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1. Introduction  

Nowadays, many improvements regarding measurement methods and analysis tools are 
being made every day to provide more accurate ways to evaluate all sorts of interesting 
parameters. This has to be done in order to achieve a better comprehension of certain 
phenomena, observed during researches regarding technological studies. In this sense, 
big data are being used every time more frequently to have an extended and thorough 
evaluation in quantitative terms. This is due to the fact that by scanning such huge 
amount of information, hidden patterns can be revealed (Sagiroglu & Sinanc, 2013). 
However, it is not sufficient, in most cases, to acquire massive quantities of experimental 
values. As a matter of fact, once these are obtained from scientific observations, they 
could be characterised in certain ways or, in other words, they could be modelled. This 
is done with the purpose of giving qualitative and quantitative conclusions regarding 
observed phenomena. Said so, several genres of machine learning turn out to be very 
useful when it comes to give a projection and a logical explanation to certain non – linear 
problems, such as the one which will be encountered in this study. This, in simpler terms, 
means having the ability to fully understand the behaviour of observed phenomena 
(Patterson & Gibson, 2008). In addition to this, the availability of a mathematical model 
allows, in most cases, to obtain unseen values for parameters of interest through 
extrapolation.  

In this work, it is desired to verify the effectiveness of certain modern non – deterministic 
approaches towards data modelling, in their manner of verbally describing given 
parameters behaviour depending on given variables. In this case, certain modelling 
procedures will be described and adopted in order to characterise velocity fields observed 
for agitated vessels. Such velocity fields are characterised by several parameters. 
Therefore, their description through conventional modelling would result very difficult 
and not accurate. The importance of giving as precise as possible details about such 
variables stands on the need for knowledge of a very unpredictable thing: Life. As a 
matter of fact, microorganisms are very difficult to fully understand in their interactions 
with surrounding environment. This gives birth to the necessity of making experiments 
which could possibly give, through mathematical modelling, a representation of their 
behaviour in the most concise way. Non – conventional methods adoption in this case 
results necessary, given that great quantities of datasets, exhibiting multiple non – 
dependent variables, have to be manipulated. In the present work, a case of dealing with 
quantitative information, given by a modern experimental method called PIV: Particle 
Image Velocimetry. In the next chapter this topic will be briefly illustrated in order to 
have enough notion to understand what kind of data sets are being modelled in this work. 
The specific machine learning tool which was mentioned before is known by its acronym 
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ANFIS: Adaptive Neuro Fuzzy Inference System, which is getting very popular 
nowadays in control systems and support to decision making in multiple applications and 
fields.  

1.1 Objectives 

A mathematical model correlating certain sets of data has to be as precise as possible, 
guaranteeing a high degree of accuracy in representing employed data. On the other 
hand, it is also advised to keep it simple, in order to let any user being able to have as 
easy as possible interpretation of modelled data and model itself. These aims can be 
reached by means of ANFIS. In fact, this type of modelling will be used in this study, in 
order to show its effectiveness in manipulating a great mole of different data containing 
multiple variables, maintaining at the same time a certain degree of simplicity and 
conciseness in its representation. Further details and explanations about such hybrid 
logical systems will be given in the next chapter.  

First of all, a detailed investigation will be done on ANFIS tool itself in order to construct 
a solid model on previously mention datasets. This means following different procedures 
to have a better comprehension of the influence on the modelling performances of such 
inference systems from the various parameters contained in them. It will be done 
performing a sensitivity analysis, fully described by model fitting indexes. In this case, 
such parameters consist of R2 (Correlation index), IA (Index of Agreement), RRMSE 
(Relative Root Mean Square Error) and finally, a “Fuzzy” combination of these three 

indicators, created on the spot, which will be named after GI, “Goodness Index”. 

Secondly, after having achieved a satisfyingly robust model, many considerations will 
be made towards the algorithms involved in such machine learning systems, 
characterising them not only on the produced model starting from a raw one, but also in 
terms of computational efficiency. This has the purpose of characterising this machine 
learning method in processing speed terms, relative to used computer processor 
characteristics. 

Moreover, ANFIS modelling will be tested with two different types of flows, produced 
by different impellers, in order to see if such models are capable of describing different 
flow patterns. 

Final aim of this work consists in characterising a certain model through its correlation 
characteristics, but with image processing of certain “Low mixing zones” and “High 

mixing zones”. This has the purpose of testing the created model on non – experimentally 
observed power inputs, to see if it is able to produce consistent output even on new values 
of inputs dominion. 
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1.2 Thesis Layout 

After this introduction, Chapter 2 will be employed in order to give theoretical 
explanation about Particle Image Velocimetry, Fuzzy Logic, Neural Networks and their 
hybrid union Neuro – Fuzzy. An overview of involved fitting indexes will be inserted, 
so to understand their usefulness and general characteristics. Moreover, in such chapter 
a newly generated Fuzzy index will be presented. 

In Chapter 3, experimental methods regarding this study will be thoroughly exposed. 
First, a basic explanation of particle image velocimetry experimental technique will be 
given, just with the purpose of understanding the apparatus which concerns the foreseen 
data. Then, the programming frame regarding Neuro – Fuzzy training implementation 
will be shown, defining its main functionalities and setting certain constraints on 
operative conditions used through this thesis paper.  

In Chapter 4, a sensitivity study regarding neuro fuzzy modelling of PIV raw data will 
be shown, followed by its necessary considerations. Of course, such data sets will be 
contextualised starting from their origin where they come from, explaining the 
examinations made in terms of observed fluids and other varied parameters. Different 
membership functions contained in produced inference systems will be investigated in 
order to see how they perform in terms of precision, convergence speed and simplicity. 
Moreover, a simple comparison between Fuzzy and Neuro Fuzzy modelling of presented 
data will be shown, in order to motivate the need for using the second one over the first 
one, proving machine learning ability of the hybrid method as superior. Moreover, 
different observations will be done in order to increase the usefulness of the fulfilled 
model, in terms of predictability towards agitated vessels study. In particular, the aim 
will be to obtain a model capable of giving velocity vector norm as outcome, given a 
certain position in terms of radial and axial coordinate of a cylindric vessel and even a 
power input value measurable as W/m3. Finally, a paragraph will be dedicated to the 
investigation of ANFIS capability of modelling other types of flow patterns, different 
from the ones modelled in the entire thesis. 

Then, Chapter 5 will be used as Conclusion and Future Outlook section, general 
deductions coming from the analysis made through this study will be resumed. 
Successively, the best obtained model will be presented, enunciating its advantages and 
drawbacks. Considerations will be made around possible developments of such ANFIS 
model, in order to make it useful for future technological applications. 
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2. Theoretical framework 

2.1 Particle Image Velocimetry  

This section has the purpose of showing, even though quite briefly, the main 
characteristics, as well as the background, concerning the technology which allowed to 
obtain the velocity field values which will be modelled. Let’s start saying that this 

experimental approach gives the possibility to have velocity values in high quantity of 
positions, in a certain system where a fluid flows by means of a driving force, for 
instance an agitator moving a liquid in a vessel (Prasad, 2000). This gained popularity 
to visualise local liquid motion in a non – invasive way. In Figure 2.1 the main tools 
constituting a generic PIV apparatus is shown.  

Basically, a particular specimen of solid particles called “Seeding Particles” are inserted 

in a fluid, contained in a stirred vessel. They necessarily have to present a density very 
similar to the fluid which has to be examined. Then, a laser illuminates a specific section 
of the vessel, with two consecutive impulses. Particles reflect such intermittent laser 
light, which is captured by a camera, through a synchronizer. This procedure allows to 
obtain two images of these particles in two instants, very close to each other. At the end 
of the procedure, instantaneous velocity values will be acquired in certain positions, 
given that they will be more accurate if the time difference between the two moments of 
acquisition is smaller. Of course, this ensemble has to be attached to a computer, capable 
of processing this information with a suitable software. However, there are some 
necessary conditions for this method to work appropriately, and these obviously lead to 
some limitations. The most important of these certainly consists in the fact that, since 
there must be optical accessibility, it is impossible to load the explored medium up to a 
high concentration of solids. As a matter of fact, solids and even bubbles would obscure 

Figure 2.1 – Main components of a Particle Image Velocimetry measurement and analysis 
apparatus. 
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image capture (Li et al., 2018). This does not give the chance to have a PIV experimental 
representation of an aerated stirred vessel. Nonetheless, it is still useful to make 
considerations about fluid dynamics in some systems, using simple calculations between 
observed points. In some cases, PIV was used to verify theoretical results coming from 
computational fluid dynamics simulations, even of agitated tanks (Sheng, Meng, & Fox, 
1998). In Chapter 3, further details about the specific case of stirred vessel experimental 
observations will be given. 

2.2 Non – deterministic approaches for experimental data modelling 

In this section, there will be a resume of the basic rules and functioning of Fuzzy Logic, 
Neural Networks and finally, most important, Adaptive Neuro Fuzzy Inference Systems. 

2.2.1 Fuzzy Logic Models 

In the early sixties, Lofti Zadeh, professor at Berkeley University, known for its 
contributions to Systems Theory, began to feel that traditional techniques for system 
analysis were excessively and uselessly accurate for many typical problems of the real 
world. The idea of “Membership Degree”, fundamental concept of fuzzy sets theory, was 

introduced by him in 1964. Successively, in 1965 Fuzzy logic was born officially, as a 
topic exposed in an article publication. From then, initially criticised, this logic became 
more and more popular and became object of many studies, getting the form which is 
known nowadays. Fuzzy logic is a valid tool when it comes to represent not completely 
well - defined relationships in non – linear systems, being therefore very common in 
control systems implementation. It is even found as mathematical transcription of 
expertise knowledge (Ii & Ground, 1998). Building correlations from experimental raw 
datasets means obtaining various types of mathematical functions. Usually, developing 
such kind of correlations immediately gives the perception of dealing with something 
very easy to use. However, they often turn out to be not so labile and not very 
representative of the pictured system (Ii & Ground, 1998). 

Fuzzy Logic is a logical system related to the theory of fuzzy sets. These differ from 
their counterpart, crisp sets, as they have unsharp boundaries (J.-S. R. Jang & Gulley, 
2015). This is one of the main characteristics of these sets, as they can “Partially” contain 

an object. In other words, a certain predicate can be owned by a fuzzy set with a certain 
Membership Degree, defined by an appropriate Membership function. Membership 
functions can be derived from many different shapes, such as triangular, trapezoidal, and 
many more. They will be exposed more in detail in next chapters. In Figure 2.2 a fuzzy 
set (membership function) is pictured along with a classical crisp set. The x – axis is 
where a certain parameter is entered, then membership function μ returns a membership 

degree to it. Such degree varies from 0 to 1, depending on respective crisp value. Instead, 
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classical sets only allow full membership (equal to 1) or no membership at all (equal to 
0). 

This is the reason why they are eventually less “Adaptive” compared to their fuzzy 

relatives. Fuzzy inference stands on a rule – based system in order to express 
relationships between antecedents (inputs) and consequents (outputs). These rules are 
structured as IF – THEN propositions, where single or multiple inputs are combined in 
certain manners from the IF part of the rule, being transformed in a certain output by a 
THEN logical statement. An example of fuzzy rules mapping antecedents to consequents 
is shown. In order to keep it simple, a single input – single output rule is presented. 

