
POLITECNICO DI TORINO
Master degree course in Computer Engineering

Master Degree Thesis

Predict your
accommodation: a user

centered hybrid
recommender system

Supervisor
prof. Maurizio Morisio

Candidate
Andrea Fiandro
Student ID: 246360

Internship Tutor
dott. ing. phd. Giuseppe Rizzo

Academic Year 2019-2020

This work is subject to the Licence as Described on Politecnico di
Torino website

Summary

This work describes how our team faced the task presented in the
RecSys Challenge 2019, a competition that this year was hosted by
Trivago. The task proposed in the challenge is to understand how a
traveler that is looking for an accommodation on the Trivago website
is making his choice. To do so it is vital to analyze all the features
of the dataset and after an accurate preliminary study we choose to
follow two paths:

• A Matrix Factorization algorithm that ideally would detect the
tastes of user in terms of the hotels

• A RNN approach that ideally would focus on the sequence of
action that leads to the choice

The intuition behind this approach is to use the Recurrent Neural Net-
work to attain the weakness of the Matrix Factorization that cannot
take in account the sequence of actions. This thesis is focused on the
Matrix Factorization part of the algorithm, while the RNN solution is
described in another work. The Matrix Factorization is implemented
by means of the LightFM library. It takes as input a matrix that
has on the rows the users and on the column all the hotel visited in
the time interval. Starting from this input the algorithm calculates
two other matrices carrying the latent feature of user and hotels, that
are multiplied together to get the prediction for the pair. The most
challenging problem of this task was the cold start. In fact, there are
some situation where the user immediately choose the hotel, without
doing any other action. To attain this issue we use the price category

3

as an item feature, including it in the model by means of LightFM,
as outlined in the following picture. This approach produces a score

Hotels

U
sers

2 1

? ? ?

? ? ?

0 2 1
1 0 0
0 7 1

1 0 1
0 1 0
1 0 6

0 1 1
1 0 0
0 1 0

2 1 0
1 0 2
0 0 2

1 0 1
1 1 0
0 1 0

1 0 0
0 0 2
1 1 0

Matrix Factorization

Matrix Factorization

Hotel 2

Hotel 2

Hotel 3

USER 1

0

Generate
interaction
matrix

Price category

U
sers

2 1

? ? ?

? ? ?

0

Generate
interaction
matrix

Price
category

1

Price
category

2

Price
category

1

USER 1

U

se
r

Hotel

Price category

U

se
r

Latent
Features

Latent
Features

of 0.52, evaluated by means of the Mean Reciprocal Rank, that is the
official statistical evaluation metric of the challenge.

A further improvement is obtained by means of the Gradient Boost-
ing techinque, useful to include two other dataset features: the po-
sition of the item in the list of hotels presented to the user (called
Impression lists) and an index the identify how recent is the interac-
tion between the user and the given item. With this setting the score
become 0.61.

The whole algorithm pipeline is layed out in the following image:

4

MF	Model

MF
Prediction

User Bias

Item Bias

Dataset
features

Position in
impressions

Position in
session

XGBOOST PREDICTION

We also included the features produced by two different configu-
ration of the Recurrent Neural Network, but we tested it only locally
because it was completed after the challenge deadline. In the best
case this architecture gave us an additional boost of the MRR score
of 0.05%.

5

Abstract

This master thesis work outlines the approach taken to solve the Rec-
Sys Challenge 2019, whose goal is to analyze the data of a user session
to predict the hotel that will be clicked at the end. The first part of
the thesis focuses on a deep understanding of the given problem, by
means of an accurate analysis of the data to extract the most sig-
nificant features for the prediction. The core of this work is the al-
gorithmic solution, that focuses on a matrix factorization along with
a gradient boosting technique. At first will be discussed the Matrix
Factorization model alone, and then will be proven the effectiveness
of the gradient boosting integration. This approach was effective for
the purpose of the challenge, resulting in Mean Reciprocal Rank score
of 0.62.

Contents

List of Tables 5

List of Figures 6

1 Introduction 7
1.1 The team . 7
1.2 Recommender Systems 8

2 State of the art 9
2.1 Recommender systems classification 9

2.1.1 Sequence aware recommender systems 10
2.1.2 Collaborative filters 12

2.2 Matrix Factorization 12
2.2.1 What is the Matrix Factorization? 12
2.2.2 Problem definition 13
2.2.3 Feature extraction 13
2.2.4 Example . 14

2.3 Recurrent Neural Network 15
2.3.1 Simple RNN . 16
2.3.2 Long Short Term Memory (LSTM) 16
2.3.3 Gated Recurrent Unit (GRU) 17

3 Trivago 2019 Recsys Challenge 19
3.1 Description of the challenge: the task 19

3.1.1 Trivago . 19

2

3.1.2 Use case: find a hotel 20
3.2 Evaluation metric: Mean Reciprocal Rank 22

4 Dataset 23
4.1 Dataset features . 24

4.1.1 Training set . 24
4.1.2 Test set . 24
4.1.3 Dataset structure 25

4.2 Preliminary analysis 26
4.2.1 Dataset Statistics 26

5 Overall solution 31
5.1 Team’s choices . 31
5.2 Algorithm description 32

5.2.1 Input matrix 32
5.2.2 Gradient boosting: including dataset features . 34
5.2.3 The whole algorithm 35

6 Matrix Factorization 37
6.1 LightFM . 37

6.1.1 Introduction . 37
6.1.2 Cold Start . 38

6.2 Parameter tuning . 40
6.2.1 Parameters description 40
6.2.2 Parameters tuning 43

6.3 Order of the hotel’s list: another way to handle the
cold start problem . 45
6.3.1 First Attempt: Most popular hotel 45
6.3.2 Second attempt: Most popular for nation 46
6.3.3 Third attempt: Matrix factorization model for

nation . 46
6.3.4 Fourth attempt: Impression list order 47

7 Ensemble methods 49
7.1 Gradient Boosting . 49

7.1.1 The intuition behind this approach 49

3

7.1.2 XGBoost . 50
7.1.3 XGBoost training 50

7.2 Borda count . 51
7.2.1 Description of the method 51
7.2.2 Results . 53

8 Experimental Setup 55
8.1 Technical details . 55

8.1.1 Software . 55
8.1.2 Hardware . 56

8.2 Data Preparation . 56
8.2.1 Local dataset split 56

9 Results 59
9.1 Pure Matrix Factorization results 59

9.1.1 Comment on results 60
9.2 Matrix Factorization with Gradient Boosting 60

9.2.1 Local result . 60
9.2.2 Official result 61

9.3 Matrix Factorization with Gradient Boosting and RNN 62

10 Conclusions and future works 65
10.1 Future Works . 66

10.1.1 Optimization 67
10.1.2 Portability . 67
10.1.3 Weakness of the Matrix Factorization 67

4

List of Tables

4.1 Training set statistics 25
4.2 Test set statistics . 25
4.3 Statistics about the sessions 28
6.1 Columns of the custom metadata file 39
6.2 MF parameters tuning overview 44
6.3 Detailed parameters tuning analysis 44
6.4 Parameter tuning for the Most Popular by nation . . . 46
8.1 Hardware of the Hactar Cluster 56
9.1 XGBoost + MF on local dataset 61
9.2 Official score of the MF + XGBoost algorithm 62
9.3 First RNN + XGBoost MRR and improvement from MF 63

5

List of Figures

2.1 A possible classification for recommender systems . . . 10
2.2 Matrix of interaction between user and item 15
2.3 Example of matrix factorization 16
2.4 Simple RNN structure 17
3.1 Use case of Trivago website: example of a session . . . 21
4.1 Example of the dataset provided by the challenge . . . 23
4.2 Division of the dataset provided by Trivago 24
4.3 Average number of sessions for a single user 27
4.4 Differences between desktop and mobile interactions . . 28
4.5 Number of single click action (calculated on the test set) 29
5.1 Generation of MF model, starting from a sequence . . . 34
5.2 Impression list shown on Trivago website 35
5.3 Matrix Factorization + Gradient Boosting ensemble . . 36
6.1 An hotel along with the feature that can described it

in the LightFM model 40
6.2 The nation fallback approach 47
6.3 The matrix factorization model including nations . . . 48
7.1 The double split of the dataset 52
9.1 Importance of each feature in the matrix factorization

model . 61
9.2 Importance of each feature in the first configuration of

the RNN . 63
9.3 Importance of each feature for the second configuration

of the RNN . 64
9.4 Second RNN + XGBoost MRR and improvement from

MF . 64

6

Chapter 1

Introduction

This master thesis work aims to give a thorough explaination of the
solution that our team propose to solve the RecSys Challenge 2019.
In this chapter will be described the team that collaborate jointly on
the project and will be explained generally what is a Recommender
System, to provide to the reader a better overall picture.

