
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica

Thesis Master Degree

BUG PREDICTION:

Log approach – version approach

Candidato: Lucio Ciracì (s240345)

Relatore: Elio Piccolo

Correlatore: Javier Segovia

Anno accademico 2018-2019

1

RINGRAZIAMENTI

Un grande ringraziamento a mia madre e mio padre che, con il loro instancabile

sostegno, sia morale che soprattutto econimico, mi hanno permesso di arriavare fin

qui e di permettermi di realizzarmi.

Grazie alla pazienza e alla professionalità del Politecnico di Torino (professori,

dottorandi e assistenti) affinche mi hanno permesso di arrivare fin qui.

Gracias a la maravillosa experiencia Erasmus que he podido hacer en Madrid y en

las muchísimas gente que he conocido.

I wish to express my most sincere gratitude to all my friends come from each part

of Italy and world about the wonderful experiences that we had together.

2

INDEX

RINGRAZIAMENTI ... 1

1. INTRODUCTION .. 4

2. OVERVIEW ... 6

2.1. Granularity level .. 6

2.2. Developers approach ... 8

2.3. Different types of approach ... 8

2.4. Last study with same dataset ... 10

3. BACKGROUND .. 11

3.1. NEURAL NETWORK .. 12

3.2. DECISION TREE ... 21

3.3. LINEAR REGRESSION .. 33

3.4. R-SQUARE ... 37

3.5. SPEARMAN CORRELATION .. 38

3.6. WHERE USE SPEARMAN ... 41

3.7. SPEARMAN OR R2 ... 45

4. METRICS DESCRIPTION .. 46

4.1. CHANGE METRICS .. 47

4.2. PREVIOUS DEFECTS ... 48

4.3. SINGLE VERSION CK-OO ... 49

4.4. ENTROPY OF CHANGE... 51

4.5. CHURN OF SOURCE CODE METRICS .. 54

4.6. ENTROPY OF SOURCE CODE METRICS ... 56

5. DATASET DESCRIPTION ... 58

5.1. DETAILS .. 62

3

6. DESCRIPTION WORK ... 63

6.1. ANALYSIS WITH PRINCIPAL METRICS.. 64

6.2. COMMENTS .. 80

7. ANALYSIS WITH A METRICS COMBINATION 82

7.1. COMMENTS .. 85

8. METRIC ADJUNCT .. 87

8.1. EXPERIMENTS WITH A NEW METRIC .. 91

8.2. COMMENTS NEURAL NETWORK & DECISION TREE 97

8.3. COMMENTS LINEAR REGRESSION ... 98

9. BINARY CLASSIFICATION ... 100

9.1. EXPLICATION BINARY CLASSIFICATION 100

9.2. SIMULATION .. 104

10. CONCLUSIONS .. 124

INDEX FIGURES ... 126

INDEX GRAPH .. 127

INDEX TABLES ... 128

BIBLIOGRAFIA ... 129

4

1. INTRODUCTION

Bug prediction has generated widespread interest for a long time. The general

scenario have been many applications with different approaches. The raising of

properties of programming languages made it necessary a study about the

correlation between classes, packages and files. In order to improve the quality of

code and the developers satisfaction.

In the last 20 years there are studied many metrics to evaluate a coding and to limit

bugs. In further detail for instance, the Chidamber and Kemerer (CK) object-

oriented metrics suite, based on coupling between objects, numbers of children or

depth of an inheritance tree.

We will focus on different levels of granularity (class, method or package), paying

attention on a featuring selection like to reduce or to combine metrics.

In this work using the last Data analysis approach (neural network, decision tree,

linear regression), it was possible to obtain models in order to predict bugs based

on five relevant software system (Eclipse JDT Core - Eclipse PDE UI etc.). There

models based on the purpose to have an exact prediction of numbers of bugs or to

have the knowledge of a present / absence of bugs during the execution or

programming.

This is useful, essentially for the developers to understand the relationship between

bugs and software, because the modern laugages programming have a lot

dependencies, just think about library, operative system and the several versions.

Using the CK metrics have prove that correlation between metrics is more reliable

with some software system (eclipse and equinox). To obtain the same level of

correlation with other software we need to combine in a specific approach the

metrics (with also some interpolations).

5

We have developed a hybrid metric, correlated with the bug accurence return a level

about 0.8 and 0.9 of correlation using the neural network and decision tree.

While the classification approach, (bug present or absence) developed for the first

time with these programs, using the combinated metrics, the result will show very

good values of precision, recall and accuration.

6

2. OVERVIEW

Bug prediction is one of relevant problem into Software Engineering world. The

idea to limit this issue is to use a knowledge system, like database that contains for

each class or packege if this one can lead an error or not.

Another way to recognize errors into the workplace is exchange reference, opinions

between colleagues, just dropping off the bug’s reference [i] but also use the bugs

history. Bearing in mind, we have to try a trade-off between bug management and

the coding.

For instance the bug history of 70.000 bugs used by [ii] was able to predict predict

the overall bug-count trend monthly. So for the nexts months knowing the past the

system can avoid bugs.

2.1. Granularity level

It is relevant which granularity level we will focus on.

We can work with different level to predict bugs (package-level, file-level, class-

level and method-level). Below are explain the principal study about different level

approach.

In the 2010, it was apply a correlated-study between bugs and effort-aware models

[iii]. The package-level prediction can be unsuitable if we consider the effort.

For effort have considered the lines of code (LOC) like proposed by [iv]. It was

compareted with a file-level approach and this benchmark show that using only

20% test to detect up over 70% of bugs but using package-level we have almost

60%. This happens for a high dependency between files and release in a package-

approach.

7

Now a file-level prediction combinated with a classifier are able to recognize bugs

clean or ‘buggy’ (hidden). It makes to several advantages like small granularity

infact it is not necessary a semantic information about the source code and it works

well with different projects and programms languages [v].

The method-level prediction have various benefit combinated always with a

classifier. First, when the file is too large, the developer needs a lot times to examine

all method into a file, it is increased the granularity model. In this casa, it’s suggest

to use the AUC (Area under the curce ROC) to create a better model, this because

when selecting randomly a bug-prone (inclined to error) and a not bug-prone

method, AUC represents the probability that a given classifier assigns a higher rank

to the bug-prone method. [vi]

A successful approach is graph-level, it is able to develop a software evolution. In

the work [vii] there are studied various graphs to detect propertied (Assortativity,

Clustering Coefficient, Modularity Ratio etc.) about software process and these

results are applied with many software. They finally prove that some measure

related with the bugs as for instance ‘Modules with higher ModularityRatio have

lower associated maintenance effort’. When for ModularityRadio aims ratio

between the total number of intra-modules and total number of inter-modules.

A bug-fix time prediction model with Multivariate Regression Testing is a way to

predict information based on times and the correlation between independent

variable and dependent variables. [viii]

Another type is historical metric-based. To evaluate this approach there were used

prediction methods on different level (packages, files, methods). During the first

analysis it showed that the method-prediction have larger percentage of bugs found

this because this approach was apply with LOC (lines of code) and intuitively,

comparing the median value of the LOC, methods are almost ten times smaller than

files, and are from thirty to threehundred times smaller than packages.[ix]

8

2.2. Developers approach

The software’s quality is also and good improvements. Experimentally changing

the developer’s number also change the number of defect fixex by them, this change

the defect prediction quality. [x] Using a concept drift, seeing the prediction quality

over time and using different features, so metrics shows that changing the number

of author we have a negative impact.

Another negative impact comes from the number of lines added / removed to fix

bugs relative to total number of lines operates (This feature reflects the fraction of

work performed to fix bugs relative to total work done).

Beyond all, it is interesting the developer’s behavior with the bug prediction. There

are developed algorithms in relation with the developer-preference in terms of

characteristics. Finally, this is eveidenced by the developers prefer the algorithm

that have file with a larger numbers of closed bugs through the human inspection

techniques. [xi]

Another point of analysis is about the relationship between the metric and the

developers. In the study was studied specific metrics to understand the relationship

between the developers. Using an Eclipse plug-in, they have captured the variations

of the files in correlation with the developers. The analysis performed using

regression and decision tree, with the cross-validation technique have been able to

return level of prediction about 80%. [xii]

2.3. Different types of approach

It is significant reducing features: but which type of features can we erase? To

answer that question it is interesting the approach by [xiii]. Here it is used an iterative

algorithm Gain Ratio based, which evidence an improvement of scalability and

response-time to find a optimal classification performance into of a iterative-

algorithm using the accuracy and F-measure.

In order to reduce the features the approach explained in [xiv] is intuitive. Here it is

used a method capable to use simply metrics to predict bugs based on trade-off

9

between cost and accuracy. In this case, a good metric is LOC (Lines of codes) and

it is the metrics that we will study more detailed into the metric section, however

the same approach to find a metric is used in the our metric (Section 7). The final

consideration cited in the paper used within the analysis, which are the LOC, CBO

and LCOM use to optimize the minimum metric subset.

We can also combine different features such that to obtain a good predictive

capability. Related with the likelihood of inserting a fault during development or

the likelihood of discovering and fixing a fault prior to product release. [xv] During

the test-phase, they realized that some features combined, return a good

contribution using various methods (wrappers and filters). Wrappers are algorithms

that use feedback from a learning algorithm to understand which attributes used to

build a predictive model. The last method (filters) does not require a learning

algorithm to determine the attributes selection.

A useful analysis could be the Mining Software Repositories (MSR) using topic

models, which it allows to scale thousands or millions of documents. [xvi]

The part of selection defects bugs is usually trial (right to think about the memory

corruption, that allow to manifest a bugs after long times). In this works it is allow

to each bug predictor to signal anomalies into the software, to achieve this, it is

developed a dynamic forward slices of each anomaly and retain only those

anomalies whose forward slices contain the point of failure. Using this approach,

they have used this method with gcc compiler, which performs many bugs, without

using, any hardware’s support and it obtain very relevant results. [xvii]

The bug estimation work using clustering techniques with the information stored

into the bug’s repositories is innovative. Using cluster to separate different bugs

and to join similar bugs is possible to resolve problems that have been in the past,

in order to save time. [xviii]

Reducing the data scale and improve the accuracy of bug triage can save many

resources. The heart of the algorithm is the instance selection and the feature

selection with the removing of the noise or duplicate information. They prove that

the feature selection can supplement the loss of accuracy by instance selection.

Thus, we apply instance selection and feature selection to reduce simultaneously

the data scales. [xix]

10

An important point where that should be in-depth is about the re-opened bugs.

Based into two phases: In the training phase, our goal is to build a classifier from

the historical bug reports, which have known. In the prediction phase, this classifier

predict whether an unknown bug report would be re-open or not. In the results

shows that the Bagging and Decision Tree had a good performance (up on 90 %).

[xx]

2.4. Last study with same dataset

In the study developed into [xxi] was apply the linear regression with the same Data

set. Here are developed different methods also with a combination of different

metrics valuated using Spearman correlation and R2.

These indexes have different behaviour, so:

 Spearman to evaluate the predictive power or the exacly number of a

bugs for each classes;

 R2 to evaluate the explanative power or the present or absence of a bug

for a class.

The principal results come from this study were:

 Approaches based on churn and entropy of source code metrics have good

and stable explanative and predictive power than the other combinated

metrics;

 Using CK+OO metrics is not necessary historical information to predict

bugs;

 The use of a single metrics are inefficient (this is true also with our

approach);

 The combination of OO metrics with WCHU and LDHH the explanative

and predictive power are high level.

11

3. BACKGROUND

Fayyad defines a Data Mining like a process of nontrivial extraction of implicit,

previously unknown and potentially useful of information from the data stored in a

database. [xxii]

The wide variety of Data mining techniques made possible to resolve problems in

a faster way. The domains applied are multiple.

The information collects into the data hide a very useful knowledge that in many

cases are underestimated.

Into the healthcare organizations, using these types of methods is possible to reduce

the cost on clinical test, to speed up the diagnosis and to improve the quality of a

clinical decision. In the hospital long time ago, data used to answer at simple

statistics questions, but the real goal is to answer to complex queries, more

specifically.

In the works developed by [xxiii] are used three principal data mining tools (Decision

Tree, Neural Network and Naïve Bayes) to predict heart disease. The results prove

that the almost the 80% of the heart patients have been predicted with these

techniques. Given patients, medical profiles predict those who diagnosed with heart

disease are. Alternatively, identify the relationship and influences in the medical

input associated with the predictable state heart disease, or determine the attribute

values that differentiate nodes favoring and disfavoring the predictable states:

patients with heart disease patients with no heart disease. [xxiv]

Another valuable work is the Heart Diseases from [xxv] done in India. The dataset

contains 303 rows with 76 attributes. The accuracy of the prediction with the

different techniques used is always up on 80%.

This has shown us the good performance about the use of the Data Mining tools

respect to the precision and to the time-response. These two parameters will be

fundamental for our approach.

Moving on, an inspirational work of the Data mining have been developed by [xxvi]

for the financial distress in China between the years 2011-2018. The use of Data

Mining algorithm is for grasping the profitability situation and to anticipate the

investment related losses, using the three most famous classifiers (Neural network,

12

Decision Tree and Support Vector Machine). The goal is to foresee the sign of

financial deterioration of the firm early on, using 107 companies with 31 financial

indicator.

The model with a higher accuracy was the Neural Network because it did not make

any assumption about the statistic distribution or properties of the data and because

the neural network had an ability to fit nonlinear data and could approximate

accurately complex data.

3.1. NEURAL NETWORK

The neural network is a predictive model with a number of parameters. The

disadvantages is the not-clearly of the interpretation of the model. Therefore,

when we have inserted the target of the model we can choose different algorithms

to implement the neural network. We can choose four three of objective: Standard

Model, Enhance model accuracy and Enhance model stability (See Modeler

References). [xxvii]

The algorithm about the building of neural network based with back-propagation

method. The advantages about these approaches are good successfully, reliability

estimation, software cost prediction, ability to approximate complex nonlinear

function. It is better for the supervised algorithm than the unsupervised algorithm.

In the paper [xxviii] is explained the way to operate of the algorithm respect to detect

bugs.

The work [xxix] shows a study using the classic metrics (Code Churn, Chidamber

and Kemerer etc.) with a subclasses of eclipse. In this work with the spearman-

correlation, (it allows no assumptions about the distributions, variances and the type

of relationship) shows that the use of neural network is not always adapt to predict

bugs. In particular, in this case the target was to identify the present or the absence

of bugs for a set software system.

13

The hybrid model ‘Artificial Neural Network (ANN) optimized by Artificial Bee

Colony (ABC)’, is a study developed in [xxx]. In this work, the dataset divided in

order to use a subset of features, instead to use all metrics, with also the PCA. By

combining the algorithm genetic idea and using a specific fitness function, it is able

to obtain the better neural, like a greedy-approach. Based with the classic approach

(recall, precision, ROC, etc.) they have to prove that using less features is possible

to obtain a good level of accuracy and cost level.

A work using NNA (neural network algorithm) proposed [xxxi].based with three

methods:

1) reused the training set in order to obtain a betel level of effort

2) In order to prevent the bad interpretation of any features it is performed a

feedback to train the model again iteratively to obtain prediction more

precisely

3) It is used a Bayed method to see if some prediction could be found in a

simple way.

