
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea

Digital Identity Systems for Healthcare
Applications

Relatori
prof. Antonio Lioy
ing. Andrea Atzeni

Giuseppe Burrai

Anno accademico 2018-2019

Summary

In the last years, cross-border movements of people, goods and services have increased exponen-
tially in Europe. To ease those activities and satisfy the new needs born from them, the EU
Commission designs different plans taking advantage of Internet Network and digital innovation
for the benefit of the European citizens. For this purpose, the CEF Digital Service Infrastructure
(DSI) was set up by the Commission to finance different pan-European digital services in distinct
fields (e.g., eHealth, Cybersecurity, e-Justice, e-Procurement).

In the healthcare environment, the OpenNCP platform, which is part of the eHealth DSI
project, aims to improve the QoS of European patients allowing the cross-border exchange of
medical data exploiting the already existent digital healthcare systems of each Member State.
Through OpenNCP, an EU citizen can ask for medical treatment in another EU country, without
worrying about prescriptions and his medical history: OpenNCP can retrieve this information
in compliance with Member States’ laws, ensuring trust and security, relying on the national
health information systems. The National Contact Point (NCP), i.e. a single border node,
ensures the interoperability between the different national system and links each internal domain
acting as an entry/exit point for the national infrastructures. Although OpenNCP disposes of
appropriate security measures for ensuring the security of the communications, it suffers from a
weak patient authentication that must be performed before retrieve the medical data; instead,
the authentication of healthcare professionals is under the responsibility of the country where the
treatment is required.

Considering the electronic identification environment, the EU Commission provides eIDAS, i.e.
Electronic Identification Authentication and Trust Services, for improving trust and confidence in
the European cross-border transactions. Technically, eIDAS is another community infrastructure
that ensures interoperability between the different national identification schemes (eIDs) of the
European States, so that European citizens can access and use online public services in other
EU countries more safely and reliably, employing their digital identity issued by their country
of residence. In essence, eIDAS provides a technological solution for extending the use of the
digital identity of EU citizen, released in his residence country, in some other EU Member States.
For instance, this means that an Italian citizen can use public services abroad within the EU,
exploiting his digital identity issued by an Italian Identity Provider.

Taking in account the properties and characteristics of the two mentioned infrastructures, the
HEALTH-eID (HeID) project, in which the candidate is involved during the thesis’ experience,
aims to improve the quality of health services provided to EU people, integrating the eIDAS
cross-border authentication with the OpenNCP data exchange service and exploiting the digital
identity of the foreign citizen in order to solve the problem of the patient authentication observed
in OpenNCP: in this way, a citizen abroad, which asks for a medical treatment and wants take
advantages from the OpenNCP services, can authenticate himself in his country of origin via
eIDAS before consenting to the transfer of his medical data through OpenNCP.

3

This thesis’ work describes the HEALTH-eID approach to solve the OpenNCP patient au-
thentication issue: the solution proposal consists of the development of a Web Application, the
HeID connector, which integrates eIDAS in the OpenNCP workflow, in order to increase trust
and security through the implementation of a reliable authentication service. Besides, the HeID
project includes also a mechanism for the consensus management providing an informative for the
involved patient and giving him the possibility to acknowledge or deny the consent, in agreement
with the General Data Protection Regulation. Initially, the thesis’ activity starts with the study
of the OpenNCP platform and the eIDAS technical infrastructure for understanding the working
of two systems and obtaining the technical knowledge necessary to participate at the European
HeID project.

Completed the study of the technical background, the candidate actively participated at the
HEALTH-eID project, a European project which took place under the supervision of the Euro-
pean Commission and involved several organisations belonging to different Member States (MS):
in particular the project included the participation of Servicos Partilhados Do Ministèrio Da
Saúde (SPMS) and Caixa Mágica Software (CMS) representing the Portuguese MS, the Aris-
totle University of Thessaloniki (AUTh) representing Greece, and finally Azienda Regionale per
l’Innovazione e gli Acquisti (ARIA, former LISPA) with Politecnico di Torino (PoliTo) for rep-
resenting the Italian MS. During the thesis’ activity, the candidate was involved in the technical
design and implementation of the solution proposal, and in details, he contributed to realise the
following sub-components:

• Workflow Manager: Internal module of the HeID connector, it was implemented by the
candidate autonomously. This sub-component manages the business and internal logic of
the HeID Connector orchestrating the whole workflow.

• Patient I/O: Internal module of the HeID connector, it was implemented by the candidate
in collaboration with SPMS. This sub-component is responsible for providing the interactive
views for the patient and includes a Notification module necessary for sending emails.

• eIDAS HProxy: Internal module of the HeID connector, it was implemented by the
candidate in collaboration with AUTh. This sub-component is responsible for managing
the interactions with eIDAS, creating the eIDAS authentication request and handling the
corresponding response.

The thesis work continues with the testing of the HeID connector designed and realised dur-
ing the HeID project, in particular, the candidate verifies the correct behaviour of the modules
responsible for patient interaction (Patient I/O) and the module responsible for interacting with
eIDAS (eIDAS HProxy) in a local environment through a docker infrastructure provided by the
TORSEC group of Politecnico di Torino. Additional tests about the healthcare professional inter-
actions and the integration with the OpenNCP platform were performed by the SPMS and CMS
partners, principally because they are directly involved in the implementation of those aspects.

In conclusion, the result achieved by this thesis was to demonstrate the possibility of integrating
the European eIDAS infrastructure in the OpenNCP platform and proposing the HeID solution
as an answer for the missing patient authentication in the current OpenNCP implementation. To
this end, the ”Health-eID Transferathon” event was scheduled for the 28-30 October 2019 in Porto,
during which the involved partners will provide a practical demonstration of the HeID connector
to the interested Member States, with a set of practical examples concerning the OpenNCP-eIDAS
integration.

4

Contents

1 Introduction 8

2 Background 11

2.1 Security properties of Information Systems . 11

2.2 Federated Identity Systems . 12

2.2.1 Entities . 12

2.2.2 Digital Identity and Federated Identity . 13

2.2.3 Federated Identity Management . 13

2.3 Reference technologies . 13

2.3.1 The SAML Standard . 13

2.3.2 Transport Layer Security . 15

2.4 General Data Protection Regulation . 15

3 Electronic IDentification, Authentication and trust Services 19

3.1 eIDAS Regulation . 19

3.2 eIDAS Infrastructure . 21

3.2.1 eIDAS Node . 22

3.2.2 eIDAS Minimum Data-Set . 23

4 Smart Open Services for European Patients 24

4.1 The epSOS project . 24

4.2 eHDSI System Architecture . 25

4.2.1 National Contact Point . 28

4.2.2 OpenNCP Internal Components . 29

4.2.3 HP and Patient authentication . 31

4.3 Patient Consent . 32

4.4 OpenNCP Security Aspects . 33

5 HEALTHeID: eIDAS-OpenNCP Connector for eHealth 35

5.1 eIDAS cross-border Authentication for the OpenNCP platform 35

5.2 Architectural scheme of the HeID connector for achieving an eIDAS/OpenNCP
connection . 37

5.2.1 Brief overview of the involved components 38

5

5.3 Sequence diagram of the HeID connector workflow in an real scenario 41

5.4 Description and design of the HeID connector components 45

5.4.1 Enhanced OpenNCP Portal . 45

5.4.2 Workflow Manager . 46

5.4.3 eIDAS-HProxy . 49

5.4.4 Patient Data I/O . 50

5.4.5 NCP HProxy . 50

5.4.6 NCPeH-A . 50

5.4.7 NCPeH-B . 50

5.4.8 PatientID Resolver . 51

5.5 Security considerations . 51

5.5.1 Communication between components . 51

5.5.2 Replay attacks . 51

6 HeID Connector Implementation 53

6.0.1 Tools . 53

6.1 Technologies for the Development of Java Applications 56

6.1.1 Spring Framework . 56

6.1.2 Spring MVC . 56

6.1.3 Spring Security . 58

6.1.4 Spring Data JPA . 58

6.1.5 Spring Email . 58

6.2 Technical details regarding the implementation of the HeID Connector module . . 59

6.2.1 Spring Controllers . 61

6.2.2 Business Logic . 63

6.3 Technical details regarding the implementation of the eIDAS HProxy module . . . 64

6.4 Technical details regarding the implementation of the Patient I/O 66

6.4.1 Patient Views . 66

6.4.2 Notification Adapter . 67

7 Results 68

8 Conclusion 69

A User Manual 70

A.1 HEALTH-eID Configuration . 70

A.1.1 Software Requirements . 70

A.1.2 HeID Connector - Workflow Manager . 74

A.1.3 Patient I/O: the Notification Adapter . 76

A.1.4 eIDAS HProxy . 77

A.1.5 NCP HProxy . 79

6

B Programmimg Manual 83

B.1 HeID Connector: source code, resources and business logic 83

B.1.1 Class: Encounter . 83

B.1.2 Interface: EncounterRepository . 84

B.1.3 Class: PatientData . 84

B.1.4 Interface: PatientDataRepository . 85

B.1.5 Class: NotificationData . 85

B.1.6 Class: NotificationType . 86

B.1.7 Class: ErrorResponse . 86

B.1.8 Class: PatientAcknowledge . 86

B.1.9 Interface: AcknowledgeRepository . 86

B.1.10 Interface: NcpHProxyService . 87

B.1.11 Interface: PatientConnector . 88

B.1.12 Class: HeiDClientController . 88

B.1.13 Class: PatientController . 91

B.1.14 Class: EidasHProxyController . 93

B.1.15 Class: Workflow Manager . 93

B.1.16 Class: JwtAuthenticationEntryPoint . 96

B.1.17 Class: JwtAuthenticationTokenFilter . 96

B.1.18 Class: FileUtils . 96

B.1.19 Class: JwtTokenUtils . 97

B.1.20 Class: SearchFieldsFormUtils . 98

B.1.21 Class: HealtheidConnectorConstants . 98

B.1.22 Class: HealtheidExceptionHandler . 98

B.1.23 Class: PersistenceJNDIConfig . 99

B.1.24 Class: WebSecurityConfig . 99

B.1.25 Exceptions . 100

B.2 HeID Notification Adapter: source code, resources and business logic 100

B.2.1 Interface: HealtheidNotifier . 100

B.2.2 Class: HealtheidNotification . 100

B.3 HeID eIDAS HProxy: source code, resources and business logic 101

B.3.1 Class: EidasMappingService . 101

B.3.2 Class: AuthRequest . 102

B.3.3 Class: AuthResponse . 102

Bibliography 103

7

Chapter 1

Introduction

“I’m Italian, and I work in Greece. I want to use Greek health services if I need them.
Some years ago, I worked in Portugal: here I had received several medical treatments.
Before thinking about therapy, the doctors asked me for some health information, but
I didn’t remember exactly my clinical history.

So Portuguese and Italian doctors had exchanged emails, with attached my medical
archives containing pathologies, and other sensitive data. I care about my data, and
I think that emails are not an excellent way to exchange them.

Anyway, after this exchange, Portuguese doctors spent much time to understand my
Patient Summary written in Italian, and I waited a long time before having a diagnosis
with the corresponding therapy.

Internet technology is powerful nowadays. Is there a way to recover clinical summary
through the internet, safely and reliably, respecting the patient’s privacy and with the
possibility of demonstrating his proper identity before recovering medical data?”

Technological progress and Globalization are two phenomena that significantly changed the
European Continent and all the World. In the last three decades, the commercial escalation
between different States and the increase of cross-border investments, rather than the speed of
communications and information exchange, has led people travelling for business in all the Europe.
To support this mobility, in 1985 some European States belonging to EEC (European Economic
Community) drafted the Schengen Agreement, that “entitles every EU citizen to travel, work
and live in any EU country without special formalities” [1]. Gradually more and more States
decided to join this programme until the Schengen Area was born in 1995: within this special
geographic Area, every person who legally belongs to one of the signatory Nations is free to move,
without stopping at borders to show the passport and being subjected to boundaries checks. This
political measure encouraged not only businessman and workers mobility but also the movement
of all European people who have begun to travel abroad for study or leisure reasons.

Meanwhile, the EEC has become European Community (EC) in 1992 and then European
Union (EU) in 2007, without changing the integration policy and persisting with the European
unification program to simplify exchanges and movements between the Member States. Nowadays
the Internet spread and the birth of digital world feed this mobility, leading the way to new
challenges and opportunities in an increasingly connected world; but it also exposes the society
to new risks (e.g. privacy). Indeed the internet and digital technologies are changing our world,
making it faster and faster; thus to take advantages of the Internet Network and Digital Age,
the EU Commission and Parliament have issued new directives and regulations in order to create
a Digital Single Market (DSM) [2], i.e., a single market restricted to the large borders of the
European Union where the free movement of products, people, services and capital is guaranteed
and where citizens and businesses can easily have access to online goods and services with a
high level of consumer and personal data protection, irrespective of their nationality or place
of residence. Therefore, it is not difficult to observe that cross-border activities have increased

8

1 – Introduction

throughout Europe, and consequently foreign people have started to use many public services in
the other Member States, more often than in the past.

Nevertheless, DSM is only the first step towards a higher and greater EU ambition: create
an inclusive Digital Society [3], in which all the digital services offered by a Country become
accessible to all EU citizen. Hence, it is necessary to identify each person to assess whether he
has the right to benefit from services offered by the host country, or not. In this scenario, the
eIDAS (electronic IDentification, Authentication and trust Services) Regulation and Electronic
Identification Systems plays a fundamental role, in particular the Digital Identity becomes a
necessary tool in the citizen’s hands to safely use the digital services that each State can offer,
like eGovernment, eHealth and other Digital Public Services.

Considering the increase in the usage of information technology in the healthcare sector, if we
think of what doctors can do today relying on telematics technology, asking health information
about their patients from colleagues that work in other Countries while healthcare professionals
using more often ICT applications for different medical purposes, the European Union decided to
define a way for regulating and giving common guidelines for enhancing the use digital information
systems in healthcare. Thus is born the eHealth word, which expresses the use of ICT for providing
digital health and care services. According to the Commission, eHealth is:

“Digital health and care refers to tools and services that use information and commu-
nication technologies (ICTs) to improve prevention, diagnosis, treatment, monitoring
and management of health and lifestyle. Digital health and care has the potential
to innovate and improve access to care, quality of care, and to increase the overall
efficiency of the health sector” [4].

In particular for guaranteeing better healthcare experience in the European Union, the Com-
mission establishes, with the Directive 2011/24/EU for patients’ rights in cross-border healthcare
[5], that each EU citizen has the right to access to public health services in any EU country and
to be reimbursed for the treatment abroad by his residence country. However, for improving the
quality of service, it is necessary to interconnect the National healthcare systems in order to ex-
change information about patients abroad concerning the most important aspects of their health,
such as allergies, surgeries, current medication and other clinical records. For the purpose, the
EU Commission proposes the realisation of digital cross-border infrastructure through the eHealth
Digital Service Infrastructure (eHDSI) [6] programme, which foresees the integration of national
platform at the community level for exchanging Patient Summaries and ePrescriptions. The Na-
tional Contact Point component ensures this integration: it is deployed at the national country
level and is responsible for the interoperability of the national health system of each country
among the other European healthcare systems. From a technical point of view, the digital eHDSI
infrastructure is based on the OpenNCP platform, which aims to retrieve the clinical records
of a patient that requires for treatment abroad, ensuring the security of the transmitted data.
Although appropriate security measures ensure the security of the communication, OpenNCP
suffers from a weak patient authentication: indeed, while the authentication of the healthcare
professional (HP) is under the responsibility of the country in which the citizen asks for a service,
the patient’s one is done locally by the HP checking the patient’s health insurance card, and is
practically absent in the home country of the involved subject, i.e. the country in which the
data are stored. Hence, in summary, the OpenNCP platform, at state of the art, retrieves some
sensitive data, through a cross-border exchange, without performing the authentication of data
owner in the entity where the data resides. In response to this problem, comes the proposal to
integrate the eIDAS cross-border authentication service in OpenNCP, in order to improve security
providing a reliable authentication mechanism for the patient abroad before authorise the cross-
border data exchange: the technological solution, designed and developed within the HEALTHeID
project, consist in the development of a software NCP-eIDAS connector, called HeID Connector,
which gives an active role to the patient handling his authentication process relying on eIDAS
and, based on the result of the cross-border authentication, allows, or not, the recovery of medical
data through OpenNCP. Also, in its workflow, the HeID Connector foresees the informative and
consensus management, designed according to the EU General Data Protection Regulation.

This document reports the fundamental principles of the eIDAS and GDPR Regulation with
an overview of the eIDAS and OpenNCP infrastructures; the description continues presenting

9

1 – Introduction

the HeID solution proposal for solving the weaknesses of patient authentication, followed by the
design choices and the implementation details. The thesis activity took place within the European
HEALTH-eID project, which involved directly the European Commission and various organisa-
tions representing the Member States participating in the project: namely Servicos Partilhados
Do Ministèrio Da Saúde (SPMS) and Caixa Mágica Software (CMS) for Portugal, Aristotle Uni-
versity of Thessaloniki (AUTh) for Greece, and ARIA (former LISPA) with Politecnico di Torino
for Italy. The design activity, such as the implementation, was carried out by the candidate with
a strong and active collaboration among the mentioned partners.

In conclusion, the thesis’ project presented here intends to offer a concrete solution to the
problem mentioned above, exploiting the eIDAS interoperability services in the field of digital
identities, for improve trust and security inside the eHDSI OpenNCP.

10

Chapter 2

Background

This chapter presents some key concepts understand what a Digital Identity is and how it works.
It includes also a brief overview concerning the security property of information systems and the
General Data Protection Regulation.

2.1 Security properties of Information Systems

Computer security is the set of means and technologies used to protect Information Technology
(IT) systems in terms of availability, confidentiality and integrity of IT goods or assets. The NIST
[7] agency describes computer security in his Computer Security Handbook as follow:

The protection afforded to an authentication information system in order to attain
the applicable objectives of preserving the integrity, availability and confidentiality of
information systems resources (includes hardware, software, firmware, information/-
data, and telecommunications) [8].

A security service is a service realised to ensure a specific kind of protection to digital resources
which reside or are exchanged by information systems. The RFC-4949 provides the following
definition: “A processing or communication service that is provided by a system to give a specific
kind of protection to system resources” [9]. For realise a security service, it is necessary to design
security mechanisms that guarantee the following security properties [10]:

• Authentication: the assurance that the parties involved in a communication are the ones
that claim to be, and is called peer entity authentication. Another aspect of satisfying is
the data-origin authentication, which means having to guarantee the identity of the source
of the received data.

• Access Control: it is the capability to restrict access by using authentication or autho-
risation mechanisms in order to control the entities attempting to access the system and
prevent the unauthorised use of a resource.

• Data Confidentiality: the protection of transmitted data from passive attacks. Several
levels of protection can be applied to protect the content of data, depending on the level
of the protocol stack to protect. Another aspect of confidentiality regards the protection
of information that can be deduced from a traffic analysis (e.g. source and destination,
frequency, length).

• Data integrity: the certainty that the accepted data are exactly the same as transmitted
by an authorised entity (i.e. contains no alterations).

• Nonrepudiation: it avoids that a sender/receiver may deny having sent/receive a mes-
sage; it protects messages proving that the entities involved in a communication are in fact
participating.

11

2 – Background

• Availability Service: the property of a service or a resource to be available when some
authorised entity requires it.

An information system must satisfy the mentioned properties realising the corresponding security
mechanisms, which can be designed for providing security measures at different levels.

2.2 Federated Identity Systems

The internet widespread has led to growing up the number of online services. Each service, to
protect itself from malicious users, has to implement some security policies including an authen-
tication service with an access control mechanism, in order to define an identity for the entities
attempting to use the services, providing them with credentials, e.g. username and password, to
access the service in the specific domain. In this scenario, an ordinary user that wants to read his
email needs to authenticate first; the same if he wants to read an online newspaper or manage
his pay-TV account. However, each online service belongs to a different domain; therefore, the
user has several access codes in his hands where each code is specific to a service. Having a lot of
different specific credentials increases the probability of identity thefts and unauthorised accesses.
Federated Identity allows to have a single credential to access different resources belonging to
different security domains and reduces the insecurity due to the high number of access codes
managed by the user, also increasing his awareness: indeed, the comfort to use a single digital
identity to access online services makes its credentials important and precious for him, because
they represent the unique key that he can use to do online activities, considering that some of
these are strictly personal, e.g. Internet Banking or emails checking.

2.2.1 Entities

In each domain, a single accredited entity manages credentials, i.e. Identity Provider, which
guarantees that the user is who he claims to be. In a federated system, organisations and service
providers must agree and trust each other, establishing rules and guidelines for managing these
relationships of trust; these agreements are called federation. In other words, a federation is a
heterogeneous system composed of different organisations and domains, in which each participant
must sign a set of rules that allow all members to trust each other, and where multiple entities
can interact through a shared infrastructure. Those entities fulfil different actions in each domain
and can act as a Service Provider (SP), an Identity Provider (IdP) or an Attribute Provider (AP).

Service Provider (SP)

Service Provider is the entity responsible for providing the requested service to one or more
members of the federation; members must be authenticated.

Identity Provider (IdP)

Identity Provider is the entity responsible for maintaining and managing information relating to
the identity of the End User. IdP has the task to authenticate the user and guarantees for his
identity.

Attribute Provider (AP)

Attribute Provider is an entity which gives support to IdP if the authentication process needs of
some additional attributes that qualify users (states, roles, titles, positions).

12

2 – Background

2.2.2 Digital Identity and Federated Identity

Digital Identity is the set of attributes that a natural or legal person has in a given domain. A
person can have multiple digital identities at different services such as social networks, e-commerce
sites or banks. For users, managing this multiplicity is very complex and can significantly increase
security risks such as identity theft or privacy breaches.

Federated Identity is an extension of Digital Identity to multiple security domains: in
essence, the users have a single digital identity and can be authenticated a single time before
accessing to different applications or resources that belong to different domains.

2.2.3 Federated Identity Management

Overall, for sharing a unique digital identity accepted by multiple domains, the involved organ-
isations must form a federation by agreeing on the standards and technologies to be used for
ensuring the portability of digital identities, and define a mutual level of trust to exchange the
information securely: the set of these accepted policies, technologies and standards outlines the
Federated Identity management. With the Federated Identity, the users can access to different
services belonging to heterogeneous domains, authenticating himself by an organisation, which
must belong to a federation and emit a security ticket that can be employed by the user as au-
thorisation proof to access services related to other domains and managed by organisations which
are joined the federation.

In particular, to authorise a user belonging to another domain, the service provider of the
involved company needs an identification assertion from one of the IdPs which belongs to the
federation, including the necessary attributes required for providing the requested service. To
allow the user authentication process, the Service Provider displays all IdP profiles registered
within the federation, relying on a register that contains the list of trusted IdPs: the user chooses
the authentication point from the list, so then the SP redirects him to the selected IdP, where
the authentication process begins. Once the authentication assertion is complete, with the set of
necessary attributes, the IdP redirects the user to the SP that initially started the authentication
request. Afterwards, the authentication assertion is received by the SP, which can complete the
authorisation process and allow access to the service initially requested.

2.3 Reference technologies

2.3.1 The SAML Standard

The Security Assertion Markup Language (SAML) is an OASIS [11] standard used for exchang-
ing authentication and authorisation data in a multi-domain distributed system through the so
called assertion that are security object which contains security information about the authenti-
cated entity. The SAML Standard aims to provide an XML-based syntax, and related rules, for
exchanging security information between remote entities that interacts on the internet network.
This information consists of assertions exchanged between asserting parties, i.e. the entities that
issue them, and relying parties, i.e. the entities that request them and that can make use of them
for authentication and authorisation purposes.

Currently, the SAML specification is at the version 2.0, that is incompatible with the previous
versions, and has a modular organisation, expressed by the following concepts:

• Assertions: SAML objects which contains information about a subject or an entity. They
are used to transport safely authentication and authorisation information. Their structure
is defined in the SAML-core document [12, section 2].

• Protocols: The assertions need to be appropriately exchanged for communicating the au-
thentication attributes at the entities which requires them. Therefore, the SAML Standard
defines the related protocols which must be used in a SAML information exchange, which

13

2 – Background

Figure 2.1. Federated Identity Architecture: the user is authenticated once before use application
services belonging to domains of different organisations that have joined the federation.

consists in a request-response mechanism. The details of such protocols are explained in
[12, section 3].

• Binding: The protocols establish the structure of the information that can be exchanged
between the involved entities, but do not determine the specific modes of transport. About
that, the the SAML Standard defines specific bindings for indicating how to effectively
implement in SAML the exchange of security information through certain transport pro-
tocols (for example HTTP or SOAP). More information is detailed in the SAML-Bindings
document [13].

• Profiles: a profile identifies a particular combination of types of assertions, protocols and
SAML bindings designed to support a specific use case considered relevant for online inter-
action between entities. The most used profile is the Single Sign-On (SSO), defined in [14,
section 4.1], which describe how SP can make available services usable via web browser by
users,

Furthermore, the SAML specification foresees the possibility to extend the standard (e.g.
adding other types of assertion), as well as the use of metadata [15], i.e. constructs having a
standardised structure for the description of some information that characterise SAML entities
and support interactions between them. In particular, the metadata describes the properties of
the entity with the necessary information useful to correct initialise a SAML session. Usually
metadata are defined in a XML document which contains the informations expressed within a
<EntityDescriptor> XML element: before any interaction, each entity must have the counter-
part’s metadata available for starting a SAML session, therefore, the involved entities needs to
publish and make its metadata available and remotely accessible through an exposed interface
that consist of an HTTPS service, whose address is well-known and easily recoverable.

14

2 – Background

2.3.2 Transport Layer Security

Transport Layer Security (TLS) [16] is a standard technology that provides a security service en-
suring the security of connections in an internet communication and protecting the data exchanged
between the involved entities. TLS is an updated and more secure version of the deprecated Se-
cure Socket Layer (SSL), designed by Netscape Communications: this protocol provides security
at Transport Layer, establishing a end-to-end communication between the source and the desti-
nation on a TPC/IP network, and in particular it ensures authentication (mandatory for a Web
Server), encryption and data integrity exploiting different cryptographic methods and algorithms
that can be applied on the messages before sending them over the network [17]. Indeed with
SSL/TLS, two entities that want to communicate with each other must, first of all, negotiate
how to create a secure channel and which security parameters to use, i.e. the so called “cipher
suite”. Second, they proceed with the x509 Certificate exchange, which ensures the identity of
the involved parts and provides the cryptographic keys for ciphering the messages: at this point,
each part can verify the authenticity of the counterpart’s certificate in order to check its validity
and establish a trust relationship. Finally, a secure channel is created and the two entities can
exchange message in security. This mechanism is called SSL/TLS Handshake and is described in
details in [18], [19].

The HyperText Transfer Protocol Over SSL (HTTPS) [21], is the most used protocol for estab-
lish a security channel combining SSL/TLS with the HTTP standard. Indeed HTTPS is a variant
of the HTTP protocol used for transferring web pages on the internet; but while in HTTP the
communications are all in plaintext, the HTTPS version provides a safe communication creating
a secure channel, encrypted through the SSL technology, in order to prevent communication with
untrusted systems and avoid the manipulation of data of a potential malicious user.

2.4 General Data Protection Regulation

The General Data Protection Regulation (GDPR) [22] is a European Regulation which enforces
and normalises the data protection of European citizens; it is entered into force since the 25 May
2018. The GDPR only regulates the processing of personal data of natural persons and therefore
the personal and similar information of subjects such as corporations, companies and public
bodies, associations and foundations, are excluded from the application of the rules expressed
in the document. Its application is extended to organisations that have their registered offices
outside the EU, but that process the personal data of residents in the European Union. Its
purpose concerns three basic objectives:

1. protect people about the processing of their data

2. give at EU citizens more control in the way of their data are stored and treated,

3. check how personal data are exported outside the UE.

Hence, public administration and private Service Providers, which treats with some personal
information about their users, must comply with the requirements and tools foreseen by the
Regulation that can be summarised as follows:

• The treatment register (Art. 30) is a priority fulfilment for keeping track of treatment
activities, which the Data Controller is obliged to comply according to the principle of
“Accountability”. Some activities must be tracked in this register, for instance, the purpose
of data processing, the description of data processed, the data protection measures adopted,
the description of the categories of the data subject and others. This register constitutes
the more important document to prove that the Data Controller has fulfilled the directives
of the Regulation.

• Risk assessment (Art. 32): according to the mentioned article, the owner or manager of
the processing of personal data must put into practice technical and organisational measures,

15

2 – Background

so that the level of security is adequate to the risk. For this reason, it is necessary a model
that assesses what the risks to privacy are, what is the security level, also calculating the
probability of occurrence of threats, and what are the consequences that can derive from a
damaging event on the data.

