
data values can somehow affect the pointer values themselves. As said before, as-
sumptions have to be taken into account and in the case of software bugs disastrous
situations can arise. Specifically, the pointers may be corrupted as result of an over-
flow of the data buffer. This situation can verify that either the data structures

1Source: https://ebrary.net/26682/computer science/applications

6



2 – Background on WPA2 and its vulnerabilities

reside onto the stack or in the heap memory. For example, copying data into a
buffer using the strcpy and strcmp library functions can lead to such a situation.
The mechanism to carry out this kind of attack is very similar to the previous one,
except for the fact that it is exploiting heap instead of stack. The consequences
of such attack can result in the attacker gaining full control over the target which
makes him free to completely change the behaviour of the software [7].

Return-to-libc

Differently from the attacks previously presented, that are vulnerable to direct code
injection, there some countermeasures and situations in which the attacker needs
to find a different strategy to exploit software flaws. In particular, one different
approach to craft an attack may be executing a machine code that is already present
on the target software in manner that is unexpected and not intended by the
programmer. The attacker, as a matter of fact, could corrupt a function pointer
to cause the execution of a library function that usually should be unreachable in
the original source code and never executed. For this reason those kind of attacks
are typically referred to as return-to-libc, as demonstrated by figure [2.1]2. It is
easy to see why those are preferable to others when the target software is based
on architecture where input data is not executed directly as a machine code [7].
So, the indirect code injection is based on the execution of the target software’s
existing machine code in way that makes the attacker able to execute their own
chosen input as a machine code instead, in order to gain control.

Figure 2.2. Return-to-libc example

2Source: https://www.slideshare.net/stogers/day-11introswvuls
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2 – Background on WPA2 and its vulnerabilities

Data-only Attacks

The last assumption that can be made while writing code is about the integrity of
the data that is going to be manipulated. One example could be the value of a
global variable, initialised at same point, and thought to be unchanged throughout
the software’s execution if it was never written by the software itself. Once again
the assumption may not be correct in presence of a bug. This can obviously open
the door to the injection of malicious codes aiming to alter the normal behaviour.
An example could be usage of the getenv routine of the standard C library. This
routine returns the exact string that was passed through the routine call system that
determines what external command is launched. In such situations, the attacker is
able to corrupt the table of the environment strings in order to launch an external
command of their choice. By doing that it is clear how, for the attacker, is easy to
make the software execute a malicious code [7].

All of those attacks that have been presented can be stemmed and blocked with
specific techniques. These defences are stack canaries, non-executable data, control
flow integrity and address-space layout randomization (ASLR). In this work we
will not discuss them, but is still important to keep in mind that for the presented
software bugs we do have countermeasures that somehow can guard and defend our
software from being attacked and exploited by a malicious third party. Furthermore,
apart from the well-know ones, there are other software bugs that have to be taken
into account that have not been discovered, or at least analysed, yet.

2.3 4-Way Handshake Principles

Indeed, it might be possible that software vulnerabilities are also present in software
used to deal with the functioning of an internet protocol. The protocol that is
treated in this work is the WPA2 protocol. For this reason it is legitimate and
necessary to have an overview of the protocol itself and the vulnerability that has
been discovered as affecting it. Most of the Wi-Fi networks that are used today are
protected and secured by the WPA2, also known as Wi-Fi Protected Access 2. Even
the public hotspots that are wide spread around the world, are running under the
WPA2 protocol despite the fact that authentication is not performed for obvious
reasons but the encryption should be used instead. Such encrypted networks are
based on the Wi-Fi handshake that is able to securely negotiate a fresh pairwise
key and use this key to ensure that the normal traffic exchange across the network
is encrypted. An essential point of the work is surely to understand where the
4-Way Handshake is placed and how it works during the establishment of a secure
connection between a generic client and a generic server.

2.3.1 Technical and Historical Background

At its creation, the 802.11 original standard supported a basic security protocol
called WEP (Wired Equivalent Privacy). However, unfortunately it was designed
in a such way that many flaws were present and today it is considered completely

8



2 – Background on WPA2 and its vulnerabilities

broken[8][9][10]. For this reason the IEEE proposed two solutions: a long-term one
and short-term one. The long-term solution is called (AES-)CCMP, that basically
uses an AES in counter mode for confidentiality and CBC-MAC for authenticity.
The problem at the time was that most of the vendors implemented the crypto-
graphic primitives of WEP in hardware and, as a result, an incompatibility issue
arose and older devices were unable to support CCMP. In order to solve this prob-
lem a short-term solution was designed and it was called (WPA-)TKIP protocol. In
principle it is very similar to WEP but it is based on RC4 cipher meaning that the
older devices can support TKIP using only a firmware update. Once the protocol
802.11i was standardized, the WPA2 certification program started, requiring that
a device had supporting CCMP and was still able to achieve retro-compatibility
with the TKIP. This led to an important misconception: even though WPA2 was
claimed to be used, meaning (AES-)CCMP, the reality is that the WPA2 network
might still be using TKIP instead.

2.3.2 Functioning

There are 5 different stages that regulate the functioning of the 4-Way Handshake
protocol.

Stage 1: Network Discovery Networks can be discovered essentially in two
ways: one way is by passively listening for a beacon or, alternatively, by
actively sending a probe request. When the Access Point (AP) receives the
latter kind of request it will reply to the sender with a probe response. In
both cases, the response contains the name and the capabilities of the network
and, along with those two, the RSNE3 will be sent. This will contain several
pieces of useful information such as the supported pairwise cipher suites of the
network, the group cipher suite that will be used, and the security capabilities
exposed by the AP. After the client has found a network to connect to, the
handshake process can start and the connection can be established. During
this phase the client will be known as the supplicant, while the access point
will be called authenticator.

Stage 2: Authentication and Association In stage 2 the supplicant will start
authenticating itself with the authenticator and vice versa. After this action
has been completed the supplicant will continue by associating with the net-
work. The entire process is shown in figure [2.3]. There are four authentica-
tion methods defined in the 802.11i standard but here we will consider only
one: the Open System authentication, that allows any supplicant to success-
fully authenticate. When considering a network using RSN security the real
authentication is usually performed during stage 4, specifically with the 4-
Way Handshake. In fact, once the supplicant has successfully authenticated
itself, the association will be done by sending a request to the AP informing
it about the features supported. It’s important to notice that at this level

3Robust Security Network Information Element
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pairwise and group chiper suite are chosen and so that has to be used by the
participants. This choice is encoded inside the RSNE element.

Figure 2.3. Frames sent in the 802.11 handshake

Stage 3: 802.1x Authentication This stage is optional and it consists of 802.1x
authentication to a back-end Authentication Server. In this phase the authen-
ticator is in charge of acting as a kind of relay between the supplicant and the
Authentication Server. Being that 802.1x is commonly used in enterprise net-
works, using a username and password for the login will result in the exchange
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of the shared secret between supplicant and authenticator. This shared secret
is called the Pairwise Master Key or in short PMK.

Stage 4: 4-Way Handshake In this stage the formal 4-Way Handshake is per-
formed in order to provide mutual authentication based on the Pairwise Mas-
ter Key (PMK). That provides detection functions on possible downgrade at-
tacks and negotiates a fresh session key called Pairwise Transient Key (PTK).
Downgrade attacks can be detected by cryptographically verifying the RSNEs
that have been received during stage 2. The PTK is derived from the Authen-
ticator Nonce, Supplicant Nonce, and the MAC address of both supplicant
and authenticator. The 4-Way Handshake generally also provides a Group
Temporal Key from the authenticator to the supplicant. The 4-Way Hand-
shake can be defined using EAPOL-Key frames, shown in figure [2.4]. The
descriptor type determines the structure of the EAPOL-Key frame itself. Fol-
lowing this 5 byte header we find the key information field consisting of 3-bits
key descriptor version and 1 bit for the key info flags. The key descriptor
field, instead, defines the cipher suite that is in use in order to protect the
frame. As said, the choice of this is negotiated in the first stage. The replay
counter field is used to detect if any replay has been done. In fact, when the
supplicant replies to an EAPOL-Key frame, coming from the authenticator,
it must use the same replay counter that has been received previously proving
its veracity. Eventually, the integrity of the frame is protected by using the
Message Integrity Check, or MIC, and the key data field is encrypted in case
it contains sensitive data. During this stage we found four messages:

Message 1 : sent by the authenticator and containing randomly generated
ANonce of the authenticator itself. Here the two information flags need
to be set and they are Pairwise and Ack, represented by label Msg1.
It is important to notice that, at this level, there is no protection by a
MIC. Hence, it could be possible for an attacker to forge this kind of
message. Once the supplicant has received the message and is aware of
the ANonce it is possible for it to compute and derive the PTK.

Message 2 : contains the random SNonce of the supplicant and is going to
be protected by a MIC. In this message the key information flags to set
are Pairwise and MIC, represented by label Msg2. Here it’s important
to note that in the Key Data Field of the EAPOL message the RSNE
element is stored - that contains the cipher suite chosen by the suppli-
cant in the association request sent before. Once the authenticator has
received this message, is able to calculate the PTK, verify the MIC and
check if any miss-match occurs between the old RSNE and the fresh one
that has been received. If any discrepancy occurs the protocol is aborted
instantly.

Message 3 : sent from the authenticator in response to the supplicant, it
again contains the ANonce and secure by the MIC. The required key
information flag here are Pairwise, MIC and Secure (labelled in Msg3),
while the Key Data field will contain the supported cipher for the AP,
wrapped into the RSNE. In case WPA2 is used the GTK is also included.
When the supplicant receives this message, as done previously by the
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authenticator, the RSNE is checked with the one received when the
protocol first took place. If the the two RSNE differ then a downgrade
attack has been detected and the handshake is aborted.

Message 4 : this is the last message and it is sent by the supplicant in order
to inform the authenticator that the handshake has been completed in
a proper way. As the previous message, even this one is protected by
a MIC and, the key info flags are Pairwise, MIC and Secure labelled
as Msg4. Finally, once the authenticator has successfully received the
message 4, encrypted data frames can be transmitted.

Figure 2.4. Layout of Eapol-Key frame

Stage 5: Group Key Handshake This last stage is required when a WPA1 is
used to transport the group key to the supplicant and it is used to protect from
broadcast and multicast traffic. The procedure is also used to periodically
renew the group key. The figure [2.4] shows the steps that regulate the 4-
Way Handshake during the connection establishment [11].