1.1 The team
This work was a joint effort between Politecnico di Torino and LINKS
Foundation.

In particular this project was faced as a team withGiorgio Crepaldi
that helps me a lot during his own master thesis work by exploring
different relevant solutions for the task.

This work would not have been possible without the help of Giuseppe
Rizzo from LINKS Foundation and Diego Monti from Politecnico
di Torino. They shared with us their precious experience in the field
and their deep knowledge about Recommender Systems.

It was also vital the supervision of prof. Maurizio Morisio from
Politecnico di Torino that coordinates the whole process and allows

7

1 – Introduction

the team to access a lot of useful tools and structures.

1.2 Recommender Systems
The online commerce in these days is deeply changed. We have ac-
cess to an overwhelming quantity of data that may provoke a sense
of confusion in the customer. To solve this problem a lot of recent
researches were focused on the field of Recommender Systems. A
Recommender Systems provides a tool that can be used in a lot of
context (e-commerce, music streaming, video streaming, advertising,
travel, etc...) and is useful both for the customer, that receive more
personalized content and avoid the feeling of being lost in the possibil-
ities, but also for the retailer, that increase the probability of selling
an item, by predicting the user tastes. This work focuses on the appli-
cation of these technologies in the field of tourism [16], that has some
unique characteristics, such as the shift of tastes based on the season.

8

Chapter 2

State of the art

In this chapter will be described the current state of research in the
Recommender systems field. Will be defined a possible classification
of the algorithm that are described in literature, with an accurate
focus on the technologies we effectively used during the developement
process.

2.1 Recommender systems classification
Nowadays Recommender System became one of the most practical
application of the well studied machine learning techniques. They
provide an useful tool both for retailer and for customer. The retailer
can get a better understanding of what are the needs of the customer
while the customer will not be lost in the overwhelming dimension of
online stocks. The most straightforward application is in the context
of e-commerce, but they are spreading almost everywhere. Analyzing
the academic researches [14] on this topic is it possible to categorize
the algorithms in two different categories:

• Sequence aware recommender systems

• Collaborative filters

9

2 – State of the art

Those two categories will provide a recommendation based on different
input as outlined in Figure 2.1.

Figure 2.1. A possible classification for recommender systems

2.1.1 Sequence aware recommender systems

In some cases the input given to a specific model is a sequence of
actions, performed by a user, in a specific session. This is a very
common scenario, because often data are collected using the log files of
an application (e.g. click on different items of an e-commerce website).
In general this sequence of action gets more value if it brings other
useful information, such as the type of action. The algorithms studied
in literature in this kind of field can be divided in different categories.

10

2.1 – Recommender systems classification

Context adaptation

This category of algorithms takes in account some contextual infor-
mation in order to get more details about the choice of the user. It is
really difficult to understand with a certain grade of confidence if in a
specific session there is an intent of buying a product or there is only
a preliminary analysis. This kind of information may help to build
a better user profile in case of sequence aware recommender systems.
Some example of contextual factors are:

• Time of the day (Morning, Afternoon, Evening...)

• Geographical position

• Weather conditions

• Type of device (mobile/desktop)

Trend detection

An other important aspect to take in account in the context of recom-
mender systems is the possibility to detect some behaviour shared by
a group of individuals or a shift of interests in a single person. There
are two classes of information that might be extracted:

• Community or Group trends: the most popular item or the
favourite of a specific group of people should have a good rele-
vance in the suggestion generated by the system

• Individual trends: the tastes of a consumer can change across
the time. This is particularly interesting in the travel context: it
is not so common that, after a customer has purchase a specific
hotel, the next time he will look for an accommodation with the
same characteristics.

Repeated recommendations

In some context it is useful to suggest again an item that has already
been bought by the same user in previous sessions. For example, it is

11

2 – State of the art

possible to detect if there are recurrent purchasing of the same item
in order to recommend it when it will be needed again.

2.1.2 Collaborative filters
This kind of algorithms are the most studied in literature because they
are proven to be really effective in a lot of context. However they have
some problem to understand the shift of tastes of a user. The main
algorithm of this category is the Matrix factorization that will be
described thoroughly in the next chapter because is one of the main
part of the solution described in this master thesis.

2.2 Matrix Factorization
This section will give a thorough description of the Matrix Factor-
ization algorithm because it is a very important part of the research
proposed in this thesis.

2.2.1 What is the Matrix Factorization?
The Matrix Factorization is one of the most studied algorithm in lit-
erature concerning recommender systems [10]. It is part of the class
of Collaborative filters that collects some procedure for understand-
ing the long term preferences of users. This algorithm became really
famous during the Netflix Prize Challenge [2] and since then was inten-
sively used as a way of modeling the recommender system problems.

Strong point

This approach has a lot of virtues:

• It is an algorithm very well documented

• It is relatively simple in its basic implementation

• It is an effective way to discover the latent features between users
and items

12

2.2 – Matrix Factorization

• Provides a good way to represent data in case of large datasets

Weakness

The Matrix Factorization has also some limitations. As a consequence,
the majority of the solution provided in this kind of challenges uses a
hybrid approach, to overcome these drawbacks.

• It does not handle the Cold Start, namely the problem that occurs
where there are not enough data to make a prediction (e.g new
registered user without a previous history)

• It doesn’t recognize very well the shift of tastes of the user. This
is a huge problem in the context of tourism because it is obvious
that a person that has some exigency reserving an hotel, may
have other desires in the next one.

2.2.2 Problem definition

The main issue of this approach is the problem definition: it is impor-
tant to choose a computationally feasible encoding. The most com-
mon way to represent the problem is by defining a matrix composed
in the following way:

• Each row represent a user

• Each column represent an item, in this case it is an accommoda-
tion

2.2.3 Feature extraction

The Matrix Factorization model learns the latent representations in a
high dimensional space for users and items. When multiplied together,
these representations produce a score for every item for a given user.

13

2 – State of the art

Formal explanation

Let us take into account a matrix of dimensions n x m. For example,
we take a row of the user latent feature matrix

U1 = (uf1, uf2, ..., ufn) (2.1)

and a column of the item latent feature matrix.

I1 =


if1
if2
...
ifm

 (2.2)

In order to get the score S11 for the pair (U1, I1), it is necessary to
compute the dot product:

S11 = U1 · I1 = (uf1, uf2, ..., ufn) ·


if1
if2
...
ifm

 (2.3)

2.2.4 Example
This section describes what does in practice the matrix factorization
algorithm in a simple way. In order to get a better understanding
of what are the latent features, they are associated with some real
features of the hotel but we never get a real correspondence between
a latent feature and a real one. In this example the latent features
are associated with two common characteristics of accommodations:
the presence of a SPA and a bike rental service.

User-Item interaction matrix

The input of the algorithm is the matrix described in the section 2.2.2
where an item is represented by an hotel. An example of this matrix,
derived by the interaction between user and hotels is the following:

Starting from this input, the procedure calculates two other matri-
ces, in an higher dimensional space, that can produce the input when

14

2.3 – Recurrent Neural Network

Figure 2.2. Matrix of interaction between user and item

multiplied together. In this way, the rows representing users in the
left matrix, identify the tastes. When multiplied with a row referring
to an item which have a lot of features required by the given user, the
result will be an high compatibility.

2.3 Recurrent Neural Network

In the context of Sequence Based recommender systems often the
matrix factorization algorithm decreases the performance. For this
reason one of the most widely used system are the Recurrent Neural
Networks. Deep neural networks are exploited with success in the field
of image and speech recognition while in the Recommender Systems
domains they have been introduced recently [7].

While in Matrix factorization the focus is on the interaction be-
tween user and item, with RNN we take in account the sequence of
action performed in a single session. In particular we take as the first
input, the first action done by the user, and so on. The output will
be produced using the whole sequence of actions.

15

2 – State of the art

Figure 2.3. Example of matrix factorization

2.3.1 Simple RNN
The neural network [12] is able to take in account for each prediction
the consecutive actions by means of the Hidden Layer, that is up-
date each time we get a new input of the sequence, and carries the
information about the previous steps.