A comparison about different types of bugs using various machine-learning

techniques is the study [xxxii]. Here there are used Support vector machine, Naïve

Bayes, K-nearest neighbors and neural network. Using their dataset using neural

network have obtained a better accuracy than the SVM and K-NN. This it clear with

the 10 cross-validation that allow seeing the accuracy about 96% for NN respect

90% for SVM. This is one of several reasons about the use of NN.

Another point about the prediction of bugs is the location where the bugs can verify.

The method proposed by [xxxiii] is fast and reliable. The neural network is developed

by back-propagation and into the last layer is shows the success or the failure of a

program. Using this method, they are able to identify suspicious code of a given

program in terms of its probability to contain bugs.

14

Explication neural network

A neural network taken the inspiration by the human’s neuron. Like in the nervous

system, the neurons interconnected by synapse into the neural networks the

synapses are the weight of the interconnection between nodes.

The neural network composed by three levels:

 Input layer: This layer has in input the different fields of analysis. In our

case, it made with the metrics, which we considered.

 Hidden layer: This layer adapt the weight to minimize the error using the

back propagation algorithm. In this phase, we have only numbers that will

be adapted in order to obtain a good error.

 Output layer: The last layer represents the output of the model. In this

case, it can be assume two values (bugs or not-bugs).

Each neurons of the models have an activation function that describes the

relationship between the input and the output of the neurons.

 Possible activation function are:

 Binary activation function (Discrete or Digital) {0,1} or {-1,1} :

𝑎𝑖(𝑡 + 1) = {

1, 𝑖𝑓 ∑𝑤𝑖𝑗 ∗ 𝑎𝑗(𝑡) − 𝜃𝑖 ≥ 0

𝑗

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.1)

𝑎𝑖(𝑡 + 1) = {

1, 𝑖𝑓 ∑𝑤𝑖𝑗 ∗ 𝑎𝑗(𝑡) − 𝜃𝑖 ≥ 0

𝑗

−1 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.2)

 Sigmoidal logistic function [0,1] :

𝑓(𝑥) =

1

(1 + 𝑒−𝑥)

(3.3)

15

 Hyperbolic tangent [-1,1] :

𝑡ℎ(𝑥) =

(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)

(3.4)

 Rectifier function :

 𝑓(𝑥) = max (0, 𝑥) (3.5)

 Softmax activation function :

(Used in the output layer of a Neural Network. It corresponds to a class.

Softmax function fi for neuron i, out of neural network.)

𝑓𝑖(𝑛𝑒𝑡𝑖) =

𝑒𝑛𝑒𝑡𝑖

∑ 𝑒𝑛𝑒𝑡𝑘𝑁
𝑘=1

(3.6)

The algorithm of the neural network divided into two categories:

 Supervised: It is used when is know the possible values of the output a

priori. Which is the output values fixed. In our case, this is a supervised

algorithm because there are possible only two values for output: bugs or

not bugs. Other supervised algorithm are in medicine when we are

interesting to a specific disease but we know what the possible disease we

can have.

 Unsupervised: Apply when the possible output is unknown. In particular,

we cannot understand a priori what the domain is. This is most oriented to

the artificial intelligence because the network is capable to learn and the

possible values of output are unknown.

16

Figura 3.1. Multi-Layer Neural Network.

Back-propagation algorithm

Back propagation algorithm consists on efficient back-propagation error

calculations through the layer of a NN. It is based with a general-purpose numerical

optimization method and it rapresents the central learning algorithm. (Known as the

reverse mode of automatic differentiation).

Then explained briefly the back-propagation algorithm:

1. Feed a particular training pattern p to the network input and move forward

to calculate all the neuron net inputs and outputs:

 𝑛𝑒𝑡𝑖 = ∑𝑤𝑖𝑗 ∗ 𝑆𝑗𝑝 ;

𝑗

 𝑆𝑖𝑝 = 𝐹 (𝑛𝑒𝑡𝑖𝑝) (3.7)

2. Calculate δip for the output layer:

 𝛿𝑖𝑝 = (𝑡𝑖𝑝 − 𝑆𝑖𝑝) ∗ 𝐹′(𝑛𝑒𝑡𝑖) (3.8)

3. Gradient back-propagation.

Calulate δip for the layer preceding the output layer right back to the input

neurons using the recursive formula:

17

 𝛿𝑖𝑝 = 𝐹′(𝑛𝑒𝑡𝑖)∑δ𝑘𝑝 ∗ 𝑤𝑘𝑖
𝑘

 (3.9)

The index k follows the numbering of all the nodes to which the ith neuron

was connected.

4. Calculate the weight increments of the connections making up the neural

network

 𝛥𝑝𝑤𝑖𝑗 = 𝜇 𝛿𝑖𝑝 * 𝑆𝑗𝑝 (3.10)

5. Update the values of the network weights:

Incremental (on-line) updating. Weights updated for each p.

 𝑤𝑖𝑗(𝑡 +1) = 𝑤𝑖𝑗 (𝑡) + 𝛥𝑝𝑤𝑖𝑗 (3.11)

Batch updating. The weight increments accumulated for all the learning patterns.

Then the update computed by.

 𝑤𝑖𝑗(𝑡 +1) = 𝑤𝑖𝑗 (𝑡) + ∑ 𝛥𝑝𝑤𝑖𝑗𝑝 (3.12)

6. The algorithm finishes (stop condition) when the mean square error (MSE)

is less than a stated threshold:

𝑀𝑆𝐸 =

1

𝑃
∑𝐸𝑝
𝑝

(3.13)

18

The calculation of δip involves the derivative of the activation function F(x).

Sigmoid or tanh activation functions. They are themselves involved in their

respective derivatives expressions, what speeds up learning:

Logistic:

𝑓(𝑥) =

1

(1 + 𝑒−𝑥)
 𝐹′(𝑥) = 𝐹(𝑥) ∗ [1 − 𝐹(𝑥)]

Hyperbolic tangent:

𝑡ℎ(𝑥) =

(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)

 𝐹′(𝑥) = 1 − 𝐹2(𝑥)

Obviously, there are many disadvantages about the use of neural network. Some

examples are:

 Vanishing or exploding gradients. Fundamental Deep Learning Problem

Cumulative back-propagated error signals either shrink rapidly, or grow

out of bounds. They decay exponentially in the number of layers, or they

explode. The result is that the final trained network converges to a poor

local minimum.

 Slow convergence. Choice of the learning rate μ: If μ is too large, the

optimum can overshot, leading to oscillations. An overly small value for μ

can draw out the learning time.

 Overfitting. Multiple non-linear hidden layers make deep ANNs very

expressive (powerful) models that can learn very complicated relationships

between inputs and outputs, including noise not existing in testing data.

This leads to poor predictive performance, without a generalization,

capabilities correctly predict unseen data.

 High powerful computational resources as deep learning involves many

hidden layers.

19

 Local optima or early convergence. The random choice (-1, 1) of the set of

weights as a starting point to the algorithm is not adequate.

Figura 3.2 Slow convergence.

Solution to slow convergence

 Again, adequate kernels initialization.

 Momentum factor and variations.

 Adaptive momentum and learning rates: from large to small momentum

factor. On the contrary, from high learning rate (typically 0.1) to small

(exponential delay).

 Neuroevolution and memetic approaches.

 Unsupervised pre-training with autoencoders

20

Figura 3.4 Overfitting

Solution to overfitting

 Early stopping as soon as performance on a validation set starts to get

worse.

 Introduce weight penalties of various kinds such as ℓ1 and ℓ2

regularization.

 Dropout technique. It randomly drop hidden and input neurons along with

their connections from the NN during training. A neuron is present with

probability p. P=0.5 for hidden neurons and close to 1 for input neurons.

 Simplify NN (make it shallower) by encoding raw input data in a less

redundant or more compact way through autoencoders.

 Unsupervised pre-training. E.g. Autoencoders. Evolutionary search for

simple neural architectures

21

3.2. DECISION TREE

The decision tree is a predictive model very easy to understand, because just need

to walk down in the tree to know the objective-target. This model builted using the

C&R-tree algorithm. Therefore, the node starts examining the input field to it to

find the best split using an impurity index. Each separation is in two subset choosing

the node with a best measure. In the setting is possible change the maximum number

of fields, numbers of leaves etc.

OVERVIEW DECISION TREE

The speed to have a result is important in each intelligent system. In fact, the best

way to have bigger performance is about the choice of the fields to use. For

example, we can develop a very accurate model but it need about minutes or hours

to try a solution and it is unnecessary. The work [xxxiv] shows a study to reduce the

time calculations using the decision tree. More in detailts the researchers were

interested about the newly attributes inserted and about the effects which them

caused. To allow this the target field divided into two possible values (fast or slow)

related to a specific period time. The experiments based with Eclipse and Mozilla

show that with the decision tree that level of recall is lower than 0.5. It means that

the model misses more than half of fast-bugs. On the other hands with Mozilla, the

accuracy with slow-bugs is low (about 0.6). The next study argued is related with

the post-submission data of bug reports improves prediction models. It developed

just divided the time of analysis in different periods after the creation data of the

bug report. This is very performent with Eclipse (with a precion of 0.8) but quite

accurate.

In this approach is used also the Decision Tree. In this data mining tool is used the

Gini index to evaluate the impurity of a node. The Gini index used to investigate

how changes made to source code distributed among the developer population. The

Gini coefficient initially was a measure for inequality in economy.

22

In these work the gini coefficient used with different measures of software, means

that the gini index based on change data correlate negatively with the number of

bugs.[xxxv]

A simple way to be able to predict bugs is with matching with others bugs using

various similarity index (Dice Similarity, Cosine Similarity, TF-IDF Similarity and

Jaccard Similarity).[xxxvi]

The parallel work proposd by [xxxvii] in order to improve the certification results

using the decision tree is useful. Here, there were combined different source code

changes come from developers. Of course, the certification-time could be very large

and it can take the total working-time. Using the decision tree proposed this

problem can be resolved, calculating the probability of a build failing or passing the

certification procedure. There are many factor, which cause certification issue

(Social, Technical, coordination, etc).

The decision tree is devoped based with various effects to ensure the validity and

the reliability.

Returning about save-time, in the 2014 by [xxxviii] has been develop a method to

reduce the median time to identify a blocking bug. A blocking bug are software

defects that threaten other software systems.

Using decision tree was develop a way to reduce the blocking bugs for the

developers. Using different resources cited in the article the algorithm can predict

bugs that became blocking bugs with an accuration explained in terms of

F-measure about 15% – 40 %. Just see the resulting-model is possible to select the

most important factors to determine the blocking bugs and it are reletes with the CC

metrics.

The algorithm to predict the total amount of time to fix the bugs based with an

empirical distribution and a Markov method to predicting the numbers of bugs.

Briefly, using the Markov model, we can create a matrix where each element

represent the probability of a defect transferring from fixed or not fixed. We can

estimate at the next period time the total numberof bugs; just apply a regression

analysis with the historical data.

23

Additionally, we are able to estimare the total time to resolve bugs using a Monte

Carlo based method with the R2 and the Standard error.

Finally using the classic method of comparing (recall, precision, F-measure) the

best model is the decision tree in terms of speed to fix a bug. [xxxix]

Explication Decision Tree

The Decision Tree is a tool that use the tree-structure to apply a classification.

Having a simply interpretation, just going down, to solve the question on the nodes,

we obtain a classification.

Many parameters to considerate and two principal algorithm develop a decision tree

(C&R and CHAID).

Important factors are the split and pruning index. However into the machine

learning the decision tree is a predict model where each nodes represents a variable

and an edge towards child-node represent a possible path.

There are advantages and disadvantages related to this one.

The advantages are:

 Easy to understand and to interpret. (especially with the rules-set extract)
 Allow the addition of new possible scenarios
 Can be apply to different date categories
 Very fast

The disadvantages are:

 The results can need a lot of time if are too similar.

 It can be innacurate

 It is useful set a stopping time appropriated

24

Figura 3.5 Decision Tree example

CHAID

CHAID (Chi-squared Automatic Interaction detection) is a statistical technique to

evaluate predictor fields. It selects the best predictor to be able to have the first

branch of the tree such that each child have homogeneour values. The process

continue in an iterative procedure until the tree is completed.

We use the F-Test if the target is continuous and Chi-Squared if the target if

categoric.

There is an extension of this algorithm call Exhaustive-Chaid. Here, in order to

obtain the best split for the prediction the results are compareted using the p-value.

25

Some possible options:

Frequency fields:

Using a frequency fields we can reduce the dataset.

Case weights:

The contribution of the record weighted in propotion to the numbers of the elements

that the records represent.

Binning of scale-level predictors

It discretized automatically ordinal categories, like grades or ranks (1 – 10):

 Data yi are sorted;

 Calculate the relative weights frequency (𝑐𝑓𝑖 = ∑ 𝑤𝑘)𝑦𝑘<𝑦𝑖

 Determine the bin to which it belongs the value checked with the relative

frequencies

 𝑏𝑖𝑛 𝑖𝑛𝑑𝑒𝑥 =
𝑔

𝑊 + 1
∗ 10

 W = total weight frequency

∑ 𝑤𝑖𝑖

𝑔 = {
𝑐 𝑓𝑖−1 +

𝑤𝑖+1
2

 𝑖𝑓 𝑤𝑖 ≥ 0

𝑐 𝑓𝑖−1 +
𝑤𝑖
2
 𝑖𝑓 𝑤𝑖 < 0

(3.14)

Generally Chainf create k=10 bins by default.

26

CHAID Algorithm

Each final categories of a predictor field X will represent a child node, id X is used

to splite a node.

1. If X has one or two categories, start to split:

2. To fins the category X that has the minimum different by p-value

3. If a pair has a high p-value, so the pair has merged. Otherwise go to step 6

4. If the users allow splitting of merged categories it splits in three or more

categories. It is finds the best binary split with the best p-value

5. Continue to merge categories from step 1 for this fiels

6. Every categories with a numbers of fields minor than the alfa (specific by

user) is merged in a similar category.

F-Test

The F-Test for the continuous target is calculated:

𝐹 =

∑ ∑ 𝑤𝑛𝑓𝑛𝐼(𝑥𝑛 = 𝑖)(𝑦𝑖𝑛∈𝐷 −𝑦)2 (𝐼 − 1)⁄𝐼
𝑖=1

∑ ∑ 𝑤𝑛𝑓𝑛𝐼(𝑥𝑛 = 𝑖)(𝑦𝑖𝑛∈𝐷 −𝑦)2 (𝑁𝑓 − 𝐼)⁄𝐼
𝑖=1

(3.15)

𝑦𝑖 =

∑ 𝑤𝑛𝑓𝑛𝑦𝑛𝐼(𝑥𝑛 = 𝑖)𝑛∈𝐷

∑ 𝑤𝑛𝑓𝑛𝐼(𝑥𝑛 = 𝑖)𝑛∈𝐷

(3.15)

𝑦 =

∑ 𝑤𝑛𝑓𝑛𝑦𝑛𝑛∈𝐷

∑ 𝑤𝑛𝑓𝑛𝑛∈𝐷

(3.16)

 𝑁𝑓 = ∑𝑓𝑛
𝑛∈𝐷

 (3.17)

F(I-1,Nf-1) is a random variable on F-Distribution.

27

Chi-Squared

Chi-Squared is used for the categorical field.

