POLITECNICO DI TORINO

DIPARTIMENTO DI AUTOMATICA E INFORMATICA

Corso di Laurea Magistrale in Ingegneria Informatica

DEVELOPMENT OF A LOCAL CLOUD SYSTEM
BASED ON P2P FILE SHARING

THE MYP2PSYNC FILE SYNCHRONIZATION SYSTEM

Supervisors

Pror. FurLvio RISsO
Politecnico di Torino

PRrROF. JORDI DOMINGO PASCUAL
Universitat Politecnica de Catalunya

Author
FRANCESCO LORENZO CASCIARO

ACADEMIC YEAR 2018/2019

"We’re just two lost souls
Swimming in a fish bowl

Year after year

Running over the same old ground
What have we found?

The same old fears

Wish you were here"

Pink Floyd

Contents

Abstract

Keywords

1 Introduction

1.1 Project introduction: myP2PSync

1.2 Why an user should use myP2PSynec

1.3 Termsofuse.

2 State of the art

2.1 File synchronization system

2.2 Distributed application models

2.2.1

2.2.2

223

224

Client-Server model: characteristics and drawbacks
Peer-to-Peer networks: characteristics
Peer-to-Peer networks: classification.

Peer-to-Peer networks: main applications and some
drawbacks oo o

10

10

12

12

13

13

16

16

2.3

BitTorrent
2.3.1 BitTorrent Protocol: introduction
2.3.2 BitTorrent Protocol: .torrent metafile
2.3.3 BitTorrent Protocol: tracker

2.3.4 BitTorrent Protocol: chunks exchange

3 Project planning

3.1

3.2

3.3

3.4

3.5

Overall view and stakeholders
Graphical modelization of the system
Requirements analysis
System functioning L

Scheduling of the project development phases

4 Implementation tools

4.1

4.2

4.3

Desktop application vs Web application
Choice of the programming language

Choice of the framework for the GUI creation

5 Solution analysis

5.1

5.2

Architecture of the system and main characteristics
Code analysis: structure and modules
5.2.1 Tracker modules: overview

5.2.2 Tracker modules: myP2PSyncTracker.py

30

30

32

34

36

37

39

39

40

41

42

5.3

5.4

5.2.3 Tracker modules: reqHandlers.py 47

5.2.4 Tracker modules: group.py 48
5.2.5 Peer modules: overview 48
5.2.6 Peer modules: myP2PSyncClient.py 50
5.2.7 Peer modules: peerCore.py 54
5.2.8 Peer modules: fileManagement.py 55
5.2.9 Peer modules: fileSystem.py 58
5.2.10 Peer modules: peerServer.py 62
5.2.11 Peer modules: syncScheduler.py 62
5.2.12 Peer modules: fileSharing.py 65
File-sharing protocol, 66
5.3.1 P2P Approach L. 66
5.3.2 Chunkssize 67
5.3.3 File-sharing algorithm 68
5.3.4 Random discard approach 70
5.3.5 Synchronization stopped or failed 70
Devices communication L. 72
5.4.1 Choice of the communication protocol 73
5.4.2 Trackerside L. 74
543 Peerside. Lo 76
5.4.4 Messages exchange L. 78

5.4.5 Message formato 80

5.5 Multi-threading architecture 81
Implementation choices 85
6.1 Data Structures L 85

6.1.1 Synchronization on access 88
6.2 Server reachability 0L 89
6.3 Previous session information L. 90
Main issues 93
7.1 NAT Traversal Problem 93
7.2 Synchronization problems 99
7.3 Path compatibility o000 102
74 Debuggingo 103
How to use myP2PSync 104
8.1 How to run a myP2PSync Tracker application 105
8.2 How to run a myP2PSync Client application 106
8.3 Usage constraints 107
Testing 109
9.1 Testing environment and tools 110
9.2 File-sharing protocol parameters optimization 112

9.2.1 MAX CHUNKS evaluation 112

9.2.2 COMPLETION RATE evaluation 114

9.3 Previous versions of the file-sharing protocol and their limita-
TIONS L 115
9.4 P2P vs CS performance 116
9.5 myP2PSync vs a similar product 118
9.6 Testing phaseresults 119
10 Conclusion and future improvements 120
List of figures 123
List of tables 124
Appendix 125
Bibliography 127
Acknowledgements 129

Abstract

Nowadays, anyone dealing with computer systems has to work with a wide
variety of different files, often large ones. It is therefore essential to have
effective tools for sharing them. Another important aspect is that of file
synchronization, i.e. making the same version of a file available on different
devices and updating it in case of local changes on a single device. These
changes must therefore also be reflected on all other devices.

This thesis project focuses on the development of a file synchronization sys-
tem called myP2PSync, based on a distributed approach to file transmission
in which different users share resources in order to synchronize files as quickly
as possible, using an algorithm inspired by the famous BitTorrent protocol.
It is well known that a Peer-to-Peer system is more effective than one with
a normal Client-Server approach when you have to transmit large files and
the number of users is significant. The researching area in which this work is
carried out is therefore those of computer networks due to the fact that the
system is a distributed system. In addition, the field of software engineering
is also strongly present, since the application is a software product.

The main feature that distinguishes myP2PSync from other similar systems
is the fact that it also makes available to the user the tracker application,
i.e. an application that works as a coordinator for all users. Thanks to it,
the user can install and run the system locally, without using devices such as
servers provided by third parties. This improves privacy and data security.
Users, once connected to a tracker, can access through an authentication
system based on access tokens to different synchronization groups registered
on that specific tracker. Within a group there may be several files subject to
synchronization. These files are retrieved by the user as soon as possible in
their latest version, if not already present locally. If a user modifies the file in
the local area and decides to share his version with other users in the group,
this file is updated as soon as possible on all other users’ machines. Users can
eventually add and remove files from a group using a privilege mechanism.

The following work starts with an introduction of the system that identifies
the characteristics and its points of strength. It is followed by a more theo-
retical part that describes technologies used as a basis for the work, with a
particular focus on existing systems for files synchronization, on the Peer-to-
Peer model and on the characteristics of the BitTorrent protocol. The third
chapter contains a formal description of the system, containing in particular
a list of functional and non-functional requirements that the final application
must meet. The following sections are much more related to the actual im-
plementation of the system, starting from some initial decisions such as the
technologies used for development and then going to describe the code. This
description is not exhaustive but tends to focus on the architectural choices
and some key features, including for example the file-sharing algorithm. In
addition, there is a chapter describing the main difficulties encountered dur-
ing development, such as the well known problem of NAT traversal. Then
there is a part related to the functioning of myP2PSync, a sort of guide to
its use. Finally, there is a chapter about the testing of the application, where
some choices about the values of the parameters of the file-sharing algorithm
are motivated. In this section there is also a description of other file-sharing
algorithms previously implemented, then discarded in favor of the latest ver-
sion of the algorithm that provides better performance. The testing chapter
is followed by the conclusive section in which some possible improvements
are listed.

In its current state, the system is fully working and stable. All functional
and not functional requirements have been met. The performances are satis-
factory, even if compared to those of pre-existing applications that are much
older and more consolidated. However, the system can certainly be improved,
both in the number of features available and in the performance of the file
transmission.

The system is distributed as open source and can be found at the following
URL:

https://github.com/flcasciaro/myP2PSync

https://github.com/flcasciaro/myP2PSync

Keywords

The following is a list of keywords, with associated explanations, that will
often be used from now on:

e Peer: every user of the system.

e Synchronization group: is a group of users and it’s associated with a
set of shared files.

e Tracker: is the device that manages groups status and acts as coordi-
nator for peers.

e myP2PSync client: is the graphic application that users can use to
manage their files and synchronization groups.

e Join operation: when the user access a group for the first time by
entering the right token.

e Restore operation: when a user already belongs to the group but
switches from the inactive to the active state.

e Leave operation: when the user decides to leave a certain synchroniza-
tion group and no longer wants to synchronize group files.

e Disconnect operation: when the user decides to switch from the active
to the unactive state in a group and no longer wants to synchronize
group files.

e Start operation: when the user launches the application client and
starts using it.

e Exit operation: when the user closes the client and is disconnected from
all active groups.

e Peer status: a peer can be ACTIVE or UNACTIVE in a joined group.

Peer role: a peer can be MASTER, RW or RO in a group.

Group status for a peer: can be ACTIVE (group joined and the peer
is currently active), RESTORABLE (group joined but the peer is cur-
rently unactive) or OTHER (peer doesn’t belong to the group, i.e. not
joined group).

Synchronization of a file: a user with sufficient privileges synchronizes
his local version of a file or directories with that of the other peers
members of his own group. If the user’s version is more recent than
that of the other peers, the latter will get its version by mean of a
download operation. Conversely, if his version is older, he will get the
new version, always by performing a download.

Add file operation: a user with sufficient privileges adds a file to the
synchronization group. All the other peers in the group are notified
and they can start a synchronization for that file.

Remove file operation: a user with sufficient privileges removes a file
from the synchronization group. All the other peers in the group are
notified and they can also removed the file.

Update file operation: a user with sufficient privileges update the ver-
sion of a file in the synchronization group. All the other peers in the
group are notified and they can start a synchronization for that file.

Chunk: is a piece of a file with a fixed size. A file can be composed by
several chunks.

Merge operation: is the process of rebuilding a file from its downloaded
chunks.

Seeder: it’s a peer who has a complete copy a file, for example is the
peer that has added a file to the group or has updated it with a new
version.

Chapter 1

Introduction

This chapter contains the introduction to the project, outlining the objective,
the main characteristics and the reasons behind the work done. This is
described in the following paragraphs:

e 1.1 Project introduction: myP2PSync
e 1.2 Why an user should use myP2PSync

e 1.3 Terms of use

1.1 Project introduction: myP2PSync

The aim of the myP2PSync project is to develop a local system able to
provide fast, reliable and secure files synchronization. It keeps updated and
equal copies of any kinds of files between different devices belonging to the
same synchronization group. The update operation is not real-time, but
just when the user decides to synchronize his local version with all the other
devices. The system is therefore oriented to all users who want to easily create
backup copies of files or simply use the same files on different devices. Also
in the company field the application can be useful, allowing to synchronize
files used by employees for example. In addition, the system can also be

10

Chapter 1. Introduction

used for simple file sharing between different users. The end user benefits
from the functionality offered by the system through a client application
with a graphical interface, simple and easy to use. Groups are registered and
managed by a server application, which is executed locally, i.e. it is not a
global server used by all the myP2PSync users. So a user who wants to use
myP2PSync must know the location of a server, in terms of IP address and
port number. Access to a particular group is a function of a key that must
be possessed. An user can belong to different groups, covering different roles,
at the same time. The role of an user in a subscribed group can be:

e Master: it’s usually the creator of the group and main maintainer. It
has access to information like the list of peers of the group and it can
modify the role of other peers, also electing another peer as Master. It
can add, remove and update files in the group.

e Reader&Writer: users that can manage files in the group like the mas-
ter, but they don’t have privileges regarding the other peers.

e ReadOnly: users that cannot manage files in the group. They can only
receive files that belong to a group, without the possibilities of adding,
removing or updating files.

The role of a device is determined by the access token used during the group
joining operation. Indeed, during the creation phase the user can specify two
different tokens, one used to access the group as RW user and the other one
for RO users.

File-sharing is performed using a Peer-to-Peer protocol inspired by the Bit-
Torrent protocol. This allows the users network to decentralize traffic, avoid-
ing the bottleneck effect on one or more central servers. In addition, a P2P
protocol is much more stable and efficient as the number of users sharing the
same file increases respect to a standard Client-Server approach. All traffic,
both between devices and between server and single device, is transmitted in
an encrypted and secure way. The system is cross-platform, so it can be used
on Windows, macOS and Linux, but it is not available on mobile devices at
the moment.

11

Chapter 1. Introduction

1.2 Why an user should use myP2PSync

The main problem with existing file synchronization systems is that they
use a central server to manage users, groups and their files. Despite there
are already systems that work on P2P networks to synchronize files, they
still have central servers managed by the company or community used to
run the application. This leads to a decrease in user privacy. That’s why
myP2PSync provides the end user with the server application as well as
the client application, allowing him to be completely sure that only users
or devices of his choice and who are aware of the presence of this server can
access it. As there is no central server managed by a third party, myP2PSync
requires a minimum of additional configuration, but all trivially executable
by an intermediate user. However, once the initial configuration is done,
using myP2PSync is simple and straightforward. One of the strengths of
myP2PSync is the simplicity with which a device can join a synchronization
group. All this is done by means of access tokens i.e. passwords, which also
distinguish the role of the user. So a device just needs to know the server
IP address and the group token. In other similar systems, access is managed
by adding devices individually via their TP address or via a devicelD from a
master account. The whole system is completely open-source and free, unlike
many similar systems that require subscriptions or one-off payments in order
to be exploited in their entirety of features, even based on the maximum
capacity in terms of size of the synchronized files.

1.3 Terms of use

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version. This program is distributed in the hope that it will be useful, but
without any warranty; without even the implied warranty of merchantability
or fitness for a particular purpose. See the GNU General Public License for
more details.

12

Chapter 2

State of the art

This chapter describes the main technologies used nowadays for the distri-
bution of files, with a particular interest in the field of distributed solutions.
It is divided into the following paragraphs:

e 2.1 File synchronization system
e 2.2 Distributed application models

e 2.3 BitTorrent

2.1 File synchronization system

A file synchronization system is an application that can keep equal copies of a
set of files on different devices. This means that any change to a synchronized
file on a single device must also be reported on all other devices that own
that file. Modifying a file also means removing the file itself, or renaming it.
A strict definition of file synchronization can be as follows [1]:

“File synchronization is a process of ensuring that files in two or more
locations are updated via certain rules.”

13

Chapter 2. State of the art

These systems are mainly used for [2]:

e backups - making redundant copies of files so that they can be recovered
in case of errors and deletions. For example, a user who wants to keep a
backup copy of important files on a second machine that he may rarely
use and is therefore more stable;

e data portability between different devices belonging to the same user
or company. For example, a user who wants to access a certain set
of files from both his laptop and his mobile device or a company that
needs to quickly share changes to a certain file with all or part of its
employees.

If we only consider the objective of backing up a set of files, we can talk about
mirroring. Mirroring, also called one-way file synchronization, is the process
of copying a set of files to single or multiple destination devices. Any changes
to these files on one of the destinations do not affect all other devices. If we
talk more generally about synchronization of files and data portability, we
refer to two-way synchronization, where the changes made by a single device
propagate to all other devices that have a copy of the file.

Nowadays, there are two approaches mainly used to achieve the files synchro-
nization goal:

e file hosting and cloud storage systems, such as Google Drive and Drop-
Box. They allow the user to store their files on a server device managed
by a third party, usually the company that offers the service. Users do
not use memory on their devices and can access their files at any time
from any device, usually via a user identification mechanism. This ap-
proach is clearly based on a client-server model, thus suffering from all
the advantages and disadvantages typical of this architecture. More-
over, being the storage space made available by the service provider,
it is usually limited and subject to payment. Such payment can be
in function of the space actually used or according to the models of
subscription to the service.

14

Chapter 2. State of the art

e files synchronization systems, such as Resilio Sync, SyncThing e GoodSync.

These systems, as well as myP2PSync, are based on sharing files di-
rectly between the devices concerned, while still using public server
equipment for device registering. The method of file sharing used can
be either client-server, where a device requires an entire file to another
device, or peer-to-peer where files are shared thanks to the cooperation
of all active nodes.

The rest of the paragraph will focus only on the latters, because the file
hosting services are far from the goal of the project.

As mentioned above, some synchronization systems work using a client-server
model. The devices are organized according to a star topology in which the
central node works as a "hub" and all other devices as "spokes". The hub
node is responsible for transmitting the entire file to all other connected
devices. Other systems instead exploit a decentralized network called Peer-
to-Peer network in which generally all devices play the same role and file
sharing is carried out in a more equal way from the point of view of resources.
The next paragraph will focus mainly on the differences between these two
approaches, detailing in particular the P2P model, being the one used by
myP2PSync.

Some features and functionality generally provided by a file sync system are
as follows:

e encrypted file transmission, especially in the case of Internet connec-
tions, to increase synchronizations security;

e compression techniques used before data transmission, especially useful
in the client-server model where entire files are sent and therefore the
time required for the operation can be considerably long;

e ability to recognize any changes in a file, so that it can only be syn-
chronized if necessary. Some applications are able to synchronize by
sending only the modified parts of a file, using an approach similar to
the one used by rsync, an UNIX file synchronization utility.

15

Chapter 2. State of the art

Some synchronization systems also offer the possibility to synchronize files
at real-time, i.e. as soon as a change is detected it is propagated to other
devices. Other systems require a manual request from the user.

2.2 Distributed application models

This paragraph focuses on the description of the two network models most
used for the design of distributed applications, highlighting their advantages
and disadvantages. Particular attention is given to the Peer-to-Peer model
being the one used in myP2PSync.

2.2.1 Client-Server model: characteristics and drawbacks

Since the birth of the Internet, the Client-Server architecture, also called
Server-based, has been the most widely used solution within computer net-
works to provide services across the network [3]. Tt is the basis of the op-
erating principle of the World Wide Web and most web applications. It is
also used for file-sharing, for example by the File Transfer Protocol i.e. F'TP.
This solution is characterized by a distributed model but very unbalanced in
terms of resources and traffic. In fact, there is a strong distinction between
client machines, which require a service, and server machines, which instead
must offer a service in response to a request. The latter generally have to
serve a large number of requests, even at the same time, so they have to be
designed to support a high workload. They must have an adequate amount
of both computational and network resources. Devices that act as clients,
usually PCs, laptops and mobile devices, can have minimal resources.

The main advantages of a Client-Server approach are the followings.

e Centralization of control - access to resources and data is centralized,
i.e. it is managed exclusively by the server. This makes it easier to
guarantee integrity and consistency properties, especially through au-
thentication and synchronization mechanisms. It is also easier to avoid
damages or corruptions of data.

16

Chapter 2. State of the art

e Easy maintenance - this property is known as encapsulation. Client and
server machines are separate entities with different roles and respon-
sibilities. This makes it easier to make operations such as server-side
changes, or even moving servers, without affecting clients.

e Well-known model. This network architecture has been in use for
decades, so it is well designed and all its major problems have been
solved. In addition, developers have more experience in developing CS
applications.

Instead, these are the main disadvantages.

e The main problem of this paradigm is traffic congestion. In fact the
traffic results really unbalanced, the servers tend to work n times more
than a client, in a situation in which n clients use simultaneously the
service. When the number of requests is higher than the maximum
allowed the service can even be unavailable.

e The server can be considered as a weak point of the system. In the event
that it does not work properly, for example as a result of an electrical
problem or a computer attack like Denial of Service attack, all clients
can not take advantage of the services offered. The server is in fact
also called single point of failure of the system. A possible solution
is to replicate the server in order to be able to switch to another one
if the primary server is not working properly. However, this is a very
expensive solution and is generally used only for critical applications,
when you can not afford the absence of service e.g. healthy related
application.

e The software and hardware of a server are usually very important to
enable it to work properly in any incoming traffic situation. A regular
computer may not be able to serve a high number of customers. Usually
we need specific software and hardware on the server side in order to
perform correctly all the work . Of course, this will increase the cost
of the system.