IF  x  is  A   THEN  y  is  B 

In this case, x is a crisp input, being located in the fuzzy universe of discourse by means 
of a generic fuzzy set A, with a certain membership degree. This is then converted in a 
fuzzy output through another fuzzy set B, characterising the output y with a membership 
degree. After this passage, the fuzzy output is defuzzified in order to acquire a crisp result 
at the exit of the system in use. In other terms, Defuzzification allows to convert the 
output from fuzzy to crisp, so to have a solution in its original measurement units. Even 
though there is more than one procedure of Defuzzification, in this study only one of 
them will be defined: Centroid method (Mamdani FIS). Multiple inputs are usually 
implemented to define a single output. The description of how a single rule produces an 
interaction among multiple inputs is more complex and needs a deeper explanation. First, 
it depends on how inputs are related with each other. In fact, so called Connectives play 
an important role during the inference process. These can be either in form of “and”, 

“or” or “else”. Different operations can be performed by these three, depending on the 
user preferences. For OR connective, the most common operation made is Union 
between antecedents, which means taking the maximum membership degree among 

Figure 2.2 - Comparison between Fuzzy Set and Classical Crisp Set  
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antecedents contained in a rule to transfer it to the output. For example, with two 
antecedents x and y and one consequent z, it would be: 

IF   x  is  A   OR   y  is  B   THEN   z  is  C 

In Figure 2.3 there is a scheme of what happens in the enunciated rule above, given that 
A, B and C are triangular membership function.  

The antecedents x and y, along with the consequent z, have each one its own crisp range, 
mapped into a fuzzy set. The AND operator works in a very similar way, but it is usually 
found in two shapes. The first one, commonly adopted in Mamdani FIS is the Minimum 
operation, while in Sugeno FIS a Product operation occurs. This means that having a rule 
of this kind: 

IF   x  is  A   AND   y  is  B   THEN   z  is  C 

Typical of a Mamdani FIS, it would be graphically translated as in Figure 2.4. Minimum 
operator could be used in Sugeno – type inference system as well. However, in such FIS 
the product operator is more popular, especially when it comes to use a fuzzy system 
produced by a neuro fuzzy training algorithm. Substantially, it consists in operating a 
product between membership degrees of the connected antecedents of a rule.  

Up to now, Mamdani and Sugeno Fuzzy Inference Systems (FIS) were mentioned. They 
show some similarities, but also some differences. Input fuzzification and the application 
of the fuzzy operators are applied for both (J.-S. R. Jang & Gulley, 2015). When it comes 

Figure 2.3 – OR connective between two antecedents in a single rule, performing a Maximum 
operation (adapted from “Fuzzy logic with engineering applications”, Ross, 2010) 

 

Figure 2.4 – AND operation as Minimum, for a single rule in a Mamdani FIS (adapted from 
“Fuzzy logic with engineering applications”, Ross, 2010) 
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to dealing with the output, or consequent, there are critical differences which confer 
certain peculiarities to one respect to the other. Mamdani still has a fuzzified output, 
which is necessarily followed by a Defuzzification method. In Sugeno FIS, instead, there 
is a crisp output coming out from each rule, represented as a pre – specified degree 
polynomial function of the inputs. An example of Sugeno FIS rule is shown below just 
for clarity. 

IF  x  is  A  AND  y  is  B  THEN  z  is  f(x, y) 

Most used functions in such inference systems are zero – degree (constant) and first – 
degree (linear) polynomials. Using crisp outputs partially eliminates consumption of 
computational processing time involved in defuzzification methods, applied in Mamdani 
FIS (Ross, 2010). In fact, Sugeno FIS final solution is obtained via Weighted Average 
Method. This procedure allows to combine more rules to create an aggregated value for 
the output. In fact, a typical FIS of any kind is composed by several rules and each one 
of them produces an output, fuzzified or not (depending on the kind of FIS), which is 
compared to the others. Rules can get combined with each other in different ways. 
Basically, it depends on the type of inference system one is dealing with. Let’s see this 

first for Mamdani method. Let’s imagine a simple FIS, constituted by only two rules: 

Rule 1 → IF  x is A1  AND  y is B1  THEN  z is C1 

Rule 2 → IF  x is A2  OR  y is B2  THEN  z is C2    

Then, let’s say that AND connective operates as a minimum in the first rule, while OR 
connective operates as a maximum in the second rule (as usual for a Mamdani FIS). In 
mathematical terms, it would be (Equations 2.1, 2.2): 

 μC1 = min  (μA1 , μB1) (2.1) 

 μC2 = max  (μA2 , μB2) (2.2) 

Now, since usually it is Disjunctive system of Rules the kind which is most dealt with, a 
Union operator is applied between all individual rule outcomes. Finally, obtained rules 
aggregation is Defuzzified with previously mentioned Centroid Method. This is given 
by Equation 2.3 and graphically consists in finding the centre of gravity of the created 
figure. 

 z∗ =
∫μ(z)  ∙  z dz  

∫ μ(z)  dz  
 (2.3) 

For clarity, followed procedure is illustrated graphically in Figure 2.5. Such procedure 
works for Mamdani FIS. There is interested also on Sugeno FIS, since it will be used to 
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develop several ANFIS models in the next chapters. A similar process of input insertion 
and output crisp value obtainment is going to be described for a Sugeno FIS. Let’s 

suppose having a first – order Sugeno FIS, this means obtaining from each rule a first – 
order polynomial function of the inputs.  

Then, for simplicity, let’s just use two rules for two inputs and a single output. In this 

case, inputs will have Gaussian – shaped fuzzy sets, just to show another example of 
Membership function. Two rules are shown: 

Rule 1 →  IF  x is A1  AND  y is B1  THEN  z  is  z1 = p1 x + q1 y + r1 

Rule 2 →   IF  x is A2  AND  y is B2  THEN  z  is  z2 = p2 x + q2 y + r2 

It was previously mentioned that, with this type of FIS, AND connectives work as 
product operators between inputs membership degrees. Moreover, these will produce so 
– called weights 𝑤𝑖 (Equations 2.4, 2.5), which are needed to apply the Weighted 
Average Method (Equation 2.6):  

 w1 = prod  (μA1 , μB1) = μA1  ∙  μB1 (2.4) 

Figure 2.5 – Example showing a two rules Mamdani FIS functioning, comprehending rules 
connective operation, rules aggregation and Centroid Defuzzification (adapted from “Fuzzy logic 

with engineering applications”, Ross, 2010) 
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 w2 = prod  (μA2 , μB2) = μA2  ∙  μB2 (2.5) 

 z =
w1 z1  +  w2 z2

w1 w2
 (2.6) 

From last expression, a final polynomial function is obtained by means of weights, then 
initially inserted input values are entered in such function to find the final solution. In 
Figure 2.6 a graphical explanation of previous expressions is exploited. 

There is an utter type of FIS, called “Tsukamoto”. However, this will not be explained, 
since it is not of interest in this study. After having shown basic features of Mamdani 
and Sugeno systems structure, it is worth listing some of the main reasons why they are 
applied in certain circumstances, instead of others. First aspect, which has to be 
considered, is the presence of membership functions in the output, occurring in Mamdani 
and not in Sugeno. This certainly confer more interpretability to Mamdani compared to 
Sugeno, since it is easier to deal with eye – catching fuzzy sets labelled by linguistic 
expressions rather than oblivious polynomial expressions (Egaji, Griffiths, Hasan, & Yu, 
2015). On the other hand, as previously stated, Sugeno skips Defuzzification passage, 
being computationally lighter in terms of processability. This fact will be demonstrated 
with a dataset modelling in one of next chapters paragraph. Secondly, Mamdani 
inference system lacks of flexibility in designing ease compared to Sugeno’s, since this 

can be implemented with adaptive neuro – fuzzy inference systems in order to detect best 
values of modifiable parameters, for modelling purposes (Singla, 2015). In conclusion, 
Mamdani is more suitable when it comes to transferring Human Knowledge to an 

Figure 2.6 – Example showing a two rules Sugeno FIS functioning, comprehending weights 
obtainment and Weighted Average (adapted from “Fuzzy logic with engineering applications”, 

Ross, 2010) 
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inference system, while Sugeno is more suitable for Machine Learning. Figure 2.7 
resumes very simply the process of converting a crisp input in a crisp output with 
Mamdani and Sugeno fuzzy inference systems (used separately). 

 

Figure 2.7 – Scheme of Fuzzy Inference Systems functioning from input insert to output 
obtainment 

2.2.2 ANN: Artificial Neural Networks 

A brief explanation regarding this very popular machine learning method is needed. In 
fact, if it is true that Adaptive Neuro Fuzzy Inference Systems adopt fuzzy sets and rules 
to map inputs into outputs, it still has Neural Network training algorithms. The main 
reason for this resides in the fact that Artificial Neural Networks have a wide range of 
model parameters optimisation tools. Fuzzy inference systems do not have such 
capabilities on their own. Therefore, when a certain precision is required it is very 
difficult to change FIS modifiable parameters, in order to have an overall better mapping. 

 “A neural network is a technique that seeks to build an intelligent program (to 

implement intelligence) using models that simulate the working network of the neurons 
in the human brain” (Ross, 2010). 

This short pass of Ross’ book appropriately introduces this topic. The wide variety of 

models of this family cannot be regardless of its fundamental component, the “Artificial 
Neuron”, proposed by W.S. McCulloch and Walter Pitts in a famous work in 1943: “A 
logical calculus of the ideas immanent in nervous activity”. This study schematises a 

linear threshold combinator, with multiple binary data as input and a single data as 
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output. In that first case, a suitable number of elements of that kind, connected in such 
way to form a network, could calculate simple Boolean functions. 

First, it is important to define Artificial Neural Networks’ structure, in order to 

comprehend involved learning mechanisms. Human neural networks are substantially 
composed by neurons and dendrites, which are connections between neurons. 

 

Figure 2.8 – Simplified layout of an Artificial Neural Network, constituted by an input layer, an 
output layer and a single hidden layer (adapted from “Artificial neural networks are changing 

the world. What are they?”, Graham, 2015). 

ANN work in an analogous way. They have neurons, more often denominated “Nodes”, 

and connections between them. Such networks are organised in layers of neurons, which 
transfer information in form of numbers from a layer to the next one. Moreover, each 
node receives information from each node of the previous layer, then it passes it in 
another way to each node of the next one. This is going to be seen more in detail. Figure 
2.8 allows to make the description easier. There are three layers, comprehending an input 
layer on the left, a hidden layer in the middle and an output layer on the right. It is 
important to say that a single hidden layer is used just for simplicity, because often more 
hidden layers are employed, and they can be looked at as a black box. Input layers have 
fixed nodes number, equal to the number of input variables. Of course, this is valid also 
for the output layer. On the other hand, number of hidden layers and nodes per layer are 
not a constraint. In fact, the choice of these parameters is left to the network builder. 
Every connection has its own “Weight”, which is a number that could be negative or 

positive. Then, every node has its own “Bias”, also known as threshold, and its utility 

will be shown promptly. Finally, every node has the task of elaborating and computing 
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information from the previous layer, translating it in a space between 0 and 1 through a 
particular function. They are called “Activation Functions” and they are usually 
characterised by Sigmoidal shapes (Equation 2.7), even if for some researchers they are 
old fashioned nowadays. 

 σ(x) =
1

1 + e−x
 (2.7) 

Given these premises, let’s see how a neural network operates from input insert to output 
obtainment. Let’s consider only one node of the hidden layer. Once inputs values are 

dictated, they are multiplied for the weights and they are fed to the considered node 
through its connections with inputs nodes. This node computes received information by 
making a sum of weights multiplied by previous nodes exit values, minus previously 
mentioned Bias. This parameter is defined differently for each node and it serves the 
purpose of acting as a “Threshold”. In fact, this value let the node be activated only if 
the entered sum is higher than a certain value, and by activated it means that it goes to 
affect next layers nodes inputs. Equation 2.8 reports a node input in mathematical terms. 

 node input = (∑wi ai

n

i=0

) − b (2.8) 

where i = 1, … , n with n equal to previous layer nodes number. As previously stated, 
when such node input is given to a sigmoidal function it is compressed into a space 
between 0 and 1 and sent to the next layer. So, this occurs for all nodes of the hidden 
layer receiving inputs from input layer. They compute the outcome, which is then sent 
to the output layer, which itself computes again a summation and insert it along with its 
biases. Finally, they give a certain network computed output. 

