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Abstract

An important issue in the design of nuclear reactor cores is the determination
of multigroup cross sections. This task is accomplished by means of a combined
procedure involving a space homogenization and an energy averaging to obtain
group-collapsed data that can well reproduce the neutronic interactions in the real
multiplying system. For this purpose, it is necessary to determine accurate neutron
spectra (distribution in the energy domain of the neutron flux) that are used as
weights in the collapsing process. In this thesis the energy aspects are analysed. The
neutron transport equation is solved through the use of some simplifications: first of
all the asymptotic theory is used in order to eliminate the space dependence of the
problem and reduce it to a single parameter; then some methods to approximate the
collision density and, consequently, the scattering integral are used. In particular,
the classic Fermi continuous slowing down approach, the Groeling-Goertzel and
the Selengut-Goertzel methods are considered. Adopting these simplifications, the
neutron spectra is evaluated for different moderator media, in slab geometry, using
the Pn and the Bn methods. The lethargy variable is discretized for the solution of
the transport integral equation. In order to reduce the error, a grid independence
analysis is performed for each method considered. This thesis is important because
it is a first step in order to determine, in a physical consistent way, the energy
grid for multigroup models, on which deterministic solvers of the neutron transport
equation are based. The results allow also to get a physical insight into the energy
collapsing procedure for the generation of multigroup nuclear data.

viii



Chapter 1

Introduction

An interest in spatial homogenization and energy collapsing of nuclear data for
reactor neutronic calculations in the field of nuclear reactor physics has been de-
veloping in the past years; in fact, since the high geometry complexity of a nuclear
reactor, a spatial homogenization is essential in order to reduce the computational
cost for its simulation. For the same reason, since the use of a continuous energy
approach generates a high computational cost, multigroup theories are used in or-
der to better manage the solution of the neutron transport equation.
In this context, several works have already been published, in order to tackle the
problem of spatial homogenization, e.g. [1–6], where methods based on the neutron
transport equation are presented. Similarly, in the work presented in ref. [7], a
rehomogenization method has been analysed.
The energy collapsing of nuclear data procedure is very important in order to im-
prove the results of deterministic simulations and to reduce the computational cost
of deterministic codes based on the multigroup neutron transport equation. Along
this line, the present work has as objective to study the basic methods to deter-
mine the energy spectrum of the neutron flux and to analyse the performance of
each method for different moderating materials. This work constitutes the basis
for further developments leading to improve the collapsing procedure.
Moreover the work could also contribute to develop innovative techniques for group
collapsing. One example could be the use of the energy spectrum to group neu-
trons with different energies, but with similar physical characteristics [8]; another
example could be the use of these methods for time dependent problems, in order
to understand the dynamic evolution of the energy dependent neutron population.
At last, the methods could be also applied to other particle transport problems,
such as electron slowing down, that is practically a continuous process and can be
analysed with the Spencer-Lewis equation [9].
In this work, in order to concentrate the attention on the energy dependence of
the neutron flux, the space asymptotic theory is used; in this case the medium is
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1 – Introduction

considered as infinite and the spatial dependence is accounted for through the in-
troduction of the geometrical buckling B [10–12]. This is a historical method used
in order to reduce the computational cost due to geometry; even if nowadays the
computational power is highly increased with respect to the years of formulation
of this method, the asymptotic theory remains an interesting method because it
allows to better focus on the energy aspects of the problem; this method could also
be used for time dependent problems in order to study pulsed experiments [13].
In the following chapters a short presentation of the nuclear transport equation in
a homogeneous slab is reported, using the asymptotic theory and the elastic scat-
tering approximation; then, different models to approximate the scattering integral
and to determine the energy spectrum are presented. The numerical procedures
used to discretize the problem are presented and discussed. Some test cases and
results are analysed and some conclusions are drawn.
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Chapter 2

Neutron transport equation in a

homogeneous slab

The neutron behaviour in a nuclear reactor is described by the neutron transport
equation [14]:

1

v

∂φ(r, E,Ω, t)

∂t
+ Ω · ∇

(
φ(r, E,Ω, t)

)
+

+ Σt(r, E)φ(r, E,Ω, t) = S(r, E,Ω, t)+

+

∫
dE ′

∮
dΩ′Σs(r, E

′)φ(r, E ′,Ω′, t)fs(r, E
′ → E,Ω′ → Ω),

(2.1)

where:

� v is the neutron velocity;

� t is the time variable;

� φ(r, E,Ω, t) is the neutron flux;

� r is the spatial position vector;

� E is the neutron energy associated to the velocity v;

� Ω is the solid angle vector;

� Σt(r, E) is the total cross section;

� S(r, E,Ω, t) is neutron source;

� Σs(r, E) is the scattering cross section;

� fs(r, E
′ → E,Ω′ ·Ω) is the scattering function.

3



2 – Neutron transport equation in a homogeneous slab

This equation depends on time, position, direction and energy of a neutron. The
objective of this work is to focus the attention in the energy aspects comparing
different slowing down models. In order to do that it is useful to analyse a simpler
case from a geometrical point of view; a uni-dimensional slab is taken as reference
geometry. For the same reason, in order to avoid complication due to heterogeneity,
a homogeneous case is considered; as a consequence, the cross sections become
spatial independent. Considering the uni-dimensional slab hypothesis the equation
becomes:

µ
∂φ(x,E, µ)

∂x
+ Σt(x,E)φ(x,E, µ) = S(x,E, µ)+

+

∫
dE ′

∮
dΩ′Σs(x,E

′)φ(x,E ′, µ′)fs(x,E
′ → E,Ω′ → Ω),

(2.2)

where µ is the cosine of the angle between the neutron direction and x axis. Scat-
tering collisions are assumed to be azimuthally symmetric about Ω′; with this
assumption the final vector Ω has the same probability to lie in any position on a
surface of a cone; that cone is generated rotating the vector Ω around the direc-
tion of the vector Ω′ (see figure 7.5 of [15]). With this assumption the scattering
function is dependent only on the cosine between Ω and Ω′ and becomes:

fs(x,E
′ → E,Ω′ → Ω) = fs(x,E

′ → E,Ω′ ·Ω) =
1

2π
q(x,E ′ → E, µ0), (2.3)

where:

� µ0: cosine between Ω and Ω′ ;

� q(x,E ′ → E, µ0): frequency function.

The solutions are evaluated using the elastic scattering approximation for the scat-
tering function. First of all, it is convenient to transform equation (2.2) from energy
variable E to the lethargy variable u. The lethargy variable is defined as:

u = log

(
E∗
E

)
, (2.4)

where:

� u is the lethargy variable;

� E∗ is the upper bound for the energy variable.

The neutrons are generated with a maximum energy value E∗, that correspond
to the zero value for the lethargy variable; then they will start the slowing down
process, loosing part of their energy. In this way the energy variable is decreasing,
instead the lethargy variable is increasing. The frequency function is so modified:

q(x,E ′ → E, µ0)dE ′dµ0 = q(x, u′ → u, µ0)JdE ′dµ0, (2.5)

4



2 – Neutron transport equation in a homogeneous slab

where J is the Jacobian, that is defined as:

J ≡
∣∣∣∣ du′dE ′

∣∣∣∣ .
Substituting in equation (2.2), the following formula is obtained:

µ
∂φ(x, u, µ)

∂x
+ Σt(x, u)φ(x, u, µ) = S(x, u, µ)+

+

∫
du′
∮
dΩ′Σs(x, u

′)φ(x, u′, µ′)
1

2π
q(x, u′ → u, µ0).

(2.6)

Considering the slab as homogeneous media the properties become spatial indepen-
dent and the neutron transport equation becomes:

µ
∂φ(x, u, µ)

∂x
+ Σt(u)φ(x, u, µ) = S(x, u, µ)+

+

∫
du′
∮
dΩ′Σs(u

′)φ(x, u′, µ′)
1

2π
q(u′ → u, µ0).

(2.7)

Since the main objective is to evaluate the energy spectrum, the space variable
is taken into account through the use of the space asymptotic theory [10–12]; the
transport equation is taken in an infinite medium and it is treated by the Fourier
transform; the space dependence of the problem is put inside the buckling variable
B. The Fourier transform of the neutron flux is:

ϕ(B, u, µ) =

∫ +∞

−∞
φ(x, u, µ)e−iBxdx. (2.8)

The Fourier transform of the derivative of the neutron flux is:

iBϕ(B, u, µ) =

∫ +∞

−∞

∂φ(x, u, µ)

∂x
e−iBxdx. (2.9)

Having done the Fourier transform of formula 2.7, considering the two previous
formulas, the following equation is obtained:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+

∫
du′
∮
dΩ′Σs(u

′)ϕ(B, u′, µ′)
1

2π
q(u′ → u, µ0),

(2.10)

where S(B, u, µ) is the Fourier transform of S(x, u, µ). In order to separate the
lethargy part from the angular part of the frequency function, the expansion using
the Legendre polynomials has been used [15].The formula (7.117) of [15] for the
frequency function is here reported:

q(u′ → u, µ0) =
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)Pn(µ0), (2.11)

where:

5



2 – Neutron transport equation in a homogeneous slab

� Pn(µ0) is the Legendre polynomial of order n;

� qn(u′ → u) is defined as:

qn(u′ → u) ≡
∫ 1

−1

q(u′ → u, µ0))Pn(µ0)dµ0 (2.12)

In order to simplify the problem, the Legendre polynomials can be written through
the use of spherical harmonics [16]:

Pn(Ω ·Ω′) =
4π

2n+ 1

+n∑
β=−n

Y β
n (ϑ, ψ)Y β∗

n (ϑ′, ψ′), (2.13)

where:

� ϑ, ϑ′ are the angles with respect to the x axis;

� ψ, ψ′ are the angles with respect to the y axis in the z − y plane;

� Ω is the unit vector with sphere coordinate (1, ϑ, ψ);

� Ω′ is the unit vector with sphere coordinate (1, ϑ′, ψ′).

The spherical harmonics can be written through the use of associated Legendre
function as explained in [16]:

Y β
n (ϑ, ψ) =

√
2n+ 1

4π

(n− β)!

(n+ β)!
P β
n (cosϑ)eiβψ, (2.14)

with:
cosϑ = µ. (2.15)

For completeness also the formula for the conjugate is reported:

Y β∗
n (ϑ, ψ) = (−1)βY −βn (ϑ, ψ). (2.16)

The formulation for the associated Legendre functions, and their conjugates, are
taken from [16] and are here reported:

P β
n (µ) = (−1)β(1− µ2)

β
2
dβ

dxβ
(Pn(µ)); (2.17)

P−βn (µ) = (−1)β
(n− β)!

(n+ β)!
P β
n (µ). (2.18)

6



2 – Neutron transport equation in a homogeneous slab

Using those definition, the frequency function can be written as follow:

q(u′ → u, µ0) =
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)

4π

2n+ 1
·

·
+n∑

β=−n

Y β
n (ϑ, ψ)Y β∗

n (ϑ′, ψ′).

(2.19)

Substituting formulas (2.14, 2.16) the previous equation becomes:

q(u′ → u, µ0) =
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)

4π

2n+ 1
·

·
+n∑

β=−n

√
2n+ 1

4π

(n− β)!

(n+ β)!
P β
n (cosϑ)eiβψ·

·

√
2n+ 1

4π

(n− β)!

(n+ β)!
P β
n (cosϑ′)e−iβψ

′
.