2.4 The KRACK attack

After a brief overview on how the WPA2 protocol works, it is important to under-
stand in which way it is possible to attack and exploit its vulnerabilities. Therefore
we introduce the attack. The Key Reinstallation Attack (KRACK) abuses main
features of protocol to reinstall an already in-use key by resetting the nonces and/or
the replay counters associated to it. In its 14 years lifetime the 4-Way Handshake
has been thought to be secure due to the fact that no weaknesses were discovered
during this period. Additionally, it was actually proven to be secure. But in this
kind of attack, the adversary can trick the victim in to reinstalling an already in-use
key without the latter even being conscious of it.

Nowadays all the Wi-Fi networks that are used worldwide have a WPA2 pro-
tection as a defence mechanism against possible attacks. This kind of technol-
ogy relies obviously on the 4-Way Handshake defined in the standard 802.11i. As
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mentioned previously, the 4-Way Handshake provides mutual authentication and
also a session key agreement for the authenticator and the supplicant. This can
be achieved thanks to the (AES-)CCMP, data-confidentiality and integrity. Since
its introduction in 2003 no breaches in the protocol were found, apart from the
weaknesses encountered by using TKPI (that was uniquely intended as short term
solution)[12][13].

The idea behind the attack actually is more trivial than one can imagine and
can be sketched in the following way: Consider a client joins a network and the
4-Way Handshake is executed in order to negotiate a fresh session key. This key is
usually installed after message 3 has been received and it will be used to encrypt
data frames using a confidentiality protocol. At this point, it is important to notice
the fact that messages can be lost or even dropped. Hence the AP, in this case,
is in charge of retransmitting the message if it does not receive a proper response
as acknowledgement from the supplicant. As a direct result, message 3 can be
received multiple time. Each time it will reinstall the same session key, resetting
the nonce and the receive replay counter used by the data-confidentiality protocol.
Now what an attacker can do is force these nonce resets, by collecting and replaying
transmission of message 3, and in this manner the data-confidentiality protocol can
be exploited and attacked. For example, the packets sending through the channel
are subject to replay, decryption and/or forging. The same technique is also used
to attack the group key, PeerKey and the FBSS transition handshake. The attack
described above turned out to be a devastating attack against version 2.4 and
higher of “wpa supplicant” - one of the Wi-Fi clients most commonly used in the
Linux system. Since Android uses a modified version of the wpa supplicant all the
Android versions from the 6.0 to the newer ones are affected.

2.4.1 Supplicant state machine

In order to understand how the attack is mounted, it is necessary to have a look
at the supplicant state machine and explain how the attack is executed in practice.
The 802.11i amendment does not come with a formal state machine, that explains
how the supplicant should be implemented, it just provides a pseudo-code that de-
scribes how, but not when, a certain message should be processed and handled [14].
In one of its extensions, precisely the 802.11r, the 4-Way Handshake protocol came
along with a detailed state machine of the supplicant showed in figure [2.5]. When
a connection to a network takes place for the first time and the 4-Way Handshake
starts, the supplicant transitions to a PTK-INIT state. In this way it initializes the
PMK and, after receiving message 1, it transitions to the PTK-START stage. This
could occur in two situations: when connecting to a network for the very first time
or when the session key is being refreshed after an already completed 4-Way Hand-
shake. As soon as the supplicant enters in the PTK-START stage it generates a
random SNonce, computes the TPTK (Temporary PTK) and then sends its nonce
to the authenticator by using message 2. At this point the authenticator will reply
using message 3, which will be accepted by the supplicant only if the MIC and the
reply counter are valid. If it is the case, then the supplicant transits to the PTK-
NEGOTIATING state, in which it marks the TPTK as valid and sends message 4
as reply to the authenticator. Then it moves to the PTK-DONE state, where the
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PTK and GTK are installed for usage by the data-confidentiality protocol. At the
end of this process the 802.1X port is opened and the supplicant is able to receive
and send normal data frames. Here it is possible to notice that either message 1 or
3 can be retransmitted when message 2 or 4 are not received by the authenticator.
These retransmissions are possible thanks to the EAPOL replay counter.

Figure 2.5. Supplicant State Machine

2.4.2 Key Reinstallation Attack

After taking into account the functioning of the state machine it is now possible
focus the attention on the attack itself. Since the supplicant accepts retransmissions
of message 3, even when it is in the PTK-DONE stage, it is possible to force
the reinstallation of the PTK. Specifically, the attacker first establishes a man-in-
the-middle (MitM) position between the supplicant and the authenticator. Then,
by exploiting his advantage, he can trigger the retransmissions of message 3 by
preventing message 4 from correctly landing to the authenticator. As a consequence,
it will be brought to retransmit message 3 and the supplicant will be forced to
reinstall an already-in-use PTK. In turn, this will reset the transmit nonce and
the received replay counter that is currently used by data-confidentiality protocol.
Here, depending on which protocol is used, the attacker is allowed to replay, decrypt
and/or forge packets freely.

Of course, there are some situations in which the attack will fail, briefly reported
here: Since not all the Wi-Fi clients are properly using the state machine, i.e.
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Windows and iOS 10, they do not accept retransmissions of message 3 at all. Hence
the attack cannot be carried out successfully. The fact that those clients violate the
standard itself resulted in invulnerability to the key reinstallation attack. However,
they are still vulnerable to attacks against the group key handshake[15].

The second case is that, as it is necessary to establish a MitM position between
supplicant and authenticator, it appears to be impossible to set up a rogue AP
with a different MAC address. Since the session key is clearly based on the MAC
address of the client and the AP this would lead to a different key being derived,
thus causing the abortion of the handshake and the failure of the attack. Exploiting
a channel-based MitM attack [16] would change the situation. Cloning the AP on
a different channel, but with the same MAC address, will assure that both client
and AP will surely derive the same session key, making the attack still possible.

Finally, certain implementations accept only frames that have been protected
using the data-confidentiality protocol after the PTK has been installed. This
could brought to a retransmission of message 3 without any encryption causing the
drop of the message by the supplicant. Again, this could be by-passed with some
technique [15].

Plaintext Retransmission of message 3

In the scenario presented above, if we consider the victim is still accepting the
plaintext retransmissions of message 3 after it has already installed the session key,
it is easy to understand how the key reinstallation attack is straightforward. In the
initial step, the attacker can use a channel-based MitM attack through which he
can manipulate the handshake messages [16]. Soon after this operation is set up,
he can prevent message 4 from arriving to the authenticator, showed in figure [2.6].
As soon as message 4 has been sent the victim will install both PTK and GTK.
At this point also the 802.1x port will be open. This will infer that, from now on,
normal data frames can be transmitted. Then, in the third stage of the attack,
the authenticator will retransmit message 3 because it did not receive message 4
since it has been intercepted by the attacker. At this point the latter forwards the
retransmitted message 3 inducing the victim to reinstall the PTK and GTK. As
result of this action, both replay counter and nonce used by data-confidentiality
protocol are reset. It is important to underline here that the attacker cannot
replay an old message 3 due to the fact that its EAPOL replay counter is no longer
fresh and so it would be refused. In stage 4, the one in charge of completing
the handshake from the authenticator side, since the victim has already installed
the PTK the message is now encrypted making this step not so trivial. Plus, the
authenticator will reject this message 4 due to the fact that its PTK is not installed
yet.

In principle this should happen, but by carefully analysing the 802.11 standard
has been noticed that the authenticator may actually accept any replay counter
used in the 4-Way Handshake previously. Basically, some APs accept replay coun-
ters that were used in a message to the client, but were not yet used in a reply
from the client. In that way those APs will accept the older unencrypted message
4 which has a replay counter r + 1, as shown in figure [2.6]. As result of this
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action, the PTK will be installed and the AP will start sending encrypted unicast
data frames to the client. In the end, when the victim retransmits its next data
frame, the data-confidentiality protocol will reuse nonces. The attacker has the
faculty of managing both the forwarding time between messages and the amount of
nonces that can be reused as well. Moreover, the client could be de-authenticated
by the attacker, after which it will reconnect to the network performing a new 4-
Way Handshake. In figure [2.6] it is possible to notice that, even though no attack
has been mounted by third party, the KRACK attack can happen spontaneously if
message 4 is lost due to background noise. Basically, this would happen when the
client that accepts plaintext retransmissions of message 3 may already be reusing
nonces with no one forcing it to do so [15].

Figure 2.6. Key Reinstallation attack when the victim still accept message 3

2.4.3 All-zero key reinstallation

The focus should be brought on the behaviour that the attacks cause on the
wpa supplicant. In version 2.4 and 2.5 it is indeed possible to reinstall an all-
zero encryption key when a message 3 has been received. The vulnerability seems
to be caused by the fact that the standard 802.11 indirectly suggests to clear the
encryption key from memory when it has been installed. However, when this bug
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has been patched, not all cases have been carefully considered. In fact, the only
case that has been taken into account is a benign one, which is when message 3
is retransmitted because message 4 has been lost due to background noise. As the
case of an attacker abusing this bug was not considered, an active adversary can
abuse of the bug in order to force the reinstallation of an all-zero key. Neverthe-
less, it is possible to abuse the wpa supplicant 2.6 by injecting a forged message 1
between the original and the retransmitted message 3 [17].

17



Chapter 3

Background on discovery
techniques

3.1 Discovery techniques

As explained in the previous chapter, vulnerabilities in the last few years have
become one of the main causes of threats in cyberspace security. A vulnerability
is basically, as defined in RFC 2828[18], a flaw or weakness in a systems design,
implementation, or operation and management that could be exploited to violate
the systems security policy. Attacks on vulnerabilities, for example especially the
ones made on zero day vulnerability, are seriously dangerous and sometime can be
brought to critical situation as well.

Having in mind all the serious leaks of data and damages that have been wit-
nessed over the years it appears clear why a lot of effort has been devoted to
vulnerability discovery techniques in order to protect software and information sys-
tems. Various techniques can be used to achieve this goal such as static analysis,
dynamic analysis, symbolic execution and fuzzing[19]. In this work the main focus
will be on fuzzing because it requires less knowledge of the target and for this rea-
son can be easily adapted and scaled to a large variety of situations and problems.
As a matter of fact, fuzzing is the most popular vulnerability discovery solution.

3.1.1 Traditional discovery techniques

For the sake of completeness it is interesting to briefly go over all of the proposed
techniques before getting into the fuzzing analysis details:

Static Analysis

Static analysis performs its work without actually executing the target programs. It
is usually used to perform an analysis on the source code and seldom on the object
code. Through the analysis of lexical, grammar, semantics features and data flow
analysis, it is able to detect bugs that could be tricky to find in other ways. As its
negatives, static analysis has a high detection speed and it could be able to quickly
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check the target code giving results. However, this speed brings with it a high false
rate along with its hard-to-use model for vulnerability detection. The number of
false positives is rather high and being able to identify the result of the analysis
itself still remains hard work to perform.