A famous example of how Artificial Neural Networks could possibly be employed, is 
demonstrated in the case of “Written Numbers Recognition”. Basically, there is a certain 

Figure 2.9 – Written numbers (from 1 to 9) recognition model with trained ANN 
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quantity of pixels on a screen, for example 28 x 28. A well – trained ANN, with the 
adequate training datasets, should be able to recognize a number from 0 to 9 when a 
drawn number on the screen is given as an input. This example is schematised in Figure 
2.9. Training a neural network is always required, in order to have the right output from 
given inputs. As a matter of fact, there is no way someone could build a well - functioning 
network starting from scratch without training it. First, number of hidden layers is pre – 
specified, along with the number of nodes. These are never fixed, network builder 
decides how many of them must be put in the network and see if they perform well after 
training. Said so, an initial random guess is made regarding weights imposed to the 
connections and nodes’ biases. It is almost impossible to predict immediately which 

weights and biases would confer the best properties to a model. On the other hand, 
activation functions computing inputs in nodes are not modifiable. Once their type is set, 
it must stay the same. Therefore, variable parameters which are going to be changed 
through training process are Weights and Biases. If number recognition had to be done 
without training, it would probably give wrong answers. How is a written number put 
into a network in form of numerical input from an image? This is done through pixels 
Brightness, going from 0 (maximum darkness) to 1 (maximum brightness). Once number 
of pixels is given, every pixel brightness becomes the input for the network. This should 
be able to produce an outcome from 0 to 1 for each number from 0 to 9 (so possible 
outputs quantity is imposed as 10). The number with the highest value of activation 
should be most probable answer. ANN which was never trained before produce a certain 
error in the output, meaning there is a difference between the expected output and the 
produced one. This error is used to modify weights and biases, going backwards from 
the output layer to the input layer. This process is called “Back Propagation”. Then the 

input is fed again to the network, the error is re – calculated and this cycle goes on and 
on iteratively. It stops either when a desired error threshold is reached or when a pre – 
imposed number of iterations is overcome. Back Propagation plays an important role in 
this thesis work, since it is used in ANFIS hybrid learning method modelling to adapt 
premise parameters on training datasets. Therefore, it is worth explaining its working 
principles. First, the definition of error is given in Equation 2.9. 

 ej(n) = dj(n) − yj(n) (2.9) 

Where j is referred to an output node, n is the iteration number, d is the desired output 
and y is the produced output. Weights and biases have to be modified in order to 
minimise a certain “Cost Function”, which is obtained by computing the sum of all 

square errors coming from the output for every single data, then averaging it for the entire 
training dataset by summing them all and dividing by number of datasets (see Equations 
2.10 – 2.11). 
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 E(n) =∑ej
2(n)

j

 (2.10) 

 cost function → ℇav =
1

N
 ∑Ei(n)

N

i=1

 (2.11) 

Where i is the index referred to a certain input – output dataset and N is the total number 
of data set involved in the training process. It is important to say, even if already 
mentioned, that such cost function is a function of Weights and Biases. Hence, in order 
to minimise it, these parameters are modified during the learning process. This is 
achieved through iterative methods. In Back Propagation, the learning process follows a 
double pass iterative procedure (Tadeusiewicz, 1995), a forward and a backward 
passages. Forward consists in entering inputs in the system from the input layer, then 
letting the network do its calculations without changing anything. Next, once the outputs 
are produced, the cost function is obtained and the path is inverted, modifying weights 
and biases going backwards from the output layer to previous hidden layers. This is the 
reason why this is called Back Propagation. However, weights and biases are not 
modified casually. In fact, in this method they are selectively increased or decreased in 
value, following the Gradient Descent approach. In Figure 2.10 an example of gradient 
descent is shown in two dimensions, just to explain the concept graphically. 

However, in ANN the gradient descent is performed over thousands of dimensions, equal 
to the number of weights and biases. Right after the forward pass, training system 
computes the gradient of the cost function, doing the derivatives respect to weights and 
biases. Substantially, modifications are applied to those parameters where the derivative 
has highest value towards the desired outcome in each dataset. The major drawback of 

Figure 2.10 – Graphical illustration of Gradient Descent Method in minimum search for a Cost 
function (adapted from “Gradient Descent with Momentum”, 2019) 
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this method is that the gradient of the cost function is usually a vector of huge 
dimensions. Therefore, its manipulation can be computationally heavy. Methods such as 
Gradient Descent are required whenever non – linear problems must be solved. In fact, 
flow pattern determination is a non – linear problem (Fontenla-Romero, Erdogmus, 
Principe, Alonso-Betanzos, & Castillo, 2003). 

It is not difficult to see, from this short review of Artificial Neural Networks, that they 
have great potential as Machine Learning method. This quality derives from the fact that 
it has many ways which can be followed to efficiently train it, given that premises for 
the model are sufficiently well – imposed. In addition to this, as Fuzzy Logic, ANN 
employs an encoded numerical space from 0 to 1 to let the internal parts of the structure 
communicate among themselves. A major drawback of ANN resides in the fact that 
hidden layers section acts as a “Black Box”, unable to interpret relationship between 

input and output.  

2.2.3 ANFIS: Adaptive Neuro – Fuzzy Inference System 

It is simple to imagine that this approach comprehends features from both Artificial 
Neural Networks and Fuzzy Inference Systems. Substantially, an ANFIS is 
mathematically speaking a FIS with a Sugeno – type inference system (or Tsukamoto, 
but in this text, it will not be considered). Nevertheless, it is not just a Sugeno FIS, it has 
a structure which allows it to be trained using powerful methods, applicable to ANN. In 
this way, this hybrid apparatus combines these two worlds of soft computing, obtaining 
as result a human – like reasoning style typical of fuzzy systems along with the learning 
and connective nature of artificial neural networks. Starting from these premises, it is 
quite understandable how these inference systems can be employed in decision making, 
signal processing, control and, as in this case, modelling. In addition to this, ANFIS is 
not the only type of neuro – fuzzy hybrid systems. In fact, other neuro – fuzzy 
architectures exist, for instance FALCON (Fuzzy adaptive learning control method) and 
GARIC (Generalized Approximate Reasoning based Intelligence Control) (Vieira, Dias, 
& Mota, 2004). In Figure 2.11, an example of an ANFIS structure for a Sugeno model is 
represented. It must be considered that, even if in this picture only two inputs with four 
membership functions and four rules are shown, these systems often have a considerable 
quantity of them. Therefore, this is shown in this way just for simplicity. In addition to 
an input layer and an output layer, which is obviously shown both by FIS and ANN, five 
layers are labelled in Figure 2.11. Since such system proceeds from input insert as it must 
be Feed Forward, layers are numbered from 1 to 5 starting from the left to the right. 
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Layer 1: this is the layer which is adopted for input Fuzzification. In fact, its nodes are 
Adaptive, since they are characterised by Membership Functions, thus having modifiable 
parameters. For example, Gaussian – type membership function has the form reported in 
Equation 2.12. 

 f(x) = a e
−
(x−b)2

2 c2  (2.12) 

Where a, b and c are here defined as Premise Parameters (J. S. R. Jang, Sun, & Mizutani, 
2005). It was already stated, at the end of last paragraph, that membership functions can 
be considered as activation functions, since they squish any input into a space of truth 
between 0 and 1. Usually, these nodes are connected each one to every input node, as it 
is usually seen for neural networks. Each node of this layer computes an outcome based 
on its membership functions. Considering inputs x and y, in notation this can be exploited 
as (Equations 2.13 – 2.14): 

 𝑂1,𝑖 = 𝜇𝐴𝑖(𝑥)            𝑓𝑜𝑟 𝑖 = 1, 2     (2.13) 

     𝑂1,𝑖 = 𝜇𝐵𝑖−2(𝑦)           𝑓𝑜𝑟 𝑖 = 3, 4 (2.14) 

First subscript 1 is referred to the first layer, the second index to node number, which is 
membership function number where A is referred to input x and B to input y. 

Figure 2.11 – Explicative example of an Adaptive Neuro – Fuzzy Inference System structure for 
a Sugeno type (adapted from “Optimization of EPB Shield Performance with Adaptive Neuro-
Fuzzy Inference System and Genetic Algorithm”, K. Elbaz et al., 2019”.) 
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Layer 2: considering that involved rules have AND connectives, in this case it is chosen 
to perform a product between incoming signals (inputs to layer 2 nodes). In fact, in 
Figure 2.11 it is noticed that these nodes circles have product signs Π in them. Therefore, 

in such layer there will be node function as Equation 2.15: 

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) 𝜇𝐵𝑖(𝑦)       𝑖 = 1, 2 (2.15) 

Sign wi stands for weight. In ANFIS language, weights are usually called “Firing 
Strengths” of a rule. Since it is Sugeno system what is being talked about, weights are 

produced for next steps. Besides, in this case there are only two nodes for layer 2 because 
only two rules are considered to be present in this example.  

Layer 3: in this layer, weights are normalized respect to all other weights. As previously 
mentioned, since these can be also denominated Normalized Firing Strengths. For two 
rules it would be (Equation 2.16): 

 𝑂3,𝑖 = 𝑤̅𝑖 =
𝑤𝑖

𝑊1 +𝑊2
       𝑖 = 1, 2 (2.16) 

Layer 4: here nodes become adaptive again. In fact, each node has its own linear function 
(considering this Sugeno FIS as first – order). Therefore, there are linear parameters 
which are modifiable, specifically three for each function fi: pi, qi and ri. These are 
labelled as Consequent Parameters. In this case, since there is an output function for 
each rule, there are two linear functions. They are multiplied by their own normalized 
firing strengths (Equation 2.17): 

 𝑂4,𝑖 = 𝑤̅𝑖 𝑓𝑖 = 𝑤̅𝑖 (𝑝𝑖 𝑥 + 𝑞𝑖 𝑦 + 𝑟𝑖)       for 𝑖 = 1, 2 (2.17) 

Layer 5: there is only one node which computes a summation over all incoming signals 
from layer 4 nodes. Finally, it gives an outcome which is the final solution from the 
ANFIS (Equation 2.18): 

 overall output = 𝑂5,𝑖 =∑𝑤̅𝑖 𝑓𝑖
𝑖

=
∑ 𝑤𝑖 𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
       for 𝑖 = 1, 2 (2.18) 

Hence, this is how any ANFIS produces an output from its fuzzy network by inserting 
inputs. However, what happens with membership functions of FIS and nodes in ANN, 
still applies for these inference systems: there is no specific way to tell which the best 
number of rules and membership functions is to use, in order to have a good 
approximator, without being too heavy in terms of computation. It is easily 
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understandable to say that if an ANFIS had a very high number of functions and rules, it 
would satisfyingly represent trained datasets. The determination of membership 
functions shapes and quantity should be left to the user, then the training will adjust their 
non – linear parameters. Initial fuzzy model can be derived systematically through a few 
techniques, in order to have a raw structure to start with. Most popular methods are Grid 
Partitioning and Subtractive Clustering. 

2.2.3.1 Grid Partitioning 

This technique substantially partitions input space in several fuzzy regions. This allows 
to create the antecedents which are then going to be positioned within rules of the 
inference system (Mrinal, 2008). It must be specified that this method turns out to be 
effective when inputs number is not too high. It is easier to understand how it works by 
considering an input space composed by only two inputs, as in Figure 2.12. In this way, 
fuzzy regions are visible. The outcome for the implementation of this method is a 3 x 3 
rules system, with a total of 9 rules, each one defined by an output function. 

In addition to this, grid partitioning does not create adapted regions in the input space 
from the start. They are homogenously distributed. However, they are modified as 
training proceeds. This method has the disadvantage of being “Greedy”, that means 

creating a lot of rules and membership functions. This drawback will be discussed in 
Chapter 4.  