(2.20)

Multiplying the square roots and simplifying with the fraction the equation be-
comes:

q(u′ → u, µ0) =
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)·

·
+n∑

β=−n

(n− β)!

(n+ β)!
P β
n (µ)eiβψP β

n (µ′)e−iβψ
′
;

(2.21)

then the two exponentials are collected:

q(u′ → u, µ0) =
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)·

·
+n∑

β=−n

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′)eiβ(ψ−ψ′).

(2.22)

Substituting the frequency function in this form, the neutron transport equation
becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+

∫
du′
∮
dΩ′Σs(u

′)ϕ(B, u′, µ′)
1

2π

+∞∑
n=0

(
2n+ 1

2

)
·

· qn(u′ → u)
+n∑

β=−n

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′)eiβ(ψ−ψ′).

(2.23)

7



2 – Neutron transport equation in a homogeneous slab

In order to simplify the problem some manipulations are necessary; first of all, the
scattering cross section, that is angular independent, is taken out from the integral
in the solid angle and the solid angle integral is divided in two integral as follow:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+

∫
u

du′Σs(u
′)

∫ 1

−1

dµ′
∫ 2π

0

dψ′ϕ(B, u′, µ′)
1

2π
·

·
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)

+n∑
β=−n

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′)eiβ(ψ−ψ′);

(2.24)

then the part independent for ψ′ is taken out from the corresponding integral:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+

∫
u

du′Σs(u
′)

∫ 1

−1

dµ′ϕ(B, u′, µ′)
1

2π

+∞∑
n=0

(
2n+ 1

2

)
·

· qn(u′ → u)
+n∑

β=−n

(n− β)!

(n+ β)!
P β
n (µ)P β

n (µ′)

∫ 2π

0

dψ′eiβ(ψ−ψ′).

(2.25)

The solution of this last integral is presented below:∫ 2π

0

dψ′eiβ(ψ−ψ′) =

{
0 if β /= 0

2π if β = 0
(2.26)

Considering this last information, β has been imposed equal to 0; the neutron
transport equation become:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ) +

∫
u

du′Σs(u
′)·

·
∫ 1

−1

dµ′ϕ(B, u′, µ′)
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)Pn(µ)Pn(µ′),

(2.27)

that, taking out the terms independent from µ′ from the corresponding integral,
becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ) +

∫
u

du′Σs(u
′)·

·
+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)Pn(µ)

∫ 1

−1

dµ′ϕ(B, u′, µ′)Pn(µ′).

(2.28)

The flux moment of order n is defined as:

ϕn(B, u′) ≡
∫ 1

−1

dµ′ϕ(B, u′, µ′)Pn(µ′); (2.29)

8



2 – Neutron transport equation in a homogeneous slab

considering this last definition the transport equation becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+

∫
u

du′Σs(u
′)

+∞∑
n=0

(
2n+ 1

2

)
qn(u′ → u)Pn(µ)ϕn(B, u′);

(2.30)

the part independent from u′ is here taken out from the corresponding integral; the
equation becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
+∞∑
n=0

(
2n+ 1

2

)
Pn(µ)

∫
u

du′Σs(u
′)qn(u′ → u)ϕn(B, u′).

(2.31)

In order to approximate the momenta of order n of the frequency function, the
elastic scattering approximation has been used; the elastic scattering approximation
is reported in the following formula (for a complete treatment it is possible to refer
to chapter 7.3, point e. of [15]):

qn(u′ → u) =
Pn(ξ(A, u′, u))eu

′−u

1− α
, (2.32)

with:

ξ(A, u′, u) =
1

2

[
(A+ 1)e

1
2

(u′−u) − (A− 1)e−
1
2

(u′−u)
]

; (2.33)

α =

(
A− 1

A+ 1

)
; (2.34)

A =
M

m
; (2.35)

where:

� M is the mass of nucleus where neutron collides;

� m is the mass of neutron.

The neutron transport equation for a slab geometry, with elastic scattering approx-
imation become:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ) +
+∞∑
n=0

(
2n+ 1

2

)
·

· Pn(µ)

∫ u

c

du′Σs(u
′)ϕn(B, u′)

Pn(ξ(A, u′, u))eu
′−u

1− α

(2.36)
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2 – Neutron transport equation in a homogeneous slab

With:
c = max[u+ log(α),0] (2.37)

This final equation is an integral equation in the lethargy variable; in order to solve
this equation in the whole lethargy interval, some approximations for the integral
are necessary. For this reason, in the following chapter some methods to face up to
this integral are presented.

10



Chapter 3

Models for the neutron spectra in

a homogeneous slab

The solution of the neutron transport problem is a complex task because the ne-
cessity of the solution in the entire lethargy interval in order to solve the scattering
integral and, consequently, to have the value of the flux in a lethargy point. Con-
sidering this, the first task is to approximate the scattering integral.
In this chapter some approaches for the approximated solution of the scattering
integral are presented.

3.1 Fermi continuous slowing down model

In order to find the energy spectrum, in this section the Fermi continuous slowing
down approximation is taken into account; the collision density Σs(u

′)ϕn(B, u′)
has been considered as slowly varying functions over the lethargy range of the
scattering integral (chapter 7.3, point g of [15]). The main approximation is to
consider a linear variation of the collision density for the zero order moment; instead
a constant collision density for higher order moment is taken:

Σs(u
′)ϕn(B, u′) ≈Σs(u)ϕn(B, u)+

+ (u′ − u)
∂

∂u
[Σs(u)ϕn(B, u)] · δn,0.

(3.1)

11



3 – Models for the neutron spectra in a homogeneous slab

Substituting this approximation in formula (2.36) the following formula is obtained:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
+∞∑
n=0

(
2n+ 1

2

)
Pn(µ)·

·
∫ u

c

[
Σs(u)ϕn(B, u) + (u′ − u)

∂

∂u
[Σs(u)ϕn(B, u)] · δn,0

]
·

· Pn(ξ(A, u′, u))eu
′−u

1− α
du′;

(3.2)

then separating the terms of order zero from the other terms and separating the
two terms of order zero themselves the equation becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ) +
1

2(1− α)
·

· P0(µ)Σs(u)ϕ0(B, u)

∫ u

c

du′P0(ξ(A, u′, u))eu
′−u+

+
1

2(1− α)
P0(µ)

∂

∂u
[Σs(u)ϕ0(B, u)]·

·
∫ u

c

du′(u′ − u)P0(ξ(A, u′, u))eu
′−u +

+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)·

·
∫ u

c

du′ [Σs(u)ϕn(B, u)]
Pn(ξ(A, u′, u))eu

′−u

1− α
;

(3.3)

considering that the Legendre polynomial of order zero is equal to one the formula
becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)

∫ u

c

du′eu
′−u+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

∫ u

c

du′(u′ − u)eu
′−u+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)Σs(u)ϕn(B, u)

∫ u

c

du′
Pn(ξ(A, u′, u))eu

′−u

1− α
.

(3.4)

It can be noticed that the first two integrals are trivial, and the results are given
in the following formulas:∫ u

c

du′eu
′−u = e−u · eu′

∣∣∣u
c

= 1− ec−u; (3.5)
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3 – Models for the neutron spectra in a homogeneous slab

∫ u

c

du′(u′ − u)eu
′−u =

[
(u′ − u)eu

′−u − eu′−u
] ∣∣∣u

c

= −1− (c− u)ec−u + ec−u.

(3.6)

The third integral is also trivial because is the integral of the product of a poly-
nomial and an exponential, but the solution is not given analytically because the
polynomials depend on the order considered; since the calculation are done also
with large order the integral is done numerically in the Matlab program. The
formula (3.4) becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.7)

Before using the PN method and the BN method in order to find the solution, some
definitions are necessary. First of all, the Fourier transform of the flux is defined as
follow:

ϕ(B, u, µ) =
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ); (3.8)

the same expansion could be done for the Fourier transform of the source:

S(B, u, µ) =
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)Pn(µ). (3.9)

3.1.1 PN approximation

Before starting with the method, some properties of the Legendre polynomials are
necessary [16]. The first property is the orthogonality:∫ +1

−1

Pn(µ)Pm(µ)dµ =
2

2n+ 1
δn,m. (3.10)

The second property that will be used in this section is the recursive formula:

µPn(µ) =
(n+ 1)Pn+1(µ) + nPn−1(µ)

2n+ 1
. (3.11)

13



3 – Models for the neutron spectra in a homogeneous slab

First of all the expansion in formulas (3.8,3.9) are substituted in formula (3.7) to
obtain:

iBµ
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ)+

+ Σt(u)
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ) =

=
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)Pn(µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.12)

In order to find an equation for each flux moment the property in formula (3.10)
is used; it means to multiply each term of the previous formula per Pm(µ) and
integrate between minus one and plus one in dµ.

iB

∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)

∫ +1

−1

µPn(µ)Pm(µ)dµ+

+ Σt(u)
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)

∫ +1

−1

Pn(µ)Pm(µ)dµ =

=
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)

∫ +1

−1

Pn(µ)Pm(µ)dµ+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)

∫ +1

−1

Pm(µ)dµ+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
·

·
∫ +1

−1

Pm(µ)dµ+
+∞∑
n=1

(
2n+ 1

2(1− α)

)∫ +1

−1

Pn(µ)Pm(µ)dµ·

· Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.13)

Applying the orthogonality property, the results of the integrals are found as follow:∫ +1

−1

Pm(µ)dµ =

∫ +1

−1

P0(µ)Pm(µ)dµ = 2δm,0; (3.14)
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3 – Models for the neutron spectra in a homogeneous slab

∫ +1

−1

Pn(µ)Pm(µ)dµ =
2

2m+ 1
δm,n. (3.15)

In order to solve the last integral, the recursive formula is used. The following
result is obtained:∫ +1

−1

µPn(µ)Pm(µ)dµ =

=

∫ +1

−1

Pn(µ)
m+ 1

2m+ 1
Pm+1(µ)dµ+

∫ +1

−1

Pn(µ)
m

2m+ 1
Pm−1(µ)dµ =

=
m+ 1

2m+ 1
· 2

2(m+ 1) + 1
δm+1,n +

m

2m+ 1
· 2

2(m− 1) + 1
δm−1,n.

(3.16)

Using these integrals, the formula (3.13) becomes:

iB

[
m+ 1

2m+ 1
ϕm+1(B, u) +

m

2m+ 1
ϕm−1(B, u)

]
+ Σt(u)ϕm(B, u) =

= Sm(B, u) +
1

1− α
Σs(u)ϕ0(B, u)(1− ec−u)δm,0+

+
1

1− α
∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
δm,0+

+

(
1

1− α

)
Σs(u)ϕm>0(B, u)

∫ u

c

du′Pm>0(ξ(A, u′, u))eu
′−u.

(3.17)

From formula (3.8) it is possible to understand that in principle is possible ob-
tain the exact solution, but infinite moments and, consequently, infinite equations
with formula (3.17) are necessary. Actually, the value of the flux is approximated
truncating the expansion at order N. Doing this procedure is easy to understand
from formula (3.17) that N + 1 equation has been obtained with N+2 unknown.
A closure equation is necessary in order to have a number of equation equal to
the number of unknown and at the end to have an unique solution. The closure
equation is set as:

ϕN+1(B, u) = 0. (3.18)

3.1.2 BN approximation

The BN approximation is a method suitable for the solution of the neutron transport
equation with the asymptotic theory assumption. The theory of this section is taken
from [17].
In order to introduce the Bn method it is possible to start from formula (3.7). First
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3 – Models for the neutron spectra in a homogeneous slab

of all, the terms with the flux on the left hand side are collected.