Dynamic Analysis

As an opposite to the previous one, in the dynamic analysis of programs, the analyst
has to execute the target problem in real systems or emulators. Dynamic analysis
tools are able to detect program bugs neatly by monitoring the different running
states and by performing an analysis on the runtime knowledge. One of the biggest
advantages is the high accuracy rate that offers, but of course, on the other hand
it requires a heavy human involvement both in terms of effort and in terms of
knowledge and skills. So it is true that dynamic analysis presents a high speed,
but low efficiency due to the lack of scalability and difficult to carry out large-scale
testing. Both are serious problems to take into account.

Symbolic execution

Another vulnerability discovery technique that is to be considered promising is
using symbols throughout the program inputs. The symbolic execution is able
to maintain a set of constraints for each execution path. Eventually, constraint
solvers will be used to resolve all the constraints that have been used and determine
what the inputs are that have caused that execution. Such a technique has shown
good effects in testing small programs but there are some limitations to take into
account. For example, when the scale of the program tends to grow, the execution
states explodes, causing problems to the constraint solvers that are not able to
perform their job properly. Moreover, when the target program execution interacts
with other components, that are out of the environment (i.e system calls, handling
signal, etc.), some problems may arise. In other words, symbolic execution appears
to still be difficult to scale up to large context and applications [20].

Fuzzing

The concept of fuzzing1 was initially proposed in the 1990s[21], and even though
the concept has remained unchanged, the way of how fuzzing is done has grown ex-
ponentially and evolved in the last few years. On the other hand, through the years
it has been noticed that fuzzing tends to to find simple memory corruption bugs
and cover a small part of the target code provided. This could result in a low effi-
ciency while finding major or critical flaws. Using a combination of feedback-driven
fuzzing modes and genetic algorithms can provide a more flexible and customisable
fuzzing framework that makes the fuzzing process more clever and more efficient.
For this reason, fuzzing is the most popular vulnerability discovery technique used

1Image source 3.1: https://medium.com/@nikhilh20/fuzzing-with-american-fuzzy-lop-
quickstart-64d02579a6c5
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Figure 3.1. Fuzzing

today. It starts with generating massive normal and abnormal inputs towards ap-
plication and, at the same time, trying to detect exception by feeding generated
inputs to the target applications and carefully monitoring each execution state. In
comparison with other techniques, figure [3.2], fuzzing presents itself as easier in
deploying and plus it allows us to perform analysis even without the source code.
Another remarkable feature is that fuzzing tests are performed during real execution
and for this reason it gains an higher accuracy. Moreover, it requires a very small
knowledge of the target application, resulting in a scalability gain. Nevertheless, it
presents disadvantages such as low efficiency and low code coverage, but this does
not prevent it from still becoming the most efficient state-of-the-art vulnerability
discovery technique. It is important to understand how the process works and how
it is defined.

Figure 3.2. Comparison table

3.1.2 Fuzzing work process

The main process of the traditional fuzzing process has four main stages, that can
be summarized in this way, figure [3.3]:

• Test case generation stage

• Test case running stage
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• Program execution stage monitoring

• Analysis of exceptions

Figure 3.3. Fuzzing Stages

The fuzzing test is from the generation of several program inputs, usually de-
fined as testcases. Of course this stage is relevant and very important since the
quality of the generated testcases is directly linked with the effects of that tests
performance. Provided inputs have to match the requirements of tested programs
as much as possible. Nevertheless, they should be broken enough in order to make
their processing good enough to force the program into a failure. Inputs can be of
various types, e.g. different file formats, network communication data, executable
binaries, etc. One of the main challenges resides in understanding how to generate
broken enough testcases. In state-of-the-art fuzzers two kinds of generators are
typically used and they are the generation based and mutation based.

Testcases are fed to target programs after they have been generated in the pre-
vious phase, then fuzzers automatically start the target program process until its
end while driving the testcase to handle process of target programs. The analysts,
before the execution takes place, are in charge of configuring the way the target
programs start and finish and also pre-defining which parameters and environment
variables have to be used. In a normal execution the fuzzing process should stop
at a predefined time-out, program execution hangs or crashes. While running the

21



3 – Background on discovery techniques

fuzzer monitors the execution state during the execution of the program, seeking
for exception and/or crashes. When some violation is captured by the fuzzer it
stores it in the correspondent testcase result folder, that can be used later to replay
the crash and perform further analysis. For some kinds of violations, that are not
so straightforward to be analysed, it is possible to use several tools, i.e AddressSan-
itazer, DataFlowsanitazer, etc. In the subsequent analysis stage, the analyst could
try to determine the location and also the root cause of the violations collected.
This part of the job can be done by means of debuggers like GDB or otherwise.

As told before, a fuzzer can be classified in two big families:

• Generation Based : with this kind of fuzzer, the knowledge of program
input is strictly required, along with a configuration file that basically offer
the guidelines to generate testcases. In fact, given a basic knowledge, the
generated testcases are able to pass the validation of the programs easily, but
it is essential to have a friendly document to do so, otherwise analysing the
file format could become really tough work. This kind of fuzzer are easier to
start and this makes them the more applicable and widely used today.

• Mutation Based : requires a set of valid initial inputs so that testcases
are generated throughout the mutation of the initial inputs and testcases
generated during the first fuzzing process.

3.1.3 Types of Fuzzers

Another important aspect to consider is surely the type of fuzzers that exist. As
mentioned, we have generation based and mutation based, but depending on the
program source code and the degree of program analysis, fuzzers can be also divided
and classified in white, grey and black boxes.

• White box are assumed to have all access to the source code and a lot of
additional information can be gathered during the analysis on the source
code and how test cases have affected the program running state.

• Black box perform fuzzing tests without any knowledge of the source code.

• Gray box also does not have source code awareness but the information is
collected from a program analysis.

Another classification can be done based on the strategies adopted to explore
programs. Thus we have directed fuzzing and coverage-based fuzzing.

• The goal of a directed fuzzer is to generate test cases that can cover the target
code and the target paths of a program and lead to a faster test on programs;

• A coverage-based fuzzer tries to generate as much code of programs as possible
and so expects a more thorough test along with discovering a bunch of bugs.

Still, both of them have a problem, a key challenge, that is how to extract infor-
mation of executed paths. Fuzzers can be also classified as dumb or smart.
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• Smart fuzzer are able to adjust the generation of testcases based on the col-
lected information and how the testcases have affected the program behaviour.
For example, considering a mutation based fuzzer, the feedback could be used
to determine which and how to mutate part of the input in order to have bet-
ter results.

• Dumb fuzzer does not require the input model and for this reason can be
deployed to fuzz a wider variety of programs.

3.1.4 Key Challenges in Fuzzing

There are several challenges that todays fuzzer needs to face and solve:

• mutate seed input

• low code coverage

• passing the validation

The first one is generically solved by using mutation based generation, but in
this case questions still arise. Where to mutate and how to do so? Exploiting
only mutation on a few key points could affect the the control flow of the program,
and how to locate this key “hot-spots” in test cases has importance. The way
fuzzers mutate has an impacting importance, and so, for blind mutation it could
end up seriously wasting testing resources while a more conscious mutation strategy
could increase and improve the efficiency of testing significantly. In conclusion,
by answering this question is possible to cover more program paths and is easier
to trigger bugs. For the second challenge, the work done until now has proved
that better coverage results in a higher probability of finding bugs. Despite that,
most test cases only cover the same few paths, while most of the codes could
not be reached and fairly analysed. So from this we can understand that it is
not a sensible choice to achieve high coverage only exploiting a large amount of
testcases generation and using them as testing resources. In order to solve this
problem coverage-based fuzzers try to address this problem with the help of some
program analysis technique, like code instrumentation. The last challenge is about
validation. Programs, generally, validate inputs before parsing and handling. The
validation works as a sort of guard of programs used to protect program against
invalid input and damage that can be caused by maliciously constructed inputs.
For example, invalid test cases are always discarded or simply ignored.

3.1.5 Coverage-Based Fuzzing - AFL

This kind of strategy is the most spread and used by state-of-the-art fuzzers and
has been proved to be one of the more effective and efficient. The fuzzers try to
traverse as many running states of the program as possible. Using this scheme it is
still possible to have a loss of information and certain degree of uncertainty. AFL is
one of kind of fuzzer that exploits this scheme of working. In the program analysis,
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the program itself is composed by basic blocks that are basically code snippets with
a single entry and a single exit point. The instructions will be sequentially executed
and executed only once. In code coverage measuring, state-of-art methods take ba-
sic block as the best achievable granularity. This is because of the fact that basic
blocks are the smallest coherent units in a program execution. Measuring function
would end up in an information loss or redundancy problem. Finally, basic block
information can be easily gathered through code instrumentation. Nowadays, the
two basic measurement choices based on basic block are either simply counting the
executed one or counting the actual transition performed. In the latest method,
what happens is that the program is seen and interpreted as a graph, where vertices
are used to represent basic block while the edges turn to be transitions between ba-
sic block. In this way not only basic blocks are recorded, but also edges. This lead
to a better coverage that could not be achieved with a simple basic block recording.
AFL2 is the first to introduce the edge measurement method into coverage-based
fuzzing. AFL gains the coverage information via lightweight program instrumenta-
tion. Depending on the source code, AFL provides two instrumentation modes; the
compile-in instrumentation and the external one. In the first one, AFL provides
both gcc and llvm mode which will be able to instrument a code snippet while the
binary code is generated. In the external mode, the qemu mode provided by AFL
will instrument code snippets when basic block is translated to TGC block.

Working process

The algorithm in figure [3.4] shows how the coverage-based fuzzer operates. The test
starts from the initial given seed input, if any, otherwise the fuzzer will construct
one itself. In the main loop, interesting seeds will be chosen for the following
mutation and testcases generation. The target program is guided to execute the
generated testcases beneath the fuzzer monitoring. By doing so, all the testcases
that will trigger crashes are going to be stored for future use, while other worthy
ones are going to be added to the seed pool. The main loop stops at a pre-configured
time-out chosen by the analyst, or a default one or when an abort signal is received.
During the whole process, the fuzzer tracks the execution for two main reasons: code
coverage and security violations. The first one is used to pursue a deep exploration
of the various states of the program, while the latter is better for bug finding.

The target application is instrumented before execution for the coverage collec-
tion and this instrumentation can be done via either compile time, or as external,
with gcc/llvm mode and qemu mode. After a seed has been provided to AFL, in
the main fuzzing loop, the fuzzer chooses a favourite seed from its pool according
to the seed selection strategy. Usually the smallest and fastest are preferred and
picked up. After that seed files are mutated, according to the mutation strategy,
and a certain number of test cases are generated. The last step is that test cases are
executed and the execution is under tracking. Obviously, coverage information is
collected in order to determine which are the interesting test cases (for example the
ones that reach new control flow edges), to add them to the seed pool and exploit
them for the next round of execution. The working process is shown in figure [3.5].