• The impact assessment (Art. 35) is a process aimed at identifying, describing and eval-
uating an impact assessment on data protection if a type of treatment may present a high
risk for the rights and freedoms of natural persons to whom personal they data refer. The
impact assessment is technically defined as “Data Protection Impact Assessment” (DPIA),
and the Article 35 of GDPR gives the guidelines on how to perform this evaluation, which
should be done in advance, before the data processing. The DPIA process can occur, in
particular, when the use of new technologies is involved; when the impact assessment indi-
cates that the treatment presents a high risk, the owner is obliged to consult the supervisory
authority before proceeding with the treatment.

• The prior consultation (Art. 36) is the procedure by which the data controller, before to
proceed with the processing, consults the supervisory authority, e.g. for Italy the“Garante
della privacy”, if the performed impact assessment indicates that the treatment would have
a high risk in the absence of measures, which the data controller can take to mitigate the
risk.

• The Data Breach procedure (Articles 33 and 34) exposes the action plan that the or-
ganisations must follow if a data breach will hit them. The affected organisations must
communicate the data breach to the Guarantor through a standard notification procedure
reporting the situational analysis, evaluation of data involved, impact description, preven-
tive measures and actions, supervision. Besides, the organisations involved in a data breach
must notify it within 72 hours of its discovery.

• The agreement with joint owners (Art. 26) is a model which try to solve some problems
that revolve around the concept of “responsibility” in the field of personal data protection
for concretely determining “who does what” and what impacts the individual choices have
in a particular situation. The model agreement establishes the rights and obligations of each
joint owner about the processing of personal data.

• The appointment of the managers (Art. 28) it is a mandatory appointment that gives
the manager a large number of tasks and charges, that may imply, among the other things,
the keeping of a treatment register or the implementation of security measures and also
requires a mandatory signing of a specific contract. This normative defines general guidelines
in order to leave to parties a significant autonomy in the definition of the task.

• The appointment of the authorised (Article 29) and the training for the authorised
(Article 39): anyone who acts under the authority of the Data Processor and who has access
to personal data, cannot process such data unless authorised to do so by the data controller.
Moreover, adequate training is required both for those who coordinate the treatments and
the authorised to treat the data: the staff should include persons in charge (or managers) of
the data processing, but also managers and developers that work in IT field and directors
of commercial units. The training, in addition to being a “prerequisite”, should be aimed
at illustrating the general and specific risks of data processing, the organisational, technical
and IT measures adopted, as well as the responsibilities and sanctions.

• Management of consents and information (Articles 13,14,6,7,8,9). The mentioned
articles define how the consent has to be provided and managed by a Service Provider that
processes personal data. In summary, the consent must be:

1. Unequivocal.

There must be no doubt that the data subject has given his consent. Therefore the
concerned person must perform a “positive action”, such as, for example, ticking a box.

2. Free.

The interested party must be in a position to give his consent freely, without any
possibility of having to suffer “negative consequences” following the failure to grant

16

2 – Background

consent. For instance, the service’s provision or the contract’s execution must not
“condition” the involved person to give unnecessary consent to the provision of the
service or the performance of the contract.

3. Specific.

Consent is strictly related to the purpose for which that processing is performed. If
the collection and processing of data have multiple purposes, consent must be given
for each different purpose.

4. Informed.

The interested party must know what data are processed, and for what purposes they
are treated, how they are treated, his rights and the effects of his consent. The in-
terested party must be informed through a specific Information that, according to the
provisions of the GDPR, must be drafted in a transparent manner and with simple and
understandable contents.

5. Verifiable.

The data controller must be able to demonstrate that the data subject has consented
to the processing of the data, distinguishing the different purposes for which it was
provided.

6. Revocable.

The interested party must be able to revoke the consent at any time, with the same
ease with which he has given it.

• The appointment of the DPO (Articles 37, 38, 39), i.e. the Data Protection Officer. DPO
is a specialist figure, who is appointed by the Data Controller, whose task is to support the
Data Controller in the application of the procedures concerning the new Regulation, also
acting as an intermediary between the Control Authorities and those directly concerned.
The designation of the DPO is mandatory only in particular situation, such as large-scale
data processing, or commanded by a Public Authority, or concerning particular categories
of sensitive data. In all the other cases, it is optional but recommended to facilitate the
application of the rules.

• Data transfer abroad (Articles 44 to 50). The Regulation also defines the instruments
through which the EU laws, concerning the protection of personal data, interact with the rest
of the world. Indeed cross-border data transfers outside the EU are generally prohibited
unless under specific guarantees. The article 44 of the GDPR is explicit in establishing
that transfers of personal data outside the European borders are allowed only in certain
circumstances; besides, the recipients of data are divided into two categories: other Extra-
UE countries and international organisations, such as United Nations, UNESCO, and so
on.

• The codes of conduct (Articles 40 and 41) are encouraged by the Regulation: they are
rules of conduct or uniform practices developed by various international bodies or even by
individual States, particularly widespread in international economic relations. The Regula-
tion treats these codes from a community perspective. The mentioned articles focus on the
need to encourage the drafting of codes of conduct, the establishment of data protection
certification mechanisms and data protection seals and marks.

Also, the Regulation clarifies and adequately defines some principles regarding the privacy
of data, which are the privacy by default, the privacy by design and the Necessity &

Proportionality of data. The former consists in the obligation to have, regardless (by default),
a well-defined procedure for acquiring, processing, protecting and disseminating data that a Ser-
vice Provider collects so that it can guarantee the respect of privacy regarding sensitive data. The
second principle foresees that during the “designing” of a new business process, the part concern-
ing data protection must always be taken into consideration. The latter regards the data which a
Service Provider can ask a user, and in essence, it is inspired to the “need-to-know” principle: it
is established that the data acquired and processed must only be those strictly necessary for the
purpose.

17

2 – Background

During the thesis’ work, special attention was paid to the GDPR, especially for the informative
to the patient, the consensus management and the necessary personal data to store in the RDBMS
database.

18

Chapter 3

Electronic IDentification,
Authentication and trust Services

This chapter presents the European eIDAS regulation and the main legal norms underlying it.
Then it continues with an overview of the eIDAS technical infrastructure and the functional blocks
that compose it, reporting an example of an authentication flow.

3.1 eIDAS Regulation

The EU Commission identifies trust and security processes as the most critical factors in the
cross-border interactions. To increase digital confidence in businesses, public administrations and
service providers that operate in different economic areas - such as the banking and financial
sector, health, public administration and transport, the European Union issue the eIDAS EU
Regulation 910/2014 (electronic identification and trust services for electronic transactions in the
internal market [23]).

Juridically, the eIDAS Regulation repeals the Electronic Signatures Directive 1999/93/EC
[24] exceeding every rule at the national level in order to promote greater interoperability. For
definition:

“A directive [25, art.288, comma 3] shall be binding, as to the result to be achieved,
upon each Member State to which it is addressed, but shall leave to the national
authorities the choice of form and methods”.

Hence, a directive is a legislative act that establishes goals that will have to be achieved by the
EU Countries. However, each State must achieve these objectives in the ways and with the means
that it will decide, in turn, with its own internal regulatory activity.

“A regulation [25, art.288, comma 2] shall have general application. It shall be binding
in its entirety and directly applicable in all Member States”.

Instead, a regulation is a binding act that is directly applicable to all the subjects of the internal
system (constitutional bodies, judges, public administration, citizens, companies, institutions,
etc.), without any form of adaptation by the Member States: the adaptation is not only not
necessary, but it is expressly forbidden. The regulations have mandatory, direct and immediate
effect without having to pass through any regulatory activity of the individual States [26, Chapter
18, Section 4.3]. The use of regulations is a fundamental point to ensure interoperability between
the European States.

In the field of electronic identification and trust services, eIDAS provides the legal framework
for cross-border recognition and guarantees both interoperability and legal certainty for each

19

3 – Electronic IDentification, Authentication and trust Services

transaction. Hence eIDAS responds to the need to have explicit guarantees on the identification
of counterparties, on the legal value of the documents and their transmission and, in general, of the
digital services made available within the Digital Single Market: in summary, eIDAS ensures that
citizens, companies and public administrations can access and use online services in a safer, more
responsible and more convenient way exploiting their national electronic identification schemes
(eIDs) to access public services in other EU countries where eIDs are available. The eIDAS
implementation must follow the next general principles, among others, in order to obtain trust
and confidence of users in the use of cross-border digital services:

• the mutual acceptance of national eID, which is necessary for service providers to serve the
requests of European people,

• a common framework for secure interaction between citizens, companies and public admin-
istration to increase confidence in the digital environment,

• the technological neutrality of requirements in order to not impose a specific technology in
the individual implementations,

• the interoperability between the different digital signature solutions,

• a precise eID quality level defines the level of trust in national electronic identity, according
to the technical and infrastructural controls carried out in the national infrastructure,

• country-specific supervision organisations are necessaries to verify the Regulation adoption
by the service providers (e.g. for data privacy) reporting the status to data protection
authorities at the European Commission.

However, digital identity is not enough to guarantee security and legal validity in the entire
infrastructure. Therefore eIDAS needs Trust Services, which are defined as a set of electronic
services characterised as follows:

• services for the creation, verification and validation of electronic signatures, electronic seals,
electronic time validations, electronic delivery services certified, certificates relating to these
services;

• creation, verification and validation of website authentication certificates;

• signature preservation services; electronic seals or electronic certificates relating to these
services.

This set of services must ensure the time-stamping of documents and transaction, electronic seals,
electronic delivery, legal admissibility of electronic documents and website authentication.

Figure 3.1. EU trust mark for qualified trust services (AgID).

Besides, a Trust Service is called “qualified” if it fulfils the specific requirements established
by the eIDAS Regulation and provides the relative guarantees in terms of safety and quality of

20

https://www.agid.gov.it/it/piattaforme/eidas/servizi-fiduciari

3 – Electronic IDentification, Authentication and trust Services

services; a Qualified Trust Service is subject to supervision by country-specific organisation, one
per Member State, e.g. the “Agenzia per l’Italia Digitale” [28] for Italy. Furthermore, eIDAS
punctually indicates the tasks and the methods of mutual assistance to establish a reference
framework for supervision, it shall be as uniform as possible on the territory of the Union.

The Qualified Trust Service providers are authorised to identify its services through the use
of the EU trust mark for qualified trust services: this trust mark is regulated by the Commission
with the Regulation (EU) 2015/806 of 22 May 2015 [27]. It has four possible representations,
shown in Figure 3.1.

3.2 eIDAS Infrastructure

The eIDAS infrastructure is technically based on STORK (Secure idenTity acrOss boRders linKed
[29]), the European project completed in 2015, that implements a cross-border system which makes
existing authentication models of different member states interoperable [30].

Each Member State, to be active in the eIDAS world, has to notify his national electronic
identification (eID) schema, e.g. Italy notified the “Sistema Pubblico di Identità Digitale” (SPID)
as its internal authentication scheme. Once examined and approved by Commission, the eID
schemes will have to be recognised by all other countries participating in eIDAS, under certain
conditions: indeed the Regulation introduces a three-level security system [23, Article 8, Assurance
levels of electronic identification schemes], thus the obligation to recognise a person identified in
another State applies only if the security level of his national identity scheme is the same (or
higher).

In order to obtain a correct exchange of information among different eIDs, the EU Commission
issued a set of technical specifications [31], foreseen by the Regulation, which provides details
about:

the interoperability architecture that specifies in details all the components of the eIDAS
Network necessary to achieve interoperability of notified eID schemes;

the SAML message format to give specification on the structure of eIDAS SAML messages
(e.g. AuthnRequest, Response and Metatata messages);

the SAML attribute format that reports necessary information to map national eID attributes
with eIDAS attributes correctly (e.g. SAML Attribute Naming);

the eIDAS cryptographic requirements needed to ensure confidentiality and protect the
communication between eIDAS nodes employing SAML and TLS protocol.

The Figure 3.2 shows the logical diagram of the eIDAS architecture. Consider a foreign citizen,
belonging to Country A, that wants to use some digital services in Country B. The citizen holds
his digital identity issues by Country A with an eID-scheme different from Country B. However,
both country A and country B have implemented eIDAS to ensure cross-border authentication of
European citizens belonging to another Member State. Note that both States involved must have
adapted the eIDAS node to make their infrastructure interoperable with eIDAS, following the
specifications dictated by technical regulations. In a real scenario, a foreign citizen that requests
a digital service in Country B has to authenticate himself to prove his identity before he can
benefit the service; thus the authentication process flow can be summarised as follow:

1. The citizen accesses to a Country B service provider and requests to use a service. The
service provider (SP), which operates in Country B, sends an authentication request toward
the eIDAS-Connector accountable for its domain. eIDAS-Connector shall ask to citizen his
origin country if this kind of information is missing in the request.

2. At this point, the eIDAS-Connector shall send a SAML-Request to the eIDAS-Proxy Service
of Country A:

21

3 – Electronic IDentification, Authentication and trust Services

Figure 3.2. eIDAS logical cross-border architecture (eID Community).

(a) if the eIDAS-Proxy Service serves several eID schemes, the Service should provide a
scheme selection interface for the user;

(b) if the requesting relying party is a private entity, the Service may reject the request if
the terms of access of the eID scheme are not fulfilled;

(c) if the eIDAS-Service can not fulfil the requested (or higher) Level of Assurance, the
request MUST be rejected.

3. The eIDAS-Proxy Service shall send the request to the National Identity Provider (IdP).

4. The Country A national IdP, according to the selected eID scheme at least on the requested
Level of Assurance, perform the authentication of the person and shall send the SAML
Response to the eIDAS Proxy Service.

5. The eIDAS proxy Service shall send a SAML Response to the requesting eIDAS-Connector
containing an encrypted SAML Assertion with the eIDAS Minimum DataSet (MDS).

6. The Connector must verify that the Level of Assurance indicated in the Assertion matches
or exceeds the requested Level of Assurance, and send the received authenticated person
identification data to the requesting SP.

To exchange the authentication data, eIDAS employs the SAML protocol with WebSSO Profile,
so error handling shall follow the SAML specification.

3.2.1 eIDAS Node

The eIDAS-Node is the core element of the same infrastructure that allows the cross-border
interoperability of digital identity (eID) systems in EU member states. Each Member State has to
define its technical interfaces for the eIDAS Connector and eIDAS Proxy Service in order to achieve
interoperability between eIDAS node and its national eID system, in compliance with minimum
specifications and requirements. The two software modules play different roles depending on the
kind of request coming in the node. Please, note that eIDAS provide two integration scenarios
for the eIDAS node development: Proxy-based, that implies the use of a Proxy Service in the
Country A, or Middleware-based, that defines the adoption of a software module developed by
Country A and installed in the eIDAS node of the Country B. In this work the focus is on the
eIDAS Proxy-based solution: for further details about the two different implementations, please
consult the reference documentation [31].

22

https://ec.europa.eu/cefdigital/wiki/display/EIDCOMMUNITY/Event+%7C+Webinar+-+eID+under+eIDAS+-+compliance,+state+of+play+and+technology+trends?preview=/37761683/40048672/eID%20webinar%20-%20Alice%20Vasilescu%20and%20Elena%20Alampi%20-%20eIDAS%20compliance.pdf

3 – Electronic IDentification, Authentication and trust Services

eIDAS Node Connector

The eIDAS Connector is an internal component of the eIDAS node, responsible for asking and
providing the digital authentication of a citizen, that belongs to another Member State, from
the eIDAS infrastructure. Indeed it receives the authentication request from a Service Provider,
i.e. the Relying Party, and forward this request in the eIDAS world. If the patient authenticates
himself correctly in his National IdP, the Connector will receive the eIDAS SAML assertion as a
response, containing the SAML Attributes that certify the identity of the citizen.

eIDAS Proxy Service

The eIDAS Proxy Service is another component of the eIDAS node that receives the authentication
requests coming from the eIDAS environment. The Proxy Service elaborates those requests and
translates them in the National format so that it can forward them to National identity provider
(IdP). After the citizen authentication, the Proxy Service receives the response from IdP, maps
national attributes with eIDAS attributes and transmits the eIDAS assertion to the Relying Party
located in the other Member State, providing thereby the cross-border authentication.

3.2.2 eIDAS Minimum Data-Set

The eIDAS interoperability framework allows for cross-border identification and authentication
processes through the exchange of SAML 2.0 messages, including personal and technical at-
tributes. The Regulation specifies a minimum data-set that must be supported by all the eIDAS
node and establishes a set of mandatory attributes required to define the cross-border authen-
tication appropriately and according to different legislations. The Table 3.1 shows the eIDAS
SAML minimum data-set defined by the standard for a natural person: note that the Mandatory
attributes are required by the Regulation; instead, the Optional attributes may be supplied by a
Member State if available and acceptable to national law.

Attribute (Friendly) Name eIDAS MDS Attribute Mandatory/Optional

FamilyName Current Family Name Mandatory

FirstName Current First Names Mandatory

DateOfBirth Date of Birth Mandatory

PersonIdentifier Unique Identifier Mandatory

BirthName First Names at Birth Optional

PlaceOfBirth Place of Birth Optional

CurrentAddress Current Address Optional

Gender Gender Optional

Table 3.1. eIDAS minimum data-set for Natural Persons (eIDAS attribute profile).

23

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS+eID+Profile?preview=/82773108/82796977/eIDAS%20SAML%20Attribute%20Profile%20v1.1_2.pdf

Chapter 4

Smart Open Services for
European Patients

This chapter describes the OpenNCP platform, initially born during the ePSOS project and
then incorporated in the CEF eHDSI activity. It continues with a description of the OpenNCP
platform and its internal component, with a particular focus on the authentication and consensus
management processes. Finally, some security consideration concerning the OpenNCP platform
is reported.

4.1 The epSOS project

Smart Open Services for European Patients (epSOS) project was a European pilot, begun in 2008
and co-funded by the European Union through the Competitiveness and Innovation Program
(CIP)[32]. epSOS aimed to create an electronic health data exchange service in the European
context, based on existing national information systems with the capability to obtain sensitive
medical information securely, in compliance with the regulatory frameworks and information
systems existing in the Countries participating to the initiative 1 . To realise this plan, the coop-
eration between all participants was one of the most important keys: indeed active cooperation is
strictly necessary to achieve a common eHealth infrastructure ables to guarantee interoperability
between the National eHealth systems, surely different in every Member State.

The epSOS project lifetime can be divided into two-time frames: epSOS I (2008-2010) and
epSOS II (2011-2014). During the former frame, the main goal was to define the Patient Sum-
mary with the electronic pharmaceutical prescription (ePrescription), both oriented to ensure an
international harmonisation of the different documents adopted by each Member State, and to
develop an European Top-Level ICT Infrastructure that allows to single European healthcare sys-
tems to communicate with each other, with security and trust. In the latter, the primary topic is
to provide direct access to Patient Summary, giving the possibility for citizen and Healthcare Pro-
fessional, of reading medical documents in a specific language, even if different from the language
in which the Summary has been compiled.

An essential challenge was to realise the project keeping unchanged the existing National
eHealth infrastructures, taking into account also the differences in national legislations. There-
fore, to overcome this primary constraint, it needed to create a central European system able to
communicate and exchange data with the other peripheral systems: thus was born the OpenNCP
platform, of which the National Contact Point (NCP) is the core element. Each NCP is related to
each Participating Country, and it is also interconnected to other NCPs; basically, its purpose is

1Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary,
Ireland, Italy, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Slovenia, Spain, Sweden.

24

4 – Smart Open Services for European Patients

to act as a bridge between the National healthcare infrastructure and the epSOS infrastructure.
OpenNCP software is designed, coded, tested and delivered by the OpenNCP Community [33],
an open group of people that develop a set of Open Source Components to create a basic NCP
implementation that each Country can use as a starting point to build a custom NCP, suitable
for communicating with the own National health domain.

During the 5th meeting of the eHealth Network (Athens, 13 May 2014) [34], which took place
at the end of the epSOS project, a sub-group of the Network was set up, in charge of preserving
the developed services and pursuing the realisation of the same services on a large scale within the
Connecting Europe Facility (CEF) community program [35]. CEF is an EU funding instrument
that defines how the Commission can provide financial assistance to the trans-European networks
in order to support infrastructure projects of common interest in three principal sectors: transports
(CEF Transport), energy (CEF Energy) and telecommunications (CEF Telecom), giving priority
to projects that have a European added value and significant advantages for the EU society and
that do not receive adequate financing from the market. The CEF operating period started in
2014 and will end in 2020. As regards the CEF Telecom, the main areas of financing concerns
the fast and ultra-fast broadband networks, to which 170 million euros have been allocated, and
the Digital Service Infrastructure (DSI) that delivers different pan-European digital services for
specific domains, (e.g. eHealth, Cybersecurity, e-Justice, e-Procurement), with a budget of 970
million euro, for a total of 1.13 billion euros.

Hence, the CEF programme incorporates the epSOS project inside the eHealth Digital Service
Infrastructure (eHDSI), which aims to improve cross-border eHealth, providing tools and services
fit for purpose. These services can be grouped in core services and generic services. The core
services are set-up and disposed of by the European Commission using its resources and through
calls for tender financed by CEF, while the Participating Nations fund the general services with
the possibility to access to CEF community funds through a “Call for proposals”. Generic services
are deployed in part by each Member State and are provided by the National Contact Point for
eHealth (NCPeH). Each NCP interacts with the core services, placed at the EU level, and acts as
a gateway between the eHDSI infrastructure and the National infrastructure. Consequently, all
cross-border communications must pass only through the NCP.

The last Call for proposals, concerning eHealth, was published on 4 July 2019 [36] with an
indicative budget of 5 million euros: it aims to improve Patient Summary and ePrescription
interoperability, to implement new guidelines, to conduct further testing and audit activities at
the core level. Regarding the generic services, the idea is to keep the support to the technical
development of National Contact Points, both for already Participating Countries and Countries
that would participate right now. Moreover, over time, new features and conditions could be
issued, based on the growing needs of the network, so each Country must align and comply with
the new requirements.

4.2 eHDSI System Architecture

eHealth DSI is an infrastructure that employs ICT tools and services to enable the cross-border
exchange of health data between European healthcare systems, in compliance with Member States’
laws, in trust and security. Europe is a technologically developed continent, and most Member
States already have a national infrastructure that can manage public health facilities digitally.
However, the differences between the system implementations of each Country do not allow direct
communications among health facilities because they have been designed differently and often
with different technologies. In the European eHealth environment, the challenge was to create
a top-level architecture that ensures interoperability between all the healthcare infrastructures
keeping the individual national system and legislations unchanged. Note that those differences
are not minimal: Europe is a set of profoundly different States from history and culture, and these
aspects crucially influence how people think and do things. However, the variety of languages is
the most significant obstacle considering that each State uses its proper language to record Patient
Summaries and ePrescriptions inside its internal domain.

Nevertheless, eHDSI ensures interoperability acting as an intermediary capable of translating
the healthcare information and also guaranteeing trust and security services during the medical

25

4 – Smart Open Services for European Patients

data interchange. epSOS guarantees security only inside its framework, i.e. OpenNCP platform,
that enables secure access to the clinical information of patients providing a standard data format
to exchange them. Note that the epSOS project does not include data sharing, but only exchange.
Furthermore, the eHDSI architecture must be scalable and flexible to avoid configuration problems
if a new Country wants to join the programme, or if it is necessary to add new functions in a
future implementation of the infrastructure mentioned above.

Figure 4.1. eHDSI Architecture: European and National eHealth domains (eHealth DSI
System Architecture Specification).

The figure 4.1 shows a simple schema that represents how the eHDSI infrastructure intercon-
nects Country A and Country B public domains. The domestic eHealth infrastructures, shown in
grey, are composed of the already existing national health system, which remains unchanged, in
addition to NCP node which is the only node that authorises each Country to interface with the
opposite NCPs belonging to other Countries. The eHDSI architecture is characterised by a set
of NCPs, which exchange medical data among each other. Note that every NCP interconnects
domestic with community domain and vice-versa, so it acts as an inter-domain node, having one
interface toward the Country’s domain and another one toward the epSOS world: consequently
every NCP belongs to both domains, performing different roles in each of them. In other terms, a
single National Contact Point interacts with the healthcare area of a Participating Nation on one
side, and with the epSOS area on the other using specific interfaces and for this reason, it is an
essential part for both domains. At this point, inside the epSOS area, each NCP should directly
communicate with other NCPs.

However, an individual NCP can successfully interact with their peers, if and only if a rela-
tionship of trust exists between them. Trust among Participating Nations is based on contracts
and agreed policies and the trust relationships are organised in the Circle of Trust (CoT), id est,
a closed network consisting only of NCP nodes that trust each other. In this way, if an NCP is
part of this trusted circle, then it will be able to contact the others and exchange information in
a security context: this security context is ensured by the eHDSI domain, of which the CoT is
the concrete expression. In addition to this group of trusted NCPs, CoT also contains an identity
provider who is responsible for storing and managing the identity information of peers that belong
to it [37].

The figure 4.2 presents a high-level outline of what happens during an epSOS-OpenNCP
transaction:

1. a foreign Patient (P) asks for medical treatment in a Healthcare Provider Organisation

26

https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+ Architecture+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+ Architecture+Specification

4 – Smart Open Services for European Patients

Figure 4.2. High level representation of cross-border interactions between two eHDSI
Participating Nations.

(HCPO) belonging to Country B, the Country of Treatment;

2. the HCPO-B contacts his National Contact Point (NCP-B) to retrieve the patient’s infor-
mation from Country A, the Country of Affiliation, which is the Country of origin of the
patient;

3. through eHDSI, NCP-B send a query to NCP of Country A (NCP-A) in which it requests
the relevant medical record;

4. NCP-A checks if the patient exists in his domain and retrieves the clinical record from the
internal healthcare system (HCPO-A);

5. then NCP-A replies to NCP-B, with a response containing the Patient Summary (PS);

6. NCP-B elaborates the Patient Summary coming from NCP-A

7. finally, NCP-B sends PS to healthcare structure in which the patient has demanded the
treatment, the HCPO-B.

An overall epSOS activity involves the two Countries implicated in data exchange and the
OpenNCP platform, which makes the exchange possible. The whole process is an intra-domain
process, and it involves the following distinct realms:

• Country of Treatment. The area in which the foreign patient requests for medical treatments.

• Country of Affiliation. The place in which the patient holds his medical history because he
has citizenship in this Country.

• eHealth DSI common area. An area that acts as an intermediary, intending to allow com-
munication between the digital healthcare systems of European Countries, through the
OpenNCP platform.

27

4 – Smart Open Services for European Patients

It is fundamental to mark that any area is entirely independent of the others. Country A and
Country B domains, as well as the domains of other Member States, are absolutely autonomous
because different entities manage them, i.e. Italy controls the Italian eHealth system, and they
have no one possibilities to interact directly with each other; also the eHealth DSI is independent
of all the Participating Nations infrastructures because the European Union handles it, and only
the NCP gateway can put in communication the National area with the EU epSOS area. Although
national and community spheres can interact each other through the National Contact Point, each
entity is uniquely responsible for its environment from a technical, legal and security point of view,
and every State is accountable for what happens in his infrastructure.

4.2.1 National Contact Point

European Member States can join epSOS through a particular gateway, the National Contact
Point (NCP). NCP is the junction node that links each national system with the EU common
infrastructure, working as an entry/exit point between the two domains. The OpenNCP Commu-
nity provides a reference implementation of the NCP that includes only the epSOS side services;
consequently, each Participating Nation has to develop its custom NCP, making it interoperable
with its domestic infrastructure respecting a set of security rules and interoperability requirements
established by the EU Commission. The fulfilment of this requirements is examined by a team
of expert, i.e. Security Audit Group [38], who coordinates the security audit process and decides
whether a Country satisfies the minimum conditions or not.

NCP node is the central element in the eHDSI infrastructure, and its functions are crucial for
the Member State (MS) that implemented it, especially considering technical and legal points of
view. In fact:

• Technically, NCP is the main module that links the eHDSI infrastructure with the MS inter-
nal infrastructure and acts as an interface between the two areas. All the cross-border com-
munications of each Country must pass strictly through the NCP so that a Country cannot
directly access to health services of another Country. The concrete implementation of NCP
is under the responsibility of the Participating Nations, which has to extend the reference
implementation to connect the NCP with their domestic systems, following the interoper-
ability specifications. Furthermore, NCP handles semantics and technical adaptations, e.g.
translation and transcoding of Patient Summaries, providing the medical documents in the
language of the Country of treatment.

• Legally, NCP controls the flows of information to and from the MS using a legal support
structure: it is the only legal agent of the MS that guarantees the compliance of its domestic
health services with the eHealth DSI infrastructure.