ϕ(B, u, µ) [iBµ+ Σt(u)] = S(B, u, µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.19)

Just for convenience the following change of sign is imposed:

B1 = −B. (3.20)

The equation is modified as follow:

ϕ(B, u, µ) [−iB1µ+ Σt(u)] = S(B, u, µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.21)

Then the flux term on the right hand side is isolated and the total cross section is
collected:

ϕ(B, u, µ) =
S(B, u, µ)

Σt(u)
[
1− iB1µ

Σt(u)

]+

+
1

2(1− α)

Σs(u)ϕ0(B, u)

Σt(u)
[
1− iB1µ

Σt(u)

](1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[−1− (c− u)ec−u + ec−u]

Σt(u)
[
1− iB1µ

Σt(u)

] +

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

Σt(u)
[
1− iB1µ

Σt(u)

] ·
·
∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.22)

The expansions presented in formulas (3.8,3.9) are substituted in the previous for-
mula and then, in order to find an equation for each flux moment, the property in
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3 – Models for the neutron spectra in a homogeneous slab

formula (3.10) is used; it means to multiply each term of the previous formula per
Pm(µ) and integrate between -1 and +1 in dµ.
The following equation is obtained:

ϕ(B, u)m =
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)

Σt(u)

∫ +1

−1

Pn(µ)Pm(µ)[
1− iB1µ

Σt(u)

] dµ+

+
Σs(u)ϕ0(B, u)(1− ec−u)

2Σt(u)(1− α)

∫ +1

−1

Pm(µ)[
1− iB1µ

Σt(u)

]dµ+

+
[−1− (c− u)ec−u + ec−u]

2Σt(u)(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]·

·
∫ +1

−1

Pm(µ)[
1− iB1µ

Σt(u)

]dµ+
+∞∑
n=1

(
2n+ 1

2

)
Σs(u)ϕn(B, u)

Σt(u)(1− α)
·

·
∫ 1

−1

Pn(µ)Pm(µ)[
1− iB1µ

Σt(u)

] dµ ∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.23)

From [17] the following definitions and properties are taken:

An,m(B, u) =
1

2

∫ 1

−1

Pn(µ)Pm(µ)[
1− iB1µ

Σt(u)
,
]dµ (3.24)

where An,m(B, u) is the element in position (n,m) of the matrix A. The matrix A
is evaluated with the following definitions:

y =
iB1

Σt(u)
; (3.25)

A0,0 =
tanh−1(y)

y
. (3.26)

Some properties of the matrix are here presented. The first property is the sym-
metry of the matrix A:

Ai,j = Aj,i; (3.27)

another property is the recursive relation between the elements of the matrix A:

1

y
(2l + 1)Aj,l − (l + 1)Aj,l+1 − lAj,l−1 =

δj,l
y
. (3.28)

After the isolation of the term Aj,l+1, it becomes:

Aj,l+1 =
1

y

2l + 1

l + 1
Aj,l −

l

l + 1
Aj,l−1 −

δj,l
y(l + 1)

. (3.29)
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Substituting formula (3.24) in formula (3.30) the following formula is obtained:

ϕm(B, u) =
∞∑
n=0

(2n+ 1)
Sn(B, u)

Σt(u)
An,m(B, u)+

+
Σs(u)ϕ0(B, u)(1− ec−u)

Σt(u)(1− α)
A0,m(B, u)+

+
[−1− (c− u)ec−u + ec−u]

Σt(u)(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]A0,m(B, u)+

+
+∞∑
n=1

(2n+ 1)
Σs(u)ϕn(B, u)

Σt(u)(1− α)
An,m(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.30)

3.2 Greuling-Goertzel approach

In this section a similar approximation with respect to the previous section has
been used. The collision density, also in this case, is considered as a slowly varying
function over the lethargy range of the scattering integral, but instead of using a
linear variation of the collision density, a second order variation is considered, only
for the zero order moment:

Σs(u
′)ϕn(B, u′) ≈Σs(u)ϕn(B, u)+

+ (u′ − u)
∂

∂u
[Σs(u)ϕn(B, u)] · δn,0+

+
1

2
(u′ − u)2 ∂

2

∂u2
[Σs(u)ϕn(B, u)] · δn,0;

(3.31)

substituting this approximation in formula(2.36), the following formula is obtained:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
+∞∑
n=0

(
2n+ 1

2

)
Pn(µ)

∫ u

c

[
Σs(u)ϕn(B, u) + (u′ − u)·

· ∂
∂u

[Σs(u)ϕn(B, u)] · δn,0 +
1

2
(u′ − u)2 ∂

2

∂u2
[Σs(u)ϕn(B, u)] · δn,0

]
·

· Pn(ξ(A, u′, u))eu
′−u

1− α
du′;

(3.32)
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then separating the terms of order zero from the other terms and separating the
three terms of order zero themselves the equation becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ) +
1

2(1− α)
·

· P0(µ)Σs(u)ϕ0(B, u)

∫ u

c

du′P0(ξ(A, u′, u))eu
′−u+

+
1

2(1− α)
P0(µ)

∂

∂u
[Σs(u)ϕ0(B, u)]·

·
∫ u

c

du′(u′ − u)P0(ξ(A, u′, u))eu
′−u+

+
1

2
· 1

2(1− α)
P0(µ)

∂2

∂u2
[Σs(u)ϕ0(B, u)]·

·
∫ u

c

du′(u′ − u)2P0(ξ(A, u′, u))eu
′−u+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)·

·
∫ u

c

du′ [Σs(u)ϕn(B, u)]
Pn(ξ(A, u′, u))eu

′−u

1− α
;

(3.33)

considering that the Legendre polynomial of order zero is equal to one the formula
becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)

∫ u

c

du′eu
′−u+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

∫ u

c

du′(u′ − u)eu
′−u+

+
1

2
· 1

2(1− α)

∂2

∂u2
[Σs(u)ϕ0(B, u)]

∫ u

c

du′(u′ − u)2eu
′−u+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)Σs(u)ϕn(B, u)·

·
∫ u

c

du′
Pn(ξ(A, u′, u))eu

′−u

1− α
.

(3.34)

As it has been already done in section 3.1, the first two integrals are evaluated
with formulas (3.5, 3.6) and the last integral is evaluated numerically for the same
reason considered before. The third integral is also a trivial integral and it has been
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3 – Models for the neutron spectra in a homogeneous slab

evaluated as follow:∫ u

c

du′(u′ − u)2eu
′−u =− (c− u)2e(c−u) + 2(c− u)e(c−u)+

− 2e(c−u) + 2.

(3.35)

Using these integrals formula (3.34) becomes:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
− 1− (c− u)ec−u + ec−u

]
+

+
1

2
· 1

2(1− α)

∂2

∂u2
[Σs(u)ϕ0(B, u)] ·

[
− (c− u)2e(c−u)+

+ 2(c− u)e(c−u) − 2e(c−u) + 2
]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.36)

3.2.1 PN approximation

In order to do the PN approximation the expansions in formulas (3.8,3.9) are sub-
stituted in the previous formula to obtain:

iBµ
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ)+

+ Σt(u)
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ) =

=
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)Pn(µ)+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
+

+
1

2
· 1

2(1− α)

∂2

∂u2
[Σs(u)ϕ0(B, u)] ·

[
− (c− u)2e(c−u)+

+ 2(c− u)e(c−u) − 2e(c−u) + 2
]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− α
Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.37)
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3 – Models for the neutron spectra in a homogeneous slab

In order to find an equation for each flux moment the property in formula (3.10)
is used; it means to multiply each term of the previous formula per Pm(µ) and
integrate between minus one and plus one in dµ as it is illustrated in the following
formula:

iB

∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)

∫ +1

−1

µPn(µ)Pm(µ)dµ+

+ Σt(u)
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)

∫ +1

−1

Pn(µ)Pm(µ)dµ =

=
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)

∫ +1

−1

Pn(µ)Pm(µ)dµ+

+
1

2(1− α)
Σs(u)ϕ0(B, u)(1− ec−u)

∫ +1

−1

Pm(µ)dµ+

+
1

2(1− α)

∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
·

·
∫ +1

−1

Pm(µ)dµ+
1

2
· 1

2(1− α)

∂2

∂u2
[Σs(u)ϕ0(B, u)]·

·
[
− (c− u)2e(c−u) + 2(c− u)e(c−u) − 2e(c−u) + 2

]
·

·
∫ +1

−1

Pm(µ)dµ+
+∞∑
n=1

(
2n+ 1

2(1− α)

)∫ +1

−1

Pn(µ)Pm(µ)dµ·

· Σs(u)ϕn(B, u)

∫ u

c

du′Pn(ξ(A, u′, u))eu
′−u.

(3.38)

Using the integral solutions that have been presented in formulas (3.14,3.15,3.16)
this last equation becomes:

iB

[
m+ 1

2m+ 1
ϕm+1(B, u) +

m

2m+ 1
ϕm−1(B, u)

]
+ Σt(u)ϕm(B, u) =

= Sm(B, u) +
1

1− α
Σs(u)ϕ0(B, u)(1− ec−u)δm,0+

+
1

1− α
∂

∂u
[Σs(u)ϕ0(B, u)]

[
−1− (c− u)ec−u + ec−u

]
δm,0+

+
1

2
· 1

(1− α)

∂2

∂u2
[Σs(u)ϕ0(B, u)]·

·
[
− (c− u)2e(c−u) + 2(c− u)e(c−u) − 2e(c−u) + 2

]
δm,0+

+

(
1

1− α

)
Σs(u)ϕm>0(B, u)

∫ u

c

du′Pm>0(ξ(A, u′, u))eu
′−u

(3.39)
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3 – Models for the neutron spectra in a homogeneous slab

Also in this case a truncation as well as a closure equation are needed, as in section
3.1.1, in order to have a finite number of equation and a closed system of equation.
The closure equation, that is used, is the one in formula (3.18).

3.3 Discrete lethargy approach

In this section no approximations are introduced for the collision density. Instead,
the scattering integral is approximated using the composite trapezoidal rule [18].
The general formula of the composite trapezoidal rule is given in the following
formula:

∫ b

a

f(x)dx ≈ b− a
n

(
f(a)

2
+

n−1∑
k=1

(
f
(
a+ k

b− a
n

))
+
f(b)

2

)
, (3.40)

where n is the number of subintervals.
Calling:

h =
b− a
n

, (3.41)

where h is the amplitude of each subinterval. The formula (3.40) becomes:

∫ b

a

f(x)dx ≈ h

2

(
f(a) + 2

n−1∑
k=1

(
f
(
a+ k

b− a
n

))
+ f(b)

)
. (3.42)

In order to apply this approximation a lethargy discretization is necessary; that
discretization will be presented in the next chapter. For the time being the com-
posite trapezoidal rule is used as follow. This approximation is applied to equation
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3 – Models for the neutron spectra in a homogeneous slab

(2.36). The scattering integral becomes:∫ u

c

du′Σs(u
′)ϕn(B, u′)

Pn(ξ(A, u′, u))eu
′−u

1− α
≈

≈h
2

(
Σs(c)ϕn(B, c)

Pn(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕn(B, ui)

Pn
(
ξ(A, ui, u)

)
eui−u

1− α

)
+

+ Σs(u)ϕn(B, u)
Pn(ξ(A, u, u))eu−u

1− α

)
=

=
h

2

(
Σs(c)ϕn(B, c)

Pn(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕn(B, ui)

Pn
(
ξ(A, ui, u)

)
eui−u

1− α

)
+

+
Σs(u)ϕn(B, u)

1− α

)
,

(3.43)

where:

ui = c+ hi. (3.44)

Substituting this approximation in equation (2.36) the following formula is ob-
tained:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ) +
+∞∑
n=0

(
2n+ 1

2

)
·

· Pn(µ)
h

2

(
Σs(c)ϕn(B, c)

Pn(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕn(B, ui)

Pn
(
ξ(A, ui, u)

)
eui−u

1− α

)
+

+
Σs(u)ϕn(B, u)

1− α

)
.

