
 

POLITECNICO DI TORINO 

Laurea Magistrale in Ingegneria Biomedica 

Orientamento Strumentazione Biomedica 

 

Development of a wearable actigraph 

with Bluetooth Low Energy link  

and implementation of a dedicated 

Android App 

Relatore                

Marco Knaflitz             Studente 

                Alberto Marchesa 
Correlatore        

Daniele Fortunato  



 

Index 

Introduction............................................................................................................................................ 1 

1 Device overview ............................................................................................................................. 2 

2 BGM121 ........................................................................................................................................ 4 

2.1 BLE fundamentals ............................................................................................................................. 4 

2.1.1 Protocol Stack ............................................................................................................................ 5 

2.1.2 Communication ......................................................................................................................... 8 

2.2 System models ................................................................................................................................. 12 

2.3 Simplicity Studio ............................................................................................................................. 13 

2.3.1 GATT definition ...................................................................................................................... 13 

2.3.2 Application code ...................................................................................................................... 14 

2.4 Project outline .................................................................................................................................. 17 

3 SAM E70 ...................................................................................................................................... 19 

3.1 Parallel Input/Output Controller (PIO) ............................................................................................ 20 

3.1.1 Hardware ................................................................................................................................. 20 

3.1.2 User interface ........................................................................................................................... 20 

3.2 Universal Asynchronous Receiver Transmitter (UART) ................................................................ 23 

3.2.1 Hardware ................................................................................................................................. 23 

3.2.2 User Interface .......................................................................................................................... 26 

4 Firmware ...................................................................................................................................... 28 

4.1 Block diagram ................................................................................................................................. 28 

4.2 Flow chart ........................................................................................................................................ 29 

4.2.1 UART Module ......................................................................................................................... 29 



 

4.2.2 UART interrupt........................................................................................................................ 32 

4.2.3 App handle event ..................................................................................................................... 33 

5 Android App ................................................................................................................................. 34 

5.1 App fundamentals ............................................................................................................................ 34 

5.1.1 Components ............................................................................................................................. 34 

5.1.2 Intent ........................................................................................................................................ 35 

5.1.3 Resources ................................................................................................................................. 35 

5.1.4 Manifest file ............................................................................................................................. 36 

5.2 Android Studio ................................................................................................................................ 37 

5.2.1 Project structure ....................................................................................................................... 37 

5.2.2 Layout editor............................................................................................................................ 38 

5.3 Actigraph App ................................................................................................................................. 39 

5.3.1 Manifest file ............................................................................................................................. 39 

5.3.2 Application codes .................................................................................................................... 40 

6 Conclusion .................................................................................................................................... 43 

References ........................................................................................................................................... 44 



1 

Introduction 

An actigraph is a medical device the size of a watch, worn on upper or lower limb, which contains at 

least an accelerometer to record movements the unit undergoes. Until early 2000’s, actigraphy was used 

mainly as a method to assess insomnia, circadian rhythm disorders or excessive sleepiness [1]. Since 

then, progresses made on sensor’s dimension and consumption, as well as data analysis algorithms, 

increased the number of application fields. Human Activity Recognition (HAR) is an active research 

area that classifies user activities from inertial data and it finds application in medicine, athletics, 

lifestyle monitoring and human/computer interaction. All modern consumer electronics, like 

smartphones, smartwatches and personal activity trackers, integrates most advanced Magneto-Inertial 

Measurement Units (MIMUs), therefore they represents a good platform for HAR application. 

Nevertheless, devices available nowadays on the market have some important limitations [2]. First, 

they classify only a small subset of user activities, mostly outdoor sport activities, while a 

considerable amount of our life is lived indoor, performing simple activities. This is true especially 

for the elderly and subjects who need cardiac or neuromuscular rehabilitation, given the importance 

of physical activity monitoring. Secondly, devices just acquire signals: to process data and classify 

activities, an external software is needed. Devices from ActiGraph company represents a good 

solution to the first limitation. These actigraphs have the purpose of monitoring activities in the 

medical field, especially for advanced age and sick subjects, providing accurate information and 

parameters concerning basic daily activities. However, an external software to classify data is still 

needed. With this background, in 2017, Politecnico di Torino, in collaboration with Medical 

Technology s.r.l., developed an actigraph with an on-board software for daily activities recognition. 

Afterwards, in 2018, this device was modified, by Fabio Bolognesi’s thesis project, in order to 

improve computing skills, data storage and power consumption. The aim of this thesis now is to take 

a step forward on this project by installing a Bluetooth Low Energy (BLE) module in the device’s 

hardware, modifying the device’s firmware and developing a dedicated Android App to control the 

acquisition and display data with a smartphone. Such upgrade makes this device a good candidate for 

many others application fields because it is lightweight, easy-to-wear, cost-effective, computation-

reliable and basically, can be used everywhere as it needs no external PC nor internet connection. To 

better understand how this novel device works, Bluetooth Low Energy technology and Android App 

main principles will be introduced in the following chapters, as well as changes made in device’s 

firmware. 

  



2 

1 Device overview 

The block diagram of this new actigraph is reported in Figure 1. The device consists of a SAME70 

family microcontroller, a LSM9DS1 MIMU with a 3-axis accelerometer, a 3-axis gyroscope and a 3-

axis magnetometer for the magneto-inertial signal acquisition. There is also an SD card for saving 

raw data and recognized activities and a BGM121 SiP Bluetooth module for wireless communication. 