If we apply this paradigm to our context of a system for files synchroniza-
tion we can easily see the repercussions of advantages and disadvantages of

17

Chapter 2. State of the art

the model on the system. First of all, the system should have an always-
connected node working as a server /hub. This node should also be equipped
with considerable power and network capacity in order to manage the propa-
gation of files to all other nodes in a fast and efficient way. In case of central
node disconnection, a protocol should be used for the election of another
device and for the notification of the decision to the other machines. The
strength of the model lies in its simplicity. The central node can be consid-
ered as a coordinator, it deals with all possible situations such as the arrival
of different changes from different files. The synchronization protocol would
be much simpler.

2.2.2 Peer-to-Peer networks: characteristics

Peer-to-Peer networks, often abbreviated as P2P, have been designed as a
solution to the main problems of the Client-Server architecture, namely the
need for a node with access to a large number of resources and the possibility
of no service in the event of failure of the central node [4]. Peer-to-Peer
networks are distributed and decentralized networks. There is no more a
distinction between client and server and all the nodes acts in the same way.
Each node is called “peer” and can be both client and server of other peers
at the same time. The nodes are called peer because are equally privileged,
in other words they have the same behaviour and they act in the same way
|5]. That is the general concept and it is called pure P2P. That are other
types of P2P networks that differs in some way from this definition. Peers
make part of their resources, such as their network bandwidth, disk storage
or computational capacity, available to all other nodes on the same network.
In pure P2P networks there aren’t servers or privileged nodes that play a
different role from that of all other peers. Peers are both suppliers and
consumers of resources. The following figure shows the different organizations
of device in a Client-Server network and in a P2P network.

18

Chapter 2. State of the art

Client-Server Peer-to-Peer
- . - .
\ / - /_ AN
- -
/ \ AN /
- . m—

Figure 2.1: Comparison of Client Server and Peer-to-Peer model architectures.

As it is mentioned above in pure P2P networks there is no central node
with which all other devices communicate. Instead, connections are made
directly between the various members of the network. The P2P networks
cornerstone is that workload and tasks are divided among peers. This usually
avoid congestion on just a part of the network, like in the C/S model where
the server can be a congestion point. In P2P networks each node can start
and conclude a transaction that involves other nodes. The P2P networks are
generally accessed and exploited through specific software applications e.g.
eMule, uTorrent, Azureus.

Peers can have different local configuration in terms of bandwidth, memory
available and processing power. Each node in the network serves a certain
number of peers, with respect to the own bandwidth. In other words, the
more bandwidth a node have, the bigger the number of peers that can serve.
In an ideal peer-to-peer network, an algorithm in the communications proto-
col balances loads among peers, and even nodes with modest resources can
help. Even peers who do not have a high amount of resources can participate
in a P2P network, as their lacks can be balanced by other peers. Since peer
are dynamic entities, because their availability and load capacity change over
time, the protocol should also be able to dynamically redirect requests. It’s
possible to define P2P networks as overlay networks builded on top of the
physical network and independent from it. Communication is still over the

19

Chapter 2. State of the art

underlying TCP /TP or more rarely over UDP, but the routing mechanism and
the peer discovery process are handled at the Application layer with respect
to the overlay network, not to the physical network. The peer addressing
is one of the most problematic aspect to solve, because peers are dynamic.
They come and go, often changing IP address.

2.2.3 Peer-to-Peer networks: classification

There are different types of P2P networks, distinguished by the following
criteria:

e the organization of the peers, that is how they are connected or how
the discovery of the other nodes happens;

e how resources are allocated and searched.

The two categories into which we can divide P2P networks are structured
and unstructured.

All those P2P networks that don’t use any algorithm for the organization
of peers in the network are defined as unstructured. Moreover, there is no
mechanism for optimizing the network itself. There are three subtypes of
this category:

e Pure P2P networks - is the classic peer-to-peer network, which respects
all the characteristics described in the previous paragraph. The nodes
establish the connections randomly, without any precise scheme. This
allows the solution to be extremely scalable and easy to manage. The
main disadvantage of this typology, deriving from the absence of a
scheme and therefore from the lack of information about the totality
of the peers, is the difficulty in finding the nodes and their resources.
Requests must be flooded along the network until they reach the re-
cipient, if present. This operation is extremely expensive in terms of
time and load on the network. This model is used by the Gnutella file
sharing system.

20

Chapter 2. State of the art

e Centralized P2P networks - in the networks that implement this model
there are central nodes that contain information about the peers and
their resources. This information makes peer discovery more efficient
and allows a certain peer to find the desired resource quickly. The cen-
tral node works in a similar way to a server but with the big difference
that it does not directly manage resources, such as files in a file sharing
system, so there is no problem of traffic congestion. The exchange of
resources takes place directly between peers. This model is the one
used by myP2PSync, as well as by the famous Napster, one of the first
P2P applications.

e Hybrid P2P networks - this last sub-category is similar to the previous
one but with the difference that the central nodes are not fixed but
dynamic. They are periodically elected from among all the nodes and
for a certain amount of time assume the role of super-node, being able to
provide information about the peers and their resources. This method
is used by the Kazaa file-sharing system.

All the P2P networks that instead use an algorithm for the organization and
optimization of the network are called structured. They are supplied with
appropriate protocols that allow an efficient discovery of peers and resources.
The only disadvantage is the greater complexity of network management.
The most used solutions are based on the use of a distributed data structure
called Distributed Hash Table or DHT, which contains information about
the peers and their resources. In other words, this structure is a distributed
database and each peer has only a portion of the information. The search
key inside the database is usually the string obtained by applying the SHA1
hash function to the name of the resource. The value associated with the key
instead addresses the peers that manage that resource. Each peer therefore
stores a set of key-value pairs. When a new resource is added to the network,
a new entry is added to the DHT. This solution is very scalable because the
task of maintaining the correct state of the database is distributed among the
various nodes. The various entries are distributed according to an identifier
assigned to each peer. Usually this identifier is the value obtained by applying
the SHA1 hash function to the IP address of the peer. The resource key
and the peer identifier therefore have the same format, usually a 128-bit
string. The allocation method consists in assigning an entry to the peer with
the same identifier as the key value or to the one with the smallest greater

21

Chapter 2. State of the art

identifier. For example, if we consider a dummy case with small integer values
as results of the hash function:

e peerA has an ID equal to 3;
e peerB has an ID equal to 7;

e peerC has an ID equal to 10.

An entry with key equal to 5 will be assigned to peerB, as well as an entry
with key equal to 7. Finally an entry with key equal to 11 will be assigned
to peerA, being the DHT a cyclic structure.

The different peers must be connected in a consistent way with respect to the
subdivision of the DHT. A widely used linking structure is the Chord, also
called Circular DHT, where the peers are connected in a circular structure
|6]. Each node is connected only to its predecessor and its successor and it
only knows their address. Traversing the structure of the Chord the value of
the identifiers will increase. To find a certain resource it is then calculated
the hash of the name that corresponds to the entry’s key and then the Chord
is traversed until the peer that has the entry is reached . When a peer joins
the network or leaves it, its entries are reassigned to neighboring peers and
the protocol takes care of properly modifying the Chord links. The main
problem of this structure is the inefficiency in retrieving the entry, in the
worst case in fact all the nodes have to be crossed. The efficiency can be
easily improved by inserting additional connections from a certain node to
some more far nodes. These links are called shortcuts and make the search
for a certain resource logarithmically complex in the number of nodes. The
following figure represents a simple DHT with a chord structure improved
by the use of some shortcuts. PeerID and entry’s key are represented by a
small integer value instead of the 128-bit string, just for sake of simplicity.

22

Chapter 2. State of the art

Key' 29

Key 18

Figure 2.2: Example of DHT chord structure with use of shortcuts.

2.2.4 Peer-to-Peer networks: main applications and some
drawbacks

The main context in which P2P networks are applied is file-sharing. In this
case the resources represent the files that can be shared by the various users.
The strength of P2P networks in the case of file sharing systems is that
they are not negatively affected by a high number of users who want to get
the same file, indeed in this situation sharing is even more efficient. In the
case of the CS model, on the other hand, file sharing is strongly influenced
in a negative way as the number of users requesting the file at the same
time increases. However, file-sharing applications are not the only ones to
benefit from the decentralized approach. Numerous streaming applications
e.g. Spotify and Voice over IP applications e.g. Skype make use of this
solution. In recent years, also data security technologies such as blockchains
have been designed with the Peer-to-Peer model in mind.

However, decentralised networks also have disadvantages [7].

23

Chapter 2. State of the art

e Some malicious peers may falsify or corrupt resources or information
about network routing. The lack of a centralized access mechanism
leads to reduced system reliability.

e P2P network nodes are vulnerable because they act both as clients and
servers, but generally do not have the security mechanisms that a real
server has. For example, they can be the target of a DDoS attack aimed
at shutting down the node.

e P2P traffic is generally not anonymous and safe. A possible solution
can be Anonymous P2P: some clients like Vuze or FreeNet allow to
run a P2P application on anonymous overlay network like Tor or I2P.
The main idea is to reroute traffic through volunteer routers, using
a multilayer cryptography. Paths are not stable, they are established
just at the beginning of the session and they will be changed after
a certain amount of time. The receiver will be not aware about the
sender IP location or identity. So, peers don’t know exactly with which
other users they are talking, because they are using just pseudo-identity.
Anonymous P2P is a controversial solution because it allows the sharing
of illegal resources.

2.3 BitTorrent

BitTorrent is probably the most popular application of Peer-to-Peer net-
works, and the one that generates the most P2P traffic nowadays. It is
a file-sharing application, the most used and widespread, and accounts for
more than half of all file sharing traffic on the Internet. It is optimized espe-
cially for sharing large files, such as multimedia content. This peculiarity has
often made it a victim of criticisms, motivated by the fact that BitTorrent is
often the method of communication used by the computer pirates. The core
protocol was designed by Bram Cohen in 2002 and the first BitTorrent client
was written in Python. Nowadays there are hundreds of different clients,
often available for every operating system.

24

Chapter 2. State of the art

2.3.1 BitTorrent Protocol: introduction

The protocol at the heart of BitTorrent is based on a centralized unstructured
P2P network, where the central nodes are called trackers. Nowadays the
protocol has also been redesigned to work with a DHT structure, but the
first version is the most widely used and popular. It is also the one that
has inspired myP2PSync, so the rest of the discussion will focus only on this
version. A shared file is divided into smaller pieces of fixed size, usually 1
MByte, called chunks. The various users collaborate by exchanging chunks
and the download is completed when all the chunks are retrieved and merged.
The set of peers that collaborate to share a single file is called torrent. Peers
in a torrent can be classified as:

e seeds or seeders - all the nodes that have completely downloaded the
file and now are only working on the upload of chunks. The first seed
of a torrent is the content releaser and it needs to stay in the torrent
until at least a whole copy of the resource has been sent.

e peers - nodes which have not completed the download and are working
both as client and server.

e leechers - all the peers with a bad share ratio. In other words, all
the users that download more than upload, for example leaving the
torrent as soon as the download is completed, not acting as seeder. This
behaviour is strongly disapproved from the community because it can
lead to the death of a torrent and usually the BitTorrent protocol tries
to penalize this behavior, for example by slowing down the download
process.

2.3.2 BitTorrent Protocol: .torrent metafile

The torrent access for a specific content is performed through a .torrent file,
which is usually obtained using special online search engines. The .torrent file
is a small file, usually some KBytes. It contains only information about the
resource and the access to the sharing of the same, it is therefore a metafile

25

Chapter 2. State of the art

and contains metadata. This information is encoded using Bencode coding,
similar to XML. The main information contained are the following [8]:

e announce i.e. tracker location - the IP address and port of the tracker
server that manages the resource. It can also be a list of addresses in
the case of multiple tracker servers.

e info dictionary - a Bencode dictionary with information about the con-
tent:

— the name of the resource;
chunks size, usually 1 MByte or 256 KByte;

— number of chunks in which the file has been divided;

hash of every single chunk - allows to perform an integrity check
operation after a chunk reception.

If the resource corresponds to a single file, there is also a field containing
the file size. Otherwise, if the content is a directory the info dictionary
contains information about every single file, like its size and its path in the
directory. Other information contained are a timestamp representing the
torrent generation time, some comments and the description of the source.

2.3.3 BitTorrent Protocol: tracker

A torrent tracker is a server that manages the list of peers in a torrent. It
is periodically called by a peer to find out which peers are active in order to
to communicate with for the file sharing. The list returned by the tracker
can take into account certain policies such as the limiting of leechers. A
peer with a bad sharing ratio may therefore not be listed in the reply and
be partially excluded from sharing. To access a torrent, a peer must then
make a request to the tracker, or to the trackers if there are more than
one and if you want a larger list of peers. Any further requests periodically
made by the peer are also used by the tracker to understand that the peer is
still active. Communication between peers and trackers is done through the
HTTP protocol. A peer sends a GET message specifying [8]:

26

Chapter 2. State of the art

info hash - a string that identifies the torrent. It is the SHA1 hash
function applied on the info dictionary found in .torrent file;

peer ID - it identifies the peer on the tracker;

port number - the port on which the peers is reachable from other
peers;

uploaded bytes - represents the number of bytes sent to other peers
since the sharing beginning;

downloaded bytes - represents the number of bytes received from other
peers since the sharing beginning

left bytes - the number of remaining bytes in order to complete the
download of the file;

compact - is a Boolean value that will be used by the tracker to know
how to encode the list in the response;

event - represents the download status. Three possible values: “started”
at the beginning of the session in order to ask the tracker to add the
peer to its list, “stopped” in order to remove the peer from the list,
“completed” when the download is done and the peer has become a
seed.

The tracker replies with an HTTP message containing a Bencode dictionary
with the following information [8]:

failure reason (if any) - it’s an error message e.g. torrent not present;
tracker id - it is the identificator of the tracker;

complete - number of seeders connected;

incomplete: number of peers connected;

list of active peers and seeders selected - the format of this list is func-
tion of the compact boolean value sent by the peer. If compact is equal
to true, the list is just a string, otherwise is a dictionary. In both case

27

Chapter 2. State of the art

a maximum of 50 peers is returned. For each peer is indicated the TP
address, the port number and the peer ID. The latter is present just in
the non compact case.

The tracker servers can be public, i.e. accessible by anyone, or private, so
the peers must be registered or invited.

2.3.4 BitTorrent Protocol: chunks exchange

The exchange of chunks takes place between the various active peers and
seeds in a torrent. The first ones work both in download and in upload, while
the second ones altruistically only in upload. Once a peer has subscribed to
the torrent through the tracker, it retrieves the list of active peers. This list
is updated periodically because peers are dynamic entities and therefore the
list changes over time. Until the file download is completed, the peer asks
the other peers for the list of the chunks they have and, considering the lists
received, it starts to ask for the chunks. The requests are made according
to the Rarest-first approach, i.e. giving priority to the reception of the less
spreaded chunks, in order to facilitate their diffusion in the torrent as soon
as possible [9]. With regard to uploading, a peer does not serve all the other
peers at the same time, but only responds to a limited number of peers. This
approach is called choking. The selected and unchoked peers are generally 5
[10]:

e 4 are chosen according to the speed at which they are sending chunks,
ranking and selecting the fastest ones. This approach severely limits the
download speed for any leechers and is called tit-for-tat. The ranking
is re-evaluated every 10 seconds.

e 1 peer is randomly selected from those in a state of choking, with an
"optimistically unchoke". This technique is used to unlock any peers
who can not be prolific in sending chunks just because they do not have
the opportunity.

Each time a chunk is received, an integrity check is performed on it, cal-
culating a hash value and comparing it with the one found in the .torrent

28

Chapter 2. State of the art

file. If the check is successful, the chunks can be added to the list of those
already collected and can be sent back to any other peers. In addition, the
chunk is added to the partial file that the peer is receiving and rebuilding.
When the download is complete the peer can remain in the torrent as seeders
or abandon it. In some BitTorrent clients it is possible to enable an option
called “local peers”. This allows to exchange chunks only with peers on the
same Local Area Network in order to make transmission faster.

Finally, some torrent allows the web seed option, that is a technique for down-
loading file chunks directly from an HT'TP server in addition to the torrent
peers. Webseeds are used to guarantee the availability of the download, even
if no other P2P users are sharing it. This option could be useful in case of
lack of enough seeders or good peers and guarantee a good velocity in the
download of the resource. In fact, when the number of seeders is low a peer
can use the web seeding and as soon as possible it can switch to the standard
peers chunks exchanging.

29

Chapter 3

Project planning

This chapter contains all the considerations made before the system develop-
ment phase, at the design level. Possible users of the service are taken into
consideration, its functions and characteristics are strictly defined and the
various phases of development are detailed. Furthermore, it contains also
some considerations made at the end of the work, regarding the real time
scheduling of the different steps of the work. The chapter is divided into the
following paragraphs:

e 3.1 Overall view and stakeholders

3.2 Graphical modelization of the system

3.3 Requirements analysis

3.4 System functioning

3.5 Scheduling of the project development phases

3.1 Overall view and stakeholders

myP2PSync is a distributed file synchronization system and it has been con-
ceived and designed with two application contexts in mind:

30

Chapter 3. Project planning

e the familiar or personal environment, where users want to have their
files available on all their devices;

e the company or business environment, where can be useful to have a
system for synchronization of files among workers machines.

The application is useful and efficient in contexts where the source of syn-
chronization is unique or almost but the number of devices benefiting from
this file is high. This is due to synchronization timing problems on which the
description will focus in next chapters. In other words, the system works well
when there are few users who edit files in synchronization, but many users
who use files in read-only mode. Moreover, since the file-sharing protocol is
based on a P2P technique, the various machines in synchronization must be
active enough over time to ensure good files availabilities. It’s also designed
for those who don’t want to take advantage of traditional synchronization
clouds, where their data is in the hands of third-party companies. In fact,
this is a local system, where all resources are made available by the user.
No external servers are used, the whole system is in the hands of those who
install and use it.

Taking into account this we can think of a user who wants to synchronize
his files on a large number of personal devices or we can find various applica-
tions in the business field. For example the synchronization of files between
different locations of the same company or the distribution of updates or
patches for a software used by different machines. We can also look to the
future and think about the world of ToT: the concept behind this application
could be used and extended to easily share information between sensors or
intelligent objects, such as sharing traffic information between different cars,
always taking advantage of the strengths of Peer-to-Peer technologies.

The system requires a minimal initial configuration, so it’s designed for en-
vironments where there’s someone who meets some requirements. Those
requirements are:

e basic knowledge of network configuration: TP addresses and ports;

e installation of Python modules;

e minimum knowledge of the command line environment.

31

Chapter 3. Project planning

3.2 Graphical modelization of the system

Tracker
server

PN
R0
V777780

Synchronization
Cloud

PeerB

e

e\

PeerA

Figure 3.1: General architecture of the myP2PSync system.

In the figure above you can see a very abstract model of the system. The
different peers, which use a client of the application are "connected to a
synchronization cloud". In other words, peers belonging to the same group
collaborate in the synchronization by exchanging messages, information and
pieces of files. However, everything is coordinated by a small server appli-

32

Chapter 3. Project planning

cation that plays the role of tracker and with which peers communicate in
order to manage their personal status and to obtain information, for example
about the other active peers. The server manages the various synchronization
groups and indexes the files of each group.

The following figures are examples of how a peer communicates with the
tracker server.

1) JOIN group X232 with token X000

L

Y

=

2 2) OK, group joined

Peer Server

Figure 3.2: Messages exchanged during the join group operation.

1) Send me list of active peers in group XX

L

&

=

- 2] Ok, this is the list

Peer Server

Figure 3.3: Messages exchanged in order to retrieve the list of peers of a group.

The following two figures show how file-sharing takes place between different
peers in the same group.