𝜒2 = 2 ∑ ∑ 𝑛∗𝑖𝑗 ln (

𝑛∗𝑖𝑗

𝑛 𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1
)

(3.18)

nij = frequency observed ; n*
ij = frequency expected

If the target field y is ordinal:

𝐻2 = 2 ∑ ∑ 𝑛∗𝑖𝑗 ln (

𝑛∗𝑖𝑗

𝑛 𝑖𝑗

𝐽

𝑗=1

𝐼

𝑖=1
)

(3.19)

Stopping rules

There are many conditions to decide to stop the split in the tree:

 Node pure

 All records have the same value for a field

 The tree depth is the maximum tree depth

 N° records < minimum parent node size

 N° records in a child node < minimum child node size

C&RT

C&RT (Classification and Regression Tree) is an approach that separates data into

two subset homogeneous. It allows an equal cost to be considerated in the growing

process. It also allows to specify the priori probability and the distribution to

apply an automatically cost-complexity pruning.

Frequency fields:

Using a frequency fields we can reduce the dataset.

28

Case weights:

The contribution of the record during the analysis weighed in propotion to the

numbers of the elements that the records represent.

Parameters

C&RT works with the priority of nodes to split the nodes.

How build the C&RT Tree:

 Numerics fields: Sort the fields. Choose each point like the split node and

calculate the impurity. Finally select the best field with the impurity index.

 Categorical field: Examine each possible combination of values of two

subset and calculate the impurity. Finally select the best field with the

impurity.

Identify the field whose best split gives the greatest decrease in impurity for the

node and select the best spitted field.

Blank handling

 To manage the blank fields is apply a surrogate splitting:

If the best field selected to the split have a blank or missing value, it is selected

another similar field and its value is used to assign the record to the child node.

Selected by the probability:

𝑝𝑓(𝑡) = ∑

𝜋(𝑗)𝑁𝑓𝑗(𝑡)

𝑁𝑓𝑗
𝑗

(3.20)

Where:

 Nfj(j) = sum frequency weight;

 Nfj = sum of frequency weight for the total records.

29

Predictive measure of association

Let hx*Ոx be the set of learning cases without missing calues.

Let P(s* ≃ sx | t) be the probability of sending a case in hx*Ոx to the same child by

both s* and sx, ŝ be the split with maximized probability:

 P(s* ≃ sx | t) = max P(s* ≃ sx | t)

The predictive measure of association is:

 𝜆(𝑠∗ ≈ ŝ x | t) = min(𝑃𝐿,𝑃𝑅)−(1−𝑃(s∗ ≃ sx | t)
min(𝑃𝐿,𝑃𝑅)

 (3.21)

where PL(resp. PR)) is the relative probability that the best split s* at node t sends a
case with non-missing value of X* to the left (resp. right) child node. And where:

𝑃 (s ∗ ≃ sx | t) =

{

∑ 𝜋(𝑗)𝑁𝑤𝑗𝑗 (s ∗ ≃ sx | t)

𝑁𝑤,𝑗(𝑋∗ ∩ 𝑋)
 if Y is categorical

𝑁𝑤(s ∗ ≃ 𝑠𝑥, t)

𝑁𝑤(𝑋∗ ∩ 𝑋)
 𝑖𝑓 𝑌 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

(3.22)

Stopping rules

There are many conditions to decide to stop the split in the tree:

 Node pure

 All records have the same value for a field

 The tree depth is the maximum tree depth

 N° records < minimum parent node size

 N° records in a child node < minimum child node size

30

Profits
 This is the number value associated to the category of a field. It is used to
calculate tha gain.
 ∑𝑓𝑗(𝑡)𝑝𝑗

𝑗

 (3.23)

Where:

 j = category
 fj(t) = frequency sum of the record on the node j
 pj = used-defined profit to the category j

Pruning
Pruning refers to remove unsignificant nodes. It use a index to measure the miss-
classification and the complexity of the tree.

 𝑅𝛼(𝑡) = 𝑅(𝑡) + 𝛼|Ť| (3.24)

Where:

 R(t) = miss-classification
 α = complexity cost
 |Ť| = Numbers of terminal nodes

Impurity measures

The impurity measure depends of the target fields

 (Symbolic we can use GINI or TWOING – Continuous we can use LSD)

31

GINI

The GINI index defined like:

 𝑔(𝑡) = ∑𝑝(𝑗|𝑡)𝑝(𝑖|𝑡)

𝑗≠𝑖

 (3.25)

Where:

 i and j are categories of the target field

 𝑝(𝑗|𝑡) =
𝑝(𝑗,𝑡)

𝑝(𝑡)

 𝑝(𝑗, 𝑡) =
𝜋(𝑡)𝑁𝑗(𝑡)

𝑁𝑗

 𝑝(𝑗) = ∑ 𝑝(𝑗, 𝑡)𝑖

 Π(j) = Prob. Category j

 Nj(t) = Numers of records of the category j to the node t

 Nj = Numbers of records of the category j from the root node

Gini index can be also like:

 𝑔(𝑡) = 1 − ∑𝑝2(𝑗|𝑡)

𝑗

 (3.26)

32

TWOING

This method splits a target in two superclasses C1 and C2 then chosen the best split

based on those two categories.

 𝑐1 = { 𝑗 = 𝑝(𝑗|𝑡𝐿) ≥ 𝑝(𝑗|𝑡𝑅)

 𝑐2 = 𝑐 − 𝑐1

The criteria function defined is:

 𝜑(𝑠, 𝑡) = 𝑝𝐿𝑝𝑅[∑|𝑝(𝑗)𝑡𝐿 − 𝑝(𝑗|𝑡𝑅)|]
2

𝑗

 (3.27)

LSD

LSD (Least-Squared Deviation) is definen:

𝑟(𝑡) =

1

𝑁𝑤(𝑡)
∑𝑤𝑖𝑓𝑖(𝑦𝑖 − ŷ(𝑡))

2

𝑖

 (3.28)

Where:

 Nw(t) = Numbers of weights of records to the node j

 fi = frequency for the field i

 yi = target field value

 ŷ(𝑡) = means of the weights to the node t

The criteria function defined is:

 𝜑(𝑠, 𝑡) = 𝑅(𝑡) − 𝑝𝐿𝑅(𝑡𝐿) − 𝑝𝑅𝑅(𝑡𝑅)

33

3.3. LINEAR REGRESSION

In the approach of [xl] the same software system are engineered using only the

linear regression. In this method used the classic metrics to evaluate the software.

Using CK+OO metrics are able to predict bugs especially for Eclipse, Equinox

and PDE.

Using the Weight Churn metric, that perform very good correlation with

Spearman ans R2 like in out study with neural network and decision tree.

In the work of [xli] are explained the power of the linear regression to predict bugs,

in this case with Eclipse. The principal problem is related with the not knowledge

how the bugs are linked to a classes. Here have been studied the software six

moths before and after the release.

In particular, with file-level only some metrics (TLOC, FOUT) have correlation

above 0.4. On the other hands on package-level, many metrics show a level of

correlation above 0.4.

A different approach of linear regression proposed into [xlii]. In fact, using non-

linear model and temoral features are able to predict bugs with a high correlation.

Using more or less the same features (LOC, Releases, AgeMonth,) but only with a

flag for the bug (bugs, not-bugs), have to predict a high percentaige of bugs

comparable with our study. (There are used the same coefficient like Spearman

and ROC curve for the model).

34

Explication Linear Regression

The algorith used to represent a linear regression use the least squared with four

methods to insert / remove variables.

The summary statistics X’ and covariance Sij computed using provisional means

algorithms to update the values:

𝑋′𝑖(𝑘) = 𝑋′𝑖(𝑘−1) + (𝑥𝑖𝑘 − 𝑋

′
𝑖(𝑘−1))

𝑤𝑘

𝑊𝑘

(3.29)

and

𝑆𝑖𝑗 =

𝐶𝑖𝑗

𝐶 − 1

(3.30)

Where:

 X’k = Sample mean for the kth input field

 xki = The value of the kth input field for record i

 W = The sum of weights across records (∑ 𝑤𝑖
𝑙
𝑖=1)

 wi = ci * gi

 ci = Case weight for record i;

 gi = Regression weight for record i;

35

The regression model has the form:

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑗 + 𝛽2𝑋2𝑗 +⋯+ 𝛽𝑝𝑋𝑝𝑗 + 𝑒𝑖 (3.31)

The algorithm compute the least squared estimates b of β and the associated

regression statistics.

Variable entry and Removal

Automatic field selection

Let rij be the element in the current checked matrix associated with Xi and Xj.

Variables inserted or removed one for time.

Xk is eligible for entry if if is an input field not currently in the model such that:

rkk > t and (𝑟𝑗𝑗 −
𝑟𝑗𝑘𝑟𝑘𝑗

𝑟𝑘𝑘
) 𝑡 ≤ 1 t is the tolerance.

The second condition above imposes so that entry of the variable does not reduce

the tolerance of variables already in the model to unacceptable levels.

The F-toenter value for Xk defined as:

𝐹𝑡𝑜𝑒𝑛𝑡𝑒𝑟𝑘 =

(𝐶 − 𝑝∗ − 1)𝑉𝑘
𝑟𝑗𝑗 − 𝑉𝑘

(3.32)

Where:

 1 and C-p* -1 = degrees of freedom

 p* = number of coefficient currently in the model

 𝑉𝑘 =
𝑟𝑦𝑘𝑟𝑘𝑦

𝑟𝑘𝑘

36

The F-toremove value for Xk defined as:

𝐹𝑡𝑜𝑟𝑒𝑚𝑜𝑣𝑒𝑘 =

(𝐶 − 𝑝∗)|𝑉𝑘|

𝑟𝑦𝑦

(3.33)

Four methods for entry and removal of variables are available. The selection

process repeated until no more independent variables qualify for entry or removal.

Here we have the algorithms for these four methods:

 Enter: The selected input fields are all included in the model, with no field

selection applied.

 Stepwise: If there are independent variables, choose X’k with the

minimum Fto-reove. Xk is removed if Fto-remove < Fout. If there are not present

independent variables in the model, or if no variable can be removed,

choose Xk such that Fto-enter is maximum. At each step, all variables

considered for removal or input are.

 Forward: This procedure is the entry phase of the stepwise procedure.

 Backward: This procedure starts with all input fields in the model and

applies the removal phase of thestepwise procedure.

37

3.4. R-SQUARE

The big capacity to elaborate data made possible to develope a various types of

models. A good strategy is to use approximation model, which referred to

metamodels.

Metamodelling have good success in many engineering applications. An important

study has been proposed by [xliii] able to compare four techniques (polynomial

regression - multivariate adaptive regression splines - radial basis functions –

kriging) based on different criteria.

Obviously, there are not present methods, which work well than to other. Every

times, it is trade-off between efficiency, robustness, model transparency and

simplicity.

To prove the accuracy of a model there are possible three metrics:

R Square:

𝑅2 = 1 −

∑ (𝑦𝑖 − ŷ𝑖)
2 𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦∗𝑖)
2 𝑁

𝑖=1

(3.34)

Where: it is the corresponding predicted value for the observed value yi; is the mean

of the observed values.

The larger the value of R Square, the more accurate the metamodel.

Relative Average Absolute Error (RAAE):

𝑅𝐴𝐴𝐸 =

∑ |𝑦𝑖 − ŷ𝑖|
𝑁
𝑖=1

𝑛 ∗ 𝑆𝑇𝐹

(3.35)

Where: STD stands for standard deviation.

The smaller the value of RAAE, the more accurate the metamodel.

38

Relative Maximum Absolute Error (RMAE)

𝑅𝑀𝐴𝐸 =

max(|𝑦1 − ŷ1|) , (|𝑦2 − ŷ2|),… , (|𝑦𝑛 − ŷ𝑛|

𝑆𝑇𝐷

(3.36)

While the RAAE usually highly correlated with MSE and thus R Square, RMAE is

not necessarily. A small RMAE is preferred.

(In our study, we have used the R-Squared). We have choose this one because:

1) it was used in the last study so it is useful to compare;

2) Like it was discovered by[xliv] the R-square works very well with non-linear and

linear system to see the difference between models that presents similar features.

However, using R-squared we can select the best models to use for engineering

applications.

3.5. SPEARMAN CORRELATION

Starting with all metrics available it is performed an accuate analysis foo each

metrics group using the two tools (Neural Network and Decision Tree).

We have used the Spearman correlation to understand the predictive power and the

R2 to understand the explanative power. We will use also other graphics model to

understand in the best way the results. We do not use any particular criteria to

characterize the different value obtained in the various version of the model. In

some interesting cases, we show the coincidence’s matrix to show the some relevant

errors between bugs.

39

Valuation model

To validate a model there are many techniques which are developed in particular

cases, that using specific mathematic functions.

The most relevant coefficient used are Spearman and Pearson. The Pearson

coefficient is the covariance of two factors separated by the result of their standard

deviation. Used in different environments. While the Spearman coefficient is a

measure of a monotone affiliation between two variables without making any

assumption about the frequency distribution of the variables.

Both of them have a range between +1 and -1, they are closed to 1 when have a

comparative rank in the other case have a divergent rank between two factors.

In this study it is used the Spearman coefficient because the variables are ordinal,

if the variable of interest would be continues we have to use the Pearson coefficient.

Spearman correlation:

 𝑟𝑠 = 1 −

6 ∑ 𝑑𝑖
2

𝑖

𝑛(𝑛2 − 1)

(3.37)

Where:

 di = is the difference between the two ranks of each observation

 n = is the number of observations

40

Pearson correlation

𝑟𝑝 =

𝑁 ∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑥𝑖)(∑ 𝑦𝑖𝑖)𝑖𝑖

√[𝑁∑ 𝑥𝑖2 − (∑ 𝑥𝑖)𝑖
2

𝑖][𝑁∑ 𝑦𝑖2 − (∑ 𝑦𝑖)𝑖
2

𝑖]

3.38)

Where:

 N = Number of pair to score

 xi = x score

 yi = y score

To undersrand better the use of these two coefficient based on the study of Hauke

and Kossowski [xlv]. In fact, in this work, there are studied dataset with both of them

and the conclusions are that it depends of the case. We do not assume that one is

the best, because sometimes where Spearman returns positive values Pearson return

negative values.

Summary

Here we have used two indicators (Spearman correlation and R2) to indicate the

goodness of the model and to compare the results.

Briefly the spearman correlation give us a predictive power more sensitive instead

R2 is correlated with the explanative power in a more generically way.

41

3.6. WHERE USE SPEARMAN

Spearman correlation is a non-parametric measure of rank correlation. It estimate

the relationship between two variables using a monotic function.

The spearman correlation between two variables is similar to the Pearson

correlation between the ranks values of those two variables studied. Pearson used

for a linear relationship, spearman assesses monotic relationship that can be linear

or not.

Therefore, the spearman correlation between two variables will be high (up to a

maximum to 1) when observations have a similar rank between the two variables.

The spearman correlation will be low (up to a minimum of -1) when observations

have a dissimilar rank between the two variables.

Now, we can see some example to point out the principal difference with some

particular cases.

42

 Perfect correlation

Figura 3.7 Spearman 1

x 5 8 10 12 15 13 8 7 5 3

y 8 15 18 21 25 22 15 13 10 4

A spearman correlation is equal to 1 when the two variables are monotically related.

So for each value of x correspond a value of y at the same grade. If x increase also

y increase respect to the other values.