Data can be transferred or by USB 2.0 port or by BGM121 SiP Bluetooth module for wireless 

communication.  

 

Figure 1- Actigraph Hardware Block Diagram 

The device is a two-state machine: one for the data acquisition, data saving and activity classification, 

and the other for the results transmission (Figure 2). The on-board software is able to recognize 5 

activities: walking, upright standing, resting (both sitting and lying), ascending and descending stairs. 

The classification is obtained through a decision tree (DT) algorithm developed by the Politecnico di 

Torino, stored inside the device. DT algorithm has been implemented in the firmware as a set of 

nested “if- then” statements. This property determines a strong reduction of the computational costs, 

reducing the power requirements of the system [3]. 

  



3 

 

Figure 2- Block diagram of the two state wireless actigraph  



4 

2 BGM121 

In order to get familiar with the BGM module, SLWSTK6101C Wireless Starter Kit of Silicon Labs 

has been used (Figure 3). It contains: 

 Main board; 

 Radio board BRD4300A with BGM111; 

 Radio board BRD4302A with BGM121; 

 Expansion board; 

 USB cable. 

 

Figure 3-SLWSTK6101C Wireless Starter Kit from Silicon Labs 

2.1 BLE fundamentals 

In 2001 Nokia started developing a wireless technology meant to be low energy and cost-effective 

[5], then launched on the market in 2006 by the name of Wibree [6]. In 2010, Bluetooth Special 

Interested Group (SIG) included this technology as part of the Bluetooth® version 4.0 Core 

Specification as Bluetooth Low Energy (BLE) [7]. To better understand how BLE works, the 

architecture and basic principles of BLE will be introduced in the following. 

  



5 

2.1.1 Protocol Stack 

The protocol stack consists of three main blocks: Application, Host and Controller. The App is the 

direct interface with the user and helps the interoperability among devices of different manufacturers. 

The Host represents the software section of the protocol stack, while the Controller is the hardware 

ones (Figure 4).  

 

Figure 4-BLE protocol stack [8] 

Physical Layer (PHY) 

LE radio works in the unlicensed 2.4 GHz ISM (Industrial Scientific Medical) band. The BLE band 

goes from 2402 MHz to 2480 MHz and it is divided in 40 channel separated with 2 MHz. Three 

channels (37-39) are the primary advertisement channels, whereas the remaining ones (0-36) are 

secondary advertising channels and can be used also as data channels once connection is established 

[9]. The physical layer data rate is 1Mpbs or 2 Mpbs (later introduced in Bluetooth specification 5.0). 

 

Figure 5- BLE frequency channels [8] 



6 

Link Layer (LL) 

It is a combination of both software and hardware intended to avoid an overload of the CPU. The HW 

section provides a first level of control and data structure over the raw radio operations. The SW 

section defines the type of communication by managing the link state of the radio (standby, advertise, 

scan, initiate, connect and synchronise). Furthermore, it defines the four roles a device can assume: 

Master, Slave, Advertiser and Scanner. Further information will be found in 2.1.2 section. 

Host Controller Interface (HCI) 

It defines a set of commands and events for Controller and Host to communicate with each other. It 

hides the real time requirement of the former from the complexity but less timing-stringent protocols 

of the latter [10]. 

Logical Link Control and Adaptation Protocol (L2CAP) 

A protocol that merges raw data into a BLE packet (encapsulation) and vice versa (fragmentation). 

Security Manager Protocol (SMP) 

It provides the ability to create and exchange security keys for a safe connection and it defines two 

roles during the establishment of a connection: Initiator and Responder. Such roles correspond 

respectively to Master and Slave defined in LL. Further information can be found in 2.1.2 section. 

The following layers are fundamental, as they represents the entry point for the application to interact 

with the protocol stack. 

Attribute Protocol (ATT) 

ATT defines the roles of Client and Server for a given device. The latter stores data, while the former 

requests it (Figure 6). These data are called attributes and ATT is the protocol to access them. 

 

Figure 6-Device's roles defined by ATT protocol [11]. 



7 

Each attribute is characterized by a Handle, an UUID, a set of permission and the value. The Handle 

is a 16-bit value assigned by each server to its own attributes, in order to allow a client to reference 

it. The Universal Unique Identifier (UUID) identifies the attribute type, that is the kind of data 

contained in the value. Two types of UUID are used: a globally unique 16-bit UUID defined by 

Bluetooth SIG in the core specification and a manufacturer-specific 128-bit UUID. Permission 

specifies which ATT operations (read, write, indicate, notify) can be executed on the attribute and the 

security requirements (encryption, authentication, authorization) for that operation. Permissions of a 

given attribute are defined by a higher layer specification, and are not discoverable using the Attribute 

protocol [12]. 

Generic Attribute Profile (GATT) 

It represents the cornerstone of BLE data transfer as it defines how data is organized and exchanged 

between applications. GATT encapsulates the ATT and uses its roles (client, server) to transfer 

attributes. Furthermore, it defines a structure to organize attributes in a reusable and practical way, a 

common framework for all GATT-based profiles (Figure 7). 

 

Figure 7-GATT Data Hierarchy. Adapted from [13] 

The profile represents the top level of the hierarchy and it is composed of services and characteristics. 