Q 1) Which parts of the file X do you have? ‘ 1) Which parts of the file X do you have?

= 2) | have parts 2, 3 =i 2) | have parts 1,2, 4
Peerg PeerA PeerC

Figure 3.4: Messages exchanged in order to retrieve the chunks list from another
peer for a certain file.

33

Chapter 3. Project planning

‘ . 1) Send me parts 1, 4 ‘ 1) Send me parts 2, 3 o
< L > N 3 i.‘ '

= 2) Ok I'm sending parts 1, 4 - = N 2) Ok_ I'm sending parts 2, 2

PeerB PeerA PeerC

Figure 3.5: Messages exchanged in order to retrieve file chunks.

File operations, such as adding, removing, or having a new version, generate
a message exchange between both the peer that performs the action on the
file and the server and between the peer and all other peers active in the
same group at that time.

3.3 Requirements analysis

The system must be able to meet the following functional requirements:

e it must allow the user to create its own synchronization group;

e it must allow the user to join an existing synchronization group;

e it must allow the user to restore a synchronization group;

e it must allow the user to leave a synchronization group;

e it must allow the user to disconnect from a synchronization group;

e it must allow the user to manage their own synchronization group by
managing user privileges;

e it must allow the user to also use several synchronization groups at the
same time;

e it must allow the user to add files or directories in a certain group;
e it must allow the user to remove files or directories from a certain group;

e it must allow the user to synchronize files with other peers;

34

Chapter 3. Project planning

e it must stop the synchronization of a file if the file is removed from the
group;

e it must stop the synchronization of a file if a new version of the file is
present;

e it must ensure file transmission based on an efficient and reliable Peer-
to-Peer protocol,;

e it must ensure a correct reconstruction of files after a synchronization
download process;

e it must allow users to resume any synchronization of files left in sus-
pense in a previous session if the version is still valid;

e it must allow users to know where the synchronized file are stored in
the machine;

e it must provide encrypted and secure transmission of files and messages.

In addition, the system must also meet the following non-functional require-
ments:

e it must be cross-platform and at least available for desktops and work-
stations (it’s a desktop application);

e files must be transferred at an appropriate speed, also in relation to
the quality and state of the network;

e the Graphical User Interface should be user-friendly and it must react
quickly to user actions;

e all the peers must be able to communicate, also peers behind NAT
devices;

e all the communications must be private.

It is important to note that when a user changes his local version of a file, the
changes are not redistributed to other peers in real-time. The file must be
saved and the user can decide to share its new version using the application.

35

Chapter 3. Project planning

3.4 System functioning

Here are listed and explained some significant functionalities and behaviours
of the myP2PSync system:

e User starts the myP2PSync client application:
1. the myP2PSync client reads from a configuration file how to reach
the tracker device in terms of IP address and port number;
2. if the reading is successful it tries to reach the device;

3. if the reading of the file is not successful or the device is no longer
reachable at those coordinates, the client asks the user to enter
the tuple representing the new IP address and port number of the
tracker.

e After the connection with the tracker has been established:
1. user is proposed to do the restoring of all the groups in which he

is already registered;

2. for each restored group the client automatically resumes any syn-
chronization left pending during the previous session. If a partial
synchronization is related to a file which it has an updated version,
the synchronization starts from scratch;

3. at this point the user is free to manage his own groups and files
until the closing of the application.

e When the user wants to synchronize with the other peers some files he
has modified locally. There are 3 possibilities:

1. can synchronize individual files;
2. can synchronize an entire directory of files;

3. can synchronize the entire collection of files in the group.

The application will recognize the files actually modified and synchro-
nize only those.

36

Chapter 3. Project planning

e When a client tries to obtain a new version of a file or a new file:

1. it obtains the list of group active peers from the tracker;

2. if there aren’t peers active it stops the synchronization and it will
try again later;

3. otherwise it starts the file-sharing process with other peers.

e When two users belonging to the same group work at the same time
on the same file:

1. peerA adds a file;

2. peerB automatically acquires the file after the synchronization
procedure;

3. at this point peerB modifies the file and synchronizes it;

4. peerA is resynchronized to the new version of the file. If he
had modified his local file without synchronizing it, these changes
would be lost.

e When the user leaves a group or disconnects from it:

1. the client alerts the tracker about the operation;

2. the client stops all synchronization processes related to files in
that group.

e When the user closes the client application:

1. communicates to the tracker his willingness to disconnect and can
no longer be contacted by other peers;

2. stops all active synchronizations;

3. saves his current synchronization status in order to continue in
the following session.

3.5 Scheduling of the project development phases

The application development was structured into the following steps:

37

Chapter 3. Project planning

1. definition of the problem to be solved and of the possible users;

2. definition of functional and non-functional requirements of the system:;
3. definition of the architecture of the system;

4. selection of tools to be used to develop it;

5. code writing phase;

6. testing phase.

The following is a Gantt diagram showing the actual timeline of the project,
which has been developed between February and July 2019.

2019 I Mar Apr May Jun Jul 2019

Definition of the project
1Feb- 28 Feb

Requirements analysis
14 Feb - 31 Mar

Architecture design
1 Mar - 31 Mar

Choice of programming tools
14 Mar - 31 Mar

Code writing .
Apr -
31Ju

Testing 10ul-31
Jul

Figure 3.6: Gantt chart representing the timeline of the project.

The first four steps were carried out in parallel, being closely related. The
same has been done for the last two phases, in fact the testing phase has
inevitably led to some changes in the previously written code, mainly for
reasons of optimization of the application. Moreover, in order to have quickly
a first minimal but working version of the application, a client version without
a graphical interface has been developed first. Subsequently, the GUI was
developed and added following a step-by-step integration with the existing
core functions.

38

Chapter 4

Implementation tools

This chapter contains a description of the main technologies and solutions
used in the development of myP2PSync, and the decision-making process
that led to the choice of certain tools and not others. The following para-
graphs are therefore:

e 4.1 Desktop application vs Web Application
e 4.2 Choice of the programming language

e 4.3 Choice of the framework for the GUI creation

Git is used as the version control system. Other implementation choices,
closer to solution analysis and belonging to an higher level of detail, are
treated in chapter 5 and 6.

4.1 Desktop application vs Web application

The first choice made during the implementation phase was between a Desk-
top application, i.e. an application that can be launched directly from the
operating system, and a Web application, which runs within a browser. We
opted for a desktop application because it is generally more performing and

39

Chapter 4. Implementation tools

independent from the quality of the network. Moreover, implementing a web
application would have been more difficult to achieve the distinctive feature
of myP2PSync, that is the use of a local server and not of a global one. It
was also a matter of personal taste, simply by seeing more appropriate a
desktop application for a file synchronization system.

4.2 Choice of the programming language

Nowadays there is a multitude of programming languages for the development
of Desktop applications. The languages most taken into account during the
decision-making phase have been:

e C++, a high-performance and very solid language, Object Oriented
version of the historical C. A must in programming. Unfortunately
not too suitable for the prototyping of applications because it is quite
complex, being among the high-level languages one of the most "low-
level";

e Java, another fundamental language. Strongly linked to the object
paradigm, with a strong typing, it is very solid and not prone to errors.
Despite being an interpreted language, it is still very performing thanks
to the optimizations in the execution phase, including the use of a Just
in Time Compiler.

e Python, the youngest of the three languages. It’s not a strongly typed
language, it’s one of the highest level languages of the whole spectrum.
It is interpreted but still guarantees excellent performance and is es-
pecially suitable for prototyping, i.e. the development of systems and
applications in the short term.

The final choice went to the Python language because in recent years its dif-
fusion is becoming more and more widespread. Being the language decidedly
high level, it allows complex operations even with a few lines of code. It
also has a wide variety of modules that give an excellent experience to the
developer. The fact that it is an interpreted language can be considered a

40

Chapter 4. Implementation tools

small disadvantage for performance, but being myP2PSync an application
that does not require excessive computational capacity to work well, the dif-
ference compared to a compiled language would have been minimal. The
integrated development environment used was the pro version of Pycharm,
which has an excellent debugger and a real-time code inspector.

4.3 Choice of the framework for the GUI cre-
ation

The last macro choice was about the framework or widget tools to use to write
the graphical interface code. Python has more than a dozen GUI creation
modules, but the focus has been on two solutions:

e Electron, which is a framework for creating desktop applications using
web technologies such as HTML, CSS and Javascript. Nowadays it is
the most used solution but it requires the knowledge of the Node.js
run-time routine.

e PyQt version 5, which is instead a Python binding of the famous Qt
framework. Tt’s probably the solution that gave life to most desktop
applications developed in Python. It is a free library if not used for
commercial purposes, as in the case of myP2PSync which is completely
open-source.

The final choice was PyQt5 because of the pervasive presence of documenta-
tion on the web. The documentation is still managed by Nokia and is really
complete. PyQt5 also provides other useful tools for signal management and
communication between threads. Electron has been discarded for the lack of
programming experience with Node.js.

41

Chapter 5

Solution analysis

This chapter contains a fairly in-depth analysis of the solution, going to
detail the architecture of the application, the various modules written, the
file-sharing protocol, how communications between devices take place and
the structure of the application at the thread level. The chapter is divided
into the following paragraphs:

5.1 Architecture of the system and main characteristics

5.2 Code analysis: structure and modules

5.3 File-sharing protocol

5.4 Devices communication

5.5 Multi-threading architecture

5.1 Architecture of the system and main char-
acteristics

The myP2PSync project is based on a distributed system essentially built
around two components:

42

Chapter 5. Solution analysis

e a client component, i.e. the application that is used by users to take
advantage of the functionality of the synchronization system. Every
user running a myP2PSync client application is considered a peer of
the system:;

e a tracker server component, which plays the role of coordinator and is
essential for the proper functioning of the entire system.

The following figure shows a general view about the architecture of the sys-
tem:

Server

Synchronization

Group X __....p 2 Synchronization

- ______Groqu

Figure 5.1: Overview of the myP2PSync system architecture.

The image shows five peers and the tracker server to which they are con-
nected. Peers A,B,C are connected to the synchronization group X, while
peers C,D,E are connected to the group Y. In the case in which all the peers
in the figure are connected, peerC can interact with all the other peers. The
system is coordinated by a tracker server that represents the central point
where peers can retrieve all the information on files and groups. It provides
useful information for the initial configuration of the individual peer and
works as a tracker to discover and find other active users in a certain group.

43

Chapter 5. Solution analysis

However, the system focuses on communication between peers, not only for
exchanging files, but also for information about their status. For example,
when a peer adds a file to a group, it notifies both the server and all other
peers active at that time of its action. The first one will register the action
allowing even offline peers to learn about it once online. The latter instead
will react real-time to the action, trying to get the file as soon as possible by
means of a download operation. Next paragraphs explain in more detail the
individual technological solutions used for the two different components and
how they communicate.

5.2 Code analysis: structure and modules

The system is built around two software applications: the first runs the
tracker server while the second runs the myP2PSync client of the individual
peers. Both are written entirely in Python3 and use JSON files to keep track
of information from previous sessions. They have only one module in common
which is the one that manages the networking functions, like join and leave
the network or send and receive data. An important difference between the
two applications is that the client has a graphical interface while the tracker
works on the command line. The following paragraphs contain a description
of the various modules that make up the system, starting from those on the
server side. However, the description will not be exhaustive, i.e. it will not
be detailed all the code line by line, or even function by function, but only
the salient and most interesting parts, trying to motivate why some solutions
have been adopted instead of others.

In the creation of the two parts mentioned above, consistent design choices
have been made, since the development has proceeded in parallel and incre-
mentally. In other words, the tracker was designed to work perfectly with
the client and vice versa. However, despite this desire to use coherent and
similar solutions for the two components, in some cases I have chosen to use
more specific approaches for reasons of efficiency and scalability, considering
that the way clients and servers work is very different. These differences are
especially relevant in the choice of data structures to use. No attempt was
made to reuse existing code, even for individual data structures. All deci-

44

Chapter 5. Solution analysis

sions were made in order to create an ad-hoc solution to the problem that
works well in terms of reliability and performance.

I would also like to make it clear that in the following paragraphs I will insert
some parts of the code to make the whole report less abstract and easier to
follow. This code is sometimes simplified or lacks some details that are not
essential. Other times it is pseudo-code to make it even simpler, without
extricating itself in useless syntactical difficulties. The original and working
code can be viewed on my personal GitHub at the following link:

https://github.com/flcasciaro/myP2PSync

5.2.1 Tracker modules: overview

The tracker server structure is quite simple and consists of only three mod-
ules:

e the myP2PSyncTracker module that implements the main features of a
multi-threaded server and it’s the script that must be runned in order
to have an active myP2PSync tracker;

e the reqHandlers module that contains the behavior of the tracker in
response to different requests that may come from a peer;

e the group module that models and manages the individual synchro-
nization groups.

In addition, the tracker server uses the networking module, also used by the
peers. Its content is detailed in section 5.4.

The following paragraphs contain a detailed description of the individual
modules and how and when they interact.

45

https://github.com/flcasciaro/myP2PSync

Chapter 5. Solution analysis

5.2.2 Tracker modules: myP2PSyncTracker.py

The myP2PSync tracker server simply waits for requests from peers and
uses a multi-threading approach to serve them. Its main task is to manage
synchronization groups, allowing operations such as joining or deleting from
a group. Its role in keeping track of the files in a group is also fundamental,
through special labels containing the main information such as filename, file
size and timestamp (the latter serves as an indicator of the file version).
Another function of the server is to keep track of the position of the peers
in terms of IP address and port number. Each peer is identified by an 1D,
which is obtained from the MAC address of the machine on which it works,
so it’s only dependent on the machine on which myP2PSync is running. This
identifier is used by the tracker server to recognize and distinguish the various
peers making requests. It then associates each peerID with the current IP
address and port number, which are dynamic as the peers can move to other
networks. These information are stored in a dictionary where the key is
the peerlD and the value is a dictionary containing informations like the IP
address and the port number where the peer is reachable.

Before the actual start of the tracker server, the application tries to retrieve
information about a previous session. In fact, every time the server applica-
tion is terminated, it saves the current status in JSON files before closing.
The server status is composed of all the information about the synchroniza-
tion groups, for example access tokens, peers registered to the single group
and managed files. The server then retrieves this information and allocates
and initializes the appropriate data structures. After that it starts effec-
tively to act like a server, listening on a well-known port i.e. 45154. From
that moment on, it waits for connection requests and it serves them, until it
is terminated by an interrupt signal such as CTRL+C.

Each time a connection request is made, the main thread generates another
thread that has as its unique purpose to serve all requests on that connection
and then terminate following a connection end message, i.e. "BYE". Threads
are configured in daemon mode and then end automatically, without the
need for the main thread to recover their termination status. By making
an analogy with C programming, they are placed in detach mode, and on
termination they automatically release all owned resources. Each message

46

Chapter 5. Solution analysis

sent by a peer to the server is preceded by the peerID and contains a word
that represents the type of request. It is followed by all the parameters that
are necessary to serve the request, for example during the JOIN operation the
request must specify the name of the group and the access token, encrypted
using the md5 hash algorithm. The thread that receives the request first
identifies the peer using its identifier and then, thanks to a construct switch,
activates the appropriate handler.

Information about groups is stored in a dictionary data structure, where the
key is the group name. Therefore, there cannot be homonymous groups on
the same server. The value instead represents all the information about the
group, such as files and peers. For more information please refer to paragraph
5.2.4.

5.2.3 'Tracker modules: reqHandlers.py

The reqHandler.py script is nothing more than a set of functions that are
called by the different threads to serve the requests. They are essentially
functions for group manipulation, both at the peer level and at the file level
operating on the server’s data structures, using mutex-based synchronization
mechanisms. It should be considered that being the tracker server multi-
threaded, some threads may generate inconsistency in the data structures as
a result of race conditions. For example, if two users were to log into the
same group at the same time, there could be a situation in the update of
the active peers counter where there is a single increment (41) instead of
a double increment (+2). In other words, there is the lost of an increment
due to a race condition generating inconsistency in the data. Of course,
these situations are extremely rare, but it is still important to manage them
carefully using the synchronization tools provided by the language. For the
complete list of requests and consequent actions of the tracker, please refer
to appendix A.

47

Chapter 5. Solution analysis

5.2.4 Tracker modules: group.py

This last module contains the structure of a group with all its information
and other accessory data structures useful for its manipulation. This script
defines three classes:

e Group: describes the single group, has as properties the name, the
number of total peers, the number of active peers, the number of files
managed by the group and finally the two authentication tokens, natu-
rally in an encrypted format. The methods offered by the Group class
concern the manipulation of peers and files in terms of addition or
removal or modification, or the retrieval of group information.

e PeerInGroup: describes the status of a single peer within a group
through its peerID, its role (Master, RW or RO) and its being active
or inactive.

e FileInGroup: describes a synchronized file within a single group using
the file name, its size in terms of bytes and its timestamp as properties.
This last parameter identifies the version of the file.

Each group keeps track of peers and files using dictionaries. In the first case
the key is the peerID while the value is a PeerInGroup type object. In the
second case the key is the file name while the value is a FileInGroup type
object.

5.2.5 Peer modules: overview

The code structure used by the individual peers is organized into the following
modules:

e myP2PSyncClient that generates and controls the graphical interface
of the client and is the script that users need to run in order to use the
application client;

48

Chapter 5. Solution analysis

e peerCore that contains all the code necessary to manage groups and
files, communicating with the tracker server. It also performs some
initialization functions;

e fileManagement that defines and manages the properties of synchro-
nized files;

e fileSystem that contains the data structure used to store information
about the files of the various groups;

e peerServer that allows the peer to work as a server in order to receive
messages from other peers;

e syncScheduler that manages the various synchronization processes;

e fileSharing that contains all the operations for a file synchronization,
from the protocol for files download to the reception and sending of
chunks.

In addition, some of these modules make use of the networking module, also
used by the server. Its content is detailed in section 5.4.

The following figure shows the organization of the various modules and their
interactions:

49

Chapter 5. Solution analysis

appGUl
User Interface
management
¥
networking peerCore fileSystem
« connections handling » session initialization > data structure
+ message transmission » dialog with tracker server for file organization
« file ransmission « groups and files management
A
/" Y
peerServer syncScheduler fileManagement
enables and manages —»| handles synchronization files properties and
server functionalites request and process manipulation
on the peer
Y
fileSharing

» download protocol
« downloadiupload chunks

Figure 5.2: Organization of the client application modules.

5.2.6 Peer modules: myP2PSyncClient.py

This module creates and manages the graphical user interface of the myP2PSync
client used by the user. Since the Ul is written using PyQt5, which is a bind-
ing for the Python language of the famous cross-platform Qt framework, it is
based on an events system. The code in the main of the myP2PSyncClient,
which is actually the script to interpret to run the myP2PSync client, is as
follows:

declare the GUI application
app = QApplication ([])

create the window object
window = myP2PSync ()

start the application
sys.exit (app.exec_())

20

Chapter 5. Solution analysis

It first creates the application object, i.e. the event handler and the window
object associated with it. Finally, it starts the main process of the applica-
tion.

When the window is initialized, the main structural parameters, such as
title, size, position and layout, are configured. All the various components
and widgets that will be contained in the window, such as labels, items list
and buttons, are also defined. Then the various widgets are placed in the
window, using various nested layouts and a splitter, which divides the window
into two sections. Immediately after initialization the user can see a screen

like this:

57 myP2PSync - m] X

GroupMame al Peel Status oubl ctive group in ¢ group file manager

ITDepartment
S it

RESTORE ALL GROUPS

CRE/ % Enter sing
Enter token
Confirm tokes

Enter token

CREATE GROUP

Figure 5.3: Example of client application window on startup.