2American Fuzzy Lop
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Figure 3.4. Fuzzing Algorithm

Figure 3.5. Fuzzing Working Process

3.1.6 Fuzzing of protocols

Fuzzing technique has been used to detect several vulnerabilities on different ap-
plications since it was invented. According to the different characteristics of the
target application, it is possible to use different fuzzers that can apply a certain
strategy to face different problems. Since in this work fuzzing is intended to be used
against a protocol, it is useful to mark how it can be done in this context. In the
recent past, lots of local applications have been transformed into network services
in a B/S mode. In this configuration, services are deployed on a network and client
applications can communicate with those exploiting network protocols. For this
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reason, security testing on network protocols became more and more crucial and
a source of concern. Security flaws in protocols could be much worse than local
applications flaws, in fact they can result in serious damages, like DoS (denial of
service) attack, information leakage, defacement and so on. Several challenges are
bound to fuzzing protocols, the first one is that services may define their own com-
munication protocols - which are difficult to determine protocol standards. Plus,
even for documented ones it is still hard to follow a specification such as a RFC
document [22].
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3.2 American Fuzzy Lop

As extensively discussed above, fuzzing is one of the most powerful and proven
strategies for identifying security issues in real-world software and AFL is respon-
sible for the vast majority of remote code execution and privilege escalation bugs
found to date in security-critical software. A brief explanation on the main char-
acteristics are given below.

Design goal of AFL-Fuzz

Speed : AFL is meant to let fuzzing most of the given targets at approximately
their native speed.

Rock-solid reliability : it is designed to be just a very good traditional fuzzer
with a wide range of interesting and useful strategies.

Simplicity : AFL is designed to allow a better understanding of the testing frame-
work. It is possible to manipulate the output file, the memory limit and the
ability to override the default time-out. In case of failure warning messages
are shown to the tester outlining the possible causes and workarounds.

Chainability : AFL allows testers to use more lightweight targets in a way to
create a small corpora of test cases that can be fed into a manual testing or
a UI harness.

Approach to the problem

American Fuzzy Lop is a brute-force fuzzer coupled with a simple, yet solid,
instrumentation-guided genetic algorithm. It uses a modified form of edge coverage
to effortlessly pick up subtle changes that are possible in a program control flow.
The algorithm basically works in 6 steps, that are the following:

1. Load initial test cases provided by the user into the execution queue,

2. Retrieve the input file from the queue,

3. Attempt to trim the test case to the smallest size in a way that does not alter
the behaviour of the target program,

4. Repeatedly mutate the file using a balanced and well-researched variety of
traditional fuzzing strategies,

5. If any of the generated mutations ended in a new state transition recorded
by the instrumentation the mutated output is then added as a new entry in
the queue and later processed.

6. Go to 2.

After test cases have been discovered some of them can be pulled out and create
room for newer ones. As a side result of the process, the tool is able to create a
small self-contained corpus of interesting testcases. These are very useful in order
to seed other.
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3.2.1 Instrumentation

The instrumentation can be carried out by a companion tool that works as replace-
ment for gcc or clan in any standard build process for code deriving from a third
party. Of course this can be done when the source code is available for the analyst.
The instrumentation presents a humble performance impact and, along with other
optimizations made by afl-fuzz, a consistent number of programs can be fuzzed as
fast, or sometimes even faster, than is possible with traditional tools. In case the
source code is not available, the fuzzer also offers an experimental support for a
fast and on-the-fly instrumentation of black-box binaries. This can be done by the
exploiting of Quick EMUlator (QEMU).

3.2.2 Initial test case selection

In order to get valuable results, the fuzzer could require one or more starting input
file that should contain a well-formed good example of the input data. Data are
normally expected to be read from the target application. Generally, it is advised to
keep the files small and to avoid using multiple testcases unless they are functionally
different from each other.

3.2.3 Fuzzing binary

The fuzzing process itself is carried out by the afl-fuzz utility. This program requires
a read-only directory with initial test cases, a separate place to store its findings,
plus a path to the binary to test. AFL gives the possibility to read input data both
from stdin and from file. Clearly, this choice is left to the analyst and it depends
on which kind of target program is under analysis. Is also possible to modify the
timeout and the memory limit for the process in execution, giving a certain degree
of freedom in order to be scalable.

3.2.4 Understand output

Once afl-fuzz is on execution, the process will continue until an abort signal is sent
from the user. It is advisable to let the fuzzer complete, at the very least, one queue
cycle. This could take anywhere between a couple of hours and up to a week. It
is up to the analyst to decide when a process may be considered completed. Three
subdirectories are created within the output directory and updated constantly in
real time:

queue : testcases for each distinct execution path, in addition to all the starting
files provided by the user.

crashes : unique testcases that have caused a fatal signal received in the target
program. These entries are grouped by the received signal.
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hangs : unique testcases that have caused the target program to time out. The
default time out limit before something falls under the classification of hang
is the larger of 1 second and the value of the provided time parameter.

If there is a state transition that has not been recorded in a previous execution
as a fault then both crashes and hangs have to be considered as unique. It could
happen that a single bug can be reached in multiple ways. This will cause a count
inflation in the process in the early stages, but should quickly be resolved and
the number should decrease. The file names generated for crashes and hangs are
obviously related to their parent file, in this way it is possible to speed up and also
help the debugging process.[23]

3.2.5 Status screen

The status screen that is available for the tester during the process is represented
in figure [3.6]. It is divided in 8 boxes, each one showing useful informations with
respect to the current execution.

Figure 3.6. Status screen

Processing timing : shows how long the fuzzer has been running and how much
time has elapsed since its most recent finds.

Overall results : shows the number of times the fuzzer went over all the inter-
esting test cases found so far, successfully fuzzed them and looped back.

Cycle progress : shows how far along the fuzzer is with the current cycle along
with the test case ID.

Map coverage : shows the number of branch tuples hit and variability.
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Stage progess : gives an in-depth look on what the fuzzer is doing at the moment
and which strategy is under usage.

Findings in depth : shows metrics about the number of paths that are mostly
liked by the fuzzer and number of test cases that have reached a better edge
coverage.

Fuzzing strategy yields : shows how many paths have been explored with re-
spect to the number of attempts for each strategy.

Path geometry : shows the path depth reached, how many inputs are still queued,
how many are favourites, the number of new paths found imported from par-
allel fuzzing and the stability of the process

30



Chapter 4

Fuzzing IWD

In this chapter it will be discussed how it is possible to prepare and adapt an Inet
Wireless Deamon to be analysed through fuzzing. For instance, a brief introduction
on IWD architecture will be given. Subsequently the focus will be on how choose
and generate a suitable input seed for the fuzzer, followed by the methodology on
how to turn unit tests into test harness codes able to be fuzzed by AFL.

4.1 iNet Wireless Daemon

iNet Wireless Daemon (also known as IWD) is a project aiming to provide a com-
prehensive Wi-Fi connectivity solution for Linux based devices. The ultimate goal
of the project is to somehow optimize resource utilisation such as storage, runtime
memory and link-time costs. In fact, this is accomplished by not depending on any
external libraries and utilises features provided by the Linux Kernel. This results
in a self-contained environment being developed which only depends on the Linux
Kernel and the runtime C library[24]. In this work we are going stress part of this
library, specifically the implementation related to 4-Way Handshake implementa-
tion.

4.1.1 IWD Architecture

The IWD architecture is rather big and complex due to the fact that crucial oper-
ations are handled in order to assure security robustness. For sake of completeness
a high-level structure of the architecture is reported below, showing where IWD is
placed [4.1].

For our analysis, the main focus is on a specific section of the entire implemen-
tation. What is considered to be interesting for this research can be found in the
src and unit directories of the IWD library. The implementation that involves the
cryptography, the EAPOL frame handling and the 4-Way Handshake management
(in other word the supplicant itself) resides in the src directory. In the unit di-
rectory, as the name suggests, the unit tests are developed to ensure the correct
functioning is implemented. As it is, this code could be analysed by the fuzzer

31



4 – Fuzzing IWD

Figure 4.1. IWD Architecture

using the provided binary mode execution. Nevertheless, the likelihood of finding
actual vulnerabilities is very low. This is due to the fact that this library has been
developed with the intention of being highly secure and patching all the problems
discovered lately. Therefore, the chance of finding software vulnerabilities is indeed
very low. Fortunately, the source code is an open-source software, hence we have
access to it, meaning that it is possible to modify. This allows for the creating of a
harness code and to perform a more deep and precise analysis.

The general idea is to take the unit tests as a starting point and develop a
test harness to automatised software vulnerabilities discovery through the use of a
fuzzer. The unit tests are various, from MIC computation to the several cases of the
4-Way Handshake. Three significant tests have been chosen and analysed with the
intention of assessing the correctness of the implementations. Dealing with these
unit tests and making them able to be fuzzed requires a certain number of steps to
be applied before the fuzzer can function properly.

4.2 Preparing IWD to Fuzzing

The first necessary step to understand, to prepare the IWD source code to be
fuzzed, is to gain a general understanding of the source code available. Starting
from this point, the main focus is to identify possible target functions where the
message exchange of the 4-Way Handshake is performed, and build a harness code
that can guide the fuzzer over the target program. A test harness is generally used
to enable the automation of tests. It can provide stubs and drivers which can be
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small programs, or code snippets, that interact with the software currently under
test. Usually test harnesses execute tests by exploiting a test library and generating
a final report. In our context, we can consider the used stub code as an entry point
that allows the fuzzer to provide its own input data and explore the targeted code.
On top of that, the final goal to achieve is to inject malformed payloads during the
message exchange and verify how the underlying structure reacts to them. Applying
this strategy, we will try to trigger eventual vulnerabilities that would otherwise be
hard to spot.

4.2.1 Input seed selection

One of the first challenges that must be faced is the input seed selection. The
importance of this process is essential. The quality of test cases affects the efficiency
and the effectiveness of fuzzing testing. A good test case can explore more program
execution states and cover a reasonable amount of code in a shorter time. Besides,
using good test cases could target potential vulnerable locations and provide a faster
discovery of programs bugs. As a matter of fact, selecting an input that is already
known to be a cause of crashes for the target program has no meaning, and the
fuzzer will not accept it in any case. On the other hand, selecting a meaningless
input could lead to a inconclusive analysis since the path coverage achieved will
never trigger potential bugs or locations of the code where a bug could reside.