Services are containers that group related attributes (characteristics) to achieve a particular function 

or feature. In turn, characteristics include at least two attributes: the declaration, which provides 

metadata related to user data, and the value, which is the actual user data. Additionally, the third ones 

is the descriptor, an attribute for additional info and proprieties that defines how the value can be 

handled by the client. An example of data structure and communication scheme of a Heart Rate 



8 

Profile is given in Figure 8. For ease of viewing, just Heart Rate service is illustrated on the left side 

of Figure 8. 

 

Figure 8-Data structure and communication scheme of a Heart Rate Profile 

Generic Access Profile (GAP) 

GAP is on top of the stack, as it controls how devices interoperate with each other at low level, outside 

the protocol stack. It provides access to the link layer operations (mentioned above in the LL section) 

and it defines roles, modes and procedure to regulate the communication. Roles defined by GAP 

allow devices to have a radio that either transmit or receive or both. The roles are: Broadcaster, 

Observer, Peripheral and Central (further information can be found in the next section). A device 

can support more than one role, but only one role at a time can be assumed. 

2.1.2 Communication 

While classic version of Bluetooth, called BR/EDR (Bit Rate/ Enhanced Data Rate), is characterized 

by a short-range and continuous wireless connection, BLE establishes short bursts of long-range radio 

connections [11]. BLE devices communicate in two different modalities: Broadcasting and 

Connection. 

Broadcasting 

Broadcasting is a one-way type communication; it is the only way to transmit data to several peers at 

the same time. Although broadcasting results the fastest communication mechanism, there is no 

security for data. For this reason, it is not suitable for certain applications. In Broadcasting, devices 

can assume two roles defined in GAP: 

 Broadcaster: periodically sends advertisement packets, it uses the Advertiser role of LL. 

 Observer: periodically scan for incoming advertisement packets, it uses the Scanner role of 

LL. 



9 

The two scanning modes are shown in Figure 9. In passive scanning mode, the Scanner just listen for 

incoming advertisement packets, while in active mode, once the packet has been received, it sends a 

scan request packet to the Advertiser in order to receive further information. The scan response 

doubles the data payload of the advertisement event, but no data are sent from the Scanner to the 

Advertiser (one-way communication). 

 

Figure 9- Scanning modes. Adapted from [11] 

The Broadcaster sends out advertisement packets simultaneously from the 3 advertisement channels 

(37-39) at a given advInterval, while the Observer switches the advertisement channel each 

scanInterval and listens for incoming advertisement for a given scanWindow (Figure 10). The lower 

the advInterval, the higher the probability of a packet to be received, although power consumption 

rises. 

 

Figure 10- Time parameters for broadcasting mode [8] 

  



10 

Connection 

Connection is a bi-directional, private and secure communication between two devices. In this case 

the roles defined by GAP are: 

 Central: scans for connectable advertisement packets and initiates the connection. It uses the 

Master role of LL. 

 Peripheral: sends connectable advertising packets and accepts connections. It uses the Slave 

role of LL. 

As shown in Figure 11, connection consists of several steps. 

 

Figure 11- Connection between two BLE devices. a) 

Broadcasting mode, b) Connection establishment, c) Data 

transfer from master to slave in a round-trip communication, d) 

Data transfer from slave to master in a round-trip 

communication, e) Data transfer from slave to master in a one-

way communication 

  



11 

At first, devices are always working in broadcasting mode: the Advertiser sends a message to its LL 

in order to sends out connectable advertisement packets. When the Scanner receives these packets, it 

is ready to initiate the connection (Figure 11-a). The Initiator sends a message to create the 

connection, firstly to its LL and then to the Responder. Once the connection is established, the two 

LLs send a confirmation message to their own Host layer (Figure 11-b). Devices can communicate 

in two ways when connected: in a round-trip communication, ACK packets are sent back to the Host 

layer to report if data were transmitted correctly (Figure 11-c/d); in a one-way communication, no 

ACK packets are involved (Figure 11-e). Several time parameters are used to describe the connection: 

a connectionEvent is the amount of time in which devices exchange data packets, while Radio Idle 

represents the time in which the communication is off. The time between two consecutive connection 

events is the connectionInterval and the connectionSupervisionTimeout represents the maximum time 

without receiving two packets before the connection is lost. Figure 12 shows time parameters of a 

round-trip communication (ACK is transmitted right after the data packet). 

 

Figure 12- Time parameters in a round-trip communication [8] 

  



12 

2.2 System models 

The BGM121 Blue Gecko Bluetooth® SiP Module of Silicon Labs allows two system models: System 

on Chip (SoC) and Network Co-Processor (NCP). 

 
Figure 13- SoC vs NCP System Models [14]. 

As shown in Figure 13, application, host and controller codes run on the same Wireless MCU in a 

SoC system, while in NCP mode, BLE stack is split in two blocks: Host and Target. The Host 

represent an external MCU where the Application runs, while host and controller runs on the 

BMG121 MCU, that is the Target. Host and Target communicates via UART serial interface and the 

communication is defined by BGAPI, a custom binary protocol from Silicon Labs. Such serial 

protocol is lightweight and carries the BGAPI commands from the Host to the Bluetooth stack and 

responses and events from the Bluetooth stack back to the Host. The Host code is developed on top 

of BGLib, an ANSI C reference implementation of the BGAPI binary protocol (Figure 14). 

 
Figure 14-NCP mode. Adapted from [15]. 