The left section represents the GroupManager, and manages the operations
of join, restore and creation of a group. The right section is called File-
Manager and allows users to operate within a specific group, among those
currently active. In the screenshot it is not active and contains only some
info because no group is actually active. Finally below we have a section
used to show to users messages about what happens on their group and files.

o1

Chapter 5. Solution analysis

To access or restore a group users need to double click on the group name
within the list. Access to a group will require the token via pop-up. After a
group is reactivated or a new group is accessed, i.e. when a group with "AC-
TIVE’ status is showed in the group list, users can access the file manager
of that group by simply double-clicking on the group name. At this point
the FileManager will be active and will allow the peer different operations,
depending on the role in the group:

e a ReadOnly (RO) peer will only be able to see the group files and will
have access to the 'disconnect group’ and ’leave group’ buttons;

e a Read&Write (RW) peer can in addition add, remove and synchronize
its files with the rest of the group;

e group master, in addition to RW privileges, has the possibility to change
the role of other peers in the group, being also able to pass the role of
master or to add another master.

57 myP2PSync - m] X

Filename: Filepath LastModified

ADD FILE ADD DIRECTORY REMOVE FILE REMOVE DIRECTORY

SYNC SELECTED FILE SYNC SELECTED DIRECTORY SYNC ALL GROUP FILES
RESTORE ALL GROUPS

Enter sin

PeerID

CHANGE ROLE

CREATE GROUP

» Group [MDepartment restored

Figure 5.4: Example of client application window for a group master user.

52

Chapter 5. Solution analysis

Please refer to the functions init and initUIl within the myP2PSync
class for more details about widgets and layouts used.

As the system is based on event management, actions performed on a widget
can generate such events. To allow the main thread to react to a specific
event occurrence, it must assign an handler function called ‘Slot’ to the event
signal. For example:

createGroupButton.clicked.connect(createGroupHandler)

This instruction associates the ’single click’ event on the CREATE GROUP
button, which generates a certain signal, to a createGroupHandler method.
Each time the event is generated, this function will be executed.

The event mechanism can also be used for tasks not directly related to wid-
gets. The fact that groups, peers and files are dynamic entities makes it
necessary to periodically update the graphical interface by asking the server
for updated information on the status of the system. In myP2PSync a refresh
signal is used, emitted by a thread that runs in the background for as long as
the user interface is active. It just sleeps for a certain number of seconds, in
the current implementation 10, and then wakes up, emits this refresh signal
and goes back to sleep. Actually it does not sleep for 10 seconds in a row, but
it wakes up every second to check if the application is closed and to be able
to finish releasing its resources correctly. The refresh signal is intercepted
as any other event from the main thread of the application and is executed
a handler function that requests updated information to the server about
groups and peers, then updating the content of the GUI.

This script mainly interacts with the peerCore script in order to access the
functions for the dialog with the server, to take advantage of the main data
structures and parameters or even to configure some information, such as the
IP address of the server. In fact, it is entered manually by the user through
the GUI in case of failure or incorrect configuration of the file configura-
tion.json, where this address should be written.

93

Chapter 5. Solution analysis

5.2.7 Peer modules: peerCore.py

This module contains all the functions necessary to interact with the tracker
server. They are called by the handlers defined in the GUIL For example,
the handler that manages the creation of a group is responsible for verifying
the values entered by the user e.g. group name, tokens and then calls the
function within peerCore that communicates to the tracker the creation of the
group and updates local data structure. The return value of these functions
is then used by the module myP2PSyncClient to generate any successful or
error messages. The script also manages some initialization functions, such
as the configuration of the peerID, obtained from the MAC address of the
machine, the retrieval of the server coordinates from a configuration file and
the tracker reachability verification.

The peerCore module contains and manages the two data structures:

e groupsList: Python dictionary for the various groups of the single peer.
It contains information on the status of the groups i.e. role of the peer,
its status (active or not), number of active peers and total number of
peers.

e localFileTree: is a tree structure that keeps track of the status of files
and their organization. For more information, refer to the fileSystem
module.

An important operation that is carried out within the peerCore module is the
initialization of the files of a group. The system manages files with messages
between peers: for example, when a peer adds a file to a group or removes
it or loads a new version, it sends a notification to all active peers who can
react accordingly. It also records the change on the server. However, some
peers may be offline i.e. they are not using myP2PSync or are disconnected
from the group or have abandoned it. In the last case they may re-access the
group in the future. In each of these cases the notification is not received and
therefore the appropriate action is not handled. The problem is solved by
asking the tracker for the updated file list for that specific group every time
a group is restored or the peer accesses it. Peers keep their own list of files,
updated at the last moment the peer was active in the group. If the peer has

o4

Chapter 5. Solution analysis

never been active in the group, this list is empty. This list is compared with
that of the server that is assumed to be always valid and updated because
all changes are reported to him and the server can never be offline. In this
way a peer can find out:

e that new files have been added and start synchronizing them;

e that some files have been removed and then handle the situation locally
by removing them from its list of files;

e that new versions are available for some files it already has and then
request the new version through a file synchronization.

For more details, refer to the updateLocalGroupTree function.

5.2.8 Peer modules: fileManagement.py

This module contains a class for saving information about files and manipu-
lating them. The File class has the following properties:

e groupName, represents the name of the group in which the file was
added;

e treePath, is the name of the file if it’s taken into account any directory
to which it belongs if they are also added to the synchronization of the
group e.g. dirl/dir2/file.txt;

e filename, is the real name of the file e.g. file.txt;

e filepath, represents the path in the user’s file system where the file is
located;

e filesize, is the size in bytes of the file;

e timestamp, represents the version of the file. It is obtained from the
operating system last modified timestamp, so it can be compared to it
to see if the local version is synchronized with the group version;

95

Chapter 5. Solution analysis

status, can be 'S’ or 'D’, depending on whether the file version is the
latest available ("Synchronized’) or not ("Download’);

previousChunks, is a list of chunkIDs, i.e. identifiers of parts of a file.
It is used to save the status of partial downloads in order to resume
them;

lastChunkSize, is the size in bytes of the last chunk that can have
different size from the others that have fixed size. All the other chunks
have a fixed size of 1 MB;

chunksNumber, represents the total number of parts in which a file is
divided during a synchronization;

missingChunks, is the list of missing chunks to complete the download
of a file;

availableChunks, is the list of chunks owned by the peer. A download
is completed when availableChunks contains chunksNumber elements
and missingChunks is empty;

progress, which is simply the percentage ratio of the number of chunks
owned respect to the total number of chunks. It indicates the download
progress status. At the end of the download it is 100%;

synclLock, is a useful Lock object for thread synchronization, it prevents
that there are for example unforeseen changes on other properties dur-
ing a synchronization;

stopSync, is a boolean value that is used to block the synchronization
of the file in case of errors or other situations that do not include the
completion of the download.

The class has methods for configuring these properties. For example, the
initSync method sets the various properties useful for file sharing, such as
the size of the chunks and the various lists. Other methods use the os module
to retrieve information such as the timestamp and file size directly from the
file system. These methods use the filepath property to reach the file.

o6

Chapter 5. Solution analysis

A user can add individual files or entire directories to the synchronization of
a group. The latters are not associated with any File type object and are
not directly subject to any synchronization operation. They are an abstract
concept, in fact they only serve to keep track of the files organization. Adding
a directory simply means adding all the files it contains, but taking into
account the fact that all of them are part of the same directory. The treePath
property is useful for storing the location of the file in relation to a directory
that has been added to the group. For example: the user adds the entire
dirl directory, which contains a second dir2 directory, which in turn contains
the file file.txt. In this case the treePath of the file is dirl/dir2/file.txt. In
the case of adding a single file, the treePath property is equal to the filename
property. The myP2PSync server is unaware of the organization of files in
directories. It considers the treePath as the filename of the file.

The filepath is set in two different ways:

e in the case of the peer that adds the file it will be equal to the filepath
of the file in the user’s file system.

e if another peer has added the file, the filepath will be created automat-
ically by the application, according to the rule:

filepath = pathToScripts/filesSync/groupName/treePath

— pathToScripts is the path in the user’s file system where the scripts
of the myP2PSync client are saved, except for the script names;
e.g. C:/Programs/myP2PSync/peerApplication/

— filesSync is a directory automatically created by the application
to contain all files in synchronization;

— groupName is simply the name of the group to which the file
belongs, the application automatically creates a directory with
this name.

In the current implementation, a treePath cannot contain spaces, i.e. the
filename and names of all directories, if any, must be free of spaces.

57

Chapter 5. Solution analysis

5.2.9 Peer modules: fileSystem.py

The files synchronized with myP2PSync have the following features:

e can belong to different groups;
e can belong to a folder, which is also synchronized;

e because peers can use more than one group at the same time, the same
file can belong to more than one group;

e within the same group there can be no files of the same name, except
in different folders. The treePath property must be different in order
to distinguish them univocally;

e are associated with an object of the same File type as the one defined
in the previous paragraph.

Organizing and keeping track of files is therefore an important issue, consid-
ering that information about a file must be retrieved efficiently. Choosing
the right data structure was therefore subject to change during application
development. The first choice was to use a Python dictionary, i.e. an hash
table. This data structure has key-value pairs and in the implementation of
the myP2PSync file system they had a structure like the following:

key: ’groupName treePath’ string
value : File object

Unfortunately, although it is very efficient for retrieving file information, it
is not very compatible with creating the list of files in the graphical user
interface. This list must keep track of the organization of files in directories,
as indicated by the treePath property of the files, and is therefore a tree
structure. Consequence of this incompatibility is an exaggeratedly large time
in the rendering of the files list in the GUI due to the complexity of the
algorithm to create it. For example: to create the entry in the file list
associated to the file with treePath equal to dirl/dir2/file.txt in an already
partially filled file list you must proceed iteratively as follows:

o8

Chapter 5. Solution analysis

1. is considered the first part of the treePath: dirl. We evaluate if an
entry for dirl is present in the file list, operation with cost O(n) in the
number of entries already present.

2. If it is not present, it is added to the first level; if it is present, check
that it is at the first level.

3. The same is done for dir2. This time if the entry exists, check that it
is at the second level and that the first level is equal to the entry dirl.
Otherwise you have to create the entry dir2 under the entry dirl.

The complexity of this approach is due to the fact that the class that imple-
ments the files list, a QTreeWidget, does not allow you to search for a certain
entry at a certain level, but only in the entire set of entries. It is then neces-
sary to manually check the depth level going backwards. In other words, if I
look for the entry dirl and there is a match, the entry is not necessarily the
correct one, it could be an entry named dirl under an entry with another
name. The series of searches and checks is really time consuming, and is not
feasible for a large number of files, especially in the case of numerous nested
folders.

So we opted for a second tree data structure, which recalls that of a file

system, hence the name of the module. It follows a scheme like the one
shown in the figure:

99

Chapter 5. Solution analysis

Userx
FileTree
root

Groupd GroupB GroupC
directory directory directory
Projects Film file.bxt image.png
directory directory File Object File Qb
TreePath: file bt TreePath: image png
elloworld.c movieA.mp: movieB.mp:
File Object File Obj File obj

TreePath: TreePath: TreePath:
Projects/hello\World. ¢ Film/movieA mp4 Film/movieB.mp4

Figure 5.5: Architecture of the myP2PSync file system.

The tree root is a FileTree type object that keeps track of all groups. Each
group is associated with a directory root node, from which the structure of all
the files in the group is developed. Each node contains different information:

e the name of the node, equivalent to the name of the directory or the
name of the file;

e a Boolean value that indicates if the node is a directory or a file;

e a dictionary containing all child nodes;

e a File type object.
A node can be of two types:

e Directory node, has the childs dictionary not empty while the file object
is empty. Any directory nodes with 0 children are removed from the
structure;

60

Chapter 5. Solution analysis

e File node, has the children’s dictionary empty being a leaf node but
has a File object.

This structure makes the creation of the file list much faster because it is
enough to recursively scroll the tree associated with a certain group generat-
ing the labels, distinguishing the entries of the directories from those of the
files.

The module also provides the necessary methods to remove nodes, add them
and search for the node associated with a file. These methods base the search
on the treePath property of a file, using it to scroll through the tree to the
node you are looking for.

In the treePath of a file node, the root node of the group is not taken into
account because the search for a node takes place from the directory node
of the group. For example: you want to delete the file with treePath Film/-
movieB.mp4. The fact that this file is within GroupB is known to the appli-
cation why:

e if it is the peer itself that wants to delete the file from the group, it
has started removing the file from the groupB file manager within the
GUI;

e if another peer requests its removal, it has sent the group name in the
request.

At that point the peer knows GroupB, and looks for its node among the
children of the FileTree root. Finally it follows treePath to reach the node
and delete it.

This data structure is slightly less efficient than the hash table: we talk about
an O(logN) cost in the search for a node, where N is the level of depth of the
node searched, against the O(1) obtained with the hash table.

The fileSystem module also contains the necessary functions:

e to save the current status of the FileTree in a JSON file;

61

Chapter 5. Solution analysis

e to the initialization of the FileTree starting from the information con-
tained in the JSON file about a possible previous session.

5.2.10 Peer modules: peerServer.py

This module implements a server similar to the one already seen previously
in the myP2PSyncTracker.py script. It is in fact a server that uses multi-
threaded programming to serve multiple requests simultaneously. A peer
needs this function to be able to respond to any requests from other peers,
such as requests for chunks or messages about files in the group. An incoming
message is then processed and the appropriate function to serve the request is
called up. A connection, and with it the thread that manages it, ends when
a '‘BYE’ message is received. The various messages that the peer receives
concern:

e requests for chunks or a list of chunks for a certain file, managed by
going to call the appropriate functions of the fileSharing module;

e additions or removals or the availability of new versions of files in a
certain group. These situations are managed by taking advantage of
the appropriate functions of the syncScheduler module.

5.2.11 Peer modules: syncScheduler.py

This module contains the synchronization processes scheduler. It is a thread
that is created by the peerCore module within the startPeer function and that
periodically, every second, checks if there are synchronizations that need to
be executed. It is terminated when the application is closed. The applica-
tion need this scheduler thread in order to limit the maximum number of
simultaneously synchronizations. This last feature introduces a lot of syn-
chronization issues that the scheduler address and solve.

The modules capable of adding a synchronization request are:

62

Chapter 5. Solution analysis

e peerCore when the peer itself adds new files or new versions. Refer to
the addFiles and updateFiles functions of the module;

e the syncScheduler module itself, following messages received by peerServer
from other peers communicating the addition of new files or new ver-
sions. Refer to the addedFiles and updatedFiles functions.

A synchronization request refers to a single file. It is an object of type
syncTask, class defined in the module, which has as its property the group
of the file, its treePath which is the path within the file structure to retrieve
information about the file and the timestamp or version of the file. All tasks
are stored in a FIFO structure, implemented using a deque i.e. double ended
queue. New tasks are placed at the tail of the structure. The choice of the
deque data structure is explained in section 6.1. When a task related to
a new version of a file is added to the queue, the module verifies that this
version is not obsolete because another peer may have sent the request to an
even more recent version. In addition, the module also checks that the deque
does not contain other tasks related to the same file with an older version.
If they are present, they are deleted. If the task is added after adding a new
file, this check is not performed because there can be no other tasks related
to the same file.

The scheduler, which periodically checks the status of the deque in search of
new tasks, if find one removes it from the head of the queue and then:

e it checks if the number of threads working on a synchronization is less
than a certain number i.e. MAX SYNC THREAD, in the current im-
plementation this parameter is equal to 5. It serves to avoid that there
are too many synchronizations and therefore too many active down-
loads at the same time, which would slow down the overall progress of
processes;

e it checks if the task is still valid, i.e. if the group it refers to is still
active and the file is still present, as it may have been removed from
other peers or from the peer itself in the meantime;

e it checks that there is no other synchronization in place on the same
file, acting on a previous version. In this case the scheduler has to wait

63

Chapter 5. Solution analysis

for it to end up activating the new thread on the new version. To avoid
the waiting process in this case the scheduler simply reinserts the task
in the list.

If none of the conditions are met, the scheduler launches the synchronization
thread:

syncThread = Thread(target=fileSharing.startFileSync,
args=(fileNode.file, task.timestamp))

The target parameter represents the starting function of the new thread while
args represents its parameters, in this case a File object (see fileManagement)
and the timestamp of the task.

The syncScheduler module also offers some useful methods to manipulate
the deque, for example to remove tasks related to a certain group for exam-
ple when it is no longer active. The management of active synchronization
threads is also delegated to the module, as it keeps track of their information
in a data structure. This information also includes the status of the thread.
The list of possible states for an active synchronization thread is as follows:

e SYNC RUNNING: The thread can continue to run;

e SYNC SUCCESS: The thread has completed the synchronization pro-
cess, i.e. it has successfully downloaded the file;

e SYNC_ FAILED: Synchronization failed due to lack of resources e.g.
lack of active peers;

e SYNC_ STOPPED: Synchronization was blocked due to disconnection
from the group;

e FILE. REMOVED: Synchronization was stopped after removal of the
file;

e FILE UPDATED: synchronization was stopped due to the arrival of
a new version of the file.

64

Chapter 5. Solution analysis

These states are declared within the module in the form of numerical con-
stants. They are used to communicate with the synchronization thread, it
periodically checks its status in order to react to any external events.

5.2.12 Peer modules: fileSharing.py

This module contains all the functions necessary for a peer to share a file,
both as an uploader and a downloader. The main and most relevant functions
are related to the file download. They are described in detail in the paragraph
5.3. The rest of the functions are used by the peers for:

e request and send their own chunks lists to other users. A chunks list is
the list of chunks that the peer has about a certain version of a certain
file. The chunks list is the list of chunks that the peer has relative to a
certain version of a certain file.

e the operation of merging the chunks into a single file, once they have
all been retrieved. It must also handle the possibility of an empty file,
which must still be created even without receiving chunks.

When downloading a file, the various chunks are stored by the peer in a
temporary folder. This folder is present at the same location of the file and
has the same name followed by > tmp’. The various chunks are represented
by small files named as the chunk identifier e.g. chunkl3. Finally, they are
merged into a single file with a temporary name, which is the one of the
original file followed by * new’. For example, the new version of a file on
the path ’C:/Users/abc.txt” will be rebuilt in 'C:/Users/abc new.txt’. If
the merge operation is successful, the old file, if any, is removed and the new
file is renamed. Also the time of last modification to the file is modified,
going to place the one communicated by the source of the synchronization,
that is the peer that added the file or its new version. This is necessary
because otherwise the timestamp of the file would be greater than the one
communicated because some time has passed, however little it may be. If
the timestamp is higher, the new peer could send an update request to the
other peers without really having a modified version of the file.

65

Chapter 5. Solution analysis

Considering the chunks sending operation, we can distinguish between two
cases:

e the peer has already finished synchronizing the file or is the one who
added the file or its new version. In other words, it has the full version
and behaves like a seed. In this case the chunks are retrieved directly
from the file, through a positioning operation in the chunk location and
with a reading operation;

e the peer is still in a phase of downloading the file, so it does not have
a full version, but only splitted chunks. The required chunks are then
recovered from the temporary directory.

The positioning operation is performed with the seek function that allows to
move the pointer to the file. The offset given as parameter is obtainable as:

offset = chunkID * CHUNK _SIZE

5.3 File-sharing protocol

This section contains a detailed description of the protocol used by myP2PSync
for sharing files in synchronization. It explains the approach used, the algo-
rithm used to retrieve a file from other peers in the same group and illustrates
some significant parameters.