(3.45)

3.3.1 PN approximation

Also in this case the problem is solved through the use of the PN approximation.
The same procedure of the previous cases is applied. First of all the expansions
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3 – Models for the neutron spectra in a homogeneous slab

for the source and for the flux (formulas (3.8,3.9)are substituted in the previous
formula:

iBµ
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ)+

+ Σt(u)
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)Pn(µ) =

=
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)Pn(µ) +

+∞∑
n=0

(
2n+ 1

2

)
·

· Pn(µ)
h

2

(
Σs(c)ϕn(B, c)

Pn(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕn(B, ui)

Pn
(
ξ(A, ui, u)

)
eui−u

1− α

)
+

+
Σs(u)ϕn(B, u)

1− α

)
;

(3.46)

then each term that has been obtained is multiplied per Pm(µ) and integrate be-
tween minus one and plus one in dµ. Having done these procedures, the following
formula is obtained:

iB
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)

∫ +1

−1

µPn(µ)Pm(µ)dµ+

+ Σt(u)
∞∑
n=0

(
2n+ 1

2

)
ϕn(B, u)

∫ +1

−1

Pn(µ)Pm(µ)dµ =

=
∞∑
n=0

(
2n+ 1

2

)
Sn(B, u)

∫ +1

−1

Pn(µ)Pm(µ)dµ+

+
+∞∑
n=0

(
2n+ 1

2

)∫ +1

−1

Pn(µ)Pm(µ)dµ·

· h
2

(
Σs(c)ϕn(B, c)

Pn(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕn(B, ui)

Pn
(
ξ(A, ui, u)

)
eui−u

1− α

)
+

+
Σs(u)ϕn(B, u)

1− α

)
.

(3.47)
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3 – Models for the neutron spectra in a homogeneous slab

Using the integral solutions that have been presented in formulas (3.14,3.15,3.16)
the following equation is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, u) +

m

2m+ 1
ϕm−1(B, u)

]
+ Σt(u)ϕm(B, u) =

= Sm(B, u) +
h

2

(
Σs(c)ϕm(B, c)

Pm(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕm(B, ui)

Pm
(
ξ(A, ui, u)

)
eui−u

1− α

)
+

+
Σs(u)ϕm(B, u)

1− α

)
.

(3.48)

Also in this case a truncation as well as a closure equation are needed, as in section
3.1.1, in order to have a finite number of equation and a closed system of equation.
The closure equation that has been used is the one in formula (3.18).

3.4 Selengut-Goertzel approach

In this section the case of the water as moderator is treated. In order to use the
continuous Fermi slowing down the hypothesis of small loss of energy per interaction
has been done. In the case in which hydrogen is part of the moderator molecule’s,
this hypothesis is not verified, because the hydrogen mass is comparable with the
neutron mass and so the loss of energy per interaction becomes relevant; for this
reason for the hydrogen the hypothesis of linear collision density is not verified. In
order to deal with this problem, the scattering integral is divided in two terms: one
for the hydrogen part of the molecule; one for non-hydrogen part of the molecule.
For water the scattering integral becomes:∫ u

c

du′Σs(u
′)ϕn(B, u′)

Pn(ξ(A, u′, u))eu
′−u

1− α
=

=

∫ u

cO

du′Σs,O(u′)ϕn(B, u′)
Pn(ξO(AO, u

′, u))eu
′−u

1− αO
+

+

∫ u

cH

du′Σs,H(u′)ϕn(B, u′)
Pn(ξH(AH , u

′, u))eu
′−u

1− αH
,

(3.49)

where:

cO = max[u+ ln(αO),0]; (3.50)

cH = max[u+ ln(αH),0]. (3.51)
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3 – Models for the neutron spectra in a homogeneous slab

In the case of the zero order moment for the oxygen part the Fermi continuous
slowing down is used for the collision density(formula (3.1)); instead for the hy-
drogen part the composite trapezoidal rule is used (formula (3.43)). In the cases
of successive order moments, the collision density is considered approximately con-
stant (like the Fermi continuous slowing down case).
Substituting these approximations in equation (2.36) the following formula is ob-
tained:

iBµϕ(B, u, µ) + Σt(u)ϕ(B, u, µ) = S(B, u, µ)+

+
1

2(1− αO)
Σs,O(u)ϕ0(B, u)(1− ecO−u)+

+
1

2(1− αO)

∂

∂u
[Σs,O(u)ϕ0(B, u)]·

·
[
−1− (cO − u)ecO−u + ecO−u

]
+

+
+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− αO
Σs,O(u)ϕn(B, u)·

·
∫ u

cO

du′Pn(ξO(AO, u
′, u))eu

′−u+

+
1

2
· h

2

[
Σs,H(cH)ϕ0(B, cH)

ecH−u

1− αH
+

+ 2
N−1∑
i=1

(
Σs,H(ui)ϕ0(B, ui)

eui−u

1− αH

)
+

+
Σs,H(u)ϕ0(B, u)

1− αH

]
+

+∞∑
n=1

(
2n+ 1

2

)
Pn(µ)

1− αH
·

· Σs,H(u)ϕn(B, u)

∫ u

cH

du′Pn(ξH(AH , u
′, u))eu

′−u

(3.52)

3.4.1 PN approximation

Also in this case the problem is solved through the use of the PN approximation.
The same procedure of the other cases is applied. First of all the expansions for
the source and for the flux (formulas (3.8,3.9)) are substituted in the previous for-
mula; then each term that has been obtained is multiplied per Pm(µ) and integrate
between minus one and plus one in dµ. Since the formulas used for this method
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3 – Models for the neutron spectra in a homogeneous slab

are of the same type of previous cases, the final formula is presented:

iB

[
m+ 1

2m+ 1
ϕm+1(B, u) +

m

2m+ 1
ϕm−1(B, u)

]
+ Σt(u)ϕm(B, u) =

= Sm(B, u) +
1

1− αO
Σs,O(u)ϕ0(B, u)(1− ecO−u)δm,0+

+
1

1− αO
∂

∂u
[Σs,O(u)ϕ0(B, u)]·

·
[
−1− (cO − u)ecO−u + ecO−u

]
δm,0+

+

(
1

1− αO

)
Σs,O(u)ϕm>0(B, u)·

·
∫ u

cO

du′Pm>0(ξO(AO, u
′, u))eu

′−u+

+
h

2

[
Σs,H(cH)ϕ0(B, cH)

ecH−u

1− αH
+

+ 2
N−1∑
i=1

(
Σs,H(ui)ϕ0(B, ui)

eui−u

1− αH

)
+

+
Σs,H(u)ϕ0(B, u)

1− αH

]
δm,0 +

(
1

1− αH

)
Σs,H(u)ϕm>0(B, u)·

·
∫ u

cH

du′Pm>0(ξH(AH , u
′, u))eu

′−u.

(3.53)

Also in this case a truncation as well as a closure equation are needed, as in section
3.1.1, in order to have a finite number of equation and a closed system of equation.
The closure equation that has been used is the one in formula (3.18).
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Chapter 4

The numerical procedure to solve

the neutron spectra in a

homogeneous slab

In this chapter the numerical procedure to solve the problem, with the different
approximation methods, that are presented in the previous chapters, is explained.
In order to do that, the lethargy discretization in general is firstly presented; then
the numerical discretization for each approximation method is reported.

4.1 Discretization

In order to solve the neutron transport with the methods explained in the previous
chapter, a lethargy discretization is necessary. Then, the introduction of discretiza-
tion formulas for first and second order derivative are used in order to solve almost
all the approximations. For simplicity an uniform lethargy grid is used; with this
assumption the derivative approximations in an internal point are given in the fol-
lowing formulas; these formulas have been found through the use of the central
difference scheme [18]; the following formula is used for the first derivative:

f ′(xj) =
f(xj+1)− f(xj−1)

2∆x
; (4.1)

the following formula is used for the second derivative:

f ′′(xj) =
f(xj+1)− 2f(xj) + f(xj−1)

(∆x)2
. (4.2)

The approximation of the derivatives in the first lethargy point (zero lethargy) are
not necessary, because the derivatives are inside the scattering integral that in the
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4 – The numerical procedure to solve the neutron spectra in a homogeneous slab

first lethargy point is zero (integral in a point). In the last lethargy point, there
is no possibility to consider the point j + 1 because it is outside the domain. The
formulas used are no more based on a central difference scheme but on an upwind
scheme. The formulas used in this case are reported below:

f ′(xj) =
f(xj)− f(xj−1)

∆x
; (4.3)

f ′′(xj) =
(f(xj)− f(xj−1))(xj−1 − xj−2)− (f(xj−1)− f(xj−2))(xj − xj−1)

(xj − xj−1)2(xj−1 − xj−2)
. (4.4)

For the discrete method the approximation used is the one presented in formula
(3.42).
Using these approximations, the problem is reduced into a linear system of the
type:

A · ϕ = b; (4.5)

where:

� ϕ is the vector containing all the flux moment for each lethargy value con-
sidered, with M number of point in the lethargy grid; the vector ϕ has the
following form:

ϕ =



ϕ0(u0)
ϕ1(u0)

...
ϕN(u0)
ϕ0(u1)
ϕ1(u1)

...
ϕN(u1)

...
ϕ0(uj)
ϕ1(uj)

...
ϕN(uj)

...
ϕ0(uM)

...
ϕN(uM)



; (4.6)

� A is a
[
(N + 2) x M, (N + 2) x M

]
matrix for the PN method and a

[
(N + 1)

x M, (N + 1) x M
]

matrix for the BN method with the coefficient of each flux

29
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moment for each lethargy, with M number of lethargy point and N the order
of the approximation; the matrix has the following form:

A =

a11 a12 . . .
a21 a22 . . .
...

...
. . .

 ; (4.7)

� b is the vector containing the source term.

4.1.1 Fermi continuous slowing down model, PN approxi-
mation

For the continuous Fermi slowing down, formulas (4.1, 4.3) are needed; substituting
in equation (3.17), the following results are obtained. First of all, the formula for
the first lethargy point (the zero lethargy point) is reported:

iB
m+ 1

2m+ 1
ϕm+1(B,0) + iB

m

2m+ 1
ϕm−1(B,0) + Σt(0)ϕm(B,0) = Sm(B,0). (4.8)

Then the following formulas report the discretized equation for the other lethargy
points. For a lethargy point inside the interval the following formula is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, uj) +

m

2m+ 1
ϕm−1(B, uj)

]
+

+ Σt(uj)ϕm(B, uj) = Sm(B, uJ)+

+
1

1− α
Σs(uj)ϕ0(B, uj)(1− ec−uj)δm,0+

+
1

1− α
Σs(uj+1)ϕ0(B, uj+1)− Σs(uj−1)ϕ0(B, uj−1)

uj+1 − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0+

+

(
1

1− α

)
Σs(uj)ϕm>0(B, uj)·

·
∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj ;

(4.9)
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for the last lethargy point the following formula is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, uj) +

m

2m+ 1
ϕm−1(B, uj)

]
+

+ Σt(uj)ϕm(B, uj) = Sm(B, uj)+

+
1

1− α
Σs(uj)ϕ0(B, uj)(1− ec−u)δm,0+

+
1

1− α
Σs(uj)ϕ0(B, uj)− Σs(uj−1)ϕ0(B, uj−1)

uj − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0+

+

(
1

1− α

)
Σs(uj)ϕm>0(B, uj)·

·
∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj .

(4.10)

Putting together the same order moment at same energy the following formula is
obtained for a point inside the lethargy interval:

iB
m+ 1

2m+ 1
ϕm+1(B, uj) + iB

m

2m+ 1
ϕm−1(B, uj)+

+ ϕm(B, uj)
[
Σt(uj)−

1

1− α
Σs(uj)(1− ec−uj)δm,0+

−
(

1

1− α

)
Σs(uj)

∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj ·

· (m > 0)
]

+ ϕ0(B, uj+1)
−1

1− α
Σs(uj+1)

uj+1 − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0+

+ ϕ0(B, uj−1)
1

1− α
Σs(uj−1)

uj+1 − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0 = Sm(B, uj),

(4.11)
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instead the following one is obtained for the last lethargy point:

iB
m+ 1

2m+ 1
ϕm+1(B, uj) + iB

m

2m+ 1
ϕm−1(B, uj)+

+ ϕm(B, uj)
[
Σt(uj)−

1

1− α
Σs(uj)(1− ec−uj)δm,0+

−
(

1

1− α

)
Σs(uj)

∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj ·

· (m > 0)− 1

1− α
Σs(uj)

uj − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0

]
+

+ ϕ0(B, uj−1)
1

1− α
Σs(uj−1)

uj − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0 = Sm(B, uj).

(4.12)

The terms that multiply the flux momenta are the coefficient of the matrix A;
instead the part on the right hand side of the equal are the terms of the vector b.
For this approximation method, the matrix A of formula (4.5) is a five diagonal
matrix, with non zero elements in the principal diagonal, in the first diagonal above
and below the principal diagonal and in the N + 2 diagonal above and below the
principal one; the only exception are the rows multiple of N + 2 where the closure
equation is imposed.

4.1.2 Fermi continuous slowing down model, BN approxi-
mation

Since the approach is again the continuous Fermi slowing down, formulas (4.1, 4.3)
are needed; substituting in equation (3.30), the following results are obtained. First
of all, the formula for the first lethargy point (the zero lethargy point) is reported:

ϕm(B,0) =
∞∑
n=0

(2n+ 1)
Sn(B,0)

Σt(0
An,m(B,0). (4.13)
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Then the following formulas report the discretized equation for the other lethargy
points. For a lethargy point inside the interval the following formula is obtained:

ϕm(B, uj) =
∞∑
n=0

(2n+ 1)
Sn(B, uj)

Σt(uj)
An,m(B, uj)+

+
Σs(uj)ϕ0(B, uj)(1− ec−uj)

Σt(uj)(1− α)
A0,m(B, uj)+

+
[−1− (c− uj)ec−uj + ec−uj ]

Σt(uj)(1− α)
A0,m(B, uj)·

· Σs(uj+1)ϕ0(B, uj+1)− Σs(uj−1)ϕ0(B, uj−1)

uj+1 − uj−1

+

+
+∞∑
n=1

(2n+ 1)
Σs(uj)ϕn(B, uj)

Σt(uj)(1− α)
An,m(B, uj)

∫ uj

c

du′Pn(ξ(A, u′, uj))e
u′−uj ;

(4.14)

for the last lethargy point the following formula is obtained:

ϕm(B, uj) =
∞∑
n=0

(2n+ 1)
Sn(B, uj)

Σt(uj)
An,m(B, uj)+

+
Σs(uj)ϕ0(B, uj)(1− ec−uj)

Σt(uj)(1− α)
A0,m(B, uj)+

+
[−1− (c− uj)ec−uj + ec−uj ]

Σt(uj)(1− α)
A0,m(B, uj)·

· Σs(uj)ϕ0(B, uj)− Σs(uj−1)ϕ0(B, uj−1)

uj − uj−1

+

+
+∞∑
n=1

(2n+ 1)
Σs(uj)ϕn(B, uj)

Σt(uj)(1− α)
An,m(B, uj)

∫ uj

c

du′Pn(ξ(A, u′, uj))e
u′−uj .

(4.15)
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Putting together the same order moment at same energy the following formula is
obtained for a point inside the lethargy interval:

ϕ0(B, uj)
Σs(uj)(1− ec−uj)

Σt(uj)(1− α)
A0,m(B, uj)+

+ ϕ0(B, uj+1)
[−1− (c− uj)ec−uj + ec−uj ]

Σt(uj)(1− α)
A0,m(B, uj)

Σs(uj+1)

uj+1 − uj−1

+

+ ϕ0(B, uj−1)
[−1− (c− uj)ec−uj + ec−uj ]

Σt(uj)(1− α)
A0,m(B, uj)

−Σs(uj−1)

uj+1 − uj−1

+

+
+∞∑
n=1

(2n+ 1)
Σs(uj)ϕn(B, uj)

Σt(uj)(1− α)
An,m(B, uj)·

·
∫ uj

c

du′Pn(ξ(A, u′, uj))e
u′−uj − ϕm(B, uj) =

= −
∞∑
n=0

(2n+ 1)
Sn(B, uj)

Σt(uj)
An,m(B, uj;

(4.16)

instead the following one is obtained for the last lethargy point:

ϕ0(B, uj)
Σs(uj)A0,m(B, uj)

Σt(uj)(1− α)

[
(1− ec−uj) +

[−1− (c− uj)ec−uj + ec−uj ]

uj − uj−1

]
+

+ ϕ0(B, uj−1)
[−1− (c− uj)ec−uj + ec−uj ]

Σt(uj)(1− α)
A0,m(B, uj)

−Σs(uj−1)

uj − uj−1

+

+
+∞∑
n=1

(2n+ 1)ϕn(B, uj)
Σs(uj)

Σt(uj)(1− α)
An,m(B, uj)·

·
∫ uj

c

du′Pn(ξ(A, u′, uj))e
u′−uj − ϕm(B, uj) =

= −
∞∑
n=0

(2n+ 1)
Sn(B, uj)

Σt(uj)
An,m(B, uj).

(4.17)

The terms that multiply the flux momenta are the coefficient of the matrix A;
instead the part on the right hand side of the equal are the terms of the vector
b. For this approximation method, the matrix A of formula (4.5) is a full matrix,
since all flux momenta appear in the equation for the generic momentum of order
m.

4.1.3 Greuling-Goertzel approach, PN approximation

For the Greuling-Goertzel approach, formulas (4.1, 4.2, 4.3, 4.4) are needed; sub-
stituting in equation (3.39), the following results are obtained. First of all, the
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formula for the first lethargy point (the zero lethargy point) is reported:

iB
m+ 1

2m+ 1
ϕm+1(B,0) + iB

m

2m+ 1
ϕm−1(B,0) + Σt(0)ϕm(B,0) = Sm(B,0).

(4.18)
Then the following formulas report the discretized equation for the other lethargy
points. For a lethargy point inside the interval the following formula is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, uj) +

m

2m+ 1
ϕm−1(B, uj)

]
+ Σt(uj)ϕm(B, uj) =

= Sm(B, uj) +
1

1− α
Σs(uj)ϕ0(B, uj)(1− ec−uj)δm,0+

+
1

1− α
Σs(uj+1)ϕ0(B, uj+1)− Σs(uj−1)ϕ0(B, uj−1)

uj+1 − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0 +

1

2
· 1

(1− α)
·

· Σs(uj+1)ϕ0(B, uj+1)− 2Σs(uj)ϕ0(B, uj) + Σs(uj−1)ϕ0(B, uj−1)

(uj − uj−1)2
·

·
[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
δm,0+

+

(
1

1− α

)
Σs(uj)ϕm>0(B, uj)

∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj ;

(4.19)

for the last lethargy point the following formula is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, uj) +

m

2m+ 1
ϕm−1(B, uj)

]
+ Σt(uj)ϕm(B, uj) =

= Sm(B, uj) +
1

1− α
Σs(uj)ϕ0(B, uj)(1− ec−uj)δm,0+

+
1

1− α
Σs(uj)ϕ0(B, uj)− Σs(uj−1)ϕ0(B, uj−1)

uj − uj−1

·

·
[
−1− (c− uj)ec−uj + ec−uj

]
δm,0 +

1

2
· 1

(1− α)
·

·
[
Σs(uj)ϕ0(B, uj)(uj−1 − uj−2)− Σs(uj−1)ϕ0(B, uj−1)(uj − uj−2)+

+ Σs(uj−2)ϕ0(B, uj−2)(uj − uj−1)

]
÷
[
(uj − uj−1)2(uj−1 − uj−2)

]
·

·
[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
δm,0+

+

(
1

1− α

)
Σs(uj)ϕm>0(B, uj)

∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj .

(4.20)
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Putting together the same order moment at same energy the following formula is
obtained for a point inside the lethargy interval:

iB
m+ 1

2m+ 1
ϕm+1(B, uj) + iB

m

2m+ 1
ϕm−1(B, uj)+

+ ϕm(B, uj)

{
Σt(uj)−

1

1− α
Σs(uj)

[
(1− ec−uj)δm,0+

−

[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
(uj − uj−1)2

δm,0+

+

∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj(m > 0)

]}
+

+ ϕ0(B, uj+1)
−Σs(uj+1)

1− α

{
[−1− (c− uj)ec−uj + ec−uj ]

uj+1 − uj−1

+

+
1

2
·

[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
(uj − uj−1)2

}
δm,0+

+ ϕ0(B, uj−1)
Σs(uj−1)

1− α

{
[−1− (c− uj)ec−uj + ec−uj ]

uj+1 − uj−1

+

− 1

2
·

[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
(uj − uj−1)2

}
δm,0 =

= Sm(B, uj),

(4.21)
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instead the following one is obtained for the last lethargy point:

iB
m+ 1

2m+ 1
ϕm+1(B, uj) + iB

m

2m+ 1
ϕm−1(B, uj)+

+ ϕm(B, uj)

{
Σt(uj)−

1

1− α
Σs(uj)

[
(1− ec−uj)δm,0+

+
[−1− (c− uj)ec−uj + ec−uj ]

uj − uj−1

δm,0+

+
1

2

[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
(uj − uj−1)2

δm,0+

+

∫ uj

c

du′Pm>0(ξ(A, u′, uj))e
u′−uj(m > 0)

]}
+

+ ϕ0(B, uj−1)
Σs(uj−1)

1− α

{
[−1− (c− uj)ec−uj + ec−uj ]

uj − uj−1

+

+
1

2
·

[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
(uj − uj−1)2(uj−1 − uj−2)

·

· (uj − uj−2)

}
δm,0 + ϕ0(B, uj−2)

−Σs(uj−2)

1− α

{
1

2
·

·

[
− (c− uj)2e(c−uj) + 2(c− uj)e(c−uj) − 2e(c−uj) + 2

]
(uj − uj−1)2(uj−1 − uj−2)

(uj − uj−1)

}
δm,0 =

= Sm(B, uj).