The size of the input file is also an aspect that must be carefully taken into
account. A huge input could not be processed correctly, leading to a dead end, and
in most of the cases AFL will not allow it to be used. So, how can this issue be
tackled? The general answer behind this question is to collect as much information
as possible from the target program and devise a possible action plan. As we are
interested in understanding if and how it could be possible to find software bugs in
this context the idea is to identify an entry point where it is possible to inject an
unexpected, or malformed, data input and monitor how the target code will react
to it.

The starting point is, without any doubt, test-eapol.c file, in which unit tests
are implemented. Going through this code it is possible to gain a useful knowledge
and a general overview of how the tests are executed, how the EAPOL-Key frame
is constructed and then eventually define how a suitable candidate input seed for
the fuzzer could be generated. In the first section of this code EAPOL-frames are
statically defined and each one of them is specifically bound to a test case each
aiming to test a different behaviour. An example of how Eapol data frames are
structured is shown below:

1 static const unsigned char eapol key data ∗[] = {
2 0x01, 0x03, 0x00, 0x5f, 0x02, 0x03, 0x0a, 0x00, 0x00, 0x00, 0x00, 0x00,
3 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
4 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
5 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x9e, 0x57, 0xa4,
6 0xc0, 0x9b, 0xaf, 0xb3, 0x37, 0x5e, 0x46, 0xd3, 0x86, 0xcf, 0x87, 0x27,
7 0x53, 0x00, 0x00
8 };

Listing 4.1. Example of eapol data frame
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The Eapol data frame seems to be a good starting point in order to produce
a suitable input candidate. In the code, 32 different Eapol key-data frames are
defined, each one of them has a different payload along with all the necessary
information required to simulate a complete 4-Way Handshake protocol.

1 static struct eapol key data eapol key test ∗ = {
2 .frame = eapol key data 4,
3 .frame len = sizeof(eapol key data 4),
4 .protocol version = EAPOL PROTOCOL VERSION 2001,
5 .packet len = 117,
6 .descriptor type = EAPOL DESCRIPTOR TYPE 80211,
7 .key descriptor version = EAPOL KEY DESCRIPTOR VERSION HMAC SHA1 AES

,
8 .key type = true,
9 .install = false,

10 .key ack = false,
11 .key mic = true,
12 .secure = false,
13 .error = false,
14 .request = false,
15 .encrypted key data = false,
16 .smk message = false,
17 .key length = 0,
18 .key replay counter = 0,
19 .key nonce = { 0x32, 0x89, 0xe9, 0x15, 0x65, 0x09, 0x4f, 0x32, 0x9a,
20 0x9c, 0xd5, 0x4a, 0x4a, 0x09, 0x0d, 0x2c, 0xf4, 0x34,
21 0x46, 0x83, 0xbf, 0x50, 0xef, 0xee, 0x36, 0x08, 0xb6,
22 0x48, 0x56, 0x80, 0x0e, 0x84, },
23 .eapol key iv = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
24 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
25 .key rsc = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
26 .key mic data = { 0x01, 0xc3, 0x1b, 0x82, 0xff, 0x62, 0xa3, 0x79, 0xb0,
27 0x8d, 0xd1, 0xfc, 0x82, 0xc2, 0xf7, 0x68 },
28 .key data len = 22,
29 };

Listing 4.2. Eapol key data structure example

All this information is stored in a C structure, shown in [4.2], that is retrieved
when the correspondent unit test needs to start the protocol and simulate the
packets exchange. Our analysis involves the payload of the Eapol key-data frames
making it possible to reuse all the other information without any further modifica-
tion. That being said, we should be able to modify this payload with the help of
AFL, applying an instrumented-guided genetic algorithm, mutating the entire data.
This should be able to disrupt the normal behaviour and alter the usual control
flow of the target. Once our input has been correctly identified, it is necessary to
devise a solution to allow the fuzzer to process it in the best manner. In the next
paragraph we will discuss how this can be done.

4.2.2 Input File Creation

AFL provides two different approaches for reading input data: it can receive an
input either directly from stdin or read it from a file. The first option may be
considered in a situation where the input to provided is fairly short, such as a
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string or similar. For our purpose the second choice is the most appropriate and
reasonable. This means we will have to deal with an input that is made of more
than a single data frame, which can be fairly long, just as it is. Since the message
exchange between the supplicant and the AP involves more than one packet using
files is the only sensible approach. Another issue to take into account here is the file
structure to be used. AFL requires one or more starting files which should contain
a good example of the input data that the target program would normally expect.
Keeping that in mind the provided files should be fairly small and the usage of
multiple test cases is encouraged only if they are functionally different from each
other. AFL is able to read a single file for each execution, hence we should be able
to store more than one data frame in the same file, in order to provide the expected
data to the target program. The file needs to store both the data frame and its
length since during the mutation the data frame is altered both in content and in
size. Ideally the file can be structured in different way but here we have considered
two different approaches, which both seem reasonable. Being d1 and d2 the data
bytes of the payload, respectively for the first frame and for the second one, we can
write those values as in figure [4.2]:

• A d1 data bytes followed by a delimiter, i.e. “===”, and then d2 data bytes.

• The size of the first frame followed by the d1 data bytes, then the size of the
second frame followed by d2 data bytes.

Figure 4.2. File format

Both these solutions are to be considered valid although in this work the second
approach has been selected. In order to write the input binary file, an external
utility code has been developed. This code simply allows us to re-use the data
frames stored in the original source code and write them in a binary file that respects
the constraints defined by AFL. The size of the frame is computed starting from
the provided data frame array [4.1], and written in the file as type size t as defined
by the Eapol implementation. Subsequently the data frame array is iterated and
each value contained into it is written to the file as an uint8 t type. The utility
code can easily be adapted to handle more than two data frames. As a matter of
fact, this will be used further on in this work to allow fuzzing on key reinstallation
issues, where using three data frames is strictly necessary.

4.2.3 Harness Code

That being said, it is possible to start developing the harness code. As mentioned,
the starting point is the test-eapol.c file which requires several modifications. Of
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course, the main() function is not implemented in a way that allows us to read
any arguments from the command line due to the fact that all the data used by
the unit tests are hard-coded. This kind of implementation is not suitable for our
purpose so it is necessary to adapt the code and provide this feature along with
other functions able to parse the data received from the outside. As a first step
then, we need to modify the main() so that it can receive one parameter from
the command line, that will be used by AFL, to provide the name of the file that
must be used during each execution. The second step is to identify which functions
could be targeted by the fuzzer. One of the functions that has been selected and
tested is eapol sm test ptk(). A code snippet of the function, reporting only the
interesting part, is shown below

1 static void eapol sm test ptk(const void ∗data){
2 [...]
3 hs = test handshake state new(1);
4 sm = eapol sm new(hs);
5 eapol register(sm);
6

7 eapol sm set protocol version(sm, EAPOL PROTOCOL VERSION 2001);
8

9 handshake state set pmk(hs, psk, sizeof(psk));
10 handshake state set authenticator address(hs, aa);
11 handshake state set supplicant address(hs, spa);
12

13 r = handshake state set supplicant rsn(hs,eapol key data 4 + sizeof(struct eapol key))
;

14 assert(r);
15

16 handshake state set authenticator rsn(hs, ap rsne);
17 eapol start(sm);
18

19 eapol set tx packet func(verify step2);
20 eapol rx packet(1, aa, ETH P PAE, eapol key data 3,sizeof(eapol key data 3), false);
21 assert(verify step2 called);
22

23 eapol set tx packet func(verify step4);
24 eapol rx packet(1, aa, ETH P PAE, eapol key data 5,sizeof(eapol key data 5), false);
25 assert(verify step4 called);
26

27 eapol sm free(sm);
28 handshake state free(hs);
29 [...]
30 }

Listing 4.3. Code snippet of the original function

As suggested by the name, this function is used to test the installation of the
Pairwise Transient Key, which is computed in the second and third step of the
4-Way Handshake during the authentication. This function will:

• initiate the state-machines, putting them in a queue;

• retrieve the supplicant nonce;

• set-up the the address for both the authenticator and supplicant;
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• create a new handshake test and an Eapol state machine;

• simulate the message exchange involved in the communication.

The function eapol rx packet() is the one which we are interested in. The
call to this function will trigger a certain number of operations (i.e. key handle,
MIC computation and so forth), to be discussed later on. The third and fourth
parameter accepted by this function are indeed the data frame and size of the latter,
which are no longer correct for our analysis. Both line 20 and 24 must be modified
so that they can use the newly read data generated by the fuzzer. However, this
modification is not sufficient. In fact, altering these packets will imply also that
the messages sent back and forth from the authenticator and the supplicant cannot
be verified properly anymore. The control for this is made on line 19 and 23
with the function eapol set tx packet func(verify step*). The latter is in charge of
simulating the expected response upon receipt of WPA frame 1 and WPA frame 3.
A code snippet for one of the functions is reported below, to show how this is done.

1 static int verify step2(uint32 t ifindex,
2 const uint8 t ∗aa addr, uint16 t proto,
3 const struct eapol frame ∗ef, bool noencrypt,
4 void ∗user data)
5 {
6 const struct eapol key ∗ek = (const struct eapol key ∗) ef;
7 size t ek len = sizeof(struct eapol key) +L BE16 TO CPU(ek−>key data len);
8

9 assert(ifindex == 1);
10 assert(proto == ETH P PAE);
11 assert(!memcmp(aa addr, aa, 6));
12 assert(ek len == expected step2 frame size);
13 assert(!memcmp(ek, expected step2 frame, expected step2 frame size));
14

15 verify step2 called = true;
16

17 return 0;
18 }

Listing 4.4. Code snippet for verify step2

In [4.4], we can see that the protocol, the address of the authenticator and both
the frame and its size are compared with the one expected to be received. In case
of any miss-match this function returns earlier with an error. Since the injection
of malformed payload will cause these miss-matches in most cases, it is necessary
to handle this case differently. We still need to check if a reply has been received
but we cannot verify that is the exact one. Instead of using the asserts, that in
case of failure will generate an error and return, we can substitute them with if-else
statements. In doing so it will be still possible to check when the message has been
received but in case of miss-match we keep the protocol alive and monitor in which
way this is handled by the protocol.

AFL Entry Point

Once we gathered a sufficient knowledge about the target it is possible to devise
and develop the entry point for AFL. The injection of our payload will have to
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define a new function that must be implemented and integrated in the source file
of the target program. This newly created function will be used to:

• verify the existence of the file;

• restore the hard-coded parameters whenever the input file is missing;

• read the size of the frame from the file and store it into a variable;

• perform boundaries checks and fail early, aborting the test, for malformed
files;

• read the data frame storing it into a variable;

• return to the calling function in case of success.

The code snippet below shows a small section of the newly created function [4.5].