An NCP is a “participant” in the eHDSI world if and only if it complies with the eHealth reg-
ulations in terms of structure, behaviour and security policies [39]. The internal logical structure
of an NCP includes several logic blocks described below:

Data discovery exchange services allow the interchange of messages between national and
EU domains, such as clinical information and patient identification data;

Transformation services include translation and transcoding services of the medical data from
the National model to eHealth DSI format and vice-versa, in order to support the linguistic
interoperability;

Support services manage the application functions necessary to guarantee availability, response
time, delivery and session in the eHDSI infrastructure;

Trust services guarantee trust and validation, verification, signature, mapping of messages and
data and also the patient consent mechanism;

Audit services collect together all the application services needed for traceability (e.g. logs)
and auditing.

28

4 – Smart Open Services for European Patients

Figure 4.3. NCP high-level architecture diagram (eHDSI System Architecture Specification).

The reference documentation classifies these functions as internal and external: internal ser-
vices concern the eHDSI side (e.g. communication between 2 NCPs), while external services deal
with the interconnection between the national infrastructures and eHDSI.

Considering the Trust and Audit Services, they fulfil internal and external functions. As
mentioned above, the NCP is a mediatory element that is part of both domains (National and
European), and each entity is fully accountable for its operative area. Consequently, from a
computer security point of view, it belongs to two security contexts that are distinct, separated
and independent of each other; this separation is achieved through dedicated interfaces, one
towards the Participating Nation and the other towards eHDSI. Therefore, any interface has
its network security, its PKI and its semantics in terms of standard cryptographic algorithms
and security policies: the EU Commission is responsible for the security context that involves
epSOS/OpenNCP, i.e. the Circle of Trust, while the Member States are responsible for security
that concerns the NCP interface toward his internal domain.

Assuming that the security level of the national context is adequate as is the European one,
the NCP remains the most critical element of the whole system, precisely because it must manage
the transitions between two security contexts that are administered by different entities.

4.2.2 OpenNCP Internal Components

NCP is a web service composed of several components, designed to achieve a Service-Oriented
web application. The eHDSI services are classified in different profiles, among the others the:

eHDSI-XCPD Profile is responsible for discovering patient demographic information in his/her
country of affiliation. Before the clinical data exchange, the patient must be identified in
its origin country;

eHDSI-XCA Profile is responsible for processing patient information and data, i.e. the Patient
Summary and ePrescriptions;

eHDSI-XDR Profile includes:

• an Order Service for retrieving the ePrescriptions;

• a Dispensation Service for registering any dispensation of drugs in Country-B, based
on the requirements recovered from the Country-A;

• a Consent Service for managing patient’s consent about the treatment of his sensitive
data.

Inside the eHDSI domain, the structure of medical documents follows the Clinical Document
Architecture (CDA) standard, i.e. an XML-based language defined to specify a standard for struc-
ture, semantics and encoding to exchange clinical documents. The language of the documents

29

https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+Architecture+Specification

4 – Smart Open Services for European Patients

Component NCP (A/B) Description

OpenNCP client connector NCP-B Allows portals (or other clients) to call the
IHE clients. It exposes a non- standard SOAP
interface.

XCPD/XCA/XDR client NCP-B IHE clients that call services exposed by other
NCPs to implement the cross- border ex-
changes.

TRC-STS NCP-B Secure Token Service that issues an NCP-B-
signed Treatment Relationship Confirmation
SAML assertion.

Security manager NCP-A/B Implements PKI operations, e.g., digital sig-
natures generation and validation.

Audit manager NCP-A/B Establishes communication towards the
OpenATNA- based Audit Record Reposi-
tory in order to assemble and persist audit
messages. This repository can be consulted
through a Web user interface.

eADC NCP-A/B Automatic Data Collector, persists IHE-
transactions statistical data.

Assertion validator NCP-A Validates SAML assertions used in the IHE
transactions.

XCPD/XCA/XDR server NCP-A Exposes services to other NCPs.

eHDSI server APIs NCP-A Set of interfaces that connect the eHDSI ser-
vices to the national infrastructure through
the National Connector.

Transformation modules
(TM, TSAM, LTR)

NCP-A/B Transformation Manager (TM), Terminology
Services Access Manager (TSAM) and Local
Terminology Repository (LTR) work together
to perform the semantic transformations of
clinical documents.

Configuration and mainte-
nance (Terminology sync
manager, Configuration
manager)

NCPeH-A/B Terminology sync manager (TSAM-Sync)
synchronises the semantic assets from the
Central Terminology Server (CTS) to the
LTR. Configuration Manager performs CRUD
operations on the NCPeH configuration prop-
erties database (some of these properties are
fetched from the Central Configuration Server
SMP).

Configuration and mainte-
nance (OpenNCP- Gate-
way)

NCP-A Web-based back-office which allows the cre-
ation, signature and publishing of the NCPeH
configuration (metadata) in the Central Con-
figuration Server (SMP).

Table 4.1. NCP components already developed in the reference implementation.

exchanged in the eHDSI domain is English. The Figure 4.1 shows the NCP internal components;
among the others, the set of transformation modules is vital to ensure the interoperability of
documents exchanged. The Transformation Manager component (TM) takes care about translat-
ing the medical data from eHDSI CDA syntax to the syntax of the national infrastructure and
vice-versa, exploiting the services offered by the Terminology Access Manager (TAM): note that
the translation concerns not only the structure of data but also the language in which data are
written. Indeed, TAM supports TM in the translation of a clinical concept from the Country

30

4 – Smart Open Services for European Patients

Figure 4.4. Internal components of the eHDSI National Contact Point. (eHDSI System
Architecture Specification)

A language to English in NCP-A side, and then from English to the language of Country-B in
NCP-B side. The Central Terminology Server handles the mapping activities, which are out of
the scope of eHealth DSI and are under the responsibility of the National Linguistic Competence
Centers from each country.

The table 4.1 explicates the OpenNCP core components (identified in blue in Figure 4.4),
instead the national components are reported in the table 4.2 and marked in grey in the same
figure.

4.2.3 HP and Patient authentication

The authentication of Healthcare Professional (HP) is performed at the national level, and it is
out of the scope of the eHealth DSI. Indeed, the HP (i.e. doctor, nurse, pharmacist) can access to
eHDSI system through the OpenNCP portal, developed and customisable by each Member State,
after the authentication process in its national system. Therefore the eHDSI infrastructure and
NCP-B are not involved in the HP authentication, but they trust of what done by the Country of
Treatment (Country-B). Consequently, NCP-B accepts all the requests coming from Country-B.
For what concerns the Patient authentication, the OpenNCP state of art leaves this task to the
Healthcare Professional of Country-B: indeed, when an EU citizen requires medical treatment
abroad, he has to interact with an HP in a medical structure. Before assisting the patient, the
healthcare specialist authenticates himself in his national system and access to the OpenNCP
portal, that establishes a communication with the NCP-B. At this point, the HP asks the patient
to show him the European health insurance card, or as an alternatively, he can ask him where
he comes from and what his Patient Identification number is. Note also that the HP inserts this
kind of information by hand in a screen-page of the OpenNCP portal. After that, the NCP-B
performs the XCPD patient discovery sending to NCP-A the Patient-ID of the sick citizen; thus,
the NCP-A asks healthcare system of Country A if any person with the specified Patient ID exists
in his domain. If a match exists, the patient discovery is gone right, and the HP-B can request

31

https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+Architecture+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+Architecture+Specification

4 – Smart Open Services for European Patients

Component NCP (A/B) Description

Portal B or another client - End-user solutions and other middle-wares of
country-B that provide cross-border eHealth
features to health professionals.

National HCP ID infras-
tructure

- Health professionals identity provider of
country-B.

Patient search / PS search
/ eP search / eD submit /
Consent manager

NCP-A Implementations of the interfaces provided
by the epSOS server APIs, that connect the
NCPeH-A to the national infrastructure. To-
gether they form the National Connector,
which is a component developed by each coun-
try.

National interfaces or APIs - Interfaces used by the National Connector to
call the different national services.

National patient ID/PS/
eP/eD/consent infrastruc-
ture

NCP-A/B National registries and/or repositories of pa-
tient identification data, patient consent and
clinical data (PS and eP/eD).

Table 4.2. NCP components that each State must develop to ensure interoperability with
his national healthcare system.

the Patient Summary in the next steps. Otherwise, the patient does not exist in Country A, and
the OpenNCP platform cannot recover the patient information. As can be seen, the Country of
Affiliation does not authenticate its own citizen through NCP, but it checks only if a Patient Code
exists or not in his internal domain. The authentication of patient abroad is carried out by HP-B,
which controls the European health insurance card of the citizen, and that is all. Therefore,
OpenNCP needs of a cross-border authentication method for foreign patients, in which the States
of origin of patients are also involved.

4.3 Patient Consent

Actually, in OpenNCP, the patient has to give consent for accessing clinical data in the country
of residence (Country A). Therefore he does not do it directly: when the XCPD patient discovery
has completed, in the HP portal appears a screen-page that ask for consent. The doctor can
request consent to the patient, and possibly print a copy for him, but inside the system is the
HP that acts to confirm the patient consent. Consequently, the role of Patient is passive because
he has no one possibility to interact directly with the eHDSI system, and he needs the HP as an
intermediary for his actions, which confirms the patient’s decisions through the openNCP portal.

The following definition of “consent” is laid down in Art 4(11) of the EU General Data Pro-
tection Regulation 2016/679 (GDPR).

The “consent of the data subject means any freely given, specific, informed and un-
ambiguous indication of the data subject’s wishes by which he or she, by a statement
or by a clear affirmative action, signifies agreement to the processing of personal data
relating to him or her” [22, art. 4, comma 11].

In the health environment, the data subject is the patient, and the basic principles of patient
consent can be summarised as follow:

1. The consent will be specific.

Patient consent is acquired for the creation of “eHealth DSI patient data”, i.e. Patient
Summary. This action will take place in Country A, the Country of Affiliation. In addition,

32

4 – Smart Open Services for European Patients

if a patient asks for medication abroad in Country B an additional consent is required, which
concerns the access to patient data from abroad with a cross-border exchange.

2. The consent will be freely given.

The patient has a free choice to participate in the eHealth DSI without any subsequent
restrictions or negative influence to receive all necessary medical treatment or any other
medical services. The patient may withdraw his consent at any time.

3. The consent will be informed. Consequently, the patient will be informed:

(a) on the aims of the eHealth DSI, how his patient data will be used, on his rights and
any other details of the processing of his data for the eHealth DSI purposes;

(b) that his consent is free without any consequences if the consent will not be given;

(c) that the collection and further processing of patient’s health data solely for provid-
ing medical services, is a subject of legislation of a country in which medical care is
provided.

This information should be part of any binding agreement (e.g. Multilateral Agreement)
signed by deploying Countries and be also part of the national standard information provided
to patients for acquiring consent. In addition, the information will reside in the eHealth
DSI NCP(A) and will, if required, be made available to the patient when he is in Country
B [40, 3.3 Patient Consent].

4.4 OpenNCP Security Aspects

Since eHealth DSI deals with medical information, that is strictly personal and sensitive, Open-
NCP platform must treat them with robust mechanisms that can ensure the fundamental security
properties for the processed data, such as authenticity, integrity and confidentiality [41].

Figure 4.5. OpenNCP message exchange layers (eHDSI System Architecture Specification).

The platform employs cryptography and security protocols to ensure the security of commu-
nication of all the network layers. Inside the eHDSI domain, the transmission of data in the

33

https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+Architecture+Specification

4 – Smart Open Services for European Patients

Network Layer (Iso 3) is protected using a gateway-to-gateway VPN between all NCPs nodes.
Transport layer Security (TLS) protocol is adopted to provide security of TCP messages, at the
Transport layer (Iso 4), implementing end-to-end encryption between NCPs. Finally, at the Ap-
plication layer (Iso 7) the format of messages exchanged in eHDSI is SOAP Envelopes with an
XML payload in the SOAP body: all the eHealth DSI SOAP message must be compliant with
the WS-I Secure Basic Profile [42], that defines a set of principles relating to the implementation
of open standards for web services technology. All messages are signed with an x509 certificate.

The figure 4.5 summarises the kind of messages exchanged in each layer of the OSI model with
the corresponding security protocol used to protect the eHDSI nodes. The end-to-end communi-
cation is between NCPs; hence, each NCP handles medical data in plaintext, making it vulnerable
to a data breach.

Any participating NCP trusts of other NCPs in the eHDSI domain and the set of all par-
ticipating NCPs constitutes the Circle of Trust (CoT). An identity provider gives the list of all
trusted NCPs to each eHDSI node, which can establish mutual trust relationships between them.
Note that each NCP also communicates with a national domain and the development of interfaces
towards national areas is under the responsibility of the interested Country. Moreover, note also
that eHDSI provides specific rules to satisfy security properties, but the project considers the
protection against the propagation of cyberattacks out of scope. This decision, combined with
the Circle of Trust, amplifies the critical aspects of NCP: consider that each NCP trusts its peers
(CoT) and also trusts the domain of the State in which it is located. Consequently, if an NCP-A
is admitted as a participant in epSOS world, other participant countries will accept this NCP,
through their NCPs; therefore, attacks that compromised a National Infrastructure can exploit
NCP to compromise other countries. In addition, if an attacker takes control of an NCP, he can
have access to the entire infrastructure.

34

Chapter 5

HEALTHeID: eIDAS-OpenNCP
Connector for eHealth

This chapter proposes a solution to solve the weakness of patient authentication in the epSOS en-
vironment: the solution proposal consists in the distribution of an eID Health connector capable
of integrating eIDAS authentication within the openNCP platform, in order to obtain robust-
ness and security in the authentication process during the identification of the patient abroad,
exploiting his digital identity provided by his country of residence.

5.1 eIDAS cross-border Authentication for the OpenNCP
platform

eIDAS introduces an electronic identification workflow, where the citizen requests a service from
a Service Provider (SP), then the citizen is authenticated (through his national eIDAS infrastruc-
ture) towards the SP before the SP may provide access to its electronic services that the citizen
is entitled. Regards to technical implementation, the Connecting Europe Facility (CEF) [35]
provides a reference implementation following the eIDAS Technical Specifications v1.1, available
under EUPL license, consisting of an eIDAS node components that can be used as a baseline to
develop any country-specific eIDAS infrastructure, and allowing to connect different countries to
the cross-border EU eIDAS node infrastructure.

Instead, the OpenNCP suite is a set of openly available and adaptable components which
provides a reference implementation of the National Contact Point; NCP is the border gateway
delegated by each country to enable the cross-border exchange of medical data, e.g. Patient
Summary and ePrescription.

The HEALTHeID (HeID) connector is a software module which aims to improve the quality of
health services provided to EU citizens by enabling their access to digital health records and facil-
ities in Europe, integrating eIDAS to authenticate the patients and improving the authorisation
process in the cross-border eHealth NCP transactions.

The figure 5.1, present a high-level overview of the resulting merged architecture, showing the
role of the Health-eID connector and its task to integrate eIDAS within eHDSI OpenNCP. In this
scenario, the HeID Connector interacts with the HP, the Patient, the eIDAS infrastructure and
the openNCP platform:

1. the Patient (P) abroad requires for medical service in Country B, the Country of Treatment;

2. The Healthcare Professional (HP) asks to Patient where he comes from and email or phone
number. This information is used by the HeID Connector to create an encounter between
the Patient and the HP;

35

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.1. HeID Connector: high-level flow schema

3. HeID connector creates the encounter and sends a link to the Patient through email or SMS;

4. the Patient clicks on the link to accept the encounter and:

(a) the HeID Connector confirms the encounter

(b) the Patient is redirected to eIDAS for cross-border authentication, where he can au-
thenticate himself in his country of residence with his digital identity;

5. HeID Connector receives from eIDAS the Patient attributes obtained from the authentica-
tion process;

6. Patient P is authenticated with his digital identity, and the openNCP workflow can start to
obtain his Patient Summary or ePrescription.

Please note that this is a high-level overview; the following sections describe a fine-grained work-
flow that shows what happens in details and accurately reports the internal components of the
HeID connector with their roles. Note also that Healthcare Professional is assumed already au-
thenticated, since it is a national responsibility and depends on national infrastructure, in this
case from country B, and is outside the scope of this project.

The HeID Connector implementation process must adopt definitions and concepts as described
in the eIDAS Regulation and translate them appropriately to the cross-border eHealth context.
Specifically, it is a component that allows interacting with the eIDAS infrastructure with the
openNCP-based one: to merge eIDAS and eHDSI worlds, must take into account the requirements
coming from both frameworks.

Those functional requirements are summarised as follow. Note that the keyword MUST express
the mandatory status of the requirements while the keyword MAY expresses the optional one.

The HEALTHeID Connector:

• MUST adopt a coherent protocol profile to interact with the national eIDAS connector

36

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

• MUST have established a trust relationship with the national eIDAS connector.

• MUST provide an interface for the insertion of the patient identifier.

• MAY use the retrieved identification data to complete the patient identifier.

• MUST adopt authentication schemes coherent with the LoA used in the eIDAS cross-border
authentication scheme.

• MUST provide an interface for the communication of the patient identifier towards the
NCPeH component.

• MUST ensure lawful processing of personal data presenting to the user textual informa-
tion about the foreseen use of the data, and the context of use (e.g. a specific healthcare
encounter, a specific period).

• MUST implement an interface for the Patient to provide informed consent.

• MUST provide adequate input/output interfaces to allow patient use of personal devices
(like a personal smartphone).

The principal point to solve is how to interconnect coherently the eIDAS authentication and
the eHealth services provided through the NCPeH infrastructure. The link between the two
worlds is the patient identifier: the cross-border exchange of information in the eHealth domain
requires the existence of patient identifiers to select the correct information from national health
information systems (through the XCPD Patient Discovery of openNCP). Some Member States
use their national citizen ID as patient ID in the context (e.g. the Italian notified eID contains
an attribute, the Fiscal Code - “Codice Fiscale”- suitable to be used as Patient Identifier), while
some others use a sector-specific patient ID. The case can be even more complicated, since the
patient ID, even if available at national level, may not be part of the data set retrieved after
an eIDAS authentication exchange, due to the specific eID notified schema peculiarities (there
may be many notified schemes per nation, and not all of them might have an attribute suitable as
patient ID) and to the national rules on the matter (the Italian eIDAS node does not transmit the
fiscal code in the response at the moment, even if at national level it is an issue under discussion).

OpenNCP state of the art foreseen an encounter between HP and Patient, the authentication
of the Patient through the HP, and the provision of the patient ID from the Patient itself (as well
as other relevant data to query the eHDSI infrastructure for patient data). As such, the patient
ID is prone to errors and the authentication strength not always clear.

Thus, to provide a flexible solution suitable for all cases, the HEALTHeID connector must
be able to differentiate on a national bases if any attribute is suitable for the purpose, in case
yes, which one(s), and in case not, require it as an input from the Patient, coherently to the
present cross-border eHealth scenarios. Since this procedure can be prone to error, it is necessary
a verification step where the patient ID is sent to the country A eHealth infrastructure, and then
verified versus local databases. The Patient according to privacy rights defined in the GDPR
Regulation, has the freedom to give his/her consent in for the specific eHealth treatment, and
this consent has to be adequately managed by the HEALTHeID connector.

5.2 Architectural scheme of the HeID connector for achiev-
ing an eIDAS/OpenNCP connection

The Service Provider in the figure 5.2 is the components where the HEALTHeID connector will
reside and acts like the eIDAS SP toward eIDAS infrastructure and like OpenNCP Portal towards
the eHDSI infrastructure.

This architecture presents an overview of the whole involved Service Provider components,
but only some of them are in scope in the development of the HEALTHeID connector. The
components inside the HeID blue square are the specific ones, the other (inside or outside the
service provider) are component mostly already existing or depending on the national specific
scenario. In particular, out of scope are:

37

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.2. HeID Connector: internal components.

• Authentication Handling of the Healthcare Professional somehow performed according to
local eH National specific scenario (through a local IdP)

• Creation of the encounter with the patient, since, as in the previous point, it depends on
the national specific installation

• Expiry, by policy, of the HP session (this is again subject to the national specific rules and
scenario)

On the contrary, in scope are the following functionalities:

• Patient Authentication Handling, done through eIDAS infrastructure. In this regard, the
Workflow Manager is in charge to start the authentication signalling to “Patient I/O” mod-
ule sending an anchor to the patient (e.g. SMS, email) in order to start the eIDAS au-
thentication. The eIDAS authentication is started by the eIDAS HProxy component, which
can get back the final result, after the eIDAS flow in place between the patient and the SP
country, and communicate it to the workflow manager.

• Encounter Management, in particular, the workflow manager, which is 1) able to manage
the Patient Authentication result and data; 2) able to propagate it to the eHDSI flow; 3)
able to ask to the Patient further data not present in the data set provided by the eIDAS
authentication (e.g. Patient Identifier in some countries, which has to be verified through
NCPeH of the Patient origin country) and the Patient Consent to the treatment. In this
sense, the workflow manager acts as an orchestrator of the HeID Connector business and
realises the chain of operations calls.

5.2.1 Brief overview of the involved components

HeID Connector is structured as a set of sub-components to obtain a modular architecture which
gives it properties of flexibility and scalability.

Table 5.1 shows the components involved in the Health-eID project; some components are
an integral part of the HeID Connector, others are external but fundamental to drive the in-
put/output interactions between all the actors. The Workflow Manager is an essential component

38

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

because it orchestrates all those interactions and makes choices based on what happens in the
entire system. Some components are more complicated than others, and they are described more
accurately in the following sections. The not mentioned components, among those present in the
Figure 5.2, are eIDAS or OpenNCP components and are out of the scope of this project.

Component Mandatory Description

HP Data I/O No This component is a part of the OpenNCP
portal and manages the I/O operation per-
formed by the Healthcare Professional (HP).
Each Member State can create its own por-
tal. This one is a reference implementation
provided for demonstration purposes.

HeID Client No It is deployable within a portal, and his role
concerns to make requests to the HeID Con-
nector and receive responses from it. Each
MS can create its client. The Health-eID
project provides a reference implementation
for demonstration purposes.

HeID Connector Yes This component provides integration between
eIDAS and OpenNCP. It is composed by four
sub-components: Patient Data I/O, Workflow
Manager, eIDAS HProxy and NCP HProxy.

Patient Data I/O Yes Patient Data I/O consists of a group of HTML
pages that allow the user to interact with the
Workflow Manager. It also includes a Notifica-
tion Adapter to send email/SMS to Patient; a
custom one can replace this last one, that it is
given only for demonstration purposes. The
Health-eID project provides a default imple-
mentation with email features.

Workflow Manager Yes Fulcrum of the connector, it orchestrates all
the other components managing the request
and responses of Patient, HP, eIDAS and
OpenNCP. It is responsible for the entire
workflow.

eIDAS HProxy Yes Access point to the eIDAS world, it handles
the eIDAS authentication process.

eIDAS National Adapter No The NationalAdapter module has been devel-
oped to fulfil the specific Italian needs, when
an Italian patient has an encounter with a HP
in another Member State. Anyway this mod-
ule can be modified in order to be used in other
scenarios.

NCP National Adapter Yes Allows the connection between the NCP
HProxy of the HeID Connector and the NCP-
B of OpenNCP

NCP HProxy Yes It works as a proxy toward the HeID connector
and the OpenNCP world

Table 5.1. HeID components: the not mandatory components can be arranged by each Member
States according to its preferences.

During the project activity and concurrently with the component’s design, the following in-
terfaces specify how to obtain the communication between components and which component has

39

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

to interact with others.

Interface between eIDAS Connector and eIDAS Proxy Service

This interface belongs to eIDAS world and is up to the eIDAS technical specification; so it is out
of the scope of this project.

Interface between HeID Connector and eIDAS / National translation component

This interface is subject to national specification, some countries, e.g. Italy, run or are running
a specific Project to detail the involved protocols and profile, as well as to develop the related
implementation. Indeed in Italy, which adopts SPID as National specification, FICEP project
[43] developed the nodes and related translation, and, in particular, developed a component
named SP Proxy between SPID SP and eIDAS Connector to translated eIDAS-SPID profile.
This translation is fundamental in the Italian environment to integrate SPID with eIDAS and
provide cross-border authentication of subjects. Therefore, considering the scenario in which an
Italian healthcare structure installs the HeID Connector: if a foreign Patient asks for treatment
in Italy, and wants to authenticate himself with eIDAS through the HeID, from a technical point
of view, the HeID module performs an eIDAS authentication request toward the Italian eIDAS
Connector. However, this request, on its way to reaching the eIDAS Connector, must be in
SPID SAML format and, consequently, it is necessary to translate the eIDAS SAML coming from
the HeID into the SPID SAML, in order to cross on the Italian SPID infrastructure; then the
message must be re-translate from SPID to eIDAS SAML, having to enter into the eIDAS domain,
as shown in the Figure ref:nationalAdapter. Some Countries reused the eIDAS protocol at the

Figure 5.3. HeID and eIDAS National Adapter components in the Italian SPID infrastructure.

national level for their environment, so no translating component is required. Nevertheless, the
eIDAS Adapter implementation depends strictly on the national infrastructure of each country,
so it is out of the scope of this project.

Interface of the eIDAS HProxy component. In order to provide a common interface, re-use
as much technical specification available and not lose any information where possible, the
eIDAS Hproxy component adopt the eIDAS SAML profile for input/output communication.

Interface between eIDAS and National adapter. Since the eIDAS Hproxy component ex-
pects eIDAS SAML profile, countries adopting a different local protocol have the responsi-
bility to develop a National adapter to translate from national protocol to the eIDAS profile.
This adaptation process should have a minimum impact on the development side since a
translator component, in such a country, should be already available and can be re-used for
this task.

40

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Interface between the NCP HProxy and NCPeH

This interface re-use the national specific implementation (e.g. SOAP-based) already developed,
and thus under country-specific responsibility. The task of this project is to provide a stub for the
NCP Hproxy component to allow each Member State to build up the component merging their
national specific peculiarities. The communication between the NCP HProxy and the NCPeH-B
is mediated by the NCP National Adapter (not to be confused with eIDAS National Adapter),
which can act in two ways:

1. By directly calling the services exposed by the NCPeH-B. MS would provide an implemen-
tation where they would map the HeID message data to the data format of the services
exposed by NCPeH-B. This method replicates the way the current OpenNCP Portal calls
the NCPeH-B, through the OpenNCP Client Connector Consumer module;

2. By mapping the HeID message data to a national specific format. This plan is needed
whenever the NCPeH-B services exposed to country-B national infrastructure are not the
OpenNCP Client Connector Consumer ones, but national specific ones. This situation is the
case, e.g., of Portugal, where the NCPeH-B exposes HL7 FHIR services towards the national
infrastructure. In this example, the National Adaptor would map the HeID message format
to HL7 FHIR messages expected by the Portuguese HL7 FHIR-based Portal Adapter (which
in turn calls the OpenNCP Client Connector Consumer).

In the end, the National Adaptor implementation choice would be an MS responsibility, but
in both cases, it is envisaged to be easily plugged into the NCP HProxy interfaces (e.g., following
a similar approach to that of the NCPeH-A National Connector). The HeID project will provide
an implementation of the first scenario.

Interface between the NCPeH A and NCPeH B

It is not changed in respect to OpenNCP specification, and out of the scope of this project.

Interface between the NCPeH A/B and eHDSI Central Configuration Services

It is not changed in respect to OpenNCP specification, and out of the scope of this project

5.3 Sequence diagram of the HeID connector workflow in
an real scenario

This section describes the whole execution flow of a HeID session if a patient abroad wants to
benefits of a medical treatment relying on the ePSOS OpenNCP services that are provided in
a HeID scenario, which foresees an eIDAS cross-border pre-authentication given, by the patient
before access to the OpenNCP platform. Note that the Healthcare Professional authentication is
under the responsibility of his country, and it is out of the scope of the HEALTH-eID project.
Before proceeding with the HeID workflow’s description, it is necessary to consider the following
assumptions:

1. The Patient owns an internet-enabled personal device, able to receive SMS (or configured
to receive email)

2. HP and Patient authentication process is successful

3. The Patient is not a minor and is willing/able to provide consent

4. The Patient knows his patient ID

5. Country A can verify that the patient ID and eIDAS minimum data set match

41

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.4. HeID Connector: eIDAS authentication flow and patient consent.

6. The figures report all operations for a successful encounter, but the HEALTHeID Connector
does not influence many of them. In the description, to mark this fact is used the Out of

scope (OoS) abbreviation.