A main idea of the overall structure is outlined in the Figure 2.4

2.3.2 Long Short Term Memory (LSTM)
One of the main objective of the Long Short Term Memory network
[9] is to attain one of the problems of the simple RNN: the Vanish-
ing Gradient [8]. LSTM may face this phenomenon during the back
propagation phase when the sequence is very long. For this reason
the gradient update become too small and it doesn’t contribute to
the learning phase. To solve this problem LSTM networks use some
gates that can attain the loss of information during time:

16

2.3 – Recurrent Neural Network

Figure 2.4. Simple RNN structure

• Forget gate

• Cell state

• Input gate

• Output gate

By means of those functions the network is able to understand which
information is useful for the prediction and, on the other hand, what
can be left out. A straightforward example of a possible application
comes from the field of text recognition. In fact in long portion of
text there are only few words that are useful for the semantic analysis
and all the other words (such as conjuctions, preposition and articles)
must be discarded.

2.3.3 Gated Recurrent Unit (GRU)
The Gated Recurrent Unit [4] is another kind of network created to
overcome the problem of the vanishing gradient. It is a simplified ver-
sion of the LSTM architecture that usually have better performances.
The architecture has the following gates:

• Update gate: it has the same role of the input gate of the LSTM

• Reset gate: it defines how much information to forget

17

18

Chapter 3

Trivago 2019 Recsys
Challenge

This chapter will provide a better understanding about how the Trivago
website works and how it is useful for them to provide their customers
a better recommendations. Then will be given more details about the
challenge and how it is evaluated by the organizers.

3.1 Description of the challenge: the task

3.1.1 Trivago
This work aims to solve the problem defined in the RecSys Challenge
20191, hosted by Trivago. Trivago is a search platform for hotels
that is used by travellers to compare different accomodation in or-
der to choose the most suitable. This platform does not sell directly
the accommodation, but it helps to compare offers provided by other
booking platforms. In this business model the most important action
is the so called clickout that is what has to be predicted.

1https://recsys.trivago.cloud/challenge/

19

https://recsys.trivago.cloud/challenge/

3 – Trivago 2019 Recsys Challenge

Item clickout

When the traveller finds an hotel that might be good for him it per-
forms the clickout action and it is redirected to a different site, such
as booking.com, where it is possible to finalize the purchase. However
Trivago is not directly the retailer, it has a huge interest in rising the
number of partner’s sites visited during a session because his income
stream can be enhanced in this way. Indeed, this platform’s main
revenue is originated by advertising that usually takes in account two
different metrics:

• Cost per click: an hotel owner pays a fee for each time a user
from Trivago clicks on the sponsored hotel

• Cost per acquisition: the hotel owner pays a fee only if the spon-
sored hotel is effectively bought by the user from Trivago

By increasing the number of clickout is it possible to increment the
revenue given by the cost per acquisition.

3.1.2 Use case: find a hotel

As explained before the objective of the challenge is to predict the
hotel that will be clicked by the user at the end of his session. To do
so, it is really important to analyze all the actions that lead the user
to take the decision. The typical use case scenario of a user session on
the Trivago website is illustrated in the Figure 3.1. In this example
the user starts by searching the destination and the date of the travel.
Then it will see a lot of different accommodations, sorted following
the recommendations of Trivago. It can decides the most important
features by means of the filter, to finally perform a clickout action and
actually reserve the hotel.

20

3.1 – Description of the challenge: the task

Search
destination

View
hotels

Apply
filters

Clickout

Figure 3.1. Use case of Trivago website: example of a session

21

3 – Trivago 2019 Recsys Challenge

3.2 Evaluation metric: Mean Reciprocal
Rank

The accuracy of the algorithm must be evaluated by using a well
known statistic evaluation metric: the Mean Reciprocal Rank
(MRR). This method is really useful for evaluating the effective-
ness of a list based output, that is the objective of the challenge. In
fact, we have to provide a list of suggested accommodations for each
clickout action and the MRR gives a full score (1) if the clicked hotel
is in first position, half score if it is in the second one (1/2) and so on.
In a more structured way:

MRR = 1
|Q|

|Q|Ø
i=1

1
rank(i)

This means that it is not important only to find the most suitable
accommodation, but it is vital to consider also the goodness of the
recommendations different from the first one.

22

Chapter 4

Dataset

The dataset of the challenge is provided directly by Trivago. It looks
like a session log, which describes all the actions of a specific user that
end with the choice of a specific accommodation:

Figure 4.1. Example of the dataset provided by the challenge

It is already divided in Training set and Test set, according to
the logic described by the organizer of the challenge. They choose to
split the dataset according to a specific date, by keeping together the
sessions, as pointed out in the Figure 4.2.

During the competition the evaluation of the solution is calculated
(by means of the Mean Reciprocal Rank, described in Section 3.2) on
the Validation Set. At the end of the challenge the final ranking is
based on the result of the Confirmation Set.

23

4 – Dataset

Figure 4.2. Division of the dataset provided by Trivago

4.1 Dataset features
The dataset provided by the organizers of the challenge is very large.
In particular:

• Training set: 2.1 GB (80%)

• Test set: 530 MB (20%)

4.1.1 Training set
An initial overview of the training set can be seen in the Table 4.1.1

4.1.2 Test set
We performed the same kind of analysis on the test set. The result
are detailed in Table 4.1.2

24

4.1 – Dataset features

Number of rows 15.932.992
Number of columns 12
Number of different sessions 910.683
Number of clickout actions 1.586.586

Table 4.1. Training set statistics

Number of rows 3.782.335
Number of columns 12
Number of different sessions 291.381
Number of clickout actions 528.779

Table 4.2. Test set statistics

4.1.3 Dataset structure
The first important step that we took to have a better understand-
ing of the problem was to perform an analysis of all the parameters
provided. In this way we found out what affects the choice of the
accommodations. The dataset provides different information:

• User Id: the identifier of the user looking for the accommodation

• Session Id: the identifier of the session

• Timestamp: Unix timestamp1 of the action performed by the
user

• Step: incremental number used to define the sequence of actions

• Action Type: describes the type of the action performed by the
user, it can be of different types:

– Clickout item

1https://en.wikipedia.org/wiki/Unix_time

25

https://en.wikipedia.org/wiki/Unix_time

4 – Dataset

– Interaction item rating
– Interaction item info
– Interaction item image
– Interaction item deals
– Change of sort order
– Filter selection
– Search for item
– Search for destination
– Search for poi (Point of interest)

• Reference: this value has different meaning depending on the
action type. For example it holds the ID of the clicked hotel in
case of clickout item

• Platform: the country of the user searching for the accommon-
dation

• City: the city where the user is searching for the hotel

• Device: the device used for searching (mobile/desktop)

• Current Filters: all the filters set by the user, separated by
pipes

• Impressions: the list of all the accommodations, displayed to
the user. One of them is the one that will be clicked

• Prices: the prices of all the hotels in the impressions, separated
by pipes

4.2 Preliminary analysis
4.2.1 Dataset Statistics
We performed a preliminary analysis to have a better understanding
of the problem. Not all the statistics calculated were useful for the

26

4.2 – Preliminary analysis

solution of the challenge, but it is important to include them because
they leads some of the choices made by the team.

Number of session per user

It is useful to define if it is possible to have an history of the choices of
the user. According to this idea we calculate the number of sessions
for each user. In this context almost all users have only one session,
as detailed in Figure 4.3.

Figure 4.3. Average number of sessions for a single user

Potential differences between desktop and mobile

We analyzed the possibility that a user can be more inclined to per-
form a specific action on a mobile device rather than on desktop. The
Figure 4.4 shows the difference for each action.

27

4 – Dataset

Figure 4.4. Differences between desktop and mobile interactions

Average session time 10 minutes
Max session time 6740 minutes
Min session time 1.2 seconds
Average number of actions 17.5
Max number of actions 3522
Min number of actions 1

Table 4.3. Statistics about the sessions

Statistics relative to sessions

The Table 4.3 sum up some statistics concerning the duration of a
session, in order to extract the most common behaviour. As we can see
the minimum number of actions in a session is 1. So we have some case
where the user simply clicks an hotel without doing nothing relevant:
this was one of the main difficulties we have to overcome through the
challenge. The number of session with this characteristic is shown in

28

4.2 – Preliminary analysis

the Figure 4.5.

Figure 4.5. Number of single click action (calculated on the test set)

29

30

Chapter 5

Overall solution

The purpose of this section is to allow the reader to have a better
understanding of the overall picture of the solution proposed for the
RecSys Challenge 2019. In particular it will be explained what are the
arguments that supports the choices made by the team and how they
are reflected in terms of algorithms. There will be also some details of
the problems faced during the challenge that force the team to take
different and unexpected directions.