1 void ∗ afl get key data ptk( ){
2 [...]
3 ret = fread(&len frame1, sizeof(size t), 1, fp);
4 if(ret <= 0 ){
5 printf(”\n Read len failed!\n”);
6 exit(EXIT FAILURE);
7 }
8 [...]
9

10 afl key = (uint8 t ∗)malloc(sizeof(uint8 t)∗ len frame1);
11 for (i=0 ; i <= len frame1; i++){
12 ret = fread(&data, sizeof(uint8 t), 1, fp);
13 if(ret <= 0 ){
14 printf(”\n Read data failed!\n”);
15 exit(EXIT FAILURE);
16 }
17 afl key[i] = data;
18 }
19 [...]
20 }

Listing 4.5. Code snippet of the new function

On return of this function, both the size and data frame will be read and stored
in the correspondent variable ready to be used by the targeted function. The last
step that is still missing is making our target function capable of processing the
new input. Therefore we have modified the code showed in [4.3] by adding a call to
new function. In the eapol rx packet() function, the fourth and fifth parameters
must be changed accordingly. Instead of using the EAPOL key frames defined in
the code, the function has to use the data read from the file and stored into afl key
and len frame. Once all of these modifications have been done the fuzzing process
can start.
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4.3 Fuzzing for memory safety vulnerabilities

The target program is now almost ready to be fed to the fuzzer. Prior to execution,
the IWD library needs to compiled by using a wrapped GCC compiler, known as
afl-gcc. By doing so the whole code is both compiled and instrumented by AFL.

During the execution, AFL will provide its own UI status-screen, similar to the
one shown in figure [3.6], enabling the monitoring of the performance of the fuzzer.
Several runs can be done in parallel in order to gain as many results as possible,
providing a full spectre analysis. The time that we have reserved for each run is
variable and it goes from 4 hours up to 1.5 days.

There is no general rule for when we should interrupt the fuzzer, but in general
referring to the “path geometry” and the colour-coded info in the “overall results”
box, it is indeed possible to derive a good timing on whether to stop the analysis or
keep it alive. For instance, when no pending paths will be shown and the “cycles
done” information is green it is unlikely that any other new path will be found,
thus indicating that the analysis is completed.

4.3.1 Crash Exploration

After collecting a sufficient amount of results, we begin to explore the crashes found.
The first phase of analysis shows that, on average, the unique crashes found were
between 80 and 110, depending on the time frame reserved for each execution. An
example run is shown below in figure [4.3]:

Figure 4.3. Fuzzer execution on eapol sm test ptk

These numbers are extremely high for a security critical code. Consequently, an
accurate investigation has been carried out. Clearly, the number of crashes found
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cannot be considered an accurate indicator of the fact that all the failures identified
are indeed real vulnerabilities. It could be possible that during its execution the
fuzzer may have encountered false positives and identified them as possible points
of exploitation. Relaying on all the collected test cases produced by AFL it is
possible to reproduce any single crash in a debug environment. The crashes and
hangs can be manually examined within the output folders, where AFL has stored
them, with the help of the GNU Debugger. On the other hand, this manual labor
is neither fast nor very effective, hence we have made use of an AFL companion
utility.

For instance, the afl-utils provides several shortcuts to render crash exploration
easier and more automatic. The afl-collect tool allows us to copy all crash sample
files from a specific AFL directory into a single location, providing an easy access
for further crash analysis. Beyond that, afl-collect comes with advanced features,
like invalid crash samples removing, as well as generating and executing, gdb scripts
by using the Exploitable tool [25]. The latter is a GDB extension that is able to
classify Linux application bugs by severity. What Exploitable does is to inspect
the state of a Linux application that has crashed and outputs a summary of how
difficult it might be for an attacker to exploit the software bug and gain control
over the system [26].

To keep track of the different crash samples gathered during the several analyses,
a database for each tested function has been created. Using the so obtained crash
database we have been able to store all sample test cases and remove the ones
already encountered during previous executions. By doing so, we have narrowed
down the number of crash samples to verify. This ensures that only unique samples
have been tested. After processing the available sample test cases, none of them
have been marked as “exploitable”[4.4].

Figure 4.4. GDB exploitable results

Despite the fact that the evaluation made by the tool was inconclusive, we
considered it appropriate to study in-depth the obtained results. With the help
of GDB we have manually tested the crashes sample one by one. Starting from
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the collection of samples stored in the database it is possible to run each of the
samples against the targeted code and re-create the crashes generated. All the
crashes were leading to a double free error in the code related to the state machine
used during the 4-Way Handshake test. As a matter of fact, whenever an expected
message is received, the eapol rx packet() function is forced to interrupt the 4-
Way Handshake and free the memory previously accommodated by the in-use state
machine. Nevertheless, the unit test is also inducted to free the same state machine
upon completion. To overcome this problem, a new function in the eapol.c source
file has been implemented. The latter deals with this issue preventing the double
free whenever a malformed packet cannot be processed. Upon completion of this
task, further tests have been run to assess whether or not the fuzzer was actually
executing correctly all the possible paths.

4.3.2 Understanding Fuzzer Performances

To better understand how the fuzzer was actually working on its target, we decided
to add several assert() functions in different branches and paths to determine the
effectiveness of the analysis. All the possible failure points of the functions involved
during the messages exchange have been identified and instrumented as well. Indeed
new tests have been performed to acquire and analyse new data. From the different
executions we have been able to trace a list of all the crashes generated by our asserts
and we have defined the causes as well. The table [??] shows our results:

Function Reason of the failure
eapol handle ptk 1 of 4() Verification of the PTK failed

Key installation failed
eapol calculate mic() MIC calculation failure

Cipher suite cannot be computed
eapol rx packet() Packet size out of bound

eapol verify mic Invalid checksum computed for Key Descriptor
eapol decrypt key data Decryption of key data failed
eapol key handle() Creation of PTK failed
eapol eap complete cb() Eapol time-out elapsed without any reply

eapol rx packet() Size of the frame out of bounds
Cannot identify protocol version in use

Not configured for EAP, NAK sent
Unhandled EAP packet received, method miss-configuration

Table 4.1. List of identified crashes

From these crashes we can infer that fuzzer is correctly looking for vulnerabilities
where they are expected to be. This enables us to perform now a complete analysis
to assess if and where possible software vulnerabilities are present in the code.
Anyway, the latest analyses performed on the unit test eapol sm test ptk() have
reported 0 crashes after several hours of fuzzing, which leads us to hypothesize
that the code concerning this part of the 4-Way Handshake is indeed free from any
software vulnerabilities.
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4.4 Code Coverage & Metrics

On the top of what has been said, we can take it a step further and have a general
view about metrics, specifically related to the code coverage. It can be defined
as the number of lines of a source code executed during a given test suite for a
program and usually expressed as a percentage. Code coverage brings with it plenty
of benefits when performing code analysis and, above all, a better understanding
on how we are dealing with the tested code. How can we do that based on AFL
results? A companion tool can address this kind of issue. For instance, afl-cov
uses test case files that have been produced by the fuzzer to generate the so called
gcov code coverage results for a targeted binary. Code coverage is interpreted
as a chain, so from one case to the next, in order to determine which new functions
and/or lines have been hit by AFL with each new test case. It allows for specific
lines or functions to be searched for within coverage and on any new match found
the corresponding test case is displayed. Using this tool we can understand which
AFL test case is the first to exercise a particular line or function. In the end,
several reports will be produced, including also the zero coverage that will contain
all the functions that were never executed while the fuzzer was up and running
[27]. Producing code coverage data for AFL test cases is extremely important since
it can help to try and maximize code coverage improving the effectiveness of AFL
itself.

For all these reasons, code coverage analysis has been performed on all test cases
produced by AFL. We report, as an early example, the code coverage obtained in
one of the executions of the fuzzer to show the effectiveness of the analysis [4.5].

Figure 4.5. Code coverage

As shown in the picture reported above, we are able to obtain a high percentage
of coverage on the targeted function. The numbers of lines that are executed is
almost near to the total number of the lines of the target, while we reach a complete
coverage for the number of functions. This actually indicates that the harness code
is able to stress and trigger all the possible paths of the targeted function leading
to a precise analysis. The hit count for each function of test-eapol.c is reported in
table [4.4] below:

For what concern the eapol.c file, the coverage obtained is 83.2%. We report
the hit count of the functions in table [4.4].
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Function Name Hit count
afl get key data ptk 176

eapol sm test ptk 176
main 176
test handshake state free 163
test handshake state new 163
test nonce 63
verify step2 111
verify step4 62

Table 4.2. Hit count functions in test-eapol.c

From both tables it is possible to see that the number of hits for each function
is pretty high. These results enforce the belief that the code is indeed explored in a
suitable and accurate way, and the presence of software vulnerabilities is very low,
if not completely absent.

4.4.1 Metrics

We can go a step further and more statistics related to the executions can be
retrieved as well. One common way to do so is in a graphic view. Plotting the results
based on three different metrics can give an further insights about the behaviour
of the fuzz testing. The following plots are divided according to three different
metrics:

• execution speed/second;

• path coverage;

• crashes and hangs found.

Then the statistics reported below are referred to the example execution in [4.5]:

Figure 4.6. Execution speed plot

In figure [4.6] it is possible to evaluate the execution speed over the time frame
reserved for the run. From this statistic we can see how the execution speed remains
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Function Name Hit count
eapol create ptk 4 of 4 3
eapol find rsne 3
eapol handle ptk 3 of 4 3 3
eapol install gtk 163
eapol verify ptk 3 of 4 3
eapol decrypt key data 7
eapol verify mic 8
eapol eap msg cb 79
eapol create ptk 2 of 4 91
eapol handle ptk 1 of 4 91
eapol verify ptk 1 of 4 91
eapol calculate mic 94
eapol create common 94
eapol exit 163
eapol frame watch add 163
eapol frame watch free 163
eapol frame watch remove 163
eapol register 163
eapol sm destroy 163
eapol sm free 163
eapol sm new 163
eapol sm set protocol version 163
eapol start 163
is freed 163

eapol tx packet 173
eapol sm write 173
eapol init 176
eapol key handle 190
eapol frame watch match ifindex 309
eapol rx packet 309

eapol rx packet 326
eapol set tx packet func 326

Table 4.3. Hit count functions in eapol.c

constant for the entire time frame reaching a very high level, implying the efficiency
of the evaluation.
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Figure 4.7. Path coverage plot

The figure [4.7] instead, shows that after an initial peek of both favourites and
pending paths founds, they become much more stable. Nevertheless, the fuzzer
continues to explore new paths even after almost 4 hours of execution. An another
interesting value that we want to highlight is the number of cycles done. For the
first four hours of execution the number of cycles grows along with the number
of total paths found. After this period, the number of found paths become stable
without any new discovery, while the number of the cycles continue to grows very
fast.

