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Abstract

The goal of this work is the development of an obstacle avoidance algorithm
for the mobile platform of the Mobile Anthropomorphic Dual-Arm Robot
(MADAR), designed by the Institute of Industrial and Control Engineering
(IOC) and Mechanical Engineering Department at the Universitat Politècnica
de Catalunya (UPC).

The algorithm takes as inputs laser measurements from the front scanner
that the robot is equipped, and the vector of the goal to reach. A local
geometrical planning is adopted, it is reactive and applied continuously each
time that the scanner samples (frequency = 15 Hz). A heuristic is used to
choose the direction of motion, which tries to execute the shorter path that
the robot needs to cover in order to reach the goal.
It is validated the implementation with experimentation on the real robot.

In conclusion, the algorithm can be consider a possible solution for obstacle
avoidance problems on every omni-directional robots or also, its logic could
be reused as a part of other kind of algorithms to improve them.
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1. Introduction

In this first chapter will be explain the motivation, the objectives and the
software used.

1.1 Motivation

Collision avoidance is a very actual problem considering the larger use of
autonomous mobile robot in industrial plants and also the growing interest in
the autonomous driving.
It is applied to safety move robots in a fully unknown environment. It is
important to say that the problem of obstacle avoidance is different from the
so called path planning. In fact, the latter involves the pre-computation of a
free-collision path knowing the map of the environment the robot navigates in.
On the contrary, the distinctive feature of an obstacle avoidance algorithm is
to be implemented as a reactive control using sensors which give information
about the surrounding environment. In the fields of mobile robotics path
planning, obstacle detection and collision avoidance work in order to plan a
safe path towards a defined goal position avoiding collisions along the way.

1.2 Objectives

The present work focuses on the obstacle avoidance problem. It is proposed
a new real time avoidance algorithm based on local planning. A heuristic is
develop in order to take a decision in every situation could happen. Since the
algorithm have to be reactive it is thought to make its as simple as possible,
minimizing the use of loops and as consequence the computation time.

1.3 Software

The software used in this work includes: Robotic Operating System (ROS),
C++ and Matlab. We will explain a bit what is ROS and how it works and
the specific use of Matlab done.
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Introduction

ROS: Robotic Operating System

The definition commonly recognised of ROS is: "The Robot Operating
System (ROS) is a flexible framework for writing robot software. It is a
collection of tools, libraries, and conventions that aim to simplify the task of
creating complex and robust robot behaviour across a wide variety of robotic
platforms."

Figure 1.1: ROS icon.

We will try to described just some of the simple elements with which ROS
works. We know that the engineering approach to solve a problem is to split
it in a series of small problems. Each small problem can be saw as a process
which takes in input some data, elaborates them and send in output other
data which are read from the next process/processes. ROS allows to manage
the communication between these small processes that are called nodes. The
inputs/outputs are called messages which are written on topics. The topics
could be saw as boards in which some data (messages) are written. All the
other nodes could read if it is necessary. A node can publish a message on
topics and/or read a message from topics. In order to do this we need to
declare inside the script of the node some publisher and subscriber entities.
Moreover, for each of them we need to specify the topic on/from which it has
to publish/subscribe.

There are also services that are a sort of function which can be call inside
a node in order to do some operations.

In our project we are used also a visualization tool provided by ROS whose
name is "RViz" in order to see on the computer the laser detections instantly
during the motion of the robot. In Figure 1.3 it is showed, on the left, the
Mobile Anthropomorphic Dual-Arm Robot (MADAR) in RViz tool; on the
right, the points cloud of the obstacle detected and the base link frame. In
fact, in Rviz it is possible to hidden the elements which you do not desire to
look in the visualization. For example, on the right picture of Figure 1.3 all
the elements are hidden except for the points cloud and the base link. On
the left it is enable the visualization of the entire robot only. The building of
the robot is done declaring all its link and joint in .xml file called: URDF file
(Universal Robotic Description File).

2



1.3. SOFTWARE

Figure 1.2: ROS nodes and topics.

Figure 1.3: Visualization of the robot.
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Matlab

A continuous check of the correctness of the algorithm is done during the
implementation thanks to the visualization tool Rviz combined with the
pictures made in Matlab after post-processing of the laser data (Figure 1.4).

Figure 1.4: Matlab picture made after post-processing of the laser’s data.

In Figure 1.4 there is a picture made after post-processing of the laser
data. It is possible to match this picture with the left picture in Figure 1.3
finding here the gaps red and green showed in the Figure 1.4.
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2. Hardware description

In this chapter will be described the hardware. At first, it will be given an
overview of the prototype robot named MADAR (Mobile Anthropomorphic
Dual-Arm Robot) and then it will be described in more details its mobile
platform and its particular omni-directional wheels. Finally, considering the
design of wheels, it will be presented the kinematics model of the platform
computing the Jacobian matrix which allows to change the coordinates from
the so called Joints Space to the Work Space (or Cartesian Space).

2.1 Mobile Manipulator

Figure 2.1: MADAR: Mobile Anthropomorphic Dual-Arm Robot.

Robotics is getting a larger success in a lot of fields and applications and
the robot’s companies are developing different kinds of robots for each of
them. A typical case of study is the development of the so called mobile

5
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manipulator. The term is used to refer to robot systems built from a
manipulator arm mounted on a mobile platform. The advantage of this
solution is to offer unlimited workspace to the manipulator. However, the
manage of the systems is not easy because of the many degrees of freedom
and the unstructured environment where the robot moves. This is the reason
why a mobile manipulator needs a vision or laser system in order to perform
its localization and its free collision movement. The mobile platform could
have different kind of wheels depending on the desired performance and the
expected conditions of the environment.

The robot presented in this work is a prototype named MADAR (from
Mobile Anthropomorphic Dual-Arm Robot) in Figure 2.1. It has been designed
thanks to the collaboration of Institute of Industrial and Control Engineering
(IOC) and Mechanical Engineering Department at the Universidad Politècnica
de Catalunya (UPC). It is composed by a dual-arm torso with a human-like
structure assembled on an omnidirectional platform. The dual-arm system
integrates two arms UR5 (6 degrees of freedom), each one equipped with
Allegro Hand with four fingers and a total of 16 degrees of freedom (4 degrees
of freedom for each finger).