5.1 Team’s choices
The main idea that leads the choices to the solution we get is to ex-
ploit as more dataset feature as possible, by trying various algorithm.
During this challenge as a team, were developed different solution:

• Matrix Factorization

• Recurrent neural network

We choose those two procedures because they belongs to different
categories of the recommender system classification described in the
section 2.1 about the State of the art . For this reason, ideally, they
would cover different aspects of the data we have:

• Recurrent Neural network -> Sequentiality of the actions

31

5 – Overall solution

• Matrix Factorization -> User preferences

In this work the focus will be on the Matrix Factorization part of the
algorithm.

5.2 Algorithm description

5.2.1 Input matrix
The first challenge was to find a good model for the algorithm because
the input data, as described in the Section 4.1.3, is more suitable for
a Sequence aware recommender system than for a Collaborative filter
like the Matrix Factorization because it is a log of the user actions.

Interaction matrix

We decide to create the input matrix by using only a specific set of
the action described in the dataset provided by the organizer of the
challenge. In particular, we select the actions that can be associated,
uniquely, with a pair user-item. Those action are:

• Interaction item rating

• Interaction item info

• Clickout item

• Interaction item image

• Interaction item deal

• Search for item

So we used this actions to populate the cells of a traditional user-
item matrix. The first attempt use the same weight for each action,
but is a parameters that has been decided after a tuning, more details
will be provided in the Section 6.2.2.

32

5.2 – Algorithm description

Algorithm input data

In the Matrix Factorization model, we consider two interaction ma-
trices:

• User - Hotel

• User - Price Category

The first matrix is extensively used in literature. The second ma-
trix uses the same interaction actions, but it takes into account only
the price category of the hotel selected by the user. This kind of ap-
proach was used only in the cold start scenario, that is one of the
weakness of collaborative filtering.

In this way we can predict a score for the pair user-hotel also in
the situations where the hotel was not previously seen by the user.

Hotels have not a fixed price but it may fluctuate slightly during
time. To define categories we calculate for each hotel the average price
during the span of time of the dataset. Then we use a simple formula
to define the range of each category:

Rcategory = PMAX − PMIN

Ncategories

(5.1)

Where:

• Rcategory is the range of each category

• PMAX is the max price across all the hotels

• PMIN is the min price across all the hotels

• Ncategories is the number of categories defined, it is a parameter
of the algorithm and can be defined at runtime

The Figure 5.1 sum up how we passed from the sequence of actions
of the dataset to the matrix described before.

33

5 – Overall solution

Hotels

U
sers

2 1

? ? ?

? ? ?

0 2 1
1 0 0
0 7 1

1 0 1
0 1 0
1 0 6

0 1 1
1 0 0
0 1 0

2 1 0
1 0 2
0 0 2

1 0 1
1 1 0
0 1 0

1 0 0
0 0 2
1 1 0

Matrix Factorization

Matrix Factorization

Hotel 2

Hotel 2

Hotel 3

USER 1

0

Generate
interaction
matrix

Price category

U
sers

2 1

? ? ?

? ? ?

0

Generate
interaction
matrix

Price
category

1

Price
category

2

Price
category

1

USER 1

U

se
r

Hotel

Price category

U

se
r

Latent
Features

Latent
Features

Figure 5.1. Generation of MF model, starting from a sequence

5.2.2 Gradient boosting: including dataset fea-
tures

Gradient boosting is a machine learning technique used to generate a
better outcome, given more than one weak classifier. In our approach,
it was useful for adding the contribution of two particular features of
the dataset:

• The position of the hotel in the impression list. The im-
pression list is an information provided in the dataset and rep-
resents the order of the hotel presented to the customer, as seen
in the Figure 5.2
This is vital for giving good suggestions to the users. We found
out that in a good amount of cases the customer tends to click
on one of the hotel presented in the first positions.

• The position in user’s session: during a session, the customer

34

5.2 – Algorithm description

will interact with some different hotel. We defined a number that
tell how recent is the interaction between a user and an hotel (e.g.
1 for the most recent action, N for the least recent).

Figure 5.2. Impression list shown on Trivago website

5.2.3 The whole algorithm
A full picture of the algorithm developed is outlined in Figure 5.3.

The decision about the list of recommendations are not provided
directly by the Matrix Factorization algorithm. This model produce
only some scores, related to the user-hotel pairs, that contributes to
the final solution:

• MF Prediction: a score that express the affinity between a user
and a specific hotel

35

5 – Overall solution

• User Bias

• Item Bias

The two biases are features provided by the matrix factorization
model that represents a proven way to improve the algorithm and to
detect some recurrent behaviours of users that may affect the decision.
A typical example is a user that give an high score to the majority
of reviews. In this case is very useful to keep track of the difference
between the current rating and the average rating of the user, instead
of the value itself.

MF	Model

MF
Prediction

User Bias

Item Bias

Dataset
features

Position in
impressions

Position in
session

XGBOOST PREDICTION

Figure 5.3. Matrix Factorization + Gradient Boosting ensemble

36

Chapter 6

Matrix Factorization

In this chapter will be described one of the core parts of the algo-
rithm: the Matrix Factorization. In particular the focus will be on
the technical implementation, with a wide description of the possibil-
ities given by the library we chose. Finally there will be a discussion
about the parameters that performs well on or dataset and the final
result.

6.1 LightFM

6.1.1 Introduction
From a technical point of view the matrix factorization algorithm was
implemented exploiting a library called LightFM [11]. This library
provide an efficient implementation of the algorithm that we want to
apply to the dataset provided by Trivago.

This library was developed and maintained by Lyst, a company that
works in the field of fashion. In this specific domain is very useful to
provide to the customers a good recommendations because the cat-
alogue is huge and often they had to face the problem of cold-start.
This happens also from the item point of view: every season the cat-
alogue is updated with new dresses that don’t have any interaction

37

6 – Matrix Factorization

with users but must be taken in account because in the fashion con-
text the new collection has always a relevant value.

For these reasons, the most interesting feature of this package is that
it provides a good solution in the cold start scenario.

6.1.2 Cold Start
It is called cold start scenario when we have very few data or no data
to make the prediction. This is one of the main weaknesses of the
matrix factorization model, for more details refers to Section 2.2.1,
and it is better to use a content based algorithm, where all the items
are represented through features. The goal of this model is to:

• Having a score comparable to the classical matrix factorization
model in case of good amount of data

• Having a score comparable to the common content based method
in case of data sparsity

To obtain this kind of result they used an hybrid model. User and
items are represented as latent vectors, like a matrix factorization
model, but those vectors are not a single number, but a function of
the item feature or user features.

For example we can take the hotel NH Valencia Center from the
Trivago website, shown in the Figure 6.1

In LightFM model, this hotel is defined by the sum of the latent
representation of his features:

Irep = wifienc + poolenc + spaenc + ...+ gymenc (6.1)

Problem related to our dataset

The first attempt was to use the informations summarized before to
define hotel features. Between the file provided by the organizer of
the challenge there is also a file called item metadata that contains
those data about the accommodations.

38

6.1 – LightFM

The problem of this dataset is that is strictly related to the filter
option, for this reason it contains the hotel features just in case they
have been filtered by the user in the time span of the dataset (al-
most 2 days). Thus, the hotel metadata given by that file are really
fragmentary to fullfil the requirements of the LightFM model.

We noticed that the algorithm, structured with those data, tends to
prefers hotels that have the features with respect to the ones without
them. In this case the score was comparable to the random, so we
abandoned that metadata file.

Price category

The solution of the problem described before is to use another type
of data to define item features. As Trivago is a website that is widely
used to compare prices in order to find the cheapest one, we decided to
use the price. This feature is defined for each hotel in the dataset so we
avoid the problem of having some missing data. The only drawback
is that the price of the hotel is not fixed during the time but may vary
a little, so we generate our own item metadata file, that includes the
datas described in Table 6.1.2.

Hotel Id
Average price
Max price
Min price

Table 6.1. Columns of the custom metadata file

The algorithm doesn’t consider the price itself, but we divided the
total range of price in different categories, that are encoded. For more
details about the price categories, refer to Section 5.2.1.

39

6 – Matrix Factorization

Figure 6.1. An hotel along with the feature that can described
it in the LightFM model

6.2 Parameter tuning

6.2.1 Parameters description
The LightFM library allows the developers to change many param-
eters in order to get a more effective prediction. In this section it
will be described each parameter, while in the section 6.2.2 there is
a more detailed explaination of the parameters that gave us the best
performance, according to the Trivago evaluation method.