43

Only in this case we have a perfect correlation for Spearman and Peason coeffient

is close to 0.90

 Bad correlation

Figura 3.8 Spearman 2

x 5 8 10 12 15 13 8 7 5 3

y 7 18 1 45 13 11 33 57 9 50

When the data are random distributed the coefficient of spearman and Pearson are

more or less the same. In this case is not possible to extract any useful information

44

 Correlation and outlier

Figura 3.9 Spearman 3

x 5 8 10 12 15 13 8 7 5 3

y 8 15 1 21 25 22 80 13 10 4

In case of outlier is better the use of Pearson. Spearman is less sensitive with the

presence of outliers. This behaviour related with the definition of spearman that

adapt the value of x and y in a same range, in this way spearman limits the outlier

to the value of its rank.

45

3.7. SPEARMAN OR R2

In our analysis to evaluate a model are used two coefficient (Spearman and R2).

Both of coefficient have a range between -1 and 1. 1 means a perfect correlation

and -1 a oppositive correlation.

In our study of the bugs with different software sytems, the means of these values

is different:

 We must see Spearman where we want know exacly the number of

bugs for each class in a spefic software based on a metric

 We see R2 when we are interesting only at the present or absence of

bugs in a software based with a metrics. It is used for a more

generically vison of the problem.

46

4. METRICS DESCRIPTION

The metrics used to detect prediction based in two macro-category, ‘change log

approach’ and ‘single version approach’. The first one use the bug information

obtained from recent or frequently bugs, the second studies the current state with

particular metrics to avoid bugs, based especially with mathematical formulations

(logarithm, exponentials etc.).

47

4.1. CHANGE METRICS

The table Change_Metrics is composed of a set of metrics that combine two

approach (Moser and Graves). Each rows in the table represents the bugs comes

from the versioning system. Here you have explained each fields how works:

numberOfVersionsUntil Number of version of these class

numberOfFixesUntil Numbers of times that a class is cause

of a bug

numberOfRefactoringsUntil # of times that a class is re-scheduled

numberOfAuthorsUntil # of authors that has revised a class

linesAddedUntil # of lines added

maxLinesAddedUntil: Maximum lines added

avgLinesAddedUntil Average lines added

linesRemovedUntil # lines removed

maxLinesRemovedUntil Maximum lines removed

avgLinesRemovedUntil Average lines added

codeChurnUnti (linesAddedUntil –

linesRemovedUntil) for a class

maxCodeChurnUntil Maximum CodeChurn for all

revision of a class

avgCodeChurnUntil Everage CodeChurn for all revision

of a class

48

ageWithRespectTo Age of a class in weeks

weightedAgeWithRespectTo Sum of numbers of weeks for revision

‘i’ per the numbers of lines added at

revision ‘i’, divided for the sum of

the numbers of lines added at

revision i

In this study, it was tested whose the best set of metrics are, without considered the

splits using by Zimmermann and Graves (NFIX and NR).

4.2. PREVIOUS DEFECTS

This approach is the most intuitive because we recognize the bugs based with the

past bugs. So we can prove to identify a correlation between future bugs and past

bug fixed. Here we have selected each fields in order to obtain the best correlation.

We have obtained a good model using this metrics. This is easy to understand

because we have a big correlation between bugs but it is not good if we want to

generalize this model using this type of metrics. Here we have the classification of

the different bugs:

numberOfBugsFoundUntil # bugs found until that time

numberOfNonTrivialBugsFoundUntil # no-trivial bugs found until that

time

numberOfMajorBugsFoundUntil # major bugs found until that time

numberOfCriticalBugsFoundUntil # critical bugs found until that

time

49

numberOfHighPriorityBugsFoundUntil # high priority bugs found until

that time

nonTrivialBugs Bug classified like non-trivial bug

majorBugs Bug classified like major bug

criticalBugs Bug classified like critical bug

highPriorityBugs Bug classified like high priority

bug

4.3. SINGLE VERSION CK-OO

The most relevant metric is from Chidamber and Kemerer (CK). There particular

metrics respects six properties: Non Coarseness – Non uniqueness – Monotonicity

– Nonequivalence of interaction – Interaction increases complexity [xlvi].Here you

have explained the behavior of these metrics:

WMC Weighted methods per class. This

represent the sum of the complexity of

the methods of each class

DIT Depth of Inheritance tree of the class

RFC Response for a class. This is equal to the

response set, which represents a set of

methods that can be executed in

response to a message received by an

object of the class.

50

NOC Number of children. This is the number

of immediate subclasses subordinated

to a calss in the class hierarchy.

CBO Coupling between object classes. CBO

for a class is a count of the number of

other classes to which it is coupled.

LCOM Lack of cohesion in methods. This is

measures using a set of instance

variables used by method that compose

the class.

The other metrics are a set of object-oriented metrics. There metrics depends

mostly from the technical property of the class and how it was written. Here there

are the description of each fields:

FANIN # of other classes that reference the

class

FANOUT # of other classes referenced by the

class

NOA # of attributes

NOPA # of public attributes

NOPRA # of private attributes

NOAI # of attributes inherited

LOC # of lines of code

NOM # of methods

NOPM # of public methods

51

NOPRM # of private methods

NOMI # of methods inherited

4.4. ENTROPY OF CHANGE

Here the measure calculated over the time. In particular have been taken measure

of the changes during interval of two weeks, with this one it is possible to compute

the Hassan Entropy [xlvii].In the last study are used different types of Entropy, but

how we can see in further detail after, only two are significant. Here we have the

details of each Entropy:

HCM History of complexity metric

WHCM Weighted history of complexity metric

EDHCM Exponentially decayed Hcm

LDHCM Linearly decayed Hcm

LGDHCM Logarithmically decayed Hcm

52

The basic formule is:

𝐻𝑛 = − ∑𝑝𝑘 ∗ 𝑙𝑜𝑔2𝑝𝑘

𝑛

𝑘=1

(4.1)

Where:

Pk = it is the probability that the file k changes during the considered time interval

Considered an example with three files and three-time interval:

T1
𝒑𝑨 =

𝟐

𝟒
, 𝒑𝑩 =

𝟏

𝟒
, 𝒑𝑪 =

𝟏

𝟒

T2
𝑝𝐴 =

2

7
, 𝑝𝐵 =

1

7
, 𝑝𝐶 =

4

7

T3
𝑝𝐴 =

1

3
, 𝑝𝐵 =

1

3
, 𝑝𝐶 =

1

3

In T1 the entropy H1 = − (2
4
∗ 𝑙𝑜𝑔2

2

4
+
1

4
∗ 𝑙𝑜𝑔2

1

4
+
1

4
∗ 𝑙𝑜𝑔2

1

4
) = 1

In T2 the entropy H2 = − (2
7
∗ 𝑙𝑜𝑔2

2

7
+
1

7
∗ 𝑙𝑜𝑔2

1

7
+
4

7
∗ 𝑙𝑜𝑔2

4

7
) = 1.378

In T3 the entropy H3 = − (1
3
∗ 𝑙𝑜𝑔2

1

3
+
1

3
∗ 𝑙𝑜𝑔2

1

3
+
1

3
∗ 𝑙𝑜𝑔2

1

3
) = 1.585

53

Like cited in [xlviii], to compute the likelihood that a file changes, it is used the

amount of change by measuring the number of modified lines. The Adaptive

Entropy defined:

𝐻𝑛

′ = − ∑𝑝𝑘 ∗ 𝑙𝑜𝑔ň𝑝𝑘

𝑛

𝑘=1

(4.2)

Where:

ň = number of recently modified files.

To use the entropy of code change as a bug predictor, Hassan defined the History
of Complexity Metric (HCM) of a file j as

 𝐻𝐶𝑀{𝑎,…,𝑏}(𝑗) = ∑ 𝐻𝐶𝑃𝐹𝑖(𝑗)

𝑖∈{𝑎,…,𝑏]

 (4.3)

and

𝐻𝐶𝑃𝐹𝑖(𝑗) = {
𝑐𝑖𝑗 ∗ 𝐻𝑖

′ 𝑗 ∈ 𝐹𝑖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.4)

Where:

 i = is the period with entropy Hi’;

 Fi = is the set of files modified in the period i

 j = is the file belonging to Fi

Now we can define more specifically the metrics:

 HCM: cij = 1. Every file modified in the period I gets the entropy of the

system in the considered time interval;

 WHCM: cij = pj. Each file have the entropy of the system with the

probability of the file being modified

 EDHCM : ∑ 𝐻𝐶𝑃𝐹𝑖(𝑗)

𝑒𝜑1∗(|{𝑎,…,𝑏}|−𝑖)𝑖∈{𝑎,…,𝑏 } (4.5)

 LDHCM : ∑ 𝐻𝐶𝑃𝐹𝑖(𝑗)

𝜑2∗(|{𝑎,…,𝑏}|+1−𝑖)𝑖∈{𝑎,…,𝑏 } (4.6)

 LGDHCM : ∑ 𝐻𝐶𝑃𝐹𝑖(𝑗)
𝜑3∗(|{𝑎,…,𝑏}|+1.01−𝑖)𝑖∈{𝑎,…,𝑏 } (4.7)

Where:

 φ1, φ2 and φ3 are decay factors.

54

4.5. CHURN OF SOURCE CODE METRICS

This metric provides for sampling the history of the source code every two weeks

and it computed the deltas for each consecutive pair of samples [xlix]. So we have

created two tables one for the CC metrics and another for the OO metrics. Finally,

It was calculated the churn for each class of the software system that we have

explained here:

CHU Churn. This compute the sum of deltas

between samples for a class

WCHU Weight churn. This is a particular type

of churn with a weight of a 0.01

LDCHU Linear Churn.

EDCHU Exponential Churn

LGDCHU Logarithmic Churn

For each source metrics, we have created a matrix. The rows represents the

classes and the columns the sampled versions (every two weeks). If the class does

not exist in a specific version is used the value -1. After we create the matrix of

deltas, where each cell is the absolute value of the difference between two

consecutive of a metric for a class (if the class does not exist in a version is used

the value -1.

Below show an example:

55

Figura 4.1. Churn metrics

The accurate formula are show here:

 𝐶𝐻𝑈(𝑖) = ∑ {
0 𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗) = −1

𝑃𝐶𝐻𝑈(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐶
𝑗=1 (4.8)

𝑃𝐶𝐻𝑈(𝑖, 𝑗) = 𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗)

 𝑊𝑃𝐶𝐻𝑈(𝑖, 𝑗) = 1 + 𝛼 ∗ 𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗) 𝛼 = 0.01 (4.9)

 𝐸𝐷𝑃𝐶𝐻𝑈(𝑖, 𝑗) =
1+𝛼∗𝑑𝑒𝑙𝑡𝑎(𝑖,𝑗)

𝑒𝜑1∗(𝐶−𝑗)
 (4.10)

 𝐿𝐷𝑃𝐶𝐻𝑈(𝑖, 𝑗) =
1+𝛼∗𝑑𝑒𝑙𝑡𝑎(𝑖,𝑗)

𝜑2∗(𝐶+1−𝑗)
 (4.11)

 𝐿𝐺𝐷𝑃𝐶𝐻𝑈(𝑖, 𝑗) =
1+𝛼∗𝑑𝑒𝑙𝑡𝑎(𝑖,𝑗)

𝜑3∗𝑙𝑛(𝐶+1.01−𝑗)
 (4.12)

Using, for example the formule WPCHU, we obtain:

 a -> 1+0.01*delta(5,5) + 1+0.01*delta(5,5) + 1+0.01*delta(5,5) +

1+0.01*delta(5,-1) = 1+0.01*0+1+0.01*0+1+0.01*0+1+0.01*0 = 4

 b -> 1+0.01*delta(6,6) + 1+0.01*delta(6,7) + 1+0.01*delta(7,7) +

1+0.01*delta(7,9) = 1+0.01*0+1+0.01*1+1+0.01*0+1+0.01*2 = 5.03

 c -> 1+0.01*delta(-1,-1) + 1+0.01*delta(-1,5) + 1+0.01*delta(5,5) +

1+0.01*delta(5,5) = 1+0.01*0+1+0.01*0+1+0.01*0+1+0.01*0 = 4

1 + 0.01 ∗ delta(5,5) + 1 + 0.01 ∗ delta(5,5) + 1 + 0.01 ∗ delta(5,5) + 1

+ 0.01 ∗ delta(5, −1) = 1

56

4.6. ENTROPY OF SOURCE CODE METRICS

The last metric is a combination of two metrics (Entropy and Churn). Here it was

calculated the measure of entropy using the deltas history of the class and we have

obtained different types of metrics which are useful in different cases.

For example, if in the system the metric CBO changed by 200 (but only a class is

involved) the entropy is minimum. Otherwise, is 10 classes are involved with a

local change of 10 CBO the entropy is higher.

Like in the churn metrics, to compute the entropy of source code metric we start

from the matrices of deltas. We define the entropy for each metric (column) and

classes (rows).

HH Entropy

HWH Weight entropy

LDHH Linear Entropy

EDHH Exponential Entropy

LDGHH Logarithmic Entropy

 The formule more detailed are explained here:

 𝐻′𝑊𝑀𝐶(𝑗) = − ∑ {
 0 𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗) = −1

𝑝(𝑖, 𝑗) ∗ 𝑙𝑜𝑔𝑅𝑗𝑝(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑅
𝑖=1 (4.13)

R = numbers of rows of the metrix

Rj = numbers of cells of the column j greater than 0

p(i,j) = measure of the frequency of change of the class i for a given metric

𝑝(𝑖, 𝑗) =

𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗)

∑ {
0 𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗) = −1

𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑅
𝑘=1

 (4.14)

57

Given a metric, for example CBO, and a class corresponding a row i the history of

entropy is:

 𝐻𝐻𝐶𝐵𝑂(𝑖) = ∑ {
0 𝑑𝑒𝑙𝑡𝑎(𝑖, 𝑗) = −1

𝑃𝐻𝐻𝐶𝐵𝑂(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐶
𝑗=1 (4.15)

𝑃𝐻𝐻𝑊𝑀𝐶(𝑖, 𝑗) = 𝐻
′
𝑊𝑀𝐶(𝑗)

This approach is apply for each metric define in the Source Code Metric respect to

each classes.

Here the variants:

 𝐻𝑊𝐻(𝑖, 𝑗) = 𝑝(𝑖, 𝑗) ∗ 𝐻′(𝑗) (4.16)

 𝐸𝐷𝐻𝐻(𝑖, 𝑗) =
𝐻′(𝑗)

𝑒𝜑1∗(𝐶−𝑗)
 (4.17)

 𝐿𝐷𝐻𝐻(𝑖, 𝑗) =
𝐻′(𝑗)

𝜑2(𝐶+1−𝑗)
 (4.18)

 𝐿𝐺𝐷𝐻𝐻(𝑖, 𝑗) =
𝐻′(𝑗)

𝜑3∗𝑙𝑛(𝐶+1.01−𝑗)
 (4.19)

58

5. DATASET DESCRIPTION

The Dataset is compoesd by six different software systems, each of them

represented through the measure of metrics described before for every

classes.

The Dataset are:

 Eclipse JDT Core;

 Eclipse PDE UI;

 Equinox Framework;

 Lucene;

 Mylyn;

Eclipse JDT Core

Eclipse JDT Core is the Java infrastructure of the Java IDE. It includes many

components like:

 An incremental Java compiler. Implemented as an Eclipse builder, it
based on technology evolved from VisualAge for Java compiler. In
particular, it allows to run and debug code which still contains
unresolved errors

 A Java Model that provides API for navigating the Java element tree.
The Java element tree defines a Java centric view of a project. It
surfaces elements like package fragments, compilation units, binary
classes, types, methods, fields.