  



13 

2.3 Simplicity Studio 

Simplicity Studio is the Eclipse-based IDE of Silicon Labs to program the BGM module. It includes 

powerful suite of tools to develop, debug and analyse applications. It comes with some precompiled 

examples to get started with the BGM module, avoiding development from scratch. Project build flow 

will be now shown. 

2.3.1 GATT definition 

When developing an application, the starting point is defining its GATT. To do so, the first option is 

to create an XML file and then convert it into .c and .h files. The second option is the GATT Editor, 

a strong graphical tool for designing the GATT. (Figure 15). 

 

Figure 15- GATT Editor 

A list of predefined Profiles/Services/Characteristics/Descriptors is shown in the left panel (red 

section). These items can be added to the current GATT database (blue section) by simply drag and 

drop the desired ones. New items can be created too from the tools menu (black section), despite 

previous item, these ones will be characterized by a 128-bit UUID (Protocol Stack in ATT section) 

An options menu is provided in the lower right panel (green section) allowing the user to modify 

name, value, ID and properties of the items. Once definition has been completed, the GATT database 

is generated and gatt.xml, gatt_db.c and gatt_db.h files are created. In gatt_db.h, constant values are 

assigned to each characteristic and service id (handles) to reference it in the application. 



14 

2.3.2 Application code 

Since the Bluetooth stack is an event-driven architecture, the core of every application code, both 

SoC and NCP mode, is to handle events coming from the stack and to send command to the stack. 

SoC code 

In SoC mode, a basic application is made of an event listener, followed by an event handler. The 

BGM121 listens for events in a main while loop, in a block or non-blocking fashion (Figure 16). 

Respectively, the gecko_wait_event() function waits for events coming from the Bluetooth stack and 

blocks until an event is received, while the gecko_peek_event() function checks for events and return 

NULL if no events are coming from the stack. 

 

Figure 16- Block diagram of a basic SoC application code 

These functions return a pointer to a gecko_cmd_packet structure holding the received event. The 

event handler is a switch structure where each case represents an event id and the input is the message 

header of the received event. 



15 

Every message is composed as Table 1. The first fourth bytes represent the header, the basic 

information of the message. The first byte defines the message type: 0x20 for command and response 

and 0xA0 for events, the second byte represent the payload length. The third byte defines the class: 

message might be used, for example, to manage connection (GAP class), write a characteristic (GATT 

server class) or to access and query the BGM module (System class). The fourth byte is used to 

distinguish between all the message within one class. All the other bytes represents the message 

payload and its length is variable. The full list of events, commands and responses can be found in 

the Bluetooth Software API Reference Manual. 

Byte Values Name Description 

0 

0x20: command 

0x20: response 

0xA0: events 

hilen Message type 

1 0x00 – 0xFF lolen Payload length 

2 0x00 – 0xFF class Message class 

3 0x00 – 0xFF method Message id 

4 -255 Message specific Message specific Payload 

Table 1- BGAPI packet structure 

  



16 

NCP code (Target side) 

When in NCP mode, the application runs on an external MCU (Host) while the BMG is used basically 

as an antenna (Target). The communication takes place through UART serial link: the Host sends 

commands to the Target, while the Target sends responses and events to the Host. In Figure 17 is 

shown the block diagram of a basic code which runs on the Target. The main loop starts with 

forwarding the commands from the UART Rx queue to the stack in order to be handled. Then the 

BGM listens for events coming from the stack in a non-blocking way. When an event is received, if 

it is not handled locally, it goes to the UART Tx queue in order to be ready to be transmitted. If no 

more events are received, the target sends out the enqueued events in order to be handled by the host 

MCU. 

 
Figure 17- Block diagram of a basic NCP Target application code 

  



17 

2.4 Project outline 

Since the aim of this project is to combine the strong computational feature of the actigraph’s MCU 

with the BLE functionality of the Wireless MCU, the BGM121 will be used in NCP mode. In this 

way the new actigraph is composed of SAME70 and BMG121, communicating each other through a 

UART serial link. From the point of view of storage and data flow, the actigraph plays the role of 

Server while the smartphone the Client ones (both defined in ATT protocol) and they exchange data 

with a request/response pattern (Figure 18).  

 

Figure 18- Project data transfer topology  

From the point of view of the communication management, the actigraph plays the role of the Slave 

while the smartphone plays the role of the Master. The roles played by the two devices before the 

connection is established are defined in Table 2 and explained in section 2.1.2 

Communication  Smartphone Actigraph 

Broadcasting Scanner 

 

 

Advertiser 

Connection Establishment Initiator Responder 

Connection Master Slave 

Table 2- Roles played by smartphone and actigraph during a connection  



18 

The custom GATT Server profile defined for this project is shown in Figure 19. It consists of three 

services:  

 Generic Access service gives generic information about the device, its characteristics are 

readonly; 

 Acquisition service contains the I/O characteristic to start and stop the acquisition and the 

Data characteristic to save acquisition result, both are readable and writable; 

 User Data service is used to save personal info given by the patient from the android 

application, its characteristics are readable and writable. 

 

Figure 19- Custom GATT Server Profile 

  



19 

3 SAM E70 

SAM E70 is the Host MCU of the NCP system, described in the previous chapter. It is a 32-bit 

microcontroller based on ARM Core cortex M7 by Atmel® Corporation. In order to establish a UART 

serial communication, the Atmel® SAM E70 XPL evaluation board has been used (Figure 20). 

 

Figure 20- Atmel® SAM E70 XPL 

To connect the LSM9DS1 to the SAME70 XPL evaluation board, the PROTO1 Xplained pro 

extension board sensor has been used (Figure 21). 