When a EU patient abroad ask for health service in another EU member state that implements
the eHDSI infrastructure with eIDAS Authentication using the HeID connector, this is what
happens:

(01)-(02) The HP authenticates himself in his Country infrastructure (OoS), accesses the Service
Provider (Health-eID enhanced Portal of OpenNCP) via the web browser and chooses to use
eIDAS authentication of patients. To apply the request, he has to create a new encounter
with the Patient, interacting with the HP I/O interface provided by the HeID project and
has to insert some patient information, such as the country of residence with the email
address or the phone number.

(03)-(04) The openNCP portal elaborates the encounter request and contacts the HeID Con-
nector to create the encounter.

(05)-(06) At this point, the Workflow Manager creates a unique encounterID that uniquely
identifies the relationship between HP and Patient. Then the Patient I/O interface sends
a link via email/SMS to the foreign citizen that asks for treatment. Note that the link
contains the newly created encounterID.

(07)-(08)-(09) The Patient receives a notification with an encounter request, and he has to click
on the received link to confirm the encounter. After this action, the Workflow Manager was
informed by the “Patient I/O” and marks the encounter as accepted; then redirects the
Patient towards the eIDAS HProxy.

42

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.5. HeID Connector: OpenNCP XCPD Query (Cross-border Patient Discovery) flow.

(10) The eIDAS HProxy module prepares an eIDAS Authentication Request for the eIDAS Con-
nector deployed in the country of treatment (Country B). Here starts the eIDAS authenti-
cation process.

(11)-(12) When the eIDAS authentication request reaches the Identity Provider of Country-A,
i.e. the country of Affiliation, Patient is requested to provide to the IdP his/her credentials,
and eIDAS authentication is performed using his/her device.

(13)-(14)-(15) During these steps, the eIDAS Assertion, that contains the Minimum Data-Set,
is transmitted from country A to country B, and represent the patient authentication. The
eIDAS HProxy computes the SAML assertion, checking its integrity and authenticity, and
extracts the attribute values.

(16)-(17)-(18) Patient has correctly authenticated then the Workflow Manager stores his at-
tributes; in the meanwhile, a Patient Information Notice is shown to the citizen. He must
give his consent to take advantages from the eHDSI services.

(19)-(20)-(21) In the considered workflow, it is assumed that the Patient gives his consent.
To communicate his decision, he has to click on the acknowledgement button; hence, the
Workflow Manager is informed and stores the PIN of Country B with the Patient acknowl-
edgement.

(22)-(23) This action is apprised to Patient, who receives a notification by email/SMS.

In this way, the initialisation of HeID session is completed with the authenticated Patient that
has given his consent, after having seen the Patient Information Notice. The next steps concern
the PatientID Discovery executed through the XCPD Query of eHDSI OpenNCP.

43

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

(23)-(24) Before to perform the XCPD Query, the system has to check if the Patient ID is
present inside the eIDAS Minimum Data-Set. Then the Workflow Manager asks to NCP-
B, through the NCP-HProxy, how is structured the eID schema of Country A and if the
eIDAS Assertion contains the Patient ID as an attribute value. NCP-B contacts the eHDSI
Central Configuration Service (this component is part of OpenNCP world and is omitted by
the flow diagram) for specific country information, and if the Patient ID is available among
the eIDAS data.

(25)-(26) NCP-B provides the country configuration to Workflow Manager, which can know if
it already has the patient ID or if he needs to ask it explicitly to Patient. In the latter case,
a new interface is shown to the citizen in which he has to insert by hand the patient ID and
other data.

(27) Optional: Patient inserts by hand the missing data.

(28) During the last few steps, the HeID client polled the HeID connector asking for patient
data, but since the data was not ready, the Connector could not send them. However, at
(28), the Patient’s data is ready, and the system has everything necessary to operate in the
eHDSI domain.

(29)-(30)-(31) Then the HeID Connector sends to HeID Client the Patient’s data (Patient ID
included), and the HP can start with Patient Discovery though the OpenNCP portal, which
performs an XCPD Query toward the NCP-B.

(32)-(33) NCP-A, located in the Country of Affiliation (i.e. the country of Patient), receives
the Patient ID from NCP-B and checks if this unique identifier exists inside the National
Infrastructure (NI-A). In this flow scenario, it is assumed that Patient ID is correct and
exists.

(34)-(35)-(36) NI-A responds affirmatively to NCP-A; hence, NCP-A forwards the message to
NCP-B, which informs the OpenNCP portal. Patient Discovery is completed with success.

(37)-(38)-(39) Patient data are shown to HP, and the HeID connector is informed about the
correct Discovery of Patient.

(40) The Workflow Manager updates the PIN-B acknowledgement with the Patient ID provided
by eIDAS (or by Patient) and confirmed by the eHDSI OpenNCP infrastructure.

Patient in country A exists, then the HP can process with the retrieving of Patient Summary:

(41) - (42) After updating the consent with Patient ID, HeID connector informs the HP, through
OpenNCP portal, that the system is ready to retrieve the Patient Summary (PS) or an
ePrescription (eP).

(43)-(44)-(45) HP submits the request in the “HP I/O” interface, the cross-border request starts
in the NCP-B and reaches the NCP-A which elaborate the request and injects it inside the
National Infrastructure of Country A (NI-A). It is assumed that the PS exist and the NI-A
is able to find it.

(46)-(47)-(48) NI-A sends the requested PS to NCP-A, which translated it from NI-A format to
eHDSI format; such translation also includes the language (country A language to English).
NCP-B receives the PS, translate it in the language of country B and makes it compatible
with the healthcare system of B, before sending it to Healthcare Professional.

(49)-(50)-(51) OpenNCP Portal shows to HP the medical document; all are ready to provide
healthcare services to foreign Patient. A notification is sent to HeID connector informing it
about the conclusion of cross-border exchange.

(52)-(53) Workflow Manager notifies the Patient about PS recovery.

44

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.6. HeID Connector: OpenNCP eP/PS exchange and eDispensation.

After the medical treatment, the doctor (HP) can record in Patient Summary the dispensation
of pharmaceutical service. Note that the HP can not modify the PS directly, but he has to send
an eDispensation notice to Country A with the new information to store in the patient report.
The resumed process is shown in (54-64) and involves the two NCPs to exchange cross-border
eDispensation. A notification is sent to the Patient after the eDispensation process in eHDSI
(similar to other types of notification).

5.4 Description and design of the HeID connector compo-
nents

5.4.1 Enhanced OpenNCP Portal

The HP Data I/O and HeID Client components are not part of the HeID Connector, but they
are necessary to integrate the OpenNCP Portal with the HeID Connector.

HP Data I/O

“Healthcare Professional Data I/O” module activates an advanced version of the openNCP portal,
which offers the portal all the functions needed to work with the HeID connector, in particular, it
provides the Input/Output interfaces useful to the HP for interacting with HeID. This component
is not part of the HeID Connector, but it is necessary for giving to the HP a communication
interface with the system. Once the features are enabled, the country page in the OpenNCP Portal
must display a radio-button to switch between the current eHDSI scenario (“Search Patient”),
which performs the NCP Patient Discovery, or the HEALTHeID one (“Create Encounter”), which
involves the eIDAS authentication, as depicted in Figure 5.7.

45

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.7. HEALTHeID-enhanced OpenNCP Portal.

HeID Client

Health-eID Client is a component that has the objective to ease the communication with the
HeID Connector services, and it is intended to work not only in an OpenNCP Portal instance but
in other Java environments. It performs the request from the HeID connector and receives the
responses, so this is also not part of the HeID connector, but it is essential to communicate with
it.

5.4.2 Workflow Manager

The Workflow Manager (WM) handles and orchestrates all the Patient and Healthcare Profes-
sional (HP) interactions during the Patient Authentication process, in order to provide a strong
identification ensured by the eIDAS infrastructure. To perform a successful Patient authentica-
tion - we assume that Healthcare Professional is already authenticated -, the WM has to interact
with four components:

• “HeID Client”, which submits the HP requests towards WM.

• “Patient Data I/O”, that provides an interface for the Patient in which he can submit
decisions and receives messages from the connector.

• “eIDAS-HProxy”, that generates the eIDAS SAML authentication request towards the eI-
DAS world, then elaborate the eIDAS SAML assertion and finally contacts the WM to
communicate the eIDAS attributes.

• “NCP HProxy”, it is a proxy component that contacts the NCP-B asking for information
about the eID scheme of Country A, e.g. if the patient ID is included in the eIDAS attributes
or if the system must ask the Patient to insert it by hand, as an additional attribute. Note
that it the WM that contacts the NCP HProxy and not the contrary.

Through this components the WM handles the Patient and HP actions and integrates eIDAS
with OpenNCP, managing the patient authentication and authorising the HP to retrieve the
patient medical records. Its main functions are:

• create the encounter between Patient and HP,

• redirect the Patient toward eIDAS and evaluate the result of authentication,

46

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Figure 5.8. HeiD Connector: Workflow Manager interactions.

• ask and store the patient consent (given or not given),

• send notifications to patient about what is happening in OpenNCP (XCPD Patient Discov-
ery, eP/PS process, eD transmission, PIN Acknowledgement/Consent decisions).

Encounter Management

The HeID connector receives the initial information sent by HP, that is the Patient’s country
and the Patient’s email/SMS, then WM creates a new encounter which identifies univocally a
relationship between the HP and a specific patient.

Such relationship is represented by a JSON Web Token (JWT), i.e. an open standard (RFC-
7519 [44]) for safely exchanging information using a printable, compact and secure token, that
exploits JSON objects, with the possibility to add a signature for verifying its authenticity. The
token consists of three parts, the Header, the Payload and the Signature: the Header typically
contains metadata information about the JWT, e.g. the algorithm used to sign the token, while
the JSON data subjected of the exchange are inside the Payload. The last part, the Signature,
is used to verify the integrity of the message. The authors consider JWT as a “compact and
self-contained tool” because it is possible to represent all its parts as a compressed String in the
format “aaa.bbb.ccc”, using dots (.) as separator and where “aaa” represents the Header, “bbb”
the Payload and “ccc” the Signature, all encoded in Base64. Un addition to the signature that
ensures the integrity of data, it is also possible to use encryption to add confidentiality property:
both signature and encryption are defined by other two standards, respectively the JSON Web
Signatures (JWS, RFC-7515 [45]) and the JSON Web Encryption (JWE, RFC7516 [46]) and its
a best practice to combine those standards together. With those characteristics, JWTs provide a
lightweight solution to transport information realising stateless sessions, and for this reason they
are suitable to characterise the Encounter in the HeID scenario. Indeed, the Workflow Manager
generates the encounterID as a JWT token

encounterID = base64urlEncoding(header) + ‘.’ + base64urlEncoding(payload) + ‘.’
+ base64urlEncoding(signature)

47

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

Example of JWT token base64 encoded (Encounter ID):

eyJhbGciOiJIUzI1NiJ9.eyJqdGkiOiIxYzE0YTE5MC0wZmFjLTRlMTktYjk0Yi0yZ

GViNzg3ODYwZjkiLCJleHAiOjE1NjMyMzYzMjEsInN1YiI6IklUIn0.foIhtBB2qH-

vyKGOFcivYc54VeAVhg6GtPgaoEi68I

The same JWT token but base64 decoded:

{ "alg": "HS256" }

{

"jti":"1c14a190-0fac-4e19-b94b-2deb787860f9",

"exp": 1563236321,

"sub":"IT"

}

HMAC-SHA256(

base64UrlEncode(header) + ." +

base64UrlEncode(payload) ,

sha-256 (secret)

)

Figure 5.9. Example of JWT’s compactness with a base64 encoding. The colours are used
to distinguish the different parts of the token: red colour identifies the header, green the
payload and blue the signature.

in which the Header contains the algorithm used to sign the token (e.g. HMAC with SHA-256)
while the Payload is a JSON object containing three properties:

• “jti”: a JWT ID that univocally identifies the token, it is generated as a Universally Unique
Identifier (UUID), i.e. an identifier standard knew also as Globally Unique Identifier (GUID)
that guarantee the uniqueness of the ID [47]. This is the element that gives uniqueness to
the encounter;

• “exp”: a expiration time which identifies the expiration of the token and, by extension, the
expiry of the encounter between Patient and HP;

• “sub”: this property identifies the subject of the JWT and in practice, it contains the
country-code of the Patient (e.g. “IT” for a Italian citizen that is requiring healthcare
services abroad).

After creating the JWT Payload, the Workflow Manager computes the HMAC-
SHA256(aaa.bbb, KEY) where “aaa” corresponds to the base64 encoded Header and “bbb” is
the encoding of Payload in base64; instead the KEY value is the SHA256 of a secret, that is knew
only by two entities in the HeID Connector, the Workflow Manager and the eIDAS-HProxy (that
needs to read and validate the token for extracting the Patient Country, see ??).

Figure 5.9 shows an example of Encounter ID generated by the Workflow Manager for an
Italian patient abroad; note that the encounter ID is sent both to Patient and HP and creates
a nameless contract between them that the Workflow Manager uses to link the requests of two
actors. Patient receives the token as part of the link and when he clicks on it, he accepts the
encounter and he will be redirect on eIDAS to authenticate himself in his country. Since the
token does not contain sensitive data nor relevant information, as a design choice the JWT token
is not encrypted but only signed by the WM, which verifies the integrity of each encounter ID
that comes back re-computing the HMAC-256(aaa.bbb, KEY) and comparing this value with the

48

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

“ccc” part of the received encounter ID: if the two values are equals, the WM knows that the
encounter is not tampered but generated by itself; then it can check the expiration time and if
the JWT is not expired, the encounter is valid, otherwise it is not accepted.

Note also that the HeID Client, after the encounter creation, uses the JWT as authentication
token in the HTTP Header: the WM checks and accepts this token if valid, but this behaviour
makes the HeID Connector vulnerable to replay attacks (see ??)

Patient Authentication and Consent

The electronic identification of the patient is needed to identify the person before providing a
service to that person; in this scenario the service is the medical treatment supported by a cross-
border exchange of sensitive data (Patient Summaries), such as data about the origin, genetic data
and other information concerning health for which the processing is prohibited by the GDPR [22,
art. 9, comma 2 (a)] without obtaining prior authorisation and specific consent of the involved
person. The HEALTHeID project does not aim to provide a consent management service for a real
scenario because it strictly depends on each country and its legal base; however a demonstration
is provided to shows that the HeID Connector can be used in a scenario compatible with the
last European Regulations which cares about privacy and data protection by offering a Patient
Information Notice (PIN), i.e. an informative document shown to patient which concerns the
purpose of the processing of his personal data, and a mechanism which stores the result of the
consensus process. In particular, the CEF eHDSI Model PIN [48] is a template which aims to
inform patients about their rights concerning the protection of their personal data and explain to
them how those data are used by the system addressing the requirements explicated in the GDPR
[22]:

• Art. 13 Information to be provided where personal data are collected from the data subject,

• Art. 14 Information to be provided where personal data have not been obtained from the
data subject.

Each PIN Model is customised by each country, but it must follow the GDPR guidelines. The
patient must provide the consent in Country A (the Country of Affiliation), when obtaining data,
and in Country B when accessing data. Note that this context is affected by political decisions and
some aspects are actually under discussion: the demo-consent service provided by HEALTHeID
project is related to Country B, showing the PIN-B to the patient after the eIDAS authentication
and before retrieving data from the OpenNCP environment. When the patient gives his consent,
the OpenNCP XCPD Query starts, to check the existence of the PatientID in the OpenNCP side.
Hereafter the result of the consent is stored in a DB with the following information:

• the encounterID, that is the JWT token in a String format,

• a boolean to mark the result of the acknowledgement,

• a timestamp of when the action took place,

• a reference to the PIN used for informing the patient on the purpose of the processing,

• the Patient Identifier (Patient ID).

If the consent is given, the OpenNCP data transfer can start. Otherwise, the patient can not take
advantages from the eHealth services offered by OpenNCP.

5.4.3 eIDAS-HProxy

After the Patient clicks on the encounter link, he is redirected to eIDAS-HProxy, which is re-
sponsible for creating an eIDAS SAML authentication request towards the eIDAS world. This
component receives the encounterID, from which it can read the citizen’s country code stored

49

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

inside the token: for getting the code, the eidas-hproxy needs to know the secret used to create
the token, in order to validate it and check the signature (the “(ccc)” part). Hereafter, it builds
the eIDAS authentication request storing the mapping between <Saml-ID, encounterID>in a
HashMap, consequently, when the eIDAS assertion will come as a response, the component is able
to identify the pair <Saml-ID,encounterID>and in turn retrieve the correct encounterID to attach
at the received eIDAS attributes.

eIDAS National Adapter

The NationalAdapter module has been developed to fulfil the specific Italian needs when an Italian
patient has an encounter with an HP in another Member State, but it can be modified in order
to be used in distinct scenarios.

5.4.4 Patient Data I/O

This component is responsible for showing HTML pages to the patient and for collecting his
inputs during an HeID session. It also includes a Notification Adapter which implements an
email service for Patient notification. It receives the patient email from the Workflow Manager
with the kind of notification to send, and sends an email based on the type of notification, e.g.,
communicates the encounter link to the patient or informs him about what is happening in the
OpenNCP world (PS/eP/eD retrieval/submission, PIN acknowledgement or consent decisions).

Note that the Notification Adapter implementation is required, and each Member State
can create its own, however, the Health-eID project provides a reference implementation with the
email feature for demonstration purposes. To enable the sending SMS feature, the module needs
of an SMS gateway (demonstration not provided).

5.4.5 NCP HProxy

The NCP HProxy component is responsible to provide the kind of configuration of the eHealth
data structure in the country of Affiliation. This configuration is requested by the Workflow Man-
ager after the Patient Authentication in order to map the eIDAS attributes with the OpenNCP
attributes, checking also if some additional information are required because not provided by the
electronic identification (e.g. the patient ID is not provided by eIDAS because this attribute is
missing in the eID scheme of Country A).

NCP National Adapter

This National Adapter (to not confuse with the eIDAS National Adapter) allows the connection
between the NCP HProxy of the HeID Connector and the NCPeH-B, requesting from the latter
the country-A configuration (international search mask and eIDAS eHealth configuration).

5.4.6 NCPeH-A

NCP-A is now able to publish in the eHDSI Central Configuration Service (SMP) a new type
of SMP file containing configurations related to the application of the eIDAS assertion data in
eHealth: eIDAS eHealth Configuration. The OpenNCP-Gateway is the component responsible
for the generation and publication of this file. For more information about NCP, see [33].

5.4.7 NCPeH-B

The NCP-B side was enhanced with a feature for fetching the eIDAS eHealth Configuration and
returning it to the NCP HProxy via the National Adapter, which in turn uses the HEALTHeID-
enhanced OpenNCP CC Web Services Client Consumer component, as depicted in Figure 3. This

50

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

configuration is saved in the NCPeH-B file system, pretty much in the same way already done for
the international search masks, with the filename such as EidasEhealthConfig-CC.xml, where CC
is the ISO 3166-1 alpha-2 country code. This folder is created automatically by the component.
For more information about NCP, see [33].

5.4.8 PatientID Resolver

This component is not provided by HEALTHeID, although its existence is assumed. It must be
able unambiguously to resolve whatever data it receives from the eHDSI XCPD request into a
patient ID that can be returned to country-B for the subsequent cross-border eHealth requests.
However, the realisation is under the responsibility of the participating countries and outside this
project.

5.5 Security considerations

5.5.1 Communication between components

The HEALTHeID Connector exposes some internal and external endpoints: internals is designed
for the communication between the other software modules, while the external ones are aimed
at the end-user. Those interactions are based on messages exchanged by the HyperText Transfer
Protocol Over SSL (HTTPS), i.e. a variant of the HTTP protocol used for transferring web pages
on the internet; but while in HTTP the communications are all in plaintext, the HTTPS version
provides a safe communication creating a secure channel, encrypted through the exchanging of
x509 certificates, which ensures the confidentiality of data and the identity of the involved parties.

5.5.2 Replay attacks

At the application level, the HeID Connector makes use of a signed JSON Web Token (JWT)
for authorisation purposes. Specifically, the HeID Clients inserts the token on the HTTP Autho-
risation Header, in this way the HeID connector, before to process the request, reads this token
and validates the requests if it is valid. However, this token is the same for each request, and
it is never changed because it also corresponds to the encounterID, which uniquely identifies the
business relationship between patient and healthcare professional. Consequently, the use of an
unchanged authorisation token makes the HeID connector vulnerable to replay attacks.

A replay attack is a cyber attack in which the performer intercepts a valid data transmission
and repeating it in the Internet network: specifically, an attacker can intercept the IP packets, usu-
ally belonging to an authorised user and intended for a Service Provider, copying and re-sending
them toward the Service Provider: due to the validity of original data, the security protocols
consider the attack as a legitimate transmission. Since the original data are only intercepted and
re-transmitted, the attacker using replay does not necessarily have to decrypt them.

For avoiding this problem, it is advisable to use a nonce (i.e. a number, generally random or
pseudo-random, that has a unique use) in the authentication header instead of using JWT token.
Note that in our development, this token is used in authentication header to validates the request,
as mentioned above, but it is also used to identify the encounter (because the token is the same
and corresponds to the encounterID), and the HeID connector takes the encounter ID directly
from the HTTP authorisation header. Therefore, for improving the current solution, this is what
should happen:

1. the workflow manager (WM) creates the encounter, using a signed JWT token as encoun-
terID (not changed).

2. The WM sends the encounterID to HeID client with a nonce that the client could be used
in the next interaction.

51

5 – HEALTHeID: eIDAS-OpenNCP Connector for eHealth

3. Afterwards, the HeID client uses the nonce to perform the new request, inserting it in
the HTTP authentication header, instead of the encounterID. However, the encounterID is
useful information, so it must be present in the HTTP body,

4. The workflow manager (WM) receives the message and checks the nonce present in the
authorisation header. If the nonce is valid, the WM can read the encounterID from the
HTTP body and process the request. After that, WM generates a new nonce and sends it
to the HeID client, inside the response; in this way, the client can use the new nonce in the
next request.

However, in the current implementation, the attacker can not modify the data of the inter-
cepted transmission without the HeID connector rejecting it, and also, considering that the JWT
token expiration is about ten minutes, there is a limit to the effectiveness of the attack, which
can occur in a time window dictated precisely by the expiration of the token.

52

Chapter 6

HeID Connector Implementation

The chapter describes some principal tool used during the HeID modules implementation. Note
that the thesis work so as design and implementation activities were performed working with
different EU partners; therefore, some tools as Git and Slack were used in order to simplify
interactions, comments and exchange of ideas. In particular, among the other components, the
candidate took care of implementing the Workflow Manager independently, the Patient I/O in
collaboration with SPMS and the eIDAS-HProxy component co-operating with AUTh and ARIA
(ex LISPA). Consequently, this chapter presents only the software modules directly realised and
produced by him during the thesis work. For the same reason, only these mentioned components
are included in the .zip archive that the reader can found attached to this document; for the full
components of the HEALTH-eID project, please refer to the eHealth DSI OpenNCP repository,
available on the website of the European Union1.

6.0.1 Tools

This section describes the basic technological tools used for the implementation of logical compo-
nents during the HEALTHeID project activity.

Java Programming Language

Java is an object-oriented programming language and processing platform developed by Sun Mi-
crosystems in 1995 [49]. On balance, the Java’s strengths are its object-oriented characteristic
and its portability: the former allow a better representation of entities inside the the programs
and makes the code easier to maintain and extend [51]; the latter, the portability, is the most
important characteristic which allows that Java code, once built, can be executed everywhere
using a Java Virtual Machine (JVM) [50] independently from the operating system. Specifically,
the JVM makes the programs not compiled in machine code (native) but in a sort of “interme-
diate” code, called bytecode, which is not intended for be executed directly by the hardware
but which must, in turn, be interpreted by a second program, i.e., the virtual machine precisely.
Another advantage deriving from the use of Java is the possibility of using different software
libraries made available by the Java Application Programming Interface (API), a set of software
libraries that provide support to the programmer, which can quickly invokes the prewritten code
and performs high-level operations, reducing the realisation time and the probability error, and
ensuring maximum execution speed.

Maven

Apache Maven is an Open-Source project management tool for the Java platform, which offers
different services for simplifying some activities, such as library management, code compilation

1https://ec.europa.eu/cefdigital/code/projects/EHNCP/repos/health-eid/browse

53

6 – HeID Connector Implementation

and distribution [52]. The main reason to use Maven is to take advantages of the following services,
provided by the tool:

• standardisation of the structure of a project and the compilation process,

• automated-testing and export,

• automatic management and download of the libraries needed for the project with a resolution
of any transitive dependencies,

• ease of expanding the initial functionality by using plugins,

• automatic creation of a simple project documentation site.

The maven execution follows the information defined inside the Project Object Model (POM),
an XML file which describes the general information of the project, dependencies, compilation
process and: the pom.xml file clearly defines the identity and structure of a project, in all the
aspects. An example of minimal pom is shown as follow,

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>eu.europa.ec.healtheid</groupId>

<artifactId>healtheid-connector</artifactId>

<version>1.0.0-SNAPSHOT</version>

<packaging>war</packaging>

</project>

where:

• <project> is the root element of the XML file,

• <modelVersion> defines to which POM version this project complies,

• <groupId> is ID of the project group, to mark the context of the project or to specifies the
organisation,

• <artifactId> is the ID of the component (or project, or module),

• <version> i.e. the project version,

• <packaging> which is the type of archive we want to export (e.g. jar, war).

The groupId, artifactId, version and packaging parameters will uniquely identify a project. If
packaging is not specified in the POM, it will assume ”jar” at default value. As mentioned above,
one of the strengths of Maven is the management and the automatic download of the necessary
libraries for the project: for exploiting this characteristic it is sufficient to add in the pom.xml

file the dependency. For example, for including the OpenSAML library [53] in the project, it is
necessary to add the following <dependency> tag:

<dependency>

<groupId>org.opensaml</groupId>

<artifactId>opensaml</artifactId

<version>2.5.3</version>

</dependency>

Usually, at the first compilation, Maven connects to the central remote repository and downloads
all the libraries necessary to compile the project. This starting process could require a little time;
however, the subsequent compilations will take less time because Maven will store the libraries in
the local repository, usually located at /home/{$user}/.m2/repository in a Linux environment,
and no longer needs to contacts the remote one. The result of the compilation can be found inside
the project directory, specifically in the target folder, including the final jar/war file to deploy
on Tomcat.

54

6 – HeID Connector Implementation

Tomcat

Apache Tomcat [54] is one of the most popular open-source Web Container. Consider that a
Java Web Application needs to an execution environment to be exposed as a Web server in order
to make available his services for users or other components. In the thesis project, the version
8.5.35 of Tomcat is used for providing an isolated execution environment, on top of the JVM,
for each component; components are deployed as Web Application in the WAR format (Web
application ARchives), i.e. an archive which contains all the necessary data to execute the web
application. These applications can be hosted inside a single Tomcat Container, in the form of
archives characterised by the .war extension, and deployed in a dedicate environment, which is
managed and controlled by the container itself: in this way the components “live” inside the
container where they can be installed, configured and executed autonomously. For this reason,
all the components developed in this thesis project are released in the form of WAR archives and
can be deployed in the container discussed above.

MySQL

MySQL is an open-source relational database management system (RDBMS) [55]. His name de-
rived by Structured Query Language (SQL), which is a standard programming language designed
for interacting with the RDBMS databases in order to manage the data to store, e.g. inserting,
deleting or modifying the data and interrogating the database system about information availabil-
ity. SQL is one of the most widespread database languages in the world and MySQL, in essence,
provides a database system able to store information following SQL syntax and instructions: the
software is characterised by a server, in which the database is located, and by a client, which con-
sents the user to interact with the server through the command-line. The database server can be
used not only through his client interface, but also by various applications and web applications;
for this purpose, a numerous API and connectors are provided in order to establish a connection
between the MySQL Server and some clients applications, depending on the context. The power
of these APIs is into providing low-level access to the database, exploiting their libraries and
interfaces: for instance, since the Java programming language was used in the thesis environment,
among the others [56] the MySQL Connector/J driver is used, specifically the 8.0.13 version, to
enable a connection between the MySQL database server and the developed Java applications:
this driver is written in Java and communicates directly with the database server through the
MySQL protocol exploiting the Java Database Connectivity (JDBC) API [57].

Git and Bitbucket

Git [58] is a free and open-source distributed version control system, created to track progress
and versions of the developed code during a software development activity. Practically, it is a
command-line software that saves a series of “snapshots” of the filesystem in a custom specific
location creating a sort of history of the temporal code version realised during the development
process.