Loss functions

The method used to learn the embedding is the stochastic gradient
descent algorithm [6].

The loss function can be chosen between four different options.

• Logistic: this loss function is used when in the model are present
positive and negative interactions.

• Bayesian personalised ranking (BPR): this function is a
pairwise loss [15]. The peculiarity of this approach is that it
doesn’t optimize the score given by the a single pair user-item.
However, it takes Item pairs and performs the optimization over
the rank calculated on multiple user-item pairs. This is a Bayesian
approach, so we have the following likelihood function that has

40

6.2 – Parameter tuning

to be maximized

p(Θ| >u) ∝ p(>u |Θ)p(Θ) (6.2)

Where Θ represent the parameters vector of the model, in our
case, the Matrix Factorization, and >u represents the "desired
but latent preference structure for the user u". If we presume
that all users make their choices independently from each others,
it is possible to reformulate the equation 6.2 as the probability
that a user prefers an item i over an item j:

p(i >u j|Θ) := σ(x̂uij(Θ)) (6.3)

where σ is the logistic sigmoid:

σ(x) := 1
1 + e−x

(6.4)

• Weighted Approximate-Rank Pairwise (WARP): this is
the most particular loss function implemented by LightFM and
it was used for the first time for images [18].
The empirical evidence is that it generally outperforms the more
popular BPR, explained before.
The WARP starts with an approach similar to the BPR model, it
uses triplets (user, positive item, negative item). The difference
is that in this case, negative samples are not chosen randomly,
but they are selected from a pool of negative items which would
violate the desired item ranking. The algorithm is described well
in the LightFM documentation 1 and it involves two steps:

– Take a pair (user, positive item)
– Sample a negative item for that pair
– Estimate the prediction for the positive item

1https://lyst.github.io/lightfm/docs/examples/warp_loss.html

41

https://lyst.github.io/lightfm/docs/examples/warp_loss.html

6 – Matrix Factorization

– Estimate the prediction for the negative item.
– If the negative item’s prediction is better than the positive
one -> updates the gradient

– It the positive item’s prediction is better than the negative
one -> sample another negative item, until a violation is
found.

Notice that if the algorithm has to perform a gradient update
in the first steps, that update will be larger, otherwise it means
that the model is close to the optimal solution.

• k-OS WARP: is a variant of the WARP loss [19]. It bases the
pairwise update on the k-th positive item for any given user.

Learning rate schedules

In order to get better performances it has to be optimized the learning
rate. This is a very common issue, shared between the majority of
machine learning techniques, so it is deeply studied [5]. To solve this
problem we use the so called Learning rate schedules that simplify this
tuning phase when there are a lot of dimensions. LightFM library
allows the developer to choose between two possible learning rate
schedules.

• adagrad

• adadelta

List of parameters

• Number of component: is the number of dimension of the
latent space where the features are represented

• K: this parameter is useful only with the k-os WARP loss func-
tion (more details in Section 6.2.1). It represents the k-th positive
example that will be selected from the n positive examples

42

6.2 – Parameter tuning

• N: it is again related to the k-os WARP and is the number of
positive sample generated for each update

• Loss: the loss function chosen

• Learning rate: is the initial learning rate for the adagrad sched-
ule

• Rho: moving average coefficient used in adadelta schedule

• Item alpha: is the L2 penalty applied on item features

• User alpha: is the same penalty, but for users

• Max Sampled: this parameters is related to the WARP loss
function an represent the maximum number of negative samples
that can be generated during the WARP fitting.

• Random state: is the random seed

6.2.2 Parameters tuning
In this section we report the result given by the MF without the
gradient boosting, that will be explained.

General parameters overview

However there are a lot of other parameters (described in Section 6.2.1
that we tested a lot, for the sake of simplicity, we will focus on the
parameters that we considered important. More details about the
experiments are documented in Section 6.2.2

• Epochs: 150, 200, 300

• Number of components: 200, 300

• Learning rate: 0.01, 0.1, 0.2

• Learning schedule: adagrad, adadelta

43

6 – Matrix Factorization

As loss function we choose warp-kos because it significantly outper-
formed all the others. The results we obtained on the local validation
set are reported in Table 6.2.
We can observe that the adagrad learning schedule performs worse
than the adadelta one. The configuration that we selected is the best
one reported.

#Epochs #Components Learning Rate Learning schedule MRR
200 300 0.1 adadelta 0.577164
150 300 0.1 adadelta 0.577132
300 300 0.1 adadelta 0.577080
200 300 0.2 adadelta 0.577062
200 200 0.1 adadelta 0.576162
200 300 0.01 adagrad 0.431659

Table 6.2. MF parameters tuning overview

Detailed experiments on parameters

As mentioned before, there are a lot of parameters that have been
tested in order to obtain the best configuration of the algorithm, which
is essential in a competitive scenario like this challenge. The table 6.3
give a better analysis of all the matrix factorization parameters.
#Epochs #Components Loss Function Learning Rate Learning schedule K useralpha itemalpha rho epsilon maxsampled Score
200 300 warp-kos 0.1 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.577164
200 300 warp-kos 0.1 adadelta 300 1,00E+00 1,00E+00 1.35 1,00E-06 10 0.577146
200 300 warp-kos 0.1 adadelta 300 0.01 0.01 1.35 1,00E-06 10 0.577146
150 300 warp-kos 0.1 adadelta 300 1,00E-08 1,00E-08 1.35 1,00E-06 10 0.577132
300 300 warp-kos 0.1 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.57708
200 300 warp-kos 0.2 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.577062
200 300 warp-kos 0.1 adadelta 300 0.01 0.01 1.35 1,00E-06 10 0.5769
200 300 warp-kos 0.5 adadelta 300 1,00E-06 1,00E-06 3 1,00E-06 10 0.576826
200 300 warp-kos 0.5 adadelta 300 1,00E-06 1,00E-06 10 1,00E-06 10 0.576826
200 300 warp-kos 0.01 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.576752
200 300 warp-kos 0.5 adadelta 300 1,00E-06 1,00E-06 0.5 1,00E-06 10 0.576734
150 300 warp-kos 0.1 adadelta 300 0 0 1.35 1,00E-06 1000 0.576626
200 300 warp-kos 0.5 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.57658
150 300 warp-kos 0.1 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.576577
150 300 warp-kos 0.1 adadelta 300 0 0 1.35 1,00E-06 100 0.576535
200 300 warp-kos 0.5 adadelta 300 1,00E-06 1,00E-06 10 1,00E-06 10 0.576506
200 300 warp-kos 0.1 adadelta 400 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.576299
200 300 warp-kos 0.5 adadelta 300 1,00E-06 1,00E-06 0.2 1,00E-06 10 0.576242
200 200 warp-kos 0.1 adadelta 300 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.576162
200 300 warp-kos 0.01 adagrad 400 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.431659
200 300 warp-kos 0.01 adagrad 400 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.383908
200 300 warp-kos 0.1 adagrad 400 1,00E-06 1,00E-06 1.35 1,00E-06 10 0.371575

Table 6.3. Detailed parameters tuning analysis

44

6.3 – Order of the hotel’s list: another way to handle the cold start problem

6.3 Order of the hotel’s list: another way
to handle the cold start problem

As described before, we tried to use the LightFM approach to solve
the cold start problem but, however this library was useful to generate
a good matrix factorization model, it performs very poorly in this
specific context. In order to improve our result we had to get better
scores on this specific part of the task, which was the most challenging.
To face this challenge we choose to split our dataset in two parts:

• Session with length equal to 1: the Hard problem of the challenge

• Session with length greater than 1: the part handle with the Ma-
trix Factorization algorithm, improved with the gradient boost-
ing that will be treated in the section 7.1

In this section we will focus on our efforts to improve the scores rela-
tives to the hard problem.

6.3.1 First Attempt: Most popular hotel
The main difficulty of predicting the clickout action of a session where
the only action is the clickout itself is obviously the lack of information.
For this reason our first attempt was to create a sort of ranking of the
most clicked hotels across all the sessions of our dataset and to suggest
that in case of the clickout action to predict was performed in the first
stop of the session. This approach is very simple and gave us a MRR
= 0,287995 that wasn’t really good compared with the MRR =
0.57 that we get on the other set of data.