 A Java Document Model providing API for manipulating a
structured Java source document.

 Code assist and code select support.
 An indexed based search infrastructure that is used for searching,

code assist, type hierarchy computation, and refactoring. The Java
search engine can accurately find precise matches either in sources
or binaries.

 Evaluation support in either a scrapbook page or a debugger context.
 Source code formatter

Our classes investigated have 997 classes that represents the plug-in
‘org.eclipse.jdt.core’.

59

Eclipse PDE UI

Eclipse PDE UI provides a comprehensive set of tools to create, develop, test and

debug Eclipse plug-ins, fragments, features, update sites and RCP products. It also

provides comprehensive OSGi tooling, which makes it an ideal environment for

component programming, not just Eclipse plug-in development.

The components including:

 Form-Based Manifest Editors - multi-page editors that centrally manage all

manifest files of a plug-in or feature.

 RCP Tools - wizards and a form-based editor that allow you to define,

brand, test and export products to multiple platforms.

 New Project Creation Wizards - create a new plug-in, fragment, feature,

feature patch and update sites.

 Import Wizards - import plug-ins and features from the file system.

 Export Wizards - wizards that build, package and export plug-ins, fragments

and products with a single click.

 Launchers - test and debug Eclipse applications and OSGi bundles.

 Views - PDE provides views that help plug-in developers inspect different

aspects of their development environment.

 Miscellaneous Tools - wizards to externalize and clean up manifest files.

 Conversion Tools - wizard to convert a plain Java project or plain JARs into

a plug-in project.

 Integration with JDT - plug-in manifest files participate in Java search and

refactoring.

 User Assistance Tools - Editors and tools for developing user help and other

UA documents.

 Declarative Services Tools - Editors and validation for OSGi declarative

services.

The Dataset contains 1497 classes derived from ‘org::eclipse::pde’.

60

Equinox Framework

Eclipse Equinox is an implementation of the OSGi R6 core framework

specification, a set of bundles that implement various optional OSGi services and

other infrastructure for running OSGi-based systems.

More generally, the goal of the Equinox project is to be a first class OSGi

community and to promote the vision of Eclipse as a landscape of bundles. As part

of this, it is responsible for developing and delivering the OSGi framework

implementation used for all of Eclipse

The principal components are:

 Implementation of all aspects of the OSGi specification (including the

EEG, MEG and VEG work)

 Investigation and research related to future versions of OSGi

specifications and related runtime issues

 Development of non-standard infrastructure deemed to be essential to the

running and management of OSGi-based systems

 Implementation of key framework services and extensions needed for

running Eclipse (e.g., the Eclipse Adaptor, Extension registry) and deemed

generally useful to people using OSGi

Equinox, like evert projects Eclipse, ships with all the major releases. The various
other bundles developed here may ship independently and on different schedule

Our dataset is composed by 324 classes in different levels
(‘org::eclipse::osgi:internal’ or ‘org::eclipse::osgi::framework’).

https://www.osgi.org/developer/downloads/release-6/
https://www.osgi.org/developer/downloads/release-6/

61

Lucene

The Apache LuceneTM project develops open-source search software, including:

 Lucene Core, our flagship sub-project, provides Java-based indexing and

search technology, as well as spellchecking, hit highlighting and

advanced analysis/tokenization capabilities.

 Solr a high performance search server built using Lucene Core, with

XML/HTTP and JSON/Python/Ruby APIs, hit highlighting, faceted

search, caching, replication, and a web admin interface.

 PyLucene is a Python port of the Core project.

It is composed by 691 classes derived from ‘org::apache::lucene’.

Mylyn

Mylyn is the task and application lifecycle management (ALM) framework for

Eclipse.

It provides:

 The revolutionary task-focused interface (Realigns the IDE around tasks

so that you see only the code that's relevant)

 A task management tool for developers (Averaging 1 million

downloads/month, Mylyn is the most popular IDE tool for ALM)

 A broad ecosystem of Agile and ALM integrations (Dozens of extensions

integrate Mylyn with ALM and developer collaboration tools)

Mylyn's task-focused interface reduces information overload and makes

multitasking easy. Mylyn makes tasks a first class part of the IDE, integrates rich

and offline editing for ALM tools, and monitors your programming activity to

create a "task context" that focuses your workspace and automatically links all

relevant artifacts to the task-at-hand.

It contains 2862 classes derived from ‘org::eclipse::mylyn::tasks’ and

‘org::eclipse::mylyn::internal’.

http://en.wikipedia.org/wiki/Task-focused_interface

62

5.1. DETAILS

Each software is described with 6 metrics into different formats:

Change Metrics into the csv file calls ‘change-metrics.csv’.

Previous Defects into the csv file calls ‘bug-metrics.csv’.

Source Code Metrics into the file ‘single-version-ck-oo.csv’

Entropy of Change into the file ‘complexity-code-change.csv’

Churn of source code metrics into the archive churn which contais every type of

churn (churn, weight-churn, lin-churn, exp-churn and log-churn).

Entriopy of source code metrics into the archive entropy with the different types

(ent, weighted-ent, lin-ent, exp-ent and log-ent).

The metrics based on Source code metrics are calculed using the file biweekly-ck-

value and bi-weekly-oo collecting each measures every 2 week.

63

6. DESCRIPTION WORK

Our workspace is MODELER.

Modeler is a software developed by IBM, which allow creating models Data-

Mining-likes. Therefore, it is possible to personalize each algorithm in every phases

of the prediction (Data understanding, data preparation…). The software is

drags&drops-likes and there are many options.

In this approach, we want to define the best model to predict bugs using not only

the linear regression, like in the last works, but using each possible models that we

can apply. In fact, before to apply specific algorithm we have used a ‘Numeric

Automatic’ tools. Just to have the idea about the principal models, which we

will use, based on the Linear Correlation and R2. Using this tool, we have selected

two principal models: Neural Networks and Decision Tree (based with C&RT and

CHAID).

The output related with the linear colleration and relative error. First, we can note

that the output are better than the linear regression. This approach has a

disanvantages which is the not exacly prediction, because these tool use an

automatic selection of the options. Therefore, it is necessary a study more detailed

of our models.

We have apply the classical metrics and in the majority of cases, we have noted that

the best model is the decision tree (CHAID algorithm).

The values of correlation are between 0.6 and 0.9 and the relative error is between

0.2 and 0.7. This is useful to be able to create a specific model for each software

system.

64

6.1. ANALYSIS WITH PRINCIPAL METRICS

In this part of the job, we will work with neural network and decision tree in details.

Starting with Eclipse and continuing with the others, it was tried every possible

metrics and selected the best for each set of metric.

In the majority of cases, we have selected the same metrics used in the combined

approach in the last work. The result are very different and more exhaustive.

Now, we use the metrics that have beeen studied in the last paper only with the

linear regression, using neural network and decision tree

CHANGE METRICS

NEURAL NETWORK

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

M
O

SE
R

0.406 0.2 0.634 0.038 0.46 0.647 0.458 0.811 0.227 0.69

N
FI

X

0.167 0.045 0.494 0.028 0.242 0.43 0.236 0.726 0.205 0.515

N
R

 0.382 0.126 0.529 0.109 0.505 0.682 0.368 0.748 0.349 0.721

N
FI

X
 +

N
R

 0.392 0.129 0.630 0.066 0.509 0.636 0.373 0.809 0.281 0.724

65

DECISION TREE

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

M
O

SE
R

0.765 0.481 0.707 0.367 0.582 0.878 0.698 0.852 0.613 0.771

N
FI

X

0.112 0.048 0.335 0.004 0.078 0.361 0.243 0.615 0.133 0.325

N
R

 0.279 0.063 0.389 0.06 0.114 0.542 0.272 0.655 0.271 0.367

N
FI

X
 +

N
R

 0.295 0.108 0.424 0.061 0.158 0.556 0.344 0.679 0.272 0.428

Table 6.1 Change metrics.

In the Table 6.1 we can see the results of our study in terms of R^2 and Spearman

correlation for the first type of metric, Change Metrics. Like in the linear regression

this metric not have any very relevant features. Only with Equinox (the same thing

happened with linear regression), we obtain a good level of correlation especially

with neural network.

The worst software system is PDE this is due for the different type of classes that it

has. In fact, also in the last study PDE had a lower level prediction with this metric.

66

An interesting thing is about Eclipse: using our decision tree the predictive power

with MOSER is not bad also in terms of explanative power that is the R^2 that is

equal to 0.765.

About Change Metrics type, the best use that we can do is for Equinox

software system because the results with more techniques present stable

results.

These plots rapresent the relation between bugs and predictive bugs with decision

tree and linear regression.

Figura 6.1 Linear regression Equinox

67

Figura 6.2 Decision TreeEquinox

PREVIOUS DEFECTS

NEURAL NETOWRK

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

BF 0.491 0.135 0.442 0.153 0.527 0.708 0.381 0.691 0.406 0.736

BUG-

CAT

0.398 0.632 0 0.029 0 0.641 0.798 0.045 0.207 0

DECISION TREE

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

BF 0.448 0.178 0.498 0.130 0.167 0.678 0.432 0.728 0.377 0.438

BUG-

CAT

0.373 0.552 0 0.191 0 0.621 0.747 0.068 0.45 0

Table 6.2 Previous Defects.

68

The previous defects metric is one of the less generic metric. The failure of

generality cause this behavior. The use of this metric whit the neural network and

decision tree are more or less the same, in particular the bad performance for

Equinox and Lucene with the BugCat metric.

In the last work, this metric was good with Eclipse, PDE and Lucene but now also

with Equinox using the BF, how we can see in the figure.

Figura 6.3 Decision Tree Equinox BF

The low validation of this works is because the metric in the majority of the cases

are unrelated.

Previous defect prove the level of correlation and Explanative power with the same

performance in the cases of the Data Mining algorithm.

69

SOURCE CODE METRICS

NEURAL NETOWRK

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

CK+OO 0.473 0.192 0.520 0.046 0.084 0.696 0.449 0.742 0.244 0.334

CK 0.410 0.120 0.502 0.034 0.227 0.65 0.36 0.731 0.219 0.501

OO 0.530 0.165 0.435 0.019 0.113 0.735 0.687 0.687 0.182 0.374

LOC 0.224 0.053 0.330 0.009 0.104 0.49 0.253 0.661 0.152 0.362

DECISION TREE

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

CK+OO 0.781 0.485 0.757 0.347 0.657 0.886 0.701 0.879 0.597 0.817

CK 0.540 0.234 0.577 0.175 0.398 0.741 0.493 0.778 0.432 0.646

OO 0.793 0.460 0.737 0.332 0.699 0.893 0.683 0.868 0.584 0.842

LOC 0.139 0.036 0.302 0.012 0.20 0.396 0.217 0.59 0.16 0.222

Table 6.3 Source Code Metrics Defects.

70

In the table 6.3 there are calculated the predictive and explanative power for the

metric SOURCE CODE METRIC. A strange phenomenon happens for the Neural

Network. We do not have any significant model that is better than the linear

regression.

Instead, using the Decision Tree we have obtained very good results. The Eclipse

case is more reliable like in the linear regression, using only OO metric we can

obtain almost 0.9 of correlation .

Figura 6.4 Decision Tree Eclipse OO

The worst case of this metric is for Mylyn but an effect we have taken also in the

last work.

Equinox and Lucene produce useful results that we do not have without these skills

(Neural Netowork and Decision Tree).

The use of Source Code Metric recommended with Eclipse using Linear Regression

and Decision Tree but in particular for Equinox and Lucene.

71

ENTROPY OF CHANGE

NEURAL NETOWRK

 R^2 SPEARMAN

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

H
C

M

0.475 0.045 0.535 0.063 0.373 0.697 0.237 0.752 0.276 0.626

W
H

C
M

 0.431 0.034 0.348 0.158 0.302 0.665 0.213 0.625 0.412 0.568

E
D

H
C

M
 0.390 0.094 0.264 0.295 0.415 0.634 0.323 0.558 0.552 0.658

L
D

H
C

M
 0.414 0.093 0.504 0.229 0.442 0.653 0.321 0.732 0.489 0.663

L
G

D
H

C
M

 0.443 0 0.537 0.143 0.222 0.674 0.034 0.753 0.394 0.496

72

DECISION TREE

 R^2 SPEARMAN

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

H
C

M

0.319 0.020 0.361 0.06 0.137 0.578 0.175 0.634 0.27 0.405

W
H

C
M

 0.295 0.048 0.323 0.081 0.121 0.556 0.243 0.606 0.307 0.384

E
D

H
C

M
 0.241 0.058 0.260 0.087 0.112 0.507 0.261 0.555 0.316 0.373

L
D

H
C

M
 0.261 0.067 0.339 0.085 0.106 0.526 0.278 0.618 0.321 0.364

L
G

D
H

C
M

 0.258 0.010 0.364 0.074 0.123 0.524 0.146 0.637 0.295 0.386

 Table 6.4 Entropy of Change

The table 6.4 shall collect the findings of our analysis with the Entropy’s metric.

The system Mylyn is not suitable in this case, in fact the value of R^2 is everywhere

less 0.1 with ant type of Data Mining techniques (also Linear Regression).

73

Overall, this metric used for Eclipse and Equinox but without any successful results.

This happened because the entropy used for calculated the prediction is too general

and the differences between various types of classes are discard.

Entropy of change metric is a metric too overall, also in the Linear Regression case.

The utility is for the improvement that can be apply with some revision.

CHURN OF SOURCE CODE METRICS

NEURAL NETOWRK

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

C
H

U

0.411 0.174 0.639 0.213 0.306 0.651 0.428 0.814 0.473 0.572

W
C

H
U

 0.474 0.128 0.440 0.140 0.584 0.696 0.371 0.69 0.39 0.773

L
D

C
H

U
 0.470 0.160 0.366 0.291 0.301 0.694 0.411 0.638 0.549 0.568

E
D

C
H

U
 0.498 0.167 0.367 0.290 0.363 0.713 0.42 0.369 0.547 0.618

L
G

D
C

H
U

 0.488 0.1 0.446 0.324 0.404 0.706 0.332 0.695 0.578 0.65

74

DECISION TREE

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

C
H

U

0.749 0.374 0.708 0.313 0.641 0.869 0.617 0.853 0.568 0.807

W
C

H
U

 0.742 0.338 0.695 0.315 0.643 0.865 0.588 0.845 0.57 0.809

L
D

C
H

U
 0.422 0.159 0.444 0.174 0.428 0.659 0.41 0.693 0.43 0.668

E
D

C
H

U
 0.472 0.152 0.414 0.166 0.482 0.695 0.403 0.672 0.421 0.706

L
G

D
C

H
U

 0.490 0.198 0.442 0.261 0.332 0.707 0.455 0.692 0.521 0.594

 Table 6.5 Churn of Source Code Metrics

In the table 6.5 we can see the behavior of the metric ‘Churn of source code metrics’

apply with the Decision Tree and Neural Network. The best correlation is with

Eclipse using Churn of Weight metrics in addition with the decision tree we can see

the different about the use of linear regression or decision tree.

75

Figura 6.6 Decision Tree W Churn Decision Tree

Figura 6.7 Linear regression Eclipse OO

The worst cases is another times with Mylyn which rapresent a short level of

accuracy. We can see many improvements with Lucene always with the classic

churn or weigh churn. This behavior was very different in the last paper.

A reduction of the performance is for the explanative power (R^2) for PDE’s

systems that with both of methods we have obtained low results.