Figure 4.8. Crashes and hangs plot

Finally, the figure [4.8] reports the numbers of crashes and hangs found. As
previously said, no crashes have been found, but still we can retrieve an interesting
statistic value. The number of levels reached is 13, meaning that the fuzzer has
generated plenty of different test cases starting from the one provided in the first
place. This can be considered as a good index for the evaluation of our analysis.

4.5 Fuzzing for other unit tests

Following the same criteria that have been explained so far, we have tested two
other functions: eapol sm test igtk() and eapol sm test wpa2 ptk gtk(). The first
function is very similar to the previously tested, although the packets are different
and it also tests the installation of the IGTK, that is supposed to be installed as
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soon as the PTK is correctly installed. Minor changes to the test harness code
have been made to allow the fuzz testing on this new function. For instance, the
input provided to the fuzzer is different in terms of EAPOL-frames, hence this
has required the creation of a new input file to be able to start from the correct
input and generate valid test cases. Accordingly, as we expected, even this function
does not trigger any software vulnerabilities, or at least not any easily detectable
ones. The code coverage and the metrics gathered from the various analysis have
showed, as for the first function analysed, n high rate of success in terms of path
explorations. The results will be presented in the related Chapter 6.

The last function that has been tested, eapol sm test wpa2 ptk gtk(), is used to
verify that both PTK and GTK are correctly installed by the two recipients. Gen-
erally speaking, the approach devised for the previous analysis remains unchanged,
yet some new adjustments are required. As a matter of fact, this function needs
3 EAPOL-frames to test the messages exchange. Therefore, the test harness code
must be modified accordingly. The entry point function should now accept three
different EAPOL-frames and store them in the correspondent variable to be used by
the tested function. The new input file required for this test can be generated using
the utility code developed in the first place, allowing the write for a third frame.
How to create a new input file to accommodate three different frames is discussed
in more detail in the next chapter. For further information, refer to Chapter 5. The
results obtained from this last analysis will be discussed in the related Chapter 6
as well.
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Chapter 5

Fuzzing for KRACK

In this chapter it will be discussed how it is possible to find protocol-level vulnera-
bilities like KRACK through a fuzzing analysis. For instance, we will discuss how
the harness code used for finding general software vulnerabilities can be modified
and adapted to perform a slightly different analysis. It will be demonstrated how to
simulate a key reinstallation attack on IWD library and how a fuzzer can discover
it.

5.1 Preparing IWD for KRACK

Fuzzing for protocol-level vulnerabilities, like KRACK, presents some new chal-
lenges due to the fact that cryptography can affect performances negatively. As a
matter of fact, being able to get crashes beyond the various authentication checks
that are put in place in the code can present serious difficulties. Indeed, trying
to do so would normally boil down to reversing a cryptographic function, which is
meant to be NP hard problem.

To overcome this issue we should be able to find a way to revert most of the au-
thentication checks performed allowing the fuzzer to easily go over them and render
it able to look for a key reinstallation. The IWD code, developed with the intent of
being unaffected by key reinstallation is indeed robust to KRACK. For this reason,
to establish whether or not it is possible to detect this kind of flaw, in applying
software fuzzing testing the general idea is to revert the patches implemented by the
developers. Throughout several changes in the current implementation the fuzzer
should be able to identify correctly whenever a key reinstallation is performed.

5.1.1 Input seed selection and file creation for KRACK

Dealing with a new problem, of course, requires a different approach with respect
to file creation. On the other hand, the input seed selection is now easier. Already
identified in the previous analysis, we are sure that the input provided is a suitable
one. The file creation instead is different. In the previous analysis it was only
necessary to fuzz on two EAPOL frames that, in this new scenario, is clearly not
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enough. Indeed, reading only two data frames is not correct anymore. Enabling
the fuzzer to process three different frames requires us to store in the input file the
same number of frames that the target program is expecting. Specifically, we need
to read the second EAPOL frame twice, which is basically a duplicate of message 3.
Using the utility code developed for the first analysis it is possible to add a minor
change to create the new input file where three data frames are stored. Being d1,
d2, d3 the data bytes of the payload respectively for the first frame, the second one
and the third frame, we can write these data into a binary file as represented in
figure [5.1]:

Figure 5.1. File format for KRACK

With this configuration, the input file will store the size of each frame followed
by data frame itself, as explained in section 4.2.1,. In the picture above, d2 and d3
represent identical EAPOL frames. However they will be both mutated by AFL
and used against the target program.

5.2 Harness Code for KRACK

The harness code previously developed cannot be used to find KRACK-like vulnera-
bilities due to the fact that we want to perform a different case analysis. First of all,
in the previous implementation, we were only able to handle two data frames that,
clearly, are not sufficient to simulate a key reinstallation attack. This means that
two more variables for storing the third frame and its size are needed. The function
showed in [4.5] can be taken as a starting point but it requires some changes. The
third frame must be read as done for the other two, along with all the boundary
checks needed to avoid malformed input, and eventually discard it in case of failure.
Upon completion, the function will be able to return to its caller with the three
data frames correctly stored in the corresponding variables and ready to used by
the target function.

Detect key reinstallation function

The detection of a key reinstallation is the new problem that is introduced in this
case. The test harness must be updated in such a way that this issue can be
addressed. A new function must be developed in order to acknowledge whether the
injection of second message 3 has lead to a key reinstallation. The code snippet
below shows the implementation[5.1]:

1 static void detect key reinstallation(struct handshake state ∗hs,const uint8 t ∗tk, uint32 t
cipher){

2 static uint8 t prev key[16] = {0};
3

4 if (memcmp(tk, prev key, 16) == 0) {

48



5 – Fuzzing for KRACK

5 printf(”===> Key reinstallation detected!\n”);
6 assert(0);
7 }
8

9 memcpy(prev key, tk, 16);
10 }

Listing 5.1. detect key reinstallation implementation

The function accepts as parameter a pointer to the current state of the hand-
shake and a pointer to the key installed and the cipher suite used. Defined in the
prev key as an all-zeroed key, we compare the actual key in use with the defined
one. If the comparison ends up with a positive result we have indeed detected a
key reinstallation attack; otherwise we can simply copy back the key and the ex-
ecution can go on without any problems. At this point in the tested function, a
call to ita handshake set install tk func is performed before the simulation of the
messages exchange, providing as only parameter our detect key reinstallation. The
test harness for the unit test is now completed. Nevertheless, we still have to deal
with all the functions in charge of processing the messages. The next section will
face this topic.

5.3 Revert authentication checks

The various authentication checks involved cannot easily be fuzzed. This implies
that the eapol.c file has to be changed as well. The first function that we should
handle is eapol verify mic(). In this function checksums, signature checks and mes-
sage authentication checks are performed on the incoming packets. Hence, it is
necessary to revert all of them. After our modification, as soon as the function is
invoked by the supplicant, no checks are performed at all. This provides a return to
the caller with a true value, ensuring that in each case the MIC calculation returns
even though no computation is actually performed at all.

The next function to take care of is eapol handle ptk 3 of 4(), where the receipt
of message 3 of the 4-Way Handshake is handled. In fact, on reception of message 3,
the supplicant silently discards the message of the Key Replay Counter field value,
once it has already been used, or if the ANonce value in message 3 differs from the
ANonce value in message 1. Another check is made on the same function later on,
where the ptk complete value is set, meaning that the PTK has been correctly
installed and it is checked whether a re-transmission of message 3 has occurred. In
fact, if the the previously cited value is set, then it is certain that message 3 has
been received again. We can be sure of that since the Anonce would not match
otherwise and there would be no chances of reaching that point in the code. Both
of the cases described above are shown below in [5.2]:

1 if (memcmp(sm−>handshake−>anonce, ek−>key nonce, sizeof(ek−>key nonce))){
2 printf(”Message discarded. Key replay counter already used or Anonce in msg3 differs

from Anonce msg1\n”);
3 return;
4 }
5 [...]
6 if (sm−>handshake−>ptk complete)
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7 return;
8 [...]

Listing 5.2. Reverting Anonce check

The last function that requires attention is eapol key handle(). Due to the fact
that the supplicant and authenticator shall track the key replay counter for security
association, the latter shall be initiated to zero on re-association. The authenticator
will then increment the value of the replay counter on each successive EAPOL-key
frame. The supplicant should also use the key replay counter and ignore EAPOL-
Key frames with a key replay counter field value smaller, or equal to, any received
in a valid message. Whenever the key replay counter is checked and is found to
be valid the supplicant is allowed to update it. Otherwise, this should be avoided.
Since we still want to fuzz the replay counter we have left this check unaltered.

5.4 Fuzzing for KRACK-like Vulnerabilities

Once all the required modification steps have been performed, the target program
has been fed to fuzzer. In fact, a key reinstallation should now be triggered when
AFL is fuzzing on our input file. The main thing that the fuzzer should do is to flip
the correct bits/bytes in the second message 3. By flipping the correct portion of
data it should find a valid replay counter and install the zeroed key. As done for the
previous analysis, we have tested the target program extensively with a sufficient
amount of tests in order to gather an accurate data set of results. With our test
harness, AFL is indeed able to discover the key reinstallation after a few minutes
of execution. The image below shows an example of one execution [5.2]:

Figure 5.2. AFL fuzzing for KRACK

5.4.1 Crash Exploration

Applying a crash exploration, with the help of GDB and afl-utils, all the test
cases that have been able to recreate a key reinstallation have been collected and
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analysed. Executing the test cases against the target program, after the PTK has
been correctly installed, the injection of a second message three mutated by AFL
can trigger our detection function. This means that the key has been reinstalled
with all zeros. The evaluation of the results for this case will be given in the related
Chapter 6.
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Chapter 6

Results Evaluation

In this chapter we will provide a formal evaluation of the results obtained from our
analysis. The results, that have been partially introduced in both Chapter 4 and
Chapter 5 will be discussed in more detail.

For sake of completeness, we report the specification of the machine that has
been used during our tests. All the experiments performed were run on virtual
machine with the following features [6.1]:

OS Linux Ubuntu
Version 16.04.6 LTS (Xenial Xerus)
Architecture x86 64
ArchiteCPU op-mode(s) 64-bit
CPU(s) 16
Thread(s) per core 1
Model name Intel Core Processor (Broadwell, IBRS)
CPU MHz 2399.994

Table 6.1. System specification

6.1 Results evaluation from Fuzzing for memory

safety vulnerabilities

The results will be reported for each of the three functions that have been tested. It
is important to highlight that after approximately 30 runs, executed separately for
the three functions analysed, we report an estimation based on the average results.
Due to the fact that no software vulnerabilities have been found by the fuzzer, we
have assessed the quality of the execution based on the percentage of code coverage
obtained, the number of hits for the functions involved and the number of paths
found.
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6.1.1 Unit test: eapol sm test ptk

Hit Total Coverage

Lines 136 142 95.8%
Functions 8 8 100%

Table 6.2. Coverage for
test-eapol-ptk.c

Hit Total Coverage

Lines 421 1132 37.2%
Functions 32 77 44.2%

Table 6.3. Coverage for eapol.c

Table [6.2] shows the code coverage report for test unit eapol sm test ptk. On
average, the fuzzer is able to cover the totality of the functions gaining a function
coverage of 100%. While for the line coverage it can reach 95.8%. From these
results we can tell that the fuzzer has successfully explored completely the unit test
that has been fed to it. The value reported in [6.3] shows a lower coverage both in
lines and functions.