(4.22)

The terms that multiply the flux momenta are the coefficient of the matrix A;
instead the part on the right hand side of the equal are the terms of the vector b.
For this approximation method, the matrix A of formula (4.5) is a five diagonal
matrix, with non zero elements in the principal diagonal, in the first diagonal above
and below the principal diagonal and in the N + 2 diagonal above and below the
principal one; the only exception are the rows multiple of N + 2 where the closure
equation is imposed.

4.1.4 Discrete lethargy approach, PN approximation

The discretization for this approach has been already presented in formula (3.48).
In this case the lethargy point position in the interval is not important; the only
difference is on the first lethargy point, where the integral is zero. For the first
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lethargy point the formula is the following one:

iB
m+ 1

2m+ 1
ϕm+1(B,0) + iB

m

2m+ 1
ϕm−1(B,0) + Σt(0)ϕm(B,0) = Sm(B,0).

(4.23)
Then the following formulas report the discretized equation for the other lethargy
points. For the general lethargy point, starting from formula (3.48), putting to-
gether the same order moment at same energy the following formula is obtained:

iB
m+ 1

2m+ 1
ϕm+1(B, u) + iB

m

2m+ 1
ϕm−1(B, u)+

+ ϕm(B, u)

[
Σt(u)− h

2
· Σs(u)ϕm(B, u)

1− α

]
+

− h

2

[
Σs(c)ϕm(B, c)

Pm(ξ(A, c, u))ec−u

1− α
+

+ 2
N−1∑
i=1

(
Σs(ui)ϕm(B, ui)

Pm
(
ξ(A, ui, u)

)
eui−u

1− α

)]
=

= Sm(B, u).

(4.24)

The terms that multiply the flux momenta are the coefficient of the matrix A;
instead the part on the right hand side of the equal are the terms of the vector b.
For this approximation method, the matrix A of formula (4.5) has the elements in
the diagonals above and below the principal one, up to the number of point between
u+ log(α) and u.
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4.1.5 Selengut-Goertzel approach , PN approximation

For the Selengut-Goertzel approach, formulas (4.1, 4.3) are needed for the oxygen
part; instead the discretization for the hydrogen part has been already presented
in formula (3.53). Substituting in equation (3.53) the discretization for the first
derivative, the following results are obtained. First of all, the formula for the first
lethargy point (the zero lethargy point) is reported:

iB
m+ 1

2m+ 1
ϕm+1(B,0) + iB

m

2m+ 1
ϕm−1(B,0) + Σt(0)ϕm(B,0) = Sm(B,0).

(4.25)

Then the following formulas report the discretized equation for the other lethargy
points. For a lethargy point inside the interval the following formula is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, uj) +

m

2m+ 1
ϕm−1(B, uj)

]
+ Σt(uj)ϕm(B, uj) =

= Sm(B, uj) +
1

1− αO
Σs,O(uj)ϕ0(B, uj)(1− ecO−uj)δm,0+

+
1

1− αO
Σs,O(uj+1)ϕ0(B, uj+1)− Σs,O(uj−1)ϕ0(B, uj−1)

uj+1 − uj−1

·

·
[
−1− (cO − uj)ecO−uj + ecO−uj

]
δm,0+

+

(
1

1− αO

)
Σs,O(uj)ϕm>0(B, uj)·

·
∫ uj

cO

du′Pm>0(ξO(AO, u
′, uj))e

u′−uj+

+
h

2

[
Σs,H(cH)ϕ0(B, cH)

ecH−uj

1− αH
+

+ 2
N−1∑
i=1

(
Σs,H(ui)ϕ0(B, ui)

eui−uj

1− αH

)
+

+
Σs,H(uj)ϕ0(B, uj)

1− αH

]
δm,0 +

(
1

1− αH

)
Σs,H(uj)ϕm>0(B, uj)·

·
∫ uj

cH

du′Pm>0(ξH(AH , u
′, uj))e

u′−uj ;

(4.26)
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for the last lethargy point the following formula is obtained:

iB

[
m+ 1

2m+ 1
ϕm+1(B, uj) +

m

2m+ 1
ϕm−1(B, uj)

]
+ Σt(uj)ϕm(B, uj) =

= Sm(B, uj) +
1

1− αO
Σs,O(uj)ϕ0(B, uj)(1− ecO−uj)δm,0+

+
1

1− αO
Σs,O(uj)ϕ0(B, uj+1)− Σs,O(uj−1)ϕ0(B, uj−1)

uj − uj−1

·

·
[
−1− (cO − uj)ecO−uj + ecO−uj

]
δm,0+

+

(
1

1− αO

)
Σs,O(uj)ϕm>0(B, uj)·

·
∫ uj

cO

du′Pm>0(ξO(AO, u
′, uj))e

u′−uj+

+
h

2

[
Σs,H(cH)ϕ0(B, cH)

ecH−uj

1− αH
+

+ 2
N−1∑
i=1

(
Σs,H(ui)ϕ0(B, ui)

eui−uj

1− αH

)
+

+
Σs,H(uj)ϕ0(B, uj)

1− αH

]
δm,0 +

(
1

1− αH

)
Σs,H(uj)ϕm>0(B, uj)·

·
∫ uj

cH

du′Pm>0(ξH(AH , u
′, uj))e

u′−uj .

(4.27)
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Putting together the same order moment at same energy the following formula is
obtained for a point inside the lethargy interval:

iB
m+ 1

2m+ 1
ϕm+1(B, uj) + iB

m

2m+ 1
ϕm−1(B, uj)+

+ ϕm(B, uj)

{
Σt(uj)−

Σs,O(uj)

1− αO

[
(1− ecO−uj)δm,0+

+

∫ uj

cO

du′Pm>0(ξO(AO, u
′, uj))e

u′−uj(m > 0)

]
− h

2

Σs,H(uj)

1− αH
δm,0+

− Σs,H(uj)

1− αH

∫ uj

cH

du′Pm>0(ξH(AH , u
′, uj))e

u′−uj(m > 0)

}
+

+ ϕ0(B, uj+1)
−Σs,O(uj+1)

1− αO
[−1− (cO − uj)ecO−uj + ecO−uj ]

uj+1 − uj−1

δm,0+

+ ϕ0(B, uj−1)
Σs,O(uj−1)

1− αO
[−1− (cO − uj)ecO−uj + ecO−uj ]

uj+1 − uj−1

δm,0+

− h

2

[
Σs,H(cH)ϕ0(B, cH)

ecH−uj

1− αH
+ 2

N−1∑
i=1

(
Σs,H(ui)ϕ0(B, ui)

eui−uj

1− αH

)]
=

= Sm(B, uj);

(4.28)

instead the following one is obtained for the last lethargy point:

iB
m+ 1

2m+ 1
ϕm+1(B, uj) + iB

m

2m+ 1
ϕm−1(B, uj)+

+ ϕm(B, uj)

{
Σt(uj)−

Σs,O(uj)

1− αO

[
(1− ecO−uj)δm,0+

+
[−1− (cO − uj)ecO−uj + ecO−uj ]

uj − uj−1

δm,0+

+

∫ uj

cO

du′Pm>0(ξO(AO, u
′, uj))e

u′−uj(m > 0)

]
− h

2

Σs,H(uj)

1− αH
δm,0+

− Σs,H(uj)

1− αH

∫ uj

cH

du′Pm>0(ξH(AH , u
′, uj))e

u′−uj(m > 0)

}
+

+ ϕ0(B, uj−1)
Σs,O(uj−1)

1− αO
[−1− (cO − uj)ecO−uj + ecO−uj ]

uj − uj−1

δm,0+

− h

2

[
Σs,H(cH)ϕ0(B, cH)

ecH−uj

1− αH
+ 2

N−1∑
i=1

(
Σs,H(ui)ϕ0(B, ui)

eui−uj

1− αH

)]
=

= Sm(B, uj).

(4.29)
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The terms that multiply the flux momenta are the coefficient of the matrix A;
instead the part on the right hand side of the equal are the terms of the vector b.
Since this method is a combination between the Fermi continuous slowing down
method and the discrete lethargy approach the matrix A of formula (4.5) is of the
same type of the discrete lethargy method.
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Chapter 5

Test cases, results and discussion

In this chapter the solution of the neutron spectra in a homogeneous moderator
media, in slab configuration, using the methods presented in the previous chapter,
is carried out. In order to evaluate the solution of the transport equation the soft-
ware MATLAB is used [19]. For this reason, a discretization in lethargy is required.
Then, in order to reduce the error due to the scheme used for the simulation, a grid
independence for each methods and for the lowest order of approximation is carried
out; the lowest order of approximation is used because it is expected that increas-
ing the order of approximation ( it means increase the order of the last momentum
used for the flux) the error, with respect to the real result, decrease.

5.1 Simulation setup

In order to solve the problem, the nuclear data are required; so the nuclear cross
sections are taken from the library JEFF-3.3 [20], through the use of the java-based
nuclear information software JANIS [21]. Then a source definition is required, since
it is the known term on the equation. For the solution of this simple problem it
has been decided to use an isotropic source, with constant value equal to one in
the energy interval between 2MeV and 0.2MeV ; considering the lethargy variable
it corresponds to the lethargy interval between 0 and log(10). Since the source
is assumed isotropic, only the zero order moment exist; so the expatiation (3.9)
becomes:

S(B, u, µ) =
1

2
S0(B, u); (5.1)

the momenta of larger order than zero are imposed equal to zero:

Sm(B, u) = 0 if m > 0. (5.2)

Then in order to do some comparison three different buckling are used. As already
said the material used is a homogeneous media, composed of moderator material.
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The moderators used for the calculations are graphite, light water and heavy water.

5.2 Grid independence

In order to reduce the error for each method a grid independence is carried out.
Except for the discrete method the lethargy interval is divided into an increasing
number of point using the command linspace in MATLAB; for the discrete method,
since the flux moments remain inside the integral, the value of the flux moment in
each lethargy step is required and mostly the value in u + ln(α) is required, the
interval is divided using a decreasing fraction of ln(α). In order to evaluate the
error, the integral of the flux is taken in all the lethargy interval; for each grid the
value is compared with the integral obtained with the most refined grid. So, the
error used is defined as follow:

errrel =
|I − I∞|
|I∞|

(5.3)

where:

� I is the integral of the flux in the lethargy interval:

I =

∫ umax

0

ϕ(B, u, µ)du; (5.4)

� I∞ is the integral of the flux in the lethargy interval with the most refined grid
.

Doing that procedure, the assumption that the grid independence converge has
been done.
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5.2.1 Fermi continuous slowing down model, PN approxi-
mation

For this approximation the calculation is done for graphite, light water and heavy
water. The results of the grid independence are presented in the following figures:

Figure 5.1: Grid independence for Fermi continuous slowing down method with P1

approximation, B = 0.01, using graphite as moderator material.

Figure 5.2: Grid independence for Fermi continuous slowing down method with P1

approximation, B = 0.01, using light water as moderator material.
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Figure 5.3: Grid independence for Fermi continuous slowing down method with P1

approximation, B = 0.01, using heavy water as moderator material.

Since the relative error has a small reduction starting from 103 lethargy points,
this value is considered for the simulations that are carried out.