5.3.1 P2P Approach

The file-sharing mechanism used in myP2PSync is based on a Peer-to-Peer
protocol. This means that there is not a single node on the network where all
peers request a file, as in the case of a client-server approach, but rather the
file can be requested from several other peers, i.e. nodes on the network that
play the same role. The protocol used is based on the well-known BitTorrent

66

Chapter 5. Solution analysis

which is also a protocol for P2P file-sharing. The common points between
the myP2PSync protocol and BitTorrent are as follows:

e the files are divided into smaller pieces of fixed size;
e all peers are asked which chunks have of a certain file;

e the pieces of a file are requested in order of rarity (rarest-first approach),
i.e. a piece that is owned by a few other peers compared to a more
common one is first requested.

The myP2PSync protocol lacks the concept of choking, which consists in
favoring peers who are using chunks of a file at a great speed over others
who behave like leechers, downloading much more than they upload. This
approach has no reason to be used in myP2PSync because the purpose of the
application is only to spread as quickly as possible the new version of a file,
without discriminating between different users. Think in fact of the domestic
case in which a user simply wants to distribute a file to all his devices: it
would not make sense to slow down the transmission of the file to a specific
machine because they all belong to the same user. The same reasoning can be
applied to the business case: the ultimate goal is to distribute a new version
of a file to all employees as quickly as possible, it would not make sense to
slow down the transfer to some machines just because they are more limited
in terms of upload speed.

5.3.2 Chunks size

Regarding the size of the chunks, myP2PSync uses a fixed size of 1 MByte,
large enough to avoid excessive segmentation of large files and small enough
to avoid large losses of efficiency and time in case of necessary retransmission
of a chunk following an error. Initially a more dynamic approach was used,
i.e. fixing the size of the chunks according to the size of the file. This
approach was not successful because it made the synchronization of small
files really too slow, being the chunks really too small. Using a fixed size all
chunks have the same size, only the last one could be smaller, exactly like in
the BitTorrent protocol.

67

Chapter 5. Solution analysis

5.3.3 File-sharing algorithm

The file-sharing protocol follows a multi-threading approach, to try to make
the most of the simultaneous online presence of a multitude of peers. The
download of a file is implemented through three different types of threads:

e the first thread, see downloadFile function in the fileSharing module, is
responsible for managing the creation of all other threads and the oper-
ations of initialization and termination of the download. It instantiates
the chunksManager thread and all getChunks threads. The maximum
number of instantiable getChunks threads is defined by the constant
MAX THREADS in order to limit the number of coexisting threads.
It is well known that an excessive number of threads working in paral-
lel tends to deteriorate performance. This thread creates a getChunks

thread every time a new peer is active and you can ask it for chunks of
a file.

e a second thread, called chunksManager, periodically calculates the rarest-
FirstChunksList, that is the list of missing chunks sorted by rarity. It:

1. gets from the tracker the list of active peers in the group;

2. if the number of active peers exceeds a certain constant MAX -
PEERS considers only a subset, which varies with each iteration
through a shuffle operation on the list of peers obtained;

3. requests each selected peer its own list of chunks for the file to be
obtained;

4. using these lists calculates the list of missing chunks sorted by

increasing rarity; finally places itself in a waiting state for RE-
FRESH LIST PERIOD seconds.

e the last type of threads are called getChunks threads, i.e. those that
actually request chunks from other active peers. Each different thread
requires chunks from a single other peer. The chunks to be requested
are taken from the rarestFirstChunksList generated by the chunkMan-
ager. Of course, the various threads do not require the same chunks
and can only require chunks that the peer with whom they communi-
cate has previously notified that they have. The connection with the

68

Chapter 5. Solution analysis

remote peer is created immediately after the thread instantiation and
is closed only at the end of the download or when the remote peer dis-
connects. In case of continuous errors on the connection, it is closed
and re-established. These threads work in the following way:

1. extract from the rarestFirstChunksList a list of chunks to be re-
quested with a maximum length of MAX CHUNKS. This param-
eter favors the distribution of the workload between the threads.

2. They require all selected chunks and save them locally. In case of
an error on a single chunks they reinsert it in the shared list so
that it can be reconsidered later, also by other getChunks threads.

3. They repeat the previous steps until the end of the download or
until they realize that the remote peer is no longer active.

The three types of threads coordinate and communicate through a shared
data structure. It contains the rarestFirstChunksList, the list of active peers
and the download status. Once the download is complete, the getChunks
and chunksManager threads end, while the main thread handles the merging
and closing operations of the download. At this point the download process
of the file is complete and the synchronization ends.

It is important to note that the timestamp of the obtained file is of course
subsequent to the desired one, i.e. the one transmitted by the peer that
sent the update message, because it corresponds to the instant when the last
chunks was written inside. For this reason, the timestamp is forced to the
value transmitted by the following instruction which modifies the timestamp
directly in the OS file-system node:

os.utime(file.filepath, file.timestamp)

At this point, if the peer tries to force an update of the file, the application
would compare the timestamp of the file system with that defined in the
data structure of the file, they would be the same and it would not allow the
operation.

69

Chapter 5. Solution analysis

5.3.4 Random discard approach

At the beginning of a file download it is important to consider a random factor
in the choice of chunks to request. If we consider the case in which a peer adds
a file to the group and all the others try to get it, it is likely that they will
have the same rarestFirstChunksList and request the same chunks, not taking
good advantage of the crowd of peers. Adding instead a more random choice
of chunks to request can improve the spread of chunks between peers. The
getChunks threads, at the beginning of the download, therefore tend to add a
chunks to their list of requests with a certain probability equals to INITTAL -
TRESHOLD. As the download proceeds, this probability is increased by a
TRESHOLD INC_STEP factor. Finally, at the end of the download, when
the progress is greater than a certain amount of COMPLETION RATE,
all chunks are requested without applying the random approach in order to
complete the synchronization as soon as possible.

5.3.5 Synchronization stopped or failed
A synchronization can be interrupted for several reasons:

e the file is removed from the group;

e another version of the file is available and the current synchronization
is outdated;

e file download cannot be completed due to lack of resources:

— there are no other active peers in the group;
— other active peers do not have the missing chunks of a file;

— connection with other peers fails.

To manage these situations, each download is associated to a thread that
checks the status of the operation. It periodically checks the status of the
thread through the syncThread data structure managed by the scheduler
module and reacts to the stop operation by closing the download cleanly.
Clean closing means:

70

Chapter 5. Solution analysis

e saving the download status, i.e. it stores the list of chunks obtained in
order to be able to restart the synchronization in the future from the
point where it stopped.

e the release of synchronization locks, so that can trigger any other syn-
chronization operations on the same file, perhaps following an update
request received from another peer.

e the blocking of any still active threads related to the download.

Three different synchronization termination scenarios can be defined and
evaluated:

e The first is when the download finishes correctly and the file is recon-
structed without errors (SYNC_SUCCESS). In this case the chunks
lists are simply updated as follows: missingChunks and previousChunks
are reinitialized to empty lists, availableChunks contains all chunks.

e The second occurs when the file download can not complete due to
lack of resources availability (SYNC_FAILED) or when the download
is interrupted by leaving or disconnecting from the group (SYNC -
STOPPED). In these cases the availableChunks list is copied to previ-
ousChunks so you can resume synchronization from the current state
later. In fact, the synchronization is reschedule if in the meantime a
new version has not arrived or if the file has not been removed.

e Finally there is the case where the synchronization is blocked by an
external request, such as a new update (FILE _UPDATED) or removal
of the same file (FILE_ REMOVED). In these cases the thread notifies
the closure of the download to all the other threads that can be still in
progress, that are the main thread and those that may be requesting
chunks in order to stop them. All lists of chunks are reset because they
are now useless or obsolete.

The block of possible threads still active is managed by a boolean value
contained in the File object i.e. stopSync property. At the beginning of the
synchronization this value is placed equal to False and if an event occurs

71

Chapter 5. Solution analysis

that requires the manual termination of the threads it is placed equal to
True. This value is checked:

e periodically from the download thread ;

e from the chunksManager thread between two update operations on the
chunksList;

e from each thread requesting chunks, just before requesting each single
chunk.

Throughout the synchronization process a lock is acquired on the file. Tt
is only released after the operation has been closed. This ensures that the
parameters of the file, such as its size, are not changed by other threads
during the synchronization process, for example following an update request
from another peer. These requests will then have to wait until the end of
the synchronization and, if still valid depending on the timestamp, will be
processed. For example: when synchronizing a file with timestamp 1000, an
update with timestamp 2000 is received. This causes the download of the file
to be blocked, but this may take some time as the check is periodic. During
this time the request cannot be served and is put into effect. If we consider
the case in which during this time a third update request with timestamp
3000 arrives it would be the only one to be served, because the second one
is already obsolete.

5.4 Devices communication

This section discusses the solutions used for communication between the
various devices, going into detail how connections are established and how
the various messages are encoded, sent, received and decoded.

72

Chapter 5. Solution analysis

5.4.1 Choice of the communication protocol

Since myP2PSync is a distributed system, one of the first questions that need
to be asked in the design phase was how to make peers and tracker server
able to communicate. A first answer was with the HTTP protocol which is
generally well supported by the libraries of any programming language, it is
very easy to interpret but being an application level protocol very well defined
and with its own rules it probably would have led to a lack of flexibility in
writing the application. Furthermore, by using HT'TP you get an overhead
of information transmitted as each time the HTTP header would be sent
and this can be avoided with a lower level approach. The second and last
approach considered and implemented is a lower level solution by going to
program a small transport protocol directly to the socket level. A socket is
nothing more than the abstraction of a network access point through which
a machine can communicate with another. In other words, if two machines
have a socket and a connection is created between these two sockets, the two
machines can exchange messages and data. The use of sockets guarantees an
excellent flexibility in deciding how the machines should communicate, since
the programmer has to take care of different aspects such as:

e opening and closing the communication;

e low level characteristics like for example which transport level protocol
to use;

e guaranteeing a certain reliability to the communication.

More specifically, stream sockets are used. They provided a connection-
oriented and sequential communication with well-defined mechanisms for cre-
ating and destroying connections and for detecting errors. A stream socket
transmits data reliably, in order, and with out-of-band capabilities. Stream
sockets are typically implemented on top of TCP so that applications can
run across any networks using TCP/IP protocol. The characteristic of being
connection-oriented was the cornerstone of the choice. This allows to have
reliable connections even in case of fast exchanges of messages as happens
during file-sharing.

73

Chapter 5. Solution analysis

One thing that should be taken into account when programming sockets
and exchanging messages is that establishing a connection is quite time con-
suming, so you need to minimize the number of times connections are cre-
ated. Unfortunately, it is also unthinkable to establish a connection and
leave it active for as long as necessary, for example for the entire session
using myP2PSync. In the application we have therefore tried to exploit the
single connections to the maximum trying to group the messages as much
as possible for example making sure that more chunks of the same file are
requested within the same connection. We also tried to send the minimum
number of messages possible, even at the cost of sending large messages, fa-
vored by the fact that the communication protocol used is not sensitive to
the size of the message. For example, when a peer adds a directory to the
synchronization group, it sends a single message to the server and the other
peers containing the complete list of added files, and not a different messages
for each file.

Next paragraphs presents how the peers and the tracker server manage the
creation of connections, starting from the latter as it is simpler. For any
doubts or other information about socket programming, please refer to the
official documentation of the Python3 socket module, which can be reached
at the following URL:

https://docs.python.org/3/library/socket.html

5.4.2 Tracker side

The tracker server just creates its own TCP socket stream and associates it
with its own IP and a specific port number, the 45154. This last operation is
called socket binding because it binds the socket to a unique address consist-
ing of the tuple (IP address, port number). The port number was arbitrarily
chosen from those not registered for any application within the registers of
the TANA (Internet Assigned Numbers Authority), which is the association
that allocates IP addresses and port numbers to various applicants. Imme-
diately after the binding, the tracker server puts itself in a listening state,
which means it is ready to accept new incoming connection requests that will
come from the various clients. The listening socket is called a passive socket.

74

https://docs.python.org/3/library/socket.html

Chapter 5. Solution analysis

Whenever a connection request is detected, the tracker creates a connected
copy of the passive socket that is connected to the the client socket. This
connection can now be used for communication.

s5ps = server passive socket
5Cs = server connected socket

incoming
requests
queue

client
socket

Figure 5.6: Socket connection establishment.

This is the portion of code that does the operations described above:

declares the socket type TCP stream

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

Associates the socket with the chosen IP address and
port number

sock.bind ((IPaddress, 45154))

Put the socket in a listening state

sock.listen ()

until the server 1is stopped accepts new requests by
creating a new connected socket

while not serverStop:
clientSock, clientAddr = sock.accept ()

At this point it’s possible to communicate using clientSock, while the variable
clientAddr contains the IP address of the client. Other information such as
the port number of the client can be retrieved directly from the clientSock
object. Now that the connection is established client and server can talk.
Usually it is the client who speaks first so the server puts itself in a blocking
state of reception. Once the message has arrived, the request is processed

5

Chapter 5. Solution analysis

and a response is provided to the client. When the message exchange is
finished the client sends a 'BYE’ message and the tracker server closes the
connection and the socket.

The server uses multi-threading, which means that every time an incoming
connection is detected and the copy of the passive socket is generated and
connected, a new thread is also instantiated with the unique purpose of
exchanging messages on the new connection until it is closed. We can think
of these threads as disposable objects: once their task is finished they simply
end after releasing the socket resources. The main thread, the one waiting
on the accept function, does not respond directly to requests, but it allocates
a new thread that will do so. This feature makes the server much more
performing and responsive. In the case of single thread solutions it is not
possible to serve a new request until the previous one is completely finished.
In fact, the thread would be engaged in another and would not be stuck on
the accept function, ready to detect new requests.

5.4.3 Peer side

Half of the network programming structure of the peers is similar to that of
the tracker server. In fact, a peer works by definition both as a client and as
a server. To work as a server, it follows exactly the same scheme described
above with just one difference: the binding of the listening socket is not done
on a predetermined port as in the case of the server that always runs on
port 45154 but it’s done on the first port found free by the operating system.
This port discovery is performed simply using 0 as the port number during
the bind operation. The port number actually chosen by the OS can then be
retrieved directly from the socket object.

using port = 0 the server will start on an available
port

sock.bind ((peerIPaddress, 0))

retrieve selected port
port = sock.getsockname () [1]

This port number must then be communicated by the peer to the tracker so

76

Chapter 5. Solution analysis

that other peers can reach it. This is done immediately after the peerServer
is created by sending a '"HERE’ message containing the IP address and port
number on which the peer is listening. When the peer has to work as a
client, for example to talk to the server or to make requests to the peers
the situation is slightly different. There is no need to listen on your socket,
but simply to launch a connection request to the listening socket of the
destination machine, be it the tracker or another peer. In the first case the
tuple (IPaddress, PortNumber) is read from a configuration file or manually
entered by the user. In the second case, instead, the coordinates of the
active peers are obtained by asking the tracker server first. Following a
connection attempt, the socket module automatically manages the initial
handshake and if all goes well, the client socket can now be used to send
and receive data. When the peer decides to close the connection, it sends a
message 'BYE’ which makes the destination understand that the exchange
of messages is over. At this point both can close their sockets releasing the
resources. The following image summarizes the whole mechanism of creating
a socket connection between two machines, send and receive messages and
finally close the connection.

7

Chapter 5. Solution analysis

Server

This is the behaviour of the
tracker server and of a peer
acting as a server

p
socket
Client
¥ This is the behaviour of a peer
_ when it wants to communicate
bind with the tracker server or with
another peer
This part is 4
handled by the
main thread Y
listen socket
Connection
accept + new establishment
C thread creation | connect
—
4 h 4
—
recv < send
This loop goes on until the client
sends a ‘BYE' message and the
This part is ¥ server replies with a "OK - BYE PEER ¥
handled by the ~ _{ d »
created thread sen reev
v v
close + thread
termination close
—

Figure 5.7: Communication on a socket connection.

5.4.4 Messages exchange

Using the Python3 socket module it’s possible to exchange messages in
the form of an array of bytes. Two types of messages are exchanged in
myP2PSynec:

e requests in the form of a string string, for example: JOIN <group-
Name> <token> or CHUNKS LIST <filename> <timestamp>

e file chunks, which in the case of both text and binary files are exchanged
as byte sequences.

78

Chapter 5. Solution analysis

In the first case string messages, which in Python are Unicode code points
sequences, must be converted to byte sequences using a certain encoding e.g.
UTF-8, latin-1 before they are transmitted and decoded from the destination.
Fortunately, encoding and decoding methods are already provided by the
Python String class. The chunks of a file, on the other hand, do not need
any conversion since they are already arrays of bytes and can be transmitted
and received as they are. It is important to note that the send method of
the socket module in python3 gives no guarantee that all bytes will be sent,
but returns the number of bytes actually sent. So a wrapper function was
built: it writes on the connection iterating until the entire message has been
sent. In reception another wrapper function was built in order to read from
the connection. It reads any pieces one at a time and reconstructs the entire
message. Unfortunately in reception we do not know a priori how much we
will have to read. The solution adopted for this problem consists in having
the sender send the number of bytes that make up the message first and then
the message itself. The length must be written on a number of bytes that
both sender and recipient know. In myP2PSync this number is 16 bytes.
For instance: message = "RESTORE GROUP1", with length = 16. The
sender writes 16 in a 16 bytes string: "0000000000000016" and sends it. The
recipient iterates on the reception until the reading of the 16th bytes. At
this point it decodes the string and gets the length of the message it is about
to receive. Knowing this length it can iterate on the reception until the
complete reception of all the bytes. Pieces must also be rejoined.

To send a text message, which can also be the casted to string version of a
data structure such as a list or a dictionary that does not contain objects,
the following steps should be executed:

1. the message is encoded using latin-1 codes;

2. the length of the message is extracted and it is placed in a 16 byte
string which is in turn encoded in latin-1;

3. size is sent iterating up to 16 bytes;

4. message is sent iterating until all the bytes have been transmitted.

To receive a message, the destination follows the steps below:

79

Chapter 5. Solution analysis

1. it iterates on reception until 16 bytes have been read;

2. eventual pieces are rejoined and decoded to obtain the actual length of
the message;

3. it iterates on reception until all the bytes of the message have been
received;

4. it reunites any pieces of the message and decode them, obtaining the
original message.

This small sending and receiving protocol is used by both the peers and the
tracker server. A very similar approach is also used to send file chunks. The
difference is that both the transmitting and the receiving peers know the
length of the chunk: they have a fixed length, only the last one can have a
different size but it is known anyway. So there is no need to send the length
of the chunk but it’s possible to directly send the sequence of bytes always
iterating in order to avoid partial transmissions, even considering that we
are talking about chunks of size of 1 MB, which are then easily segmented.
Indeed, considering the documentation of the socket module are usually sent
maximum 4096 bytes at a time. In reception simply iterates on reading and
rejoin the various pieces. No encoding or decoding operation is necessary as
already mentioned above.

The implementation of this protocol is present in the networking module that
both the peers and the tracker server use.