45

6 – Matrix Factorization

6.3.2 Second attempt: Most popular for nation
One of the few information that we have in the context of single click
action is the nation of the user that is looking for an hotel. So we
define an approach to exploit this information to get some predictions.
Instead of collecting the most clicked hotel overall, we create different
lists, one for each nation, with the ranking of most popular hotel. In
this case we simply suggest the most popular item between the other
people that share the same nation with the user that is looking for an
accommodation.
The main issue of this solution is that in some cases we don’t have
enough data, so we have to rely on the most popular item overall. To
do so, we define a parameters that represents the weight of the most
popular item with respect to the most popular by nation. After some
tuning on this parameters we had a little improvement in terms of
score (MRR = 0.292201) but it was still far from the performance
on the other set. The Table 6.3.2 outlines the result related to the
tuning phase of the Most popular by nation.

Most Popular Weight MRR
0.00001 0.292181
0.0001 0.292181
0.001 0.292181
0.01 0.292201
0.1 0.291374
0.2 0.290686

Table 6.4. Parameter tuning for the Most Popular by nation

6.3.3 Third attempt: Matrix factorization model
for nation

This was probably the most interesting idea to handle to cold start
problem. A general overview of the approach we used in this case is
outlined in Figure 6.2

46

6.3 – Order of the hotel’s list: another way to handle the cold start problem

Figure 6.2. The nation fallback approach

We found that the matrix factorization model works well on this
kind of task. The idea was to keep the same model for the Hard
problem but instead of creating a matrix representing the interactions
between Users and Hotels, we replaced Users with Nations. The new
matrix will be composed in the following way:

• On the rows: nations of the users of each session

• On the columns: id of the hotel visited by each user of the given
nation

The Figure 6.3 gave a better intuition about this model.
However this model seems really fascinating, it gave us almost the

same score of the previously described Most popular by nation

6.3.4 Fourth attempt: Impression list order
The most effective idea in this case was also really straightforward.
Indeed, Trivago presents to each user a series of hotel, ordered followed
some defined rule and we found out that in the majority of session, the
user choose one of the hotels located in the first positions, displayed
at the top of the page. We also calculates some statistics about this

47

6 – Matrix Factorization

Figure 6.3. The matrix factorization model including nations

observation, by identifying how many time an hotel, displayed in the
top positions will be effectively clicked by the user.

• 1st hotel -> 32% of clickouts

• Top 3 hotels -> 43% of clickouts

• Top 5 hotels -> 57% of clickouts

From this data emerges that is very uncommon that a user choose
an hotel from the bottom position probably because it doesn’t scroll
down the page enough to see them.
With this approach we get a good MRR improvement with respect
with the other solutions described before: MRR = 0.39.

48

Chapter 7

Ensemble methods

From the previous chapter emerges the necessity to include some other
dataset features that are left out from the matrix factorization model.
For this reason we decide to include another machine learning tech-
nique that simplify this task and that gave us better results in terms
of Mean Reciprocal Rank score.

7.1 Gradient Boosting
The Gradient Boosting is a popular machine learning algorithm used
in both classification and regressions problem. This model is func-
tional when it is necessary to join the results of some weak prediction
model, to produce a better outcome, by means of decision trees.

7.1.1 The intuition behind this approach
The approach of integrating the matrix factorization outcome with
other features, by means of gradient boosting was used successfully
by the Avito Team in the Recsys Challenge of the previous year [17].
The features that we want to include are:

• Recent index is a number that represent how recent is the in-
teraction between the user and the hotel, inside a specific session.

49

7 – Ensemble methods

This is a very important feature because in the majority of cases
the selected hotel has been visited recently.

• Position represents the position of the hotel inside the so called
Impressions List, better described in Section 5.2.2

In particular it was really interesting the idea of not making the
prediction directly with the matrix factorization model but to give
the latent feature, calculated for each pair user - hotel to a better
decision-maker algorithm like the gradient boosting.

7.1.2 XGBoost
The library used to develop this part of the algorithm’s pipeline is
called XGBoost that stands for eXtreme Gradient Boosting [3]. The
peculiarity of this implementation of the gradient boosting is that is
very focused on the speed and efficiency of the algorithm, and can
also be parallelized. Another really important characteristic is that
this implementation is one of the most used in the context of Data
Science challenges.

7.1.3 XGBoost training
The introduction of a gradient boosting model needs an additional
training phase. To test the efficacy of this solution locally we decide
to perform an additional split of the dataset. The pipeline of the split
is outlined in Figure 7.1.3. The training is divided in two phases:

• XGBoost training:

– The matrix factorization is trained on the blue block of the
second split

– The model produces some features about the pairs User -
Hotel, using the outcome of the matrix factorization, along
with the other features described at the beginning of the
section.

50

7.2 – Borda count

– The prediction is made on the green block, including a label
that defines if the hotel has been clicked or not.

– This dataset is used to train the XGBoost model

• MF Training

– The Matrix Factorization model is trained again using the
blue block of the first split

– This model produces the same feature that were given to the
XGBoost training on the orange block

– The trained XGBoost model produces a score for each pair
User - Item based on the feature in input

– The final list of recommendations is produced by sorting the
XGBoost scores

7.2 Borda count
Before our most successful attempt with XGBoost we tried another
ensemble method, following an approach that was successful in the
last year challenge [13].

7.2.1 Description of the method
The Borda method is a voting system that was used since a long
time ago, to define the winner by merging the results of more than
one output. In our work this method was used to merge the two
sequence, that can be seen as a vote result, given by each algorithm.
The Borda count is composed by the following step:

• Define the length n of the sequence

• Assign n point to the first item of the list, then n-1 to the second
one and so on

• Sum the result of all the different outcomes, rearranged in the
described way

51

7 – Ensemble methods

Figure 7.1. The double split of the dataset

• The item with the most number of votes, will be the first recom-
mended

52

7.2 – Borda count

Example

For example, in our context we have two arrays of solutions, one for
each algorithm:

YMF = [sh1, sh3, sh4, sh2] (7.1)

YRNN = [sh3, sh2, sh4, sh1] (7.2)

Where Y represent the outcome of the algorithms and shi is the
score related to the Hotel i.

In this case we have the following score for each hotel:

• Hotel 1 = 3 + 0 = 3 points

• Hotel 2 = 0 + 2 = 2 points

• Hotel 3 = 3 + 2 = 5 points

• Hotel 4 = 1 + 1 = 2 points

The final list of the recommended items is generated by sorting the
previous scores.

7.2.2 Results
Unfortunately this approach, however was really fast and simple,
doesn’t seem to get the strong point of the two algorithm. The result
with this approach is almost an average of the two score produced
singularly.

53

54

Chapter 8

Experimental Setup

This chapter describes some more technical details about the software
and hardware that allow us to get the results described before. It also
includes some information about how we managed the dataset in order
to have a local validation set, that is vital for evaluating performances.

8.1 Technical details
8.1.1 Software
The software is written in Python and it is divided into three parts:

• Import of training and test set

• Generation of the solution following the algorithm

• Score calculation (Mean Reciprocal Rank)

The software can be executed from command line and receives a differ-
ent set of parameters depending on the chosen algorithm. An example
of a possible execution is the following one:
python Setup . py t r a i n . csv test . csv ba s e s o l u t i on
In this case the first parameters is the setup file that has to be exe-
cuted, than we have the path of the two files (train and test set) and

55

8 – Experimental Setup

finally the name of the algorithm that we want to use to produce the
submission file.

8.1.2 Hardware
Computational resources were provided by HPC@POLITO, a project
of Academic Computing within the Department of Control and Com-
puter Engineering at the Politecnico di Torino 1. We used the cluster
named Hactar whose infrastructure is described in the Table 8.1.2.

Architecture Linux Infiniband-QDR
Node interconnect Infiniband QDR 40 Gb/s
Service Network Gigabit Ethernet 1 Gb/s
CPU Model 2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores
GPU Model 2x nVidia Tesla K40 - 12 GB - 2880 cuda cores
Sustained performance (Rmax) 20.13 TFLOPS (last update: june 2018)
Peak performance (Rpeak) 25.61 TFLOPS (last update: june 2018)
Computing Cores 696
Number of Nodes 29
Total RAM Memory 3.6 TB DDR4 REGISTERED ECC
OS Centos 7.4.1708 - OpenHPC 1.3.4
Scheduler SLURM 17.11.5

Table 8.1. Hardware of the Hactar Cluster

8.2 Data Preparation

8.2.1 Local dataset split
The only way to get the result using the dataset provided by the
challenge organizers is to perform a submission on the Trivago website
2. In the interest of providing a better way to get a feedback about the

1http://hpc.polito.it/
2https://recsys.trivago.cloud/challenge/

56

http://hpc.polito.it/
https://recsys.trivago.cloud/challenge/

8.2 – Data Preparation

techniques experimented we decide to split the training set following
the same rule of the challenge. More in detail:

• We defined a training set with 80% of the data, and a test set
with 20%

• We kept the actions referred to the same session together

The proficiency of this local spilt was confirmed by the fact that
the result obtained on our local test set were vary similar to the official
score calculated after a submission.