Figure 5.4: Grid independence for Fermi continuous slowing down method with
P1 approximation, B = 0.01; comparison between graphite, light water and heavy
water as moderator material.
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A comparison is also done for the three materials in order to compare the con-
vergence speed. The previous plot is the result of the superposition of the three
previous plots; considering this last figure, it is possible to say that, in the first part,
simulations with light water and heavy water converge faster than simulation with
graphite; instead close to the convergence all the three grid independence converge
with the same speed.
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5.2.2 Fermi continuous slowing down model, BN approxi-
mation

For this approximation the calculation has been done for graphite. The result of
the grid independence is presented in the following figure:

Figure 5.5: Grid independence for Fermi continuous slowing down method with B1

approximation, B = 0.01, using graphite as moderator material .

Since the relative error has a small reduction starting from 103 lethargy points,
this value is considered for the simulations that are carried out.
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5.2.3 Greuling-Goertzel approach, PN approximation

For this approximation the calculation has been done for graphite, light water and
heavy water. The results of the grid independence are presented in the following
figures:

Figure 5.6: Grid independence for Greuling-Goertzel approach with P1 approxima-
tion, B = 0.01, using graphite as moderator material.

Figure 5.7: Grid independence for Greuling-Goertzel approach with P1 approxima-
tion, B = 0.01, using light water as moderator material.
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5 – Test cases, results and discussion

Figure 5.8: Grid independence for Greuling-Goertzel approach with P1 approxima-
tion, B = 0.01, using heavy water as moderator material.

Since the relative error has a small reduction starting from 103 lethargy points,
this value is considered for the simulations that are carried out.

Figure 5.9: Grid independence for Greuling-Goertzel approach with P1 approxi-
mation, B = 0.01;comparison between graphite, light water and heavy water as
moderator material.
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A comparison is also done for the three materials in order to compare the con-
vergence speed. The previous plot is the result of the superposition of the three
previous plots; considering this last plot, it is possible to say that, in the first part,
simulation with heavy water converge faster than simulation with graphite, that
converge faster than simulation with light water; instead close to the convergence
all the three grid independence converge with the same speed.
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5.2.4 Discrete lethargy approach, PN approximation

For this approximation the calculation has been done for graphite, light water and
heavy water. The results of the grid independence are presented in the following
figures:

Figure 5.10: Grid independence for discrete lethargy approach with P1 approxima-
tion, B = 0.01, using graphite as moderator material.

Figure 5.11: Grid independence for discrete lethargy approach with P1 approxima-
tion, B = 0.01, using light water as moderator material.
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Figure 5.12: Grid independence for discrete lethargy approach with P1 approxima-
tion, B = 0.01, using heavy water as moderator material.

In this case for the simulation the lethargy step is taken as ln(α)/10; so respec-
tively for graphite, light water and heavy water 773,1160 and 1289 lethargy points
have been considered.

Figure 5.13: Grid independence for discrete lethargy approach with P1 approxi-
mation, B = 0.01;comparison between graphite, light water and heavy water as
moderator material.
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A comparison is also done for the three materials in order to compare the con-
vergence speed. The previous plot is the result of the superposition of the three
previous plots; considering this last plot, it is possible to say that simulation with
light water converge faster than simulation with graphite, that converge faster than
simulation with heavy water.
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5.2.5 Selengut-Goertzel approach , PN approximation

For this approximation the calculation has been done for light water and heavy
water. The results of the grid independence are presented in the following figures:

Figure 5.14: Grid independence for Selengut-Goertzel approach with P1 approxi-
mation, B = 0.01, using light water as moderator material.

Figure 5.15: Grid independence for Selengut-Goertzel approach with P1 approxi-
mation, B = 0.01, using heavy water as moderator material.
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In this case for the simulation the interval has been taken as ln(αH)/200 for
light water and ln(αD)/100 for heavy water; so respectively for light water and
heavy water 482 and 1172 lethargy points have been considered. A comparison is
also done for the two materials in order to compare the convergence speed. The
previous plot is the result of the superposition of the two previous plots:

Figure 5.16: Grid independence for Selengut-Goertzel approach with P1 approxi-
mation, B = 0.01;comparison between light water and heavy water as moderator
material.

Considering this last plot, it is possible to say that simulation with light water
converge faster than simulation with heavy water.
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5.3 Results

In this section some results are presented. First of all, the dependence on the
geometry is presented; then for each moderator a comparison between the vari-
ous methods and the different order of approximation. To conclude a comparison
between light water and heavy water is reported.

5.3.1 Geometry dependence

The geometry dependence is here analysed. In this way the problem is solved using:

� the Fermi continuous slowing dowm method in P19 approximation;

� different values of buckling.

To analyse the results the flux zero order moments are plotted. The following
results are obtained:

Figure 5.17: Neutron spectra, evaluated with Fermi continuous slowing down
method in P19 approximation, in a homogeneous slab of graphite.
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Figure 5.18: Neutron spectra, evaluated with Fermi continuous slowing down
method in P19 approximation, in a homogeneous slab of light water.

Figure 5.19: Neutron spectra, evaluated with Fermi continuous slowing down
method in P19 approximation, in a homogeneous slab of heavy water.

It is noticeable that there is a strong dependence on the buckling value. The neu-
tron spectra, as expected, decrease while the buckling increase; in fact, to increase
of the buckling means to decrease the geometry dimension, so more leakages are
expected and less neutrons are able to slowing down. It is also visible the increase
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of the neutron spectra in the interval where there is the source.

5.3.2 Results for a graphite system

Here the results for the graphite as moderator materials are reported. First of
all a comparison between the Fermi continuous slowing down, discrete lethargy
approach and the Greuling-Goertzel approach is presented; the results are reported
below; in the following plot the flux zero order moment, evaluated with the P19

approximation, is presented:

Figure 5.20: Neutron spectra, evaluated with Fermi continuous slowing down
method, discrete lethargy approach and the Greuling-Goertzel approach in P19

approximation, in a homogeneous slab of graphite, with B = 0.01.

From the plot the three methods give a similar result; in order to compare the
three methods a new error definition is introduced:

errx =
|Id − Ix|
|Id|

, (5.5)

where:

� Id is the integral of the flux, evaluated with the discrete approach, in the
lethargy interval;

� Ix is the integral of the flux, evaluated with the x approach (one between the
other methods), in the lethargy integral.
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The errors are referred to the discrete lethargy approach, because in that case there
is no approximation in the collision density, so this method is expected to be the
more accurate. With this definition the errors obtained are:

errF =
|Id − IF |
|Id|

= 2.44%, (5.6)

where F corresponds to the Fermi continuous slowing down method;

errG =
|Id − IG|
|Id|

= 1.34%, (5.7)

where G corresponds to the Greuling-Goertzel approach.
From these results it is possible to say that the Greuling-Goertzel approach is, as
expected, more accurate than the Fermi continuous slowing down method; since the
discretization matrices are of the same type for the two methods, the computational
cost is the same, so the use of the Greuling-Goertzel approach is recommended.
The discrete lethargy approach is recommended if a large accuracy is required, but
since the use of the Greuling-Goertzel approach generate an error of the 1.34%
with respect to the discrete lethargy approach, it is not a big mistake the use of
the Greuling-Goertzel approach in order to reduce the computational cost.
In the remaining part of this section, for each method, that has been used, the
comparison between different orders of approximation are analysed; in order to
compare the different orders of approximation the following absolute error definition
is introduced:

err = |ϕ19,0 − ϕx,0|, (5.8)

where:

� ϕ19,0 is the zero order moment of the neutron flux evaluated in P19 approxi-
mation;

� ϕx,0 is the zero order moment of the neutron flux evaluated in Px approxima-
tion.

Using this definition, first of all, the solutions for the Fermi continuous slowing
down method are analysed:
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5 – Test cases, results and discussion

Figure 5.21: Absolute error with respect to the solution with the P19 approxima-
tion, using the Fermi continuous slowing down method, in a homogeneous slab of
graphite, with B = 0.01 in linear scale.

Figure 5.22: Absolute error with respect to the solution with the P19 approxima-
tion, using the Fermi continuous slowing down method, in a homogeneous slab of
graphite, with B = 0.01 in logarithmic scale.

The first plot is done in linear scale; except for the P1 approximation, it seems

61



5 – Test cases, results and discussion

that the error is zero for the higher order approximation. In order to better under-
stand the order of the error for the higher order approximation, a plot in logarithmic
scale is presented in the second plot; from this picture it is appreciable that the
third order moment is of the order of 10−12 n

cm·s , instead fifth and ninth order mo-
ments are non represented; it means that the value of the error with respect to P19

approximation is exactly zero. With these results it is possible to say that the use
of the fifth order is a good choice, because no improvements are expected increasing
the approximation order.
As second case the solutions for the Greuling-Goertzel approach are analysed; the
following two plot represents the errors for different order of approximation, also in
this case, in linear and logarithmic scale. From the comparison of these two plot
it is possible to understand that in this case the approximation of third order has
as order of magnitude an error of 10−12 n

cm·s ; instead for the first order moment and
for the order higher or equal than the fifth, the error is exactly zero. It means that
the use of the fifth order is a good choice, because no improvements are expected
increasing the approximation order.

Figure 5.23: Absolute error with respect to the solution with the P19 approximation,
using the Greuling-Goertzel approach, in a homogeneous slab of graphite, with
B = 0.01 in linear scale.
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Figure 5.24: Absolute error with respect to the solution with the P19 approximation,
using the Greuling-Goertzel approach, in a homogeneous slab of graphite, with
B = 0.01 in logarithmic scale.

As third case the solutions for the discrete lethargy approach are here presented:

Figure 5.25: Absolute error with respect to the solution with the P19 approximation,
using the discrete lethargy approach, in a homogeneous slab of graphite, with B =
0.01 in linear scale.
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Figure 5.26: Absolute error with respect to the solution with the P19 approximation,
using the discrete lethargy approach, in a homogeneous slab of graphite, with B =
0.01 in logarithmic scale.

In this case the error for the third order approximation has an order of magnitude
of 10−12 n

cm·s ; instead fifth and ninth order approximation have as error the order
of magnitude of the machine precision, so, the error is practically zero. In this
way, also for the discrete lethargy approach it seems that using the fifth order
approximation is a good choice.
For the graphite moderator the same plot is done using the Bn approximation with
the Fermi continuous slowing down method; defining the error as:

err = |ϕ5,0 − ϕx,0|, (5.9)

where:

� ϕ5,0 is the zero order of the neutron flux evaluated in B5 approximation;

� ϕx,0 is the zero order of the neutron flux evaluated in Bx approximation;

the following plot is obtained:

64



5 – Test cases, results and discussion

Figure 5.27: Absolute error with respect to the solution with the B5 approxima-
tion, using the Fermi continuous slowing down method, in a homogeneous slab of
graphite, with B = 0.01 in logarithmic scale.

In this case the fifth order is used as reference because instabilities occur for
higher order of approximation; as in the previous case the error for the third order
approximation has as order of magnitude a value of 10−12 n

cm·s ; so, it is a good
choice the use of the third order approximation, though the use of the fifth order
give better results.

5.3.3 Results for a light water system

Here the results for the water as moderator materials are reported. First of all
a comparison between the Fermi continuous slowing down, discrete lethargy ap-
proach , Greuling-Goertzel approach and Selengut-Goertzel approach is presented;
the results are reported below; in the following plot the flux zero order moment,
evaluated with the P19 approximation, is presented:
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Figure 5.28: Neutron spectra, evaluated with Fermi continuous slowing down
method, discrete lethargy approach , Greuling-Goertzel approach and Selengut-
Goertzel approach in P19 approximation, in a homogeneous slab of light water,
with B = 0.01.