5.4.5 Message format

The format of the messages is the following for both the exchange of messages
between peers and for the exchange between a peer and the server. In order
to make a request a message of the type “<peerID> <request> <param-1>
<param-2> ... <param-n> “is sent. The field <request> indicates the pur-
pose of the message. Examples of <request> can be "JOIN", "RESTORE",
"LEAVE", "GET FILES", "ADDED FILES", "CHUNKS LIST". The
<peerID> field identifies the sender peer and the various parameters give
information such as the name of the group to which you want to register and

80

Chapter 5. Solution analysis

the access token. The answers have instead the following format "OK/ER-
ROR - INFORMATION STRING". That is, the first word tells us if the
request was served successfully or not, while the Information String gives us
more explanation, for example by saying the error that occurred. In some
particular cases the Information String contains data such as the list of active
peers in a certain group or a list of groups registered on the server. Appendix
of this document contains the complete list of requests that can be made.

5.5 Multi-threading architecture

As can be deduced from the previous paragraphs both applications are strongly
based on the use of multi-threading as a tool to perform multiple tasks si-
multaneously. This can be trivial in the server application, as most servers
nowadays use this technique to serve multiple requests in parallel. In the
peer application instead the situation is a bit more complex because threads
play an even more pervasive and dominant role, and above all they have a
less regular pattern. This paragraph wants to highlight their role and how
they interact.

The following figure summarizes the action flow of the peer side threads:

81

Chapter 5. Solution analysis

myP2PSync Client Launch

s ™
1
. ™y i ™ .-’ ™y
Requesti
> H:ndler Synchronization1
Thread
Request2
B Handler
Gul |_s| Synchronization2
i — Thread
main
GUI
thread Peer
refresh Server || Reguestd Scheduler | | Synchronization3
thread Handler Thread
Yy
S—
: Synchronizationd
! > Thread
RequestM
Handler — vy
A - A < A i A o

myP2PSync Client Exit

Figure 5.8: myP2PSync client application multi-threading architecture.

The main thread is the one handling the graphical interface: it is waiting for
events that it deals with using proper handlers. It also takes charge of the
initialization phase and of the dialogue with the server using the functions
provided by the peerCore module. Immediately after the initialization phase
it instantiates three other threads:

e the thread that manages the periodic refresh of the graphical interface;

e the thread that allows the peer to work in server mode, which in turn
creates threads to serve the requests;

e the thread that manages the scheduler, it in turn creates threads to
manage the synchronization of individual files.

In addition, each synchronization thread uses multi-threading: the main

82

Chapter 5. Solution analysis

thread, which was created by the scheduler, manages the operations of initial-
ization, termination and verification of the synchronization status, in order
to identify any external stop signals and manages them. It instantiates a
second thread for downloading the file. This thread in turn creates a chunks-
Manager thread which periodically obtains from the tracker the list of active
peers and ask them for their list of chunks for the file. Furthermore the
downloadFile thread manages other threads that request chunks from sev-
eral peers in parallel. These threads are created as soon as a peer is notified
as active by the chunksManager and are terminated as soon as it is no longer
active or the download ends.

The following figure resumes the organization of threads that work in parallel
in order to perform a synchronization task:

Synchronization Start

s '
v v A
Main thread
« initialization
. check status . Get
. termination Download file thread Chunks
thread1
Manages Get Chunks
Chunks threads Manager ¥
thread B
Get
Chunks
threadk
_ J A vy
Synchronization End

Figure 5.9: Organization of a synchronization multi-threading.

83

Chapter 5. Solution analysis

Finally, threads in Python3 can be configured as daemon. For example:

syncThread = Thread(target=fileSharing.startFileSync,
args=(file, timestamp))

syncThread.daemon = True

syncThread.start ()

This allows the parent thread to continue running without worrying about
having to retrieve any return value from the child thread.

84

Chapter 6

Implementation choices

This chapter discusses and motivates some important implementation choices.
They were not discussed in the previous chapter in order not to make the
reading too long and heavy. Moreover, these implementation choices are ofter
common to most software development projects, so they have been treated
separately. The chapter is divided into the following paragraphs:

e 6.1 Data Structures
e 6.2 Server reachability

e 6.3 Previous session information

6.1 Data Structures

As is well known in the field of computer science, it is not only important to
use efficient algorithms, but also data structures that works well with them.
Since the system is written entirely in Python, the main focus has been on
data structures offered by the language [11]:

e list, an array of elements which offer operations such as append and
pop at cost O(1). Both of these operations operate efficiently on the

85

Chapter 6. Implementation choices

tail of the data structure. All other operations, including inserting and
removing elements in the head, as well as in any intermediate position,
have cost O(n).

deque i.e. double ended queue, a data structure present in the collec-
tions module. It operates as a list but its implementation allows to
have unitary cost also for operations on the head of the data structure.
It is called double ended because it effectively implements both the
LIFO i.e. stack approach and the FIFO i.e. buffer approach.

dictionary, i.e. hash table working on key-value pairs. It provide access
to data at unitary cost, automatically managing any collisions.

set, an array similar to a list but which ensures that there are no equal
elements. Its implementation is actually similar to that of a dictionary,
thus having the same pros and cons in terms of access time and memory
used.

The following figure shows a comparison of performance between a list and
a dictionary in the case of search operations [12]. The performances of the
deque are practically comparable to those of a list.

Time needed to do 1000 lookups (Luciano Ramalho)

a rd

£ 10§ — Dicts

= Sets

% 10 Lists

12}

&

=

[=]

=1

E 1|}—1

= —

E -2 -"'ff;

51

i

L]

=

g 103

= I————]

E —_— _ —

ui ll}-= T T T T T
10° 10* 10° 10° 107

Number of items to search through

Figure 6.1: Comparison of access time to specific elements for different Python

data structures.

86

Chapter 6. Implementation choices

It is important to note that in the case of linear scanning, i.e. processing all
elements sequentially, the three data structures behave in an almost equiva-
lent way.

In myP2PSync the list is usually used in cases where operations need to
be performed on each element of the data structure, such as to retrieve the
list of peers from the tracker. In this case the server responds with a list,
and the peer simply scrolls it completely. The deque structure is used for
the implementation of the scheduler. It is in fact nothing more than a FIFO
queue i.e. a buffer, where the first element to be processed is the one inserted
less recently. In other words, the one on the head of the structure. Operations
on the head are not efficient on a simple list, while they have unitary cost
on a deque. Furthermore, the scheduler does not search for a specific item,
but only performs operations in the head or queue or scan the complete list.
This is why a dictionary was not considered for the scheduler data structure
implementation. In the rest of the application dictionaries are used more
persistently. For example, both on the tracker side and on the peer side,
groups and related information are stored in dictionaries whose key is the
name of the group while the value contains all the group information.

A disadvantage of using dictionaries is that they require a lot of memory to
be implemented, are therefore not suitable to contain large amounts of data
and are especially not recommended in the case of nested dictionaries. A
dictionary in Python is an hash table, an array-like data structure with an
efficient element addressing mechanism. The index of an element in this data
structure is obtained by applying a hash function to a key. In the CPython
implementation i.e. the official and reference implementation of the project,
the key, hash code and the element itself are stored in each field of the array.
This tuple occupies a considerable amount of memory space. Moreover, the
hash table is subject to the problem of collisions, that is, different keys that
are mapped, through the application of a hash function, on the same code and
therefore on the same memory cell. To make the problem less relevant sparse
arrays are used, with more than half of the elements empty. Unfortunately,
this leads to a considerable waste of memory, because the empty tuples still
occupy the same space as a tuple (keyhashCode,value). The problem has
been solved with a new and efficient implementation used by Python 3.6
and later versions [13]. The new solution uses two distinct arrays: the first
is equivalent to the one used previously, so sparse, but as elements it only

87

Chapter 6. Implementation choices

contains indexes pointing to a second array, this time compact containing
tuples with actual values. The first vector in this case wastes only the space
used to store a real number, instead of the one used for an empty tuple. This
justifies the pervasive use of dictionaries in myP2PSync, they are in fact more
efficient than lists and deques in terms of performance and are only slightly
more expensive in terms of space thanks to their new implementation.

6.1.1 Synchronization on access

It is also important to remember that both lists, deques and dictionaries are
thread-safe data structures, i.e. the individual operations are atomic and race
conditions cannot occur between the various threads. However, in some cases
like the one in which before inserting an item in a dictionary it is verified
that it is not already present, they are possible. For example, considering
the case in which two peers want to almost simultaneously create a group of
the same name ’abc’:

e threadA looks for key ‘abc’ in a dictionary of groups and it discovers
that is not present yet, so it assumes that there isn’t a group with the
same name;

e meanwhile threadB does the same and it adds a new group object for
the same group name ‘abc’;

e at this point threadA, that is not aware of threadB insertion, add its
value for ‘abc’ overwriting what threadB added.

This leads to a state of inconsistency because the peer served by threadB
sees that the group was created but actually it is not part of it. The solution
to the problem consists in using a lock that encloses both the verification of
the key and the insertion in the data structure. For example:

groupsLock.acquire ()

if newGroupName not in groups:
newGroup = Group(newGroupName, newGroupTokenRW,
newGroupTokenRO)

88

Chapter 6. Implementation choices

newGroup .addPeer (peerID, True, "Master")
groups [newGroupName] = newGroup
groupsLock.release ()

6.2 Server reachability

The current implementation lacks of an automatic mechanism to reach the
tracker server. In fact, its IP address and port number must be written by
the user in the configuration.json file. Alternatively, if the file is not present
or badly formatted, or if the specified server is not reachable, the user is
allowed to manually enter this information when starting the application.
It was decided to use this approach instead of the one based on a public
domain more easily accessible by all users because the system is designed
to be as private as possible. That is, each user or company should install
and use their own isolated instance of the server, being it a light application
that requires a limited amount of resources to work effectively, especially in
a domestic context. In the case of the public domain, all users would have
used the same server and would also have had information about groups of
other users or companies, even if they might not be able to access them due
to the lack of tokens. With the current implementation, however, users only
have information on a limited number of groups, namely those registered on
the single server, which makes everything lighter and increases privacy. Of
course, this makes everything a bit less plug and play, because many users
may not know about concepts such as IP address and port number, and even
knowing what they are you may have difficulty retrieving them from the
machine on which you run the server. However, this was an implementation
choice. The system is designed for intermediate users who have a minimum
of experience in network configuration and command line use. In fact, the
user must also be able to install the ZeroTier software and must also run the
scripts from the command line by invoking the Python interpreter, which in
the rare case that it is not present must be installed. All information on
installing, configuring and running myP2PSync can be found in chapter 8

89

Chapter 6. Implementation choices

6.3 Previous session information

The applications, both the server and the myP2PSync client used by the
peers, need to save the data of a closing session so that it can be reused in
the next session in the initialization phase. This information includes:

e on the peer side the information needed to contact the server, i.e. its
coordinates in terms of IP address and port number, and a list of all
the files managed by the various synchronization groups;

e on the server side all the information about the groups, such as access
tokens, obviously encrypted, lists of peers registered in a certain group
and lists of files currently synchronized within a group.

Two solutions have been considered for saving this information. The first was
to use a central database, such as mySql, or a local database such as SQLite.
The second, which is the one actually implemented in the current version,
provides for the use of simple configuration files in JSON format. The choice
was dictated by the size of the problem. Databases are usually used to store
large amounts of data and are slower, especially those that require a remote
connection. As myP2PSync is a project at an early stage, the amount of data
is unlikely to justify the choice of databases. We have therefore opted for
the second, also considering the excellent compatibility between the Python
language and the JSON formatting language. In fact, JSON formats any
data in the form of lists and dictionaries, possibly nested. These two data
structures are identical to those provided by default by Python. That is, a
JSON dictionary is mapped exactly to a Python dictionary.

For example, if we consider the file where the server saves the complete list
of peer entries to groups, we have a structure like this:

L
{
"peerID": "52232004257",
"groupName": "ITDepartment",
I|role||: IIRWH

90

Chapter 6. Implementation choices

3,

{
"peerID": "132098950711908",
"groupName": "ITDepartment",
"role": "Master"

by

This file is mapped directly by the load function of the json module to a
list of dictionaries, where each dictionary identifies the entry of a peer to a
group. At this point it is very easy to add a single peer to the list of a group.
The resulting code is as follows:

f = open(groupsPeersFile, ’r?)
try:
peersJson = json.load(f)
for peer in peersJson:
peerID = peer["peerID"]
groupName = peer["groupName"]
role = peer["role"]
groups [groupName].addPeer (peerID, role)
except ValueError:
pass # wrong JSON file structure
f.close()

This approach is used to read all session files used. Moreover, using the
dumps function, also provided by the json module, it is possible to carry out

the inverse operation, that is to say to store a snapshot of the data structures
in a JSON file.

peersJson = list ()
with open(groupsPeersFile, ’w’) as f:
for group in groups.values():

for peer in group.peersInGroup.values():
peerInfo = dict ()
peerInfo["peerID"] = peer.peerlD
peerInfo["groupName"] = group.name
peerInfo["role"] = peer.role
peersJson.append (peerInfo)

91

Chapter 6. Implementation choices

0 json.dump (peersJson, f, indent=4)

In the specific case of the above example, the only preliminary step required
is to map the properties of Group objects in the fields of a peerInfo dictionary.
This is only necessary because the data structure is not directly a dictionary.

92

Chapter 7

Main 1ssues

During the development of myP2PSync there were several problems and dif-
ficulties, sometimes easy to solve and sometimes definitely less so. The fact
that it is a distributed system implies most of them, in fact such problems
are often common in all applications of this type. This chapter discusses how
most of them have been resolved, including the various discarded alternatives.
The chapter is divided into the following paragraphs:

7.1 NAT Traversal Problem

7.2 Synchronization problems

7.3 Path compatibility

7.4 Debugging

7.1 NAT Traversal Problem

The main problem in developing a Peer-to-Peer application is the so-called
"NAT Traversal Problem". Today, most corporate and domestic networks
use private I[P addresses and interface with the outside world using a tech-
nique called NAT (Network Address Translation) applied to the router. This
mechanism simply maps private IP addresses to a single shared public IP

93

Chapter 7. Main issues

address whenever a machine in the network tries to reach or establish a con-
nection with another machine outside the network. In addition to translating
of the IP address, the NAT also stores a mapping between the port numbers
of the router interface and the machine within the private network. This
mechanism allows the router to correctly redirect the response that is re-
ceived after a request e.g. an ICMP ping request or an HTTP request. The
IP address is not sufficient to distinguish the various machines. Unfortu-
nately, this does not work well in the case of P2P applications because the
machine within the private network must be able to be reached even without
a first request leaving the network because peers must also work as servers
and accept connections from outside. The problem is that in this case there
is no preliminary message instructing the NAT on a certain mapping and
therefore the internal machine is not reachable because the router rejects the
request. In other words, hosts behind a NAT are only authorized to initiate
outgoing traffic and connections while they are never authorized to receive
incoming traffic and connections initiated by a foreign host.

There are several solutions to this problem, even considering that this prob-
lem may arise in different contexts (e.g. only one of the two peers is behind a
NAT, or both are behind a NAT) These solutions are also different depend-
ing on the level of transport used. Some solutions have proved to be more
efficient, others more stable. Unfortunately, there is no solution that can
be applied in any case, also because the success of the NAT traversal also
depends on the type of NAT and the router model and its configuration.

A first solution could be that of relaying, i.e. using a server or in any case
a machine with a public TP as an intermediary between the two ends of
the communication (e.g. the sender peer and the recipient peer, using the
tracker server as an intermediary). This solution is highly inefficient because
it requires that data is always forwarded from this central machine, wasting
bandwidth and computational capacity, and introducing some delay. This
solution is the one used by Skype to solve the problem.

Another approach is the so-called "NAT hole punching", perhaps the most
efficient and used solution. It always requires the presence of a central server
that knows both the private and public IP addresses of the two machines that
want to communicate. When two machines want to communicate, they ask
the server for the addresses of the other machine and try to communicate

94

Chapter 7. Main issues

simultaneously. This can mean that at a certain point one of the NATs
has a port mapping configuration that makes a connection request "enter".
Unfortunately, this technique has a success rate of 60% when it comes to
TCP connections and 80% for UDP, because it is very dependent on the
behaviour of the router [14]. It also requires that both machines want to
communicate as in the case of BitTorrent where the communication takes
place on a stable and usually bidirectional connection, in fact once created
it is maintained until one of the two peers does not leave the torrent. In
the case of myP2PSync this situation does not occur because the connection
between the peers is established only when necessary, in fact it would be
useless to keep an active connection if there are no files to be synchronized.
The technique would be implemented with a notification system for the peer
to be contacted. E.g. peerB wants to communicate with peerA, so peerB
alerts the server that it passes the news to peerA, for example through a
mechanism of polling peerA to the server. At this point both peers try to
connect. All this can be really inefficient and would introduce significant
delays in synchronization, especially in the case of small files.

A third solution is that of a simple port forwarding. There are several tools
that implement this technique, including miniupnpc. This tool also has a
binding for the Python language, which unfortunately is not yet compatible
with Windows. It was therefore decided to use the command line application
directly by integrating calls to instructions in Python (using the os module).
This solution unfortunately only works with routers that enable upnp, which
is a rather rare case. In fact it usually has to be activated manually by
accessing the router, which is possible in home routers but hardly works in
environments like the corporate one. This approach has another disadvan-
tage: if two peers run the server on the same port (which is arbitrarily chosen
from the free ports) and both use port forwarding, it will only be effective
for one of the two machines. The other one will then not be reachable from
outside but only from other peers within its own network. The latter case is
very rare but it is still possible.

Finally, the use of a last solution, that of VPNs, was considered. There
are several options that focus on the problem of NAT traversal, including
PeerVPN and ZeroTier. The former is unfortunately only compatible with
Linux while the latter is cross-platform but requires administrator privileges.
It was therefore decided to implement a resolving approach based on Ze-

95

Chapter 7. Main issues

roTier, which is completely open source. Since there is no binding available
for Python, the command line utility has been integrated into the applica-
tion using the os module. Citing the definition given in the official ZeroTier
documentation [15]:

“ZeroTier is a distributed network hypervisor built atop a cryptographically
secure global peer to peer network. It provides advanced network virtualiza-
tion and management capabilities on par with an enterprise SDN switch, but
across both local and wide area networks and connecting almost any kind of
app or device.”

In short, ZeroTier allows all nodes in the same network to communicate as if
they belonged to the same LAN. It also encrypts and decrypts messages that
are exchanged. The operation is based on the use of the methods previously
described, in particular the NAT hole punching and relaying. With the free
option offered by ZeroTier it is possible to create and manage networks up
to a maximum of 100 nodes. There are also paid options that allow you to
create networks with an indefinite number of nodes. All you had to do was
create and configure a personal network for the application with its own ID.
Within the application, the peer connects to this network using the provided
ID and disconnects from the network shortly before closing. The rest of
the logic of the program remains unchanged with the only difference that
the IP addresses used to generate the connections are no longer the real
ones but those assigned by ZeroTier to the various peers. In order to do
that the tracker server registers a peer using its ZeroTier IP address and
not the real one. The ZeroTier addressing approach has been extended also
to the server, although it does not need it because it can be reached at a
public address, in order to exploit the cryptographic mechanisms provided
by ZeroTier also in the exchange of messages with peers. Since the ZeroTier
IP address of the server is unknown to the peer when the application is
started, it sends a request to its public IP address in order to retrieve it.
From then on, all messages are sent from the peer to the ZeroTier IP address
to ensure the security of the connection. With regard to the security of
communications above ZeroTier I report the following statement extracted
from the documentation:

“Packets are end-to-end encrypted and can’t be read by roots or anyone
else, and we use modern 256-bit crypto in ways recommended by the profes-

96

Chapter 7. Main issues

sional cryptographers that created it. Asymmetric public key encryption is
Curve25519/Ed25519, a 256-bit elliptic curve variant. Every VLI packet is
encrypted end to end using (as of the current version) 256-bit Salsa20 and
authenticated using the Polyl305 message authentication (MAC) algorithm.
MAC is computed after encryption (encrypt-then-MAC) and the cipher/MAC
composition used s identical to the NaCl reference implementation.”