 

 

Figure 21- PROTO1 Xplained Pro with LSM9DS1  

  



20 

3.1 Parallel Input/Output Controller (PIO) 

PIO is the module that manages up to 32 fully programmable I/O lines; each of these can be used as 

a general-purpose I/O or be assigned to one of the four embedded peripheral (A, B, C, D).  

3.1.1 Hardware 

The MCU provides five PIO controller: PIOA with 32 fully programmable I/O lines, PIOB with 12 

fully programmable I/O lines, PIOC with 32 fully programmable I/O lines, PIOD with 32 fully 

programmable I/O lines and PIOE with 6 fully programmable I/O lines. PIO controller communicates 

with several modules (Figure 22). 

 

Figure 22- PIOx block diagram [16]. 

3.1.2 User interface 

As first step, pins control must be defined. PIO_PER and PIO_PDR are the registers to enable or 

disable the PIO from controlling the pins respectively. These registers have 32 bit corresponding to 

the 32 I/O lines of each PIO controller (A, B, C, D, E). Setting certain bit of PIO_PER enables the 

PIO control, disabling the peripheral control of the corresponding pin. Vice versa writing 1 in the bits 

of PIO_PDR (Figure 23). 



21 

 

Figure 23- PIOx Enable and Disable Register. Adapted from [16]. 

PIO_PER and PIO_PDR are write-only registers, to know the status of the I/O lines the status register 

must be check. PIO_PSR bits are set to 0 if peripheral control is enabled, while I s set to 1 if PIO 

control is enabled (Figure 24). 

 

Figure 24- PIOx Status Register [16]. 

  



22 

When a pin is disable from PIO control, it must be assigned to one of the embedded peripherals (A, 

B, C, D) because each pin can assume a different functionality according to the peripheral. 

PIO_ABCDSR1 and PIO_ABCDSR2 are the register for this task; Table 3 shows how the selection 

is achieved. 

PIO_ABCDSR1 Pinx PIO_ABCDSR2 Pinx Peripheral selected 

0 0 A 

1 0 B 

0 1 C 

   

   

   

   

   

   

 

1 1 D 

Table 3- PIO_ABCDSR1 and PIO_ANCDSR2 Peripheral selection 

  



23 

3.2 Universal Asynchronous Receiver Transmitter (UART)  

UART is the module that provides a universal asynchronous serial link. In this project UART1 will 

be used for the serial communication between the MCU (Target) and the BGM121 module (Host). 

3.2.1 Hardware 

The UART operates in Asynchronous mode only and supports only 8-bit character handling (with 

parity). It’s made up of a receiver and a transmitter that operate independently, and a common baud 

rate generator and it has no clock pin (Figure 25). 

 

Figure 25- UARTx Block Diagram [16] 

The baud rate generator define the bit period to both receiver and transmitter. Baud rate is essential 

in an asynchronous communication as the transmitter send data to the receiver without a clock signal, 

then they must agree on timing parameters in advance. In SAME70 baud rate is calculated as Equation 

1, where the Source Clock could be the peripheral clock or a Programmable Clock Output (PCKx) 

and CD is the Clock Divisor.  

𝐵𝐷 =  
𝑆𝑂𝑈𝑅𝐶𝐸 𝐶𝐿𝑂𝐶𝐾

16 ∗ 𝐶𝐷
 

Equation 1- Baud rate formula 

The receiver detects the start of a received character by sampling the URXD signal until it detects a 

valid start bit. A low level (space) on URXD is interpreted as a valid start bit if it is detected for more 

than seven cycles of the sampling clock, which is 16 times the baud rate. A space which is 7/16 of a 

bit period or shorter is ignored and the receiver continues to wait for a valid start bit. When a valid 

start bit has been detected, the receiver samples the URXD at the theoretical midpoint of each bit. It 

is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period) so the bit sampling point 



24 

is eight cycles (0.5-bit period) after the start of the bit. The first sampling point is therefore 24 cycles 

(1.5-bit periods) after detecting the falling edge of the start bit. Each subsequent bit is sampled 16 

cycles (1-bit period) after the previous one. 

 

Figure 26- Character reception [16] 

When a complete character is received, it is transferred to the Receive Holding Register 

(UART_RHR) and the RXRDY status bit in the Status Register (UART_SR) is set. The bit RXRDY 

is automatically cleared when UART_RHR is read. 

 

Figure 27- Receiver ready [16] 

If the UART_RHR has not been read when a new character has been received, the Overrun bit in 

UART_SR (OVRE) is set and will be cleared only when the receiver will be reset, that is set the 

RSTSTA bit in the Control Register. 

 

Figure 28- Receiver overrun [16] 

The transmitter drives the UTXD pin at the selected baud rate, the line is driven depending on the 

character format: one start bit at level 0, 8 data bits, one optional parity bit and one stop bit at level 1 

(Figure 29).  



25 

 

Figure 29- Character transmission example with parity mode enabled [16]. 

The transmission starts when the programmer writes in the UART_THR, and after the written 

character is transferred from UART_THR to the internal shift register. The TXRDY bit remains high 

until a second character is written in UART_THR. As soon as the first character is completed, the 

last character written in UART_THR is transferred into the internal shift register and TXRDY rises 

again, showing that the holding register is empty. When both the internal shift register and 

UART_THR are empty, i.e., all the characters written in UART_THR have been processed, the 

TXEMPTY bit rises after the last stop bit has been completed (Figure 30). 