For water moderated system the Fermi continuous slowing down method, the
Greuling-Goertzel approach and the discrete lethargy approach give very similar
results; instead the Selengut-Goertzel approach give a completely different result.
Even if the three methods give similar results, the last one should be the more
accurate because the different way of treating the water molecule; in fact in the
first three methods the water is treated as a whole, instead in the Selengut-Goertzel
approach the water components are treated separately. In this last case the scatter-
ing integral is divided in two integral: the first integral for the oxygen part, where
the Fermi continuous slowing down is applicable, due to the big mass of the atom;
the second integral for the hydrogen part, where the discrete lethargy approach is
applied. Doing this differentiation in the integral, the term A considered in the
elastic scattering (formula (2.35)) is different for the two atoms, so different loss
of energy is considered for the two atoms; instead in the first three methods the
properties have been considered as an average. Consequently, the results for the
Selengut-Goertzel approach are expected more accurate than the other methods.
In the remaining part of this section, for each method, that has been used, the
comparison between different order of approximation is analysed; in order to com-
pare the different orders of approximation the error definition in formula (5.8) is
used; first of all the solutions for the Fermi continuous slowing down method are
analysed:
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Figure 5.29: Absolute error with respect to the solution with the P19 approximation,
using the Fermi continuous slowing down method, in a homogeneous slab of light
water, with B = 0.01 in linear scale.

Figure 5.30: Absolute error with respect to the solution with the P19 approximation,
using the Fermi continuous slowing down method, in a homogeneous slab of light
water, with B = 0.01 in logarithmic scale.

The first plot is done in linear scale; except for the P1 approximation, it seems
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that the error is zero for the higher order approximation. In order to better under-
stand the order of the error for the higher order approximation, a plot in logarithmic
scale is presented in the second plot; from this picture it is appreciable that the
third order moment is of the order of 10−13 n

cm·s , instead fifth and ninth order mo-
ments are non represented; it means that the value of the error with respect to P19

approximation is exactly zero. With these results it is possible to say that the use
of the fifth order is a good choice, because no improvements are expected increasing
the approximation order.
As second case the solutions for the Greuling-Goertzel approach are analysed; the
following two plots represents the errors for different order of approximation, also in
this case, in linear and logarithmic scale. As the previous case, looking at the linear
scale plot, it seems that the error is zero for higher order of approximation than
one. Instead looking at the logarithmic scale plot the third order approximation
has as order of magnitude an error in between 10−13 n

cm·s and 10−15 n
cm·s ; instead for

the order higher or equal than the fifth, the error is exactly zero. It means that
the use of the fifth order is a good choice, because no improvements are expected
increasing the approximation order.

Figure 5.31: Absolute error with respect to the solution with the P19 approximation,
using the Greuling-Goertzel approach, in a homogeneous slab of light water, with
B = 0.01 in linear scale.
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Figure 5.32: Absolute error with respect to the solution with the P19 approximation,
using the Greuling-Goertzel approach, in a homogeneous slab of light water, with
B = 0.01 in logarithmic scale.

As third case the solutions for the discrete lethargy approach are here presented:

Figure 5.33: Absolute error with respect to the solution with the P19 approximation,
using the discrete lethargy approach, in a homogeneous slab of light water, with
B = 0.01 in linear scale.
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Figure 5.34: Absolute error with respect to the solution with the P19 approximation,
using the discrete lethargy approach, in a homogeneous slab of light water, with
B = 0.01 in logarithmic scale.

In this case the error for the third order approximation has an order of mag-
nitude of 10−13 n

cm·s ; instead fifth and ninth order approximation have as error the
order of magnitude of the machine precision, so, the error is practically zero. In
this way, also for the discrete lethargy approach it seems that using the fifth order
approximation is a good choice.
As last case the solutions for the Selengut-Goertzel approach are analysed; in the
following two plots the errors, for different order of approximation, in linear and
logarithmic scale, are represented. In this case the third order approximation has
an error in between 10−13 n

cm·s and 10−15 n
cm·s ; instead for the fifth order the error is

comparable with the machine precision, and, moreover, the ninth order approxima-
tion has exactly zero error; so, also in this case it seems that using the fifth order
approximation is a good choice.
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Figure 5.35: Absolute error with respect to the solution with the P19 approximation,
using the Selengut-Goertzel approach, in a homogeneous slab of light water, with
B = 0.01 in linear scale.

Figure 5.36: Absolute error with respect to the solution with the P19 approximation,
using the Selengut-Goertzel approach, in a homogeneous slab of light water, with
B = 0.01 in logarithmic scale.
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5.3.4 Results for a heavy water system

Here the results for the heavy water as moderator materials are reported. First of
all a comparison between the Fermi continuous slowing down, discrete lethargy ap-
proach , Greuling-Goertzel approach and Selengut-Goertzel approach is presented;
the results are reported below; in the following plot the flux zero order moment,
evaluated with the P19 approximation, is presented:

Figure 5.37: Neutron spectra, evaluated with Fermi continuous slowing down
method, discrete lethargy approach , Greuling-Goertzel approach and Selengut-
Goertzel approach in P19 approximation, in a homogeneous slab of heavy water
with B = 0.01.

In order to analyse this plot the same consideration of the case with light wa-
ter as moderating material can be done; therefore, also for the heavy water, the
Selengut-Goertzel approach is expected to give better results with respect to the
other three methods.
In the remaining part of this section, for each method, that has been used, the
comparison between different order of approximation is analysed; in order to com-
pare the different orders of approximation the error definition in formula (5.8) is
used; first of all the solutions for the Fermi continuous slowing down method are
analysed:
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Figure 5.38: Absolute error with respect to the solution with the P19 approximation,
using the Fermi continuous slowing down method, in a homogeneous slab of heavy
water, with B = 0.01 in linear scale.

Figure 5.39: Absolute error with respect to the solution with the P19 approximation,
using the Fermi continuous slowing down method, in a homogeneous slab of heavy
water, with B = 0.01 in logarithmic scale.

The first plot is done in linear scale; except for the P1 approximation, it seems
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that the error is zero for the higher order approximation. In order to better under-
stand the order of the error for the higher order approximation, a plot in logarithmic
scale is presented in the second plot; from this picture it is appreciable that the
third order moment is of the order of 10−1 n

cm·s , instead fifth and ninth order mo-
ments are non represented; it means that the value of the error with respect to P19

approximation is exactly zero. With these results it is possible to say that the use
of the fifth order is a good choice, because no improvements are expected increasing
the approximation order.
As second case the solutions for the Greuling-Goertzel approach are analysed; the
following two plot represents the errors for different order of approximation, also in
this case, in linear and logarithmic scale. As the previous case, looking at the linear
scale plot, it seems that the error is zero for higher order of approximation than
one. Instead looking at the logarithmic scale plot the third order approximation has
as order of magnitude an error of 10−12 n

cm·s ; instead for the order higher or equal
than the fifth, the error is exactly zero. It means that the use of the fifth order is a
good choice, because no improvements are expected increasing the approximation
order.

Figure 5.40: Absolute error with respect to the solution with the P19 approximation,
using the Greuling-Goertzel approach, in a homogeneous slab of heavy water, with
B = 0.01 in linear scale.
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Figure 5.41: Absolute error with respect to the solution with the P19 approximation,
using the Greuling-Goertzel approach, in a homogeneous slab of heavy water, with
B = 0.01 in logarithmic scale.

As third case the solutions for the discrete lethargy approach are presented in
the following two plots:

Figure 5.42: Absolute error with respect to the solution with the P19 approximation,
using the discrete lethargy approach, in a homogeneous slab of heavy water, with
B = 0.01 in linear scale.
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Figure 5.43: Absolute error with respect to the solution with the P19 approximation,
using the discrete lethargy approach, in a homogeneous slab of heavy water, with
B = 0.01 in logarithmic scale.

In this case the error for the third order approximation has an order of magnitude
of 10−12 n

cm·s ; instead fifth and ninth order approximation have as error the order
of magnitude of the machine precision, so, the error is practically zero. In this
way, also for the discrete lethargy approach it seems that using the fifth order
approximation is a good choice.
As last case the solutions for the Selengut-Goertzel approach are analysed; in the
following two plots the errors, for different order of approximation, in linear and
logarithmic scale, are represented. In this case the third order approximation has
an error of 10−13 n

cm·s ; instead for the fifth order and the ninth order approximation
have exactly zero error; so, also in this case it seems that using the fifth order
approximation is a good choice.
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Figure 5.44: Absolute error with respect to the solution with the P19 approximation,
using the Selengut-Goertzel approach, in a homogeneous slab of heavy water, with
B = 0.01 in linear scale.

Figure 5.45: Absolute error with respect to the solution with the P19 approximation,
using the Selengut-Goertzel approach, in a homogeneous slab of heavy water, with
B = 0.01 in logarithmic scale.
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5.3.5 Light and heavy water comparison

In this section a comparison between light water and heavy water as moderating
material is carried out. In order to do a comparison the neutron spectra, evalu-
ated through the use of the Selengut-Goertzel approach, with B = 0.01 and P19

approximation, is used; in the following plot the two neutron spectra are reported.

Figure 5.46: Neutron spectra, evaluated with Selengut-Goertzel approach in P19

approximation, in a homogeneous slab of light water and of heavy water with
B = 0.01.

Comparing the two curves, it is clear that the spectrum for heavy water mod-
erator is higher than the spectrum for light water moderator. It is due to the fact
that the light water has hydrogen in the molecule, instead heavy water has deu-
terium; the mass of the deuterium is about the double of the hydrogen mass, so, it
generate a lower loss of energy for each collision; in this way neutron that collide
with hydrogen has a large lethargy increase, so less neutron reach the first part of
the lethargy range. This is the reason why in the first part of the lethargy range
the spectrum for the deuterium reach an higher value. Moreover, the effect of the
absorption cross section is relevant. The absorption cross section is defined as:

Σa(u) = Σt(u)− Σs(u), (5.10)

where Σa(u) is the absorption cross section.
In the following plot the absorption cross section for hydrogen and for deuterium
is represented.
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Figure 5.47: Absorption cross section for hydrogen and deuterium

Analysing this plot the reason why the light water energy spectrum is lower
than the heavy water energy spectrum is more clear; in fact the absorption cross
section for hydrogen is larger than the absorption cross section for deuterium, so
more neutron are able to slowing down for heavy water with respect to light water.
Only on the bases of the energy spectrum in a homogeneous moderating system,
between light water and heavy water, it is possible to say that heavy water is a
better moderator material than light water. Actually the selection of a moderating
material in a nuclear reactor is more complex, because it requires the analysis of
more complex phenomena; just to give an example the energy loss for collision in
heavy water is lower, so in a water reactor more neutron pass through the resonance
of the absorption cross section of the Uranium-238, so more neutron are absorbed
in the Uranium-238 and so an higher enrichment is required.
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Chapter 6

Concluding remarks

In this work the neutron energy spectrum for a homogeneous slab has been evalu-
ated. Different materials have been considered, in particular graphite, light water
and heavy water.
The solution is obtained assuming different slowing down models, based on a con-
tinuous energy approach, i.e. the Fermi continuous slowing down method, the
Greuling-Goertzel, the discrete lethargy and the Selengut-Goertzel approaches.
The solutions have been evaluated using the PN and the BN angular approxima-
tions.
Some comparisons between the solutions with different methods have been carried
out. Such comparison allow to draw some conclusions on the better choice of the
method to be used for a specific material.
Future developments will include the analysis of heterogeneous systems and the
optimization of the procedure for the determination of multigroup data for deter-
ministic transport codes.
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