 

Figure 2.12 – Grid Partitioning for an input space composed by two inputs x and y, each one 
defined by three membership functions (adapted from “Estimating Development Time and 

Effort of Software Projects by using a Neuro Fuzzy Approach”, V. Marza et al., 2009) 
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2.2.3.2 Subtractive clustering 

This method is more specific on hitting certain areas by analysing datasets, classifying 
them with clusters (Yeom & Kwak, 2018). Number of clusters is not initially specified 
when the method is applied. However, considering input space as a hypercube, the user 
must fix the dimensions of cluster by their radii. Number of fuzzy rules increase 
proportionally as cluster radius decreases. This type of clustering follows a certain path. 
First, density function (Equation 2.19) is implemented in order to individuate which 
points are most likely to become clusters centres. Cluster radius, ra, is a constant in this 
expression, while between double brackets there is a Euclidean distance. 

 Pi =∑exp(−
||𝑥𝑖 − 𝑥𝑗|| 

(
𝑟𝑎
2)

2 )

𝑚

𝑗=1

 (2.19) 

Then, the data points having the highest density, found through this function, are grouped 
in the first cluster. This one is removed using Equation 2.20: 

 Pi = 𝑃𝑖 − 𝑃𝑐1 ×∑exp(−
||𝑥𝑖 − 𝑥𝑗|| 

(
𝑟𝑏
2
)
2 )

𝑚

𝑗=1

 (2.20) 

It is noticed that instead of ra there is rb. This is a constant too, it is the radius of the 
elimination function. These steps are recursively followed until density value becomes 
smaller than the set value. Figure 2.13 reports a graphical example of a two variables 
case, where three clusters are individuated in black, while other data points are illustrated 
in red. 

Figure 2.13 – Subtractive clustering for an input space composed by two inputs x and y (adapted 
from “Performance Comparison of ANFIS Models by Input Space Partitioning Methods”, Yeom 

et al., 2018) 
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2.2.3.3 ANFIS Hybrid learning method 

In previous paragraph, Back Propagation training method was explained for ANN, with 
the purpose of anticipating it also for neuro – fuzzy system. First, it must be specified 
that Back Propagation can still be used for ANFIS. Nonetheless, most implemented 
method for such fuzzy networks turns out to be a combination between Back Propagation 
and LSE, least square estimator. As a matter of fact, compared to solely applying Back 
Propagation, this method returns a higher speed of convergence since the gradient 
descent has less dimensions where to find the minimum error (J. S. R. Jang et al., 2005). 
It is based on linearity of adaptive parameters present in the inference structure. 
Specifically, premise parameters such as Gaussian curve coefficients can be classified as 
non – linear. On the other hand, consequent parameters, which are constituted by output 
linear functions coefficients, are labelled as linear. Hybrid training algorithm is obtained 
by alternatively modifying premise and consequent parameters, while maintaining fixed 
the other one. This is done in a two passes recursive algorithm: a forward pass, where 
premise parameters are kept fixed and consequent parameters are modified through 
linear least square estimator. In the backward pass, Back Propagation of error is applied 
following gradient descent procedure, changing non – linear premise parameters while 
maintaining unvaried consequent parameters. In Table 2.1 this concept is resumed. 

  

 

 

 

 

 

A brief description of how LSE operates in this field is needed to have a basic 
comprehension of how hybrid training works. First, it is necessary to define why 
modifying consequent parameters can be considered a linear problem. Considering a FIS 
such as the one reported in previous paragraphs, carrying two output functions to be 
weighted, it would be: 

 
f =

w1
w1 +w2

 f1 +
w2

w1 +w2
f2 

= w̅1 (p1 x + q1 y + r1) + w̅2 (p2 x + q2 y + r2)  
(2.20) 

= (w̅1 x) p1 + (w̅1 y) q1 + (w̅1) r1 + (w̅2 x) p2 + (w̅2 y) q2 + (w̅2) r2 

Table 2.1 – Synthesis of the procedure of ANFIS hybrid training method 

 Forward pass Backward pass 

Premise parameters Fixed  Gradient descent 

Consequent parameters Least squares estimator Fixed  

Signals  Node outputs Error signals 
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This can be extended also to a higher number of output functions. It is clear that f is 
linear in consequent parameters pi, qi and ri. In general, after fixing values of premise 
parameters, if a certain batch of datasets goes to substitute variables in final output 
function several times, letting linear coefficients to be determined, it becomes a system 
with the form of Eq. 2.21: 

 Aθ = y (2.21) 

Where A is a matrix containing all known terms constituted by products between 
averaged weights and values of input data, while y represents desired output, still dictated 
by data. On the other hand, θ represents consequent parameters vector, which are 

unknown at each epoch. This vector is called the “Least Square Estimator”, as it is used 

to minimize the error. Generally, problem consists in finding the minimum of: 

 E(θ) =∑(yi − ai
Tθ)

m

i=1

= eTe = (y − Aθ)T(y − Aθ) (2.22) 

2.3 Correlation Indexes 

This section gives a general perspective over some of the most used correlation indexes: 
Relative Root Mean Square Error (RRMSE), Index of Agreement (IA) and Coefficient 
of Determination (R2). These will be employed after modelling procedures shown in next 
chapters, to understand how well different created models approximate data, besides 
comparing them. These evaluations will be shown on both training and validation data. 
Moreover, a “Fuzzy” combination of these three indicators will be adopted in order to 

sum up their effects in only one parameter. This will be called the “Goodness Index”. 

There is no strict way on how to determine goodness of fitting for a certain model. In 
fact, choice of correlation indexes is left to the user. Moreover, use of multiple indexes 
is advised in order to consider multiple aspects of modelling. Such indicators are defined 
in following paragraphs. Oi and Om respectively represent ith data point and medium of 
observed experimental values. Predicted values are indicated with Pi and Pm. 

2.3.1 RRMSE: Relative Root Mean Square Error 

 
RRMSE =

(
1
n 
∑ (Oi − Pi)

2n
i=1 )

0,5

Om
 

(2.23) 

It is the root square of the numerical mean of the square errors (difference between 
observed and predicted values), divided by the mean value of the observed data 
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(Equation 2.23). This last action was done in order to insert a mean of comparison, so to 
have such value in a dimensionless form. It ranges from 0 (no error produced by the 
model) to more than 1 (the model produces an error which is bigger than the mean 
observed value). If a single residual (error) is very large, the RRMSE could still be 
sufficiently small for the model to be considered good. In fact, if the number of data is 
very large, such deviation can be effectively distributed among these. Whereas the 
determination coefficient could be small instead, because it is majorly affected even by 
only one big error. 

2.3.2 R2: Coefficient of Determination 
 

 R2 =
(∑ (Oi − Om)(Pi − Pm)

n
i=1 )2

∑ (Oi − Om)
2n

i=1  ∑ (Pi − Pm)
2n

i=1

 (2.24) 

 

It is given by ratio between regression deviance and total deviance (Equation 2.24) and 
it ranges from 0 (no correspondence) to 1 (perfect correspondence). Although the use of 
such coefficient is a common practice, it only gives a rough indication about model 
goodness. It is usually employed in linear regressions. In addition to this, it shows how 
much variation of a certain dependent variable, with respect to its medium value, can be 
well described by a certain model. Moreover, it is low when there is incapacity for the 
regression curve to keep close to observed data. 

2.3.3 IA: Index of Agreement 
 

 IA = 1 −
∑ (Oi − Pi)

2n
i=1

∑ (|Oi − Om| + |Pi − Om|)2
n
i=1

 (2.25) 

IA (Equation 2.25) ranges from 1 (perfect fit by this index) to 0 (useless fittings). It was 
invented by Willmott in 1985, starting from this generalized form (Equation 2.26): 

 ρ = 1 −
δ

μ
 (2.26) 

Where δ is an average error magnitude, in this case the Mean Square Error, and μ is a 

basis of comparison (Willmott, Robeson, & Matsuura, 2012). μ is equal to the summation 
of the deviations of observed and predicted values from their mean values respectively. 
While RRMSE describes the average magnitude of the errors, IA depicts the degree to 
which the errors approach the null set. This form was recognized to overweight large 
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error because of the square, so it is preferable to use it with other model describers 
(RRMSE and R2). 

2.3.4 GI: Goodness Index 

It is generally recognized that, although it is very common to talk about “Goodness” of 

a model, it would be more appropriate to say “Usefulness”. This regards the ability to 

provide the best projection of modelled data (Di Addario et al., 2017). Nevertheless, in 
this paragraph a newly created index is presented. The basic concept is to imagine a 
combination of certain correlation indexes, which could be obtained through a simple 
Mamdani fuzzy inference system. Substantially, previously explained correlation 
indexes are fed to the system as antecedents. Then, “Goodness Index” GI is obtained as 

consequent from a set of 15 different rules, in a range going from 0 to 1. First, it must be 
specified that this is not a trained model. In fact, there are no experimental evidences 
which could correlate these three indexes to this newly created one. It must be considered 
more as an “Expertise” situation, or even a system to be built from Intuition of the user. 

This model was created in PhD thesis “Development of Fuzzylogic model to predict the 
effects of ZnO nanoparticles on methane production from simulated landfill” of Di 

Addario M. and it is capable of giving an immediate comparison through the use of the 
first three indexes. It was achieved using Fuzzy Logic Toolbox of MatLab®. Crisp ranges 
were set from 0 to 1 for each index. For each antecedent, three equilateral triangular 
membership functions were used, with an equal partition of the crisp dominion. 
Triangular membership functions are employed for simplicity, since they are the easiest 
to be characterised by being constructed only by straight lines, with only one point with 
full membership degree. These are labelled, starting from the left, as “Low”, “Medium” 

and “High” and they refer to intervals along the crisp range of each antecedent. 

Figure 2.14 – Membership functions of Coefficient of determination antecedent 
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Figure 2.15 – Membership functions of Index of agreement antecedent 

Figure 2.16 - Membership functions of RRMSE antecedent 

Figure 2.17 – Membership functions of Goodness Index consequent 
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From Figures 2.14 – 2.17, it is possible to see how these fuzzy sets interact with each 
other by their intersections. While for R2 and IA goodness of correlation rises going from 
0 to 1, thus “Low” to “High”, RRMSE works in the opposite way. Goodness Index value 
is located along with the other three indicators to have a more intuitive perception of the 
usefulness of constructed models. Five membership functions, still triangular – shaped, 
are employed for the consequent. These are necessarily given in a higher amount 
compared to the antecedents, in order to confer more adaptivity to the goodness index 
through rules. Implemented defuzzification method consists in conventional Centre of 
Gravity expression. Rules are given with AND connectives, performing minimum 
operators. Aggregation between these is obtained by a union of the figures separately 
obtained from different rules. In Table 2.2 the rules implied in the inference system are 
shown. It is evident that goodness of correlation by GI increases from 0 to 1, thus from 
“Very Low” to “Very High”. 

 

  

 

IF R2 IA RRMSE THEN GI 

 Low  Low  high  Very Low  

 Medium  Medium  Medium   Medium  

 High  High  Low   Very High   

 Low  Low  Medium   Low  

 High  Low  High   Medium  

 Medium Low  High   Low  

 Low  High  High   Medium  

 Low  Medium  High   Low  

 Low  High  Low   Medium  

 Medium  High  Low   High  

 High  Low  Low   Medium 

 High  High  High   Medium  

 High  High  High   Medium  

Table 2.2 – Rules composing inference system in Fuzzy Goodness Index Model 
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3. Experimental methods 

In this chapter, modelled data format will be presented, along with the adopted 
software for the development of Fuzzy and ANFIS models.  