Bitbucket [59] is a free and secure Git that offers the possibility to manage multiple repositories
and making them available online for free; generally, the repositories can be published online as
public or private, by choice; the public repositories are typically used for share public project
and open-source code that can be consulted, downloaded and inspected by anyone, instead, for
the private ones, only the authorised users can access to the code and view it or download it.
Apart from this, they can be easily shared and used by several programmers, each of whom can
manage his own alternative versions (branches) and retrieve the code they need directly online.
Besides, people can interact, review code, comment and take some discussions about the shared
code with inline comments: those characteristics immensely facilitates the collaboration between
remote people that are working on the same project.

55

6 – HeID Connector Implementation

Slack

Slack [60] is a platform for managing communication between workgroups, faster, practice and
easily if compared to emails. This platform consents to create team chat, create thematic channels,
share files or code fragments quickly and easily, working on them simultaneously, exchange direct
and/or private messages with team members: overall, Slack simplifies business communications
and was widely used during the thesis’ work for communicating, designing and exchanging ideas
with the other partners involved in the HEALTH-eID project, in order to consistently implement
the various software modules and align their characteristics and behaviours, such as the choice of
protocols, message format, kind of messages, choice of endpoints and other project business.

6.1 Technologies for the Development of Java Applications

6.1.1 Spring Framework

Spring [61] is an open-source framework born to simplify the development process during Java
projects implementation: this simplicity is mainly due by the use of technologies such as the
Inversion of Control (IoC) and the Dependency Injection that simplify the code development and
allow the developer to focus on the essential application logic; in fact this tools can independently
manage different technical aspects of software development, thanks to IoC, making the use of
the framework very attractive. Also, the framework provides a highly configurable context for
the creation and resolution of component dependencies, that are called Beans, which can be
represented by an XML file or a Java class.

Inversion of Control: is an architectural principle that reverses the Control Flow of traditional
programming. In the traditional environment, the developer has the responsibility to man-
age the programming logic, but, in Spring, the IoC makes sure that the programmer does
not have to worry about things like creation, initialisation and invocation of object methods,
and delegates these operations to the framework itself, inverting, indeed, the Control Flow.

Dependency Injection: it refers to a specific implementation of the IoC that deals with re-
versing the process of resolving dependencies, injecting them from the outside. With this
pattern, it is sufficient to declare the dependencies an object needs and, when this will be
instantiated, an injector will take care of solving the dependencies, using the IoC. The role
of the injector is played by the IoC container, which takes care of instantiating the objects
(Beans) declared in the project, finding and injecting all the dependencies associated with
them. These dependencies can be components of the framework, or other beans declared in
the application context.

Beans: a bean in Spring context is an object that is created, instantiated and managed by Spring;
then this object is involved in the Dependency Injection mechanism. It can be configured
through a Java class (defined with the “@Bean” annotation) or an XML document.

The Spring framework has a modular architecture and offers different features/functionalities,
expressed by a single module: so then, despite being very large, it is possible to integrate within
a project, by choice, only the modules which realised the interested functions and, however, those
functions can be easily integrated into already existing projects. In particular, during the project
activity, the following Spring modules were used: Spring MVC, Spring Security, Spring Data and
Spring Email.

6.1.2 Spring MVC

Spring MVC is a specialisation of Spring based on the Modern-View-Controller (MVC) paradigm
and specifically designed for the realisation of loosely coupled web applications [62]. Loosely coupled
means that each component of the whole architecture can execute its tasks having no knowledge or

56

6 – HeID Connector Implementation

Figure 6.1. MCV paradigm architectural pattern, on the left, and the Spring MVC
implementation, on the right.

a minimal knowledge about classes, methods and definitions of the others: this concept maximise
the use of modularity and permits to replace one component with a new implementation without
affecting or influencing the behaviour of the others. Besides, the MVC paradigm is based on the
principle of a clear separation between input logic, business logic and user interface logic of a web
application and realised this principle employing three elements:

• Model: it contains the methods to access or store data, such as objects and collections. A
model describes and represents the data structures of the web application involved in the
interactions with the user.

• View: it takes care of displaying the data to the user and manages the interaction between
the latter and the internal infrastructure, showing the contents chosen by internal logic in
a particular format (e.g. HTML pages).

• Controller: it receives the user’s inputs from the View and triggers internal operations
which usually lead a changing of state in the View and in the Model.

Spring implements the MVC pattern using an additional element, the Dispatcher Servlet, which
is responsible for managing the MVC flow and for orchestrating all the interaction. Figure 6.1
compares the MVC paradigm with the Spring realisation: as displayed in the figure, in the Spring
MVC side, the Dispatcher Servlet handles all the request, working as Front Controller, and in the
next steps it drives all the MVC flow. Note that the Handler Mapping module is responsible to
manage the mapping between the Java method and the URL invoked in the request, while the
ModelAndView contains the data object and the name of the View associated with them and,
finally, the View Resolver identifies the correct View to show at the user, based on the processing
result of the request. In the thesis project, this specific framework interprets the role of the
Patient I/O, which manages the interactions between Patient and HeID Connector.

57

6 – HeID Connector Implementation

Thymeleaf

Thymeleaf [64] is a template engine, a library written in Java. It allows a developer to define an
HTML, XHTML or HTML5 page template and then fill it with data to generate the final page.
Therefore it realizes a Model-View part of a Model-View-Controller model. The basic design
principle of Thymeleaf requires that a model must be written correctly in (X) HTML.

6.1.3 Spring Security

Spring Security is a standard framework designed for giving security mechanism in the Spring-
based applications [63]. It can be integrated with the Spring MVC slice and offers authentication
and authorisation functionalities providing a configurable service for the access control. In the
HeID Connector, Spring Security is used to filter the HTTP request, to configure the SSL certifi-
cates and enabling SSL connections.

6.1.4 Spring Data JPA

Java Persistence API [65] (JPA) is a framework that automatically maps the Java objects
inside an existing relational database: create this manual mapping for the programmer is not
trivial, because the Java objects and the relational database are two very different paradigms
and translate the Java concepts in a relational entity or relationship could be very complicated.
The JPA framework simplifies the programmer’s work providing the so-called Object-Relational
Mapping (ORM), which enables an integration service between the Java applications and the
RDBMS systems. Via JPA, it is possible to map, store, retrieve and update Java objects from a
relational database, using the correct annotations and interfaces.

Spring Data JPA [66] is a Spring module that integrates into Spring the JPA framework,
simplifying the JPA working on the Spring-based applications further simplifying the work: it is
necessary to declare the repository interface, and Spring will “magically” provide an automatic
implementation. Explicitly, it consents to works with RDBMS databases using a coherent inter-
face that relies on an abstraction called “Repository”. Spring Data provides this Repository,
which is a Java interface that can be extended from custom repositories for providing custom
characteristics. In addition to the Repository interface, Spring Data also provides two other main
interfaces: CrudRepository, which defines the contract for CRUD basic functions (creation, read-
ing, updating and deletion); and PagingAndSortingRepository which extends CrudRepository
by defining a contract for pagination and sorting. These three main interfaces ensure that appli-
cation programmers can access data archives (such as relational databases or NoSQL databases)
in a consistent way and with the possibility to easily change the storage without having to change
the way the application interacts with the data store, therefore, if a user wants to change the
database with another one, he can do it quickly and with no problem. In the thesis activity,
Spring Data JPA is used to connect the Web Application with the MySQL database, in order to
store the required information in the DB.

6.1.5 Spring Email

The Spring Framework implements a simple abstraction for forwarding email by employing the
JavaMailSender interface [67]: it is necessary to have an email address with the credentials and the
SMPT properties, as the listening port, to configure the module. The provided demonstration
of the Notification Adapter exploits this service for sending emails to the patient, in order to
communicate the encounter link and send the HeID notifications.

58

6 – HeID Connector Implementation

6.2 Technical details regarding the implementation of the
HeID Connector module

The HeID Connector component is a Web Application implemented with Maven, for the project
management, and Spring-Boot, for exploiting the different advantages that this framework pro-
vides in the software implementation: the “Spring Boot Maven Plugin” [68] is used for having a
better integration between the two technologies.

For what concerns Maven, the pom.xml file is located in $PATH/healtheid-connector/
folder, where $PATH is the filesystem location of the unzipped project’s directory; the Project Ob-
ject Model represents the configuration file which contains the details of the project dependencies,
structure, and plugins. It is defined as follow,

<modelVersion> 4.0.0 </modelVersion>

<groupId> eu.europa.ec.healtheid </groupId>

<artifactId> healtheid-connector </artifactId>

<version> 1.0.0-SNAPSHOT </version>

<packaging> war </packaging>

with the dependencies which provides the Spring libraries for implements the Spring mechanisms
and services previously described,

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-web</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-thymeleaf</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-security</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-tomcat</artifactId>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-mail</artifactId>

</dependency>

and the dependency for including the MySQL Connector/J driver, in order to obtain the JDBC
APIs for communicating with the relational database.

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

</dependency>

59

6 – HeID Connector Implementation

About Spring, the framework organises the internal architecture following the Model-View-
Controller MVC pattern. Spring exploits the Java Annotations to simplifies its use: annotations
are meta-data associated with the source code, human-readable and similar to comments, but
which survive after the compilation time. They can be associated in methods or objects without
influencing the semantic; effectively, they influence the way the methods are treated, integrating
them with tools and libraries. In summary, Java Annotations are indications that the program-
mer can specify to the JVM, defining how to treat the annotated objects during the execution
phase. This mechanism gives the developer the possibility of using a simplified notation to make
the code more readable and, in the meanwhile, underlining to the compiler the characteristics
which a specific object must-have in the execution phase. In the following are defined the Spring
annotation used in the implementation of the HeID connector:

• @Controller: This annotation is used to identify a class as a Controller, e.g. a web con-
troller which handles HTTP messages and provides an HTTP access point to the application.

• @RestController: a specialised version of the Controller, which merges the @Controller
and the @ResponseBody annotations. Indeed using this annotation, there is no longer a
need to use the latter on all methods of the controller class.

• @RequestMapping(String): This annotation marks the HTTP handlers inside the
@Controller class; in other words, it creates a mapping between web requests and the
methods of the class, and it is used in the method and the URL to be mapped (the URL is
specified as a String). To correctly use the annotation, it is a good practice to specify also
the HTTP operation (e.g. GET, POST) as meta-annotation.

• @GetMapping(String): a specialisation of the @RequestMapping, dedicated for the han-
dling of HTTP GET requests. The String value specifies the URL endpoint to map with
the method.

• @PostMapping(String): a specialisation of the @RequestMapping, dedicated for the
handling of HTTP POST requests. The String value specifies the URL endpoint to map
with the method.

• @RequestHeader(String): This annotation indicates that a useful parameter should be
present in the HTTP header. The String value specifies the kind of the HTTP header to
inspect.

• @RequestBody <T> object: it indicates that an object of kind <T> should be present
in the HTTP Body. This annotation must be used on the parameters of the methods
declared in the controller class, and it automatically converts the HTTP body in the <T>
Java object. Automatic validation can be applied.

• @ResponseStatus: it marks the type of the HTTP status code that the method should
apply in the HTTP response.

• @ResponseBody: indicates that the returned Java object should be serialised in the
HTTP body of the HTTP response. It performs the reverse operation specified by the
@RequestBody.

• @SessionAttributes(String): it indicates the name of the attributes that should be trans-
parently stored in the HTTP session.

• @Component: it indicates that the class is a special Bean (“component”), which is auto-
detected by Spring and it is marked as belonging to the business logic.

• @Autowired: it marks a method or a field that should be managed by the Spring Depen-
dency Injection mechanism. For instance, if a Java class contains another Java class, the
declaration of the contained class is annotated, within the former, as @Autowired: in this
way, Spring automatically takes care about initialisation and dependency management.

60

6 – HeID Connector Implementation

• @Value (“conf.param”): it marks a field to set with a conf.param specified in some
configuration file. The use of this annotation consents to drive the Dependency Injection
assigning custom values in an external file that will be injected inside the application by
Spring.

• @ControllerAdvice: a specialisation of @Controller which declares an Exception Handler
shared between all the component belonging to business logic. Therefore, using this anno-
tation is possible to create a single class for handling the runtime exceptions and creating a
specific method to manage the different exceptions.

• @ExceptionHandler(Exception.class): This annotation marks a method as the delegate
handler for managing the specific “Exception” when the latter occurs.

• @Configuration: it marks this class as a class which contains one or more Bean methods
that the Spring container may process.

• @EnableTransactionManagement: this annotation enables the transaction manage-
ment of Spring Data, useful for configuring the communication between Spring and the
relational database. In essence, this annotation enables a Spring interceptor for the trans-
actional operation executed by the Java Persistence API.

• @ComponentScan(“eu.europa.ec.healtheid.”): this annotation consents to specified
specific package for Spring scanning. If no specific package is defined, the scan starts from
the package where the class with this annotation is declared. This annotation is useful if the
programmer wants to organise his configuration classes in one package and the component
to scan in another package.

• @EnableJpaRepositories(basePackages = “eu.europa.ec.healtheid.repository”):
This annotation enables the JPA repositories. It is possible to specify the package of the
repositories to avoid the Spring scanning of the whole project. Note that specifying the
location of repositories consents also to use different databases for a set of repositories
located in different packages.

• @EnableWebSecurity: This annotation includes the @Component and @Configuration
meaning, and it is part of the Spring Security slice. Also, it marks the class as the container
of the methods and Beans which provide the Web Security of the application (e.g. HTTP
basic authentication).

• @EnableGlobalMethodSecurity: This annotation provides a set of others annotations
to apply on methods for realising more granular security, e.g. in the access control it
provides annotations to define pre-authorisation on methods, distinguishing the role of the
user. In summary, it consents to manage security with more granularity handling each
specific request.

6.2.1 Spring Controllers

The HeID connector interacts with different entities, depicted in Figure 6.2:

• the HeiD Client, which submits the Healthcare Professional requests. The HeiD Client

component is external to the HeID Connector and is located inside the OpenNCP Portal.

• the Patient through the PatientIO, which reports his decisions and interactions. This
component is represented by some Views, written with Thymeleaf and managed by Spring
MVC, and by the Notification Adapter component that implements an email service for
demonstration purpose.

• the eIDAS-HProxy, which generates the eIDAS authentication request towards the eIDAS
Node-Connector deployed in the CoT (Country of Treatment) domain.

61

6 – HeID Connector Implementation

Figure 6.2. HeiD Connector and the internal bilateral communications. Note the absence of NCP
HProxy, which is due to the unilateral interaction with the WM.

Taking into account that three entities are involved in the HeID Controller interactions, three
different Spring Controller are defined inside the HeID connector project, one for each of them:
HeID-Client Controller, Patient Controller and eIDAS-Hproxy Controller, respectively.

Note that the NCP HProxy component has no one dedicated controller even if it interacts
with the Workflow Manager; this is why it does not perform requests toward the HeID Connector
and, consequently, the HeID Connector does not need to expose dedicated endpoints for the NCP
HProxy.

HeID-Client Controller

The HeID-Client Controller handles all the requests coming from the HeID Client component,
which is driven by the Healthcare Professional (HP) actions. This controller provides three end-
points for invoking specific services:

• /encounter/createEncounter : this endpoint triggers the business logic for creating an en-
counter between HP and patient. The encounter is represented by a JSON Web Token that
will be sent to both, within the HTTP body to the former and via email/sms to the latter
(inside the “acceptEncounter” link).

• /encounter/requestPatientData: it is called by HeID-Client for checking if the eIDAS patient
data are available in the WM. An HTTP message with 204 - NO CONTENT will be sent as
response if data are not yet ready (the patient has not completed the authentication process):
in this case, the HeID-Client will have to try again later.

• /encounter/receiveNotice: through this endpoint the HeID-Client can reports notifications
about what is happening in OpenNCP, attaching the outcome of each process (XCPD,
eP-PS, eD). The Workflow Manager is responsible to forward this notices to the patient.

62

6 – HeID Connector Implementation

Since the OpenNCP Portal, and consequently also the HeID Client, was designed to be service-
oriented, it directly communicates via the HTTP protocol and does not need of Views. Therefore,
the HeID Connector has to behave like a RESTful Web Service in the communication between the
HeID Client and, for this purpose, the dedicated controller is implemented as a REST Controller
in order to be able for managing URI and sending HTTP messages as responses, avoiding the use
of Views.

Patient Controller

The Patient Controller is implemented in according with the MVC pattern and drives the
Patient I/OViews shown to patient. On balance, the Patient Controller handles the requests
though the following endpoints:

• /patientEncounter/acceptEncounter/ {token} : it is invoked when the patient clicks on
the “acceptEncounter” link. The token is the Encounter ID generated by the Workflow
Manager.

• /patientEncounter/additionalPatientData: if the eIDAS authentication does not provide all
the necessary data, the patient is redirected to this endpoint in order to trigger the right
View and add the missing data by hand.

• /patientEncounter/patientAcknowledge: this endpoint is invoked to call the View responsi-
ble for showing the Patient information Notice and for asking the acknowledgment to the
patient.

• /patientEncounter/acknowledge: it accepts the acknowledgment’s result.

This endpoints are triggered by the actions that the user, i.e. the Patient, performs during the
interaction with the Views.

eIDAS-HProxy Controller

The eIDAS-HProxy Controller receives the eidas attributes, through the Model and inside a Map
Collection. This map contains the association between the friendly name of the attribute and
the value of the attribute (see the eIDAS Minimum Dataset at Table 3.1). For receiving this
information, this dedicated controller exposes the following endpoint:

• /heidconnector/acceptPatientAuthN : used by the eIDAS-HProxy component for sending the
eIDAS attributes to WM.

The different controllers are called by the Spring Dispatcher Servlet, which receives all the
incoming requests and contacts the Handler Mapping for resolving the URL and mapping the
request towards the correct controller.

6.2.2 Business Logic

Workflow Manager

The business logic of the HeID Connector is realised through the Workflow Manager (WM), which
is the core component of all the infrastructure: it is marked with the “@Component” annotation
and includes several instances that are annotated with “@Autowired” and injected by the Spring
framework inside this class. The WM implementation contains all the necessary methods for
satisfying the requests which will come from the Controllers, elaborating the responses, orches-
trating the HeID workflow, and storing the necessary data on the configured database through the
defined repositories. For what concern the repositories, the WM relies on the Spring Data JPA
framework, which simplifies the programmer’s work providing a standard Repository interface
to extend: for instance, here is the Java code written inside the EncounterRepository declared
to store the encounters that the HeID Connector will manage:

63

6 – HeID Connector Implementation

package eu.europa.ec.healtheid.repository;

import javax.transaction.Transactional;

import org.springframework.data.repository.CrudRepository;

import eu.europa.ec.healtheid.models.Encounter;

/ **

* This interface defines an Encounter repository which stores the Encounter

in the database

* by its EncounterID. Note that this interface is not implemented and its

working code

* will be automatically generated from its signature by Spring Data JPA.

* /

@Transactional

public interface EncounterRepository extends CrudRepository<Encounter,

String>{

}

Note how it is sufficient to extend the CrudRepository provided by Spring Data, specifying the
Java object to store as Entity in the DB and the Java property’s type to use as Primary Key.
The access to DB is granted by the methods extended from the CrudRepository interface.

Another fundamental thing done by the WM is the JWT token generation and validation:
those actions are realised relying on the io.jsonwebtoken library which provides all the necessary
methods removing all the management complexity for the programmer, giving a simple API
to deals with the JSON Web Token. For using this library is sufficient to add the following
dependencies in the Maven pom.xml file:

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-api</artifactId>

</dependency>

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-impl</artifactId>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-jackson</artifactId>

<scope>runtime</scope>

</dependency>

Exploiting the methods offered by this library, it possible to create and manage the mentioned
token: in the implementation this tasks are delegated to a specific class JwtTokenUtils, which is
autowired by Spring inside the Workflow Manager instance.

6.3 Technical details regarding the implementation of the
eIDAS HProxy module

The eIDAS-HProxy component is responsible to create the eIDAS authentication request towards
the eIDAS Connector of the Country of Treatment for allowing the cross-border authentication
of the Patient abroad. This component is part of the HeID Connector, but it is implemented

64

6 – HeID Connector Implementation

as a stand-alone Web Application, in order to provide a modular architecture. Especially, it
was realised relying on the Spring framework and was designed exploiting the eIDAS Sources

(version 2.2.0), available in the eIDAS Node Integration Package [73]: the version 2.2.0 is
chosen at the expense of the 1.4.3 because the SAML Engine of the former is based on OpenSaml

v3, instead of the deprecated OpenSaml v2 used in the latter. Consider that in the eIDAS
environment, the eidas-hproxy component behaves as a Service Provider which requires a user
authentication toward a remote Identity Provider, therefore, a design choice for the component
realisation was to take inspiration from the eIDAS Demo SP source code, provided by eIDAS
1.4.3 and adapted to the SAMLEngine of eIDAS 2.2.0: this operation required a deeper analysis
of the SAMLEngine 2.2.0 and, in particular, of its interfaces for the metadata generation.

In essence, the major differences between the SAMLEngine 1.4.3 and 2.2.0 are in the interfaces
for the metadata generation: indeed the former version uses the EntityDescriptor interface
provided by the OpenSaml v2 and located in the org.opensaml.saml2.metadata package, which
includes all the metadata information.

On the contrary, the eIDAS SAMLEngine 2.2.0 reorganises the metadata generation using two
interfaces, both located in eu.eidas.auth.engine.metadata package:

• EidasMetadataRoleParametersI: this interface represents either SP or IDP role de-
scriptors, and creates an object accessible from EidasMetadataParametersI. It defines all
the characteristics that the SP or IdP must have.

• EidasMetadataParametersI: this interface is responsible to present all data items for
an eIDAS metadata, including technical and business information. It contains also the Role
Descriptor data, defined by the EidasMetadataRoleParametersI interface.

To exploit the methods of the eIDAS SAMLEngine library, it is necessary to download the
eIDAS libraries (more details in A.1.4) and add the following dependency inside the pom.xml
file, located in the $PATH/eidas-hproxy/, where $PATH is the filesystem location of the unzipped
project’s directory:

<dependency>

<groupId>eu.eidas</groupId>

<artifactId>eidas-saml-engine</artifactId>

<version>2.2.0</version>

<scope>compile</scope>

</dependency>

Note that the eidas-hproxy must be able to read the JWT Token and, for this reason, it also
needs of the maven dependencies related to the io.jsonwebtoken library; they are the same
dependencies defined in the pom.xml of the healtheid-connector project and here reported for
completeness:

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-api</artifactId>

</dependency>

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-impl</artifactId>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>io.jsonwebtoken</groupId>

<artifactId>jjwt-jackson</artifactId>

<scope>runtime</scope>

</dependency>

65

6 – HeID Connector Implementation

About the communication with the other modules, the eidas-hproxy component exposes two
endpoints:

• /eidas-hproxy/authentication: through this endpoint, the Workflow Manager can trigger the
building of eIDAS authentication request, sending the encounter ID as a parameter. Before
sending the authentication request, the encounter ID is mapped with the SAML ID in order
to link the corresponding response with the encounter.

• /eidas-hproxy/metadata: this endpoint exposes a public interface, in which the eidas-hproxy
publishes its SAML metadata; this interface is contacted by the eIDAS connector to retrieve
the metadata necessary to start a SAML session. After the initialisation of the SAML
session, the eidas-hproxy can send the authentication request to eIDAS connector.

• /eidas-hproxy/AuthResponse: this endpoint is defined to receive the SAML assertion, which
contains the eIDAS attributes of the authenticated user corresponding to the digital identity
of the patient.

The eidas-hproxy component can be installed and configured by a configuration file, as de-
scribed in the dedicated Appendix section A.1.4

6.4 Technical details regarding the implementation of the
Patient I/O

The Patient I/O component is responsible for interacting with the patient for establishing the
encounter, adding the data not provided by eIDAS and alerting the patient through HeID notifi-
cation. It is characterised by two sub-components: the Patient Views and the Notification

Adapter.

6.4.1 Patient Views

The Patient Views correspond to the implementation of Views defined by the MVC paradigm,
which are used to realise the user interface: the source code of those Views serves only to build
the HTML that has to be sent to the browser (data processing is managed, as mentioned above,
by controller and model). They provide different web pages to show to the patient during the
HeID workflow, summarised as follow:

• Acknowledge Page: through this user interface, accessible from the
/patientEncounter/patientAcknowledge endpoint, the patient can accept the ac-
knowledge. A dummy model is created for demonstration purpose, which points to the
class-path file of the project (acknowledge.path=classpath:acknowledge/default.html) in
order to be configured for using another customised file.

• Additional Data Page: through this page, accessible from the
/patientEncounter/additionalPatientData endpoint, the patient can add additional
information needed by HeID, but not provided by eIDAS.

• Error Page: This page will be shown if any internal error occurs.

The described web interfaces are developed using bootstrap4 [69], i.e. an
open source toolkit for developing with HTML, CSS and JS) and are located in
$PATH/healtheid-connector/src/main/resources/templates, where $PATH is the filesystem
location of the unzipped project’s directory.

66

6 – HeID Connector Implementation

6.4.2 Notification Adapter

The Notification Adapter is a subcomponent of the Patient I/O and is packaged as a deployable
JAR file; the project directory is located in $PATH/healtheid-notification-adapter, where
$PATH is the filesystem location of the unzipped project’s directory.

This module is provided by the HeID project only for demonstration purposes and implements
the email feature, that can be configured as shown in the dedicated Appendix section A.1.3.
In the pom.xml file, located in $PATH/healtheid-notification-adapter/ folder, the following
dependency is added to exploit the Spring mail service:

<dependency>

<groupId>org.springframework.boot</groupId>

<artifactId>spring-boot-starter-mail</artifactId>

</dependency>

This dependency provides the library to use the JavaMailSender interface that consents to
create and send a MIME message from a Java application: the Multipurpose Internet Mail Ex-
tensions (MIME) [70] is an internet standard which extends the RFC-822 and defines the email
format to support text and multimedia content.

67

Chapter 7

Results

This chapter reports the results obtained from the integration of the HeID connector with the
eIDAS infrastructure and the notifications sent by the Notification Adapter to the email address
of the patient involved. The business logic of the Workflow Manager was tested with JUnit
tests. Additional tests about the healthcare professional interactions and the integration with the
OpenNCP platform were performed by the SPMS and CMS partners, principally because they
are directly involved in the implementation of those aspects.

In particular, the testing of the eidas-hproxy module, which is responsible for creating and
forwarding an eIDAS authentication request, was carried out within the same virtual environment
employed for the development, using a docker eIDAS infrastructure, provided by the TORSEC
group of Politecnico Di Torino, completed with all the components necessary for simulating of
a real eIDAS workflow and an Identity Provider configured for containing some dummies digital
identities used for testing purposes. In detail, it was found that:

• metadata are correctly generated by the eidas-hproxy component at the exposed URL and
they correctly retrieved by the eIDAS node connector deployed in the docker environment.

• the eIDAS SAML request is correctly generated and accepted by the eIDAS connector; then,
the eIDAS authentication flow continues without errors.

• the eidas-hproxy receives correctly the eIDAS assertion and elaborates the patient digital
identity.

• the Workflow Manager is able to receive and elaborate the attributes provided by the eidas-
hproxy.

Concerning the Notification Adapter, which is responsible for sending some business informa-
tion to the patient, it is possible to state that:

• the patient receives correctly the encounter link at the indicated email address and he is
correctly redirected to eIDAS by clicking on it.

• the HeID notification are successfully received in the email address indicated as patient
email.

68

Chapter 8

Conclusion

The thesis’ work described in this document is the result of active participation at the HEALTHeID
project: which wants to present a technological solution for combining the eIDAS digital identity
system with the OpenNCP eHealth data exchange system, in order to give in the latter a secure
authentication of a patient abroad, who wants to benefit of a better health service by taking
advantage of the epSOS infrastructure, which retrieves his clinical information from his country
of residence in a safe and reliable manner.

The proposed solution consists of the deployment of a new module that has to be installed
within the National healthcare infrastructure, the HeID Connector: this component is able to
create a connection for exploiting the services offered by eIDAS and OpenNCP infrastructures,
managing the whole workflow and providing an active role for the patient, who uses his smart-
phone to interact with the system during the authentication process and to give his consent. Also,
he receives notification about the status of the process. This HeID solution for patient authen-
tication is developed taking into account that the module has to be installed inside a national
infrastructure, therefore, it is thought to be highly configurable by each Member State accord-
ing to its internal system and preferences. The HeID connector can be improved in a future
implementation:

• changing the HTTP authorisation mechanism, which employs in any HTTP message the
same token, the encounterID, as authorisation token: this choice makes the system vulner-
able to replay attacks. For avoiding this problem, it is advisable to use a nonce (a number,
generally random or pseudo-random, that has a single use) in the authentication header
instead of the JWT token,

• signing and validating the token with x509 certificates, instead of using a secret shared
between the eidas-hproxy and heid-connector modules, as provided in the demonstration.
This improvement can be efficiently made relying on the JSON Web Token library already
employed to manage the token.