Figure 2.2: Laser-ranges sensor on the left and RGB-D camera on the right.

The mobile platform is circular with three special wheels which allow an
omnidirectional displacements. The whole structure is equipped with laser-
range sensors, a radio positioning system and an RGB-D camera essential to
detect the environment (Figure 2.2).
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2.2. MOBILE PLATFORM

2.2 Mobile platform

The presented work will focus on the mobile platform. Basically, there are two
way to build a mobile robot. The first one is based on the use of conventional
wheels (free rolling or driving wheels, steering-controlled wheels or caster
wheels). The advantage of this approach is the simplicity in the wheel design
but the disadvantage is that the movement is non-holonomic. This make more
difficult their control and the maneuverability. On the contrary, the second
approach is based on the use of non-conventional wheels or omnidirectional
wheels. As consequence the control of the platform is more easy but the
disadvange is that the design of the wheels is more difficult.
The prototype platform presented in this work follows the second approach
and uses a special kind of omni-wheel which are described as follow.

2.3 Omni-directional wheels

2.3.1 Mecanum Wheels

Figure 2.3: Madar wheel prototype.

The most common example of omnidirectional wheels are the Mecanum
Wheels (Figure 2.3). The wheels used on MADAR are prototype but they are
also omni-directional.

A Mecanum wheel could be consider a normal wheel surrounded on its
circumference by a series of rollers with a particular orientation. Typically, in
the conventional Mecanum wheels each roller has an axis of rotation at 45◦
to the plane of the wheel and at 45◦ to a line through the centre of the roller
parallel to the axis of rotation of the wheel. This means that the angle γ in
the Figure 2.3 is equal to 45◦.

7
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2.3.2 MADAR’s wheels

The circular platform of the MADAR is equipped by three wheels placed in
radial direction at 0.36 mm from the platform’s center. The wheels developed
are spherical omni-wheels composed of spherical sectors and rounded-
shape rollers with free-rolling movement (Figure 2.4). Each wheel is
commanded by a motor which provide torque around the axis of the motor
(Figure 2.4). The motors are located with the shaft in the radial direction of
the platform. All the other movements of the wheels are passive.

Figure 2.4: Madar wheel prototype.

2.4 Platform’s Kinematics
The generalized position of the platform in a planar surface is express by
three coordinates which give its position (x, y) and orientation (ϕ). We call
s, ṡ, s̈ the vector of the generalized position, velocity ed acceleration of the
platform wrt global fixed frame (apex 0 ):

s0 =

xy
ϕ

 , ṡ0 =

 ẋẏ
ϕ̇

 , s̈0 =

 ẍÿ
ϕ̈

 (2.1)

The forward velocity kinematics of the platform wrt its local reference
frame is given by the following equation (the ṡ without apex means that the

8



2.4. PLATFORM’S KINEMATICS

vector is expressed wrt the reference frame of the modelled system that is the
frame of the base link of the platform with the axes x and y in Figure 2.5:

ṡ = J · q̇ (2.2)
The Jacobian matrix J contains the geometric information of the system

and allows to make a change of the coordinates from the so called workspace
(WS) to the so called joint-space (JS). In the analysed system the joint-space
is the vectorial space which contains the position, velocity and acceleration of
the wheels commanded by the motors.

Figure 2.5: Platform geometry.

The kinematic model of the platform in Figure 2.5 produce the following
matrix equation for the forward kinematics:

q̇ =

q̇1q̇2
q̇3

 = 1/r ·

 0 −1 −p√
3/2 1/2 −p

−
√

3/2 1/2 −p


·

 ẋẏ
ϕ̇


It is important to notice that in the system analysed the Jacobian matrix

is constant and its determinant is always not null. As consequence, always
exists the inverse of the matrix J. So, the inverse kinematics is given by:

q̇ = J−1 · ṡ (2.3)
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3. Robot navigation

In this chapter it will be described the robot navigation and the steps you
need to do in order to perform it. It is going to explain the mapping and
localization processes in order to solve the so called SLAM (Simultaneous
Localization and Mapping). Then it is going to talk about the Path Planning
and the Obstacle Avoidance problems.

3.1 Overview

Nowadays a significant problem for such vehicles and mobile robots is the
obstacle detection and avoidance. Actually, it should be the last step of
a larger problem that is the robot autonomous navigation. In fact, in
order to perform it you should solve:

1. mapping which provides the map of the environment where you want
your robot to navigate at; it is usually made using two sources of infor-
mation: the idiothetic (odometry) and the allothetic (vision) sources.

2. localization which allows you to localize the robot in the map;

3. path planning which provides the path and trajectory in the joint
space in order to reach a goal in the work space;

4. obstacle avoidance which allows to avoid obstacles not found in the
map;

3.2 Mapping

The first thing you need in order to perform robot autonomous navigation is
a map of the environment where you want your robot to navigate at. The
process which allows to get a map is called "Mapping Process".

11
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ROS gmapping package

The mapping problem is already solved in ROS thanks to the gmapping
package which perform SLAM. Basically, the package requires

• the transforms necessary to relate frames for laser, base, and odometry:
odom → base link → laser

• laser scans to create the map

and provides:

• the current estimate of the robot’s pose within the map frame that is
the transform: map → odom

The gmapping package contains a node called slam_gmapping. It
allows you to create a 2D map by using the data of the laser and of the
robot’s transforms and turns it into an occupancy grid map (OGM). So,
what you need to do in order to create a map of the environment is:

1. configure the gmapping launch file;

2. launch the slam_gmapping node and move the robot around the envi-
ronment;

3. the slam gmapping node get as an input lasers and transforms data
building the map;

4. the generated map is published during the mapping process in the topic
/map allowing its visualization in RViz.

The topic /map contains a massage of type nav_msgs/OccupancyGrid
which describes the map as an array of integers. Particularly the integer 0
means that the space is completely free (grey color in RViz), 100 completely
occupied (black color in RViz), and -1 completely unknown.