The metric Churn of source code metric works very well with Decision Tree

algorithm. The level of correlation is high and sometimes we can get levels between

0.8 and 0.9.

Finally, we propose three good models for Eclipse Equinox and Lucene:

76

Figura 6.8 Decision Tree Eclipse

Figura 6.9 Decision Tree Lucene

Figura 6.10 Decision Tree Equinox

77

Entropy of source code metrics

NEURAL NETOWRK

 R^2 SPEARMAN

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

H
H

 0.471 0.136 0.440 0.042 0.401 0.695 0.382 0.69 0.235 0.648

H
W

H

0.478 0.130 0.481 0.272 0.382 0.699 0.374 0.717 0.531 0.633

L
D

H
H

0.495 0.119 0.430 0.312 0.319 0.711 0.359 0.683 0.567 0.583

E
D

H
H

0.443 0.166 0.300 0.259 0.227 0.675 0.419 0.578 0.519 0.5

L
G

D
H

H
 0.451 0.090 0.570 0.150 0.198 0.68 0.316 0.734 0.403 0.472

78

DECISION TREE

 R^2 SPEARMAN

E

cl
ip

se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

E
cl

ip
se

M
yl

yn

E
qu

in
ox

Pd
e

L
uc

en
e

H
H

0.690 0.306 0.647 0.286 0.516 0.834 0.561 0.818 0.544 0.728

H
W

H

0.536 0.146 0.484 0.249 0.421 0.739 0.394 0.719 0.51 0.663

L
D

H
H

0.462 0.167 0.489 0.171 0.272 0.688 0.42 0.722 0.428 0.542

E
D

H
H

0.442 0.161 0.457 0.167 0.322 0.674 0.413 0.702 0.423 0.585

L
G

D
H

H
 0.407 0.197 0.486 0.253 0.305 0.648 0.454 0.721 0.513 0.571

 Table 6.6 Entropy of Source Code Metrics

The last table (Table 7.6) have the results of the last metric. As we can see in the

table, the best way to use this metric is with Eclipse and Equinox (Fig 11 and Fig

12).

79

Figura 6.11 Decision Tree Eclipse

Figura 6.12 Decision Tree Equinox

An improvement of this metric is with the Decision Tree, infact with Mylyn and

PDE (the software systems with the lowest level of confidence) there are good

results. In the last work both of them had level of correlation and R^2 very bad, but

now the decision tree developed can be used to predict bugs.

Only the Neural network that we have created in the cases of Eclipse and Lucene

present the same performance respect to the linear regressin, especially in term of

explanative power.

This type of metric can be used with the Decision Tree withput any improvements

(Weight version, linear version etc.). The level of correlation are right for a good

prediction.

80

6.2. COMMENTS

The simulation work using the decision tree and neural network respect to the last

metric could be complete. Overall, the results studied with the linear regression are

satisfied. In particular, the last best metrics discovered like WCHU and LDHH still

having a good performance for the majority of the software system, with some

improvements, just to see the Lucene software.

In more detail, the metric with improvements is the Source code metrics (C). Here

we have obtained level of correlation close to 0.9 for three softares (Eclipse,

Equinox and Lucene) but also the other have obtained good results. In this way

during the software development for these systems, can be increased the quality,

the accuracy and the reliability.

On the other hands, the worst metric with these techniques is the Previous Defects

(B). Overall we can see which are present some null values, incurred for the bad

use of this metric with the decision tree cases. Nevertheless, in any cases, using

neural network, we can develop a level of confidence between 0.5 and 0.7 for the

majority of the systems.

 The eclipse software shows a good level of prediction (0.9) using the metric OO in

the Source code Metric (C). This one is the best results that we have obtained

correlated to an R^2 of 0.79 which means a very good proximity to the studied bugs.

Mylyn have a bad behavior with the Entropy of Change (D), like in the linear

regression. The best model is in the Previous defects (B) with the bugs fixed

metrics, using a neural network. Obviously, the results is not good like Eclipse but

is better respect also a linear regression cases.

Equinox has the same performance of Eclipse. In fact, we have founded the best

model (with 0.9 of correlation) with the Source code metrics (C) in the CC + OO

81

cases, always with a decision tree. This aspect was respect also with the linear

regression. Because the two software have equal classes, (like cited previously).

The PDE system had some problems to try a good model. The best model that we

are able to obtain is using the neural network in the Churn of source code metric

(D) using the logarithmic case (with a correlation of 0.58 and R^2 of 0.7). This

result in terms of quality is the same with Mylyn.

The final software, Lucene has encountered high improvements. In fact using the

metric Source code metric (C) OO with the decision tree is possible to develop a

model with high performance. The result here obtained is not comparable with the

linear regression model. In the last work, the level of performance was about 0.65

but now is close to 0.9.

82

7. ANALYSIS WITH A METRICS
COMBINATION

Now, in the second part of the experiments, we have developed a mixed approach

with the best metrics using also some adjusted operation for each software system.

We have designed five models. To be able to develop these we have started with

the selection of the best metric respect to correlation level. In some cases, we have

changed the domain. There are five possible operations:

 Inverse: 1
x
 ;

 Logarithm 𝑙𝑜𝑔10(𝑥) ;

 Logarithm 𝑙𝑜𝑔𝑛(𝑥)

 Exponential 𝑒𝑥 ;

 Square root √𝑥2 ;

The inverse and logarithm operation have some problems with the null values. To

solve this it was added 1 to an each cell to the metric matrix but the performance

decreased respect to not use the mathematical operation.

Only one transformation appears good, the Square root. Using this particular

operation, we can see after in the analysis, the robustness of the model is more

reliable.

Sperimentally we can see that just changing the domain the interpretations of the

metrics and the relative model appears more accurated.

In the work [l] was studied a ranking approach that have an impact on the domain

knowledge.The features are connected with the lessical gap to connect natural

language terms in the bug report. They have created a linear combination of features

able to resolve bugs. In particular had been used similarity measures to dig up at

best method to solve bugs.

83

Another problem is related with the too vagueness caused by metrics and because

they are not focused into the domain. In the paper [li] has been studied correlation

between specific warnings and bugs. It shows experimentally that there is a relation

between domain specific warnings and defects.

The generalization of the categories is too expensive and laborious. The approach

proposed by [lii] is able to automatize the categorization of software applications

with an API using the extraction of stakeholders. Based with statistical operations

they found the categories, which are able to provide more information. As already

mentioned the API packages provides better performance than API classes.

The model developed are synthetized here:

 Model 1: This model have every fields of the metric B - Previous Defects.
In this case using every types of bugs is possible to predict very well
problems. The inconvenience is that this method is not much generic so
cannot be used in a general-purpose scenario.

 Model 2: In this case we have used the square root transformation such
that to improve the performance. Therefore with the square root the data
are more balanced and the prediction appears better.

 Model 3: The Model 3 provides for using CC + OO metric of the Source
Code Metric with weights.

 Model 4: The Model 4, instead, provides of using CC + OO metric of
Entropy of source code metric with the linear transformation.

 Model 5: The last model provides a union of the best metric. Here we have
joined the metrics C and F (linear Entropy)

 Model 6: This model has connected the metrics E (weight churn) and F
(linear entropy).

The table 8 collect the results of the study with the best models in terms of

explanative and predictive power.

84

DECISION TREE

 R^2 SPEARMAN

E

C
L

IP
SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

Model 1 0.657 0.653 0.502 0.276 0.167 0.815 0.811 0.731 0.535 0.438

Model 2 0.750 0.485 0.757 0.347 0.657 0.869 0.701 0.879 0.597 0.817

 Model 3 0.704 0.360 0.693 0.289 0.605 0.843 0.606 0.844 0.547 0.787

Model 4 0.766 0.374 0.651 0.314 0.575 0.879 0.617 0.821 0.569 0.767

Model 5 0.823 0.654 0.814 0.386 0.710 0.909 0.811 0.909 0.628 0.848

Model 6 0.805 0.532 0.676 0.341 0.661 0.899 0.733 0.835 0.592 0.819

NEURAL NETOWRK

 R^2 SPEARMAN

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

E
C

L
IP

SE

M
yl

yn

E
Q

U
IN

O
X

PD
E

L
uc

en
e

Model 1 0.706 0.786 0.673 0.566 0.557 0.844 0.888 0.833 0.756 0.755

Model 2 0.462 0.160 0.413 0.131 0.111 0.688 0.412 0.671 0.378 0.371

Model 3 0.538 0.147 0.572 0.1 0.338 0.74 0.396 0.755 0.288 0.598

Model 4 0.510 0.139 0.490 0.250 0.235 0.722 0.386 0.723 0.511 0.508

Model 5 0.623 0.220 0.443 0.245 0.272 0.794 0.479 0.692 0.506 0.542

Model 6 0.344 0.166 0.490 0.160 0.272 0.598 0.419 0.723 0.415 0.543

 Table 7.1 BestModel results

85

7.1. COMMENTS

The results of these models are satisfactory. In fact for each models except to PDE

we are able to develop a model with a level of confidence higher than 0.8.

Using these models, a good quality of the bug-prediction is obtain. The best model

are the models 5 for Equinox and Eclipse using the Decision Tree, here it was

obtained a correlation of 0.9 and the predicted model is able to intercept almost the

totally bugs. A good use of these metrics is for Mylyn, in fact before is not possible

to develop any enough model, but now with the Model 1 mylyn has a prediction

capability very high.

The disadvantages of these models were in terms of CPU-time to arrive to the

solution, because the nodes are several. This problem is not serious because the

time increase of some tenth so it is irrelevant.

Figura 7.1 Decision Tree Eclipse Model 5

86

Figura 7.2 Decision Tree Equinox Model 5

Figura 7.3 Neural Network Mylyn Model 1

There are shows some graphs to represent the reliability of our some best model (in

terms of Spearman correlation and R2).

87

8. METRIC ADJUNCT

Based with the last metrics used in the last projects,new metrics are developed.

This metric generates a good level of correlation using the Data-mining

techniques like Neural Network and Decision Tree, but it has a bad result with the

linear regression.

The based form of the metric is this:

𝑀(𝑖) = ∑{

0, 𝑖𝑓 𝑑(𝑖, 𝑗) = 0

1 + 𝑑(𝑖, 𝑗) + 𝑙𝑜𝑔2(𝑑(𝑖, 𝑗)), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶

𝑗=0

(8.1)

Where:

 d(i,j) = Difference between two measures in two periods of time adjacent

in the same row corresponding at the same class for each metric

 C = numbers of elements captured in a period of time for each classes

Like in the Entropy of Change - D (or Churn of Source metrics – E or Entropy of

Source code metric – F) we have started from the metrics, Source Code Metrics

for each classes, collect for each types each two weeks (1). Using these metrics,

we have calculated the metrics for each classes and metrics-types, collected in a

matrix (2).

88

Below is proposed an example using CBO and LOC metrics with the easiest case

of this type of metric (M).

 1:

 Metric

CBO

Classes

A 5 5 5 5 5

B -1 -1 7 8 -1

C 4 4 7 7 9

D 5 4 -1 -1 8

 Metric

LCO

Classes

A 8 8 8 9 10

B -1 -1 5 6 6

C -1 -1 -1 -1 -1

D 10 10 10 5 -1

 2:

 Metric

 CBO LOC

Classes

A 4 6

B 5 5

C 11.58 4

D 5 11.32

This approach is apply for each metric developed by Chidamber and Kemerer

(Source Code Metrics). The values obtained used for input for each prediction-

model (Desion Tree and Neural Network).

89

To develop this metric we have started with the metric E (Churn of source code

metric) and we have changed same factor in order to increase the performance of

the model. We have used the same concept of delta between two samples of

measure. Here it has added the standard distance plus the logarithm of the distance,

each of which multiply for a specific factor (α, β and γ) which were chosen

opportunely with experimental measures (used for the advanced version of this

hybrid metric).

Like in the Churn version, adding a supplement with the four classic version

(Linear, Exp, Log and Weight). Experimentally these metrics works very well in

particular cases for example for the Eclipse the best is Linear Version with the

Decision Tree, which return a 0.81 level of correlation.

The basic idea was used the rules developed in the study from Jiarpakdee [liii]. The

study respects these steps:

Hypothesis – Design appropriate metric – Define a model – Develop analytical

model (Neural Network or Decision Tree) – Testing (R2)

To validate the metric I have to be careful about the introduction of inconsistency

was apply the variable clustering and the variance inflation factor techniques like

cited in the paper.

The constants calculated in simulation. I have used these values:

 α = 0.9

 β = 0.01

 γ = 0.1

A strange effect was about the Linear Regression that do not have any relevant

change if we modify the constants. In fact this metric have sense if is used in

correlation with the neural network or decision tree.

90

There are developed different versions of the metrics:

Weighted

metric: 𝑀𝑊(𝑖) = ∑{
0 𝑑(𝑖, 𝑗) = 0

1 + 𝛼 ∗ 𝑑(𝑖, 𝑗) + 𝛽𝑙𝑜𝑔2(𝑑(𝑖, 𝑗))𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶

𝑗=0

(8.2)

Exponential

metric: 𝑀𝐸(𝑖) = ∑{

0 𝑑(𝑖, 𝑗) = 0

1 + 𝛼 ∗ 𝑑(𝑖, 𝑗) + 𝛽𝑙𝑜𝑔2(𝑑(𝑖, 𝑗))

𝑒𝛾(𝐶+1−𝑗)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶

𝑗=0

(8.3)

Linear

metric: 𝑀𝐿(𝑖) = ∑{

0 𝑑(𝑖, 𝑗) = 0

1 + 𝛼 ∗ 𝑑(𝑖, 𝑗) + 𝛽𝑙𝑜𝑔2(𝑑(𝑖, 𝑗))

𝛾 ∗ (𝐶 + 1 − 𝑗)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶

𝑗=0

(8.4)

Logarithmic

metric:
𝑀𝐿𝐺(𝑖) = ∑{

0 𝑑(𝑖, 𝑗) = 0
𝛾 ∗ 𝑙𝑜𝑔2(𝐶 + 1 − 𝑗)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶

𝑗=0

(8.5)

91

8.1. EXPERIMENTS WITH A NEW METRIC

These are metrics developed using Matlab. Here we can see the code for the first

metric (the others change only some factor):

Figura 8.1 Code MyMetric.

The operation is easy. For each element in the row, correspondent to a class, we

calculate the difference between two adjacent elements, which correspond samples

taken in 2 weeks. If the difference is zero we do not calculate nothing, otherwise

we calculate the difference and the logarithm of the difference. We apply this

approach for each samples until we do not have any values. Therefore, we sum

every difference for every class of the software system.

Here, we can see the effect for each type of metric with our dataset, using the two

methods, Decision Tree and Neural Network.