• verifying and updating the consent management, which is provided only for demonstration
purpose, because it is strongly affected by regulations and political decisions that are actually
under discussion.

In summary, the HeID solution integrates into OpenNCP the eIDAS authentication service:
in this way, the user/patient can apply, in another State of the European Union, his digital
identity, issued by his Country of Origin, for taking advantages of the eHealth services offered by
OpenNCP, which actually does not offer a reliable patient authentication mechanism.

69

Appendix A

User Manual

This appendix describes the several components developed in the HEALTHeID project and gives
a reference manual for installing the modules, explaining their configurations with a description
of the actions to take and the properties to set in the configuration file. Here are described the
configuration of modules implemented by the candidate during the thesis work and not contains
the configuration of components realised by the other partners. The source code of all the com-
ponents provided by the HEALTHeID project is available at CEF Digital OpenNCP Bitbucket
[71]:

A.1 HEALTH-eID Configuration

The following sections give all the useful information for a user that wants to install the HeID
Connector, developed in the thesis project, providing the set of instructions for configuring system
environment and HeID components.

A.1.1 Software Requirements

Linux or Unix Operating System. The development, execution and testing of the thesis’
work took place within the Ubuntu 18.04.3 LTS bionic distribution, installed on a Vir-
tual Machine, and based on Kernel 4.15.0-65-generic. As a rule, it is suggested to use
the same Linux distribution to install the components developed during this thesis’ activ-
ity. During the configuration, the user has to define some environment variables, which are
useful for creating some pointers to specific paths and memory addresses1.

Oracle Java SE Development Kit 8. The Java Development Kit or JDK is a set of tools for
the development and execution of software written in Java language. Usually, the JDK con-
tains within it a Java Virtual Machine (JVM), the Java Runtime Environment (JRE) and a
series of tools and libraries for development. This is an essential and fundamental component
needed to execute the developed application within the working environment: in particular,
during the project activity, the JDK 1.8.0 was used, where 1.8.0 refers to the installed
version. This Java JDK was installed following the installation guide for Linux platform,
provided by Oracle at [72]. The path of the JDK is /usr/lib/jvm/java-8-oracle/jre

and an environment variable $JAVA_HOME is defined for pointing to it. It is possible to verify
the correctness of the JDK tooling typing the following command in the Linux Shell:

$ java -version

Here is reported the expected output:

1How to create environment variables on Ubuntu - https://help.ubuntu.com/community/EnvironmentVariables

70

A – User Manual

java version "1.8.0_191"

Java(TM) SE Runtime Environment (build 1.8.0_191-b12)

Java HotSpot(TM) 64-Bit Server VM (build 25.191-b12, mixed mode)

Maven. The Apache Maven project management tool is installed by downloading the archive
containing the software’s binary files and its configuration in the operating system. Note
that this specific version can be retrieved from the Maven Web site2, and installed by
downloading of the compressed archive apache-maven-3.6.0-bin.tar.gz which can be
extracted in the /usr/share/maven directory. It is possible to verify the correctness of the
maven distribution typing the following command in the Linux Shell:

$ mvn -v

Here is reported the expected output:

Apache Maven 3.6.0

Maven home: /usr/share/maven

Java version: 1.8.0_191, vendor: Oracle Corporation, runtime:

/usr/lib/jvm/java-8-oracle/jre

Default locale: en_US, platform encoding: UTF-8

OS name: "linux", version: "4.15.0-65-generic", arch: "amd64", family:

"unix"

As the user can see, this command allows him to check the installed version of the Maven
software and the JDK development kit, in addition to the installation paths for both.

Apache Tomcat. The Apache Tomcat application server is installed in the version
8.5.35, with a procedure very similar to Maven, reported above. This spe-
cific version of Tomcat can be retrieved from the Tomcat Web Site, linked in
the footnote3. The archive apache-tomcat-8.5.35.tar.gz is downloaded in the
/opt/tomcat8/apache-tomcat-8.5.35 folder, and the $TOMCAT_HOME environment vari-
able is created for pointing here. At this point, the following commands can be executed in
the Linux shell for unzipping the downloaded file:

$ cd $TOMCAT_HOME
$ tar xzvf apache-tomcat-8.5.35.tar.gz

The command for executing the Tomcat Web Container is:

$ $TOMCAT_HOME/bin/catalina.sh run

For checking if Tomcat is correctly present in the system at the desired version, the user
can type the following commands:

$ cd $TOMCAT_HOME/lib/
$ java -cp lib/catalina.jar org.apache.catalina.util.ServerInfo

The Tomcat server thus becomes reachable at the default address http://localhost:8080,
not accessible from outside the computer where it is executed. This operation must be
repeated every time the user wants to start the Web execution environment.

MySQL as a database system. In the thesis’ activity, MySQL is the system chosen as rela-
tional database management, and the HeID applications were developed and tested using
the 5.7.27 version of the RDBMS container. But consider that the HeID applications were
developed to be flexible and configurable, so the user can install the database according to

2Download Apache Maven 3.6.0 - https://archive.apache.org/dist/maven/maven-3/3.6.0/binaries/

3Download Apache Tomcat 8.5.35 - https://archive.apache.org/dist/tomcat/tomcat-8/v8.5.35/bin/

71

A – User Manual

with his preferences with the possibility to use different databases splitting the data reten-
tion; it is useful, for instance, if the user wants to store some data in an RDBMS database
and others data in an In-Memory database. MySQL 5.7.27 can be retrieved from the
MySQL Community website, choosing the operating system, the OS version and the desired
MySQL version4, or it can also be installed with the following commands:

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository -y ppa:ondrej/mysql-5.7

$ sudo apt-get update

$ sudo apt-get install mysql-server-5.7

During the installation, the process will ask the user for a password that will be used for log-
ging into the MySQL Server. After the installation, run the mysql_secure_installation

command in order to configure some security aspects. Type on the command line

$ mysql_secure_installation

and follow the onscreen instructions:

Securing the MySQL server deployment.

Enter password for user root:

VALIDATE PASSWORD PLUGIN can be used to test passwords

and improve security. It checks the strength of password

and allows the users to set only those passwords which are

secure enough. Would you like to setup VALIDATE PASSWORD plugin?

Press y|Y for Yes, any other key for No:

Using existing password for root.

Change the password for root ? ((Press y|Y for Yes, any other key for

No) :

... skipping.

By default, a MySQL installation has an anonymous user,

allowing anyone to log into MySQL without having to have

a user account created for them. This is intended only for

testing, and to make the installation go a bit smoother.

You should remove them before moving into a production

environment.

Remove anonymous users? (Press y|Y for Yes, any other key for No) : y

Success.

Normally, root should only be allowed to connect from

’localhost’. This ensures that someone cannot guess at

the root password from the network.

Disallow root login remotely? (Press y|Y for Yes, any other key for No)

: y

Success.

By default, MySQL comes with a database named ’test’ that

anyone can access. This is also intended only for testing,

and should be removed before moving into a production

4Download MySQL 5.7.27 - https://dev.mysql.com/downloads/mysql/

72

A – User Manual

environment.

Remove test database and access to it? (Press y|Y for Yes, any other key

for No) : y

- Dropping test database...

Success.

- Removing privileges on test database...

Success.

Reloading the privilege tables will ensure that all changes

made so far will take effect immediately.

Reload privilege tables now? (Press y|Y for Yes, any other key for No) :

y

Success.

All done!

Finally, for working with MySQL, it is necessary to login into the MySQL Server:

$ mysql -u root -p

The system will ask the user for a password, set during the installation process. If the
password is correctly inserted, the user is logged inside the MySQL service, and the following
screen will appear in the command prompt:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 5

Server version: 5.7.27-0ubuntu0.18.04.1 (Ubuntu)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type ’help;’ or ’\h’ for help. Type ’\c’ to clear the current input

statement.

mysql>

Create the necessary database, required by the HeID applications:

mysql> CREATE DATABASE ehealth_healtheid;

Note that some problems can occur if the global timezone is not set in the MySQL server,
therefore, the following MySQL command must be executed, according with the user time-
zone:

mysql> SET GLOBAL time_zone = ‘+2:00’;

mysql> quit

At this point, the MySQL Server is correctly configured in the system, and it is ready to be
used with the HeID applications.

73

A – User Manual

A.1.2 HeID Connector - Workflow Manager

As already said, this component is the junction point between eIDAS and OpenNCP, which
elaborates the patient and HP actions. To configure the local environment, the user must do the
following steps:

1. Check if Tomcat and the database system are correctly installed in the local machine,

2. Create the database “ehealth_healtheid” in MySQL or in the preferred database system,

3. Open the $tomcat_folder/conf/server.xml and declare the Global JNDI Resource inside
the <GlobalNamingResources> element to enable the MySQL external configuration:

<Resource name="jdbc/ConfHeiD" auth="Container"

type="javax.sql.DataSource"

factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

maxTotal="20" maxIdle="10"

driverClassName="com.mysql.cj.jdbc.Driver"

url="jdbc:mysql://localhost:3306/ehealth_healtheid?useTimezone=true"

username="username"

password="password"

/>

where url ,username and password values depend on the MySQL configuration.

4. Open the $tomcat_folder/conf/context.xml and define the Global JNDI resource link
inside the Context element:

<ResourceLink global="jdbc/ConfHeiD" name="jdbc/ConfHeiD"

type="javax.sql.DataSource"/>

The healtheid-connector component contains a configuration file named default.properties

and located in $PATH/healtheid-connector/src/main/resources/, in which the user can define
some configuration properties to deploy the component according to his system and his preferences:
these properties are summarised as following with their description and default value. The user
can change this value or can create a new external configuration file, as explained below after the
properties’ description.

• server.port is the Listening Port. This is the TCP port contained in the URL sent to the
patient. It is also the port used when the component is run as a standalone JAR file (default
value: 443).

• server.url defines the URL basename. This is the hostname contained in the URL sent to
the patient. It is also the hostname used when the component is run as a standalone JAR
file (default value: localhost).

• server.protocol defines as HTTPS both the URL received by the patient as well as the
endpoints exposed when the component is run as a standalone JAR file. It must be “https”
(default value: https).

• server.ssl.enabled is useful to enable/disable SSL connections. If used, it should be “true”.
Only used in the case the component is run as a standalone JAR file. Otherwise, it can
be ignored, given that such configuration is provided by the application server where it is
deployed (default value: true).

• security.require-ssl is useful to requires SSL. If used, it should be “true”. Only used in
the case the component is run as a standalone JAR file. Otherwise, it can be ignored, given
that such configuration is provided by the application server where it is deployed (default
value: true).

74

A – User Manual

• server.ssl.key-store-type defines the format used for the keystore. It could be set to JKS
in case it is a JKS file. Only used in the case the component is run as a standalone JAR file.
Otherwise, it can be ignored, given that such configuration is provided by the application
server where it is deployed (default value: JKS).

• server.ssl.key-store defines the path to keystone containing the certificate. Only used in
the case the component is run as a standalone JAR file. Otherwise, it can be ignored, given
that such configuration is provided by the application server where it is deployed (default
value: $PATH/health-eid/ healtheid-connector/keystore/ keystore.jks).

• server.ssl.key-store-password defines the password used to generate the certificate. Only
used in the case the component is run as a standalone JAR file. Otherwise, it can be ignored,
given that such configuration is provided by the application server where it is deployed
(default value: password).

• server.ssl.key-alias defines the alias mapped to the certificate. Only used in the case
the component is run as a standalone JAR file. Otherwise, it can be ignored, given that
such configuration is provided by the application server where it is deployed (default value:
healtheid-connector).

• server.tomcat.remote-ip-header defines the name of HTTP header from which the re-
mote IP is extracted. If used, it must be “x-forwarded- for”. Only used in the case the
component is run as a standalone JAR file. Otherwise, it can be ignored, given that
such configuration is provided by the application server where it is deployed (default value:
x-forwarded-for).

• server.tomcat.protocol-header is useful to enable setting the header of the incoming
protocol. If used, it must be “x- forwarded-proto”. Only used in the case the component is
run as a standalone JAR file. Otherwise, it can be ignored, given that such configuration is
provided by the application server where it is deployed (default value: x-forwarded-proto).

• server.tomcat.redirect-context-root defines whether requests to the context root should
be redirected by appending a / to the path. If used, it must be “true”. Only used in the
case the component is run as a standalone JAR file. Otherwise, it can be ignored, given
that such configuration is provided by the application server where it is deployed (default
value: true).

• jwt.secret defines the shared secret (the same one that is used in eIDAS HProxy configura-
tions). Should be redefined by the MS and configured accordingly in the other components
using it (default value: shared-secret-to-sign-and- verify-JWT-token-change-it).

• jwt.expiration indicates the expiration time of the JWT token (in seconds) [600 seconds=
10 minutes] (default value: 600).

• redirect.to.eidasHProxy indicates the eIDAS HProxy endpoint (default value:
http://<hostname>:<port>/eidas-hproxy/authentication).

• ncphproxy.url configures the NCP HProxy endpoint (default value:
http://<hostname>:<port>/healtheid-ncp-hproxy/ncphproxy).

• spring.jpa.hibernate.ddl-auto is useful to enables Hibernate to create the
“ehealth healtheid” schema tables upon deployment of the artefact (default value:
update).

• spring.datasource.jndi-name externalizes JDNI configuration declared in Tomcat (de-
fault value: java:comp/env/jdbc/ ConfHeiD).

• acknowledge.path represents the classpath for the acknowledge HMTL page (default
value: classpath:acknowledge/default.html).

• pin.reference.version defines the acknowledged PIN-B version. It must be redefined by
the MS, according to the version of the PIN-B they are using (default value: 1.0.0.RC1).

75

A – User Manual

The following instructions allow customisation of the previous configurations using a
new configuration file that will overwrite the default.properties. Before creating the
file, the uses must add the following configuration in the Tomcat’s context.xml, located in
$tomcat_folder/conf/context.xml:

<Parameter name="healtheid-connector.properties"

value="/path/to/tomcat/properties/ healtheid-connector.properties"/>

where:

• name: it must be healtheid-connector.properties

• value: absolute path to a custom properties file, e.g., can be within a newly created proper-
ties file inside Tomcat (but this is not mandatory, it can be anywhere in the filesystem, as
long as the user running the HeID Connector has sufficient permissions to read it).

The configurations contained in healtheid-connector.properties file will overwrite the default con-
figurations provided by the default.properties file included in the component artefact. Note that
if this file does not exist, the default ones apply.

A.1.3 Patient I/O: the Notification Adapter

The healtheid-notification-adapter component is packaged as a deployable JAR file and imple-
ments an email service for demonstration purposes. The application.properties file sets the mail
configuration properties to realise the service with Spring Mail:

• spring.mail.host defines the email server host. It should be redefined by the MS according
to their email infrastructure configuration (default value: smtp.gmail.com).

• spring.mail.port defines the email server port. It should be redefined by the MS according
to their email infrastructure configuration (default value: 587).

• spring.mail.username defines the email authentication username. It should be re-
defined by the MS according to their email infrastructure configuration (default value:
testconnector2019@gmail.com).

• spring.mail.password defines the email authentication password. It should be rede-
fined by the MS according to their email infrastructure configuration (default value:
TestConnector2019).

• spring.mail.properties.mail.smtp.starttls.enable is used to enable StartTLS. It should
be redefined by the MS according to their email infrastructure configuration (default value:
true).

• spring.mail.properties.mail.smtp.starttls.required is useful to require StartTLS. It
should be redefined by the MS according to their email infrastructure configuration (default
value: true).

• spring.mail.properties.mail.smtp.ssl.enable is used to enables SSL. It should be rede-
fined by the MS according to their email infrastructure configuration.(default value: false).

• spring.mail.properties.mail.smtp.auth is used to enables email authentication. It
should be redefined by the MS according to their email infrastructure configuration (de-
fault value: true).

• spring.mail.properties.mail.smtp.connectiontimeout defines the connection timeout
(in ms). (default value: 5000).

• spring.mail.properties.mail.smtp.timeout defines the timeout (in ms) (default value:
5000).

76

A – User Manual

• spring.mail.properties.mail.smtp.writetimeout used to write timeout (in ms) (default
value: 5000).

• email.from defines the email sender (default value: no-reply@company.com).

The properties contained in the Notification Adapter’s application.properties file are not set
(i.e., they are commented) since they are in fact globally set by the HeID-Connector component
(in its default.properties file), which includes this one. However, they can be set, should the user
wants to run the component locally, in an isolated way. To overwrite the Notification Adapter
default configurations provided by the HeID-Connector default.properties file included within the
latter, the user must provide the custom values in the healtheid-connector.properties file
deployed within the Tomcat.

A.1.4 eIDAS HProxy

The eidas-hproxy component, developed as a WAR file, interacts with the healtheid-connector and
the eIDAS Node Connector (it may require a National Adapter in a real scenario, depending in
National Infrastructure). This component relies on the CEF eIDAS Sources, that can be obtained
as follow:

1. Check if maven is correctly installed in the system,

2. Download the EIDAS-Sources 2.2.0 from CEF eIDAS Node Integration Package [73],

3. unzip the package and go in the $EIDAS-Sources/EIDAS-Parent folder,

4. run the command “mvn clean install -DskipTests” in the terminal,

Next step regard to configure the eidas-hproxy component according with the system envi-
ronments and security certificates. In $Path/eidas-hproxy/main/src/resources there is the
default.properties file with the following fields to configure:

• server.port: it defines the TCP listening port.

• jwt.secret: it defines the shared secret (the same one that is used in the healtheid-
connector configuration). Should be redefined by the MS and configured accord-
ingly in the other components using it (default value: shared-secret-to-sign-and-

verify-JWT-token-change-it).

• url.heidConnector.acceptPatientAuth: it defines the url for interacting with healtheid-
connector and communicating the result of eIDAS authentication (default value:
http://<hostname>:<port>/heidconnector/acceptPatientAuthN).

• eidas.path: the file system path pointing to eIDAS configuration folder, containing Signing
and Encryption settings and keystore (see below).

• sp.metadata.url = http://<hostname>:<port>/eidas-hproxy/metadata; this is the
endpoint in which the component exposes his SAML metadata.

• sp.country = IT; the code of the country or organisation that provides the exit-point
toward eIDAS.

• country.metadata.url = http://connector-test-healtheid.polito.it/EidasNode/
ServiceProvider; the url of the eIDAS exit-point which must receive the eIDAS authenti-
cation request.

• sp.return = http://<hostname>:<port>/eidas-hproxy/AuthResponse; this is the end-
point in which the component wants to receive the SAML response from eIDAS.

• sp.metadata.retention = 86400; the eIDAS connector should re-load the SP metadata
page if the following time (in seconds) has elapsed.

77

A – User Manual

• encryption.algorithm.whitelist: it contains the encryption algorithms allowed in the
responses received. Each algorithm must be separated by “;” and no spaces are allowed in
the listing.

• signature.algorithm.whitelist: it contains the signature algorithms allowed in the re-
sponses received. Each algorithm must be separated by “;” and no spaces are allowed in
the listing.

• eidas.protocol.version = 1.1; this is the value of eIDAS protocol version followed by the
SP. When not empty, the value will be published in the SP’s metadata URL.

• eidas.application.identifier = CEF:eIDAS-ref:2.2.0; This value of eIDAS protocol ap-
plication identifier relative to the IdP code and version number. When not empty, the value
will be published in the SP’s metadata URL.

• Metadata additional information: SP and contact information to be dis-
played on the metadata page that can be defined by the provider.name, sp.type,
contact.support.email, contact.support.company, contact.support.givenname,
contact.support.surname, contact.support.phone, contact.technical.email,
contact.technical.company, contact.technical.givenname,
contact.technical.surname and contact.technical.phone properties

For configuring the communication between the eidas-hproxy component and the National
eIDAS Connector (or National Adapter, depending on the scenario):

1. generate self-signed certificates, one for signature and one for the encryption of SAML
messages

2. ask our National eIDAS Connector (or National adapter) to trust of the former certificates

3. insert the certificates in a Java Keystore at this path:
$PATH/eidas-hproxy/sp-config.local/keystore/

4. go to $PATH/eidas-hproxy/sp-config.local/server/sp/ and configure the
EncryptModule_SP.xml in according with the characteristics of the certificate gener-
ated for encryption:

<!-- Key store configuration -->

<entry key="keyStorePath"> ../../keystore/heid-eidas-hproxy.jks

</entry>

<entry key="keyStorePassword"> Password-of-the-keystore </entry>

<entry key="keyPassword">

Password-used-to-generate-the-encr.certificate </entry>

<entry key="keyStoreType">JKS</entry>

5. go to $PATH/eidas-hproxy/sp-config.localserver/sp/ and configure the
SignModule_SP.xml in according with the characteristics of the certificate generated
for signature:

<!-- signing response assertion true/false -->

<entry key="response.sign.assertions">true</entry>

<entry key="keyStorePath"> ../../keystore/heid-eidas-hproxy.jks

</entry>

<entry key="keyStorePassword"> Password-of-the-keystore </entry>

<entry key="keyPassword">

Password-used-to-generate-the-sign.certificate </entry>

<entry key="issuer"> certificate-issuer </entry>

<entry key="serialNumber"> certificate-serial-number </entry>

<entry key="keyStoreType"> JKS </entry>

78

A – User Manual

<!-- Metadata signature configuration -->

<entry key="metadata.keyStorePath">

../../keystore/heid-eidas-hproxy.jks </entry>

<entry key="metadata.keyStorePassword"> Password-of-the-keystore

</entry>

<entry key="metadata.keyPassword">

Password-used-to-generate-the-sign.certificate </entry>

<entry key="metadata.issuer"> certificate-issuer </entry>

<entry key="metadata.serialNumber"> certificate-serial-number

</entry>

<entry key="metadata.keyStoreType"> JKS </entry>

6. set the environment variable $eidas_config= $PATH/eidas-hproxy/sp-config.localserver/sp/,
where $PATH is the path in which the location of the eidas-hproxy folder,

7. go to $PATH/eidas-hproxy/ and run “mvn clean install,

The generated WAR file will be located in the $PATH/eidas-hproxy/target directory and
can be deployed on Tomcat.

Verification

Load https://<hostname/ip>:<port>/eidas-hproxy/metadata from a web browser and exam-
ine the resulting XML metadata page. In addition, it is possible to verify the following information:

• entityID should match the sp.metadata.url value, e.g.:

<md:EntityDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"

entityID="https://heid-connector.test/eidas-hproxy/metadata"

validUntil="2019-09-25T19:30:09.882Z">

• the metadata should be signed, then the <ds:SignatureValue> element must be present in
the metadata page, e.g.:

<ds:SignatureValue>...</ds:SignatureValue>

• the public X509 Certificates appears in the XML metadata page

• the return page is set correctly if present in the <md:AssertionConsumerService> element,
e.g.:

<md:AssertionConsumerService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://heid-connector.test/eidas-hproxy/AuthResponse"

index="0" isDefault="true"/>

<md:AssertionConsumerService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="http://heid-connector.test/eidas-hproxy/AuthResponse"

index="1"/>

A.1.5 NCP HProxy

The NCP HProxy component is packaged as a deployable WAR file (healtheid-ncp- hproxy). For
testing purposes, it can be launched as a standalone Spring Boot JAR file containing an embedded
Tomcat. This component’s behavior is managed by a set of properties within its self-contained
default.properties file. The following instructions allow customisation of such configurations.

79

A – User Manual

<ResourceLink global="jdbc/ConfHeiD" name="jdbc/ConfHeiD"

type="javax.sql.DataSource"/>

Where:

• name: it must be healtheid-connector.properties

• value: absolute path to a custom properties file, e.g., can be within a newly created proper-
ties file inside Tomcat (but this is not mandatory, it can be anywhere in the filesystem, as
long as the user running the HeID Connector has sufficient permissions to read it).

The configurations contained in ncp-hproxy.properties file will overwrite the default configu-
rations provided by the default.properties file included in the component artefact. If this file does
not exist, the default ones apply. The properties to set for install the ncp-hproxy component are:

• jwt.secret defines the shared secret (the same one that is used in the healtheid-
controller configurations). Should be redefined by the MS and configured accord-
ingly in the other components using it (default value: shared-secret-to-sign-and-

verify-JWT-token-change-it).

• jwt.expiration indicates the JWT Expiration time (in seconds), currently not being vali-
dated. (default value: 7200).

• server.ssl.enabled is useful to enable/disable SSL connections. If used, it should be “true”.
Only used in the case the component is run as a standalone JAR file. Otherwise, it can
be ignored, given that such configuration is provided by the application server where it is
deployed (default value: true).

• security.require-ssl is useful to requires SSL. If used, it should be “true”. Only used in
the case the component is run as a standalone JAR file. Otherwise, it can be ignored, given
that such configuration is provided by the application server where it is deployed (default
value: true).

• server.ssl.key-store-type defines the format used for the keystore. It could be set to JKS
in case it is a JKS file. Only used in the case the component is run as a standalone JAR file.
Otherwise, it can be ignored, given that such configuration is provided by the application
server where it is deployed (default value: JKS).

• server.ssl.key-store defines the path to keystone containing the certificate. Only used in
the case the component is run as a standalone JAR file. Otherwise, it can be ignored, given
that such configuration is provided by the application server where it is deployed (default
value: $PATH/health-eid/healtheid-connector/keystore/keystore.jks).

• server.ssl.key-store-password defines the password used to generate the certificate. Only
used in the case the component is run as a standalone JAR file. Otherwise, it can be ignored,
given that such configuration is provided by the application server where it is deployed
(default value: password).

• server.ssl.key-alias defines the alias mapped to the certificate. Only used in the case
the component is run as a standalone JAR file. Otherwise, it can be ignored, given that
such configuration is provided by the application server where it is deployed (default value:
healtheid-hproxy).

• server.tomcat.remote-ip-header defines the name of HTTP header from which the re-
mote IP is extracted. If used, it must be “x-forwarded- for”. Only used in the case
the component is run as a standalone JAR file. Otherwise it can be ignored, given that
such configuration is provided by the application server where it is deployed (default value:
x-forwarded-for).

80

A – User Manual

• server.tomcat.protocol-header is useful to enable setting the header of the incoming
protocol. If used, it must be “x- forwarded-proto”. Only used in the case the component is
run as a standalone JAR file. Otherwise, it can be ignored, given that such configuration is
provided by the application server where it is deployed (default value: x-forwarded-proto).

Even though the NCP HProxy is configured to use Spring Security to increase security, at the
moment, its only endpoint is freely exposed (i.e., no JWT or any other kind of token validation is
performed, as described previously in the jwt.* properties). However, the component is prepared
to be configured accordingly.

NCP HProxy default implementation

With the default implementation provided by HEALTHeID, the NCP HProxy must be deployed in
the NCP infrastructure, since the default National Adapter depends on the EPSOS PROPS PATH
environment variable (deeply tied to the OpenNCP reference implementation [74]). This vari-
able must be available (e.g., via the Tomcat’s $TOMCAT_PATH/bin/setenv.sh file). Additionally,
the JNDI resource jdbc/ConfMgr, demanded by the OpenNCP components, must be configured
in the Tomcat where the NCP HProxy is deployed (in $TOMCAT_PATH/conf/context.xml and
$TOMCAT_PATH/conf/server.xml).

context.xml

<ResourceLink global="jdbc/ConfMgr" name="jdbc/ConfMgr"

type="javax.sql.DataSource"/>

sever.xml

<GlobalNamingResources>

<Resource name="UserDatabase" auth="Container"

type="org.apache.catalina.UserDatabase" description="User database that

can be uptated and saved"

factory="org.apache.catalina.users.MemoryUserDatabaseFactory"

pathname="conf/tomcat-users.xml"

/>

<Resource name="jdbc/ConfMgr" auth="Container" type="javax.sql.DataSource"

factory="com.zaxxer.HikariJNDIFactory" singleton="true" minimumIdle="2"

maximumPoolSize="5" connectionTimeout="300000"

dataSourceClassName="com.mysql.jdbc.jdbc2.optional.MysqlDataSource.Driver"

dataSource.serverName="server" datasource.port="3306"

datasource.darabaseName="database" username="user" password="password"

/>

</GlobalNamingResources>

For the previous configuration, a JDBC Connection Pool such as HikariCP must be available.
This is achieved by placing the HikariCP-2.6.3.jar, slf4j-api-1.7.25.jar and mysql-connector-java.jar
(e.g., version 5.1.48) in the $TOMCAT_PATH/lib folder (same versions used by the OpenNCP are
used here for ease of installation).