3.1 Particle Image Velocimetry Experimental Data 

Datasets which are going to be modelled, in the next chapter, were obtained as results of 
experimental observations made in the Master Thesis “Influence of Impeller Type and 
Geometry on Particle Stress in a Stirred Fermenter by Means of Particle Image 
Velocimetry”, written by Giulia Moretti. Experiments consisted in obtaining velocity 

vector field data through particle image velocimetry technique, for an agitated vessel. 
The apparatus was constituted by artificial lighting pointed on the vessel to illuminate 
the liquid within the small tank. Such illumination was provided by a laser. The liquid 
was filled with tracing particles, which allow to obtain velocity vector field by 
differential time scansion of their movement. However, in order to acquire such 
information, a camera was installed so that a great number of pictures could be taken. 
However, if one camera is required to perform bi – dimensional investigations, three – 
dimensional is only derived by means of two cameras. Therefore, two cameras were used 
when needed for 3D method. The lighting source and the camera were plugged with a 
synchronizer, so that they could function in parallel. A specific software had to be 
employed for this type of application, and it is DaVis 8.4, produced by LaVision®. This 
program can calculate velocity vector and its intensity on a wide range of points of the 
vessel. 

The examined vessel is made of glass. It is cylindrical with a tori spherical bottom. The 
internal diameter is equal to 160 mm. Observed fluid is poured into the vessel up to a 
height of 160 mm, with a capacity of almost 3 L. Four baffles are placed inside, with a 
width of 12 mm, a length of 114 mm and a thickness of 2 mm. These are located at 5 
mm from the vessel wall. Agitator is composed by a single impeller.  

Even though there is a wide variety of configurations examined in such work, only a few 
of them take part in modelling. As a matter of fact, in order to correlate different values 
of a certain input, an adequate number of different values for its parameter must be 
adopted. Each data set regarding a given fluid, agitating one of the three liquids, with a 
certain impeller rotating with an exact power input, presents approximately 6000 
velocity values, each one corresponding to a given position dictated by radial and axial 
coordinates. Therefore, if velocity is chosen as consequent, these two coordinates 
indicating a point in the vessel will certainly be interesting to set as antecedents. The 
third possible antecedent could be the Power Input, since five values of them are given 
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for few apparatus configurations. Specifically, these were observed in bi – dimensional 
camera configuration, regarding water as fluid and Ring Propeller as agitator module. A 
simple model will also be exposed on BiLoop impeller. This one produces a very 
different flow pattern, compared to the Ring Propeller. In Figure 3.1, both impellers are 
represented, along with a scheme of flow patterns developed by each one separately.  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Flow schemes on the right show that, while Ring Propeller push the fluid mainly 
downwards, Biloop impeller sends it both upwards and downwards. In Table 3.1 
available Power inputs value are shown for observations made on Ring Propeller and 
water. These will be used to create a three antecedents’ model. These are shown coupled 
with relative tip velocity, which will be used to obtain dimensionless velocity by dividing 
velocity vector norm by tip velocity. 

a) 

b) 

Figure 3.1 – Image and scheme of flow pattern for: a) Ring Propeller; b) BiLoop impeller 

Table 3.1 – Available power input values regarding vessel filled with pure water, agitator 
equipped with a ring propeller, with a 2D camera disposition. 

 

P/V (W/m3) 20 50 100 200 500 

Tip velocity (m/s) 1,168 1,585 1,997 2,516 3,415 
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Data sets were fed as training batches in the format reported in Table 3.2. Since original 
velocity data were gained as two components, one radial and one axial, these were 
condensed in one value represented by velocity vector norm. This is obtained by 
applying Euclidean norm of the two components (Equation 3.1). 

 v = √Vr2 + Vz2 (3.1) 

 

 

 

 

Software which elaborated PIV data reported also a number addressed as “IsValid”, 

equal either to 0 or 1. Values with such parameter equal to 0 were not taken in 
consideration, as they give null velocity for being in non - observed position in the vessel. 
Another issue regards the fact that data were taken for an entire half of the vessel and the 
opposite half on the lower side. Thus, it was reasonable to pick the values of the whole 
half of the vessel, considering the other half to have same velocity values for symmetry. 
Coordinates data are indicated in mm. In those cases where power input is inserted as 
third antecedent, the first column reports its values repeatedly for the position and 
velocity values to be addressed to the right P/V. Every column of data, except for power 
input, was transformed in dimensionless respective parameter. This was done by making 
the ratio between original values and the maximum value of every parameter. Thus, 
radial coordinate is compared to the vessel radius, axial coordinate to vessel height and 
velocity field to impeller tip velocity. Nonetheless, some models were modelled through 
original data for various reasons which will be explained. Application of such ratios has 
the purpose of creating models applicable to any reactor geometry. In fact, by converting 
spatial coordinates into dimensionless values, produced model could refer to any radius 
or height. In other terms, this would mean trying to produce a model, eventually useful 
in scale – up applications. Data points obtained by experimental observations through 
the software implemented in the synchronizer, were elaborated in order to produce 
graphs like the one in Figure 3.2. These graphs will be later used as basis of comparison 
between observed and model – predicted values. 

 

  

Table 3.2 – Example of data set given to the ANFIS training algorithm 

r / R z / H v / Utip 

0.122 0.492 0.013 

0.703 0.350 0.046 
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3.2 ANFIS MatLab® Toolbox 

This Neuro – Fuzzy Designer toolbox has several interesting features which were 
investigated during this thesis work. It was implemented in order to model multiple data 
batches, varying simulation parameters and characteristics from time to time to further 
understand the power of the training optimisation algorithm. First, an overall description 
of this soft computing modelling tool is given, then a description of the fixed constraints 
adopted during modelling simulations is defined. In Figure 3.3 the interface of the 

Figure 3.2 - Example of a graph obtained from PIV experimental data  

v

Utip
 

Figure 3.3 – Neuro Fuzzy designer MatLab toolbox interface 
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toolbox is represented. A plot is shown, presenting data set index as x – axis and Output 
(dimensionless velocity) as y – axis.   A specific procedure has to be followed for each 
modelling situation. This is described through steps.  

1) Data organisation from file: data are elaborated from text files, picking the ones with 
“isValid” equal to 1 and calculating velocity field norm for each position from its 

two components. 
 

2) Training and Validation matrixes: once ready to be inserted in the modelling 
interface, data are split into two matrixes: Training Data and Validation Data. Their 
proportion varies along the next chapter, since also the number of employed training 
data is investigated in terms of correlation effectivity.  

 
3) Training data on the interface: they are loaded from the workspace. As soon as they 

are loaded, they are graphically represented in terms of output value against its 
dataset index, as in Figure 3.3. The program automatically recognises the inputs as 
the first columns of the matrix and the output as the last one. It must be noticed that 
this algorithm only supports one output at a time.  

 
4) Sugeno FIS Generation: once data are correctly loaded into the toolbox, an initial 

Fuzzy Inference System must be either loaded from file, if already existing, or 
created from scratch. In this work, inference systems were directly generated from 
this program. In Chapter 3, it was already mentioned that FIS in this context must 
respect some constraints. First, only Sugeno – type FIS can be used. Secondly, they 
must present only one output. Other features can be decided from the user. When it 
comes to generating a FIS from this interface, it can be achieved by adopting Grid 

Figure 3.4 – Selection of number and type of membership functions 
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Partitioning or Subtractive Clustering. Grid partitioning was proved as more suitable 
for this case, since it gives lower processing time and more accuracy compared to 
clustering technique. Since data are homogenously dispersed, it is not feasible to 
obtain a good classification using clusters. In addition to this, even though Grid 
Partitioning method is considered to be “Greedy” (Al-Mahasneh, Rababah, & 
Ma’Abreh, 2013), as it adopts many membership functions and rules to work 
properly, it was considered adequate since antecedents are only two to three in total.  

 
A constraint regarding this method is met when type of membership function must 
be chosen. In fact, all inputs must be characterised by the same kind of MF. However, 
their number can be varied for each antecedent. Either zero or first order Sugeno FIS 
can be generated, so the output can be a constant or a linear function (Figure 3.4).  
Immediately after choosing MF type and number, along with output MF type, the 
FIS automatically sets the rules. For each rule a beginning consequent membership 
function is yielded. FIS structure generated by grid partitioning is represented in 
Figure 3.5, where all five layers are visible. Finally, rules connective AND are 
implemented as product operator, while overall crisp output is gained with a 
Weighted Average of all rules’ outputs. 
 

5) Generated FIS Training: after creating a new FIS, training settings must be imposed. 
First, optimisation method must be selected. In this module, one can choose between 
Hybrid method and Back Propagation, which were thoroughly illustrated in previous 
chapter. In this study, Hybrid method was always implemented, as it needs smaller 
processing time and it provides better consequent parameters changes using Least 
Square Estimator in its forward pass. In addition to this, iterative algorithm stop 
criteria must be decided, either through error tolerance or Epochs number. An epoch 

Figure 3.5 – FIS structure generated from Grid Partitioning 
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corresponds all iterations which guarantees that all data set are presented to the FIS 
when trained before restarting the loop (J. S. R. Jang et al., 2005). In this work, error 
tolerance was always put equal to 0, whereas Epochs number was modified from 
model to model. When training is initiated, it proceeds showing graphically the root 
mean square error (RMSE) plotted against epochs number, as in Figure 3.6.  
 

Once desired epoch data is reached, iterative process stops and final error is presented 
both numerically and graphically, indicating in blue circles the observed values and 
in red asterisks the predicted values (Figure 3.7). This feature can serve the purpose 
of making a quick judgement over training process success. As a matter of fact, the 
more model outputs get to cover data sets, the better the trained model is. 
Nonetheless, accurate analysis on created models were done, through this study, 
using previously mentioned correlation indexes. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Figure 3.6 – Training error dynamically changing through data processing 

Figure 3.7 – Quick comparison between observed and predicted values from produced model  
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4. Velocity Field Modelling 

In this section, different analysis will be shown towards modelling of data presented in 
the previous chapter. Graphical outputs will be reported in order to have a visual 
comparison between observed and predicted outcomes. ANFIS functionalities are 
investigated in its multiple features, in order to develop the best model possible which 
could correlate power input, radial coordinate and axial coordinate with velocity norm. 

4.1 Comparison between Fuzzy and Neuro – Fuzzy Modelling with big data 

In previous chapters, differences in terms of capability in manipulating certain moles of 
data were discussed. Fuzzy logic is more suitable for expertise – based inference systems, 
rather than correlation of great quantities of data. In this paragraph, a brief example is 
shown, in order to practically demonstrate Neuro – fuzzy power of adapting its 
parameters through its algorithms, respect to pure Fuzzy recursive procedures of 
correlation. In Table 4.1 characteristics of this comparison are shown.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 – Adopted conditions in a comparison between Fuzzy and Neuro – Fuzzy modelling 
performances 

 Fuzzy Neuro - Fuzzy 

FIS Mamdani Sugeno 

Input MF type Triangular Triangular 

Output MF type Triangular 
Linear 

Functions 

Input MF number 7 7 

Output MF number 49 49 

Number of Rules 49 49 

Training Method 
Particle 
Swarm 

Hybrid 

Epochs 100 100 

RMSE 0.0333 0.0063 
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In order to produce a quick modelling estimate, antecedents’ number was limited to two, 

as relative spatial coordinates r/R and z/H, fixing power input value at 100 W/m3. Such 
dataset was split in two to obtain a training set and a validation set, for a total of 3040 
data points each. However, correlation estimate was only based on training data 
correlation, looking at the root mean square error. First, FIS was set as Mamdani for 
Fuzzy and Sugeno for Neuro – Fuzzy. Membership functions were created equal for both 
inference systems, as triangular – shaped. Both inputs have seven MF. Since ANFIS grid 
partitioning automatically yields several rules, thus output functions, equal to the product 
between input MF number, this was also given as specification for Fuzzy training 
algorithm. Epochs number was fixed at 100. In addition to this, while Neuro – Fuzzy 
employed hybrid technique (Back Propagation and least squares method), Fuzzy used 
particle swarm method. Differences were exploited in terms of root mean square error. 
Other correlation indexes did not take part in such analysis, since RMSE already 
underlines differences in terms of correlation performances. As expected, Neuro – Fuzzy 
outperformed Fuzzy, showing a RMSE one order of magnitude smaller. This is probably 
because while Fuzzy has few slow algorithms available, Neuro – Fuzzy can integrate 
efficient learning methods from Neural Networks. Moreover, while Neuro – Fuzzy 
shows one set of non – linear parameters (consequent), Fuzzy has both antecedents and 
consequents parameters a non – linear. 