Differences with respect to the official test set

We discovered that the validation set were Trivago calculates the score
for the challenge ranking has a big difference with respect to our local
split that is impossible to be replicated. In the training set that we
used for the split, the Impressions list is randomly shuffled, in order
to hide the recommendations provided by Trivago itself. This is not
replicated in the validation set, and for this reason we get a little
improvement in the submission, with respect to the local result.

57

58

Chapter 9

Results

9.1 Pure Matrix Factorization results
The MF model alone gave us a good MRR score. The best thing about
this approach is that it provides a relatively good solution with a small
training time (roughly 1 hour). To compute the official score, we took
the parameters with the best performances on our local validation
dataset and we calculate the recommendations on the test set provided
by Trivago. In particular we choose:

• Number of epochs: 200

• Number of components: 300

• Learning rate: 0.1

• Learning schedule: adadelta

• K: 300

• User Alpha: 1.00E-06

• Item Alpha: 1.00E-06

• Rho: 1.35

59

9 – Results

• Epsilon: 1.00E-06

• Max sampled: 10

The result given by the submission calculated by Trivago on their
own validation set is MRR = 0.522896

9.1.1 Comment on results
This solution gave us the first improvement over the simple recommen-
dation of the most popular items (MRR = 0.28) that the baseline.
However we treat the cold start problem with the method described
in section 6.1.2 the performance on this kind of dataset were not as
good as we expected and we have to start exploring other solutions.

9.2 Matrix Factorization with Gradient
Boosting

For this results we used the best configuration obtained for the matrix
factorization, described in the Section 9.1.

9.2.1 Local result
The effectiveness of the algorithm is evaluated on the local test set
before the submission, in order to make easier to find the best param-
eters. One of the most interesting features of the XGBoost library is
that it plots, after the training, the importance of each feature given
as input, for the prediction. Notice that this value is calculated by
using the F score, that simply sum up all the times that the feature
is used in a split of the decision tree.

The importance of each feature is shown in Figure 9.2.1.
As we can see, the most important feature is the score produced by

the Matrix Factorization model, followed by the Recent Index. The
position of the hotel in the impression list is not so relevant because
the training set, as described before, has a shuffled impression list and
is not considered useful in terms of predictions.

60

9.2 – Matrix Factorization with Gradient Boosting

Figure 9.1. Importance of each feature in the matrix fac-
torization model

The result obtain on the local test set are shown in the Table 9.2.1.

MRR Improvement
0.598042 + 0.07

Table 9.1. XGBoost + MF on local dataset

9.2.2 Official result
There is a small improvement between the official result and the local
one. This happens because, as the organizers of the challenge ex-
plicitely say that there was a difference between the training set and
the test set. In the training set, that we used to calculate the local
score, since is the only way to define the efficacy of algorithm, the
impression list has been shuffled, while in the test set they are sorted

61

9 – Results

following the Trivago recommendations.
For this reason, in the submissions, we get a better score for the

Cold Start part of the algorithm, described in the Section 6.3, that
reflects a better overall score.

The result, expressed by means of Mean Reciprocal Rank, is shown
in Table 9.2.2, with the improvement from the previously submitted
solution that uses only the Matrix Factorization.

MRR Improvement
0.610525 + 0.08

Table 9.2. Official score of the MF + XGBoost algorithm

9.3 Matrix Factorization with Gradient
Boosting and RNN

The results of the ensemble between the Matrix Factorization and
the Recurrent Neural Network were taken only on the local test set
because unfortunately, the configuration of the RNN wasn’t completed
before the deadline of the challenge, due to a long training time. There
were two different configuration of the network.

RNN: First configuration

The first configuration of the RNN is based on a GRU model, cen-
tered on the pure classification task. The hotels inside a session were
encoded and given as input to the network that extracts the latent
features and selects the more suitable hotel by means of a confidence
score.

The prediction given by the Recurrent Neural network on each pair
User - Item is added to the input given to the XGBoost model.

We can see the impact of the RNN by looking at the importance
of each features in the Figure 9.3.

62

9.3 – Matrix Factorization with Gradient Boosting and RNN

The result, described in Table 9.3 give another little improvement
with respect to previous matrix factorization model.

MRR Improvement
0.602774 + 0.005

Table 9.3. First RNN + XGBoost MRR and improvement from MF

Figure 9.2. Importance of each feature in the first config-
uration of the RNN

RNN: Second configuration

The second configuration is based as well on the GRU architecture.
In this case the focus is on the last-n hotels that have been visited
during a session. The RNN tries to identify if the hotel clicked is
included in the last visited or is outside this list. In the first scenario

63

9 – Results

it tries also to understand which of the visited hotels have been clicked.

The input given to the XGBoost model is in the same format speci-
fied before, with the outcome produced by this different configuration
of the Neural Network.

In this case the result is really similar to matrix factorization, just
a little bit worse, as outlined in Table 9.3

MRR Improvement
0.598029 - 0.0000137

This behaviour is reflected also in the importance of each feature
for XGBoost, as described in the Figure 9.3

Figure 9.3. Importance of each feature for the second con-
figuration of the RNN

Figure 9.4. Second RNN + XGBoost MRR and improvement from MF

64

Chapter 10

Conclusions and future
works

In this thesis was described the approach that our team took to solve
the task presented in the RecSys Challenge 2019, hosted by Trivago.
The objective of the challenge was to analyze the actions that a user
perfoms during a session, in order to decide which hotel is the most
suitable for him.

We start with an accurate analysis of the dataset provided by the
organizers of the challenge, where we define some important features
that should be taken into account in the model, such as some relevant
statistics about the session.

Then in the third chapter was described the state of the art in the
context of recommender systems. First of all, the algorithm were clas-
sified in two categories: Sequence Aware and Collaborative filter. The
most well known algorithm of the first category is the matrix factoriza-
tion, that represents the core of the solution presented in this master
thesis. On the other hand, from the category of sequence aware recom-
mender system, was given a general overview of the Recurrent Neural
Network, focusing on the problem of each implementation. Our team
decides to explore both solutions in order to exploit different features

65

10 – Conclusions and future works

of the dataset that will be ideally reflected in an improvement of the
score. The score of each submission is calculated using a statistical
method called Mean Reciprocal Rank.

The core of the solution is the matrix factorization, which is imple-
mented by means of LightFM. It takes as input a matrix that is very
well known in literature: on the row there are the users and on the
column the hotels. Starting from this input the algorithm calculates
two other matrices carrying the latent feature of user and hotels, that
are multiplied together to get the prediction for the pair.

A further improvement was obtained by using the Gradient Boost-
ing technique to include two other dataset features: the position of
the item in the list of hotels presented to the user (called Impression
lists) and an index the identify how recent is the interaction between
the user and the given item. This method was used also to include
the scores given by the two configuration of the Recurrent Neural Net-
work, developed by an other component of the team.

The eighth chapter describes the technical details of the imple-
mentation: the code is written in Python and is executed on the HPC
Cluster, powered by Polito. Finally were presented the results for
each configuration. The Pure Matrix Factorization gave a MRR score
of 0.52, that become 0.61 with the integration of the other features,
by means of Gradient Boosting.

10.1 Future Works

The work presented in this master thesis has a lot of possible improve-
ment, due to the fact that some part of the problem were not analyzed
thoroughly, because of the strict deadline of the challenge.

66

10.1 – Future Works

10.1.1 Optimization
There are a lot of other possible solutions for this task that will re-
main unexplored. In particular the part of the algorithm that can be
improved at most is the cold start. Due to the problem of the meta-
data file it wasn’t possible to exploit at all the Matrix Factorization
model provided by LightFM and even if we made an attempt by using
the price category, with more time it would be possible to find other
features with more impact.