 

Figure 30- Transmission workflow [16] 

  



26 

3.2.2 User Interface 

As first step UART set up must be performed. UART Mode Register allow the user to select the 

Baude Rate Source Clock: if BRSSRCCK bit is set the baud rate is driven by a PMC-programmable 

Clock (PCK), otherwise is driven by the peripheral clock. 

 

Figure 31- UART Mode Register [16] 

As mentioned in Equation 1, Baud Rate is given by two parameters. While in UART_MR the source 

clock is set, in UART_BRGR the Clock Divisor is selected. With 16 bit, CD value goes from 0 to 

65535, if 0 is selected the Baud Rate is disabled.  

 

Figure 32- UART Baud Rate Generator Register [16] 



27 

In UART Control Register if RSTSTA bit is set, PARE, FRAME, CMP and OVRE bit in the Status 

Register are reset. TXDIS and TXEN bit disable and enable the transmitter respectively, while 

RXDIS and RXEN bit act on the receiver. If TXDIS and RXDIS are set meanwhile a character is 

being processed, the disabling occurs right after the character has been completed. RSTTX and 

RSTRX reset transmitter and receiver but potential process are aborted. 

 

Figure 33- UART Control register [16] 

 

UART_IER and UART_IDR enable or disable the interrupt for several control events described in 

Hardware. Once one of these events occurs and the respective bit in UART_IER is set, the same bit 

in the Status Register rises (Figure 34). 

 
Figure 34- UART Status Register [16] 



28 

4 Firmware 

UART communication was developed separately from the previous device firmware. Therefore, only 

the firmware concerning the UART communication will be shown in the following. The UART 

module was the added to the actigraph firmware by PhD student Daniele Fortunato. Further 

information about elaboration state and transmission state can be found in [2]. 

4.1 Block diagram 

 

Figure 35- Block diagram of the UART module firmware 



29 

4.2 Flow chart 

4.2.1 UART Module 

 



30 

 



31 

 

Figure 36- Flow chart of the UART module 



32 

4.2.2 UART interrupt 

 

Figure 37- UART Interrupt flow chart 



33 

4.2.3 App handle event 

 

Figure 38- AppHandleEvents flow chart 

  



34 

5 Android App 

The Android App implementation, for the actigraph control, requires three main software tools: JDK 

(Java Development Kit) for Java programming, an IDE (Integrated Development Environment) for a 

rapid development and the Android SDK (Software Development Kit), an ensemble of documents, 

libraries, debugger and emulator to create the applications. 

5.1 App fundamentals 

In order to better understand how an app works, the basic elements are going to be illustrated in the 

following. 

5.1.1 Components 

Components are the main building blocks of an Android application: they are entry points through 

which the user or the system can enter the app. Activities, Services, Broadcast receivers, Content 

providers are the four types of components, each one performing a distinct task and having a different 

lifecycle. 

Activity 

An activity is a screen in which a specific user interface has been drawn; it is the entry point to interact 

with the user. Most apps are made of several activities, the main activity is the first one to be launched 

when an app starts. After, it can launches other activities and so on (further information can be found 

in 5.1.2). 

Service 

Unlike activities, services work continuously and for a long time in the background with no 

interaction with the user. These components increase the app reactivity, as services usually organize 

data to be shown in the activities.  

Content provider 

A content provider shares data between applications. By default, an android app does not allow others 

apps to access its data. Such data are stored in the file system, in a SQLite database or on the web and 

the content provider allows other apps to read or modify those data. This component establishes a 

correct and secure communication between apps, ensuring application storage isolation. 

  



35 

Broadcast receiver 

Broadcast receivers enable the system to deliver events to the app, outside of a regular user flow, 

allowing the app to respond to system-wide broadcast announcements, such as an incoming message 

or a low battery notification. Therefore, these components stand for an instantaneous management of 

special circumstances. 

5.1.2 Intent 

Activities, Service and Broadcast receivers can request an action from another component, or another 

app, through an Intent, an asynchronous message managed by the system. There are two types of 

intents: explicit and implicit. Explicit intents define a specific component to act on and are typically 

used for components of the same app because the class name is already known. When different apps 

interact, implicit intents are used as they act on a specific type of component; system finds the 

appropriate component to start by comparing the contents of the intent with the intent filter, an 

expression declared in the receiving app that specifies the type of intents that the component would 

like to receive. Most common use cases are: starting an activity, starting a service and deliver a 

broadcast. An example of how an implicit intent starts an activity is shown in Figure 39. 

 

Figure 39- Scheme to start an activity with an implicit intent [17]. 

5.1.3 Resources 

Besides codes, an android app is made up also by resources, such as xml files and images. Resources 

make it easy to update the visual representation of the app without modifying the code. Main 

resources are: layouts, values and drawables. Layouts are xml files that define the user interface layout 

of activities. Values refer to strings, integers and colors defined in xml files and used by the code or 

by other resources. Drawables are images files (.png, .jpg or .gif) and xml files which define the 

design of UI elements such as buttons, texts, checkboxes and so on. 



36 

5.1.4 Manifest file 

All the elements discussed above are declared in the manifest file, an xml file which describes the 

app essential information. Such information is mandatory in order to make the android build tools 

(Android SDK), the Android operating system and Google Play, work correctly. Besides components, 

intents and resources, the manifest file declares other elements too.  