6.1.2 Unit test: eapol sm test gtk

Table [6.4] reports the code coverage for the function eapol sm test gtk(), which can
be considered a good result based on the values obtained. Similarly to the previous
function, the fuzzer has managed to cover almost the totality of the functions
ensuring a certain degree of performances. In table [6.5] the coverage with the
respect to the eapol.c file is shown.

Hit Total Coverage

Lines 135 141 95.7%
Functions 8 8 100%

Table 6.4. Coverage for
test-eapol-ptk.c

Hit Total Coverage

Lines 431 1132 38.2%
Functions 35 77 45.5%

Table 6.5. Coverage for eapol.c

6.1.3 Unit test: eapol sm test wpa2 ptk gtk

Table [6.6] shows the code coverage for the last function used as a target by the
fuzzer. It reports good results, as for the previous two functions. Instead table [6.7]
shows the results for the eapol.c file with respect to the eapol sm test wpa2 ptk gtk()
target function.
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Hit Total Coverage

Lines 180 188 95.7%
Functions 9 9 100%

Table 6.6. Coverage fort est-eapol-
ptk-gtk.c

Hit Total Coverage

Lines 471 1132 41.6%
Functions 36 77 46.8%

Table 6.7. Coverage for eapol.c

Nevertheless, an important remark is required here. Evaluating the results
obtained for the code coverage with respect to the eapol.c file, we can notice that
the code coverage is much lower compared to the unit tests. Indeed these results
have been gathered using all the functions that are implemented in eapol.c. The
latter contains all the functions needed to perform the total number of unit tests
originally stored in the test-eapol.c file. Due to the fact that the analysis has been
restricted only to the unit tests where the 4-Way Handshake was involved we can
recompute these values. As a matter of fact, if we leave out the unused functions,
we obtain a coverage that can be approximate to 72.4% for the lines and 86.1 %
for the functions.

The tables [6.8][6.9], report an estimation of the numbers of hits for the functions
presented above:

Function Name Hit count
afl get key data ptk 236
afl get key data gtk 228
afl get key wpa ptk gtk 332

eapol sm test ptk 234
eapol sm test gtk 228
eapol sm test wpa2 ptk gtk 332
main 332
test handshake state free 253
test handshake state new 221
test nonce 96
verify step2 128
verify step4 67

Table 6.8. Hit count functions eapol sm test ptk
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Function Name Hit count
eapol create ptk 4 of 4 3
eapol find rsne 3
eapol handle ptk 3 of 4 30
eapol install gtk 3
eapol verify ptk 3 of 4 30
eapol decrypt key data 99
eapol verify mic 84
eapol eap msg cb 129
eapol create ptk 2 of 4 91
eapol handle ptk 1 of 4 245
eapol verify ptk 1 of 4 91
eapol calculate mic 232
eapol create common 231
eapol exit 163
eapol frame watch add 309
eapol frame watch free 308
eapol frame watch remove 307
eapol register 309
eapol sm destroy 309
eapol sm free 309
eapol sm new 309
eapol sm set protocol version 163
eapol start 309
is freed 309

eapol tx packet 359
eapol sm write 359
eapol init 332
eapol key handle 591
eapol frame watch match ifindex 789
eapol rx packet 789

eapol rx packet 927
eapol set tx packet func 927

Table 6.9. Hit count functions in eapol.c

From both tables, it is possible to see that the number of hits for all the func-
tions involved is quite high. This proves the fact that the fuzzer has explored and
performed its research in a correct and exhaustive way. From a graphical point of
view, we have reported the statistical value of one execution that can be taken as
an example of the average results that we have obtained in all the testing analysis
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Figure 6.1. Execution speed plot

Picture [6.1] represents the average execution speed/seconds, which was around
2000 and 2300 for the most part.

Figure 6.2. Path coverage plot

A more interesting statistic is plotted in figure [6.2], where it is possible to see
that after an initial peak of paths found the discovery becomes more stable until
the number of possible new paths runs out. At last, the number of levels reached by
the fuzzer can be attested at around 12. From this value it is possible to assess that
the generation of test cases produced by AFL, starting from the provided input, is
indeed quite good [6.3].

Figure 6.3. Crashes, hangs, levels plot

From our evaluation we can infer that the current implementations of IWD
is not subject to memory safety vulnerabilities. In fact, we would not expect
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to find common vulnerabilities in a security critical code that is designed to be
robust and safe. Nevertheless, during our analysis, as discussed in Section 4.3, the
injection of malformed payload during the 4-Way Handshake could lead to a denial
of service attack (DoS). In fact we have demonstrated, instrumenting the code, that
whenever an EAPOL-frame cannot be correctly processed the handshake fails and
the process is stopped. As a direct consequence, if an attacker manages to set up a
MitM position they can start sending plenty of malformed packets preventing the
completion of the protocol.

6.2 Results from Fuzzing for KRACK

After the evaluation of the findings gathered using AFL to find KRACK-like vul-
nerabilities, it possible to say that software fuzzing can be used as a valid technique
in this context. In table [6.10] the coverage for the target function is reported, while
in table [6.11] the values for the eapol.c file are reported.

Hit Total Coverage

Lines 163 174 93.1%
Functions 9 9 100%

Table 6.10. Coverage for test-
eapol-ptk-krk.c

Hit Total Coverage

Lines 471 1093 43.6%
Functions 37 77 48.1%

Table 6.11. Coverage for eapol.c

The total code coverage, as well as for the previous tests, shows a success rate
in analysis of the targeted program. Both lines and functions are almost totally
covered, showing that AFL has explored all the possible paths. The number of hits
for the function has been reported below in table [6.2]:

Function Name Hit count
detect key reinstallation 83

afl get key data ptk 337
eapol sm test ptk 377
main 377
test handshake state free 224
test handshake state new 354
test nonce 221
verify step2 191
verify step4 244

Table 6.12. Hit count functions eapol sm test ptk krk

The following statistics represent the plotted results for this analysis.
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Figure 6.4. Execution speed plot

Figure 6.5. Path coverage plot

Figure 6.6. Crashes, hangs, levels plot

In conclusion, it can be inferred that it is possible to devise a methodology
to applying software fuzzing in order to find software vulnerabilities in a protocol
implementation. By turning unit tests into test harnesses for the fuzzer it is possi-
ble to discover memory safety vulnerabilities. Using a similar approach, although
reverting authentication checks manually, it is also possible to spot KRACK-like
vulnerabilities in a protocol-level implementation.
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Chapter 7

Conclusions and Future works

Our first goal was essentially to define whether finding software vulnerabilities in
a protocol implementation was possible using a systematic approach and in an
automated way. Conclusively, we can say that it is possible to achieve this goal by
going through several challenges that the problem inherently presents. Acquiring an
adequate knowledge of the targeted program, understanding how data are treated
and processed and how to alter it is a primary step in achieving the goal. The
identification of suitable input candidates able to generate testcases that could
reach deeper and harder to reach paths is indeed a variable that we have taken
into account. Starting from a valid EAPOL-frame and exploiting AFL’s features,
the 4-Way Handshake protocol implementation provided by Intel’s IWD has been
stressed and analysed.

The creation and implementation of a test harness code, lying between the
target program and the fuzzer itself, represents the entry point for our analysis.
Throughout the test harness, a bunch of malformed and unexpected EAPOL-frames
have been sent against the protocol in order to allow the fuzzer to analyse any
possible paths and look for possible software vulnerabilities. As a consequence of the
analysis carried out in this work, the results have shown that the target programs
do not present any easily exploitable vulnerabilities since no crashes were detected
during the testing phase. The validation of the results has indeed shown that the
fuzzer has correctly analysed almost a total amount of lines of code, reporting a
high coverage in each one of the tests executed. Although, one remark can be
made; even if we did not find any software vulnerabilities in a high-critical security
implementation, we have noticed that the injection of malformed packets can lead to
a stalemate in the successful completion of the 4-Way Handshake. For instance, an
attacker that manage to set up a MitM position may prevent the correct landing of
messages between the supplicant and the authenticator. This can lead to a possible
DoS (Denial of Service) attack.

The second main goal of this work was to determine the possibility of making
use of the fuzzer to find protocol-level implementations, like KRACK. Along the
lines of the work done on software vulnerabilities discovery, using the same ap-
proach but with some variations we have been able to simulate and detect a key
reinstallation in the 4-Way Handshake protocol. In order to do so, some consider-
ations have been made. For instance, the capability of the fuzzer to get through
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the various authentication checks would normally boil down to reversing a cryp-
tographic function. This is usually considered an NP hard problem. Therefore,
reverting manually the authentication checks made by the protocol has allowed us
to fuzz the target program and detect a case of a key reinstallation attack within a
few hours of execution.

On top of what has been discussed so far, we have implicitly answered the third
research question proposed. As a matter of fact, with the implementation of a
test harness, able to interact with the underlying protocol-level code, we can apply
automated vulnerability detection to cryptographic protocol implementations.

Despite the results that we have obtained being quite satisfactory there is cer-
tainly room for improvements. Unit tests are surely a good starting point for
constructing a fuzzing harness. It is indeed true that creating a suitable test har-
ness specifically developed for a certain targeted unit test allows us to obtain a
reasonable line coverage and path exploration. Yet, clearly there are some disad-
vantages. The effort required to go through each unit test, understanding the scope
and how it can be turned into a test harness may be considered time consuming
and often difficult. A possible future work could be to devise a new approach to
combat these issues. For instance, the fuzzer should be aware of the protocol that
it is going to have as a target, being able to automatically generate malformed
payloads to detect potential flaws. An example could be to make the fuzzer able
to decide in which order to send the packets, instead of automatically following
the specifications of the protocol as it is done in the unit tests. By doing so the
likelihood of finding interesting new behaviours would increase. In the same way,
it could be possible to extend the analysis to other 4-Way Handshake and make
the fuzzer able to perform its analysis on a larger scale, keeping a certain degree of
accuracy and coverage.
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