92

 DECISION TREE NEURAL NETWORK

 R2 Spearman

Correlation

R2 Spearman

Correlation

M 0.473 0.716 0.593 0.774

MW 0.154 0.792 0.571 0.76

ME 0.127 0.762 0.425 0.658

ML 0.461 0.699 0.161 0.433

MLG 0.202 0.801 0.528 0.732

Table 8.1 Eclipse

 DECISION TREE NEURAL NETWORK

 R2 Spearman

Correlation

R2 Spearman

Correlation

M 0.665 0.818 0.797 0.894

MW 0.660 0.814 0.793 0.892

ME 0.627 0.795 0.639 0.802

ML 0.374 0.617 0.382 0.136

MLG 0.665 0.818 0.791 0.891

Table 8.2 Mylyn

93

 DECISION TREE NEURAL NETWORK

 R2 Spearman

Correlation

R2 Spearman

Correlation

M 0.429 0.683 0.604 0.794

MW 0.171 0.676 0.615 0.78

ME 0.124 0.425 0 0.163

ML 0.463 0.706 0.568 0.772

MLG 0.354 0.629 0.471 0.711

 Table 8.3 Equinox

 DECISION TREE NEURAL NETWORK

 R2 Spearman

Correlation

R2 Spearman

Correlation

M 0.358 0.606 0.614 0.787

MW 0 0.584 0.703 0.838

ME 0.299 0.555 0.273 0.532

ML 0.202 0.462 0.048 0.248

MLG 0 0.573 0.583 0.763

Table 8.4 PDE

94

 DECISION TREE NEURAL NETWORK

 R2 Spearman

Correlation

R2 Spearman

Correlation

M 0.495 0.715 0.348 0.607

MW 0..375 0.657 0.290 0.604

ME 0.235 0.508 0 0.172

ML 0.298 0.638 0.293 0.583

MLG 0.445 0.68 0.342 0.602

Table 8.5 LUCENE

Below is develop the metric using the Linear Regression for each software system:

 LINEAR REGRESSION

 R2 Spearman Correlation

M 0.415 0.651

MW 0.414 0.65

ME 0.420 0.654

ML 0.414 0.65

MLG 0.414 0.65

Table 8.6 ECLIPSE

95

 LINEAR REGRESSION

 R2 Spearman Correlation

M 0.763 0.875

MW 0.763 0.875

ME 0.765 0.876

ML 0.02 0.113

MLG 0.763 0.875

Table 8.7 MYLYN

 LINEAR REGRESSION

 R2 Spearman Correlation

M 0.099 0.397

MW 0.189 0.414

ME 0 0.181

ML 0 0.252

MLG 0.022 0.293

Table 8.8 EQUINOX

96

 LINEAR REGRESSION

 R2 Spearman Correlation

M 0.392 0.633

MW 0.401 0.633

ME 0.408 0.645

ML 0 0.065

MLG 0.400 0.632

Table 8.9 PDE

 LINEAR REGRESSION

 R2 Spearman Correlation

M 0.02 0.181

MW 0 0.168

ME 0 0.173

ML 0.02 0.196

MLG 0.01 0.203

Table 8.10 LUCENE

97

8.2. COMMENTS NEURAL NETWORK &

DECISION TREE

Overall, this metric has a good behavior for each software system in terms of

Correlation and R2.

The best software system is Mylyn, which has very good values for both the models

using every types of metrics. If fact here we have the best model, which is the neural

Network using the classic metric without any improvement (with a correlation of

0.894). Under we can see the matching between bugs and predictive bugs

Figura 8.2 Neural Network Mylyn

Our experimental metric works good with the Decision Tree, just see the Eclipse

case using the Logarithm type, with a correlation of 0.801 but with a bad R2.

The principal reason of our negative values using the linear regression are:

This is a metric developed especially for the neural network and decision tree

without consider other data-mining techniques. Another reason is for the dataset,

that the database how we can understand from the other study is not able to obtain

level of correlation like in these cases.

98

The worst case is the Linear for the Mylyn system, with a correlation 0.136 and a

R2 equal to 0.382 for the neural network. In general, the metric, which returns

results worst than the others metric, is the Exponential case. This behavior does not

surprise us because that is what happens for each software system in the last work.

Lucene is the only software system that does not have any very interesting results,

in some cases also nulls because the Dataset,have less rows (< 1000) respect to the

other dataset that have many values.

8.3. COMMENTS LINEAR REGRESSION

As regards the linear regression the performance are insufficient. The reason is

correlated for the greater addressing between the new metric and the neural network

(or decision tree) algorithm. Therefore, this find best correlation and exploration

with the first tecniques.

However, there are some cases where this metric is good for the linear regression.

Great success there are for the software Mylyn. For each kind of metrics the

performance are great, only for the linear case the model is not capable to predict

exacly the bugs.

Eclipse contains a mean level of correlation about 0.4 without null value.In the other

software there are present also null value. Meaning the absolutely capability of no-

predition, for both the exacly number of bugs for a class (spearman correlation) and

for a global vision of the system (R2).

Especially for Lucene the model is not capable in the bugs-prediction.

Below we can see two graphs to show the best and the worst cases with the use of

this hybrid metric:

99

Figura 8.3 Linear Regression Mylyn metric M

Figura 8.4 Linear Regression Mylyn metric ML

100

9. BINARY CLASSIFICATION

Last analysis involve the binary classification to predict bugs using neural network

and decision tree.

To apply this model we need to change the interpretation of bugs in the Dataset.

Means the field ‘bugs’ now can assume only two values (bugs or not-bugs). We

have used this strategy:

{
𝑛° 𝑏𝑢𝑔 ≥ 1 𝑏𝑢𝑔 = 1
𝑛° 𝑏𝑢𝑔 = 0 𝑏𝑢𝑔 = 0

Using this strategy is possible to create a classification model able to predict the

present (or absence) of a bugs for each class.

Starting from the metrics (described previously) apply with the best model (section

8) we have create some classificatory with neural network and decision tree.

9.1. EXPLICATION BINARY CLASSIFICATION

Binary classification is a task of classification that divided the dataset into two

groups.

To evaluate the classification there are many factors (different with the last one). In

this case, we cannot use spearman or Pearson but there are specific measure of

performance.

In the literature there are numerous metrics (recall, specificity, F-measure) and each

oh them have a specific role and should be use in a specific scenario.

101

Each of metrics start with the confusion matrix:

DEFECTS ARE OBSERVED

True False

MODEL

PREDICTS

DEFECTS

Positive
True positive (TP)

False Positive

(FP)

Negative
False negative (FN)

True negative

(TN)

A confusion matrix is a table typically used to evaluate the performance of a

supervised algorithm. Each rows represents the predicted value and each column

represent the value of the real class. Therefore, in this way we can count the

numbers of true (and false) positive and the numbers of True (and False) negative

respect to the membership class.

From this table we can study the accuracy of the model with different metrics

(Recall, Precision, F-measure and Accuracy). Using the ROC (Receiver operating

characteristic), we can evaluate with a area the difference between different

classification model.

 Recall:

The recall relates the number of true positives (predicted and observed as

defect-prone) to the number of classes that actually had defects.

A goog value is close to one, means that every class that had defects

observed was predict to have defects.

𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (9.1)

 Precision:

The precision relates the number of true positives (predicted and observed

as defectprone) to the number of classes predicted as defect-prone.

102

A good value is close to one, means that every class that was predicted to

have defects actually had defects

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (9.2)

 Accuracy: The accuracy relates the number of correct classifications (true

positives and true negatives) to the total number of classes. A value of

accuracy equal to one means that the model classified perfectly without

any single mistake.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (9.3)

 F-measure: The F-measure is a harmonic mean of recall and precision. We

preferred this type of mean because the harmonic mean is commonly

appropriate when averaging rates or frequencies. F-measure allows

differential weighting of Recall and Precision but commonlt they are given

equal weight.

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(9.4)

ROC

The ROC (Receiver operating characteristic) curve is a plot that show the

performance of a binary classifier. The ROC built by plotting the True-positive-rate

(Y) and False-positive-rate (X).

Figura 9.1 ROC curve example

103

The area under the curve (AUC) is the overall measure of the classifier

Larger is the AUC better classifier performance are. For example the best

classification is with TP-rate = 1 and FP-rate =0, with a AUC = 1 (we have the total

area under the curve). Instead, the worst classifier is with TP-rate = 0 and

FP-rate =1, in this case the classifier is a oppositive-classifier.

Considering a classifier with TP= 0.9 and FP=0.2 this means:

 90 % of the observation are classifier well;

 20 % of the observation are wrongly assigned to the positive class

104

9.2. SIMULATION

We apply the classification model with the last metrics that have studied (Best

metrics in the chapter 8). We can see that every model have very good level of

precision, recall, accuracy and F-measure. To choose the best model we have use

also the ROC. So these metrics used to create a binary classifier for the bug

prediction.

Eclipse

Model 1

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 770 21

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
698 93

Bugs 104 102 Bugs 54 152

precision recall f-measure accuracy precision recall f-measure accuracy

0.93 0.88 0.92 0.87 0.88 0.92 0.90 0.85

Table 9.1 Eclipse Model 1

105

Model 2

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 760 26

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
686 98

Bugs 109 102 Bugs 61 152

precision recall f-measure accuracy precision recall f-measure accuracy

0.96 0.87 0.91 0.86 0.88 0.91 0.90 0.85

Table 9.2 Eclipse Model 2

Model 3

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
758 33

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
738 53

Bugs 99 107 Bugs 20 186

precision recall f-measure accuracy precision recall f-measure accuracy

0.96 0.88 0.90 0.83 0.93 0.97 0.95 0.92

Table 9.3 Eclipse Model 3

106

Model 4

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
754 37

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
729 62

Bugs 129 77 Bugs 23 183

precision recall f-measure accuracy precision recall f-measure accuracy

0.95 0.85 0.90 0.83 0.97 0.90 0.93 0.89

Table 9.4 Eclipse Model 4

Model 5

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
769 23

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
756 26

Bugs 84 122 Bugs 12 1940.

precision recall f-measure accuracy precision recall f-measure accuracy

0.97 0.90 0.93 0.89 0.96 0.98 0.97 0.97

Table 9.5 Eclipse Model 5

107

Model 6

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 735 56

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
750 41

Bugs 75 131 Bugs 21 185

precision recall f-measure accuracy precision recall f-measure accuracy

0.93 0.90 0.92 0.86 0.95 0.97 0.96 0.94

Table 9.6 Eclipse Model 6

Figura 9.2 ROC model 5 Eclipse (Decision Tree)

108

Mylyn

Model 1

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1614 3

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
1497 120

Bugs 84 161 Bugs 52 193

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.95 0.97 0.95 0.92 0.96 0.95 0.90

Table 9.7 Mylyn Model 1

Model 2

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1576 41

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

1446 171

Bugs 181 64 Bugs 16 229

precision recall f-measure accuracy precision recall f-measure accuracy

0.97 0.89 0.93 0.88 0.89 0.98 0.93 0.89

Table 9.8 Mylyn Model 2

109

Model 3

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1589 28

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
1126 491

Bugs 213 32 Bugs 23 222

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.88 0.93 0.87 0.69 0.97 0.81 0.72

Table 9.9 Mylyn Model 3

Model 4

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1608 9

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

1157 460

Bugs 232 13 Bugs 26 219

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.87 0.93 0.87 0.71 0.97 0.82 0.73

Table 9.10 Mylyn Model 4

110

Model 5

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1589 28

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
1520 97

Bugs 204 41 Bugs 18 227

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.88 0.93 0.87 0.94 0.98 0.96 0.93

Table 9.11 Mylyn Model 5

Model 6

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1583 34

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

1209 408

Bugs 206 39 Bugs 21 224

precision recall f-measure accuracy precision recall f-measure accuracy

0.97 0.88 0.93 0.87 0.74 0.98 0.84 0.76

Table 9.12 Mylyn Model 6

111

Figura 9.3 ROC model 3 Mylyn (Decision Tree)

Figura 9.4 ROC model 5 Mylyn (Decision Tree)

In these two graphs, we can see a couple of model of Mylyn. In particular, we can

see the worst (Model 3 Decision Tree) and the best (Model 5 decision tree).

Like suggested from the metrics like F-measure the model 5 have a F-measure and

accuracy higher than 0.9, so the AUC is almost perfect.

112

Equinox

Model 1

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 165 30

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
159 56

Bugs 40 89 Bugs 56 93

precision recall f-measure accuracy precision recall f-measure accuracy

0.84 0.80 0.82 0.78 0.81 0.81 0.81 0.77

Table 9.13 Equinox Model 1

Model 2

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 152 43

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

178 17

Bugs 46 83 Bugs 10 119

precision recall f-measure accuracy precision recall f-measure accuracy

0.77 0.76 0.77 0.72 0.91 0.94 0.92 0.91

Table 9.14 Equinox Model 2

113

Model 3

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 167 28

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
172 23

Bugs 57 72 Bugs 16 113

precision recall f-measure accuracy precision recall f-measure accuracy

0.85 0.74 0.79 0.73 0.88 0.91 0.89 0.87

Table 9.15 Equinox Model 3

Model 4

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 171 24

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

174 21

Bugs 61 68 Bugs 17 112

precision recall f-measure accuracy precision recall f-measure accuracy

0.87 0.73 0.80 0.73 0.89 0.91 0.90 0.88

Table 9.16 Equinox Model 4

114

Model 5

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 157 38

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
176 19

Bugs 49 80 Bugs 4 125

precision recall f-measure accuracy precision recall f-measure accuracy

0.80 0.76 0.78 0.73 0.90 0.97 0.93 0.82

Table 9.17 Equinox Model 5

Model 6

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 165 30

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

176 19

Bugs 50 75 Bugs 4 125

precision recall f-measure accuracy precision recall f-measure accuracy

0.80 0.76 0.7 0.73 0.90 0.97 0.93 0.93

Table 9.18 Equinox Model 6

115

In this case the performance are limited, especially for the model 2 with neural

network. The best is for the model 5 (Decision Tree). This depends for the bugs

distribution that is inefficient for thid type of prediction.

Figura 9.5 ROC model 2 Equinos (Neural Network)

Figura 9.6 ROC model 5 Equinos (Decision Tree)

116

PDE

Model 1

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1283 5

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
1142 146

Bugs 141 68 Bugs 86 123

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.90 0.94 0.90 0.88 0.93 0.90 0.84

Table 9.19 PDE Model 1

Model 2

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1614 3

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

1288 0

Bugs 84 161 Bugs 209 0

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.95 0.97 0.95 1 0.86 0.92 0.86

Table 9.20 PDE Model 2

117

Model 3

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1273 15

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
1158 130

Bugs 167 42 Bugs 46 166

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.88 0.93 0.87 0.89 0.96 0.92 0.88

Table 9.21 PDE Model 3

Model 4

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1264 24

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

1214 74

Bugs 172 37 Bugs 49 160

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.88 0.92 0.86 0.94 0.96 0.95 0.91

Table 9.22 PDE Model 4

118

Model 5

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1264 24

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
1242 46

Bugs 128 81 Bugs 19 190

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.90 0.94 0.89 0.96 0.98 0.97 0.95

Table 9.23 PDE Model 5

Model 6

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 1274 14

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

1197 91

Bugs 186 23 Bugs 46 163

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.87 0.92 0.86 0.92 0.96 0.94 0.90

Table 9.24 PDE Model 6

119

PDE is more consistent with the classification prediction. We have different cases

where the accuracyis very high (Model 2 with neural network and model 5 with

Decision Tree).

The number and distribution of bugs is balanced and thid be able to obtain

performance higher.