Requirements 

Not every Android device provides the same features and capabilities. In order to prevent installation 

on devices that lack features needed by the app, it is important to clearly define which kind of devices 

are supported by the app by declaring device and software requirements in the manifest file. Most of 

these declarations are informational only and the system does not read them, but external services 

such as Google Play do read them in order to provide filtering for users when they look for apps in 

the store. 

Permissions 

An android app works in isolation from the system and the others apps (sandbox), permissions are 

then needed if the app wants to access to user data as well as hardware features, such as camera or 

Bluetooth.  

  



37 

5.2 Android Studio 

The IDE used in this project is Android Studio, as it is the official one used for Google’s Android 

operating system [18]. 

5.2.1 Project structure 

An Android Studio project contains everything that defines the workspace for an app, from source 

code and assets, to test code and build configurations. A project is divided into modules, discrete units 

of functionality. A module is a collection of source files and build settings that can be independently 

built, tested and debugged [19]. 

Project and Android view 

The actual file structure is shown in the Project view (Figure 40-a). There are directories for each 

module and a grandle directory that defines the build configuration that applies to all modules. Each 

module directory contains build outputs (build/), private libraries (libs/), all code and resources files 

(src/) and its specific build configurations (build.grandle). A less appropriate but more intuitive file 

structure is given by the Android view (Figure 40-b). It is organized by modules and file types and it 

is the default one. Here all the project’s build configuration files are shown in the Grandle Script 

section and each app module includes the Manifest file, the Java codes and the resources. 

 

Figure 40- a) Android Studio's Project view, b) Android Studio's Android view  



38 

5.2.2 Layout editor 

As mentioned before, activities are Java files through which the user interacts with the app. Each 

activity represents a screen with a User Interface (UI) drawn in it. However, the UI design is not 

defined in the java code, it is defined in a layout resource file. Such xml file is then associated to the 

correct activity in its java code. To design the UI there is the layout editor, a tool that compiles the 

xml file automatically by simply dragging-and-dropping the desired views in the screen. The UI has 

a hierarchy structure of Viewgroup and View object. A ViewGroup is a special view that contains 

and controls other views called “children”. A View is a class representing the basic building block of 

the UI (button, text, checkbox, etc.). It occupies a rectangular area on the screen and it is responsible 

for click-event handling. 

 

Figure 41- Layout editor 

Each View object has an onClick propriety, which can be associated to a method implemented in the 

java code of the respective activity class. In this way, when an element (or component?) of the UI is 

clicked, the system calls the selected method. 

  



39 

5.3 Actigraph App 

The app developed in this project starts from the “Android BluetoothLeGatt Sample” code by 

Google’s developers [20]. This sample shows a list of available BLE devices and provides an 

interface to connect, display data and display GATT services and characteristics supported by the 

devices. It creates an Android Service for managing connection and data communication with a 

GATT server hosted on a given Bluetooth LE device. The activities communicate with the service, 

which in turn interacts with the Bluetooth LE API. The app has been modified to be more user friendly 

and more suitable to control the actigraph.  

5.3.1 Manifest file 

First, in the manifest file, requirements and permissions are declared. Requirements set the app 

available to BLE-capable devices only. If smartphones do not support the BLE functionality, it cannot 

install the app.  

 

To use the Bluetooth feature, three permissions must be declared: BLUETOOTH to perform any 

communication task, BLUETOOTH_ADMIN to initiate discovery and manipulate settings and 

ACCESS_FINE_LOCATION to return scan results. 

 

After that, the application element is declared, it contains attributes and sub-elements. Attributes 

define the app icon, name and theme, while sub-elements declare the application components, in this 

case just activities and the service.  

 



40 

5.3.2 Application codes 

In the following, the sequence diagrams of the android app will be illustrated. Be aware, such 

diagrams do not represent every single step involved in the java codes, just the main ones are 

highlighted for ease of viewing and understanding. 

Main Activity 

MainActivity is the launcher activity. Once the user launches the app, the UI is set by loading the 

activity_main.xml layout file. When the user clicks on the “Find Device” button, the system calls the 

onFindDevice() method. Such method starts the DeviceScanActivity: first, it creates an intent 

object to be delivered to the activity and then, it calls the startActivity() method. The system receives 

the call and starts an instance of DeviceScanActivity. During the layout design, in order to make 

the button respond to the click action, the onClick propriety of the “Find Device” button was edited 

by selecting the onFindDevice() method (further information can be found in 5.2.2). 

 

Figure 42- MainActivity Sequence diagram and screenshot 

  



41 

Device Scan Activity 

When the DeviceScanActivity starts, the action bar, to control the scan, is set in the UI. Then, if 

Bluetooth is not already on, the system requests the user to enable it. When the scan starts, all the 

discovered devices are saved in a list and then added to the layout to be showed to the user. After a 

predefined time interval, the scan stops automatically. When the user selects one of the devices to 

connect to it, its info are retrieved from the saved list and then are added to the intent as extra values. 

The intent is delivered to the system in order to start the DeviceControlActivity. 