4.2 Comparison on performance between different types of MF 

This section defines which membership function shape best suits velocity field datasets. 
As a matter of fact, there is no proof of which one them is the highest – performing 
during modelling. In Table 4.2, MF are shown in terms of dependence of membership 
degree from input data. Each one of them was implemented in a raw model. The simplest 
class of fuzzy functions is composed by these which are built with the use of only straight 
lines (J.-S. R. Jang & Gulley, 2015). The first one to be enunciated is the Triangular, 
obtained as a set of three dots, having three modifiable parameters a, b and c. If it is cut 
at the top, the Trapezoidal comes out as function, having no more just one point where 
membership degree equals one, but a range, with four modifiable parameters a, b, c and 
d. Another class of functions comprehends the ones constructed based on Gaussian 
distribution curve. Specifically, the conventional one, with two modifiable parameters c 
(curve centre) and σ (standard deviation). There is also a union of two different curves 
forming a two – sided composite one, with double the number of modifiable parameters 
of the single one, thus four. Next, there is an important type of membership function, 
represented by the Generalised Bell. These are quite common in reproducing fuzzy sets, 
as they are smooth and have a concise expression. They have three modifiable parameters 
a, b and c. Both Gaussian and Generalised Bell have the peculiarity of giving non null 
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outcomes on the whole input range. Then, Sigmoidal functions have the peculiarity of 
being able to be asymmetric and closed. In this case, difference (D – sigmoidal) and 
product (P – sigmoidal) of two sigmoidal curves are examined. Finally, Pi functions are 
spline – based, with a total of four modifiable parameters a, b, c and d. 

 

 

 

After giving a brief description of the function in use, definition of modelling 
circumstances is necessary. Produced models comprehend three antecedents: power 
input, relative radial and axial coordinates, presenting six membership functions for each 
spatial coordinate and five membership function for the power input. These yielded a 
total of 180 rules and consequently 180 output linear functions. Epochs number was 
maintained at 100, since convergence was always met at around 60 epochs. Datasets 
coming from each power input were condensed in one batch, containing more than 30000 

Table 4.2 – Examined membership functions’ shapes 

Membership Function  Mathematical Expression 

Triangle 𝜇(𝑥) =

{
 
 

 
 

0,            𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,   𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
,   𝑏 ≤ 𝑥 ≤ 𝑐

0  , 𝑐 ≤ 𝑥 

 

Trapezoid 𝜇(𝑥) =

{
  
 

  
 

0,            𝑥 ≤ 𝑎
𝑥 − 𝑎

𝑏 − 𝑎
,   𝑎 ≤ 𝑥 ≤ 𝑏

     1,        𝑏 ≤ 𝑥 ≤ 𝑐 
𝑑 − 𝑥

𝑑 − 𝑐
,   𝑐 ≤ 𝑥 ≤ 𝑑

0  , 𝑑 ≤ 𝑥 

 

Gaussian 𝜇(𝑥) = 𝑒−
1

2
 (
𝑥 – 𝑐

𝜎
)
2

  

Double Gaussian  𝜇(𝑥) = 𝑒−
1

2
 (
𝑥 – 𝑐

𝜎
)
2

  

D – Sigmoidal 𝜇(𝑥) =
1

1+𝑒−𝑎 (𝑥−𝑐)
  

P – Sigmoidal 𝜇(𝑥) =
1

1+𝑒−𝑎 (𝑥−𝑐)
  

Generalised Bell 𝜇(𝑥) =
1

1+|
𝑥−𝑐

𝑎
|
2𝑏  

Pi 𝜇(𝑥) =

{
 
 
 
 
 

 
 
 
 
 

0,                         𝑥 ≤ 𝑎

   2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

 , 𝑎 ≤ 𝑥 ≤
𝑎 + 𝑏

2
 

1 − 2 (
𝑥 − 𝑎

𝑏 − 𝑎
)
2

,     
𝑎 + 𝑏

2
≤ 𝑥 ≤ 𝑏

        1,                         𝑏 ≤ 𝑥 ≤ 𝑐 

1 − 2 (
𝑥 − 𝑐

𝑑 − 𝑐
)
2

,      𝑐 ≤ 𝑥 ≤
𝑐 + 𝑑

2

   2 (
𝑥 − 𝑑

𝑑 − 𝑐
)
2

  ,        
𝑐 + 𝑑

2
≤ 𝑥 ≤ 𝑑 

    0   ,                           𝑥 ≥ 𝑑
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data points. This was split in two parts by alternatively picking rows from this matrix, in 
order to obtain a training and a validation data matrix. Results are exposed in terms of 
three correlation indexes, defined in previous chapters, plus a newly created fuzzy index. 
These were measured for correlation of training data and validation data, in order to 
notice if difference between representation of these two different batches is remarkable. 
Once training data are well followed by trained model, this must also respect validation 
data trend, in order to be considered predictive towards data which were not presented 
during training process. Figure 4.1 – 4.4 present obtained results, with two columns 
indicating training and validation indexes outcome. 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.1 – Coefficient of determination of models presenting differently shaped membership 
functions 

Figure 4.2 – Index of agreement of models presenting differently shaped membership functions 
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All models show very high Index of Agreement (Figure 4.2) and Coefficient of 
Determination (Figure 4,1), hence data behaviour is very well followed in every case. 
Small differences can be noticed on RRMSE estimates (Figure 4.3).                                     
This fact indicates that, however data trend is well represented by every model, some 
membership functions allow to reduce the distance between observed and predicted 
value. Gaussian and generalised bell give best overall results. Goodness index sums up 
previous observations on such three indicators. Even though only triangular membership 
functions are remarkably worse than the others in terms of correlation, gaussian and 

Figure 4.3 – RRMSE of models presenting differently shaped membership functions 

Figure 4.4 – Goodness index of models presenting differently shaped membership functions 
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generalised bell seem to give highest correlating performances. Validation indexes are 
very similar to training ones. It is a common rule of thumb to use validation data as 
different as possible from training ones, in order to better understand the predictivity of 
the model towards unseen inputs (Ii & Ground, 1998). However, it looks like in this case 
training data are very similar to validation ones. 

4.3 Variation of quantity of training data 

Since modelling showed satisfying results using an amount of training data equal to 50% 
of the total dataset, an analysis regarding the variation of such percentage was conducted. 
This was done in order to see how predictivity is affected by changing this parameter. In 
this case, membership functions were used only in the best performing shape, 
accordingly to previous paragraph results. Although Gaussian and Generalised Bell 
present almost equal estimates, Gaussian curve was chosen to be employed. In fact, it 
has the advantage of being computationally less heavy to manipulate because of the lack 
one modifiable parameter compared to the Generalised Bell. However, in certain case 
this characteristic allows the bell to adapt better to non – linear data. Theoretically, the 
more a model is fed with training data, the more it should be able to predict unseen input 
values. On the other hand, too heavy training batch could lead a model to be too “Rigid” 

and stick too much to it, thus reducing predictivity. Percentage of training data on total 
was varied from 5% to 50%. Validation set percentage was changed accordingly to 
training set, picking all data points which were not used in training. Figure 4.5 - 4.8 show 
the trend of correlation indexes applied both to training and validation data. Critical 
improvement of all correlation indexes is obtained by increasing training data percentage 
from 5 to 10%. Figure 4.5 shows that coefficient of determination reaches an asymptote 
at 30%, with training correlation collapsing with validation at 50%. Figure 4.6 indicates 
that index of agreement reaches satisfying results even at 20%, with training curve 
meeting validation curve at already 40%. Up to now, this is not the best index to make 
comparisons, since it is always very high for such models. On the other hand, Figure 4.7 
shows that a sharp decrease is met from 5 to 10% for RRMSE, with curves going to 
coincide at 20%. Lastly, in Figure 4.8, Goodness index reaches an asymptote at circa 
0.95 in correspondence of 10%. Such fuzzy index is not sensitive to small variations of 
its antecedents. Hence, training and validation curves are coincident. In addition to this, 
it tells the user that a 10% on total is enough to obtain good modelling. It is quite 
impressive that by selecting one data point over 10 at a time, ANFIS can build a well – 
predictive model. Reasons for this fact could either be the adaptivity of such neuro – 
fuzzy inference systems, or the similarity between data points among the grid. Generally, 
it could be stated that if a 20% of training data on total is employed during the training, 
it is enough to achieve a good modelling over these PIV velocity field data, with a good 
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predictivity over unseen coordinates. Moreover, since there are asymptotes for all 
correlation indexes on validation data, no overtraining occurred. In addition to this, the 
employment of few training data, which has poor correlation consequently, is explained 
by the changes happening to antecedents’ membership functions during the training 
process. 

  

 

Figure 4.3 – Coefficient of determination of models with gaussian membership functions, trained with 
different percentages of data 

Figure 4.4 – Index of agreement of models with gaussian membership functions, trained with different 
percentages of data 
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In Figure 4.9, three antecedents’ functions are reported for the raw model which was not 

subjected to training yet. These initial fuzzy sets are homogeneously distributed along 
the crisp range. This is because grid partitioning FIS generator creates equally spaced 
cells on the input planes. During training process, these regions adapt to training data in 
order to improve the representation of the model towards such data. In Figure 4.10, a 

Figure 4.5 – RRMSE of models with gaussian membership functions, trained with different 
percentages of data 

Figure 4.6 – Goodness Index of models with gaussian membership functions, trained with 
different percentages of data 
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side by side comparison is presented between models obtained respectively by 5% and 
30% training data batches processing. First, even after training, power input fuzzy sets 
remained unchanged for both models. Since power input data only refer to 5 values, these 
are not enough to significantly influence the grid structure. Next, for second and third 
antecedents, referring to the radial and axial coordinates, there are visible differences 
between 5% and 30% models. In fact, while 5% presents its membership functions 
almost completely unvaried, 30% shows remarkable swings. 

Every membership function varied its domain and some of them even modified their 
shapes, especially second and third membership functions for both spatial antecedents. 
Radial antecedent sees a tightening of MF in the interval between 0.2 and 0.5, while axial 
antecedent between 0.2 and 0.4. It is evident how the algorithm has the ability of 
intensifying the grid where it is needed the most, which in this case is defined as the zone 
around the impeller. While other membership functions enlarge, the ones concerning 
such area become thinner. This is due to necessity of defining highly non – linear 
variations of velocity field which occur close to the agitator blades. Neuro – fuzzy 
models need to adapt to inputs trend in a certain manner in order to give proper outcomes, 
this can be achieved only with the correct amount of training data.  

a) 

 

 

 

b) 

 

 

 

c) 

Figure 4.7 – Raw model antecedent membership functions: a) Power input; b) Radial 
coordinate; c) Axial coordinate. 
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4.4 Alternative approach for modelling  

In previous paragraphs, different models were built by directly training them with three 
antecedents. In this section another way to build a robust model is shown. This had the 
purpose to see if it is possible to obtain a more useful model, compared to the previous 
ones, with the same number of membership functions. However, in this case different 
types of training were performed, in order to explore also ANFIS characteristics. First, a 
model projecting only two inputs, r and z in their original dimension (mm), was 
produced, starting from data regarding only power input equal to 20 W/m3. In this case, 
seven gaussian membership functions were employed for each antecedent, instead of six. 
This means having 49 rules (and output functions) instead of 36. Training was made with 
20% training data over the total of 20 W/m3 data batch. However, after training process 
this model showed strange membership functions adaptation. In fact, one membership 
function of radial coordinate got to cover the whole range, while another one on the axial 
dominion almost erased itself from the graph. Therefore, these two were thought as 
unnecessary and were cut off. Along with these, also rules employing such functions 
were erased, going back to having a 6/6 membership functions inference system. Figure 

a) 

 

 

 

b) 

 

 

 

c) 

Figure 4.8 – Comparison between 5% (left) and 30% (right) trained models in terms of 
membership function adaptivity: a) Power input; b) Radial Coordinate; c) Axial Coordinate. 
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4.11 shows the applied modification. On the left graphs, useless functions are highlighted 
in red and on the right, they are not present.  