Following are the Maven artefacts declaration to help their identification in the Maven Central
repository:

<dependency>

<groupId>mysql</groupId>

<artifactId>mysql-connector-java</artifactId>

<version>5.1.48</version>

</dependency>

81

A – User Manual

<dependency>

<groupId>com.zaxxer</groupId>

<artifactId>HikariCP</artifactId>

<version>3.1.0</version>

</dependency>

<dependency>

<groupId>org.slf4j</groupId>

<artifactId>slf4j-api</artifactId>

<version>1.7.25</version>

</dependency>

In case another database provider is used, a different JAR file rather than the MySQL one must be
used and the JNDI resource must be configured accordingly. This default implementation of the
NCP HProxy looks for the property PORTAL CLIENT CONNECTOR URL of the OpenNCP
properties schema (ehealth properties), which should point to the OpenNCP Client Connector de-
ployed at NCP-B (as in a typical OpenNCP installation). For more information about OpenNCP
installation see [74].

NCP HProxy national implementation

With a national implementation, it may be deployed separately.

82

Appendix B

Programmimg Manual

This appendix describes the contents of the HeID Connector web application, the eidas-hproxy
module, the NCP HProxy (developed by SPMS) and the Notification Adapter, designed and de-
veloped as part of the thesis project. Table B.1 describes the meaning of the constants mentioned
later in the discussion. These are created to simplify the description of the path of each resource
belonging to the sources of the developed software, without constraining them to a particular
execution environment. All the paths are relative to the root of the directory tree that makes up
the thesis work and are indicated in the Linux syntax, with the separator character /, or slash.

Variable Value Meaning
$SRC DIR sources folder Directory containing the

components of the code
developed in the thesis
project.

$EU DIR $SRC DIR/healtheid-connector/src/main Source directory of the
HeID Connector Web
Application.

$EU JDIR $EU DIR/java/eu/europa/ec/healtheid Java source directory
of the HeID Connector
Web Application.

Table B.1. Environment variables for understanding the programmer’s manual.

B.1 HeID Connector: source code, resources and business
logic

The HeID Connector module is is implemented as a Maven webapp project, identified by groupId
equal to eu.europa.ec.healtheid and artifactId as healtheid-parent. The connector is dis-
tributed as a WAR archive and it is based on the JDK 1.8 version of the Java API.

B.1.1 Class: Encounter

This class represents the Encounter between the Healthcare Professional and the Patient. Ta-
ble B.2 shows the attributes belonging to each instance of this class. There are a public setter
and getter methods for each attribute, as well as a constructor without arguments. Note that
there is a “@Entity” annotation, which let Spring know that Encounter class represents a table
in the configured database with the token attribute as the primary key of the entity; this latter
is annotated as “@Id”.

83

B – Programmimg Manual

Package: eu.europa.ec.healtheid.models

Class: Encounter

File: $EU JDIR/models/Encounter.java

Attribute Data type Meaning
patientEmail String The email address to contact the patient for

sending encounter link or some notifications.
patientMobilePhone String The mobile phone number to contact the pa-

tient for sending encounter link or some noti-
fications via SMS.

patientCountryCode String Code which identifies the patient’s country,
e.g. “IT” code means that patient is Italian
citizen.

token String JSON Web Token represented as String value
in the format aaa.bbb.ccc. It is the the en-
counter ID.

consent Boolean Status of patient consent. If set to false, the
patient did not give his consent.

Table B.2. Content of the Encounter Java object defined in the HeID Connector project.

B.1.2 Interface: EncounterRepository

The interface defines a repository to store the Encounter B.1.1 in the database by its encounterID
value. Note that this interface is not implemented and its working code will be automatically
generated from its signature by Spring Data JPA. It extends the CrudRepository (add reference).

Package: eu.europa.ec.healtheid.repository

Class: EncounterRepository

File: $EU JDIR/models/EncounterRepository.java

@Transactional

public interface EncounterRepository extends CrudRepository<Encounter,

String> {

}

The “@Transactional ” annotation delegates to Spring to performs database transactions.

B.1.3 Class: PatientData

PatientData represents the collection of patient attributes recovered from eIDAS after the patient
authentication and from the additional data action performed if some information are missing.
The class has the “@Entity” annotation and the set of java attributes is shown in table B.3.
Note that encounterID attribute has the “@Id” annotation and symbolises the primary key of
the entity.

Package: eu.europa.ec.healtheid.models

Class: PatientData

File: $EU JDIR/models/PatientData.java

84

B – Programmimg Manual

Attribute Data type Meaning
encounterID String JSON Web Token represented

as String value in the format
aaa.bbb.ccc.

dataReady Boolean This value represents the status of
patient data. When patient is au-
thenticated and the system knows
the patientID, this boolean value is
true .

demographics List<Demographics> Code which identifies the patient’s
country, e.g. “IT” code means that
patient is Italian citizen.

Table B.3. Content of the PatientData Java object defined in the HeID Connector project.

B.1.4 Interface: PatientDataRepository

This interface defines a repository to store PatientData B.1.3 in the database by its encounterID.
Note that this interface is not implemented and its working code will be automatically generated
from its signature by Spring Data JPA. It extends the CrudRepository (add reference).

Package: eu.europa.ec.healtheid.repository

Class: PatientDataRepository

File: $EU JDIR/models/PatientDataRepository.java

@Transactional

public interface PatientDataRepository extends CrudRepository<PatientData,

String> {}

The “@Transactional ” annotation delegates to Spring to performs database transactions.

B.1.5 Class: NotificationData

This class represents the NotificationData that will be sent by HeID Client to inform the HeID
Connector about what is happening in the OpenNCP World (XCPD, EP, PS,). The set of java
attributes is shown in table B.4.

Package: eu.europa.ec.healtheid.models

Class: NotificationData

File: $EU JDIR/models/NotificationData.java

Attribute Data type Meaning
notificationType NotificationType Enumerator which defines the possibles noti-

fication types.
encounterID String JSON Web Token represented as String value

in the format aaa.bbb.ccc.

Table B.4. Content of the NotificationData Java object defined in the HeID Connector project.

85

B – Programmimg Manual

B.1.6 Class: NotificationType

Class belonging to package eu.europa.ec.healtheid.models.enumerator which defines some static
values for the kind of notification that the HeID Connector can send to the patient. The enum
values are defined as follow:

public enum NotificationType {

ED,

EP,

PS,

XCPD,

CONSENT

}

The ED value is uses for representing a eDispensation notifications, EP for ePrescriptions, PS
for Patient Summaries, XCPD for notifying the end of OpenNCP Patient Discovery and finally
CONSENT for a notification about the consent mechanism.

B.1.7 Class: ErrorResponse

The ErrorResponse class provides some attributes (see Table B.5) in which store and then notify
a potential error that can occurs at the application level.

Package: eu.europa.ec.healtheid.models

Class: ErrorResponse

File: $EU JDIR/models/ErrorResponse.java

Attribute Data type Meaning
status HttpStatus Enumeration of HTTP status code.
error code String Error code of a potential issue that can occur

in the HeID Connector Web Application
description String Short description of the error.

Table B.5. Content of the ErrorResponse Java object defined in the HeID Connector project.

B.1.8 Class: PatientAcknowledge

This class represents the PatientAcknowledge that will be stored in a database. The class is
marked with the “@Entity” annotation to inform the Spring framework that it represents a table
inside the HeID Database. The JWTtoken, i.e. the encounterID, is used as the primary key as
usual; the other fields are depicted in table B.6.

Package: eu.europa.ec.healtheid.models

Class: PatientAcknowledge

File: $EU JDIR/models/PatientAcknowledge.java

B.1.9 Interface: AcknowledgeRepository

This interface defines a repository to store PatientAcknowledge B.1.8 in the database by its en-
counterID. Note that this interface is not implemented and its working code will be automatically
generated from its signature by Spring Data JPA.It extend the CrudRepository (add reference).

86

B – Programmimg Manual

Attribute Data type Meaning
JWTtoken String JSON Web Token represented as String value

in the format aaa.bbb.ccc.
consent Boolean Status of patient acknowledgment. If set to

false, the patient did not give his acknowledg-
ment.

timestamp java.util.Date The moment in which the patient performs the
acknowledgment action.

PINreference String The reference to the Patient Information No-
tice, which was shown at the patient.

PatientID String The Patient Identifier.

Table B.6. Content of the PatientAcknowledge Java object defined in the HeID Connector project.

Package: eu.europa.ec.healtheid.repository

Class: AcknowledgeRepository

File: $EU JDIR/models/AcknowledgeRepository.java

@Transactional

public interface AcknowledgeRepository extends

CrudRepository<PatientAcknowledge, String> {}

The “@Transactional ” annotation delegates to Spring to performs database transactions.

B.1.10 Interface: NcpHProxyService

Interface for connecting the HeID Connector to the NCP HProxy component in order to get the
OpenNCP Configuration of patient’s country. The class is annotated as Spring “@Component”
which marks the class as a bean so that Spring can detect it and pull it into the Application-
Context. In the following is described the unique method of this class.

Method: getCountryConfiguration

Package: eu.europa.ec.healtheid.services

Class: NcpHProxyService

File: $EU JDIR/services/NcpHProxyService.java

public HealtheidCountryConfiguration getCountryConfiguration(String country)

throws HealtheidGetCountryConfigurationException;

This method receives the patient country code and returns the HealtheidCountryConfiguration
object which represents the configuration of the remote country for retrieving patient data. The
implementation of the method can be found in the NcpHProxyServiceImpl.java class, located
in the same package. It implements a REST call toward the NCP HProxy component on the
endpoint

https//:<hostname:port >/healtheid-ncp-hproxy/ncphproxy/{country}

where the {country} parameter is the String value received by the method as input. Instead the
< hostname : port > depends on the NCP HProxy deployment; note that the endpoint value is
configurable in the default.properties [add reference] file and injected inside the NcpHProxySer-
viceImpl.java instance by Spring in the String ncphproxyUrl variable which has the “ @Value”
annotation. A HealtheidGetCountryConfigurationException is raised if something wrong happens,
and the health country configuration can not be retrieved.

87

B – Programmimg Manual

B.1.11 Interface: PatientConnector

Interface for connecting the HeID Connector to the patient toward the Notification Adapter
component, which implements the SMS/email communication to send the notifications. The class
is annotated as Spring “@Component” which marks the class as a bean so that Spring can detect
it and pull it into the Application-Context. In the following the two methods of this class:

Method: sendLinkToPatient

Package: eu.europa.ec.healtheid.services

Class: PatientConnector

File: $EU JDIR/services/PatientConnector.java

public boolean sendLinkToPatient(String link, String phoneOrEmail);

This method contacts the Notification Adapter, i.e. HealtheidNotifier component, and receives
as input parameters the link, generated by the Workflow Manager, and the email or the mobile
phone of the patient. It returns a boolean value: true if the link is correctly sent to the patient by
the Notification component, false otherwise. The implementation of the method can be found
in the PatientConnectorImpl.java class, located in the same package.

Method: sendNotificationToPatient

Package: eu.europa.ec.healtheid.services

Class: PatientConnector

File: $EU JDIR/services/PatientConnector.java

public boolean sendNotificationToPatient(NotificationType type, String

phoneOrEmail);

This method contacts the Notification Adapter, i.e. HealtheidNotifier component, receiving as
input parameters the NotificationType B.1.6 object, which contains the kind of advice to send,
and the email or the mobile phone of patient. It returns a boolean value: true if the notification
is correctly sent to patient by the HealtheidNotifier component, false otherwise. The implemen-
tation of the method can be found in the PatientConnectorImpl.java class, located in the same
package.

B.1.12 Class: HeiDClientController

HeiDClientController class performs the role of an entry/exit point for the communication with
the HeID Client component, located in the OpenNCP portal. This class handles all the incoming
requests and contacts the Workflow Manager to elaborate on the corresponding responses. It is
characterised by the Spring @RestController annotation and provides three REST endpoints,
reported in the table B.7, that the HeID Client can call for creating the encounter, polling the
availability of patient data and sends relevant updates to forward toward the patient informing
him of what is happening in the system. These endpoints are manage by the following methods:

Method: createEncounter

Package: eu.europa.ec.healtheid.controllers

Class: HeIDClientController

File: $EU JDIR/controllers/HeIDClientController.java:58

public ResponseEntity<Encounter> createEncounter(@RequestBody Encounter

encounter){}throws Exception;

88

B – Programmimg Manual

Endpoint Request Parameters Response

POST /encounter/createEncounter Encounter (B.1.1) object cre-
ated by the HeID Client, which
contains the patient informa-
tion about country of origin and
email/SMS. It is requested in the
HTTP Body.

200 OK - the con-
nector responds
with the same
Encounter object,
with the field
encounterID filled
with the JWT
token.

POST /encounter/requestPatient-
Data

encounterID value in the HTTP
Authorization Header. It is used
as authorisation token.

200 OK - If the
patient data are
ready
204 No Content -
If patient has not
yet completed the
authentication

POST /encounter/receiveNotice encounterID value in the HTTP
Authorisation Header.
NotificationData (B.1.5) object
which contains the kind of notice
to send toward patient is required
in the HTTP Body

200 OK - The no-
tification is cor-
rectly sent to pa-
tient

Table B.7. HeID connector endpoints to handle HeID Client requests.

Response example:

HTTP Status code: 200 OK

Content-Type: application/json

{

"patientEmail": "italian.patient@email.it "

"patientMobilePhone" : "323 33 33 333"

"patientCountryCode" : "IT"

"token" :

"eyJhbGciOiJIUzI1NiJ9.eyJqdGkiOiIxYzE0YTE5MC0wZmFjLTRlMTktYjk0Yi0yZ

GViNzg3ODYwZjkiLCJleHAiOjE1NjMyMzYzMjEsInN1YiI6IklUIn0.foIhtBB2qH-

vyKGOFcivYc54VeAVhg6GtPgaoEi68I"

"consent" : "false"

}

Method responsible for receiving the HTTP encounter request from HeID Client. It receives
the Encounter object as a parameter, which contains the necessary patient’s data to start the
encounter process. The method calls the WorkflowManager which fulfil the data object with the
encounterID and sets the consent value to false. The “@RequestBody” annotation indicates
that the input parameter should be bound into the body of the web request.

Method: requestPatientAuthNData

Package: eu.europa.ec.healtheid.controllers

Class: HeIDClientController

89

B – Programmimg Manual

File: $EU JDIR/controllers/HeIDClientController.java:94

public ResponseEntity<PatientData>

requestPatientAuthNData(@RequestHeader("Authorization") String

encounterID) throws PatientDataNotReadyException,

PatientNotFoundException,Exception;

Response example:

HTTP Status code: 200 OK

Content-Type: application/json

{

"encounterID" :

"eyJhbGciOiJIUzI1NiJ9.eyJqdGkiOiIxYzE0YTE5MC0wZmFjLTRlMTktYjk0Yi0yZ

GViNzg3ODYwZjkiLCJleHAiOjE1NjMyMzYzMjEsInN1YiI6IklUIn0.foIhtBB2qH-

vyKGOFcivYc54VeAVhg6GtPgaoEi68I"

"dataReady" : "true"

"demographics" : {

"Demographics" : [

{

"friendlyName" : "Surname"

"userValue" : "Rossi"

...

...

},

{

"friendlyName" : "Name"

"userValue" : "Giovanni"

...

...

},

{

"friendlyName" : "patientID"

"userValue" : "RSSGVNN12G33B345A"

...

...

},

{

other attribute element

},

etc...

]

}

}

This method handles the request about patient data availability. The data are available when
the patient completed his authentication and the WorkflowManager (WM) knows the PatientID.
So this method asks to WM for patient data and exploits the 200 OK and the 204 No Content

HTTP status code to inform the client. The “@RequestHeader” annotation indicates that a
method parameter should be bound to a web request header, i.e. the encounterID, which is used
both to identify the encounter and as authorisation token to legitimate the request.

Method: receiveNotice

90

B – Programmimg Manual

Package: eu.europa.ec.healtheid.controllers

Class: HeIDClientController

File: $EU JDIR/controllers/HeIDClientController.java:119

public ResponseEntity<Object> receiveNotice(@RequestHeader("Authorization")

String encounterID, @RequestBody NotificationData notice, ModelMap model)

throws Exception;

Response example:

HTTP Status code: 200 OK

Content-Type: No Content

This method receives the kind of notification that the WM forwards to the Patient for informing
him about the various steps of OpenNCP process or his consent status. The “@RequestHeader”
annotation indicates that a method parameter should be bound to a web request header, i.e. the
encounterID, which is used both to identify the encounter and as authorisation token to legitimate
the request.

B.1.13 Class: PatientController

PatientController class defines the method that handles the Patient interactions and drives his
action for performing the authentication and storing the consent decision. The “@Controller”
indicates to Spring that this class is a web controller, which provides different endpoints, reported
in the table B.8. The methods of this class are described as follow:

Endpoint Request Parameters Response

GET /patientEncounter/accept-
Encounter/{token}

the encounterID, extracted frome
the link

Redirect the pa-
tient toward the
eIDAS HProxy.

GET /patientEncounter/additional-
PatientData

String token: the encounterID Redirect to the
AdditionalData
Form if the eI-
DAS attributes
are not enough
(e.g. PatientID is
missing)

POST /patientEncounter/addition-
alPatientData

String token: the encoun-
terID SearchFieldsForm

searchFieldsForm : the set
of attributes added by hand
because not provided by the
eIDAS attribute set.

Redirect to Ac-
knowledgement
Screen or again
in the Addition-
alData Screen
if something is
missing.

POST /patientEncounter/patien-
tAcknowledge

String token: the encounterID
Encounter encounter: the en-

counter data structure.

Shows the Pa-
tient Information
Notice.

POST /patientEncounter/acknowl-
edge

Encounter encounter: the en-
counter data structure

Shows the result
of the Acknowl-
edgment process.

Table B.8. HeID connector endpoints to drive patient actions.

Method: acceptEncounter

91

B – Programmimg Manual

Package: eu.europa.ec.healtheid.controllers

Class: PatientController

File: $EU JDIR/controllers/PatientController.java:71

public ModelAndView acceptEncounter(ModelMap model, @PathVariable(value =

"token") String token);

This method is responsible for accepting the Encounter. The endpoint receives the encounterID
(JWT Token) that is accepted as “@PathVariable”. When the patient clicks on the link received
by email, he will be redirected to this endpoint. Here the WorkflowManager is called to validate
the encounterID.

Method: additionalPatientData

Package: eu.europa.ec.healtheid.controllers

Class: PatientController

File: $EU JDIR/controllers/PatientController.java:91

public ModelAndView additionalPatientData(ModelMap model,

@ModelAttribute(value="token") String token) throws

HealtheidGetCountryConfigurationException;

This method responsible for showing the AdditionalData Screen after the eIDAS authentication, if
needed. It contacts the NCP HProxy to check if the eID Schema provided by the Patient Country
contains all the necessary attributes; if not, this method shows to patient the AdditionalData
Screen, otherwise it shows the Acknowledgment Screen. The endpoint receives the encounterID
(token) as “@ModelAttribute”. The HealtheidGetCountryConfigurationException is raised if some
problems occur during the NCP HProxy interaction.

Method: postAdditionalPatientData

Package: eu.europa.ec.healtheid.controllers

Class: PatientController

File: $EU JDIR/controllers/PatientController.java:120

public ModelAndView postAdditionalPatientData(@ModelAttribute(value =

"token") String token, @ModelAttribute(value = "searchFieldsForm")

SearchFieldsForm searchFieldsForm, ModelMap model) throws

PatientNotFoundException, HealtheidGetCountryConfigurationException;

This method accepts the inputs of the AdditionalData Screen, that are the attributes miss-
ing from eIDAS authentication and inserted by hand; this set of attributes is contained in the
SearchFieldsForm searchFieldsForm object.

Method: patientAcknowledge

Package: eu.europa.ec.healtheid.controllers

Class: PatientController

File: $EU JDIR/controllers/PatientController.java:146

public String patientAcknowledge(ModelMap model,

@ModelAttribute(value="token") String token, @ModelAttribute(value =

"encounter") Encounter encounter) throws IOException;

92

B – Programmimg Manual

This method redirect the Patient to acknowledge Screen, showing to him the Patient Informa-
tion Notice and redirect the user to /patientEncounter/acknowledge to store the result of the
acknowledge in the database.

Method: acknowledge

Package: eu.europa.ec.healtheid.controllers

Class: PatientController

File: $EU JDIR/controllers/PatientController.java:170

public String acknowledge(@ModelAttribute(value = "encounter") Encounter

encounter, SessionStatus status) throws Exception;

B.1.14 Class: EidasHProxyController

This class is responsible for handling the responses coming from the eIDAS HProxy component.
This messages contains the attributes obtained from the eIDAS authentication performed by the
patient. A unique endpoint is defined to receive this information:

/heidconnector/acceptPatientAuthN

that accepts the eIDAS attributes as a JSON object that is validated against the Map<String,String>
object. The map key is the friendly name of the attribute while the map value correspond to
the attribute value.

Method: acceptPatientAuthNData

Package: eu.europa.ec.healtheid.controllers

Class: PatientController

File: $EU JDIR/controllers/PatientController.java:146

public String acceptPatientAuthNData(HttpServletRequest request,

@RequestBody Map<String,String> eidasAttributes, RedirectAttributes

redirectAttributes, ModelMap model) throws

HealtheidGetCountryConfigurationException;

This method accepts the eIDAS attributes coming from the eIDAS HProxy and passes these
attributes to the Workflow Manager.

B.1.15 Class: Workflow Manager

This class is the core of the HeID Connector: it drives the Health-eID workflow, validating
requests, taking decisions, conducting the invocation of the other components to precess requests
and storing useful data in the database. It isolates the business logic from input and knows how to
give specific tasks to other components. It is responsible to create and validate the encounter, to
redirect the patient toward eIDAS, to map the eIDAS attributes in OpenNCP attributes, to ask
the acknowledge and store the result. The following methods implements all these functionalities
relying on other classes defined in the package eu.europa.ec.healtheid.utils.

Method: createEncounter

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:82

93

B – Programmimg Manual

public Encounter createEncounter(Encounter encounterRequest)

This method is responsible to create the encounterID, as a JSON Web Token, relying on the
JwtTokenUtils B.1.19 class, and generates the link to send to the patient. It accepts an En-
counter B.1.1 object as input parameter, which contains the patient email and country, so then
it fills the received data structure with the encounterID and sets the consent value to false. It
calls the Notification Adapter to invite the patient at the encounter and returns the modified
encounterRequest

Method: getCountryConfiguration

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:118

public HealtheidCountryConfiguration getCountryConfiguration(String token)

throws HealtheidGetCountryConfigurationException;

Method responsible for contacting the NCP HProxy in order to obtain the specific country con-
figuration. It receives the encounterID and, relying on the JwtTokenUtils B.1.19 class, it reads
the interested country code.

Method: acknowledgeStore

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:131

public void acknowledgeStore(String jwtToken, String PINReference) throws

Exception;

This method is responsible for storing the Acknowledge in DB. It receives the jwtToken which
identifies the encounter and the PINReference which points to the specifc Patient Information
Notice shown to patient.

Method: eIDASredirection

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:226

public ModelAndView eIDASredirection(ModelMap model, String encounterID);

This methods is responsible to forward the patient toward the eIDAS HProxy. When it is called,
the method store a PatientData B.1.3 object in the database, with the encounterID passed as
input parameter, and setting the dataReady value to false. This means that the encounter is
accepted by the patient but he has not completed the authentication process, so his attributes
are not yet available.

Method: checkIfPatientIsAuthenticated

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:161

94

B – Programmimg Manual

public PatientData checkIfPatientIsAuthenticated(String encounterID) throws

PatientDataNotReadyException, PatientNotFoundException;

This method checks if the patient has correctly completed the authentication through eIDAS. It
raises the PatientNotFoundException if the encounterID does not exist, otherwise he recovers
the PatientData from the PatientDataRepository and raises the PatientDataNotReadyException
if the dataReady value is false. It returns the PatientData object identified by the encounterID

if the dataReady value is true.

Method: notifyPatient

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:199

public boolean notifyPatient(NotificationData notice) throws Exception;

This method trigger the patient notification’s action that will be delegated to the HealtheID
Notification component. It receives the NotificationData B.1.5 which contains the reason of the
notice and the encounterID. After retrieving the patient SMS/email from database, it interacts
with the PatientConnector to inform the patient.

Method: processEncounterData

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:249

public String processEncounterData(String token, HttpServletRequest request,

Map<String, String> eidasAttributes, RedirectAttributes

redirectAttributes;

This method receives the eidasAttributes from the eIDAS HProxy. Its task is to maps this data,
that follows the eIDAS SAML attribute profile [31], in the OpenNCP attributes. In addition, the
method contacts the NCP HProxy to retrieve the HealtheidCountryConfiguration and checks if the
eidasAttributes contains all the necessary data to start with the OpenNCP session. If yes, the
data are stored in the PatientDataRepository with the dataReady value set to true and the flow
goes on with the acknowledgment’s require. Otherwise, they are stored with the dataReady set
to false and the flow is redirected to the additionalPatientData process.

Method: putAdditionalPatientData

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:313

public void putAdditionalPatientData(String encounterID, SearchFieldsForm

searchFieldsForm);

This method handles the additional data inserted by hand that are inside the searchFieldsForm

variable.

Method: updateAcknlowledgement

Package: eu.europa.ec.healtheid.management

Class: Workflow Manager

File: $EU JDIR/controllers/Workflow Manager.java:373

95

B – Programmimg Manual

public void updateAcknlowledgement(NotificationData notice) throws

AcknowledgmentNotFoundException, PatientNotFoundException;

This method is called for updating the acknowledgment with the corresponding patient decision
and trigger the Notification Adapter for notifying the result to the patient.

B.1.16 Class: JwtAuthenticationEntryPoint

This class implements the Spring AuthenticationEntryPoint interface, which provided the com-
mence method useful for realising an authorisation service based on HTTP headers.

Method: commence

Package: eu.europa.ec.healtheid.security

Class: JwtAuthenticationEntryPoint

File: $EU JDIR/security/JwtAuthenticationEntryPoint.java:18

@Override

public void commence(HttpServletRequest request, HttpServletResponse

response, AuthenticationException authException) throws IOException{

response.sendError(HttpServletResponse.SC_UNAUTHORIZED,

"Unauthorized");

}

This method is responsible to commence an authentication scheme. It is called at any HTTP
message and sends a Unauthorised response if the message does not come form an authorised
entity.

B.1.17 Class: JwtAuthenticationTokenFilter

This class extends the Spring OncePerRequestFilter class which configures a granular filter that
reads and checks the content of the HTTP Authorisation header.

Method: doFilterInternal

Package: eu.europa.ec.healtheid.security

Class: JwtAuthenticationTokenFilter

File: $EU JDIR/security/JwtAuthenticationTokenFilter.java:27

@Override

protected void doFilterInternal(HttpServletRequest request,

HttpServletResponse response, FilterChain filterChain) throws

ServletException, IOException;

This method extract the content of Authorisation Header and validates it according to the chosen
policies and decided if a message should be read by the internal logic or not.

B.1.18 Class: FileUtils

This class contains a single method used to load a file as a string inside the application.

Method: loadFileAsString

Package: eu.europa.ec.healtheid.utils

Class: FileUtils

File: $EU JDIR/security/FileUtils.java:27

96

B – Programmimg Manual

public String loadFileAsString(String filePath) throws IOException;

This method is used to load a file inside the web application. In the specific, it is called to load
the PIN acknowledgment file that must be shown to the patient.

B.1.19 Class: JwtTokenUtils

This class contains the methods which handle the JSON Web Token.

Method: validateToken

Package: eu.europa.ec.healtheid.utils

Class: JwtTokenUtils

File: $EU JDIR/security/JwtTokenUtils.java:36

public boolean validateToken(String token);

This method validates the token checking the signature, re-computing the

HMAC-SHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload),

sha-256(secret))

and comparing it with the “ccc” value. If the values match, it reads the token to check the exp

expiration value. If the token is valid, the method returns true; otherwise, it returns false.

Method: createToken

Package: eu.europa.ec.healtheid.utils

Class: JwtTokenUtils

File: $EU JDIR/security/JwtTokenUtils.java:61

public String createToken(Encounter encounterRequest);

This method is responsible to create the JSON Web Token relying on the io.jsonwebtoken

library. The token is created exploiting the patient country code that can be found in the
encounterRequest and adding an expiration time, configurable in the default.properties con-
figuration file.

Method: readCountry

Package: eu.europa.ec.healtheid.utils

Class: JwtTokenUtils

File: $EU JDIR/security/JwtTokenUtils.java:94

public String readCountry(String token);

This method reads the patient country code from the JWT token, relying on the io.jsonwebtoken,
and returns the readed value as a String.