 
Figure 43- DeviceScanActivity Sequence diagram and screenshots 

 

  



42 

DeviceControlActivity 

When the DeviceControlActivity starts: it sets the layout and gets the intent that started the 

activity in order to extract info concerning device name and address. Furthermore, it creates an intent 

to bind the BluetoothLeService, a service which interacts with the BLE API. Then, the activity 

connects to the device through the service. In order to start the acquisition, the system requires the 

user to fill a simple form with his data (name, last name and age). When the Submit button is clicked, 

the user data are written in the GATT Server database, more accurately, in the characteristics of the 

UserData service. Once the writing is successful, the Toggle button is made visible. When the toggle 

button is clicked on, system writes a hexadecimal value in the I/O characteristic belongings to the 

Acquisition service of the GATT Server profile. The 0x01 value is written to start the acquisition, 

while, the 0x00 value is written to stop it. When the acquisition is stopped, the Result button is made 

visible in order to read result data from the GATT Server database. 

 

Figure 44- DeviceScanActivity Sequence diagram and screenshots 

  



43 

6 Conclusion 

The aim of this thesis was to develop a wireless actigraph to be remote controlled. Therefore, the goal 

has been achieved. The integration of the BGM121 in the device has been successful: the firmware 

developed to communicate with the BLE has been easily integrated in the previous firmware; 

furthermore the communication flow can be easily modified according to custom use cases. The 

implementation of the android app allows the remote control, making the actigraph a 100% portable 

device. Future improvements are: 

 power consumption analysis and tuning of the communication parameters; 

 android studio graph development in order to show HAR diagram directly in the smartphone; 

 app modification in order to connect more than one device to a single smartphone. 

  



44 

References 

[1] S. Ancoli-Israel, R. Cole, C. Alessi et al. “The role of actigraphy in the study of sleep and 

circadian rhythms.” SLEEP vol 26, pp. 342-92, 2003 

[2] F. Bolognesi “Programming and Development of a wearable device based on IMU unit for on 

board processing”, Master thesis, Polytechnic of Turin, Italy, 2018  

[3] G. De Leonardis, D. Fortunato, et al. "An innovative microprocessor-based system for Human 

Activity Recognition: A fast and reliable classification algorithm." Gait & Posture vol. 66, pp 

S14-S15, 2018 

[4] Sushma M. “Wibree technology”. International Journal of Recent Trends in Engineering & 

Research, vol. 3, pp. 497-502, April 2017. 

[5] The Future of Things “Nokia’s Wibree and the Wireless Zoo”. Internet: 

https://thefutureofthings.com/3041-nokias-wibree-and-the-wireless-zoo/ 

[6] BBC “Bluetooth rival unveiled by Nokia”. Internet: 

http://news.bbc.co.uk/2/hi/technology/5403564.stm 

[7] Wikipedia “Bluetooth Low Energy”. Internet: 

https://en.wikipedia.org/wiki/Bluetooth_Low_Energy 

[8] J. Tosi, F. Taffoni, et al. “Performance Evaluation of Bluetooh Low Energy: A Systematic 

Review”. Sensors vol 17, Sept. 17  

[9] BluetoothSIG. “Vol 1: Architecture & Terminology Overview, Part A: Architecture. In 

Specification of the Bluetooth® System, Covered Core Package Version 5.1” Kirkland, WA, 

USA, The Bluetooth Special Interest Group, 2019 

[10] R. Davidson, K. Townsend et al. Getting Started with Bluetooth Low Energy. Sebastopol, CA, 

USA. O’Reilly Media, 2014 

[11] Silicon Labs, “UG103.14: Bluetooth® LE Funfamentals” 

[12] BluetoothSIG. “Vol 6: Core System Package [Host volume], Part F: Attribute protocol (ATT). 

In Specification of the Bluetooth® System, Covered Core Package Version 5.1” Kirkland, WA, 

USA, The Bluetooth Special Interest Group, 2019 

[13] Microchip Developer “Attribute and Data Hierarcy”. Internet: 

https://microchipdeveloper.com/wireless:ble-gatt-data-organization 

[14] Silicon Labs, “QSG139: Getting Started with Bluetooth® Software Development” 

[15] Silicon Labs, “KBA_BT_1602: NCP Host Implementation and Example”. Internet: 

https://www.silabs.com/community/wireless/bluetooth/knowledge-

base.entry.html/2018/01/18/ncp_host_implementat-PEsT 

https://thefutureofthings.com/3041-nokias-wibree-and-the-wireless-zoo/
http://news.bbc.co.uk/2/hi/technology/5403564.stm
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy
https://microchipdeveloper.com/wireless:ble-gatt-data-organization
https://www.silabs.com/community/wireless/bluetooth/knowledge-base.entry.html/2018/01/18/ncp_host_implementat-PEsT
https://www.silabs.com/community/wireless/bluetooth/knowledge-base.entry.html/2018/01/18/ncp_host_implementat-PEsT


45 

[16] Microchip, “SAM E70/S70/V70/V71 Family Data Sheet” 

[17] Android Developers, “Intent and Intent Filters”. Internet: 

https://developer.android.com/guide/components/intents-filters.html 

[18] Android Developers, “Meet Android Studio”. Internet: 

https://developer.android.com/studio/intro 

[19] Android Developers, “Projects overview”. Internet: 

https://developer.android.com/studio/projects/index.html 

[20] GitHub “Android BluetoothLeGatt”. Internet: https://github.com/googlesamples/android-

BluetoothLeGatt 

http://ww1.microchip.com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527D.pdf
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/studio/intro
https://developer.android.com/studio/projects/index.html
https://github.com/googlesamples/android-BluetoothLeGatt
https://github.com/googlesamples/android-BluetoothLeGatt