More specifically, the functioning of ZeroTier is as follows:

“Nodes start with no direct links to one another, only upstream to roots (cen-
tral server/s provided by ZeroTier). Fvery peer possesses a globally unique
40-bit (10 hex digit) ZeroTier address, but unlike IP addresses these are
opaque cryptographic identifiers that encode no routing information. To com-
municate peers first send packets "up” the tree, and as these packets traverse
the network they trigger the opportunistic creation of direct links along the
way. The tree is constantly trying to "collapse itself” to optimize itself to the
pattern of traffic it is carrying.”

Peer to peer connection setup goes like this:

1. A and B are two peers and both are registered in the ZeroTier network

2. A wants to send a packet to B, but since it has no direct path it sends
it upstream to R, a ZeroTier server.

3. If R has a direct link to B, it forwards the packet there. Otherwise
it sends the packet upstream until a ZeroTier server with knowledge
about B is reached and the latter forwards the packet to B.

4. R also sends a message called rendezvous to A containing hints about
how it might reach B. Meanwhile the root that forwards the packet to
B sends rendezvous informing B how it might reach A.

5. A and B get their rendezvous messages and attempt to send test mes-
sages to each other, possibly accomplishing hole punching of any NATs
or stateful firewalls that happen to be in the way. If this works a direct
link is established and packets no longer need to take the scenic route.

6. Since roots forward packets, A and B can reach each other instantly. A

97

Chapter 7. Main issues

and B then begin attempting to make a direct peer to peer connection.
If this succeeds it results in a faster and lower latency link.

Furthermore:

"If a direct path can’t be established, communication can continue through
(slower) relaying. Direct connection attempts continue forever on a periodic
basis. ZeroTier also has other features for establishing direct connectivity
including LAN peer discovery, port prediction for traversal of symmetric IPvj
NATs, and explicit port mapping using uPnP and/or NAT-PMP if these are
available on the local physical LAN.”

The following figure shows a simple case of establishing a connection using
ZeroTier. Both machines are behind a NAT and both are registered to the
same root ZeroTier server. If the direct connection between the machines is
not possible, the server takes care of the relaying operations.

ZeroTier
Server

-
/
s
;
;
/

‘g‘ Direct connection established with NAT Hole Punching - ‘
H_j NAT NAT h‘:]

— d—
ZeraTierClient ZeraTier Client

Figure 7.1: Example of NAT traversal connection established using ZeroTier.

In conclusion, all solutions, except port forwarding, have as their main dis-
advantage a slight increase in the time needed to establish connections and
communicate. Unfortunately, there are no alternatives today. The final
choice was ZeroTier because it is the most reliable and easy to implement
solution. Its main disadvantage is that it requires administrator privileges
and therefore forces users to launch applications as follows:

e in Windows you have to run the python interpreter from a command

98

Chapter 7. Main issues

prompt launched in admin mode;

e in Linux/macOS the interpreter must be run as sudoers using sudo
python3.

If ZeroTier does not work, i.e. if the peer is still not reachable, the firewall
configuration must be changed to allow the ZeroTier application to cross it
over private networks.

7.2 Synchronization problems

Another crucial and problematic aspect of distributed application develop-
ment is synchronization. The fact that different users have access to common
resources, in the case of myP2PSync we talk about files or groups, should
be managed as precisely as possible to avoid situations of inconsistency and
error. Unfortunately it is not always possible to manage these situations
in a precise and rigorous way, because the synchronization of files is not an
instantaneous operation but it takes some time to be completed. It has al-
ready been pointed out in previous chapters that a system like myP2PSync
works better in contexts where the sources of synchronization, i.e. users who
actually modify files and submit new versions to the system, are limited or
unique. If only one user forces the synchronization of the files, their distri-
bution will be precise, coherent and sequential. If instead we consider more
peers that modify the same file, the ideal case of myP2PSync functioning is
the one in which each peer modifies the file only after the last synchronization
has ended and in the meantime no other peer acts on the same version.

E.g. Ideal case synchronizations flow:

1. peerA adds file.txt;
2. peerB completes the download of file.txt;

3. peerB modifies file.txt and sends an update message to all the other
peers;

99

Chapter 7. Main issues

4. peerA receives the message and downloads file.txt’s new version;

5. peerA modifies file.txt and sends an update message to all the other
peers and so on..

If instead we consider the case in which in the same group two or more
peers modify and submit more or less simultaneously different versions of
the same file can occur critical situations and that lead to loss of useful
data. There is no mechanism in myP2PSync that allows you to merge the
changes, if not overlapped, and distribute only a version of the file that
includes them all exhaustively. This approach is similar to the one used by
file versioning software like Git, based on pull, push and merge operations
and could be considered and added in the future to make it more stable.
In the current implementation of myP2PSync the various versions of the
files are synchronized sequentially, i.e. the first peer to submit a change is
the first to be served, distributing its version. However, if in the meantime
another peer sends a synchronization request, and it is related to a more
recent version of the file (with reference to the timestamp of the file), the
first request is blocked and the new served, making sure that all the changes
of the first peer are lost. It is also possible that the second peer submitting
the change is ignored by the other peers because its version of the file is
older. In other words, there may be different situations depending on the
timing of the synchronization requests and timestamps of the various local
files, but the weak point of such a mechanism is that some changes may be
lost because they are not applied to the latest version of the file.

E.g. Bad case with lost of information

1. peerA modifies file.txt and finishes at t1;
2. peerB modifies file.txt and finishes at t2 > t1;

3. peerA and peerB send an update message to all the other active peers
at time t3 and t4 respectively;

4. at this point two situations are possible considering a peerC point of
view:

100

Chapter 7. Main issues

e t3 < t4: peerC receives the update message from peerA and he
adds the synchronization task to the scheduler queue, possibly
triggering immediately the execution of the download process.
Then he receives the peerB update message, he blocks the synchro-
nization of the peerA’s version and starts the one of the peerB’s
version (because t2 > t1);

o t4 < t3: peerC receives the update message from peerB and he
adds the synchronization task to the scheduler queue, possibly
triggering immediately the execution of the download process.
Then he receives the peerA update message, but t1 < t2 so he
simply ignores the message.

In both cases the changes made by peerA on the file are lost.

Another possible case that can leads to an overwrite of some modifications
made by a peer on a file is the following:

1. peerA is not currently using myP2PSync, but he is registered in syn-
chronization group. Alternatively, he is using myP2PSync but he is
not active in that specific group. Instead peerB is active in the same

group;
2. peerA modifies one of the file at time t1;
3. peerB modifies the same file at time t2 > t1;
4. at this point two things can happen:

e if peerA goes online before t2 the file is correctly synchronized;

e if peerA goes online after t2 its version will never be synchro-
nized, instead it will be overwritten by the new version provided
by peerB.

A possible solution to this problem is to have only one peer in the group
that can submit new versions of a file, but this greatly limits the experience
of using the application. Another possible solution is to aim to make syn-
chronization much faster by sending only the modified parts of a file instead

101

Chapter 7. Main issues

of the entire file and automate synchronization, this would make everything
much more real-time as for example happens in products like Google Docs.
A last approach that can be considered is to keep track of all the overwritten
modified version of a file. Of course, this can be dangerous and slow in case
of big file, while it can be feasible for small files.

7.3 Path compatibility

Since the application is aimed at multiple desktop platforms, specifically
multiple operating systems, the problem of paths had to be solved. Windows
uses the ”\” i.e. backslash as the path delimiter, while UNIX based systems
like macOS and Linux use the ’/’ i.e. slash. However, using the Python3 os
module the management of delimiters is left to the module itself. In creating
paths, for example in the case of a file download where a temporary file is
created, a UNIX-like approach was used, which thanks to the os module does
not create problems even in Windows. So the only thing that happened in
the programming phase was to force the UNIX-like style, going to convert
the backslashes into slash. For example:

scriptPath, scriptName = os.path.split((os.path.abspath(
__file__).replace("\\","/")))

This line of code retrieves the location of the script in the user file system,
so it can be used as location to create the folder containing the synchronized
files. Backslash conversion is just a stylistic detail that ensures that the
paths files are consistent in terms of the delimiter used. In fact, if you do
not replace the path files, inside the file Manager in a Windows environment,
they would appear as follows:

C:\myP2PSync\client/filesSync/groupname/filename

As you can see in this case the first part of the path, the one that leads to
the folder containing the application is Windows style, while the second part
uses the UNIX like approach because forced by the application.

102

Chapter 7. Main issues

7.4 Debugging

The last aspect to be discussed is the difficulties encountered in debugging
the system. Being the application based on a distributed system, we had
to test its use using multiple machines at the same time and evaluating all
possible critical situations that could occur, in order to try to avoid them
and make the system as stable and reliable as possible. This proved to
be very time-consuming, as there are so many possible situations. For the
distribution of the software on the various machines, Git was used, exploiting
the remote repository as a point where to submit the latest version of the
software and especially as a point from which to recover it. In other words,
the software changes were made on a machine and then transmitted to the
remote repository with a push operation. Finally, on the other machines
that you used as testers we simply cloned all the software in order to use
the latest version of the application. We thank the Department of Computer
Architecture of the Universitat Politécnica de Catalunya - BarcelonaTECH
for the kind permission of two virtual machines and two physical machines
for all the time necessary to develop and test the project.

103

Chapter 8

How to use myP2PSync

This chapter provides the information necessary for a user to use myP2PSync,
both considering the installation and startup of the tracker and the installa-
tion, configuration and launch of the client application. It also details some
aspects and constraints of using myP2PSync. The chapter is divided into
the following paragraphs:

e 8.1 How to run a myP2PSync Tracker application

e 8.2 How to run a myP2PSync Client application

e 8.3 Usage constraints

In the following paragraphs we assume that the user has a local version of
the code, which can be easily obtained from my personal GitHub pages:

https://github.com/flcasciaro/myP2PSync

From the command line it’s possible to retrieve the code by executing the
instruction:

git clone https://github.com/flcasciaro/myP2PSync

104

https://github.com/flcasciaro/myP2PSync

Chapter 8. How to use myP2PSync

To run the tracker you need to have the directories trackerApplication and
shared, while to run the client you need to have the directories peerApplica-
tion and shared.

8.1 How to run a myP2PSync Tracker applica-
tion

To run the tracker application, you must first have a machine that is as stable
as possible, both in terms of reliability and network connection. A possible
disconnection or unavailability of the tracker device leads to the crash of the
entire application and in the current implementation there are no recovery
mechanisms.

Before running the tracker server, make sure that the Python3 interpreter is
installed in the device. If it is not, it can be installed using:

e the executable that can be retrieved directly from the site in the case
of Windows systems;

e directly from the command line or a package manager in a UNIX-like
environment e.g. apt install python3.

Once you have python3 installed, make sure you have ZeroTier installed,
the software used to solve the NAT traversal problem. The ZeroTier site
provides all the necessary information. In the case of Windows you will
have to use an installer while in a UNIX environment you will only need the
command line. For further details, please refer to the ZeroTier website where
the various cases and instructions that can be used in the terminal of the
various Operating Systems are listed.

At this point to run the tracker you simply need to run the
myP2PSyncTracker.py script using the Python3 interpreter. For example:

python3 myP2PSync/trackerApplication /myP2PSyncTracker.py

105

Chapter 8. How to use myP2PSync

To ensure that ZeroTier works properly, you must have super user privileges.

e Under Windows, you must open the command prompt using Adminis-
trator mode;

e In a Unix environment, you just have to put 'sudo’ before the instruc-
tion.

The tracker application execution will remain active until the user decides to
stop it using the key combination CTRL+C.

The following figure shows the output following the activation of the tracker,
also highlighting the real IP address of the server and the port number on
which it is executed.

Figure 8.1: Output of the myP2PSync tracker execution starts.

These IP values and port numbers must be entered in the configuration file
of all clients that want to use this server.

8.2 How to run a myP2PSync Client applica-
tion

To launch the client, the process is practically identical to that of the tracker:
you need to install the python3 interpreter and the ZeroTier software using
the same methods already described in the previous paragraph. To make
the client work, however, you must install two additional Python modules:
pyqtd and qdarkgraystyle. The order in which they are mentioned is also the

106

Chapter 8. How to use myP2PSync

order in which they need to be installed. To install both you can use the pip3
utility which is usually installed automatically with python3. For example,
in order to install pyqt5 the command is:

pip3 install pyqtb

Now you have to configure the client so that it can reach the designated local
tracker server. You must then enter the coordinates read in the output of the
tracker application, as highlighted in the previous paragraph, in the JSON
file configuration.json stored inside the folder

myP2PSync/peerApplication /sessionFiles.

The following figure shows a correct setting of the file.

Figure 8.2: Example of JSON configuration file setting.

You can now run the myP2PSync client by using:
python3 myP2PSync/peerApplication/myP2PSyncClient.py

If the tracker is not reachable at startup, due to an error in formatting the
configuration file, you can enter the coordinates in a pop-up window. Use
the format <IPaddress>:<PortNumber> e.g. 147.83.131.5:45154.

8.3 Usage constraints

The myP2PSync system manages the filepath of the files in synchronization
in two possible ways depending on the role of the peer in the addition of the
file:

107

Chapter 8. How to use myP2PSync

e if the peer is the source of the file, i.e. the one who added it, it remains
saved in the location from which it was added, and each version will
override that location;

e if the peer is not the source of the file, it is saved to the default path:
myP2PSync/peerApplication/filesSync/groupname/filename

filename also takes into account any levels of directories.

The system is unable to handle files with names containing spaces, which are
rejected and not added to a sync group. The same is valid for directories
names. It is also required that group names and tokens do not contain spaces.

108

Chapter 9

Testing

This chapter describes the final phase of the project, which is aimed at testing
performance, also with a view to evaluating and optimizing some parameters
of the file-sharing algorithm. One of the following paragraphs also describes
some previous versions of the file-sharing protocol, highlighting the limita-
tions that led to the development of the current version described in chapter
5. The system has been compared with a very similar system developed
specifically for testing that works in Client-Server mode, so as to have a
comparison between the two approachs. The performances were also com-
pared with those of a similar commercial application. The chapter is divided
into the following paragraphs:

e 9.1 Testing environment and tools

9.2 File-sharing protocol parameters optimization

9.3 Previous versions of the file-sharing protocol and their limitations

9.4 P2P vs CS performance

9.5 myP2PSync vs similar product

9.6 Testing result overall

109

Chapter 9. Testing

9.1 Testing environment and tools

The system was tested using four devices, one of which was used to run the
tracker server and three others were used for the clients. The detailed list of
devices is as follows:

e the first device, used to run the tracker, is a Linux machine with Ubuntu
16 distribution. It is associated with a public IP address.

e the second and third devices used to run the client are Linux machines
with the Ubuntu 16 distribution. They also have a public IP address.

e the fourth device, which always performs client functionality, is a ma-
chine with a Windows 10 operating system. It has been used within a
private network, which is useful for testing the NAT traversal capabil-
ities of the application.

All four devices belong to different networks. Access to the three Linux
machines was controlled remotely via SSH connection and using an X11
server to utilize the myP2PSync graphical interface from the local machine.

The integrity check of the transmitted files was carried out using the shalsum
command which calculates the hash shal function of a certain file. The
command is applied to transmitted and received files and the two values
obtained are compared. If they are identical, the file has been transmitted
without errors.

The following figure is a representation of the testing system.

110

Chapter 9. Testing

- PRIVATE
“... NETWORK

E MYPZP’éYNC CLIENT

e / RUNRNING ON LINUX

MYP2ZPSYNC CLIENT e
IW\NTERNET /

/—‘\a
=

WINDOWS

=7

[l
]

MYP2PSYNC CLIENT
RUNNING ON LINUX MYP2PSYNC
TRACKER

RUNNING ON LINUX

Figure 9.1: Testing environment representation.

The study carried out in this chapter focuses on the situation where a peer
adds a certain file to a group and all other peers activate synchronization.
In other words, one node of the network acts as a seed for the file, while all
the other nodes act as normal peers. The study of the parameters carried
out in paragraph 9.2 takes into consideration only this case being the most
common one for a file synchronization system. However, this study could
be extended in the future to other cases, such as the one in which several
peers already own the file and only one other carries out the synchronization
process, working with a view to finding the best configuration of parameters
that work optimally in all conditions.

111

Chapter 9. Testing

9.2 File-sharing protocol parameters optimiza-
tion

Within the file-sharing protocol described in chapter 5, some parameters that
influence the behavior and efficiency of this protocol have been highlighted.
During the testing phase we tried to determine the most appropriate val-
ues for these parameters, going to perform tests in the transmission of files,
keeping track of the transmission time used using certain values of the pa-
rameters. In order to be as independent as possible from the randomness of
the network condition, the tests were always repeated three times, then cal-
culating and considering the average value of the three tests. The system has
been tested considering a seed machine that adds the file to the group and
therefore has all the chunks and two machines that perform the download.
The value indicated represents the average value of the transmission time on
the two machines. The average transmission time relative to files of different
sizes: 100MB, 500MB, 1GB was analysed in order to highlight how the size
of the file influences the efficiency of the protocol.

During the testing phase, the values of MAX THREADS and MAX PEERS
were not optimized, since they are relevant in the presence of a high number
of peers active in the same group, while in the testing phase a maximum of 4
peers active at the same time was considered. Furthermore, the study of the
parameters INITIAL TRESHOLD and TRESHOLD INC STEP has not
been done in detail and is therefore not reported below. However, it has been
verified that the values used in the current implementation are sufficiently
efficient.

9.2.1 MAX CHUNKS evaluation

Initially a certain value was set for the parameters related to the Random
Discard approach, in order to test the parameter MAX CHUNKS. The test
on MAX CHUNKS was carried out using:

e COMPLETION RATE=95%;

112

Chapter 9. Testing

INITIAL TRESHOLD=50%;
TRESHOLD _INC_STEP=0%;
MAX PEERS=10;

MAX THREADS=5.

The tests returned the following results:

MAX CHUNKS | 100MB | 500MB | 1GB
10 47 224 482
30 43 180 385
40 40 177 384
50 39 165 377
60 40 164 360
70 40 163 358
80 39 162 357
100 44 162 348
125 45 175 360
150 47 180 371

Table 9.1: Transmission times as a function of MAX CHUNKS.

The rows of the table show the trend of the transmission times, in seconds,
for files of different sizes as the MAX CHUNKS parameter changes. As you
can see the parameter MAX CHUNKS is also related to the size of the file,
in fact for small files a parameter value less than or equal to 80 is the best.
For larger files, better performance are obtained with a value close to 100.
A too high MAX CHUNKS value limits the exchange of chunks between
non seed peers and tends to monopolize the connections, i.e. you try to
recover too much from a single, or at least a few peers. This is good for small
files, but for large files it is better to have an intermediate value. If MAX -
CHUNKS is too small, too much time is wasted on chunks allocation from the
different threads. It was therefore decided to set the value of the parameter
MAX CHUNKS to 100, as it was particularly effective for medium and large
files.