97

B – Programmimg Manual

B.1.20 Class: SearchFieldsFormUtils

This class is responsible for processing the fields which are loaded or inserted in the Views,
organising them in order to be handled in a correct way (developed by SPMS).

Method: prepareForView

Package: eu.europa.ec.healtheid.utils

Class: SearchFieldsFormUtils

File: $EU JDIR/security/SearchFieldsFormUtils.java:10

public static SearchFieldsForm prepareForView(SearchFieldsForm

searchFieldsForm);

Method: processViewReturn

Package: eu.europa.ec.healtheid.utils

Class: SearchFieldsFormUtils

File: $EU JDIR/security/SearchFieldsFormUtils.java:14

public static SearchFieldsForm processViewReturn(SearchFieldsForm

searchFieldsForm);

B.1.21 Class: HealtheidConnectorConstants

This class is a collection of static variables. These static variables are used to define the compo-
nents’ endpoint and the friendly name of the Patient Identification Code used in the OpenNCP
environment.

Package: eu.europa.ec.healtheid.config

Class: HealtheidConnectorConstants

File: $EU JDIR/config/HealtheidConnectorConstants.java

B.1.22 Class: HealtheidExceptionHandler

This class is responsible to catch and manage all the exceptions that can occurs when the healtheid-
connector receives some requests; it is annotated with “@ControllerAdvice” which is a specialisa-
tion of the “@Controller” annotation and it can be seen as an interceptor of exceptions thrown
by methods annotated with “@RequestMapping”.

Method: handleAllException

Package: eu.europa.ec.healtheid.config

Class: HealtheidExceptionHandler

File: $EU JDIR/config/HealtheidExceptionHandler.java:19

@ExceptionHandler({Exception.class})

public ResponseEntity<Object> handleAllException(Exception ex);

98

B – Programmimg Manual

This method catch all the exception that do not have a custom exception catcher. It returns a
HTTP response with the 500 - Internal Error status to signalling to client that the healteid-
connector had an internal problem during the processing of the request.

Method: handlePatientDataNotReady

Package: eu.europa.ec.healtheid.config

Class: HealtheidExceptionHandler

File: $EU JDIR/config/HealtheidExceptionHandler.java:31

@ExceptionHandler({PatientDataNotReadyException.class})

protected ResponseEntity<Object>

handlePatientDataNotReady(PatientDataNotReadyException ex)

This method catches all the PatientDataNotReadyException exceptions and returns a HTTP
message with 204 - No Content status to signalling to client that the patientData are not ready
at the moment, so the client must try later. Note that other custom methods can be defined to
handle custom exceptions and communicate events to client,

B.1.23 Class: PersistenceJNDIConfig

This is a configuration class which contains some “@Bean” methods responsible for enabling the
Spring container to configure Hibernate as a JPA provider with a JNDI datasource.

Method: entityManagerFactory

Package: eu.europa.ec.healtheid.config

Class: PersistenceJNDIConfig

File: $EU JDIR/config/PersistenceJNDIConfig.java:44

public LocalContainerEntityManagerFactoryBean entityManagerFactory() throws

NamingException

This method sets up a shared JPA EntitiyManagerFactory to lookup at the external JNDI data-
source defined by the spring.datasource.jndi-name property in the default.properties con-
figuration file.

B.1.24 Class: WebSecurityConfig

This is a configuration class used for configuring Spring Security in the web application; it extends
the WebSecurityConfigurerAdapter base class. It allows customisation by overriding methods.
Method: configure

Package: eu.europa.ec.healtheid.security.config

Class: WebSecurityConfig

File: $EU JDIR/security/config/WebSecurityConfig.java:41

@Override

protected void configure(HttpSecurity httpSecurity) throws Exception;

This method configures the security at HTTP level, realising a URL-based access control service
and filtering the requests checking the authorisation token. Note that the /createEncounter and
the patient link are exiles by the filter controls.

99

B – Programmimg Manual

B.1.25 Exceptions

In the package eu.europa.ec.healtheid.exception the following class are defined, in order to
trace some errors that can be occurs during the execution.

• PatientNotFoundException, which will triggered if no one encounterID exists in the Pa-
tientDataRepository.

• PatientDataNotReadyException, which will triggered if the DataReady value is set to false

after the recovering of PatientData from the PatientDataRepository.

• HealtheidGetCountryConfigurationException, which will triggered if some issue occurs dur-
ing the communication or the message processing with the NCP HProxy.

• AcknowledgmentNotFoundException, which will triggered if no one encounterID exists in
the AcknowledgeRepository.

Note that all the exceptions are catched and managed by the HealtheidExceptionHandler B.1.22
in the package eu.europa.ec.healtheid.conf:

B.2 HeID Notification Adapter: source code, resources and
business logic

This component is responsible for contacting the patient by email/SMS: the necessary network
infrastructure, email configurations and the sending SMS feature must be prepared in advance by
the MS (e.g., configuring email relay server; network access between the HEALTHeID-Connector
infrastructure and email infrastructure). However, an exemplary demonstration of a possible
implementation can be found in the sources of the project, inside the healtheid-notification-adapter
folder. This demonstration gives a possible implementation of the sending email feature while the
SMS feature is not provided.

B.2.1 Interface: HealtheidNotifier

Method: notify

$PATH DIR: $SRC DIR/healtheid-notification-adapter-interface/src/main

$PATH JDIR : $PATH DIR/java/eu/europa/ec/healtheid/

Package: eu.europa.ec.healtheid.notification.adapter.service

Class: HealtheidNotifier

File: $PATH JDIR/notification/adapter/service/HealtheidNotifier.java

public HealtheidNotification notify(HealtheidNotification

healtheidNotification);

B.2.2 Class: HealtheidNotification

This class includes the characteristics of the notification, such as the Object of the email, the
message, the receiver, and a boolean which marks if the notice was correctly sent to the patient.

$PATH DIR: $SRC DIR/healtheid-notification-adapter-interface/src/main

$PATH JDIR : $PATH DIR/java/eu/europa/ec/healtheid/

Package: eu.europa.ec.healtheid.notification.adapter.model

Class: HealtheidNotification

File: $PATH JDIR/notification/adapter/model/HealtheidNotification.java

100

B – Programmimg Manual

Attribute Data type Meaning
title String The object of the message, e.g. the email’s

object.
message String The notification message, e.g. the body of the

email.
email String The email to send the message.
sms String The phone number to send the message.
notificationSent Boolean The result of the sending process: true if the

process is completed successfully, false oth-
erwise.

Table B.9. Content of the HealtheidNotification Java object defined in the HeID Noti-
fication Adapter component.

B.3 HeID eIDAS HProxy: source code, resources and busi-
ness logic

The eIDAS HProxy component is based on version 2.2.0 of eIDAS sources in order to use Open-
SAML v3, instead of the deprecated v2 of eIDAS 1.4.3. Even though the component is bundled as
a separate component, this allows its coexistence with other components using the same version
of this library. The eIDAS HProxy sub-components are based on version 1.4.3 of eIDAS, thus
compatible and in line with the configurations from such version. The eIDAS HProxy acts as
eIDAS SP, so its implementation is based on eIDAS SP. In the following are reported the class of
the eIDAS SP reference sources that are modified to make the component suitable for working in
the HeID scenario.

Variable Value Meaning
$SRC DIR sources folder Directory containing the

components of the code
developed in the thesis
project.

$EU EIDAS DIR $SRC DIR/eidas-hproxy/src/main Source directory of the
HeID eIDAS HProxy
component.

$EU EIDAS JDIR $EU EIDAS DIR/java/eu/eidas/sp/ Java source directory
of the eIDAS Demo-SP
adapted to the HeID
project.

$EU HEID JDIR $EU EIDAS DIR/java/eu/europa/ec/healtheid Java source directory of
the HeID services for the
eIDAS HProxy compo-
nent.

Table B.10. Environment variables for understanding the programmer’s manual.

B.3.1 Class: EidasMappingService

This class implements a mapping service used by the eIDAS HProxy component to map the
encounterID with the SAML ID in order to correctly associate the SAML Request/Response
with the specific encounter session. This service is realised by a ConcurrentHashMap, a Java
collection optimised for concurrency, performance and scalability. The mapping is representet by
the <key,value> pair, where the \lstinlinekey! is value is the SAML ID and the value the
encounterID. The class provides getter and setter methods to access at the Map data structure.

101

B – Programmimg Manual

Attribute: encounterEidasMap

Package: eu.europa.ec.healtheid.notification.adapter.service

Class: EidasMappingService

File: $EU HEID JDIR/eidashproxy/services/EidasMappingService.java:11

private ConcurrentHashMap <String,String> encounterEidasMap = new

ConcurrentHashMap <> ();

B.3.2 Class: AuthRequest

This class is responsible to create the eIDAS authentication request and contact the eIDAS Con-
nector. The authentication process is triggered by the Workflow Manager, after the patient
clicks on link, contacting the endpoint https: < hostname:port >/eidas-hproxy/AuthRequest

which activates the following method:

Method: startauth

Package: eu.eidas.sp

Class: AuthRequest

File: $EU EIDAS DIR/java/eu/eidas/sp/AuthRequest.java:116

public ModelAndView startauth(@RequestParam(value="token")String jwtToken)

This method creates the eIDAS SAML authentication request. It receives the encounter ID as
parameter (token) and from which it reads the Country Code so that the component knows
to which country forward the eIDAS authentication request. In addition, before starting the
authentication process and after having generated the SAML message, this method maps in
the EidasMappingService the encounterID with the SAML ID: in this way, when the SAML
response comes back, the eidas-hproxy component is able to link the received attributes with
the encounter session and communicate the result to Workflow Manager.

B.3.3 Class: AuthResponse

This class validates the eIDAS Assertion coming from the eIDAS Connector, received at the
end point https: < hostname:port >/eidas-hproxy/AuthResponse then extracts the eIDAS
attributes and sends them to the Workflow Manager.

Method: response

Package: eu.eidas.sp

Class: AuthResponse

File: $EU EIDAS DIR/java/eu/eidas/sp/AuthResponse.java:62

public void response(ModelMap model, @RequestParam String SAMLResponse,

HttpServletRequest request);

This method accepts the eIDAS Assertion coming from the eIDAS Connector. It reads the
SAML InResponseTo in order to retrieve the encounter ID (which identifies the patient who is
authenticated) from the EidasMappingService and sends a message to the Workflow Manager
with the attributes obtained from the Assertion and the encounterID.

102

Bibliography

[1] Schengen Area, https://ec.europa.eu/home-affairs/what-we-do/policies/

borders-and-visas/schengen_en

[2] Shaping the Digital Single Market, https://ec.europa.eu/digital-single-market/en/
policies/shaping-digital-single-market

[3] Creating a digital society, https://ec.europa.eu/digital-single-market/en/policies/
creating-digital-society

[4] eHealth : Digital health and care overview, https://ec.europa.eu/health/ehealth/

overview_en

[5] European Parliament, Council of the European Union, “Directive 2011/24/EU of the Euro-
pean Parliament and of the Council of 9 March 2011 on the application of patients? rights in
cross-border healthcare”, March 2011, https://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=CELEX%3A32011L0024

[6] CEF eHealth Digital Service Infrastructure, https://ec.europa.eu/cefdigital/wiki/

display/EHOPERATIONS/eHDSI+Mission

[7] National Institute of Standards and Technology, https://csrc.nist.gov
[8] National Institute of Standards and Technology, An Introduction to Computer Security: The

NIST Handbook, Special Publication 800-12, October 1995, DOI 10.6028/NIST.SP.800-12r1
[9] R. Shirey, “Internet Security Glossary, Version 2”, RFC-7519, August 2007,

[10] William Stallings, “Computer Security Concepts” in the book “Cryptography and Network
Security - Principles and Practices - Seventh Edition”, Pearson, 2017, pp. 29-32

[11] Standard OASIS SAML, https://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=security

[12] S.Cantor, J.Kemp, R.Philpott, E.Maler et al., “Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0”, OASIS Standard, 15 March 2005
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[13] S.Cantor, J.Kemp, R.Philpott, E.Maler et al., “Bindings for the OASIS Security Asser-
tion Markup Language (SAML) V2.0”, OASIS Standard, 15 March 2005 https://docs.

oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

[14] Rainer Hörbe, “SAML V2.0 Metadata Guide”, https://docs.oasis-open.org/security/
saml/v2.0/saml-bindings-2.0-os.pdf

[15] S.Cantor, J.Kemp, R.Philpott, E.Maler et al., “Profiles for the OASIS Secu-
rity Assertion Markup Language (SAML) V2.0”, OASIS Standard, 15 March
2005 https://www.oasis-open.org/committees/download.php/51890/SAML%20MD%

20simplified%20overview.pdf

[16] T.Dierks, C.Allen, “The TLS Protocol Version 1.0” RFC-2246, January 1999
[17] William Stallings, “Transport-Level Security” in the book “Cryptography and Network Se-

curity - Principles and Practices - Seventh Edition”, Pearson, 2017, pp. 549-566
[18] The SSL/TLS Handshake: an Overview, https://www.ssl.com/article/

ssl-tls-handshake-overview/

[19] IBM Knowledge Center, “An overview of the SSL or TLS handshake”, https://www.ssl.
com/article/ssl-tls-handshake-overview/

[20] OpenSSL, cryptography and SSL/TLS toolkit, https://www.openssl.org
[21] E.Rescorla, “HTTP Over TLS?, RFC-2818, Maggio 2000
[22] European Parliament, Council of the European Union, “Regulation (EU) 2016/679 of the

European Parliament and of the Council of 27 April 2016 on the protection of natural persons

103

https://ec.europa.eu/home-affairs/what-we-do/policies/borders-and-visas/schengen_en
https://ec.europa.eu/home-affairs/what-we-do/policies/borders-and-visas/schengen_en
https://ec.europa.eu/digital-single-market/en/policies/shaping-digital-single-market
https://ec.europa.eu/digital-single-market/en/policies/shaping-digital-single-market
https://ec.europa.eu/digital-single-market/en/policies/creating-digital-society
https://ec.europa.eu/digital-single-market/en/policies/creating-digital-society
https://ec.europa.eu/health/ehealth/overview_en
https://ec.europa.eu/health/ehealth/overview_en
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011L0024
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32011L0024
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/eHDSI+Mission
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/eHDSI+Mission
https://csrc.nist.gov
https://doi.org/10.6028/NIST.SP.800-12r1
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://www.oasis-open.org/committees/download.php/51890/SAML%20MD%20simplified%20overview.pdf
https://www.oasis-open.org/committees/download.php/51890/SAML%20MD%20simplified%20overview.pdf
https://www.ssl.com/article/ssl-tls-handshake-overview/
https://www.ssl.com/article/ssl-tls-handshake-overview/
https://www.ssl.com/article/ssl-tls-handshake-overview/
https://www.ssl.com/article/ssl-tls-handshake-overview/
https://www.openssl.org

Bibliography

with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation)”, April 2016, https:
//eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

[23] European Parliament, Council of the European Union, “Regulation (EU) No 910/2014 of
the European Parliament and of the Council of 23 July 2014 on electronic identification
and trust services for electronic transactions in the internal market and repealing Direc-
tive 1999/93/EC”, July 2014, http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
uriserv%3AOJ.L_.2014.257.01.0073.01.ENG

[24] European Parliament, Council of the European Union, “Directive 1999/93/EC of the Euro-
pean Parliament and of the Council of 13 December 1999 on a Community framework for
electronic signatures”, December 1999, https://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=CELEX:31999L0093

[25] Official Journal of the European Union, “The Treaty on the Functioning of the European
Union”, https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/

TXT

[26] Marco Dogliani, Ilenia Massa Pinto, “Elementi di Diritto Costituzionale”, Giappichelli Edi-
tore, 2015

[27] European Commission, Commission Implementing Regulation (EU) 2015/806 of 22 May
2015 laying down specifications relating to the form of the EU trust mark for qualified trust
services https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015R0806

[28] Agenzia per l’Italia Digitale, https://www.agid.gov.it/it/agenzia/chi-siamo

[29] STORK - Take your e-identity with you, everywhere in the
EU, https://ec.europa.eu/digital-single-market/en/content/

stork-take-your-e-identity-you-everywhere-eu

[30] STORK eID infrastructure as an enabler of cross-border efficiencies when interacting with
public and private sectors, https://ec.europa.eu/digital-single-market/en/news/

stork-eid-infrastructure-enabler-cross-border-efficiencies-when-interacting-public-and-private

[31] eIDAS eID Profile, Technical Specifications, https://ec.europa.eu/cefdigital/wiki/

display/CEFDIGITAL/eIDAS+eID+Profile

[32] Competitiveness and Innovation Framework Programme, http://ec.europa.eu/cip

[33] eHealth DSI Technical Community - OpenNCP Community Home, https://ec.europa.eu/
cefdigital/wiki/display/EHNCP/OpenNCP+Community+Home

[34] 5th meeting of the eHealth Network: Agenda, Topics and Documents (Athens, 13 May 2014),
https://ec.europa.eu/health/ehealth/events/ev_20140513_en

[35] Connecting Europe Facility https://ec.europa.eu/inea/en/

connecting-europe-facility

[36] 2019 CEF Telecom Call - eHealth (CEF-TC-2019-2), https://ec.europa.eu/inea/en/

connecting-europe-facility/cef-telecom/apply-funding/2019-ehealth

[37] DG SANTE, CEF eHealth DSI, 2019, “eHealth DSI System Architecture Specifi-
cation”, https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+

Architecture+Specification

[38] DG SANTE, CEF eHealth DSI, 2019 “eHealth DSI Section I - Security Poli-
cies”, https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Section+I+-+

Security+Policies

[39] eHealth Network, “Guideline on an Organisational Framework for eHealth National
Contact Point”, https://ec.europa.eu/health/sites/health/files/ehealth/docs/ev_
20151123_co01_en.pdf

[40] DG SANTE, CEF eHealth DSI, 2019, “Identity Management Specification”, https:

//ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Identity+Management+

Specification

[41] DG SANTE, CEF eHealth DSI, 2019, “Identity Management Specification”,
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Section+II+-+

Security+Services

[42] A. Campanile, R. Cover, D.Davis, J. Durand et al., “OASIS Standard: Basic Se-
curity Profile Version 1.1”, October 2014, https://docs.oasis-open.org/ws-brsp/

BasicSecurityProfile/v1.1/BasicSecurityProfile-v1.1.pdf

104

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AOJ.L_.2014.257.01.0073.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0093
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31999L0093
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/TXT
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/TXT
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32015R0806
https://www.agid.gov.it/it/agenzia/chi-siamo
https://ec.europa.eu/digital-single-market/en/content/stork-take-your-e-identity-you-everywhere-eu
https://ec.europa.eu/digital-single-market/en/content/stork-take-your-e-identity-you-everywhere-eu
https://ec.europa.eu/digital-single-market/en/news/stork-eid-infrastructure-enabler-cross-border-efficiencies-when-interacting-public-and-private
https://ec.europa.eu/digital-single-market/en/news/stork-eid-infrastructure-enabler-cross-border-efficiencies-when-interacting-public-and-private
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS+eID+Profile
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS+eID+Profile
http://ec.europa.eu/cip
https://ec.europa.eu/cefdigital/wiki/display/EHNCP/OpenNCP+Community+Home
https://ec.europa.eu/cefdigital/wiki/display/EHNCP/OpenNCP+Community+Home
https://ec.europa.eu/health/ehealth/events/ev_20140513_en
https://ec.europa.eu/inea/en/connecting-europe-facility
https://ec.europa.eu/inea/en/connecting-europe-facility
https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/apply-funding/2019-ehealth
https://ec.europa.eu/inea/en/connecting-europe-facility/cef-telecom/apply-funding/2019-ehealth
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+Architecture+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/System+Architecture+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Section+I+-+Security+Policies
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Section+I+-+Security+Policies
https://ec.europa.eu/health/sites/health/files/ehealth/docs/ev_20151123_co01_en.pdf
https://ec.europa.eu/health/sites/health/files/ehealth/docs/ev_20151123_co01_en.pdf
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Identity+Management+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Identity+Management+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Identity+Management+Specification
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Section+II+-+Security+Services
https://ec.europa.eu/cefdigital/wiki/display/EHOPERATIONS/Section+II+-+Security+Services
https://docs.oasis-open.org/ws-brsp/BasicSecurityProfile/v1.1/BasicSecurityProfile-v1.1.pdf
https://docs.oasis-open.org/ws-brsp/BasicSecurityProfile/v1.1/BasicSecurityProfile-v1.1.pdf

Bibliography

[43] Paolo Smiraglia, Marco de Benedictis, Andrea S. Atzeni, Antonio Lioy, Massimiliano Puccia-
relli, “The FICEP Infrastructure - How We Deployed the Italian eIDAS Node in the Cloud.”
DOI 10.1007/978-3-319-71117-1 14

[44] M. Jones, J. Bradley, N. Sakimura, “JSON Web Token (JWT)”, RFC-7519, May 2015,
[45] M. Jones, J. Bradley, N. Sakimura, “JSON Web Signature (JWS)”, RFC-7519, May 2015,
[46] M. Jones, J. Hildebrand, “JSON Web Encryption (JWE)”, RFC-7519, May 2015,
[47] Academic Dictionaries and Encyclopedias, “Universally Unique Identifier”, https://

enacademic.com/dic.nsf/enwiki/126251

[48] eHDSI MS Expert Community Home, Patient Information Notices (PIN), https://ec.

europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=74094942

[49] Java Programming Language, https://docs.oracle.com/javase/8/docs/technotes/

guides/language/index.html

[50] The Java Virtual Machine Specification, https://docs.oracle.com/javase/specs/jvms/
se8/html/index.html

[51] The Java Tutorials. Object-Oriented Programming Concepts, https://docs.oracle.com/
javase/tutorial/java/concepts/

[52] Maven, https://maven.apache.org
[53] Maven Repository, The OpenSAML library, https://maven-repository.com/artifact/

org.opensaml/opensaml/2.5.3

[54] Apache Tomcat, https://tomcat.apache.org
[55] MySQL, https://www.mysql.com
[56] MySQL 5.7 Reference Manual, Chapter 27, Connectors and APIs https://dev.mysql.com/

doc/refman/5.7/en/connectors-apis.html

[57] Java JDBC API, https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
[58] Git, https://git-scm.com
[59] Bitbucket, https://bitbucket.org
[60] Slack, https://slack.com/intl/en-it/
[61] Spring, https://spring.io
[62] Spring MVC, https://spring.io/projects/spring-security
[63] Spring Security, https://www.thymeleaf.org
[64] Thymeleaf, https://spring.io/projects/spring-security
[65] Java Persistence API, https://www.oracle.com/technetwork/java/javaee/tech/

persistence-jsp-140049.html

[66] Spring Data, https://spring.io/projects/spring-data
[67] Spring Email, https://docs.spring.io/spring-boot/docs/current/reference/html/

boot-features-email.html

[68] Spring Boot Maven Plugin, https://docs.spring.io/spring-boot/docs/current/

maven-plugin/

[69] Bootstrap, https://getbootstrap.com
[70] N. Freed, N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies”, RFC-2045, November 1996,
[71] CEF Digital OpenNCP Bitbucket, https://ec.europa.eu/cefdigital/code/projects/

EHNCP/repos/health-eid

[72] Java Platform, Standard Edition Installation Guide, JDK Installation for Linux Platforms,
https://docs.oracle.com/javase/8/docs/technotes/guides/install/linux_jdk.

html

[73] CEF eID Services, eIDAS Node Integration Package, eIDAS-Node version 2.2, https://ec.
europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-Node+version+2.2

[74] OpenNCP Community Home, OpenNCP Installation Overview, OpenNCP Installation Man-
ual, https://ec.europa.eu/cefdigital/wiki/display/EHNCP/OpenNCP+Installation+

Manual

105

https://doi.org/10.1007/978-3-319-71117-1_14
https://enacademic.com/dic.nsf/enwiki/126251
https://enacademic.com/dic.nsf/enwiki/126251
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=74094942
https://ec.europa.eu/cefdigital/wiki/pages/viewpage.action?pageId=74094942
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/tutorial/java/concepts/
https://docs.oracle.com/javase/tutorial/java/concepts/
https://maven.apache.org
https://maven-repository.com/artifact/org.opensaml/opensaml/2.5.3
https://maven-repository.com/artifact/org.opensaml/opensaml/2.5.3
https://tomcat.apache.org
https://www.mysql.com
https://dev.mysql.com/doc/refman/5.7/en/connectors-apis.html
https://dev.mysql.com/doc/refman/5.7/en/connectors-apis.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/
https://git-scm.com
https://bitbucket.org
https://slack.com/intl/en-it/
https://spring.io
https://spring.io/projects/spring-security
https://www.thymeleaf.org
https://spring.io/projects/spring-security
https://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
https://spring.io/projects/spring-data
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-email.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-email.html
https://docs.spring.io/spring-boot/docs/current/maven-plugin/
https://docs.spring.io/spring-boot/docs/current/maven-plugin/
https://getbootstrap.com
https://ec.europa.eu/cefdigital/code/projects/ EHNCP/repos/health-eid
https://ec.europa.eu/cefdigital/code/projects/ EHNCP/repos/health-eid
https://docs.oracle.com/javase/8/docs/technotes/guides/install/linux_jdk.html
https://docs.oracle.com/javase/8/docs/technotes/guides/install/linux_jdk.html
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-Node+version+2.2
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-Node+version+2.2
https://ec.europa.eu/cefdigital/wiki/display/EHNCP/OpenNCP+Installation+Manual
https://ec.europa.eu/cefdigital/wiki/display/EHNCP/OpenNCP+Installation+Manual

	Introduction
	Background
	Security properties of Information Systems
	Federated Identity Systems
	Entities
	Digital Identity and Federated Identity
	Federated Identity Management

	Reference technologies
	The SAML Standard
	Transport Layer Security

	General Data Protection Regulation

	Electronic IDentification, Authentication and trust Services
	eIDAS Regulation
	eIDAS Infrastructure
	eIDAS Node
	eIDAS Minimum Data-Set

	Smart Open Services for European Patients
	The epSOS project
	eHDSI System Architecture
	National Contact Point
	OpenNCP Internal Components
	HP and Patient authentication

	Patient Consent
	OpenNCP Security Aspects

	HEALTHeID: eIDAS-OpenNCP Connector for eHealth
	eIDAS cross-border Authentication for the OpenNCP platform
	Architectural scheme of the HeID connector for achieving an eIDAS/OpenNCP connection
	Brief overview of the involved components

	Sequence diagram of the HeID connector workflow in an real scenario
	Description and design of the HeID connector components
	Enhanced OpenNCP Portal
	Workflow Manager
	eIDAS-HProxy
	Patient Data I/O
	NCP HProxy
	NCPeH-A
	NCPeH-B
	PatientID Resolver

	Security considerations
	Communication between components
	Replay attacks

	HeID Connector Implementation
	Tools
	Technologies for the Development of Java Applications
	Spring Framework
	Spring MVC
	Spring Security
	Spring Data JPA
	Spring Email

	Technical details regarding the implementation of the HeID Connector module
	Spring Controllers
	Business Logic

	Technical details regarding the implementation of the eIDAS HProxy module
	Technical details regarding the implementation of the Patient I/O
	Patient Views
	Notification Adapter

	Results
	Conclusion
	User Manual
	HEALTH-eID Configuration
	Software Requirements
	HeID Connector - Workflow Manager
	Patient I/O: the Notification Adapter
	eIDAS HProxy
	NCP HProxy

	Programmimg Manual
	HeID Connector: source code, resources and business logic
	Class: Encounter
	Interface: EncounterRepository
	Class: PatientData
	Interface: PatientDataRepository
	Class: NotificationData
	Class: NotificationType
	Class: ErrorResponse
	Class: PatientAcknowledge
	Interface: AcknowledgeRepository
	Interface: NcpHProxyService
	Interface: PatientConnector
	Class: HeiDClientController
	Class: PatientController
	Class: EidasHProxyController
	Class: Workflow Manager
	Class: JwtAuthenticationEntryPoint
	Class: JwtAuthenticationTokenFilter
	Class: FileUtils
	Class: JwtTokenUtils
	Class: SearchFieldsFormUtils
	Class: HealtheidConnectorConstants
	Class: HealtheidExceptionHandler
	Class: PersistenceJNDIConfig
	Class: WebSecurityConfig
	Exceptions

	HeID Notification Adapter: source code, resources and business logic
	Interface: HealtheidNotifier
	Class: HealtheidNotification

	HeID eIDAS HProxy: source code, resources and business logic
	Class: EidasMappingService
	Class: AuthRequest
	Class: AuthResponse

	Bibliography