  

Correlation performances of these two models are reported in Figures 4.12 – 4.15.  

  

Figure 4.9 – Passage from 7/7 model (left) to 6/6 model (right) erasing membership functions 
highlighted in red on the left 

Figure 4.10 – Coefficient of determination of 6/6 model (left) and 7/7 model (right) 
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Figure 4.11 – Index of Agreement of 6/6 model (left) and 7/7 model (right) 

Figure 4.12 – RRMSE of 6/6 model (left) and 7/7 model (right) 
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As expected, correlation usefulness did not decrease considerably. In fact, only RRMSE 
shows a small worsening from 0.9 to approximately 0.12. Furthermore, rules were taken 
to 36 from 49 (with them also output functions). This could be the proof that more than 
6 membership functions per position input are not necessary. Moreover, computational 
cost is reduced when using less membership functions, speeding up convergence during 
training process. Since previous models were directly trained with dimensionless radial 
and axial antecedents, it was thought as interesting to see what happens if this procedure 
is applied starting from dimensioned position antecedents and velocity consequent. After 
this, it was thought of converting them again into dimensionless values (Equation 4.1). 

 

{
 
 

 
 r̃ =

r

80

z̃ =
z + 55

160

ṽ =
v

utip

 (4.1) 

These three parameters are made dimensionless by making them respectively relative to 
vessel radius, vessel height and tip velocity. Besides, axial coordinate was converted in 
positive values, since originally data takes height 0 as the impeller position. The exposed 
procedure taking from seven to six membership functions was repeated with these 
modified data. Surprisingly, results in terms of correlation goodness turned out to be 
worse. This is due to the fact that, as occurring with neural networks, neuro – fuzzy 
modelling solutions depend a lot from the starting guess of modifiable parameters (J. S. 
R. Jang et al., 2005). Next, it was discovered that, by converting antecedents’ parameter 

Figure 4.13 – Goodness index of 6/6 model (left) and 7/7 model (right) 
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accordingly to the change of range of each antecedent (Equation 4.2), correlation 
efficiencies could get back to previous higher values. 

 radial → {
σ̃ =

σ

80

𝑐̃ =
𝑐

80

   ;      axial → {
σ̃ =

σ

160

𝑐̃ =
𝑐

160

 (4.2) 

All correlation efficiencies are very promising for these two inputs models. In fact, as 
Figure 4.16 shows, produced model follows experimental values very well. Four graphs 
are shown, each one indicating four different fixed radial position, with velocity field (x 
– axis) trend with axial position (y – axis). 

After having produced such well – predictive model, next step consisted in adding power 
input as third antecedent. The aim of this pass was based on trying to maintain such 
achieved accuracy but forming a more complex system as the ones seen in previous 
paragraph. Thus, the antecedents regarding spatial coordinates were translated to the new 

Figure 4.14 – Comparison between experimental values and two antecedents model predicted 
values 
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model as they were. Power input antecedent was implemented with five membership 
functions. Finally, training was done in order to see if starting from such premises could 
improve final model characteristics. Training batch was constituted by 10% of the total 
number of data. Hence, comparisons are presented against the three antecedents – model 
of previous section, trained with the same amount of data. However, after 100 epochs of 
training process, results did not prove to be as promising as expected. Figures 4.17 – 4.20 
show comparisons in terms of correlation indexes between mentioned models. The 
model directly trained as a three antecedents’ model, indicated as Model 3, has the same 
training and validation correlation indexes of the other one, indicated as Model 2 – 3. 
This could be because, even if the starting point given to the hybrid algorithm is different, 
both raw models converge to the same minimum after training. 

  

Figure 4.15 – Coefficient of determination of 2 -3 model (left) and 3 model (right) 

Figure 4.16 – Index of agreement of 2 -3 model (left) and 3 model (right) 
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4.5 Analysis on correlation and computational performances with variation on 
antecedent membership functions number 

The aim of this section is to show how correlation and computational characteristics of 
models, during training and testing processes, are influenced by number of membership 
functions employed to define spatial antecedents. Fuzzy sets were fixed at 5 for power 
input antecedent, while they were increased equally for radial and axial antecedents from 

Figure 4.19 – RRMSE of 2 -3 model (left) and 3 model (right) 

Figure 4.20 – Goodness Index of 2 -3 model (left) and 3 model (right) 
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3 to 7. This has the purpose of seeing if 6 membership functions are the best choice for 
such model inputs. In this case, not only correlation indexes are evaluated. In fact, 
considerations on training algorithms are made in terms of convergence and processing 
time. Furthermore, increasing complexity of the inference systems are discussed through 
the number of rules (thus output functions, since grid partitioning is used to create raw 
models). Figures 4.21 – 4.24 show correlation indexes behaviour with fuzzy sets 
increase, respectively R2 in Figure 4.21, IA in Figure 4.22, RRMSE in Figure 4.23 and 
GI in Figure 4.24. Training and validation curves seem to keep their differences constant, 
as if increasing number of functions did not reduce such distance. 

Figure 4.21 – Coefficient of determination of models with varying number of antecedents’ 

membership functions 

Figure 4.22 – Index of agreement of models with varying number of antecedents’ membership functions 
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In addition to this, there are asymptotic trends for all correlation indexes. As a matter of 
fact, they demonstrate a considerable improvement from 3 to 6 membership functions. 
On the other hand, the employment of 7 fuzzy sets for each of the two coordinates proves 
to be not so promising, as every correlation index did not improve considerably. These 
evidences reveal that 6 membership functions are already enough to give a good 
correlation of experimental values of PIV velocity fields. As highlighted in previous 
sections, it is always best to deal with fewer membership functions, in order to have a 

Figure 4.23 – RRMSE of models with varying number of antecedents’ membership functions 

Figure 4.24 – Goodness index of models with varying number of antecedents’ membership 

functions 



55 
 

more intuitive model. However, it is also desired to maintain correlation indexes at high 
standards. It would be remarkably useful to project mentioned data with only 3 
membership functions. However, in this case they are not enough to build a good model. 
Such asymptotic behaviour is probably a reflection of functions to adapt their parameters 
over a certain crisp range. Modelling usefulness has a critical increase if fuzzy sets can 
be modified over their dominion. For this case in particular, seven membership functions 
are too many to be efficiently spread over crisp ranges. Moreover, training algorithm 
works better on consistently modifying premise parameters if their amount is not 
excessive. This would force the hybrid iterative process to change solely the consequent 
parameters, referred to the linear output functions. Another aspect which is wanted to be 
examined in this paragraph regards influence of such number of membership functions 
on computational aspects. These are reported in Figures 4.25 – 4.27. First, it was already 
mentioned that increasing antecedents’ functions leads to a heavier and slower model. 
This is underlined in Figure 4.25. It is evident how by slightly increasing functions 
number, number of rules is sharply increased. If to use 3 fuzzy sets only 49 rules are 
needed, 245 rules are computed for 7 membership functions. Therefore, this is the first 
real cost of increasing number of antecedents’ functions. In addition to all the issues 

discussed above, using too many rules would dramatically increase computation time for 
the inference system. This would lead to relevant problems in applications such as 
process control, where a prompt action is needed (Berardi, Chiaberge, Miranda, & 
Reyneri, 1996). 

Figure 4.17 – Number of rules and output functions of models with varying number of 
antecedents’ membership functions 
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Next, Figure 4.26 pictures the time needed for each epoch during training process, plotted 
against number of functions in position antecedents. Such duration rises almost 
exponentially at the increase of such amount, underlining again the major advantage of 
using 6 membership functions instead of 7. A much higher duration of epochs is clearly 

connected to the amount of premise and consequent parameters which are iteratively 
modified during training process. In this case, time required for each epoch is related to 
adopted computer characteristics: 8.00 GB RAM and operative system at 64 bits. 

Figure 4.19 – Time for each epoch during training of models with varying number of 
antecedents’ membership functions 

Figure 4.18 – Epoch for convergence during training of models with varying number of antecedents’ 

membership functions 
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Then, Figure 4.27 results must be discussed due to their apparently controversial nature. 
Intuitively, one would think of having to iterate for more epochs in order to lead to 
convergence a system presenting more membership functions, since there are more 
parameters to be adapted. However, this graph shows completely opposite outcomes. In 
fact, convergence is reached at earlier stages using 7 membership functions with respect 
to 3. This controversial aspect can be explained through the variation of the error 
presented by raw model and trained model. The model implementing 3 membership 
functions can reduce its error even of a 30% after training, compared to a 5% in a model 
using 7 functions. Therefore, more epochs would be required for the simpler model to 
reach its minimum, simply because there is more space of improvement. Adopting less 
membership functions means increasing their efficiency, thus they are used at their best. 

4.6 Investigation on applicability of ANFIS modelling on BiLoop impeller velocity 
field 

Results of neuro – fuzzy modelling of velocity fields produced by ring propeller are quite 
promising. This section aims at presenting a quick investigation about the application of 
an ANFIS modelling procedure on a different velocity field. This means trying to create 
a model capable to represent the output obtained from a BiLoop impeller. As a matter of 
fact, this type of agitator is characterised by a very different distribution of power input 
along a stirred tank. Figure 28 – 29 show velocity field as contour plots versus 
dimensionless radius and height. These concern PIV experiments. They both refer to 

power input equal to 100 W/m3, respectively for Ring Propeller and BiLoop. It is possible 
to see how Ring Propeller directs liquid flow downwards with more intensity, while 

v

Utip
 

Figure 4.20 – PIV Velocity field for Ring Propeller at 100 W/m3 



58 
 

BiLoop pushes it both upwards and downwards, but with less intensity. Consequently, 
higher peaks of dimensionless velocity are visible on Figure 28, while in Figure 29 it is 
much more distributed along the contour graph.  

  

A two antecedents – model (normed spatial coordinates) was developed. Training data 
were taken from the set regarding water as fluid, power input equal to 100 W/m3 and 
BiLoop as impeller. As previously done, grid partition was used in order to create the 
raw model, using 6 gaussian membership functions for each normed spatial coordinate, 

v

Utip
 

v

Utip
 

Figure 4.21 – PIV Velocity field for BiLoop at 100 W/m3 

Figure 4.22 – Two antecedents’ ANFIS model output as velocity field for BiLoop at 100 W/m3 
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with a total of 36 rules and 36 output functions. 100 epochs were enough to train the 
designated model, since it reached convergence at circa 30 epochs. Half of the overall 
chosen dataset was involved in training process. Hence, remaining data points were used 
as validation set. Results for correlation indexes gave R2 = 0.967, IA = 0.992, RRMSE 
= 0.111 and GI = 0.95 for validation dataset. Therefore, very good correlation was 
obtained. Figure 4.30 shows velocity field produced from such model output. BiLoop 
does not produce the same flow pattern nor velocity field, compared to Ring Propeller. 
Nevertheless, it is kind of able to “Smooth” original data asperities, creating a more 

intuitive way of graphically interpret mentioned velocity fields. 

4.7 Contour plots processing in verification of obtained model correlation power 

In this section, an utter method to test model with three antecedents, regarding ring 
propeller, is exposed. Previously, all considerations were based upon certain correlation 
indexes. However, there is another way to test general correlation properties of generated 
models. As a matter of fact, by comparing contour plots obtained by experimental data 
and model output, it is possible to state if model follows data behaviour. In this case, 
such aim is achieved by processing with ImageJ® an ensemble of contour plots obtained 
through MatLab® coding. Specifically, compared plots are produced for each observed 
power input (20, 50, 100, 200, 500 W/m3). For each couple of plots at equal power input, 
two parameters are discussed. First one represents an ideal “Low mixing zone”, with 

relative velocity lower than 0.03. Second one depicts an ideal “High mixing zone”, with 

relative velocity higher than 0.13. Such areas are obtained in number of pixels, then they 
are normed with total pixel number, in order to have percentages over total image. This  

Figure 4.23 - – Experimental data of PIV measurements with power input equal to 20 W/m3 for 
a Ring Propeller 
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is done because it is very difficult to tell whether a model approximates data well or not  
by just looking at contour graphs.  

  

  

 

Figure 4.25 – Experimental data of PIV measurements with power input equal to 200 W/m3 for 
a Ring Propeller 

Figure 4.24 – Output of ANFIS model with power input equal to 20 W/m3 for a Ring Propeller 
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Chosen inference system for production of modelled output regards three antecedents – 
model, with Gaussian membership functions, trained with half of total data. Two 
examples of comparisons are shown in Figures 4.31 and 4.32 for 20 W/m3 and in Figures 
4.33 and 4.34 for 200 W/m3. By just looking at these images, it is quite clear that model 
strongly resembles experimental data. Even though by visually comparing graphs for 
experimental data and model output the images could be defined very similar, further 
analysis results are reported below. Low and high mixing area percentages were 
evaluated for all five power inputs for both observed data and model output. Their 
differences are pictured in Figures 4.35 and 4.36.  

  

 

 

 

 

 

 

Figure 4.26 – Output of ANFIS model with power input equal to 200 W/m3 for a Ring Propeller 

Figure 4.27 – Low mixing zones percentages for experimental data and model output, evaluated 
at five power inputs 
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It is evident that, also on these evaluations, model correctly follows data behaviour. 
Correlation indexes turn out useful also in this section. All of them were calculated for 
both low and high mixing zones estimates. They are reported in Table 4.3. 

  

 

This paragraph has also the objective of exploring the possibility of extracting velocity 
fields, in usual space dominion, for non – experimented power input values. Two 
evaluations were made for 35 W/m3 and 350 W/m3. In order to consider such velocity 
fields well produced, low and high mixing zones were used. In fact, they should follow 
curves’ trends represented in Figures 4.35 and 4.36, in the intervals where they are 

located. In other words, 35 W/m3 low mixing zones should be equal to 27%, since for 20 
W/m3 they amount to 26.34% while for 50 W/m3 they are equal to 27.50%. The same 
reasoning is applied for high mixing zones, where they should be approximately between 

Table 4.3 – Correlation indexes regarding Low and High mixing zones projection through 
ANFIS model 

 
 Low Mixing High Mixing 

R2 0.9945 0.9942 

IA 0.9964 0.9920 

RRMSE 0.0617 0.0972 

GI 0.98 0.97 

Figure 4.28 – High mixing zones percentages for experimental data and model output, evaluated 
at five power inputs 
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4.5 and 7%. For 350 W/m3, low and high mixing zones percentages should be 
respectively between 43.61% and 52.73% and 1.39% and 0.28%, taking 200 W/m3 and 
500 W/m3 as references for such boundaries. It is expected to have a better outcome on 
35 W/m3 rather than 350 W/m3. This is due to larger distance of the second one from 
closest experimented values, compared to the first one. Results are shown in Table 4.4. 

  

These values are very similar to each other. However, it is certain that 35 W/m3 outcome 
is much closer to its desired range, compared to 350 W/m3. Figures 4.37 and 4.38 
represent model output for these two experimentally unseen power inputs. It is noticeable 
that, while the one obtained for 35 W/m3 is visually similar to the one regarding 20 W/m3 
in Figure 4.31, the other power input does not give good results, looking at the one for 
200 W/m3 in Figure 4.33. Therefore, results for 200 W/m3 are completely wrong. 

  

 

Power Input W/m3 Low Mixing % High Mixing % 

35 24.26 6.45 

350 24.31 6.47 

Table 4.4 – Low and high mixing zones percentages for two non – experimented power input 
values 

Figure 4.29 – Output of ANFIS model with non -experimented power input equal to 35 W/m3 for 
a Ring Propeller 
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Velocity profiles are clearly too similar, even though they regard completely different 
power inputs. In this case, ANFIS is not able to predict non - experimented values such 
as 350 W/m3. More power inputs should be fed to the raw model during training process 
in order to build a more predictive inference system. 

 

  

Figure 4.30 – Output of ANFIS model with non -experimented power input equal to 350 W/m3 
for a Ring Propeller 
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5. Conclusions and Future Outlook 

In this work, an overview was conducted on Fuzzy Logic, Neural Networks and, 
principally, Neuro – fuzzy inference systems. Adaptive inference systems type was 
investigated. Since Fuzzy Logic is not suitable for the realization of models portraying 
high amounts of data sets, ANFIS were employed to try to store experiments memory in 
them. Some obtained models manage to follow velocity field values very accurately. 
Proof of this is given by the exposed correlation indexes and contour plots at the end of 
Chapter 4. Newly created fuzzy index, even if not very predictable in value, is useful for 
an immediate comparison between different models. In fact, it can be adopted to make a 
quick judgement on the combination of the three original indexes. In addition to this, 
neural networks learning applications with fuzzy logic were illustrated. Gaussian 
membership functions proved to be the best among all kinds, possibly because they have 
better ability to reproduce data behaviour produced by exposed Particle Image 
Velocimetry velocity field. Furthermore, best combination of membership functions is 
probably the one reporting five membership functions describing Power Input antecedent 
and six differently distributed membership functions for each dimensionless spatial 
coordinate antecedent, radial and axial. Training with half of total data amount still seems 
the best choice among analysed percentages. Even though lower percentages showed 
good performances, this proved to be the best one on validation data, thus presenting best 
predictivity towards unseen data. Moreover, 50% as training batch is usually considered 
standard quantity to be taken (Al-Mahasneh et al., 2013).  

Figure 5.1 – Membership functions for power input antecedent of best obtained model 
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In addition to this, training directly from three antecedent seems to be the best way to 
achieve final model. Figures 5.1 – 5.3 presents antecedents membership functions owned 
by this model. Each membership function was named accordingly to value set reference. 
A major drawback of this model resides in the fact there are too many rules. Because of 
grid partitioning disposal method “Greediness”, rules dramatically increase with 

membership functions quantity increase. The model which was exposed in this section 

Figure 5.2 – Membership functions for dimensionless radial coordinate antecedent of best 
obtained model  

Figure 5.3 – Membership functions for dimensionless axial coordinate antecedent of best 
obtained model 
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presents 180 rules and 180 output functions. This makes very difficult the comprehension 
and recognition of repeated patterns in small zones. A sample of 10 rules is defined in 
Table 5.1.  

 

  

 

 

 

 

 

 

 

 

 

 

It is known that adaptive neuro fuzzy inference systems are suitable not only for 
modelling realisation. Neuro – fuzzy systems are already implemented in some 
controlling applications (Berardi et al., 1996). However, this is not the only field in which 
such mathematical logic is applied. In fact, it is even implemented in decision making 
matters in multiple types of problems, such as Foreign Exchange Trading (Gradojevic, 
Yang, & Gravelle, 2002), Paediatrics (Sridevi & Nirmala, 2016) and many more. Future 
researches regarding this machine learning branch should be about trying to find a way 
to improve grid partitioning algorithms. This concerns the efficient reduction of output 
functions, along with the maintenance of correlation usefulness, in order to couple 
modelling with patterns recognition in small scale. Furthermore, particle image 
velocimetry coupling with machine learning methods, such as the inference system 
presented in this work, could be further enriched by combining data knowledge with 
expertise knowledge. This could possibly lead to the accomplishment of a model with 
predictivity of local velocity fields on non – experimented fluids. It would be of large 
interest to find a way to produce a rule based intuitive system returning as results the 
stress produced by mixing. As a matter of fact, knowing this parameter locally for 
biological broths could prevent cells damage. Other interesting solutions obtainable by 

Table 5.1 – Sample of randomly picked 10 rules from a total of 180 

IF Power Input r/R z/H THEN f (P/V, r/R, z/H) 

 Very low Centre Bottom  a1
P

V
+ b1

r

R
+ c1

z

H
+ d1 

 Low Wall Wall  a48
P

V
+ b48

r

R
+ c48

z

H
+ d48 

 Medium Middle Under impeller  a92
P

V
+ b92

r

R
+ c92

z

H
+ d92 

 High Centre tip Over impeller  a117
P

V
+ b117

r

R
+ c117

z

H
+ d117 

 High Middle Bottom  a127
P

V
+ b127

r

R
+ c127

z

H
+ d127 

 Very high Wall Top  a180
P

V
+ b180

r

R
+ c180

z

H
+ d180 

 Medium Middle tip Top middle  a89
P

V
+ b89

r

R
+ c89

z

H
+ d89 

 Very low Middle Wall Over impeller  a63
P

V
+ b63

r

R
+ c63

z

H
+ d63 

 Very high Centre Top  a150
P

V
+ b150

r

R
+ c150

z

H
+ d150 

 Low Middle Middle  a58
P

V
+ b58

r

R
+ c58

z

H
+ d58 
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future developments on these models could be accomplished if more power input values 
are experimentally observed. This would mean having the possibility of having a more 
powerful interpolation over this parameter, allowing to achieve the visual of velocity 
fields produced by unseen power inputs. Since in this case only 5 values were 
interpolated, produced model does not have predictivity over power input magnitudes 
between the interpolated ones. It is possible to demonstrate, as in Chapter 4, that between 
20 and 50 W/m3 or 50 and 100 W/m3 velocity profiles start to get closer to real ones, 
because interpolated values are less distant one from another. On the other hand, a 
velocity profile at 350 W/m3 is completely wrong, because 200 and 500 W/m3 are too 
different from each other.  
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List of symbols 

µ Fuzzy membership degree 

wi Weight 

bi Bias 

σ Activation function 

ej Error in ANN training single iteration 

dj Desired output in ANN training single iteration 

yj Produced output in ANN training single iteration 

E Sum of square errors 

ℇav  Cost function 

O ANFIS layer’s node output 

fi ANFIS output function 

ra Cluster radius 

rb Radius of elimination function for subtractive clustering 

A Known terms’ matrix in subtractive clustering 

θ Consequent parameters’ vector 

R2 Coefficient of determination 

RRMSE Relative Root Mean Square Error 

IA Willmotts’ Index of Agreement 

GI Goodness Index 

P/V Power Input (W/m3) 

v Velocity vector norm 

Vr Velocity radial component 

Vz Velocity axial component 

R Vessel radius 

H Vessel height 
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Utip Tip velocity 

RMSE Root Mean Square Error 

c Gaussian curve centre 

σ Gaussian curve standard deviation 

r Radial coordinate 

z Axial coordinate 

𝑟̃  Dimensionless radial coordinate 

𝑧̃  Dimensionless axial coordinate 

𝑣̃  Dimensionless velocity vector norm 

𝜎̃  Modified Gaussian curve standard deviation 

𝑐̃  Modified Gaussian curve centre 

 

 

Abbreviations and Acronyms 

FIS Fuzzy Inference Systems 

ANN Artificial Neural Networks 

ANFIS Adaptive Neuro Fuzzy Inference Systems 

FALCON Fuzzy Adaptive Learning Control Method 

GARIC Generalised Approximate Reasoning Based Intelligence 
Control 

PIV Particle Image Velocimetry 

MF Membership Function 
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