113

Chapter 9. Testing

9.2.2 COMPLETION RATE evaluation

At this point, having set the value of MAX CHUNKS equals to 100, we
looked for an optimal COMPLETION RATE value, which corresponds to
the percentage of files obtained during the download beyond which the ran-
dom discard approach is no longer used. To perform the test, the other
parameters have been set to the following values:

INITIAL TRESHOLD = 50

TRESHOLD INC_STEP = 0;

MAX THREADS = 5;

MAX PEERS = 10.

The results obtained when the COMPLETION RATE parameter is varied
are shown in the following table.

COMPLETION_RATE | 100MB | 500MB | 1GB
80% 46 164 372
90% 45 161 362
95% 44 160 343
99% 47 165 359

Table 9.2: Transmission times as a function of COMPLETION RATE.

A high Completion Rate value means that the random approach is used for
much of the download, facilitating the spread of chunks outside the seed user.
An extremely high value (99%) is however slightly less performing because it
probably forces the peer to a last iteration very abundant in terms of chunks,
slowing down the closure of the download. The optimal value therefore seems
to be 95%.

114

Chapter 9. Testing

9.3 Previous versions of the file-sharing proto-
col and their limitations

Before the current implementation of the file-sharing algorithm, another ver-
sion was implemented. It was based on the use of threads in a more schematic
and synchronous way. The main thread of the download was responsible for
generating the rarestFirstChunksList and properly creating lists of chunks
to be requested from different peers. Once all lists were generated, the main
thread instantiated all getChunks threads and waited for them to be termi-
nated. When all the threads had finished their task, it would start again
from the beginning until the download was complete. This approach of gen-
erating getChunks threads all at once and waiting for the termination of
each of them before they could continue ended up slowing down threads that
communicated with fast peers. In fact, the threads that were communicating
with slower peers blocked all the others.

An improved version of this algorithm that tries to solve the problem of
blocking fast threads was then implemented using the concept of Round Trip
Time. The main thread, when asking the various peers for their chunksList,
also took note of how long it took them to receive the message and send
their response. In the creation of the lists of chunks to request he used the
RTT as a discriminating factor. A thread that worked with a fast peer was
therefore led to request more chunks than a slower one. All this with the
aim of making more or less the execution time of the various getChunks
threads similar. Unfortunately the networks are very dynamic entities and
their congestion changes over time very quickly. Even the second approach
did not give satisfactory results, and this led to the birth of the current
protocol.

To realize the difference in performance between the old protocol optimized
with the RTT and the current one, some tests on the transmission perfor-
mance have been carried out and are contained in the following comparative
table.

115

Chapter 9. Testing

OLD ALGORITHM | NEW ALGORITHM
100MB 85 44
500MB 268 160
1GB 686 343

Table 9.3: Transmission times comparison of old and current file-sharing algo-
rithms.

The data relative to the new algorithm are obtained considering the optimal
parameters MAX CHUNKS and COMPLETION RATE obtained in the
previous paragraph and using the same values for all the other parameters.
The previous version of the protocol used different parameters that will not
be discussed in more detail in this description. As you can easily see, the dif-
ference in performance is evident, since the new algorithm halves the average
transmission times.

9.4 P2P vs CS performance

During the testing phase we wanted to verify that the P2P approach was
really more efficient than the classic Client-Server approach. A second dis-
tributed application was developed using the CS scheme for sending files,
using transmission protocols similar to those of myP2PSync, of course only
for what concerns the transmission on sockets and not the actual file-sharing
protocol. This application can be found at the following url:

https://github.com/flcasciaro/fileSharingCs

To compare the two systems we have operated as usual in the case of the
myP2PSync system, i.e. a seed user loads a file and a certain number of
peers users receive it. In the case of the Client-Server system instead the
seed corresponds to the server application while the peers are simple clients
that launch requests for files almost simultaneously. The following table
summarizes the data related to the comparison between myP2PSync and

116

https://github.com/flcasciaro/fileSharingCS

Chapter 9. Testing

the fileSharing system based on the CS approach, when you consider only
one seed machine and two that get the file at the same time.

myP2PSync | File-sharing CS
100MB 44 29
500MB 161 144
1GB 343 309
4GB 1250 1180

Table 9.4: Transmission times comparison between myP2PSync and a CS file-
sharing application when two users retrieve a file at the same time.

If we consider a seed machine and three machines that get the file:

myP2PSync | File-sharing CS
100MB 48 45
500MB 159 255
1GB 303 513
4GB 1064 1990

Table 9.5: Transmission times comparison between myP2PSync and a CS file-
sharing application when three users retrieve a file at the same time.

As you can see in the CS approach, times increase almost linearly to the size
of the file and the number of clients that require a certain file at the same
time. However, for small files, the CS approach and a low number of users,
the CS approach is more effective. If we consider the case of 3 machines,
the P2P approach is already slightly more effective than the Client Server
approach. The seed machine at best transmits only one copy of the original
file, while all the other peers synchronize by exchanging chunks between
them. Of course this is the ideal case, but it is unlikely to happen. We can
see how the P2P approach is also more effective in the case of large files.

Finally, the behaviour of the two systems was considered when all three files

117

Chapter 9. Testing

are requested at the same time and therefore the level of congestion is high.
The results are as follows:

myP2PSync | File-sharing CS
2 machines | 151 - 386 - 598 | 192 - 415 -660
3 machines | 107 - 325 - 467 | 265 - 579 - 812

Table 9.6: P2P vs CS: transmission times comparison in case of high congestion
of the network.

The table considers both the case in which the machines that receive the file
are two and the one in which they are three, with a higher level of network
congestion. For each case, three values are indicated, corresponding to the
medium duration of the transmission for the small file (100MB), the medium
file (500MB) and the large file (1GB). As can be easily observed under these
conditions, the Peer-to-Peer approach is much more efficient than the Client-
Server approach.

9.5 myP2PSync vs a similar product

The performance of myP2PSync was compared with that of a similar com-
mercial system, Resilio Sync. The performance of Resilio Sync. was better,
although in the case of small files (100MB) they are very similar. In the case
of medium and large files, 500MB and 1GB respectively, the performance of
Resilio Sync. was much better. In detail, using 3 machines, one of which
works from seed:

myP2PSync | Resilio Sync.
100MB 44 42
500MB 160 143
1GB 343 280

Table 9.7: Comparison of myP2PSync with a similar commercial product in terms
of file transmission time.

118

Chapter 9. Testing

The result is negative for myP2PSync but not daunting. With some future
optimization of the file-sharing algorithm the results could be improved.

9.6 Testing phase results

The results of the testing phase are satisfactory. The file-sharing algorithm
has been subject to numerous changes during development, with the aim of
making it as efficient as possible. It has been shown that the Peer-to-Peer
approach is more efficient than the Client-Server approach even with a limited
number of peers. Moreover, the comparison with a similar but much more
consolidated system has given almost positive results. In addition to the tests
described above, it was also verified that the system is stable and meets the
functional requirements and not described in section 3.3. The system meets
expectations, being able to restart synchronizations interrupted by a partial
state, to work in stress conditions where the number of synchronizations
required is high and is able to react to dynamic changes in the network,
going for example to detect inactive connections or no longer working.

119

Chapter 10

Conclusion and future improvements

The myP2PSync system is currently functioning and meets all the require-
ments outlined during the project planning phase. The system is intuitive
and easy to use, except for an initial configuration phase that must be per-
formed by users with a minimum of experience and skills in the field of
computer science. The development time was slightly longer than expected
during the initial project management phase. In fact, there were several
problems to be solved, such as those described in chapter 7. In addition, the
testing phase has often highlighted limits and errors, the correction of which
has led to new phases of coding and new testing phases. The current state of
the project is satisfactory as evidenced by chapter 9 but the system can cer-
tainly be improved, both in terms of efficiency and performance and in terms
of stability and reliability. Below is a list of possible future improvements
that can be considered and developed:

e availability of myP2PSync on mobile platforms (Android and iOS);

e better integration of ZeroTier in myP2PSync, maybe integrating Ze-
roTier in a standalone module;

e transmission of file modified parts only in order to guarantee faster
synchronizations and avoid incoherence problems, in a way similar to
rsync [16];

120

Chapter 10. Conclusion and future improvements

the possibility for the user to add a file or a directory directly into an
already synchronized directory;

auto sync option: the system should be able to automatically recognize
modified files in order to forward the update messages to all the other
peers in the group;

addition of new functionalities and options for a master user. For exam-
ple: remove a peer from the group, delete a group, block new updates
for a file, change tokens;

higher efficiency of the merge operation using an incremental approach:
instead of merging all the chunks at the end of the download, every time
a chunks is received write it directly in the temporary file;

recovery mode for server: restore status of the server collecting infor-
mation from peers;

adding of a compression mechanism before message send operation, in
order to save bandwith and decrease transmission time;

removal of some usage constraints: users should be able to add files,
directories and groups with name containing spaces.

121

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

5.1

5.2

5.3

5.4

Comparison of Client Server and Peer-to-Peer model architec-

General architecture of the myP2PSync system.
Messages exchanged during the join group operation.

Messages exchanged in order to retrieve the list of peers of a
GTOUD. « « v v e e e e e e e e e e

Messages exchanged in order to retrieve the chunks list from
another peer for a certain file.

Messages exchanged in order to retrieve file chunks.

Gantt chart representing the timeline of the project.

Overview of the myP2PSync system architecture.
Organization of the client application modules.
Example of client application window on startup.

Example of client application window for a group master user.

122

34

52

3.9

5.6

2.7

5.8

5.9

6.1

7.1

8.1

8.2

9.1

Architecture of the myP2PSync file system.
Socket connection establishment.
Communication on a socket connection.
myP2PSync client application multi-threading architecture. . .

Organization of a synchronization multi-threading.

Comparison of access time to specific elements for different
Python data structures.

Example of NAT traversal connection established using Ze-
roTier.

Output of the myP2PSync tracker execution starts.

Example of JSON configuration file setting.

Testing environment representation.

123

List of Tables

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Transmission times as a function of MAX CHUNKS.
Transmission times as a function of COMPLETION RATE. .

Transmission times comparison of old and current file-sharing
algorithms. oo

Transmission times comparison between myP2PSync and a
CS file-sharing application when two users retrieve a file at
the same time. L

Transmission times comparison between myP2PSync and a CS
file-sharing application when three users retrieve a file at the
same time.o

P2P vs CS: transmission times comparison in case of high
congestion of the network.

Comparison of myP2PSync with a similar commercial product
in terms of file transmission time.

124

114

118

Appendix

The following list identifies all the requests that myP2PSync peers can send.
Each request is initially generated by a peer and never by a tracker, who only
provides answers. The first parameter of each request is always the peerID,
so in the following lists it has been omitted.

List of requests that peers can send to a tracker:

e INFO

e HERE <zeroTierIP> <PortNumber>

e GROUPS

e RESTORE <groupName>

e JOIN <groupName> <token>

e CREATE <groupName> <tokenRW > <tokenRO >
e ROLE <action> <destinatonPeerID> <groupName>
e PEERS <groupName> <active/all>

e ADDED FILES <groupName> <filelist>

e REMOVED _FILES <groupName> <filelist>

e UPDATED FILES <groupName> <filesInfo>

e GET FILES <groupName>

e LEAVE <groupName>

e DISCONNECT <groupName >

e EXIT

125

List of requests that peers can send to other peers:

e ADDED FILES <groupName> <filelist>
e REMOVED FILES <groupName> <filelist>
e UPDATED FILES <groupName> <filesInfo>

126

Bibliography

[1]

2]

3]

4]

[5]

6]

17l

8]

Wikipedia contributors, “File synchronization — Wikipedia, the free
encyclopedia.” https://en.wikipedia.org/w/index.php?title=File_
synchronization. [Online|.

K. B. Robert Capra, Emily Vardell, “File synchronization and sharing:
User practices and challenges,” School of Information and Library Sci-
ence - University of North Carolina at Chapel Hill, 2015.

Wikipedia contributors, “Client-server — Wikipedia, the free en-
cyclopedia.” https://simple.wikipedia.org/w/index.php?title=
Client-server. [Online].

Wikipedia contributors, “Peer-to-peer — Wikipedia, the free encyclo-
pedia.” https://en.wikipedia.org/w/index.php?title=Peer-to-peer.
[Ounline].

D. S. Stephanos Androutsellis-Theotokis, “A survey of peer-to-peer con-
tent distribution technologies,” ACM Computing Surveys (CSUR), 2004.

K.D. K. M. F. B. H. Stoica I., Morris R., “Chord: A scalable peer-to-peer
lookup service for internet applications,” ACM SIGCOMM Computer
Communication Review, 2001.

J. I. K. Marling Engle, “Vulnerabilities of p2p systems and a critical look
at their solutions,” Networking and Media Communications Research
Laboratories Computer Science Dept., Kent State University, 2006.

Cohen, Bram, “The bittorrent protocol specification.” https://
bittorrent.org/beps/bep_0003.html. [Online].

127

https://en.wikipedia.org/w/index.php?title=File_synchronization
https://en.wikipedia.org/w/index.php?title=File_synchronization
https://simple.wikipedia.org/w/index.php?title=Client-server
https://simple.wikipedia.org/w/index.php?title=Client-server
https://en.wikipedia.org/w/index.php?title=Peer-to-peer
https://bittorrent.org/beps/bep_0003.html
https://bittorrent.org/beps/bep_0003.html

[9] P. M. Arnaud Legout, Guillaume Urvoy-Keller, “Rarest first and choke
algorithms are enough,” ACM SIGCOMM/USENIX IMC’2006, 2006.

[10] S.S. B. Jahn Arne Johnsen, Lars Erik Karlsen, “Peer-to-peer networking
with bittorrent,” Department of Telematics, NTNU, 2005.

|[11] Python wiki contributors, “Time complexity.” https://wiki.python.
org/moin/TimeComplexity. [Online].

|12| Jessica Yung, “Python lists vs dictionaries: The
space-time tradeoff.” https://www.jessicayung.com/
python-lists-vs-dictionaries-the-space-time-tradeoff/. |[Online|.

[13| Jessica Yung, “How python implements dictionaries.” https://www.
jessicayung.com/how-python-implements-dictionaries/. [Online].

[14] D. K. Bryan Ford, Pyda Srisuresh, “Peer-to-peer communication across
network address translators,” ATEC '05 Proceedings of the annual con-
ference on USENIX Annual Technical Conference, 2005.

|15] Adam lerymenko, “Zerotier manual.” https://www.zerotier.com/
manual/. [Online].

[16] A. Tridgell, Efficient Algorithms for Sorting and Synchronization. PhD
thesis, Australian National University, 1999.

128

https://wiki.python.org/moin/TimeComplexity
https://wiki.python.org/moin/TimeComplexity
https://www.jessicayung.com/python-lists-vs-dictionaries-the-space-time-tradeoff/
https://www.jessicayung.com/python-lists-vs-dictionaries-the-space-time-tradeoff/
https://www.jessicayung.com/how-python-implements-dictionaries/
https://www.jessicayung.com/how-python-implements-dictionaries/
https://www.zerotier.com/manual/
https://www.zerotier.com/manual/

Acknowledgements

Il mio primo ringraziamento va al professore Jordi Domingo Pascual per
avermi seguito e consigliato durante tutto il mio percorso da tesista. Ringrazio
inoltre il professore Fulvio Risso per la disponibilita e professionalita di-
mostrata in questi mesi.

Vorrei inoltre ringraziare il Politecnico di Torino e la Universitat Politécnica
de Catalunya per avermi concesso la possibilita di vivere quest’ultimo anno
del mio percorso universitario in una citta fantastica come Barcellona.

Grazie alla mia famiglia spagnola, che di spagnolo ha ben poco: Alberto,
Aldo, Gloria, Luca e Manuela. E’ stato un piacere condividere con voi le
lunghissime pause pranzo e tutti i momenti che hanno reso 'ultimo anno
uno dei piu belli della mia vita.

Un ringraziamento speciale a Valentina, che in questi ultimi mesi mi ha
spronato a dare sempre il meglio di me. Grazie per le tue attenzioni e la tua
positivita. Grazie per aver creduto in me anche quando ero io stesso a non
crederci.

Ringrazio i miei amici del Poli: Alessandro, Carlo, Lorenzo, Simone B. e
Simone C. Grazie per aver condiviso con me i momenti piu belli e pitt brutti
di questi ultimi 5 anni, dal primo fino all’ultimo esame.

Grazie agli “amici di gin”: Arianna, Leonardo e Manuel. Voi che nonostante
la distanza mi siete sempre stati vicini e che ogni volta che ci rivediamo,
anche dopo mesi, ¢ come se non ci vedessimo da un paio di giorni.

Ringrazio i miei nonni, che mi hanno cresciuto nonostante fossi una gran
rottura di scatole. Voi che siete stati praticamente dei genitori aggiuntivi per
me e non potrd mai ringraziarvi abbastanza.

129

Grazie a mia sorella Roberta per aver sempre tenuto alta ’asticella che mi
ha spronato e motivato sin dai primi anni della mia vita da studente. Sei
stata, sei e sarai sempre per me un punto di riferimento.

Il ringraziamento piu sentito va ai miei genitori, i quali hanno sempre sup-
portato le mie aspirazioni, credendo in me piu di chiunque altro. E’ a voi che
dedico questo sudato titolo. Siete sempre stati per me un grande esempio di
integrita, impegno e perseveranza.

Vi voglio bene,

Francesco

130

	Abstract
	Keywords
	Introduction
	Project introduction: myP2PSync
	Why an user should use myP2PSync
	Terms of use

	State of the art
	File synchronization system
	Distributed application models
	Client-Server model: characteristics and drawbacks
	Peer-to-Peer networks: characteristics
	Peer-to-Peer networks: classification
	Peer-to-Peer networks: main applications and some drawbacks

	BitTorrent
	BitTorrent Protocol: introduction
	BitTorrent Protocol: .torrent metafile
	BitTorrent Protocol: tracker
	BitTorrent Protocol: chunks exchange

	Project planning
	Overall view and stakeholders
	Graphical modelization of the system
	Requirements analysis
	System functioning
	Scheduling of the project development phases

	Implementation tools
	Desktop application vs Web application
	Choice of the programming language
	Choice of the framework for the GUI creation

	Solution analysis
	Architecture of the system and main characteristics
	Code analysis: structure and modules
	Tracker modules: overview
	Tracker modules: myP2PSyncTracker.py
	Tracker modules: reqHandlers.py
	Tracker modules: group.py
	Peer modules: overview
	Peer modules: myP2PSyncClient.py
	Peer modules: peerCore.py
	Peer modules: fileManagement.py
	Peer modules: fileSystem.py
	Peer modules: peerServer.py
	Peer modules: syncScheduler.py
	Peer modules: fileSharing.py

	File-sharing protocol
	P2P Approach
	Chunks size
	File-sharing algorithm
	Random discard approach
	Synchronization stopped or failed

	Devices communication
	Choice of the communication protocol
	Tracker side
	Peer side
	Messages exchange
	Message format

	Multi-threading architecture

	Implementation choices
	Data Structures
	Synchronization on access

	Server reachability
	Previous session information

	Main issues
	NAT Traversal Problem
	Synchronization problems
	Path compatibility
	Debugging

	How to use myP2PSync
	How to run a myP2PSync Tracker application
	How to run a myP2PSync Client application
	Usage constraints

	Testing
	Testing environment and tools
	File-sharing protocol parameters optimization
	MAX_CHUNKS evaluation
	COMPLETION_RATE evaluation

	Previous versions of the file-sharing protocol and their limitations
	P2P vs CS performance
	myP2PSync vs a similar product
	Testing phase results

	Conclusion and future improvements
	List of figures
	List of tables
	Appendix
	Bibliography
	Acknowledgements