10.1.2 Portability
One of the problem of this research work is that is deeply focused on
the task proposed by the challenge. The score is always calculated on
the Trivago validation set, except for our attempt on the local test
set. So, we didn’t explore a lot how the solution performs on different
dataset or on a bigger dataset. In fact, as explained before, one of the
main issue in the context of tourism is that the prediction are affected
a lot by the change of season for obvious reason. It wasn’t possible,
due to the limitation of the dataset provided by Trivago, which takes
in account only 2 days, to analyze the performances of our algorithm
in this scenario. It is also interesting to try the pipeline on different
context [1].

10.1.3 Weakness of the Matrix Factorization
The application of the Matrix Factorization algorithm, however it is
straightforward and very well studied in literature, presents two main
problem:

• Cold start problem

• Difficulties in detecting the shift of tastes

The first problem has been attained a bit by using the user and item
embeddings as detailed in Section 6.1.2 but it can surely be improved.
The second one remains an open issue. The Matrix Factorization

67

10 – Conclusions and future works

works very well when it is necessary to define the user tastes, but
if that person change interest over time, which is a really common
scenario, it requires a lot of interaction to understand that. It would
be interesting to handle this problem directly using this algorithm,
without using an hybrid approach such as the one described in this
work.

68

Acknowledgements

I would like to thank my family, for the constant support during the
whole university path: they give me an invaluable encouragement and
assistance to me. A special mention for my girlfriend, she comfort me
when the times got rough and was also comprehensive during the
periods I cannot spend a lot of time with her because I was working
hard.

I offer my sincere appreciation to all my university collegues, for
making each difficult day funnier and for the team working that allow
us to pass a lot of exams. It is also vital to thank all my friends, for
the amusing moment of each weekend spent together.

Finally I would like to thank also the whole team of the challenge.
First of all Giorgio: we worked very well together in the delicate
part of joining our two solutions, thanks to the continuous process of
sharing information about the challenge. This work could not have
been accomplished without the contribution of Giuseppe and Diego.
I found really useful the way they structured the work process, with
constant weekly meeting where they share their precious knowledge.

69

70

Bibliography

[1] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. “Matrix
Factorization Techniques for Context Aware Recommendation”.
In: Proceedings of the Fifth ACM Conference on Recommender
Systems. RecSys ’11. Chicago, Illinois, USA: ACM, 2011, pp. 301–
304. isbn: 978-1-4503-0683-6. doi: 10.1145/2043932.2043988.

[2] James Bennett, Stan Lanning, et al. “The netflix prize”. In: Pro-
ceedings of KDD cup and workshop. Vol. 2007. New York, NY,
USA. 2007, p. 35.

[3] Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System”. In: Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 785–
794. isbn: 978-1-4503-4232-2. doi: 10.1145/2939672.2939785.

[4] Tim Donkers, Benedikt Loepp, and Jürgen Ziegler. “Sequential
user-based recurrent neural network recommendations”. In: Pro-
ceedings of the Eleventh ACM Conference on Recommender Sys-
tems. ACM. 2017, pp. 152–160.

[5] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive sub-
gradient methods for online learning and stochastic optimiza-
tion”. In: Journal of Machine Learning Research 12.Jul (2011),
pp. 2121–2159.

[6] Rainer Gemulla et al. “Large-scale matrix factorization with dis-
tributed stochastic gradient descent”. In: Proceedings of the 17th

71

http://dx.doi.org/10.1145/2043932.2043988
http://dx.doi.org/10.1145/2939672.2939785

BIBLIOGRAPHY

ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2011, pp. 69–77.

[7] Balázs Hidasi et al. “Session-based recommendations with re-
current neural networks”. In: arXiv preprint arXiv:1511.06939
(2015).

[8] Sepp Hochreiter. “The vanishing gradient problem during learn-
ing recurrent neural nets and problem solutions”. In: Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 6.02 (1998), pp. 107–116.

[9] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[10] Yehuda Koren, Robert Bell, and Chris Volinsky. “Matrix factor-
ization techniques for recommender systems”. In: Computer 8
(2009), pp. 30–37.

[11] Maciej Kula. “Metadata Embeddings for User and Item Cold-
start Recommendations”. In: Proceedings of the 2nd Workshop
on New Trends on Content-Based Recommender Systems co-
located with 9th ACM Conference on Recommender Systems (Rec-
Sys 2015), Vienna, Austria, September 16-20, 2015. Ed. by Toine
Bogers and Marijn Koolen. Vol. 1448. CEURWorkshop Proceed-
ings. CEUR-WS.org, 2015, pp. 14–21.

[12] Tomáš Mikolov et al. “Recurrent neural network based language
model”. In: Eleventh annual conference of the international speech
communication association. 2010.

[13] Diego Monti et al. “An Ensemble Approach of Recurrent Neural
Networks Using Pre-Trained Embeddings for Playlist Comple-
tion”. In: Proceedings of the ACM Recommender Systems Chal-
lenge 2018. RecSys Challenge ’18. Vancouver, BC, Canada: ACM,
2018, 13:1–13:6. isbn: 978-1-4503-6586-4. doi: 10.1145/3267471.
3267484.

72

http://dx.doi.org/10.1145/3267471.3267484
http://dx.doi.org/10.1145/3267471.3267484

BIBLIOGRAPHY

[14] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach.
“Sequence-Aware Recommender Systems”. In: ACM Comput.
Surv. 51.4 (July 2018), 66:1–66:36. issn: 0360-0300. doi: 10.
1145/3190616.

[15] Steffen Rendle et al. “BPR: Bayesian Personalized Ranking from
Implicit Feedback”. In: Proceedings of the Twenty-Fifth Confer-
ence on Uncertainty in Artificial Intelligence. UAI ’09. Montreal,
Quebec, Canada: AUAI Press, 2009, pp. 452–461. isbn: 978-0-
9749039-5-8.

[16] Francesco Ricci. “Travel recommender systems”. In: IEEE In-
telligent Systems 17.6 (2002), pp. 55–57.

[17] Vasiliy Rubtsov et al. “A Hybrid Two-stage Recommender Sys-
tem for Automatic Playlist Continuation”. In: Proceedings of the
ACM Recommender Systems Challenge 2018. RecSys Challenge
’18. Vancouver, BC, Canada: ACM, 2018, 16:1–16:4. isbn: 978-
1-4503-6586-4. doi: 10.1145/3267471.3267488.

[18] JasonWeston, Samy Bengio, and Nicolas Usunier. “Wsabie: Scal-
ing up to large vocabulary image annotation”. In: Twenty-Second
International Joint Conference on Artificial Intelligence. 2011.

[19] Jason Weston, Hector Yee, and Ron J Weiss. “Learning to rank
recommendations with the k-order statistic loss”. In: Proceed-
ings of the 7th ACM conference on Recommender systems. ACM.
2013, pp. 245–248.

73

http://dx.doi.org/10.1145/3190616
http://dx.doi.org/10.1145/3190616
http://dx.doi.org/10.1145/3267471.3267488

	List of Tables
	List of Figures
	Introduction
	The team
	Recommender Systems

	State of the art
	Recommender systems classification
	Sequence aware recommender systems
	Collaborative filters

	Matrix Factorization
	What is the Matrix Factorization?
	Problem definition
	Feature extraction
	Example

	Recurrent Neural Network
	Simple RNN
	Long Short Term Memory (LSTM)
	Gated Recurrent Unit (GRU)

	Trivago 2019 Recsys Challenge
	Description of the challenge: the task
	Trivago
	Use case: find a hotel

	Evaluation metric: Mean Reciprocal Rank

	Dataset
	Dataset features
	Training set
	Test set
	Dataset structure

	Preliminary analysis
	Dataset Statistics

	Overall solution
	Team's choices
	Algorithm description
	Input matrix
	Gradient boosting: including dataset features
	The whole algorithm

	Matrix Factorization
	LightFM
	Introduction
	Cold Start

	Parameter tuning
	Parameters description
	Parameters tuning

	Order of the hotel's list: another way to handle the cold start problem
	First Attempt: Most popular hotel
	Second attempt: Most popular for nation
	Third attempt: Matrix factorization model for nation
	Fourth attempt: Impression list order

	Ensemble methods
	Gradient Boosting
	The intuition behind this approach
	XGBoost
	XGBoost training

	Borda count
	Description of the method
	Results

	Experimental Setup
	Technical details
	Software
	Hardware

	Data Preparation
	Local dataset split

	Results
	Pure Matrix Factorization results
	Comment on results

	Matrix Factorization with Gradient Boosting
	Local result
	Official result

	Matrix Factorization with Gradient Boosting and RNN

	Conclusions and future works
	Future Works
	Optimization
	Portability
	Weakness of the Matrix Factorization