Once you created a map you need to save the map. In order to do this
you it has to use the command:
rosrun map_server map_saver -f [insert map’s name]
This command provides two file:

• .png which contains image of the map

• .yalm which contains the map’s metadata such as the resolution, the
file containing the image of the map, origin, etc.

12



3.3. LOCALIZATION

Then you can provide the map for another node typing:
rosrun map_server map_server [map’s name file].yaml

The map is published by means of two topics:

• /map_metadata topic which contains the map’s metadata;

• /map topic which contains map’s occupancy grid.

It is important to stand out that the map created in this way is a static
map because it will not change anymore. This means that it can not con-
template obstacle placed after the mapping is done. So, if we have to plan
a collision free motion we need to call an obstacle avoidance algorithm each
time that we will find an obstacle not contemplated in the map. Moreover it
is a 2D map because the objects do not have height. So, for instance, it is
not useful for drone navigation.

We can see picture below, which come from a simulation done in the tool
of ROS named Gazebo. In the simulation is applied the gmapping package.

3.3 Localization
After you has built the map you need to localize the robot in that map. This
process is known as "Localization Process". The Localization problem, like
the mapping is solved in ROS in the gmapping package. We do not talk in
details how the package works but we explain something about the info that
the package needs in order to estimate the pose of the robot inside the map.
The robot can provide two sources of information in order to get a map: the
idiothetic and the allothetic sources:

• allothetic information: provided by lasers range finder, sonar or
vision; the problem is that two different similar places could be perceived
as the same (perceptual aliasing). For instance, it would be impossible
to localize a robot in a building using only sensor measures because all
the corridors may look the same;

• idiothetic information: corresponded to odometry which is a method
to estimate the robot’s pose wrt the starting location using data from
motion sensors. The odometry is provided by the kinematics model
of the robot. In order to simply explain what is odometry we give an
example. We take the example of a 2d-problem of a wheel which turns
without friction on a floor (Figure). The kinematics model in this case
is very simple: x = θ · r. So, for example, when the wheel completes
one turn the wheel’s center of mass covers a length of x = 2πr that is

13
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the length of its circumference. In our case the kinematics model of
the platform is what is explain in the chapter ?. However, allothetic
information are subject to cumulative errors that grow quickly due by
the not ideal condition in which the robot operates (for example friction
in the motion).

Because of the limits of these information have, you need to combine the
sources in order to compensate the errors for each other to some extent. This
is what the package does to provide the pose of the robot.

3.4 Path planning
We will not discuss in details the Path Planning problem but we want only
to remember some the approach usually used. In general there are two kind
of planning:

1. Joints Space planning
it consists to determine directly the motion laws q(t), q̇(t), q̈(t)

2. Work Space planning
it consists to determine previously s(t), ṡ(t), s̈(t) and then with the
inverse kinematics q(t), q̇(t), q̈(t)

In the mobile robots should be convenient to follow the Work Space
planning. Then we can choose to plan with to kind of techniques:

1. point to point
given s(tin), s(tfin) it is possible to plan a free-collision trajectory s(t)
knowing that border condition ṡ(tin) = ṡ(tfin) = 0

2. path motion
this kind of planning is used if it is necessary to go through some
specific points given by s1, ..., si, ..., sn. The result is to plan a
piecewise trajectory s(t) between couple of points trying to choose
borders conditions which make the trajectory function the as smooth
as possible1.

1The smoothness of the function is important to avoid jerk in the joints space.

14



3.5. OBSTACLE AVOIDANCE

3.5 Obstacle avoidance
Once an object is detected, the mobile robots must avoid it. Basically, there
are two approaches to perform obstacle avoidance:

• global approach: the scheme is to inform the path planner of the
obstacle and then let it re-plan the path.

- PROS: the use of existing software for maneuvering the robot;

- CONS: replanning is time consuming;

• local approach: the robots determines how to avoid the obstacle
without help from the path planner.

- PROS: faster response without requiring the computing resource
of the path planner;

- CONS: during local avoidance the vehicle ignores the global map
of known obstacles and does not know to turn control back to the
path planner if mission efficiency is adversely affected.

Of course, the best is to smart combine both the methods in order to
catch the pros and discard the cons and efficiently complete required tasks.
However, it this report it is proposed a logic that follow the local approach.
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Robot navigation
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4. Algorithm explanation

In this chapter it is explain the algorithm developed. The proposed algorithm
is reactive and it is applied continually each time that the lasers samples.
The mobile robot can be consider holonomic thanks to three omnidirectional
wheels, so it can move in each direction without constraints.
It will be showed a scheme (Figure 4.1) useful to see the nodes created in ROS
and their inputs/outputs. Then the algorithm itself is showed in a flow-chart
form (Figure 4.2) and the operations done by each box will be explained.

4.1 ROS nodes

Figure 4.1: Scheme for input output in ROS.

The work done in this thesis regards what is surrounded by the green line
in Figure 4.1. So two nodes are created:

17



Algorithm explanation

• lidar node
It has the role to change the format (format 1 → format 2) of the
massage read by the topic of the front laser scan and filter a little bit
the measures of the laser.

• avoidance_algorithm node
Here it is developed the logic of the algorithm itself. Getting the laser
measures in the format 2 provided by the lidar node it is produced the
velocity in the workspace ~V = [ẋ, ẏ, ϕ̇]T .

After that, the generalized velocity ~V (in the workspace) is sent to a node
which applied the inverse kinematics and computes the torques in order to
produce q̇ (in the joints space) to give to the three motor in order to produce
the desired ~V .

4.2 Flow chart
The flow chart of the algorithm is showed in Figure 4.2. It is important to
notice that the only inputs of the algorithm are:

1. instant laser measurements
They give in some sense a photo of the environment around the robot.

2. goal vector wrt world frame ~Gworld

The frame world is a fixed frame automatically set in the position in
which the motors are turned on.

On the other hand, the output is just one: generalized velocity in the workspace
~V . Finally, applying the inverse kinematics, the velocity in the joints space q̇
will be sent to the motor.
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4.2. FLOW CHART

Figure 4.2: Flow chart of the algorithm.
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4.3 Change format and filtering

Figure 4.3: Box change format and little filtering.

The box Change format and filtering is the first box in the flow-chart in
Figure 4.2 and, at the same time, the only box of the lidar node. In Figure
4.3 is showed the box with its input and output. In the following sections
it will be discuss separately what is done for how is changed the format and
how is applied the filtering.

Change format

Figure 4.4: Angle range of the laser.
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4.3. CHANGE FORMAT AND FILTERING

The format of the massage in input is an array of numbers (float):

inputData = [d1, .., di, .., dN ]LASER (4.1)

It is necessary to convert it in an array of vectors:

vectorDataList = [~d1, .., ~di, .., ~dN ]LASER (4.2)

One of the feature of the laser is to cover a range of 270◦. So knowing this it
is possible to compute the resolution of the laser as:

resolution = 270/size(inputData) (4.3)

Knowing the resolution it is possible to express the distance in a vector form
wrt the laser frame with the following equation:

~di =

[
di,x
di,y

]
=

[
di · sin(deg2rad · αi)
−di · cos(deg2rad · αi)

]
(4.4)

Where d is the distance measured by the laser and αi is the angle corresponding
which is incremented (with a step equal to the resolution) in a loop and cover
all the range of the laser.

Jump and gap definition

In order to understand the filtering process it is important to give some
definition which are used to create the gaps. At first we define jump as follow:

jump = |~di| − | ~di−1| (4.5)

A jump is useful to record a boundary’s presence if its module is larger than
a threshold ∆:

|jump| > ∆ (4.6)

We can define two type of jumps (Figure 4.5):

- left jump if jump < −∆, it provides a left boundary vector ~L;

- right jump if jump > ∆, it provides a right boundary vector ~R;

So, we can define the condition to create a gap: a gap is created every time
that a left jump is followed by a right jump. So, we can define the gap as a
vector (Figure 4.17):

~gap = ~L− ~R (4.7)

Moreover, it is important to say that if the algorithm detects two consecu-
tive right or left jumps no gap is considered because we can not know a priori
if the passage is close or not. This concept is clear looking Figure 4.7.
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Figure 4.5: Jump definition.

Figure 4.6: Gap definition.
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4.3. CHANGE FORMAT AND FILTERING

Figure 4.7: No gap built.
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Filtering

Inside the lidar some filters are applied:

• filter 1: filter for short distances.
It is necessary to do it because sometimes the laser detect some fake
points very close to itself (Figure 4.8). We need to remove these points
setting a distance parameter. Under that distance all the measure are
discarded.

Figure 4.8: Filter for short distances.

• filter 2: filter for long distances.
It is useful to create "artificially" the gap. In order to understand this
point, look the following pictures remembering that, a gap is created
catching a right jump followed by a left jump. Looking the examples in
Figure 4.9 and Figure 4.10 it is possible to understand why this second
filter is useful.

In Figure 4.9 and Figure 4.10 it is showed an example situation in which
there is a room with only one obstacle inside. With R is indicated the robot,
with G the goal point to reach. In the pictures the jumps are evidence with
the color blue, ~L and ~R the vectors which give the position of the obstacle’s
boundaries wrt the robot.

In the example in Figure 4.9 the filter n.2 is not applied. The max length
detectable by the laser is 10m. As consequence the shape detected by it is
evidence in green in which the algorithm can catch the left boundary followed
by the right boundary of the obstacle. As result no gaps can be built (remember
the rules to build gaps)
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4.3. CHANGE FORMAT AND FILTERING

Figure 4.9: Without filter 2.

On the contrary, in the example in Figure 4.10 the filter n.2 is applied.
The filter works with the following relation:

if(distance_detected > distance_looked)

distance = large_value
(4.8)

The parameter distance_looked should be setting considering the di-
mension of the space where the robot moves and the density of the ob-
stacle. In the experiment done the parameter distance_looked = 3m and
large_value = 10m. The large value is used to create a jump artificially. In
fact each time that the Equation 4.8 happens, a jump (of type left or right)
is saw from the algorithm. Comparing Figure 4.9 and Figure 4.10 we can see
that in the second example are artificially created the r.j. and the l.j. on the
side evidenced in yellow. In other words, we can observe that using the filter
n.2 (Figure 4.10) it is possible to create useful gaps for the robot (see GAP1
and GAP2).
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Figure 4.10: Filter 2 applied.

4.4 Laser frame to base_link frame

Figure 4.11: Transformation of from laser frame to base_link frame.

This box is very simple. It transforms the all the vectors of the vectorData
form the laser frame to the base_link frame located on the centre of the
platform with the y-axis pointing in the front of the robot. The output of
the box is an array of vector wrt the base_link frame. Looking Figure 4.11 it
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4.5. CATCH THE BOUNDARIES

is easy to write the transformation equation:[
dx
dy

]
base_link

[
yLASER

radius+ xLASER

]
(4.9)

Where dx and dy are the component of the distance detected by the laser
wrt the frame base_link, radius is the radius of the platform (0.36m), xLASER

and yLASER are the component of a generic distance detected by the laser
wrt the laser frame.

4.5 Catch the boundaries

Figure 4.12: Catch the boundaries box.

Figure 4.13: Gap’s definition: ~gap = ~L− ~R.

In this box is computed the logic in order to catch the points we need
to create the gap. They should be real boundaries of obstacle or artificial
boundaries (if they are produced by the filter n.2 inside the lidar node). The
logic is based on the jump in magnitude that we can find inside the array of
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vectors vectorDataList after its change of reference frame (form laser frame
to base link frame). The output of this box are the following three variables:

gapList =


~R1

~L1

.. ..
~Ri

~Li

.. ..
~RN

~LN

 (4.10)

~vMIN (4.11)

laserList =


dC,1 α1

.. ..
dC,i αi

.. ..
dC,N αN

 (4.12)

The meaning of the variables is the following:

• gapList: it contains in the lines two vectors which define respectively
the right boundary of an obstacle ~R and a left boundary of an obstacle
~L. In other words they define the gap detected between two obstacle
according to the gap’s definition (Figure 4.13);

• ~vecMIN : it is the vector with the smallest magnitude between all the
laser measures;

• laserList: it contains on the lines info of magnitude and angle of the
laser measures which have an angle that is α1 ≤ αi ≤ α4. This is useful
to check if the robot can go directly to the goal. In order to do this it
is done a parameterization of the border of the shape covered by the
robot if it moved directly to the goal. We remind this discussion to one
of the next sections.
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4.6. WORLD TO BASE_LINK

4.6 World to base_link

Figure 4.14: Transformation from world_frame to base_link.

This box is very simple because it does only the transformation from the
world_frame to the base_link frame. The transformation is done taking the
position of the two frames using the Ros function listener. In any case the
transformation is simple and is given by the following vector equation:

~G = ~Gworld − ~s (4.13)

The vector ~Gworld, which is the input of all the algorithm, is the position
of the goal wrt the world frame. The world frame is set in the position where
the robot is when its motors are switched on. The vector ~s is the position of
the robot wrt world frame estimated with the odometry. It is an estimation
of the displacement of the robot using the encoder sensor of the motors. The
vector ~G is the position of the goal wrt base_link frame and is the output of
the box discussed in this section.
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4.7 Choose Best gap

Figure 4.15: Choose best gap box.

The box provides the best gap that is: the gap which allows to cover the
smallest distance to reach the goal according to the heuristic logic.

Remembering that the variable gapList contains line for line the infor-
mation of the gaps found in the environment (in term of right ~R and left ~L
boundaries vector), the choice of the best gap is no more then a index of the
variable Gap List.

The logic in order to find the best gap is explained in Figure 4.16. In
other words for each gap are computed the following quantities:

path1 = |~R|+ |~G− ~R| (4.14)

path2 = |~R +
~gap

2
|+ |~G− (~R +

~gap

2
)|; (4.15)

path3 = |~L|+ |~G− ~L|. (4.16)

Where:
~gap = ~L− ~R. (4.17)
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4.7. CHOOSE BEST GAP

Figure 4.16: Choice of the best gap.

In order to choose the best gap is computing for each gap the quantity:

path = min(path1, path2, path3). (4.18)

It is decided to compute the smallest quantity between path1, path2, path3
because in this way it is possible to give a good estimation of the shortest
path to follow for a given gap regardless of the position of the goal wrt the
robot (on the left, on the right, in the middle of the gap) like showed in the
Figure 4.16. Then it is chosen the smallest path between all the minimum
paths computed for each gap.

Moreover it is useful to compute the vectors ~Rtan
~Ltan tangent to a safety

circles centered in the boundaries of the obstacles (Figure 4.17).
These vectors are computed solving the triangle evidence in Figure 4.17.

Particularly, it is creating a function f1 which allows to compute the rotational
matrix in order to rotate a generic vector in the space given in input: unit
vector around you want to rotate (for our problem the vector k̂) and the angle
of the rotation (αDx or αSx). Of course the angle has to follow the right hand
convention around the unit vector.

αR = atan2

(
dsafe

|~R|

)
; (4.19)

αL = atan2

(
dsafe

|~L|

)
; (4.20)

Then with a second function f2 which recieves as input the vector which
you want to rotate and the rotational matrix it is possible to compute the
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Figure 4.17: Tangent vectors to the safe circle.

vectors Rtan and Ltan. The succession of the operations are:

RotR = f1(αR, k̂)

RotL = f1(αL, k̂)
(4.21)

~Rtan = f2(RotR, ~R)

~Ltan = f2(RotL, ~L)
(4.22)
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4.8. PARAMETERIZATION

4.8 Parameterization

Figure 4.18: Parameterization box.

Figure 4.19: Parameterization to compute the distance of the shape that the
robot would cover if it moved directly to the goal.

The parameterization is a piecewise function of the variable α. It allows to
create an array of distances and angles (the angle is referred to the horizontal
direction evidenced in black in the Figure 4.19) which are representative of
the shape that the robot would cover if it moved directly to the goal. The
distance computed are called distance admissible because, like we are going
to explain in section "STATE MACHINE", the robot could move directly to
the goal IF:

∀ α | α1 < α < α4 ∃ dadm < dmeasure (4.23)
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4.9 State machine

Figure 4.20: State machine scheme.

It is possible to model the system like a state machine with the graph in
Figure 4.20. In order to enter in one of the cases some conditions have to be
verify.
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4.9. STATE MACHINE

Case 0: robot close to the obstacle

Figure 4.21: Example case 0 state.

The case 0 happens when the robot is very close to an obstacle. It means
that there is at least one laser measure with a length detected under the
safety distance dSAFE. In this situation it is decided to move the robot in
the direction orthogonal to the laser measure with the smallest magnitude
~vecMIN In other words, in order to enter the condition to the case 0 is given

by the following condition:

| ~vecMIN | ≤ dSAFE. (4.24)

Nevertheless, there are two direction orthogonal to ~vecMIN which are
identified with the unit vectors ŝx and d̂x (Figure 4.21).

The choice is done considering the angle between the unit vectors and the
vector ~G. These angles are computed with the following equations:

αsx = |acos
( ~G · ŝx
|~G|

)
|

αdx = |acos
( ~G · d̂x
|~G|

)
|

(4.25)

and choosing the direction which has the smallest angle:

IF (αdx < αsx) → d̂x choosed

ELSE → ŝx choosed
(4.26)

35



Algorithm explanation

Figure 4.22: Algorithm failure.

For example in Figure 4.21 will be chosen the direction ŝx because αsx <
αdx.

However there is a situation in which the algorithm could fail. It happens
when the robot is very close to an obstacle so long. Even if the robot will
move in an orthogonal direction the so much long obstacle does not allow the
robot to detect a new gap. As consequence the robot will start to move in
loop, towards right and left without avoid the obstacle (Figure 4.22). It is
important to say that this situation could happen only if the robot is suddenly
located near the so much long obstacle (for example it start to move very close
to the obstacle or the obstacle suddenly appears during the robot movement).
In fact, as we will explain in the next subsections, if the obstacle is far enough
from the robot, it is able to move directly towards the gaps detected avoiding
the obstacle without enter in case 0 (Figure 4.23)
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4.9. STATE MACHINE

Figure 4.23: Obstacle so much long but far enough from the robot.

Case 1: robot can go directly to the goal

Figure 4.24: Case 1 diagram distance vs angle.

This case happen if according to the laser measures the robot could move
with a simple translation towards the goal without having collision. We say
"could move" because we have to remember that the filter n.2 makes not
exactly thru the data collected. Particularly the data are thru until a length
of distance_looked meters from the obstacle (in our work distance_looked =
3m). As consequence the robot could move translating directly to the goal
because it see free but during its motion the environment should change. The
check to know if the robot can move directly to the goal is done comparing the
distances computed using the parameterization with the distances collected
with the first node (lidar.cpp) getting and filtering the laser data. The
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Figure 4.25: Example of case 1, top view.

robot can move directly to the goal if all the distances computed using the
parameterization are smaller then the distances from the laser data (Figure
4.25 and Figure 4.24).
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4.9. STATE MACHINE

Case 2: goal on the left of the gap

The case 2 happens when the goal is located on the left of the gap (Figure
4.26). This sentence can be translated in math condition as follow:

IF (k̂ · (~G× ~Ltan) ≤ 0 && k̂ · (~G× ~Rtan) ≤ 0)→ Case 2 (4.27)

Figure 4.26: Case 2.

The most convenient decision to choose seems to be the direction of the
vector ~Rtan. Nevertheless, there are some special situation in which this choice
should led to a collision. Some example in Figure 4.27.

Figure 4.27: Case 2, special situation: gap very inclined.
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Looking Figure 4.27 we can see that the situation happen when the gap
is so inclined to change the reciprocal direction of the vectors ~Rtan and ~Ltan.
In fact in Figure 4.26 it happens ~Rtan × ~Ltan < 0; on the contrary on Figure
4.27 it happens ~Rtan × ~Ltan > 0. Therefore, inside the previous the condition
in (4.27) it is necessary to add the following conditions:

IF (k̂ · ( ~Rtan × ~Ltan) ≥ 0){
IF (| ~Ltan| ≥ | ~Rtan|)

d̂ir =
~Rtan

| ~Rtan|
ELSE

d̂ir =
~Ltan

| ~Ltan|
}

(4.28)

With this added conditions it is possible to not collide avoiding at first
the nearest border of the gap.
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Case 3: goal on the right of the gap

The case 3 happens when the goal is located on the right of the gap (Figure
...). This sentence can be translated in math condition as follow:

IF (k̂ · (~G× ~Ltan) ≥ 0 && k̂ · (~G× ~Rtan) ≥ 0)→ Case 3 (4.29)

Figure 4.28: Case 3.

Nevertheless, similar to the case 2, there are some special situation in
which this choice should led to a collision. An example in Figure 4.29.

IF (k̂ · ( ~Rtan × ~Ltan) ≥ 0){
IF (| ~Ltan| ≥ | ~Rtan|)

d̂ir =
~Rtan

| ~Rtan|
ELSE

d̂ir =
~Ltan

| ~Ltan|
}

(4.30)

With this added conditions it is possible to not collide avoiding at first
the nearest border of the gap with the same logic used for the case 2.
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Figure 4.29: Case 3, special situation: gap very inclined.

Case 4: goal in the middle

The case 4 happens when the goal is located in the middle of the gap (Figure
4.30) that is when:

IF (k̂ · (~G× ~Ltan) ≤ 0 && k̂ · (~G× ~Rtan) ≥ 0)→ Case 4 (4.31)

Figure 4.30: Case 4.

Also in this case could be a particular situation which we can see in Figure
4.31
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4.9. STATE MACHINE

Figure 4.31: Case 4 special.

Case 5: no gaps detected

Figure 4.32: Case 5.

If no gaps are detected the robot it is decided (remember: no gaps detected
considering only the distance_looked) to command the robot to go directly
to the goal. Maybe during the motion the robot will detect a gap to follow
otherwise it will avoid an obstacle using the logic to move orthogonal.
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4.10 Set velocity

This box receives as input the unit vector ~dir and provides as output the
vector of the generalized velocity ~V = [ẋ, ẏ, ϕ̇]T .

Translational velocity ẋ, ẏ

The setting of the translational velocity is very simple because the direction
of motion is already computed d̂ir = [dirx, diry]

T . So the velocities in the
direction x and y are computed multiplying with a scale factor the component
of the unit vector d̂ir:

ẋ = scaleFactor · dirx
ẏ = scaleFactor · diry

(4.32)

So the scaleFactor is set equal to the desired velocity. In our case it is
set to 0,3 m/s.

Rotational velocity θ̇

Figure 4.33: Orientation errors.

It is decided to want that the robot always looks to the goal during the
motion. For this is applied a control for the robot’s orientation in order to
compute a correct value of the rotational velocity around the z-axis. The
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4.10. SET VELOCITY

computing is done considering two kind of angular errors in orientation as
explained below.

Offset error ∆θOFFSET

It is the error due by the different between the initial orientation of unit
vector ĵ of the robot frame and the vector ~G wrt the robot frame. This is
a constant error which depends only by the initial generalized position of
the robot and the vector ~G. So it will be recover during the motion towards
the goal but it is constant during the motion itself. We can summarize this
consideration with the following equation:

∆θOFFSET = f(ĵ, ~G) = acos

( ~G
G
· ĵ
)

(4.33)

It is assume to recover the offset error in Time = 5 seconds. Then it
is done a discretization considering the ROS frequency set. Particularly, it
is set frequency = 100 Hz. This means that every 1/100 sec the program
are executed and a velocity command to the platform is sent. In order to
sent a reasonable rotational velocity to the platform are applied the following
procedure:

1. compute of the number of commands sent in the Time set:

numCommands =
Time

1/freq
=
Time

∆t
(4.34)

2. do the discretization computing the step angle to recover ∆θ sending
one command to the platform:

∆θ =
∆θOFFSET

numCommands
(4.35)

3. compute the rotational velocity value in magnitude and sign; the sign is
determined considering positive a counterclockwise rotation (according
to the right hand convention around the z-axis) and negative for a
clockwise rotation. In order to choose the correct sign is compute the
sin of the angle between the direction given by ĵ and ~G. In the code
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this is implemented in this way:

IF

(
k̂ ·
( ~G
G
× ĵ
)
< 0

)
θ̇OFFSET = +

∆θOFFSET

1/freq

ELSE

θ̇OFFSET = −∆θOFFSET

1/freq

(4.36)

The angle ∆θOFFSET will be recover when the number of commands sent
are exactly equal to numCommands. For this reason in the code a counter
count variable is used. It is incremented each time that the algorithm is run
and when count = numCommands the rotational velocity θ̇OFFSET is reset
to zero.

Error due by the translational velocity: ∆θV EL

The translational velocity of the platform results in a misalignment between
the vectors ĵ and ~G. We call this error due by translational velocity ∆θV EL.

In the Figure 4.33 is showed the vectorial equation used in order to
compute ∆θV EL:

~∆s+ ~G′′ = ~G′ (4.37)

Splitting the (4.37) in the direction of the vector ~G′ and the orthogonal
one we can write the following equation:

→ ∆s · sin(α) = G′′ · sin(∆θV EL)

↑ ∆s · cos(α) +G′′ · cos(∆θV EL) = G′
(4.38)

The vector ∆s is a finite displacement which happens during the time
∆t = 1/freq cause by the translational velocity:

∆s =
√
ẋ2 + ẏ2 (4.39)

The vector ~G′ is the distance from the goal in the current instant t. The
vector ~G′′ is the distance from the goal in the instant next t+ ∆t, where ∆.
It is given by:

G′′ =
√
G′2 + ∆s2 − 2 ·G′∆s · cos(α) (4.40)

Solving the system in (4.38) we can compute ∆θV EL:

∆θV EL = asin

(
∆s · sin(α)

G′′

)
(4.41)
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Moreover, we define for convenience the unit vectors:

∆̂s =
~∆s

∆s

Ĝ =
~G

G

(4.42)

The function asin in C++ provides a value always positive so, in order to
choose the correct sign, is applied a logic similar to the logic used in (4.36):

IF

(
k̂ · (∆̂s× Ĝ) ≥ +ε

)
θ̇V EL = +

∆θV EL

∆t

ELSE IF

(
k̂ · (∆̂s× Ĝ) ≤ −ε

)
θ̇V EL = −∆θV EL

∆t

ELSE IF

(
−ε ≤ k̂ · (∆̂s× Ĝ) ≤ +ε

)
θ̇V EL = 0

(4.43)

In (4.43) is introduce the tolerance ε. It is necessary because during the
motion the unit vectors ∆̂s and Ĝ could be aligned but only for an instant.
The tolerance is expressed in term of sin of the angle tolerance δ as below:

ε = sin(δ) (4.44)

Particularly, in our case the angle tolerance is set to: δ = 5◦ · π/180.
Moreover, it is set a proportional control for the translational velocity

which is activated when the robot is close to an obstacle with ~vecMIN < dist1.
In other words we can imagine to have two zones:

• dist2 < ~vecMIN < dist1 In this zone the control proportional of the
velocity is done changing the scale factor with the following relation:

scaleFactor =
| ~vecMIN |
dist

· velMAX

IF (scaleFactor < velMIN)

scaleFactor = velMIN

(4.45)

The last IF allows to avoid the situation which
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• | ~vecMIN | ≥ dist1 In this zone, that is a safety zone, the robot can move
at the max velocity set:

scaleFactor = velMAX (4.46)

• | ~vecMIN | < dist2 It is a dangerous zone. So in this case it is decided to
stop the robot to avoid any not safety movement of the robot because
it is so much close to obstacles and it could collide with them:

scaleFactor = 0 (4.47)

This logic allows to avoid obstacles with a smallest translational velocity.
A similar logic is used to set the translational velocity when the robot is

approaching to the goal that is when G < distapproach.

scaleFactor =
G

distapproach
· velMAX (4.48)

it is also set a distance to say if the robot is almost arrived to the goal or not.
The tolerance set for the stop distance, distance from the goal is:

IF (G < distGOAL)

scaleFactor = 0
(4.49)
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5. Experimentations

As it is explained in the previous chapter, thanks to the algorithm it is
possible to get concrete data about the gaps, choose the best gap and the best
direction to follow. In the following picture we will give some examples of the
experiment done and the results obtained showing some pictures referred to a
specific instants during the motion. Particularly, it will be showed some Rviz
pictures (which allow to visualize the real laser signals) and some Matlab
pictures (in which it is possible to see the results of the post-processing).

5.1 Experiment 1

In this first example will we showed the results of the algorithm with the
filter n.2 applied with a distance looked = 3 m (Figure 5.1) and with distance
looked = 6 m (Figure 5.2) in order to see the difference. In fact, after the
experimentation we understood that for the algorithm proposed it is not
always useful to consider the obstacle very far to the robot. It is better to
consider only the obstacles eventually located near to the robot, in concrete
term it is useful to set the parameter distance_looked on 3 or 4 meters around
it. The reason it is understandable comparing Figure 5.1 and Figure 5.2.
Both of this Figure are referred to the some situation shown in the picture
on the right of Rviz. We can see that in the case in which the parameter
distance looked = 6 m (Figure 5.2) the gaps built (in red and green for the
best to follow) are different that the ones built with a distance looked = 3 m
(Figure 5.1). Particularly, in the case with larger distance looked the gaps
detected are less useful then the gaps built in the case with smaller distance
looked. This is due by different width of the jumps in the laser measures.
So, it is believed that it is better to set a parameter distance looked shorter.
Moreover, it is believed that the correct value of this parameter should be
chosen considering the dimensions of the room the robot navigate in and the
density of the obstacle which could appear. If the density of the obstacle is
high it should be convenient to choose a smaller value of the parameter. In
the Figure 5.1, Figure 5.3, Figure 5.5 it is possible to follow the sequence of
the algorithm results in four different instants during the motion of the robot.
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5.2 Experiment 2
In this example it is possible to see the state machine in the case0. In fact,
the purple line in Figure 5.7 is orthogonal to the ~vecMIN . This vector is not
drawn in the picture but it is easy to imagine that it comes from the robot R
and arrives to one point of the close obstacle in black.

5.3 Experiment 3
In this experiment is showed how a long obstacle (long with respect to the
dimension of the platform) is very close to the platform could led to a failure
of the algorithm (Figure 5.9). What happens is that the robot starts to move
in orthogonal direction, for example on the right, but after some instants it
will move on the left and so on as a loop without reaching the goal. On the
contrary, if the obstacle is a little bit far to the robot, the latter should detect
some gaps on the boundaries of the obstacle and avoid it (Figure 5.9).

5.4 Comments on the parameterization
In Figure 5.4 and Figure 5.6 are showed the diagram related to the parame-
terization for two different instants of the robot motion. We want to focus
the attention on the blu and black lines in these pictures. As it is explained
in the previous chapter, the algorithm decided to choose a direction of the
motion aligned with the vector ~G (that means we are in the case 1 of the
state machine: move the robot directly to the goal) if the blu line is under
the black one. This means that moving directly to the goal the robot does
not meet obstacles. It is the case showed in Figure 5.6. On the contrary if the
black line is under (even in one point) the blu one, the algorithm provide to
select the correct case of the state machine in order to not provide collision
in the motion. It is the case showed in Figure 5.4.
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Figure 5.1: Experiment 1: Top view Matlab, instant 1, with distance looked =
3 m. State machine: case2.
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Figure 5.2: Experiment 1: Top view Matlab, instant 1, with distance looked =
6 m. State machine: case3 special.
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Figure 5.3: Experiment 1: Top view Matlab, instant 2, with distance looked =
3 m. State machine: case2.
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Figure 5.4: Parameterization in showed in the diagram angle(◦) vs distance(m).
The point in black are the points of the distances detected by the laser
(with the modification doing by the filtering); the point in blu are the
points done by the parameterization.
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Figure 5.5: Experiment 1: Top view Matlab, instant 3, with distance looked =
3 m. State machine: case5.
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Figure 5.6: Parameterization in showed in the diagram angle(◦) vs distance(m).
The point in black are the points of the distances detected by the laser
(with the modification doing by the filtering); the point in blu are the
points done by the parameterization.

56



5.4. COMMENTS ON THE PARAMETERIZATION

Figure 5.7: Experiment 2: Top view Matlab, instant 1, with distance looked =
3 m. State machine: case0.
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Figure 5.8: Experiment 3: long obstacle very close to the robot, with distance
looked = 3 m. State machine: case0.
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Figure 5.9: Experiment 3: long obstacle not very close to the robot, with
distance looked = 3 m. State machine: case1.
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5.5 Experiment’s pictures
In this section some pictures are showed. They are captured from some videos
done during the experimentation.

Figure 5.10: Experiment A: screenshots 1, 2.
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Figure 5.11: Experiment A: screenshots 3, 4.
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Figure 5.12: Experiment B: screenshots 1, 2.
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Figure 5.13: Experiment B: screenshots 3, 4.

63



Experimentations

Figure 5.14: Experiment B: screenshots 5, 6.
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Figure 5.15: Experiment B: screenshots 7, 8.
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6. Comparison with other
avoidance technique

Several obstacle avoidance algorithm have been proposed. In this chapter we
want to compare some of this with the algorithm proposed in this work in
order to understand its pros and cons.

6.1 Bug Algorithm

Figure 6.1: Bug algorithm.

The Bug algorithm (Figure 6.1) is the simplest algorithm which has
proposed. It consists in fully circle the obstacle in order to find the point
with shortest distance to the goal. Then the robot will circle again the
object leaving the boundary of the obstacle from this point and going to the
goal. This algorithm very inefficient was improved and a second version was
proposed named Bug2.

Figure 6.2: Bug2 algorithm.

With the Bug2 the robot starts to circle the obstacle but leaves the
boundary when its position intersects the line which connects the robots
starting point and the goal.
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6.2 Potential fields method
It is an elegant approach to solved the problem. It consists to imagine the
robot, the obstacles and the goal as electric charges. The obstacles are charges
with the same sign of the robot; the goal is a charge with opposite sign with
respect to the robot. So, the potential field algorithm assumes that the robot
is driven by virtual forces that attract it towards the goal, or reject it away
from the obstacles. The actual path is determined by the resultant of these
virtual forces (Figure 6.3).

Figure 6.3: Potential fields method.

6.3 Approach proposed in this work
The approach proposed in this work is more efficient of both the methods
previously explained because the robot can move towards the goal going
directly through the gaps detected. This allows the robot to start to avoid
the obstacle at a consistent distance from it. As consequence, the robot will
cover a shorter path comparing to that it would cover using the previous
methods.
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7. Future work

As it is explained the algorithm developed uses only the front laser scanner.
So, one of the first thing to do in order to improve it is to integrate the use
of the other two laser available on the platform. In order to do this it needs
to consider that there are some area sectors which are covered at the same
time by more then a laser scanner and sector that are covered only by one of
the laser. It is not immediate to decide a strategy to manage the information
taken from three lasers.
A possible approach could be to try to get the boundaries splitting the data
of the three laser scanners. Then built, for each of them the gaps and finally
try to make a sensor fusion of that data. After this the algorithm to choose
the best direction knowing the gaps could be applied.
Another important problem to solved is the noise is to try to delete the noise
of the laser with some kind of filtering technique.
Finally, the use of RGB-D camera of which the robot is equipped and the
radar positioning system available in the lab could increase the knowledge of
the environment around the robot. Obviously, the manage of the data will be
more complex.
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