Figura 9.7 ROC model 2 PDE (Neural Network)

Figura 9.8 ROC model 5 PDE (Decision Tree)

120

Lucene

Model 1

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 626 1

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
495 132

Bugs 51 13 Bugs 12 46

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.92 0.96 0.92 0.78 0.97 0.87 0.78

Table 9.25 lucene Model 1

Model 2

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 626 1

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

615 12

Bugs 59 5 Bugs 4 60

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.91 0.95 0.91 0.98 0.99 0.98 0.97

Table 9.26 lucene Model 2

121

Model 3

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 620 7

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
610 17

Bugs 45 19 Bugs 12 52

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.93 0.96 0.92 0.97 0.98 0.97 0.95

Table 9.27 lucene Model 3

Model 4

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 616 11

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

601 260

Bugs 51 13 Bugs 11 53

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.92 0.95 0.91 0.69 0.98 0.81 0.70

Table 9.28 lucene Model 4

122

Model 5

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 620 7

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs
621 6

Bugs 53 11 Bugs 6 58

precision recall f-measure accuracy precision recall f-measure accuracy

0.98 0.92 0.95 0.91 0.99 0.99 0.99 0.98

Table 9.29 lucene Model 5

Model 6

NEURAL

NETWORK

Real condition
DECISION TREE

Real condition

No Bugs Bugs No Bugs Bugs

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs 626 1

Pr
ed

ic
te

d

co
nd

iti
on

No

Bugs

614 10

Bugs 57 7 Bugs 9 55

precision recall f-measure accuracy precision recall f-measure accuracy

0.99 0.91 0.95 0.91 0.98 0.98 0.98 0.97

Table 9.30 lucene Model 6

123

The last software system have performance almosto perfectaly for each model and

each methods. We can see that for the models 5 and 6 False positive is less than 10

fo the prediction is good, like we can see in some ROC.

Figura 9.9 ROC model 3 Lucene (Decision Tree)

Figura 9.10 ROC model 4 Lucene (Neural Network)

124

10. CONCLUSIONS

The neural network and decision tree developed in this work make it possible a

prediction of bugs with level of correlation and prediction about 0.8 and 0.9 with

the Software Sets proposed.

Very relevant model are for example:

 Mooser with Eclipse and Equinox

 BF with Equinox

 WCHU with Lucene

Relevant concept discovered are about the correlation measure (Spearman and R2).

Spearman correlation interpreted like the exactly knowledge that joins what we

want that it happen with the possible output of the system.

R2 just said if a events can happen or not, in our cases if a classes X using a metric

M can give a bug or not.

We apply the classification model with the last metrics that have studied (. We can

see that every model have very good level of precision, recall, accuracy and F-

measure. To choose the best model we have use also the ROC. So these metrics can

be use to create a binary classifier for the bug prediction.

These results are possible only using neural network and decision tree (not with

linear regression that performe in some past works).

Using mixed metrics we have create six models with a different interpretations.

Model 1 apply the formula of our metrics. Model 5 and 6 with linear and logarithmic

improvements.

Model 1 developed with a mixed of metrics perform prediction for Mylyn with a

Spearman correlation of 0.81

The Model 5 and 6 return values almost like a perfect prediction.

125

In this work we have covered the bug prediction problem based with Spearman

correlation and R2 including the explanation of the use of these factors. Explaining

thoroughly the principal’s metrics to understand the software about bugs and

developing different model with different goals for each software system.

Thanks to this work, we can use different approaches to predict bugs in order to

discover where the bug is present and how to avoid errors.

An interesting point is about the use of different coefficients to understand better

the prediction. We have discovered that if we are interesting on the exactly numbers

of bugs we should use Spearman correlation. Instead, if we want to know the

presence of bugs we need to use the R2 coefficient. This rule is true with any types

of model that we have described.

An alternative approach could be with the mobile software to highlight the bugs’

problems relative with graphics and the different platforms.

The Model 5 and 6 return values almost like a perfect prediction.

In this work we have covered the bug prediction problem based with Spearman

correlation and R2 including the explanation of the use of these factors. Explaining

thoroughly the principal’s metrics to understand the software about bugs and

developing different model with different goals for each software system.

Thanks to this work, we can use different approaches to predict bugs in order to

discover where the bug is present and how to avoid errors.

An interesting point is about the use of different coefficients to understand better

the prediction. We have discovered that if we are interesting on the exactly numbers

of bugs we should use Spearman correlation. Instead, if we want to know the

presence of bugs we need to use the R2 coefficient. This rule is true with any types

of model that we have described.

An alternative approach could be with the mobile software to highlight the bugs’

problems relative with graphics and the different platforms.

126

INDEX FIGURES

 Figura 3.1. Multi-Layer Neural Network.
 Figura 3.2 Slow convergence.
 Figura 3.4 Overfitting
 Figura 3.5 Decision Tree example
 Figura 3.7 Spearman 1
 Figura 3.8 Spearman 2
 Figura 3.9 Spearman 3
 Figura 9.1 ROC curve example

127

INDEX GRAPHS

 Figura 6.1 Linear regression Equinox
 Figura 6.2 Decision TreeEquinox
 Figura 6.3 Decision Tree Equinox BF
 Figura 6.4 Decision Tree Eclipse OO
 Table 6.4 Entropy of Change
 Table 6.5 Churn of Source Code Metrics
 Figura 6.6 Decision Tree W Churn Decision Tree
 Figura 6.7 Linear regression Eclipse OO
 Figura 6.8 Decision Tree Eclipse
 Figura 6.9 Decision Tree Lucene
 Figura 6.10 Decision Tree Equinox
 Figura 6.11 Decision Tree Eclipse
 Figura 6.12 Decision Tree Equinox
 Figura 7.1 Decision Tree Eclipse Model 5
 Figura 7.2 Decision Tree Equinox Model 5
 Figura 7.3 Neural Network Mylyn Model 1
 Figura 8.1 Code MyMetric.
 Figura 8.2 Neural Network Mylyn
 Figura 8.3 Linear Regression Mylyn metric M
 Figura 8.4 Linear Regression Mylyn metric ML
 Figura 9.2 ROC model 5 Eclipse (Decision Tree)
 Figura 9.3 ROC model 3 Mylyn (Decision Tree)
 Figura 9.4 ROC model 5 Mylyn (Decision Tree)
 Figura 9.5 ROC model 2 Equinos (Neural Network)
 Figura 9.6 ROC model 5 Equinos (Decision Tree)
 Figura 9.7 ROC model 2 PDE (Neural Network)
 Figura 9.8 ROC model 5 PDE (Decision Tree)
 Figura 9.9 ROC model 3 Lucene (Decision Tree)
 Figura 9.10 ROC model 4 Lucene (Neural Network)

128

INDEX TABLES

 Table 6.1 Change metrics.
 Table 6.2 Previous Defects.
 Table 6.3 Source Code Metrics Defects.
 Table 6.4 Entropy of Change
 Table 6.5 Churn of Source Code Metrics
 Table 6.6 Entropy of Source Code Metrics
 Table 7.1 BestModel results
 Table 8.1 Eclipse
 Table 8.2 Mylyn
 Table 8.3 Equinox
 Table 8.4 PDE
 Table 8.5 LUCENE
 Table 8.6 ECLIPSE
 Table 8.7 MYLYN
 Table 8.8 EQUINOX
 Table 8.9 PDE
 Table 8.10 LUCENE
 Table 9.1 Eclipse Model 1
 Table 9.2 Eclipse Model 2
 Table 9.3 Eclipse Model 3
 Table 9.4 Eclipse Model
 Table 9.5 Eclipse Model 5
 Table 9.6 Eclipse Model
 Table 9.7 Mylyn Model 1
 Table 9.8 Mylyn Model 2
 Table 9.9 Mylyn Model 1
 Table 9.10 Mylyn Model 4
 Table 9.11 Mylyn Model 5
 Table 9.12 Mylyn Model 6
 Table 9.13 Equinox Model 1
 Table 9.14 Equinox Model 2
 Table 9.15 Equinox Model 3
 Table 9.16 Equinox Model 4
 Table 9.17 Equinox Model 5
 Table 9.18 Equinox Model 6
 Table 9.19 PDE Model 1
 Table 9.20 PDE Model 2
 Table 9.21 PDE Model 3
 Table 9.22 PDE Model 4
 Table 9.23 PDE Model 5
 Table 9.24 PDE Model 6
 Table 9.25 lucene Model 1
 Table 9.26 lucene Model 2
 Table 9.27 lucene Model 3
 Table 9.28 lucene Model 4
 Table 9.29 lucene Model 5
 Table 9.30 lucene Model 6

129

BIBLIOGRAPHY

i “Barriers to Effective Use of Knowledge Management Systems in Software Engineering” Kevin

C. Desouza
ii “Local and Global Recency Weighting Approach to Bug Prediction” Hemant Joshi, Chuanlei
Zhang, S. Ramaswamy andCoskun Bayrak
iii “Revisiting Common Bug Prediction Findings Using Effort-Aware Models”Yasutaka Kame,

Shinsuke Matsumoto and Akito Monden
iv “Effort-aware defect prediction models” T. Mende and R. Koschke
v “Classifying Software Changes: Clean or Buggy?” Sunghun Kim, E. James Whitehead Jr and Yi
Zhang
vi “Method-Level Bug Prediction” Emanuel Giger, Marco D’Ambros and Martin Pinzger
vii “Graph-Based Analysis and Prediction for Software Evolution”, Pamela Bhattacharya, Marios

Iliofotou, Iulian Neamtiu and Michalis Faloutsos
viii “Bug-fix Time Prediction Models: Can We Do Better?” Pamela Bhattacharya and Iulian Neamtiu
ix “Bug Prediction Based on Fine-Grained Module Histories” Hideaki Hata, Osamu Mizuno, and
Tohru Kikuno
x “Tracking Concept Drift of Software Projects Using Defect Prediction Quality” Jayalath
Ekanayake, Jonas Tappolet, Harald C. Gall and Abraham Bernstein
xi “Does Bug Prediction Support Human Developers? Findings From a Google Case Study” Chris

Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou and E. James Whitehead Jr.
xii “Micro Interaction Metrics for Defect Prediction” Taek Lee, Jaechang Nam, DongGyun Han,
Sunghun Kim and Hoh Peter
xiii “Reducing Features to Improve Bug Prediction” Shivkumar Shivaji, E. James Whitehead, Ram
Akella and Sunghun Kim
xiv “An empirical study on software defect prediction with a simplified metric set” Peng He, Bing
Li,Xiao Liu,Jun Chen and Yutao Ma
xv “Choosing software metrics for defect prediction: an investigation on feature selection
techniques” Kehan Gao, Taghi M. Khoshgoftaar, Huanjing Wang and Naeem Seliya
xvi “Mining Software Repositories with Topic Models” Stephen W. Thomas
xvii “Anomaly-Based Bug Prediction, Isolation, and Validation: An Automated Approach for
Software Debugging” Martin Dimitrov and Huiyang Zhou
xviii “A Data Mining Model to Predict Software Bug Complexity Using Bug Estimation and
Clustering” Naresh Kumar Nagwani and Ashok Bhansali
xix “Towards Effective Bug Triage with Software Data Reduction Techniques” Jifeng Xuan, He

Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongxuan Luo and Xindong Wu
xx “A Comparative Study of Supervised Learning Algorithms for Re-opened Bug Prediction” Xin

Xia1, David Lo, Xinyu Wang, Xiaohu Yang, Shanping Li and Jianling Sun
xxi “An Extensive Comparison of Bug Prediction Approaches” Marco D’Ambros, Michele Lanza

and Romain Robbes
xxii “Intelligent Heart Disease Prediction System Using Data Mining Techniques” Sellappan
Palaniappan and Rafiah Awang
xxiii “Intelligent Heart Disease Prediction System Using Data Mining Techniques” Sellappan
Palaniappan and Rafiah Awang
xxiv “Intelligent Heart Disease Prediction System Using Data Mining Techniques” Sellappan
Palaniappan and Rafiah Awang

130

xxv Early Prediction of Heart Diseases Using Data Mining Techniques” Vikas Chaurasia and

Saurabh Pal
xxvi Prediction of financial distress: An empirical study of listed Chinese companies using data
mining” Ruibin Geng,Indrani Bose, Xi Chen
xxviiftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsG
uide.pdf

xxviii “BP Neural Network-Based Effective Fault Localization” W. ERIC WONG∗ and YU QI
xxix “Comparing Fine-Grained Source Code Changes And Code Churn For Bug Prediction”

Emanuel Giger, Martin Pinzger and Harald C. Gall
xxx “Software defect prediction using cost-sensitive neural network” Ömer Faruk Arara and Kürs
Ayan
xxxi “Predicting Defect Priority Based on Neural Networks” Lian Yu1, Wei-Tek Tsai, Wei Zhao and
Fang Wu
xxxii “Predicting the priority of a reported bug using machine learning techniques and cross project

validation” Meera Sharm, Punam Bedi, K.K. Chaturvedi and V. B. Singh
xxxiii “Effective software fault localization using an BFN neural network” W. Eric Wong, Vidroha
Debroy, Richard Golden, Xiaofeng Xu and Bhavani Thuraisingham
xxxiv “Predicting the Fix Time of Bugs” Emanuel Giger, Martin Pinzger and Harald Gall
xxxv “Using the Gini Coefficient for Bug Prediction in Eclipse” Emanuel Giger, Martin Pinzger and
Harald Gall
xxxvi “Predictive Data Mining Model for Software Bug Estimation Using Average Weighted
Similarity” Naresh Kumar Nagwani and Dr. Shrish Verma
xxxvii “Using Decision Trees to Predict the Certification Result of a Build” Ahmed E. Hassan and

Ken Zhang
xxxviii “Characterizing and Predicting Blocking Bugs in Open Source Projects” Harold Valdivia
Garcia and Emad Shihab
xxxix “Predicting Bug-Fixing Time: An Empirical Study of Commercial Software Projects”

Hongyu Zhang, Liang Gong, Steve Versteeg, Jue Wang, Zeqi Shen and Janine Radford
xl “An Extensive Comparison of Bug Prediction Approaches” Marco D’Ambros, Michele Lanza and

Romain Robbes
xli “Predicting Defects for Eclipse” Thomas Zimmermann, Rahul Premraj and Andreas Zeller
xlii “Improving Defect Prediction Using Temporal Features and Non Linear Models”, Abraham Bernstein,
Jayalath Ekanayake and Martin Pinzger
xliii “Comparative studies of metamodelling techniques under multiple modelling criteria” R. Jin,

W. Chen and T.W. Simpson
xliv “Comparative studies of metamodelling techniques under multiple modelling criteria” R. Jin,

W. Chen and T.W. Simpson
xlv “Analysing the Concrete Compressive Strength using Pearson and Spearman” Chandrasegar
Thirumalai, Swapna Anupriya Chandhini and Vaishnavi M
xlvi “A Metrics Suite for Object Oriented Design” Shyam R. Chidamber and Chris F. Kemerer
xlvii “Predicting Faults Using the Complexity of Code Change” Ahmed E. Hassan
xlviii “Predicting Faults Using the Complexity of Code Change” Ahmed E. Hassan
xlix “An Extensive Comparison of Bug Prediction Approaches” Marco D’Ambros, Michele Lanza

and Romain Robbes
l “Learning to Rank Relevant Files for Bug Reports using Domain Knowledge” Xin Ye, Razvan
Bunescu, and Chang Liu
li “Domain specific warnings: Are they any better?” Andr´e Hora, Nicolas Anquetil, St´ephane
Ducasse, Simon Allier
lii “On using machine learning to automatically classify software applications into domain
categories” Mario Linares, Vásquez, Collin McMillan, Denys Poshyvanyk and Mark Grechanik
liii “The Impact of Correlated Metrics on Defect Models” Jirayus Jiarpakdee, Chakkrit
Tantithamthavorn and Ahmed E. Hassan

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf
ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf

