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Abstract

Abstract

The automotive sector is constantly trying to develop new strategies to de-

crease the consumption and to improve the performances.

The market and the world need are converging with a paradigm shift to the

renewable sources. At the present time the two options of the Electric Vehicle

(EV) and the Hybrid Electric Vehicle (HEV) are two of the best perspective

in which we can put our e�orts.

The �rst one, the EVs, is still limited by technical and engineering issues due

to the knowledge of this time, in particular about the Energy density of the

batteries.

From this issues started to develop the possibility to associate an Ice Com-

bustion Engine (ICE) to the Motor-Generator Unit (EM) with the HEVs

technology.

This �eld is huge and in continuous growth, the market in particular is leading

the attention on the Parallel technology for which the motion units cooper-

ate to develop the power for the user, it's one of the easiest way to design

an HEV but it's still possible to reach values of Fuel Consumption that are

really lower than the Traditional Vehicle, keeping also the performances able

to a�ord every kind of situation of the real driving life and also maintaining

an high driving pleasure for the journey.

In this work the aim is to develop an online controller, in Real-Time for the

real driving life, for and HEV with a parallel con�guration P2 (one ICE and

one MGU).

The controller use the Adaptive Equivalent Consumption Minimization Strat-

egy (A-ECMS) based on an Equivalent Factor (EF) between the cost of the

Power developed by the ICE and the GMU, the controller can see only the

request of torque of that precise instant, obtained from the speed and the

acceleration of the vehicle, and the state of all the components of the HEV:

battery, transmission, GMU and ICE.

The di�culty is to have the possibility to reach the Charge Sustain (CS)

when the car will reach the destination, which is to say keeping the same

value of the State of Charge (SOC) of the battery at the time in which the

vehicle started the track. This condition must be respected, not knowing

what the future driving conditions would be.

Once developed a controller that can reach the CS in di�erent simulated

driving cycles the second goal is to develop an algorithm that can investigate

the design space looking for a combination of ICE, GMU, Battery and gear

ratios for the transmission that can decrease the FC keeping the su�cient
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Abstract

performances to deal with every kind of situation of the real driving life.

The data to develop the design space are taken from the library of AMESIM

by Siemens, that is public and also really reliable.

It has been chosen a Particle Swarm Optimization (PSO) algorithm for this

aim, for his good qualities with this kind of problem, the PSO would take

into account as said of both the FC and of a performance index in his cost

function.

Here we will show the work�ow of the procedure presented before:

Figure 0.1: Work�ow of the Simulation

This study started on MATLAB by MathWorks, in a quasi-static environ-

ment, the idea is to extend it for a Co-Simulation between AMESIM and

Simulink (by MathWorks), in the �rst one is possible to use a vehicle model

more re�ned, more dynamic phenomena of the components, such as the trans-

mission for example, in the second one is possible to use the A-ECMS con-

troller.

All the study is taking in consideration as a Benchmark the values provided

by the Slope-Weighted Energy-Based Rapid Control Analysis (SERCA) al-

gorithm for the controller, that is an o�ine controller that could reach the

optimal result for the FC with a lower computational e�ort than the Dy-

namic Programming (DP).

At the end are shown the result from both the software to compare the re-

sults of the FC, will be also proposed the result of the optimization of the

PSO with the best candidates to decrease the FC. All the candidates can be

tested in the co-simulation to see their performances compared to the other

controller SERCA.
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1 Introduction

1 Introduction

Firstly it's necessary to explain the choice of this kind of vehicle and this

particular architecture.

There will be an explanation of the state-of-art of the HEV and a presentation

of the di�erent design that are possible with their main characteristics, will

also be explained why it's been chosen this parallel architecture and provided

also some real examples of vehicles of the di�erent categories and the trend

of the market for the immediate future [[2],[3]].

1.1 Automotive Industry: New Perspective of HEVs

The Automotive sector is one of the largest and most expensive sectors of

the modern industry, in the 2019 estimate that there are more than 1 billion

vehicles all over the world and could reach 2 billions by the 2035. Only in

the USA in the 2018 there was a marginal increase of 400 thousands vehicle

only in the 2018.

In this scenario is no longer sustainable to produce only tradition vehicle

with an ICE that will need only fossil fuels, there is the need for a paradigm

shift that has to lead to new opportunities, new kind of fuels and new ways to

get the power for our vehicles, on the other side would be necessary to keep

decreasing all the consumption and the emissions to decrease the request of

energy.

In United States the interest in reducing the dependency from oil started

between 1973 and 1974, with the oil embargo imposed by the OPEC (Orga-

nization of Petroleum Countries).

As consequence, in 1975, the Congress created the CAFE (Corporate Av-

erage Fuel Economy) with the aim of issue standards to regulate the fuel

consumption [4].

By the time the interest towards the reduction of pollutant emissions and

greenhouse gases (GHG), to which the transportation sector greatly con-

tributes, has been increased all over the world.

The �rst European regulations for passenger trucks and light duty applica-

tion dates to 1992, with the introduction of the EURO 1 standard.

The actual regulations decisions are undertaken by the European Parliament

and Council, with the knowledge and data provided by the advisory organ,

which is the European Environmental Agency (EEA) [5].

1



1 Introduction

In US, instead, the current harmonized National Program is composed by

three legal authorities: NHTSA (National Highway Tra�c Safety Adminis-

tration) which administrates the CAFE standard, EPA (Environmental Pro-

tection Agency) which set the maximum pollutants tolerated level and the

CARB (California Air Resource Board) which historically focus is related to

more stringent standards proposed for California [4].

All over the world are present di�erent regulations for the FC and for the

emissions of pollutants, the most famous it's for sure the CO2.

After a steady decline from 2010 to 2015, by almost 4 grams per year of

CO2 per kilometer, according to provisional data published today by the

European Environment Agency (EEA), the average carbon dioxide (CO2)

emissions from new passenger cars registered in the European Union (EU) in

2018 increased for the second consecutive year, reaching 120.4 grams of CO2

per kilometer [6].

To meet the requirements of 95 grams per kilometer from 2021, imposed by

the new European regulation, the most promising solution is represented by

the electri�cation which would allow to switch to a new concept of more sus-

tainable transportation.

This paradigm shift will be, eventually, completed with a market dominated

by xEV.

This alternative become a promise with the development of the power elec-

tronics technologies that allow to get full advantage of both DC and AC

system introduced during the early 1900s by Edison and Tesla [7].

Some limitation due to the knowledge of the batteries, such as power density

and cost, lead in a transition phase dominated by the HEV. This vehicles are

already characterized by higher values of e�ciency that the traditional ones

and by interesting performances.

Having a look to the history of the automotive sector we can see that the

improvement introduced in the internal combustion engine (ICE) technol-

ogy by some innovators of the 19th century as Rudolf Diesel, Nikolaus Otto,

Karl Benz and James Atkinson creates a large gap between the engine-based

propulsion and the electri�ed one.

2



1 Introduction

We have to wait till the 1997 when Toyota sold in the Japanese market the

�rst modern hybrid car, the Toyota Prius (Figure 1.1).

Figure 1.1: Toyota Prius 1997 [1]

This date can be identi�ed as an initial point of the paradigm shift which we

expect will deeply change the concept of transportation in the next decades.

In the 2018 the sales of xEV vehicles raised of the 38% and reached the

7 millions units with 25 new EV models and 18 new Plug-in Hybrid EVs

(PHEVs) models. [8]

3



1 Introduction

1.2 Electri�cation Degree

The HEV represents an intermediate solution between the conventional and

the pure electric vehicles (BEV). A power-train is de�ned hybrid if at least

two di�erent energy sources are used for the propulsion [9].

The HEVs are classi�ed by the degree of electri�cation, that de�nes the ratio

between the electric and the total power of the vehicle. Changing the design

and the dimension of the components we can obtain totally di�erent degrees

of electri�cation.

In the literature are classi�ed as reported according a crescent degree of

electri�cation:

• Start-stop Hybrid: usually are equipped with a small electric motor

that works only as a starter for the ICE avoiding the FC during idle

operations.

The cost for the electri�cation is negligible, this improvement can lead

to the 2-3% on the fuel economy of the vehicle. Quite all the new

models on the market are equipped with this system;

• Micro Hybrid: normally the propulsion is not related with the elec-

tri�cation, but part of the accessories, such as pumps, activators, air

conditioning and other systems, are all powered by an MGU.

• Mild Hybrid: usually equip some important functionalities such as re-

generative breaking, which allows to recover the kinetic energy during

breaking operation to charge the battery.

They can also use the electric power for the propulsion, so are equipped

by bigger MGU with high or low voltage. This items can lead to a de-

crease of around 10% on the FC;

• Full Hybrid: electric machines directly contribute to the propulsion

leading to higher and more important bene�ts in terms of fuel con-

sumption, typically between 20% and 50%.

The bene�ts are strongly related with the type of power train architec-

ture and with the kind of circuit, city, highway, suburban or mixed;

• Plug-in Hybrid EVs (PHEV): the main di�erence with a standard HEV

is the size of the battery, in this kind of vehicle the energy can be stored

4
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directly in the battery with an advantage in terms of energy cost.

This sector is increasing the number of vehicles because has bene�ts

in particular in short distance travels, for who has infrequent long dis-

tance journeys;

• Battery Electric Vehicles (BEV): the vehicle is only propelled by MGU,

with the absence of the ICE. This means some limitations due to the

actual technologies, the limited range a�ordable and in particular the

characteristics of the batteries on the market right now, as said before.

Increasing the degree of electri�cation we can reduce the FC. Every kind of

design and power-train architecture can lead to local maxima, it's interesting

to investigate how can we decrease the consumption tuning some parameters

of the components of the vehicle.

It's possible to reach the global minimum of FC with a BEV, but all the

limitations that we have cited can a�ect the performances and the everyday

usage of the consumers.

From this point of view the HEV can overcome the e�ciency of the ICE,

strongly reducing the FC and having good performances, such as the acceler-

ation due to the characteristics of the MG, that today are mainly Permanent

Magnet machines (PM) or Induction motors.

The �rst are characterized by lower losses, higher torque capability and power

density, the second are simpler to build and robust but with a lower e�ciency

and some limitations about the speed range and the cost of the permanent

magnets.

For this reason in the next future the motors will follow more the necessity of

the HEV to ful�ll the paradigm shift, an interesting solution is the Switched

Reluctance Machine (SRM).

This motor is characterized by a wide speed range and a lower cost keeping

a good robustness, at the moment there are some issues about the torque

ripple and acoustic noise [2,7].
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1.3 Hybrid Powertrain Architectures

In the following sections are shown the principal kind of hybrid power-train

architectures, with their main characteristics and some comparison between

the bene�ts and the drawbacks of each one. There will be for each case also

a schematic representation of the main components involved in the archi-

tecture [10]. All the architectures are composed by: ICE, MGUs, Battery,

Transmission, Final Drive and Di�erential.

1.3.1 Series Power-trains

The Series Power-train Architecture is characterized by the ICE that is not

directly coupled with the di�erential, there is the Generator that is connected

with the ICE, the Motor that instead is linked with the transmission and will

provide the power to the wheels, as shown in (�gure 1.2).

vspace-6 mm

Figure 1.2: Representation of a Series HEV Power-train Architecture.

In this architecture the ICE can be seen as the charger of the battery in an

electric architecture, it will work just in case the battery will discharge under

a certain threshold of the SOC.

To keep the battery in the best condition is better to use a range of the SOC

between 50%-75% and in particular around 60%, this will ensure a longer life

for the battery and better performances.

For the fact that the ICE is not directly connected to the wheels, it is possible

to keep the working point close to the Optimum Operating Line (OOL) space

of best torque-speed combination for the fuel economy [9].
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The series architecture represents the simplest solution for HEV design and

di�erent researches have been conducted searching for the optimal control

strategy [11].

The largest limitation is related to the multiple energy conversions required

from mechanical to electrical power with the related losses.

Furthermore, the system sizing represents a restriction because the electrical

components needs to be chosen big enough to ensure the achievement of the

power demand. Due to these limitations this architecture is applied mainly

for truck and urban buses[11].

1.3.2 Parallel Power-trains

The Parallel architecture is characterized by both the contribution of the

ICE and MGU for the propulsion. The "parallel" name is due to the fact

that the mechanical and the electrical power can be summed up.

Unlike the series architecture is possible to use also only electric machine,

for these reasons the e�ciency is higher since less energy conversions are

required.

About the design of the components, both ICE and MGU can be downsized

obtaining the same performances of the series counterpart.

The higher �exibility in operations is associated also with the variety of

possible arrangements. Usually the parallel architectures are categorized in

4 groups, from P1 to P4 as reported in (�gure 1.3).

(a) P1 (b) P2

(c) P3 (d) P4

Figure 1.3: Representation of Parallel HEV Architectures
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The energy recovered by braking operations is stored in the battery.

This architectures are the most di�used in the market in this moment, cause

the simple arrangement and the contained number of mechanical parts and

links, on the other side the it's possible to markedly reduce the FC and the

other emissions.

In particular the focus of the market is on the P2 architecture, with the MGU

after the IC.

In the P3 disposition the ICE is directly couple with the transmission and

the MGU is connected after it.

The most complex parallel architecture is the P4 that can provide power to

the axes independently.It combines power from the engine and the electric

motor to drive the vehicle directly.

Within the P4 con�guration, when the electric machine is on a di�erent

axle, it is commonly referred to as parallel through-the-road architecture.

The most important advantages are the performance bene�ts of an all-wheel

drive (AWD) design [12].

In these architectures in particular, but also in all the other kind of hybrid

vehicles, the control strategy is fundamental to make the right choices during

the mission to reduce the consumption.

Usually at low speed or under a certain level of longitudinal acceleration will

work only the MGU, in other case to balance all the energy spent is necessary

to activate the ICE.

Actually in the market we can �nd several models of this category such as:

Audi Q5, BMW Active-hybrid 7L or 5, KIA Optima, Honda CR-Z, Volkswa-

gen Jetta.
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1.3.3 Series-Parallel Powertrains

The series-parallel architecture is an alternative to power-split architectures,

shown in the following section, that use planetary gear sets to split the power

�ow of the ICE into di�erent paths.

The ICE has a direct mechanical connection to two electric machines. One

of the machines, usually referred to as the generator, is always connected to

the ICE.

Figure 1.4: Representation of the Series-Parallel Power-train Architecture.

The two MGUs are separated by a clutch, the MG2 acts as the main traction

motor, there are three di�erent modes:

• Electric-only Operation: the clutch is open and only the MG2 provide

the power;

• Series Operation: with the clutch open, the engine is disconnected from

the road but can drive MG1 to provide electrical energy to MG2.

Since the ICE is not coupled with the road can operate in its greatest

e�ciency range. This mode is typically used at low speed;

• Series-Parallel Operation: the clutch is engaged, the ICE provides

power to the road in parallel with MG2.

The MG1 can be used only as resistive torque source to force the ICE

in the higher e�ciency operating range possible.

The most important vehicles that are using this architecture in the market

are: Hyundai Sonata, Honda Accord, KIA Optima.
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1.3.4 Power-split Powertrains

The Power-split system is an input-split hybrid transmission that utilize

planetary gears sets as devices to power split between the ICE and MGU

[13],[14],[15] .

The planetary gears divide the energy in the two di�erent forms, the me-

chanical one and the electric one. In this way is possible to use a Continuous

Variable Transmission (CVT) for the ICE, for the fact that is controlled us-

ing the electric machines this type of transmission is known as the electronic-

continuously variable transmission (e-CVT) [16].

This con�guration is capable to reach more favorable working points for the

FC and emissions due to his complexity and to the more possibilities o�ered

by the architecture [17].

This kind of architecture was introduced by the Toyota Prius in the 1997

with the Transmission known as Toyota hybrid System (THS), shown in the

following �gure:

Figure 1.5: Representation of the THS Power-Split Power-train Architec-
ture.

The �gure shows that the engine is connected to the planetary Carrier, the

�rst electric machine is attached to the Sun gear, the second one is connected

between the Ring gear and and the Reduction gear.

The MGU2 functions are to supplement the engine torque, thus allowing the

engine to operate in greater e�ciency regions.
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With the following generations of Prius, Toyota developed more sophisticated

systems, starting from the 2010 they produced the III generation of the Prius

using the new version of this system, named Hybrid Synergy Drive (HSD),

then this power-train has been widely used in Toyota and Lexus hybrid line-

ups and licensed to Ford and Nissan.

Figure 1.6: Representation of the HSD Power-Split Power-train Architec-
ture.

The main di�erence introduced is the second power-split device and the re-

moval of the chain connected to the �nal drive [[12],[18]].

There are other architectures that have been developed, such as one on SUVs

Lexus RX450h and Toyota Highlander for all-wheel drive (AWD) using a

third electric machine (MGR) on the rear axle.

By coordinating the motor and generator output, the power-split power-

trains realize electric-only mode, engine start mode, motor assist mode, bat-

tery charging mode, and regenerative braking mode.

The more complex the architecture the more possibilities of di�erent modes

to save energy for di�erent driving situations are available but also the design

and the construction costs will increase.

As samples of this category we can �nd in the market the following models:

Lexus RX450h, Toyota Camry, Ford Fusion Hybrid FWD, Toyota Prius.
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1.3.5 Two-mode Powertrains

The introduction of clutches permits to improve the transmission �exibil-

ity and other modes compared to the power-split system, this enables the

two-mode hybrid transmission to achieve improved fuel economy and un-

compromising performance at both low and high vehicle speed.

One of the �rst architecture in this category is the one developed by General

Motors which patented the Allison hybrid system that you can see in the

next �gure:

Figure 1.7: Representation of the GM's Allison Two-Mode Power-train Ar-
chit.

The transmission of Allison is made of three PG sets and two continuous

variable transmission modes and four �xed-gear ratio modes. In the following

table there is the scheme to see the con�guration of each mode:

Cl 1 Cl 2 Cl 3 Cl4

CVT
modes

Input-split x

Compound-split x

Fixed
gear
ratio
modes

1st Fixed gear x x

2nd Fixed gear x x

3rd Fixed gear x x

4th Fixed gear x x

Table 1: Two-mode Hybrid Transmission Operation Modes
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The Input-split mode is achieved by engaging Clutch 3 while disengaging

all other clutches. In this con�guration the �rst machine serve as the speed

coupler to regulate engine speed while the MG2 serve as the torque coupler

to regulate engine torque, decoupling the engine from the output shaft, and

so increasing the engine e�ciency.

This is a low-speed driving mode mostly. Higher speed will increase the losses

by the energy conversion [[12], [19]].

The compound-split mode is achieved by engaging Clutch 1 and disengaging

all other clutches. All the planetary gear sets function as power split devices

to split and adjust the power ratio between the electric power path and the

mechanical power path.

The engine speed and torque are regulated by both electric machines.

This mode has higher e�ciency at higher vehicle speed due to the lower

power ratio on the electric path.

To use a �xed gear ratio mode is necessary to use two clutches at the same

time, for example the combination can increase the output torque for the �rst

gear or to make a transient between the input-split and the compound-split

modes.

The GM's two-mode transmission can switch from the continuously variable

modes to �xed gears ratios.

We can see this architecture in models such as: Mercedes ML450, Chevrolet

Tahoe, BMW Active Hybrid X6.
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2 Physical Model

This chapter will explain the physical models used in Matlab to de�ne the

controller, �rst will analyze the simpli�ed road load model used, then the

focus would be on the di�erent components of the power-train architecture,

at the end there will be a presentation of how would be scaled and sized

the components for the research in the design space implemented in the

optimization algorithm.

All the data are from online sources or from the libraries of AMESIM, so are

public and trustworthy.

2.1 Road Load Model

This simpli�ed Road Load Model use the contribution of three forces: the

rolling resistance Froll, the air drag resistance Fair and the gravity resistance

due to the slope of the road Fgrade.

We obtain the following equations:

Froad = Froll + Fair + Fgrade (2.1)

Froll = µmvg (2.2)

Fair =
ρAfCdv

2

2
(2.3)

Fgrade = mvgsin(α) (2.4)

Are reported the three components (2.2,2.3,2.4), in which mv is the vehicle

mass, µ is the rolling resistance coe�cient, g is the acceleration of gravity,

ρ is the air density, Af is the vehicle frontal area, Cd is the drag resistance

coe�cient, v is the vehicle longitudinal speed given by the driving cycle, α

is the road slope angle.

Normally is easier to get three parameters, coast-down coe�cients [20], to

express the road force related with the velocity and the velocity square, this

model can be less precise than the other but require less parameters.

In this case the equation would be:

Froad = RLA +RLB · v +RLC · v2 (2.5)
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From the eq. 2.5 is possible to calculate the torque needed by the wheel:

Tload =
Froad · rdyn + Iv ·a

rdyn

K
(2.6)

In this equation are used: rdyn the dynamic radius of the wheel in meter, Iv
the vehicle inertia, a the longitudinal acceleration, K the �nal drive ratio [21].

To compute the acceleration in the eq. 2.6 is possible to use the continuous

derivative of the velocity imposed by the driving cycle, we are using the

forward di�erence approximation, using the ∆T as time interval between

(i+ 1) and (i):

a(i) =
v(i+ 1)− v(i)

∆t ·K
(2.7)

In the model we will use two sets of parameters, the �rst one is of a general

mid-size vehicle from AMESIM, the second one is referred to a general Mini

SUV model, all the values are listed here:

Data Unit Mid-size Mini SUV

Mv kg 1400 2381

rdyn m 0.301 0.358

RLA N 100 158

RLB N/m
s

3.00 3.25

RLC N/(m
s

)2 0.15 0.36

Table 2: Vehicles Data
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2.2 Powertrain Components Model

In this section we will show the model used for the components of the vehi-

cles chosen, in particular we will discuss about the ICE, the MGU and the

Battery.

All the data are taken from AMESIM libraries, from there in the next sec-

tion we will present how we found some relations to size the component in a

speci�c range.

It's important to specify that the controller has been developed starting from

a speci�c set of components from the libraries, once was set up we started

changing the components to test it.

2.2.1 ICE Model

The map used for the ICE can be seen in �gure:

Figure 2.1: Ice Fuel Losses Map

The map shows the Fuel Losses in grams as function of the ICE torque and

angular speed, from these data is possible to calculate the e�ciency of each

point with the following formula:

ηENGi
=
POUTi
PINi

=
PINi

− PLossesi
PINi

=
Ti · ωi

ṁfueli · LHVi
(2.8)
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In the equation Ti is the Torque, ωi is the angular velocity, ṁfueli is the

injected fuel �ow rate of the ICE and LHV is the fuel lower heating value.

The other data needed for the ICE are about the maximum torque achievable

with the wide open throttle function of the angular speed, obtaining the

following graph:

Figure 2.2: ICE Maximum Torque

These data will be used to calculate the opening percentage of the throttle

and to control if the gear is the right one for the torque requested.

Here we present the starting values of the two ICE of the vehicles from which

we developed the A-ECMS controller:

Parameter Unit Mid-size Mini SUV

Vd m3 1.6 3.3

PICE kW 67 188

LHV J/g 43700

ρfuel g/l 737

Table 3: ICEs Data
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2.2.2 MGU Model

Our controller will use the Fuel losses and the Maximum torques showed

before for his calculations.

For the MGU we need similar data, the �rst thing is to get the E�ciency

Map or the Losses Map, for our controller we will use the losses.

The losses are due to the electro-magnetic phenomena and to the mechanical

dissipation and frictions.

The Map is shown in the next �gure:

Figure 2.3: MGU Power Losses Map

As shown for the ICE, also in this case is possible to obtain the e�ciency for

each point with the following equation:

ηMGUi
=
POUTi
PINi

=
PINi

− PLossesi
PINi

=
Ti · ωi

Ti · ωi + PLossesi
(2.9)
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We can plot the same curve of the maximum torque function of the angular

speed also for the MGU, and here is how it looks like:

Figure 2.4: MGU Maximum Torque

We would need these data for the same purpose of the ones of the ICE. Here

we present the starting values of the MGU used for both the vehicles from

which we developed the A-ECMS controller:

Parameter Unit Mid-size Mini SUV

PMGU kW 40 85

Tmax Nm 200

nmax RPM 9000

Table 4: MGUs Data
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2.2.3 Battery Model

For the Battery model we would use a simple equivalent circuit based on the

Open Circuit Voltage (OCV) indicate by the Voc parameter. The circuit will

be the following:

Figure 2.5: Battery Model

The OCV and the Battery Resistance are both function of the State of Charge

(SOC), temperature and State of Heal (SOH) of the battery. We got these

data from a library of AMESIM and here his their trend:

Figure 2.6: Open Circuit Voltage Map
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And also the same for the Internal Resistance of the Circuit:

Figure 2.7: Internal Circuit Resistance Map

In our case we are assuming that the parameters during the charging and

the discarching are the same, so the OCV and the Internal Resistance would

be the same while charging or discharging With these data we can compute

the other parameters:

VOC = VIN −RIN · Ib (2.10)

Pbatt =
V 2
OC − VOC ·

√
(V 2

OC − 4 · Pinv,DC ·RIN)

2RIN

(2.11)

Ib =
VOC −

√
(V 2

OC − 4 · Pinv,DC ·RIN)

2RIN

(2.12)

Ebatt(t) = Ebatt(t0)−
∫
Pbatt(t)dt (2.13)

SOC =
Ebatt(t)

Ebatt,nom
(2.14)
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With these equations we can compute all the parameters needed during the

mission, we can also compute an e�ciency of the battery to see the perfor-

mance in each instant:

ηbattcharg =
VOC · Ib
Pbatt

=
VOC · Ib

VOC · IL −RIN · I2
b

(2.15)

ηbattdischarg =
Pbatt

VOC · Ib
(2.16)

As told before we started developing the controller with some speci�c values,

and then we have tested it with generalized parameters. Here we enlist the

starting values for the battery of the two vehicles:

Parameter Unit Mid-Size Mini SUV

VOC V 310 310

Ptarget kW 75 150

Etarget kWh 20 40

Table 5: Vehicles Data
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2.3 Sizing Components Strategy

In this section we will show an overview of the procedure developed to size

each of the component showed before.

In all the cases we have started with the real data in our possession, from

there we have evaluated how was possible to scale the size of the component

only changing one parameter that then we can insert in the optimization

algorithm [22].

Is not easy to select the right range in which this scaling procedure is still

working properly, because there are linear quantities but most of the param-

eters are not linear and in particular change second totally di�erent laws.

Fortunately we can check if the parameters of the scaled component are sim-

ilar to the real one using the libraries of AMESIM, in which are developed

some sophisticated tools from which it's possible to get di�erent components

changing the interesting parameters.

For these reason we will specify in which range we have seen that the com-

ponents have parameters similar to the real ones and so can be useful for our

research in the design space.

As before we will subdivide the work for each component.

2.3.1 ICE Sizing

The evaluation of the parameters of the ICE and their relations to obtain

the data that we need are made after reading the consideration about sizing

an ICE basing all the calculations on the total displacement at the di�erent

angular speeds[23] [24].

Then to obtain all the models we used as a base, the data obtained from the

AMESIM tool using these parameters:

(a) Architecture Parameters (b) Performance Parameters

Figure 2.8: Setting of the ICE parameters
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We have used engines with a �xed proportion between the maximum torque

developed and the maximum power, �xing the number of RPM in which we

can obtain these two values:

TMAX = PMAX · 1.85 (2.17)

For the ICE we will need the maximum torque developed by the ICE at

di�erent angular speeds, in case of full throttle, from the graph would be

possible to inter-pole the percentage needed of throttle knowing the torque

requested and the angular speed. Here we can see the comparison between

the model obtained from the data and the curve exported from the data of

AMESIM for an ICE with a maximum torque of 230 Nm:

Figure 2.9: Maximum Torque ICE Model Comparison

As we can see from the �gure the derived model is pretty similar to the orig-

inal one, there is a little gap around 400 rad/s between the curves, precisely

of 2.8 Nm (1.2% error), so we can say that the model is pretty accurate. We

obtained this model �tting the data with a polynomial curve of the 6th order.

We can obtain results with this kind of error between the original one and

the modeled one in this range of values for the maximum torque and power:

120Nm < TMAX < 360Nm

65 kW < PMAX < 200 kW
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The next data needed are for the fuel consumption extracted from the fuel

consumption map, to obtain a model su�ciently reliable we need to subdivide

the data for each angular speed and obtain the pattern of the curve, we did

that for 15 di�erent values of the angular speed and we can show one example

of the result at a �xed speed n = 3500 RPM :

Figure 2.10: Fuel Consumption ICE Model Comparison

We can notice that the curve is composed by two straight lines, the maximum

error is around the connection of the two lines, is around 0.12 g at 125 Nm

torque (4.5 % error).

We noticed the same behavior for all the other angular speeds and we ob-

tained the relative curves from which we can create the fuel consumption

table used in the controller.

Also these values are really similar in the range that we said before for the

model and the original data, in particular we noticed that the fuel consump-

tion of the original model is only related with the maximum torque and not

with the power, instead the maximum torque curve is related with both pa-

rameters.

To use these data we created a Matlab function that with only the input of

the maximum torque, related as said before with the power, can create the

lookup tables for the ICE.
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2.3.2 MGU Sizing

The evaluation of the parameters of the MGU and their relations to obtain

the data that we need are made after reading the consideration about sizing

a GMU [25] [26].

To obtain all the models we used the data obtained from the AMESIM tool

using these parameters:

Figure 2.11: Setting of the GMU Parameters

We will keep the same continuous torque, maximum speed, voltage and ratio

peak-continuous torque, varying the continuous base power.
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Similarly to the ICE, the �rst set of data are for the maximum continuous

torque of the GMU, here we will show the comparison for PGMU = 40 kW :

Figure 2.12: Maximum Torque GMU Model Comparison

As we can notice the two curves are really similar, we can observe that the

maximum error is of 2.7 Nm around 170 rad/s (1.3% error).

We obtained this model �tting the data with a polynomial curve of the 3th

order. We can obtain results with this kind of error between the original one

and the modeled one in this range of values for the maximum continuous

power:

20 kW < PMAX < 50 kW

The next data needed are for the e�ciency or the Power losses of the GMU,

in this case we used an approach similar to the ICE one, subdividing the

data on the torque and obtaining all the di�erent curves, it's important to

notice that the parameters for angular speed n = 0 RPM or n = 700 RPM

are not related with the maximum power but are constant, the same happens

for torque T = 0Nm, all these parameters depend on the architecture of the

motor and not only on the power.
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Here we will show the results of the power losses for the case of PGMU = 40kW

and T = 40Nm:

Figure 2.13: Power Losses GMU Model Comparison

We can notice that the two curves are quite overlapped, with a maximum

error lower that 1%.

Merging all the curves for the di�erent torques we can obtain the values for

the table of the power losses used in the controller. As done before we created

a function that needs as input only the maximum continuous power of the

GMU to create all the lookup tables for the controller.
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2.3.3 Battery Sizing

To developed the model of our battery we have taken in consideration other

studies on the battery sizing to �nd a mathematical relation between the

OCV and the SOC and also to see how it is related the internal resistance of

the circuit with the other parameters [27] [28].

In the case of the battery we have analyzed the data of di�erent cylindrical

LiFePO4/graphite batteries from the database of AMESIM using the fol-

lowing parameters in the speci�c tool there to create to di�erent kind of

batteries:

Parameter Unit Battery 1 Battery 2

Voltage Target V 380

Power Target kW 50 75

Table 6: Battery Data

In both cases starting from the data we have obtained the curve for the OCV

related to the SOC and we can show an example of one of the battery at

T = 40◦C:

Figure 2.14: Open Circuit Voltage Trend
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We can see that the two graphs can di�er for no more than 0.002 V with

an error lower than 1%. We obtained this model �tting the data with a

polynomial curve of the 5th order.

In the two cases we can use the following ranges of Energy Target to can use

this model with an error similar to the one showed:

Parameter Unit Battery 1 Battery 2

Energy Target kWh 2 < E < 10 5 < E < 15

Temperature ◦C 20 < T < 40

Table 7: Functions Battery Range

The next step is to analyze the behavior of the internal resistance in all the

range of the parameters shown before, here we have the comparison for the

Battery 2 with EBatt = 15 kWh:

Figure 2.15: Internal Resistance Trend

We can notice from the �gure that the curves for T= 20 ◦C are seems over-

lapped, the derived curve for T= 40 ◦C is really close to the original one.

All the intermediate temperature would be the result of the interpolation be-

tween these two main curves. We obtained this model �tting the data with
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a polynomial curve of the 5th order.

Also in this case we created a function that needs as inputs the chosen Model,

the Temperature and the Energy Target of the battery, it will generate all

the data about OCV and Internal Resistance needed.
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3 Energy Management Strategy

In this section we will explain what is the aim of an Energy Management

Strategy (EMS) and which kind of di�erent strategies are used for the HEVs,

what are usable in the real driving and why [2][29][30][31].

The EMS is a control strategy used for HEVs to decide the strategy on a

mission on a precise circuit, in particular is necessary to decide for each

time-step what components has work and how, respecting all the constrains

due to the components architectures.

In our case we have to manage the components of a Parallel (P2) Hybrid

Vehicle that has an ICE, a MGU, a Battery, the transmission and the �nal

drive.

To develop a controller with one of these strategies are used some di�erent

driving cycles [32][33], here we will enlist the cycles used to elaborate the

controller:

• Artemis Rural Driving Cycle (ARDC);

• Artemis Urban Driving Cycle (AUDC);

• Highway fuel economy test (HWFET);

• Japanese 10-15 mode cycle (J1015M);

• Japanese JC08 Cycle (JC08);

• Los Angeles Cycle (LA92);

• New European driving cycle (NEDC);

• New York City Cycle (NYCC);

• SC03 Supplemental Federal Test Procedure (SC03);

• Urban Dynamometer Driving Schedule (UDDS);

• US06 Supplemental Federal Test Procedure (US06);

• Worldwide harmonized light vehicles test procedure (WLTP).

In the initial phase we have studied all the di�erent cycles to have more data

to elaborate and from which get the information needed to develop the A-

ECMS, then we have decided to select the most various driving cycles and
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the most relevant ones.

All these cycles are not taking into account the grade of the street, we will

show some results of the strategy with some driving cycles elaborated from

some researchers of the "Politecnico di Torino" that are recorded in Turin

with also the altitude of each time step from which we can obtain the grade

of the street.

Here we show the velocities from the WLTP cycle to have an example of how

could be one of these cycles:

Figure 3.1: WLTP Speed Pro�le

Going back to talk about the EMS, theoretically optimal control of more

than one energy sources at all time-steps, given that driver's power request

is satis�ed, will engender a non-linear constrained optimization problem [2].

For this reason there are many di�erent control strategies to solve this non-

linear problem, we can subdivide the in two di�erent categories:

Global Optimal Controls and Local Optimal Controls.

• The �rst category includes the strategies that will analyze the velocities

of the mission knowing both the past and the future steps, in this way is

possible to �nd the best solution possible for that vehicle in that speci�c

circuit with that velocities;

33



3 Energy Management Strategy

• The second one that will �nd the best solution only with the past informa-

tion of the vehicle, in this case based on the research space for the controller

we will obtain our maximum.

Figure 3.2: Global Minimum and Local Minimum Representation

We can call the �rst one also O�ine Control Strategy and the second one

Online Control Strategy, we will see more details in the following sections.

In particular we will focus on the A-ECMS that is an online control strategy

that can be used in a real-driving situation and implemented in the vehicles

currently on the market.

Developed from the standard ECMS that is not suitable for this purpose,

due to the parameters that need to be tuned for di�erent driving situations,

compared to the Rule Based strategy that is currently used in the HEVs

shows really good result for the management of the vehicle, with less FC and

the possibility to decrease the pollutant emissions.

In all the following cases we can study the dynamic system with two decou-

pled states, which are the vehicle longitudinal speed and the battery SOC.

x(t) ∈ R x(t) = SOC (3.1)
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Since are mutually independent, the vehicle speed would be separately con-

trolled from the battery SOC that is used as a state variable [eq. 3.1].

The problem has the following constraints:

• Initial and Final value of the state variable:

x(t0) = x(tf ) = x0 (3.2)

• Instantaneous restriction on the variable:

xmin ≤ x(t) ≤ xMAX (3.3)

• Physical constrains due to the power-train limits and driving cycle re-

quirements
PGMU(t) + PICE(t) ≥ POUT (t)

ωminICE ≤ ωICE ≤ ωMAX
ICE , TminICE ≤ TICE ≤ TMAX

ICE

ωminGMU ≤ ωGMU ≤ ωMAX
GMU , TminGMU ≤ TGMU ≤ TMAX

GMU

(3.4)

In general according to the control theory we can de�ne a control variable

u(t) [eq. 3.5] leading to the minimization of the cost function [eq. 3.6] in a

continuous interval t0 ≤ t ≤ tf . In our case the control variable would be a

general function of the battery power.

u(t) ∈ Rk u(t) = {PBatt(t)} u(t) ∈ U(t) (3.5)

J
(
x(t0), u(t), x(tf )

)
= Φ

(
x(t0), x(tf )

)
+

∫ tf

t0

L
(
x(t), u(t), t

)
dt (3.6)

The �rst term of the cost function identi�es the cost linked to the �nal value

of the state variable x(t), while the second term denotes the instantaneous

cost.

In the EMS the aim is to reach the CS so that the �nal cost is equal zero,

this would be the aim of the battery strategy from which we can ensure the

CS.

To de�ne the dynamic of the system we will focus on the evolution of the

state variable as follow:

ẋ(t) = f
(
x(t), u(t)

)
(3.7)
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This equation will keep trace of the battery SOC variations as function of

the control variable and it depends by the battery model adopted in the

strategy. According to the model showed before in chapter 2.2.3 we can use

the following equation for the system evolution:

ẋ(t) = − 1

Qnom

·
VOC(x) +

√
VOC(x)2 − 4Ro(x) · PBatt(t)

2Ro(x)
= f(x, PBatt) (3.8)

It is important to notice as said before that the model used in Matlab is a

quasi-static model that not take into account of some minor dynamic phe-

nomena a�ecting the fuel consumption in a minor extend, for that is inter-

esting to see the comparison with the results from a dynamic model.

Before starting to illustrate the di�erent strategies it's important to distin-

guish between two kind of control �ows [34]:

• Backward-looking Model: the dynamic model calculates the exact in-

put required to produce a desired behavior, in this way the controller

can test di�erent control sets that satisfy the required input. In case we

have to test di�erent combination of power split among the components

this way is method is favorable

• Forward-looking Model: is allowed only one control input per time, oth-

erwise are required parallel calculations, this model needs an observer

to compare the desired behavior with the obtained one. This model can

be implemented in a real-time logic comparing the data obtained with

the desired ones. Can also be suitable for more sophisticated models

with an higher �delity grade due to the lower computational e�orts of

the model.
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In the following �gure there is a schematic representation of the two di�erent

�ows:

(a) Backward-looking Model (b) Forward-looking Model

Figure 3.3: Comparison Backward and Forward Looking Models

3.1 O�ine Control Strategies

As told before we can call this category Global Optimum or O�ine Control

Strategy, because the controller can examine all the circuit and do all the

calculation to �nd the best possible solution, without taking care about the

computational time.

For the fact that is not a predictive strategy all the e�orts are focused about

the best combination possible of all the components and their parameters.

In this category there are many di�erent strategies developed in the last years

starting from mathematical principles and applying them to the Automotive

sector and in particular to the HEVs world.

In general an optimal control problem in a continuous spatial coordinate s

is: 

minimize
u

∫ sf
si
f0

(
s,x(s),u(s)

)
ds+ φ

(
x(sf )

)
subject to dx

ds
= f

(
s,x(s),u(s)

)
x(si) given

x ∈ X(s)

u ∈ U(s)

(3.9)

Where si is the initial position, sf is the �nal position, x is the state vector, u

is the control vector, f0 is the cost function, f is the vector �eld which givens

the dynamics, X(s)is the set of admissible states as a function of the position

s and U(s) is the set of admissible controls a a function of the position [35].

37



3 Energy Management Strategy

3.1.1 Dynamic Programming

This mathematical optimization method was developed by Richard Bellman

in the 1950s [36], can be used to solve problems where occurs sequential de-

cision making, meaning that every action lead to and evolution of the state

acquiring a reward.

As said is a method that can lead to the global optimum (eq. 3.9), since is

a sequential optimization problem that we can express as follow:

xk+1 = Fk(xk, uk), t = tk withk = 0, 1, ..., N − 1 (3.10)

The objective is to �nd the optimal control strategy π minimizing the dis-

cretized cost function J:

J0(π) = φ(xN) +
N−1∑

0

L(xk, uk, tk) (3.11)

π∗ = arg min
π

J0(π) (3.12)

Dynamic programming is based on the "Principle of Optimality", cause the

algorithm minimizes the cost function from the starting point till the end

of the discretization. Is analyzed every possible alternative, in this sense

will lead to the global optimum within an approximation de�ned by the dis-

cretization step, since is a numerical method.

The optimal cost is calculated moving from the last instant of the optimiza-

tion process up to its initial point [[37]]:

J∗N(x) = φ(xN), t = tk (3.13)

J∗k (x) = J∗k+1(x) + minuk∈Uk
L(xk, uk, tk), t = tk

with k = N − 1, N − 2, ..., 0
(3.14)

The biggest drawback of this strategy is that it cannot be used for the design

analysis, due to the computational cost that increase exponentially with the

number of states and the number of inputs, in this sense cannot be used to

optimize a design parameter, but only with already a prede�ned architecture.

This problem is well know in literature as "Curse of Dimensionality" [38].

Is important to underline that the DP algorithm usually is not used in real

applications for HEV controls, due to the fact that needs to know the driving
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cycle before, that is why is in this section of the o�ine control strategies.

To overcome this problem has been developed the Stochastic Dynamic Pro-

gramming (SDP) that permits to account for casual system perturbations,

the result quality is strongly a�ected by the random process model.

The more sophisticated approaches existing in literature uses a randomMarkov

chain process to derive the future power demand as both function of both

current output and vehicle velocity [39].

The main advantage of the DP is to use it as a benchmark for the other

strategies to see how close to the global optimum can be, to see the behavior

suggested from this strategy to extrapolate some driving rules.

3.1.2 Pontryagin's Minimum Principle

Pontryagin's Minimum Principle (PMP) is an analytic optimization algo-

rithm that can lead to optimal performances for the HEV energy manage-

ment problem if can operate in a convex area of the battery power and fuel

consumption graph, that can be seen also as ˙SOC as a concave function of

the SOC [34].

The method consists in the minimization at each time step a performance

measure, called Hamiltonian function:

H
(
x(t), PBatt(t), t, λ(t)

)
= − λ(t) · f

(
x(t), PBatt(t)

)
+ ṁf

(
PBatt, Preq(t)

) (3.15)

λ̇(t) = −
∂H
(
x(t), PBatt(t), t, λ(t)

)
∂x

(3.16)

Where λ is a co-state variable, f
(
x(t), PBat(t)

)
is a time-derivative function

of SOC equation that represent the system dynamics, ṁf is the best fuel

consumption rate according to PBatt.

The optimal control can be obtained from:

P ∗Batt = arg min
PBatt

H
(
x(t)∗, P ∗Batt(t), t, λ

∗(t)
)

(3.17)

To apply the strategy, it is often convenient to introduce some simpli�cations

on the state variable equation. First it can be rewritten considering that the

fuel consumption does not depend on the SOC so we get that the the optimal
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co-state function λ∗ can be calculated as:

λ̇∗(t) = −λ∗
∂f
(
x∗(t), P ∗Batt(t)

)
∂x

(3.18)

The bene�ts of this control idea is that we can instantaneously determine

the optimal control P ∗Batt with current information when an optimal co-state

λ∗ is given.

We can approximate the co-state function to a constant function if is ne-

glected the dependency of the state variable to the system dynamic equation.

This would mean that the Internal Resistance and the OCV are considered

independent from the SOC and constant, this could be a good approximation

only in a short range of SOC, will not work for a Plug-in HEVs or a control

of HEV in which is supposed to use a larger range of SOC.

This is the main backwards of this strategy for which is necessary to tune an

o�-line procedure to create variations in the co-state function to respect the

behavior of the values linked with the SOC, otherwise would be suitable also

for the on-line control since is considerably lower computational demanding

than DP.
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3.1.3 Slope-weighted Energy-based Rapid Control Analysis (SERCA)

This method has been introduced recently and is described in this paper [21]

The procedure consist of 3 main phases:

• 1 - Sub-problems Exploration;

• 2 - Generalized Optimal Operating Points De�nition

• 3 - Energy Balance Realization

Here we will explain more in the detail in what consists each phase:

• Step 1: after subdivide the main problem in sub-problems, the explo-

ration of the possible solutions can be performed in three sub-stages:

� Discretization of the control variables: all the data of the variables

of the components showed in the previous chapter are discretized

based on their resolution;

� Solutions formation: the combination of the di�erent operating

points lead to di�erent solutions that has to respect the physical

constrains of the problem seen before, can be considered both pure

electric or hybrid points.

� Solutions evaluation: are evaluated the di�erent performances to

�nd the best suitable solution, according to the least fuel con-

sumption and the SOC constrains.

• Step 2: all the di�erent solutions can be represented in a graph based

on the SOC variation and the FC, they will create a cloud of points

with a descending trend, increasing the FC will decrease the SOC vari-

ation, forming a sort of Pareto frontier, as in the following example:
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Figure 3.4: SERCA FC and SOC graph

We would choose the point that allow to reach the CS (0% variation)

with the lowest FC possible.

We would store the optimal solution in a variable using the following

steps:

� Discretization of the fuel consumption interval: the FC would be

subdivided in the interval[ṁfuel_min,ṁfuel_MAX ] with k number

of equidistant points (ṁfuel_k;

� Optimal solutions identi�cation: For each selected point can be

found a corresponding optimal solution that respect the following:

min
[

˙SOC(ṁfuel)
]

subjectedto : ṁfuel ∈
[
(ṁfuel_k −

∆ṁf

2
); (ṁfuel_k +

∆ṁf

2
)
]

(3.19)

We will repeat the operation for each member of the discretized

interval for each sub-problem, obtaining a vector representing the
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discrete hull of the optimal solutions of each sub-problem.

� Slope-based relaxation: local hollows characterized by a lack of

increase in the SOC despite the increasing in the fuel consumption

could be present, the local concave region can a�ect the global

optimization, for this reason is needed a �lter:

˙SOC(ṁfuel_k) < ˙SOC(ṁfuel_k+1) (3.20)

Now it is possible to select adjacent working point to form an

envelop of piece-wise linear function starting from the EV mode

(ṁfuel_k = 0). The slope of the curve that connect two adjacent

point is:

θ(k − 1, k) =
∆SOC

∆ṁfuel

=
SOC(k)− SOC(k − 1)

ṁfuel(k)− ṁfuel(k − 1)
(3.21)

We can see this relation on the graph showed before:

Figure 3.5: Slope Evaluation of Adjacent points

To ensure the convexity there is one more backward scanning of
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the points that have to respect this relation:

|θ(k − 1, k)| ≥ |θ(k, k + 1)| (3.22)

Are allowed only steeper slopes for lower level of fuel consumption.

Now it is time to store all the result points into a matrix, slope,

SOC variation and ṁfuel are stored for the i driving cycle point

in the k row of the matrix using the following variables:

u1|i,k = θi(k − 1, k)

u2|i,k = ˙SOCi(k)− ˙SOCi(k − 1)

u3|i,k = ṁfueli(k)− ṁfueli(k − 1)

(3.23)

There is also a variable for the pure electric condition used as a

benchmark for the optimal performance.

• Step 3: this step is inspired by the energy-balance procedure of the

PEARS algorithm [40]

This step can be summarized with four sub-steps:

� Pure Electric Mode: starting to assume that when is possible we

would use only the pure electric mode, FC=0, to see the total

electrical energy EEV required;

� Variable Replacement: from the matrix obtained before we will

get the variables associated to the |θi| = |θMAX | for that point of
the cycle;

� Variables Update: once the operating point is selected the electri-

cal energy and the FC will change and must be updated:

EEV = EEV + u2|i,1

ṁfuel_TOT = ṁfuel_TOT + u3|i,1
(3.24)

Also the state and control variables would be updated, performing

a left shift in the table of the k di�erent operating points.

� Check: now is needed to verify if we reach the CS, in case we need

to iterate the last two steps to reach that condition.

Once done we can extrapolate all the optimal points and all the

values needed.
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We can visualize this loop in the following �owchart:

Figure 3.6: Fuel Consumption Evaluation

Has been shown [40] that is really important the mesh size of the control

variables to reach a solution really closer to the DP one, instead the

mesh size of the fuel consumption is less incisive for the trend of the

�nal values after a certain point.

In our work we would elaborate some parts of the controller based on the

results of the SERCA algorithm with the starting vehicles, we will also use

the results as a benchmark for our work. We made this decision because

has been showed that the SERCA could reach �nal FC values really close

to the DP ones, less than 1% di�erence. In any case we would try to follow

as much as possible the mode variation of the SERCA, but for the fact that

this algorithm is an o�-line one that knows a priori all the variables linked

with the driving cycle, would not be fair to compare the results.

This would remain a benchmark of the performances of the controller and

about the possibilities to improve that controller.
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3.2 Online Control Strategies

This category can be called Local Optimum or Online Control Strategies, for

the fact that as in the real life the controller can know only what happened

and what is happening right know to make its decisions. Our aim is to

develop a controller that could be used in a real driving situation, on the

same idea of other studies done before [41], [42].

These kind of controller could be near-optimal ones, so they have a great

potential if their parameters are tuned in a proper way, to improve these

controllers are often used the strategies presented before as a benchmark,

trying to see the deviations in the behavior of the two in the same situations.

3.2.1 Rule-Based

In this section we will present the real-time Rule-Based optimal EMS, that

derives from the observation of the o�ine performances of other algorithm

that can lead to the global optimum solution.

This technique [43] [44] [42] consist of the extrapolation of some rules on

two di�erent levels: selection of the operating mode (Pure Electric or Hybrid

one) and torque split between ICE and GMU.

It's important to notice that this technique has to be set up for each kind of

architecture and in particular on the components used in our case [45].

This method will lead to create some look-up tables in which we can �nd for

example the Power Demand, the SOC level, the velocity and so on.

Then we will create if-then-else statements to cover the di�erent possibilities

and to be as close as possible to the optimal behavior observed with an o�-

line controller [46].

The main drawback is that the set up procedure of the rules is fundamental

and can profoundly a�ect the performance of the controller, each driving

cycle can add slightly di�erent rule to the controller, for this we need to �nd

a compromise to the best rules overall.

Another drawback is that the controller is linked with the components, for

this we cannot use this strategy to see di�erent designs, each time we would

need to change the rules.

On the other hand is really low computationally demanding and that's why

could be implemented in the real-time driving, nowadays the majority of the

HEVs have a rule-based controller [2].

This kind of controller is so di�used because is a near-optimal controller, so

the potential of the controller is really high, in our work we will use also this

controller to compare our result with another one controller that could be
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more similar for his characteristics and usage.

We can see this controller as the actual alternative used to be beaten to

decrease the emissions and also to develop a more �exible and wide range

controller. Here there is an example of how could be subdivide a look-up

table and how can be identi�ed the di�erent rules:

Figure 3.7: Rule-Base look-up table

We can see from the �gure that the limits for each rule must be accurate and

also that we need to cover all the space with rules for every kind of situation.
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3.2.2 Equivalent Consumption Minimization Strategy (ECMS)

This method is an on-line approach that can be used for real-time applications

in his adaptive version that we will present later, �rst we will focus on the

original method.

The aim of the ECMS is to minimize for each time step the fuel consumption

using an equivalence factor between the electrical power and the mechanical

one.

The objective function of ECMS is normally de�ned as follow [47]:

J
(
u(t), t, s(t)

)
= ṁf

(
u(t), t

)
+ s(t)

Pm

(
u(t), t

)
HLHV

(3.25)

The physical constrains on the torque, speed, power and battery SOC are

the same presented before. That can lead to the optimal solution:

u∗ = arg min
u∈Ω

[
J
(
u(t), t, s(t)

)]
(3.26)

In the eq. 3.23 we have presented the equivalence factor (EF) called s(t),

this is the core of this strategy. As we can see this parameter is function of

the time and the tuning of this parameter will in�uence all the results.

The big challenge is to �nd a proper way to vary this parameter to reach the

CS and also to be as close as possible to the optimal solution.

It's important to notice that every driving cycle, every design, every archi-

tecture would lead to di�erent equivalence factor. The main problem is to

�nd a path, some rules, to be able to use an appropriate equivalence factor

over the time before starting the trip.

Normally this method can be used only knowing before the cycle, starting

an iterative procedure we can run the driving cycle till when we �nd that

particular EF that can lead to the CS, that value will be used for all the

cycle, as a constant.
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Here we present an example of how could vary the EF for the same vehicle

in di�erent driving cycles:

Driving Cycle EF Average Speed Length

[km/h] [m]

AUDC 1.62 17.6 4870

HWFET 2.29 77.7 16507

J1015M 2.21 22.7 4166

JC08 2.23 27.0 10318

LA092 2.27 39.6 15798

NEDC 2.25 33.3 10932

NYCC 1.45 11.4 1899

SC03 2.24 34.5 5761

UDDS 2.24 31.4 11984

UNECE 2.28 47.9 7950

US06 2.30 77.3 12888

WLTP 2.28 46.5 23263

Table 8: Equivalence Factors Comparison

We can notice that the EF values are in a wide range [1.45, 2.30], this range

depend on the vehicle design and architecture, but in every case we have seen

that for passenger cars the EF ∈ [1.4, 3.5].

The main problem is that there is no particular correlation between the av-

erage speed or the length on the circuit, we can see that the lowest values

are associated with low values of average speed, but the highest values of EF

are associated with really di�erent values of average speed.

For this reason this procedure is di�cult to be used in a predictive way, not

knowing the future velocities, because also a small change in the EF will

bring to a �nal SOC far from the CS.

For this reason on this base we developed a controller that can be more �ex-

ible and adjust the EF values to be as close as possible to the charge sustain

not knowing the future velocities of the driving cycle, as in a real driving

situation.
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Here we present the core structure of the code:
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Table 9: ECMS Table

• The �rst column will contain all the di�erent torques that the ICE can

develop

• In the second column there is the di�erence TGMU = TICE−TReq, where
TReq is calculated as in eq. 2.6 once we have selected the proper gear.

• The ICE speed depends on the gear selected.

• We can calculate the GMU losses based on the GMU torque and its

speed from the data we have presented in the previous chapter.

• The Battery Power required depends on the torques of the ICE and

GMU and their speeds.

• The Battery voltage can be calculated starting from the SOC level with

OCV curve presented in the last chapter.

• The Battery Resistance can be calculated in a similar way using the

internal resistance data of the battery.

• The Battery current would be calculated as said in eq. 2.12

• Once that we have the current and the voltage of the Battery we can

calculate the output Battery Power.

• To calculate the FC we will use the data presented in the last chapter

about the ICE using its torque and speed.
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• The last column will give us the most important value of the Equivalent

Fuel Consumption, calculate as follow:

EqFC = ICEFC ·HLHV + EF ·BatteryPower (3.27)

Based on the EF value the controller will choose the lowest value in

the column to use the minimum energy possible, for this reason the EF

can vary the behavior of the controller in such a signi�cant way.

We will use this procedure for every time step of the simulation, updating

all the values of the components. At the end of the cycle we would have all

the values of the instant fuel consumption that we can sum to see the total

FC on the driving cycle, we will also get the �nal value of the SOC of the

battery to see if we reached the CS.

In the following �gures we will show an example of the results of a driving

cycle (WLTP), with the values of the ICE and GMU torque and also the

SOC and the FC trends:

(a) SOC and FC trends

(b) ICE and GMU torques with the vehicle speed

Figure 3.8: ECMS Results
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3.2.3 Adaptive Equivalent Consumption Minimization Strategy

(A-ECMS)

The core of this strategy is the same of the standard ECMS, the main up-

grade is the possibility to change the EF over the time using a controller, in

this way would be possible to use this strategy in a real-time driving situation

in which the controller will calculate the best EF for each di�erent time step

[48] [49] [50].

To develop this strategy is important to use an o�-line strategy to estimate

the EF over the time on a driving cycle, extrapolate some laws and use them

to control the EF in the A-ECMS.

For this reason the calibration is really important and would determine how

close the result would be to the optimal one and also if we would reach the

CS or not.

In the following chapter we will explain all the di�erent step elaborated to

de�ne the controller and how the EF is adjusted over the time.

We have to remember that the aim of the controller is to be used out from

the driving cycles in a real situation, having the possibility to know only the

current situation or the past ones.

In particular the challenging part is to adapt the controller to di�erent vehi-

cles and be able to perform well in all the cases.
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4 A-ECMS Controller

In this chapter we will show the procedure used to develop the A-ECMS

controller starting from the standard version presented before, we will cover

all the steps to improve its performance and to be adaptable to di�erent

component sizes and di�erent vehicles.

As already said before we would use the SERCA as benchmark for the per-

formance of the controller and also to extract some patterns or rules to use

in our controller.

The controller has been developed initially on the mid-size vehicle with some

components from the library of AMESIM and a 5 gear transmission, then we

have changed the size of the components and also tried to adapt to a 3 gear

and a 8 gear transmissions.

After this step we have also changed vehicle starting to use the mini SUV

data about the vehicle and of its ICE.

Once that the controller can handle this di�erent situations we started to see

if the controller can handle also all the di�erent combinations generated by

the functions showed in the section 2.3.

In the following sections we will follow as much as possible the order in which

the procedures were carried out.
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Here we show the work-�ow to have an overview of the process:

Figure 4.1: A-ECMS work�ow
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4.1 Gear Selection

The �rst step before calculate the ECMS table 3.2.2 is to select the gear, also

in other works are shown di�erent strategies to complete this goal [51].

We have noticed that the SERCA is trying to be in the Electric Mode as

much as possible, in particular using all the di�erent cycles presented before,

about the 86 % of the time the vehicle is in the Electric Mode.

We have also seen that there are a great preponderance of situations in which

the 5th gear is inserted:

Figure 4.2: SERCA Gear Distribution

The SERCA is using for the 90% of the time the 5th gear to reduce the

FC, has to use the other gears only for the transitions during the strongest

accelerations or decelerations.

Based on these facts we have to check deeply if there is a relation during the

E.M. with the gear selected.
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Firstly we analyzed the relation between the Torque developed by the

Motor, the Vehicle Speed and the di�erent gears:

Figure 4.3: EM Torque for the Di�erent Gear at di�erent Speed

We can see from the �gure that for negative torques we are using only the

4th and 5th gears, we can also see a triangular shape for the points of the

5th gear that are reaching the highest torque at low speed.

This graph is useful also to have an idea about which range of torques we

are dealing with using the mid-size vehicle.
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Analyzing the other data we noticed that there is a pattern for the Battery

Power, the Vehicle Speed and the di�erent gears:

Figure 4.4: Battery Power for the Di�erent Gear at di�erent Speed

From this �gure we can notice that there are 5 di�erent curve, one for each

gear, with the battery power involved.

From this fact we introduced in the controller a loop in which it will check all

the feasible gear and �nd out the gear for which we will obtain the minimum

∆SOC that is related with the minimum Battery Power requested.

This because we can see in the graph that as the same speed with an higher

gear the battery power is decreasing.

So now our controller would �rst select the gear according to the minimum

∆SOC in the Electric Mode, ICE Torque = 0 Nm, and then will compare

the consumption with the di�erent ICE torques and the E.M.

The controller is not using anymore the standard automatic shifting logic as

in a standard vehicle and in the standard ECMS.

We have noticed that the more is free to shift gear the more is decreasing the

FC, but we want to make a fair comparison and also we want to deal with a

reasonable number of shifts during a driving cycle.

For this reason we have analyzed the number of shifts with the standard

automatic transmission during the di�erent driving cycles and also with the

SERCA controller to set a parameter to penalize the shifts in way in which
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we would reach a number closer to the AT benchmark, here the data:

Driving Cycle Gear Shifts Gear Shifts Gear Shifts

AT SERCA A-ECMS

AUDC 97 106 121

HWFET 9 5 7

J1015M 32 33 25

JC08 80 87 90

LA092 112 110 105

NEDC 53 48 45

NYCC 51 56 85

SC03 31 37 39

UDDS 83 80 98

UNECE 17 18 15

US06 32 33 43

WLTP 93 86 83

Table 10: Gear Shifts Comparison

It is important to underline that these results are a sample from the mid-

size vehicle with the 5 gears transmission, the SERCA ones in particular are

obtained tuning a parameter for each di�erent driving cycle, are shown only

because is important also for the following comparison that the gear shifts

are close to the AT ones or lower.

On the other hand we can observe that the A-ECMS values are in most of

the case close to the AT ones, only in a couple of cycles is not really close to

that value but is still an acceptable increase of shifts to not compromise our

driving experience.

All the A-ECMS values are obtained with the same settings of the controller,

unlike the SERCA, because our aim is to automate as much as possible the

controller to deal with all the di�erent situations.
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4.2 ICE Status Determination

Now that we have selected the correct gear we have to determine if is neces-

sary to turn on the ICE or not, as said the SERCA controller to reduce the

FC is trying to reduce as much as possible the number of ignitions for the

ICE and to reduce as much as possible the time in which the ICE is working.

To reach our aim we have analyzed the data comparing the Electric Mode

with the Hybrid Mode, to see if there is a discrimination between the two

situations.

We found a pattern in the Power Demand and Battery Power data that we

show in the following �gure:

Figure 4.5: Battery Power and Power Demand graph

We can observe that there is a speci�c region in which the SERCA is acti-

vating the ICE:

BatteryPower < 0

PowerDemand > 0
BatteryPower
PowerDemand

< 1

We would use these rules to select in which situation is necessary to turn on

the ICE.

We noticed that the standard ECMS is turning on the ICE several times
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during the trip, in this way is increasing the consumption because the ignition

has a relatively high value of fuel consumption.

We can see the comparison between the number of ignitions here:

Driving Cycle ICE Ignitions ICE Ignitions ICE Ignitions

SERCA ECMS A-ECMS

AUDC 5 32 7

HWFET 1 1 2

J1015M 1 7 1

JC08 3 14 5

LA092 2 23 4

NEDC 1 13 1

NYCC 1 14 1

SC03 1 9 2

UDDS 1 18 5

UNECE 2 4 1

US06 3 8 2

WLTP 2 13 3

Table 11: ICE ignitions Comparison

As we can observe from the table the SERCA is turning on the ICE only one

time in most of the cycles, anyway the highest is 5 ignitions in the AUDC

one, on the other hand the standard ECMS is �oating between 4 and 32, not

considering the HWFET.

We can notice that using this kind of rules the A-ECMS is working properly

and in a similar way to the SERCA that is our benchmark.

The number of ignitions can in�uence up to the 10% the �nal FC of the

vehicle in a driving cycle, for this reason our goal is to limit the number of

ignitions and select the best situation in which start the ICE and then keep

it on to charge the battery to reach the CS at the end of the circuit same as

what is doing the SERCA.
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4.3 Torque Split Determination

In this section we will show, once we determine that is better to turn on the

ICE, how to split the torque between the Electric Motor and the ICE.

We observed how the SERCA is deciding to split the torque in the di�erent

driving cycles, here is a �gure that shows the behavior:

Figure 4.6: Torque Split

We can notice that the points �t two curves, distincted by the value showed

in the �gure of 90 Nm for this particular vehicle, it is important to notice

that we can plot the curve:

TICE

TDEM
= 90 · 1

TDEM
so TICE = 90

the SERCA is using the ICE with an output torque in the following interval

[77 Nm, 104 Nm], where the maximum output torque is 114 Nm, from this

fact we can set a minimum output torque from the ICE based on the size of

the vehicle.

We would use a value smaller in percentage to the one used from the SERCA

to be more conservative.
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4.4 Equivalence Factor Control

In this section we will show the procedure that we used to set the Adaptive

Equivalence Factor in the controller.

We will �rst show the preliminary study about the EF in di�erent situations

and then we will explain step by step the behavior of the controller of the

Equivalence Factor.

4.4.1 Preliminary Studies on EF

Before starting to explain how we can manage the EF in the di�erent sit-

uations we have to see the behavior of the SERCA controller and how is

changing the EF during the time, for this purpose we want to see the corre-

lations between the EF and other parameters.

To calculate the EF from the SERCA data we are using a formula from eq

3.25:

EF (t) = − FC(t) ·HLHV

PBatt(t) · PDem(t)
(4.1)

We are normalizing for the PDem to compare the other parameters.

Is important to notice that in the following graphs will be showed EFs from

the SERCA data obtained with the �nal results of the cycles, these values are

not the same that we can use in the ECMS controller, we would only compare

the behavior of the EF in the di�erent situation to extrapolate some rules.

62



4 A-ECMS Controller

Using that formula the �rst relation that we want to show is the following:

Figure 4.7: EF related to the Vehicle Speed

We can notice that there is a trend with the speed of the vehicle for the EF

that is decreasing, there are also some points that are out of the trend for

this reason we have to give the right weight to this relationship.

The next study that we want to show is the one with the acceleration, we have

subdivided the cases in which we are accelerating, decelerating or cruising,

we have noticed that while cruising the EF is almost constant, on the other

hand the situations in which the ICE is working while we are decelerating

are really a few ( 20%) compared to the ones in which we are accelerating,

and do not show an interesting trend for our purpose.
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For this reason we will show only the case in which we are accelerating:

Figure 4.8: EF related to the Vehicle Acceleration

We can see that all the EFs are in a short range of values, the mean is lower

than the other situation because we want to use high torques only, and in

particular the cases in which we are using a torque higher than 90 Nm the

EF is around 0.20, accentuating this way of acting.

Here we want to show some 3D graphs that will show the dependency of the

EF from the SOC and the parameters showed before in this section, the �rst

one is the following:

Figure 4.9: 3D trend of EF, Vehicle Sp. and Battery Power
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We can see here how both the speed and the Battery power, related with the

∆SOC, how are leading the EF, in particular we can observe that for a low

battery power, low ∆SOC, and a low vehicle speed corresponds an higher

EF.

We can also observe that there are some areas that are not covered, high

absolute battery power and low vehicle speed. This graph is useful to have

an overview of how is important to manage the EF in the di�erent situations.

We will show it in the next section. The second plot that we want to show

is this one:

Figure 4.10: 3D trend of EF, Vehicle Acc. and Battery Power

In this case we are representing the acceleration instead of the speed of the

vehicle, we can observe the EF is increasing for a lower acceleration and a

lower absolute value of the Battery Power.

The acceleration is related with the output torque of the vehicle and we

would use these information to correlate ICE torque with the SOC and the

EF.
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4.4.2 EF Controller Overview

Here we will show step by step how the controller will work in the di�erent

situations.

Before that, we want to show the di�erent steps explained before how can

in�uence the FC values in the di�erent cycles, all the values would be for the

ECMS controller with di�erent setting:

Driving Cycle Automatic Free ∆SOC ∆SOC

Transmission Shifting ICE on/o�

[g] [g] [g] [g]

AUDC 232.97 131.61 156.20 108.50

HWFET 603.56 516.86 585.28 536.81

J1015M 177.90 109.98 142.38 97.34

JC08 413.60 289.92 354.40 252.48

LA092 592.50 479.55 533.49 371.61

NEDC 425.49 319.99 412.29 284.63

NYCC 101.06 51.11 65.66 40.24

SC03 215.49 164.18 203.59 129.55

UDDS 476.43 340.56 418.98 297.15

UNECE 289.37 236.08 266.72 219.18

US06 465.14 449.43 480.75 416.57

WLTP 874.42 733.75 860.56 621.54

Table 12: ECMS Versions FC comparison

From the table we can observe that the improvement in the controller are

leading to a reduction of the Fuel Consumption, as said before the possibility

to not follow the automatic transmission rules can decrease sensibly the FC

but is not possible to admit this case.

Then for the other two steps, one introducing the gear selection by the min-

imum ∆SOC and introducing a rule to turn on the ICE, we can notice that

the FC is decreasing from the standard version. This could be a good proof

that we are going in the right direction to tune the controller. Now we want

to show the last step before the tuning of the EF, we will show the FC of the

standard vehicle only with the ICE, the performance of the standard ECMS

66



4 A-ECMS Controller

and then of the version with all the three upgrades showed before, is impor-

tant to notice that with a �xed EF is not possible to set an high minimum

torque as a threshold value.

For this reason we would use a lower value of 75 Nm to reach the charge

sustain in all the cycles:

Driving Standard Standard Tuned Ratio Ratio

Cycle Vehicle ECMS ECMS Tun. ECMS Tun. ECMS

[g] [g] [g] Standard V. St. ECMS

AUDC 246.99 232.97 107.20 43.4 % 46.0 %

HWFET 563.37 603.56 529.65 94.0 % 87.8 %

J1015M 182.84 177.90 95.40 52.2 % 53.6 %

JC08 359.89 413.60 199.72 55.5 % 48.3 %

LA092 539.06 592.50 377.77 70.1 % 63.8 %

NEDC 373.04 425.49 241.36 64.7 % 56.7 %

NYCC 97.82 101.06 35.75 36.5 % 35.4 %

SC03 243.10 215.49 124.54 51.2 % 57.8 %

UDDS 413.35 476.43 273.68 66.2 % 57.4 %

UNECE 283.29 289.37 163.58 57.7 % 56.5 %

US06 438.33 465.14 356.05 81.2 % 76.5 %

WLTP 800.67 874.42 584.47 73.0 % 66.8 %

Table 13: Tuned ECMS FC comparison

The table shows how the tuned ECMS is performing better than the standard

version in all the situations and also that we are saving fuel from the non

hybrid version of the vehicle, we are saving around 57% of fuel as a mean of

the di�erent cycles.

The problem with this version of the controller is that is really sensitive of

the EF that we set, as we showed in the table 8 , the values of the EF is

�uctuating for every driving cycle around values between 2 and 3.

For this reason we need to set some rules to manage this factor [52], that can

allow the controller to reach the charge sustain without tuning every time

the initial equivalent factor.

We would control the EF using both the SOC state value and the vehicle

speed of that time step,due to the relationship showed in the section 3.2.2
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and section 4.4.1, we would use a PI controller, as suggested in other studies

[47], to tune the EF.

The EF would be tuned in this way:

EF (t) = EF (t− 1) + kp ·
(

∆SOC(t)
)

+ kI ·
∫ t

t0

(
∆SOC(t)

)
−

+kv ·
(
v(t)− v(t− 1)

)
where ∆SOC(t) = SOCstart − SOC(t)

(4.2)

In the eq 4.2 the kp is the proportional gain from the SOC, the kI is the

integral gain from the SOC in the interval t0, that is the last time in which

the SOC was the same of the starting moment, till the actual instant, kv is

the proportional gain from the velocity.

The main in�uence is from the SOC but also the velocity is giving a small

contribute.

Here we can schematize the behavior of the EF:

Figure 4.11: ECMS Rules: SOC and EF

As we can observe from the scheme, the Speed will lead the EF to change

in the same way, on the other side the SOC is having an opposite behavior,

this means that when the speed is increasing we need to raise the EF so that

we would use more the ICE cause of the cost of the electric energy.

This point is related with one of the main drawbacks of the electric vehicles,

at high speed they consume more energy related to the conventional ICE.

On the other hand if the SOC is decreasing too much we need to activate

more the ICE to charge the battery, so for this aim is necessary to increase

the cost of the electrical energy raising the EF.

These are the main rules that will work during all the trip, then is necessary
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to put some limitations on the minimum and maximum SOC levels, and from

what we noticed about the EF during di�erent cycles and also on di�erent

vehicles we can say that there is a best interval in which the controller should

work, that is mainly between 2 and 3.

For this goal we can present the next scheme:

Figure 4.12: ECMS Rules: Speed and SOC

From the �gure we can notice that to control the levels of the SOC we need

to control the ICE ignition, forcing to turn o� if it is still charging or turning

it on if is not, to avoid to discharge completely the battery that will also

deteriorate its state of health.

We set these limits as follow:

30% ≤ SOC(t) ≤ 95% (4.3)

For the EF we set this rule to keep it in the right interval:

EF (t) = EF (t) + sPEN · kp ·
(
EFmin/max − EF (t)

)
(4.4)

Where the sPEN is just a factor that multiplies the proportional gain.

A similar procedure is applied on the EF for the overcome of two soft thresh-

old on the SOC [52], in particular we want to penalize when the SOC is not

in the interval [50%, 70%] with the following:

EF (t) = EF (t) + sPEN · kp ·
(
SOCstart − SOC(t)

)
(4.5)

The next step is to control the torque split with the SOC level, in case the

SOC is decreasing too much we have to help the controller to turn on the
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ICE, in this case we are admitting lower values of minimum torque with an

equivalent consumption that is lower.

In case we are charging too much we can increase the threshold to make more

di�cult to turn on the ICE.

We can see with a �gure this procedure:

Figure 4.13: ECMS Rules: Torque Split

As you can see in the �gure the minimum torque is regulated with a param-

eter kT and the instant value of the SOC.

With this con�guration we were able to reach the charge sustain in all the

driving cycles for the starting setup of the �rst vehicle, but then changing

the size of the components or the entire vehicle was not possible anymore to

reach the CS in every situation.

For this reason we have introduced some more rules that will take place only

after a certain percentage of the trip.

The percentage of the trip is calculated by the covered distance on the total

distance, so is not based on the time of the trip but on the length.

We wanted to try to not introduce nothing that needs some information

about the future time steps, in this case we would need only to know how

far is the destination from the current point.

This feature can be easily implemented by the use of a navigator system in

the car for every trip of the user. It is important to underline that without

this rules the controller was able to reach a �nal SOC in the interval [45%,
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70%] that is not too wide and is still close to the CS.

We introduced two rules on the trip percentage:

Figure 4.14: ECMS Rules: Trip %

The �rst will start after the 75% and will control the torque split and the

EF, the minimum torque would be raise for the cases in which the SOC is

lower than the starting one to be able to charge the battery, in case we are

overcharging the vehicle the minimum torque would be reduced. For the EF

there would be only an increase of the penalty factor showed in the eq. 4.4

The second one is used at the end of the trip to reach the CS and will replace

the other rules showed before, as said before we have seen that without the

control we would be in the range 45% < SOC(t) < 70%, for this situation is

enough to force the ICE to turn on or o� depending on the SOC for the last

part of the cycle.

Here we will show the trend of the EF and the SOC in a WLTP cycle:

(a) SOC Trend

(b) EF Trend

Figure 4.15: SOC and EF Trends
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In the �gures are shown the two hard limits for the SOC in orange after

which we would act directly on the ICE and the other controls, in purple, for

which we would only penalize the EF, are shown also the two trip controls

at 75% and 90% of the trip with which we can see that we are able to reach

the CS.

We have noticed that this strategy will increase a little bit the FC because

we are not charging the best possible situation but can allow us to use the

controller for a wide range of components always reaching the CS.

As said before we can avoid this control once we choose the component size

and the gear ratios, tuning the other parameter shown before on that par-

ticular architecture and also decreasing the FC.

So we can say that is possible to improve the FC that we will show later in

the �nal results deleting that rule.

It is important to notice that this kind of A-ECMS is able to perform in the

same way with any starting value of the EF, in the literature presented before

we underlined how the starting value is really important to be able to reach

the CS, in our case the EF would be adjusted by all the other parameters

and will be in the right range in few time steps.

72



4 A-ECMS Controller

4.5 FC Comparisons

In this section we will exhibit the results obtained from the controller with

all the features presented in the past sections.

We will compare it with the standard ECMS, the SERCA and also with the

conventional vehicle performances.

We will show the performance of the controller in three di�erent situations

changing the number of speeds of the transmission: we would show the 3, 5

and 8 speed transmissions using the some power-train components, as saying

same ICE, GMU and Battery. In particular the size of the components would

be the following:

• ICE: Max. Torque 120 Nm, Max Power 66 kW;

• GMU: Max Torque 250 Nm, Max Power 40 kW;

• Battery: Power 75 kW, Energy 10 kWh.

4.5.1 3 Speed Transmission

For the 3 speed transmission we would use the following gear ratios:

[3.5 1.4 0.6]

With these data we will obtain the following results:

Driving Final ICE Equivalent Fuel

Cycle SOC starts Fuel Consumption Consumption

[g] [kmª]

HWFET 58.2 % 2 258.29 47.53

UDDS 56.3 % 11 150.95 59.05

US06 62.3 % 2 217.77 44.02

WLTP 61.3 % 8 360.53 48.00

HUUW 60.8 % 21 974.39 49.34

Table 14: 3 Speed Transmission A-ECMS Results

We selected only 4 driving cycle to test the performance of the controller,

based on the most relevant ones, the last one is the union of the 4 cycles to

test the performance in a longer situation.
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We can see that the ICE starts are reasonable out of the UDDS that have

an high value based on the length of the cycle.

We obtained the Equivalent Fuel Consumption imposing the charge sustain

utilizing the following equation:

(SOC0 − SOCf ) ·QMAX · V60% · EF
HLHV

(4.6)

Then using the fuel density of the gasoline (743.8 g/l) and the cycle length

we calculated the consumption in term of km/l of gasoline.

Here we will show the comparison between the di�erent controllers:

Driving FC FC FC FC

Cycle Conv. Veh. SERCA A-ECMS ECMS

[g] [g] [g] [g]

HWFET 364.30 250.27 258.29 368.74

UDDS 405.06 121.20 150.95 224.66

US06 330.49 212.47 217.77 360.82

WLTP 671.00 353.68 360.53 572.85

HUUW 1770.85 937.62 974.39 1411.82

Table 15: 3 Speed Transmission Comparison

From these value we can see that the performance of the A-ECMS controller

is always better than the standard one.
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To be able to analyze better the data we will calculate the ratio between the

di�erent FC of the controllers to compare in an easier way the values:

Driving Ratio Ratio Di�erence Di�erence

Cycle SERCA A-ECMS A-ECMS A-ECMS - SERCA

Conv. Veh. Conv. Veh. SERCA [g]

HWFET 68.70 % 70.90 % 2.20 % 8.02

UDDS 29.92 % 37.27 % 7.34 % 29.75

US06 64.29 % 65.89 % 1.60 % 5.30

WLTP 52.71 % 53.73 % 1.02 % 6.85

HUUW 52.95 % 55.02 % 2.08 % 36.77

Table 16: 3 Speed Transmission Ratios

We can observe that out of the UDDS cycle all the other are in a really close

range of FC values from the SERCA, around 1% o 2%. In particular on

longer driving cycle is performing in a close way to the benchmark.

In the UDDS we noticed already from the number of ICE starts that were

high that was not performing well, the fact that is turning on and o� the

ICE is leading to an increase of the FC.

Is also interesting to notice the di�erence in grams of fuel that is not such

important, we have always to remember that we are saving a large amount

of fuel from the conventional vehicle without the hybrid mode.

We will analyze in a similar way the results for the other two conditions in

the following sections.

75



4 A-ECMS Controller

4.5.2 5 Speed Transmission

For the 5 speed transmission we would use the following gear ratios:

[3.5 2 1.4 1 0.85]

As done before we would start to show the performance of the A-ECMS

controller in the following table:

Driving Final ICE Equivalent Fuel

Cycle SOC starts Fuel Consumption Consumption

[g] [kmª]

HWFET 62.6 % 2 351.93 34.89

UDDS 57.2 % 6 206.74 43.11

US06 60.9 % 3 332.40 28.83

WLTP 61.4 % 3 513.68 33.68

HUUW 61.2 % 15 1397.95 34.39

Table 17: 5 Speed Transmission A-ECMS Results

We can notice that the performance in terms of ignitions and average of the

�nal SOC is better than before.

Now we present the comparison between the di�erent controllers:

Driving FC FC FC FC

Cycle Conv. Veh. SERCA A-ECMS ECMS

[g] [g] [g] [g]

HWFET 563.37 350.55 351.93 536.81

UDDS 413.35 187.02 206.74 297.17

US06 438.33 326.54 332.40 416.57

WLTP 800.67 498.52 513.68 621.54

HUUW 2156.9 1365.63 1397.95 2364.48

Table 18: 5 Speed Transmission Comparison
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As seen before we can see that the A-ECMS is performing always better

than the standard version, we introduce also the ratios between the di�erent

controllers:

Driving Ratio Ratio Di�erence Di�erence

Cycle SERCA A-ECMS A-ECMS A-ECMS - SERCA

Conv. Veh. Conv. Veh. SERCA [g]

HWFET 62.22 % 62.47 % 0.24 % 1.38

UDDS 45.25 % 50.01 % 4.77 % 19.71

US06 74.50 % 75.83 % 1.34 % 5.87

WLTP 62.26 % 64.16 % 1.89 % 15.16

HUUW 63.61 % 65.11 % 1.51 % 32.32

Table 19: 5 Speed Transmission Ratios

As aspected from the data of the A-ECMS we can see that the di�erence

between A-ECMS and SERCA is near the 1% with the maximum lower than

5%.

We can see that in this condition the controller is performing even better

than before.

This is due to the fact that the gear ratios of the 5 speed transmission are

more reliable than the 3 speed one.

Another fact is that the controller was developed at the beginning use the 5

speed transmission due to the large use of this kind of transmission in the

vehicles on the market nowadays.
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4.5.3 8 Speed Transmission

For the 8 speed transmission we would use the following gear ratios:

[4.60 2.72 1.86 1.46 1.23 1.0 0.8 0.68]

Also in this last case we will show �rst the results of the A-ECMS controller:

Driving Final ICE Equivalent Fuel

Cycle SOC starts Fuel Consumption Consumption

[g] [kmª]

HWFET 60.1 % 7 287.43 42.72

UDDS 52.6 % 6 172.79 51.59

US06 63.9 % 2 254.37 37.69

WLTP 61.9 % 2 417.39 41.45

HUUW 61.3 % 10 1676.89 43.49

Table 20: 8 Speed Transmission A-ECMS Results

We can notice that the cycles are performing well out of the UDDS that is

far from the CS, we are under the 55% of the �nal SOC so the data are not

so reliable.

Here there is the comparison with the other controllers:

Driving FC FC FC FC

Cycle Conv. Veh. SERCA A-ECMS ECMS

[g] [g] [g] [g]

HWFET 396.57 287.43 287.78 414.44

UDDS 322.47 142.89 172.79 267.89

US06 359.44 250.83 254.37 359.32

WLTP 598.41 416.04 417.39 572.85

HUUW 1676.89 1097.50 1105.51 1608.58

Table 21: 8 Speed Transmission Comparison
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We can observe that the UDDS is performing worse than the other cases,

but also in this case better than the standard ECMS.

To compare in a easier way the controllers we show the ratios as done for the

other situations:

Driving Ratio Ratio Di�erence Di�erence

Cycle SERCA A-ECMS A-ECMS A-ECMS - SERCA

Conv. Veh. Conv. Veh. SERCA [g]

HWFET 72.56 % 72.48 % 0.08 % 0.31

UDDS 44.31 % 53.58 % 9.27 % 29.90

US06 69.78 % 70.77 % 0.98 % 3.54

WLTP 69.52 % 69.75 % 0.22 % 1.35

HUUW 65.45 % 65.93 % 0.48 % 8.01

Table 22: 8 Speed Transmission Ratios

In this case we can see that the performance are really close to the SERCA

controller, all the driving cycles are under 1% di�erence out of the UDDS

that is not performing well.

It is important to notice that in this case for the fact that the �nal SOC of

the UDDS cycle is far from the CS the formula in eq. (4.6) is not so reliable

for the �nal value of FC.

We want to show also for this case the trend of the parameters of the vehicle

during the cycle.

We selected the WLTP for the variety of situations present in the cycle.
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The �rst comparison is about the Gear Selection, as shown before the A-

ECMS is selecting the gear in the Electric Mode to reduce the Battery Power

needed, here the comparison between the two controllers:

(a) A-ECMS Trends

(b) SERCA Trends

Figure 4.16: Comparison A-ECMS & SERCA Gears Selection

We can see from the graphs that for the most of the time the two controllers

are performing in a similar way, as said over 90% of the time steps there is

the highest gear selected.

We can notice that in the transition between the still position and the cruis-

ing the A-ECMS is shifting a little bit more to decrease the battery usage.

As seen in the previous chapter the total number of shifting is pretty similar

for the two cases for the fact that while cruising the SERCA changes some

times the gear where the A-ECMS is keeping the same gear.
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The second comparison is about the torques requested by the ICE and the

Motor during the cycle, in this way we can also see if we are in the electric

mode or the hybrid one, �rst we will show you the A-ECMS trends and then

the SERCA ones:

(a) A-ECMS Trends

(b) SERCA Trends

Figure 4.17: Comparison A-ECMS & SERCA Torques Trends

We can notice that the main part of the cycle is done in the Electric Mode

in both cases, than we can see that there are two ignitions of the ICE, the

�rst one is happening in the same part of the cycle and also the duration of

the hybrid mode is quite similar, the SERCA is starting and �nishing a little

bit later this mode.

We can notice on the other hand that the second ignition is di�erent for the

two controllers, the SERCA is choosing this mode at the beginning of the

next acceleration around the time step 1550, the A-ECMS is waiting till the

time step 1700 in which we are closer to the end of the cycle and we need to

charge the vehicle using the ICE.

Also using two di�erent parts of the cycle to recharge the battery we have

seen that the FC is really similar, this because the characteristics of the ve-

locities and accelerations of the two part are really similar and will lead to

two situations that have many parameters in common.
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Now we can also appreciate the SOC and FC trend for both the controllers

and also the EF trend for the A-ECMS one:

(a) A-ECMS Trends

(b) A-ECMS Trends

(c) SERCA Trends

Figure 4.18: Comparison A-ECMS & SERCA FC, SOC and EF Trends

We can see that two graphs of the SOC are really similar in the �rst part and

also the FC can be overlapped, then for the fact that the SERCA decides

to switch on the ICE before the other controller we see that the SOC is

overcoming the initial vale and is decreasing in the last part in which we are

cruising at an high velocity.

On the other hand the A-ECMS one want to charge the battery, that arrives

around the 40% of the SOC and then is charging till the initial value.

This behavior is due to the fact that the SERCA knows that charging at that

moment would be enough to reach the end of the cycle, on the other hand

the A-ECMS is avoiding to charge till the end of the cycle because doesn't
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know how far it is from the arrival point.

About the EF we can notice his trend, it is slowly increasing till when the

ICE will start to work and then will decrease rapidly.

We can see that for the most of the time the EF is in the range [2 3] and

when is outside the boundaries is easier to start the hybrid mode as we can

see around the time step 1700 in which the EF is around 4.5 and will start

the hybrid mode.

We have seen how having the same FC the two controller are behaving in

two di�erent ways for some decisions, but in both case the parameters that

are leading the decisions are the same and for this they will lead to similar

situations.

The A-ECMS in interpreting the situations with less data of the SERCA but

applying a set of rules that make it able to adapt to the di�erent situations.
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4.6 Graphical User Interface

In this section we will show the �nal result of the work on the controller with

the development of a Graphical User Interface (GUI) in which is possible to

appreciate the performance of the controller exhibited before, compared with

other controllers and the standard vehicle. Here we show the results of one

simulation with this application:

Figure 4.19: Controller Interface

We can appreciate that on the left there are all the inputs to insert for

the simulation:

• Vehicle Selection: choosing between the Mid-size or the Mini SUV;

• Driving Cycle: we can choose from a list of 13 di�erent driving cycles,

in the legend are reported the 4 most important;

• ICE Torque: we can insert a torque in the range [120 360] Nm;

• GMU Power: we can insert a power in the range [20 50] kW;
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• Battery Energy: we can insert a Energy Target in the range [5 15] kWh;

• Gear Ratios: insertion of the 5 gear ratios;

• Calculate Bottom: will start the simulation.

This version is the one for the 5 speed transmission, but the same interface

can work also with the 3 speed and 5 speed transmissions.

The output of the simulation are on the right and are the following:

• FC of the Conventional Vehicle;

• FC of the Standard ECMS;

• FC of the SERCA;

• FC of the A-ECMS and the �nal SOC;

• Graph with the cumulated FC and the SOC trend.
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5 Optimization Algorithms

In this chapter we will explain some di�erent optimization algorithms applied

to the HEVs.

The aim of this part is to evaluate the di�erent possible combinations of the

parameters linked with the design of the vehicle to see with ones can lead to

a decrease of FC respecting all the constrains of the physical model, being

as close as possible to the CS and also respecting some performance indices

[13] [53].

We will use the functions present in the previous sections (2.3.1, 2.3.2, 2.3.3),

with the limits said before about the range of reliable values, to generate the

data for the controller that will evaluate the FC, evolution of SOC and some

performance indices.

In particular we are taking in consideration two main parameters:

• Acceleration Time from 0 km/h to 100 km/h: This parameter is one of

the most di�used characteristic for a vehicle, is important to take into

account also the performances of the vehicle and not only the minimum

FC, this parameter has to be under a certain threshold depending on

the kind of vehicle and will in�uence the �nal parameter based on his

value.

For both the Mid Passenger car and the Mini SUV we would use as

reference other vehicles on the market of the same size:

Parameter Mid-size Mini SUV

Minimum Time [s] 10 8

Table 23: Minimum Acceleration Times

• Maximum grade of climb a�ordable from the rest position: This second

value would be important for all the real-driving situations in which the

vehicle is starting from the rest position to climb a slope, it's important

that the vehicle can exceed a minimum value depending on the kind of

vehicle and then based on the �nal value would reach an higher score.

We will set as a minimum value the 15% slope for a public road, that

would cover the main restrictions of di�erent countries all over the

world.
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This two parameters would be both considered to evaluate the �nal perfor-

mance index (PI), with the �nal SOC that must be in the following range:

55% ≤ SOCf ≤ 65% (5.1)

With all this constrain we would run the driving cycle to see which compo-

nents will lead to the best FC result.

Now we will present three di�erent algorithms that are often used for HEVs

to optimize some parameters.

5.1 Genetic Algorithm

The Genetic Algorithm is a meta-heuristic method based on the genetic

scheme in living creatures, introduced by J. Holland in the 1970's [54] [55].

The algorithm abstract the problem space as a population of individuals, and

try to �nd out the �ttest individual by producing iterative generations.

The GA will develop the population to an higher quality individuals one, in

which each one of them represents a solution for the problem proposed.

The rules are evaluated by a �tness function to see their quality, observing

the quantitative adaptation of each rule to a certain environment.

The algorithm can optimize multi modal functions because of the multi-point

search methods, is also applicable to discrete search space problems.

The procedure will start from a randomly generated population, a �tness

function would be evaluated for each individual, during each generation three

basic genetic operator are sequentially applied to each individual to create

the new population:

• Selection: select two parent individuals from a population according

their �tness function (higher �tness value would increase the chance

to be selected), there are many di�erent way to select them according

some methods, such as Boltzmann selection, tournament selection or

elitism selection.

• Crossover: there is the probability to have a cross over of the parents

to form a new o�spring(children), without it would be an exact copy

of parents. There are three di�erent kind of crossover: single-point,

two-point and uniform one.
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• Mutation : there is a mutation probability for each individual, the

operator produces a small random changes to the bit string by choosing

a single bit at random.

After this procedure to create the new population it will replace the old one,

now the algorithm will run using the new individuals.

It's important to underline the importance of the �tness function that will

rank all the potentials results according to the criteria chosen in the code,

Here we will show the �owchart of the operations done by the GA:

Figure 5.1: Flowchart of Genetic Algorithm
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5.2 Machine Learning

The Machine Learning as an area of Arti�cial Intelligence (AI) aimed at de-

tecting and predicting patterns [56] coined in 1959 by A. Samuel, the area is

divided into various sub-topics with di�erent models employed based on the

�eld in which we want to use the method.

In particular we will show the Reinforcement Learning (RL) method, used

for similar problems on hybrid vehicles [57].

The RL is concerned with how software agents ought to take actions in an

environment so as to maximize some notion of cumulative reward, focused

on the balance between exploration, of uncharted territory, and exploitation,

of the current knowledge.

In this method there is a decision maker, called Agent, and everything out-

side that is called Environment. For each time step there is the following

interaction between the two:

Figure 5.2: Interactions representation of Reinforcement Learning

As we can see at each time step the agent control the environment state

st ∈ S and on that base takes an action at ∈ A, where S and A are the set

of possible states and actions respectively.

In the next step the Agent will receive the Reward rt+1 that will lead to a

new environment state st+1.

There is a policy π of the Agent that link each state s ∈ S with an action

a ∈ A respecting a = π(s). The aim of the method is to �nd the optimal

policy in which the following equation is maximized for each state s ∈ S:

V π(s) = E
( ∞∑
k=0

γk · rt+k+1|st = s
)

(5.2)

The value of this function is the expected return at the time step t following

the policy π starting from the environment state s, γ is a parameter called
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Discount Rate, 0 < γ < 1 ensure that the in�nite sum converges to a �nite

value, this parameter re�ects also the uncertainty in the future.

rt+k+1 is the reward received at time step t+ k + 1.

Now is needed to de�ne the State Space, using the variables that characterize

the system and �nding a proper way to subdivide them into useful ranges for

the optimization, as seen before for our case we could use the Battery SOC,

the vehicle speed or the Power Demand.

Then we need to de�ne the Action Space, with a �nite number of actions,

for example about the current I to discharge the battery pack, the gear to

select or the switching o� of the ICE, also in this case are de�ned ranges for

each variable.

As seen for the GA is really important to de�ne the reward, cost function for

GA, to be able to reach the best situation possible, in case there are many

factors in our function is also important to give the right weight to each of

them.

Lastly we have to de�ne the learning algorithm, as for example the Temporal

Di�erence (TD) one [57].

This would derive the optimal policy, using Q(s,a) value associated with a

pair of state-action. Are initialized arbitrarily values at the beginning, is

picked a pair and then is calculated the reward function.

To choose the pair there is an eligibility function e(s,a) that could vary be-

tween 0 and 1 based on how many times is used that pair in the algorithm

as the best option.

The eligibility function takes into account only the last M pairs of states-

actions.
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5.3 Particle Swarm Optimization

The Particle Swarm Optimization is a computational method that optimizes

a problem by iteratively trying to improve a candidate solution with regard

to a given measure of quality. The algorithm is inspired by the behavior of

the birds in a swarm.

The individuals are called particles and the population is called swarm, each

particle have his own velocity in the search space, its value is a�ected by

information of the neighbors [58] [59].

For each iteration the best position is saved in a variable, then this value is

compared with the best overall position till that moment and in case updated.

In this way we can see the evolution of di�erent optimal during the iterations

and also the best particle position at the end of the optimization.

Here we present a �gure of the particle evolution during an iteration:

Figure 5.3: Particle Swarm Optimization scheme

We can notice that every particles is characterized by a position xik and

a velocity vik and is also represented the best position pgk, to update the

particle's velocity there is the following equation:

vik+1 = ωvik + c1r1(pik − xik) + c2r2(pgk − x
i
k) (5.3)

Where ω is the inertia weight, c1 is the personal con�dence factor, c2 is the

swarm con�dence factor, r1 and r2 are the random coe�cients ∈ [0, 1].
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Then will be updated the position of the particle:

xik+1 = xik + vik+1 (5.4)

All the positions of the particle must be in the search space, here we will

show a �owchart of the algorithm:

Figure 5.4: Particle Swarm Optimization work�ow

As said we will �x a maximum number of generations and the algorithm will

calculate the cost function for each particle of each generation saving all the

best positions, at the end will show the best results with their relative state

parameters.
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We have seen that the logic of these algorithm is really similar, in each case

the cost function is the core of the method that can lead to good results or

not.

In our case we have decided to proceed with the PSO algorithm for our com-

ponent sizing optimization, that is used also in other projects related with

HEV [22], we have seen that could lead to very good results once identi�ed

a region in the search space, instead of the two others algorithms that are

more in�uenced by random parameters.

We will start from the algorithm presented in this section and we will modify

it for our case, in particular we would need to optimize two di�erent param-

eters, one related to the FC and the CS of the vehicle and another one linked

with the performance index.
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6 Multi-Objective Particle Swarm Optimization

In this chapter we will show the main features of the algorithm that is taken

from Victor Martinez-Cagigal [60].

Here we show the Input Parameters:

Figure 6.1: Particle Swarm Optimization Parameters

As shown in the last chapters is important to choose the number of genera-

tions and all the coe�cients.

This algorithm is checking for each generation the Dominants parameters,

this means:

fi(x1) ≤ fi(x2) ∀i and fi(x1) < fi(x2) for at least one i (6.1)

The algorithm is looking for the lowest parameter of the generation and is

putting them in a repository array to save them for the next generation.

In each generation is peeking some parameters and is doing some mutation

to the values to see if there are also other possible combinations that could

lead to lower values instead of proceeding only around the best parameters

found.

The main feature of this algorithm is the possibility to optimize more than

one function per time, we need to take in consideration the FC and also the

performance, so we need to select the best parameters for both of them.
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Here we will show the optimization for the 5 speed transmission with all the

power-train components for the Mid-size vehicle:

Figure 6.2: Optimization of FC and PI: Powertrain 5 Speed Transmission

In this optimization we are taking into account two driving cycles: WLTP

and HWFET, to have a larger number of situations in which we are using

the controller.

Here we will show the optimization for the 3 speed transmission with all the

power-train components for the Mid-size vehicle:

Figure 6.3: Optimization of FC and PI: Powertrain 3 Speed Transmission
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Now we can collect the data in a table to see which set of components in the

two situations is leading to the least FC maintaining a good performance:

Transmission ICE T GMU P Batt En Gear ratios

[Nm] [kW] [kWh]

3 Speed 187.38 49.9 14.6 [5.00 0.80 0.30]

5 Speed 185.50 50.0 15.0 [3 2.20 1.33 0.74 0.30]

Table 24: Optimized Components by FC and PI

From the table we can see that the size of the two ICEs is quite similar and

is around the 185 Nm with 100 kW of maximum Power, for the motor both

are trying to use the biggest motor present around the 50 kW, to be able to

perform better in the Electric Mode, that as seen before is used most of the

time in each cycle.

The same idea can explain the size of the battery that is close to the higher

edge of the range, in this way we need to use less the ICE and activate the

hybrid mode a lower number of times.

About the gears we can see that last gear is the same for both, as seen before

the 90% of the time the vehicle is using the highest gear and to save FC we

need to use the lowest possible gear ratio.

For the other gears the values are determined more by the acceleration test

that needs a good performance in the �rst speeds, but for the fact that the

target velocity is 100 km/h is not needed an high gear to reach that goal.

Now we can also show the data about the FC and the Acceleration time:

Transmission FC WLTP FC HWFET Avg FC Acc. Time

[g] [g] [km/l] [s]

3 Speed 187.59 140.23 89.86 3.36

5 Speed 189.44 135.51 90.97 3.79

Table 25: Optimized FC and PI

We can see that the �nal values of FC are really close, one is performing

better in the HWFET and the other in the WLTP, due to the characteristics

of the cycle and the number of gear shifts and ignitions.
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For both the cases we are around the 90 km per liter of gasoline burnt, that

is really higher than the starting condition analyzed in 14, in which we were

analyzing a general condition without any particular optimization.

Also talking about the acceleration time we can see that the values are really

close each other, in both case the values are low for the fact that we are using

an high maximum torque for the GMU that is providing an high torque since

the rest position of the vehicle.

It is important to notice that in this case we are not taking in consideration

of various losses and so the �nal values could be far from these presented but

the magnitude would be similar.

We can observe that with similar components of the power-train the per-

formances are quite the same, the transmission is not having such a great

in�uence in the �nal behavior of the vehicle.

We want also to show the improvement from the starting situation observed

in the section 4.5 in the following table:

Transmission FC Opt. FC Non-Opt. FC Opt. FC Non-Opt.

WLTP WLTP HWFET HWFET

[g] [g] [g] [g]

3 Speed 187.59 360.53 140.23 258.29

5 Speed 189.44 513.68 135.51 351.93

Table 26: Comparison Optimized and Non Optimized FC

We can notice that the FC is strongly reduced in both the situation, in par-

ticular the 5 speed transmission one, in which is reduced by more the 60%.

In this way we can see how important could be the optimization of the power-

train and all the energy that we can say with this procedure.

As said before the values could be an underestimation of the real ones but

can give us an idea about the potential of this method.
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Now we want to compare these results with the optimization only of the two

driving cycles just checking if the performance is respecting the condition in

the tab 23, here the results for the 5 Speed Transmission:

Figure 6.4: Optimization of FC: Powertrain 5 Speed Transmission

We have done the same optimization also for the 3 speed transmission, on

the same vehicle, checking the performance of the results.

Here the �nal graph:

Figure 6.5: Optimization of FC: Powertrain 3 Speed Transmission
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In the following table we report the best sets of components selected from

the optimization in both cases:

Transmission ICE T GMU P Batt En Gear ratios

[Nm] [kW] [kWh]

3 Speed 134.5 50.0 15.0 [3.31 0.80 0.308]

5 Speed 135.4 48.6 13.5 [4.86 2.60 1.97 0.64 0.30]

Table 27: Optimized Components by FC

As before the components selected are really similar for the two kind of

transmission, the GMU and Battery components are the same of the previous

optimization, the ICE size is smaller than before due to the fact that we are

not looking for the best performance but only checking that the vehicle is

respecting the threshold imposed.

This optimization is more focusing about the FC in the cycle and for this

reason is needed a smaller ICE that could reduce the FC.

About the gear ratios we can see that the values of the highest gears are

similar to previous ones, because as said before are not so important for the

acceleration performances, the �rst gears are slightly di�erent from before to

save more fuel during the acceleration from the still position.

Here we present also the table with the FC performances:

Transmission FC WLTP FC HWFET Avg FC

[g] [g] [km/l]

3 Speed 186.42 138.79 90.83

5 Speed 189.14 131.33 91.55

Table 28: Optimized FC

As expected the FC is lower than the previous case for the size of the ICE,

lower than 1 kmª, but still lower.

This shows how the size of the ICE is not so important for the FC saving, for

the fact that reducing the size of the 25% we are reducing the FC only about

1-2%, and the di�erent ICEs at the same torques will lead to a similar FC. In

a certain condition we can save fuel selecting the best torque output from the
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ICE, in both the situation the controller is performing this, the possibility to

have an higher torque would be useful only in particular situations in which

we need more power for a limited amount of time.

This is a consequence of the graph about the FC of the ICE showed in �g.

2.10.
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7 Considerations

In this thesis we have presented a methodology to calibrate the A-ECMS

controller to be able to reach the CS in di�erent situations mimicking the

behavior of the SERCA one.

We have seen that we can reach really good performances close to the SERCA

FC result in many di�erent cases.

We want to highlight that once we select a particular vehicle and a set of

components for the power-train we are able to tune the parameters to im-

prove the performance of the controller and reduce the FC.

Another important point is that, contrary to what is reported in the litera-

ture consulted, is not important the �rst guess of the EF if the PI controller

is able to bring this back within a reasonable range in the �rst part of the

cycle.

Another fact is that for a speci�c we can be able to exclude the control over

the percentage of the trip and not using any information about the future

path of the cycle, as we would like from a true real-time controller.

We have seen that we can be around 1% error from the SERCA FC and even

to reduce it, without change no one of the parameters for the gear shifts or

for the ICE ignition, as saying that the controller is totally automatic in his

performance.

Another strength of the control is that the computational time is very low

and would be able to perform in real-time.

We have shown the application of the controller in the Graphic Interface in

the section 4.6, how is possible to an user to set the parameters of a vehicle

of interest and see the behavior of di�erent controllers and compare them in

an easy and rapid way.

The aim is to be implemented in the design of a vehicle adding a more sophis-

ticated model to be more reliable and precise in the �nal values presented.

At this point of the development is already really useful to have a rapid com-

parison and an idea of the magnitude of the �nal values.

Still talking about the design aim, the optimization would be an useful tool

to select some set of components and see their performance in detail.

For the fact that the controller does not require an heavy computational ef-

fort would be possible to study di�erent designs in a limited amount of time

and select the best candidates to be investigate more in detail.
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7.1 Future work

For the future work would be interesting to move from the quasi-static model

of Matlab to a Dynamic one such as Simulink or Amesim.

We have already planned a possible co-simulation between the two software

in the following way:

Figure 7.1: Co-Simulation Work�ow

This work�ow would be able improve the actual control and validate it for a

real application, due to the higher level of reliability of the model.

Another point could be the re�nement of the calibration of the controller

to be able to adapt more to di�erent vehicles and in particular a validation

of the transmission and the other components with real data to see if the

controller is performing well.

From this point, once we select a vehicle, as said before, we would need to

calibrate the parameters on that particular vehicle and reach the best per-

formance possible.
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