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1 | Introduction

During the latest years, the necessity to detect failures occurred to any aircraft on-board system in
their very first stages, before they potentially become serious (or worst, catastrophic), became very strong.
Particularly for those system classified as primary flight controls (including the primary moving surfaces
and everything related with the propulsion plant), in order to fulfill this need, a large effort has been
deploying towards diagnostic and prognostic algorithms development. The role of these latter includes the
capacity of understanding, as a first approach, and preventing, as the final objective, some of the most
common failures known to occur to certain kind of installations. The ideal application of these studies
would be producing something able to directly run on-board and in real time, in order to monitor systems
during the missions, provide early warning in case of fault detection and, when possible, take a targeted
action to prevent its worsening.
The specific aim of this work, being in perfect harmony with the just explained approach, is to develop
an Electro-Mechanical Actuator (EMA) monitoring model, able to replicate in a sufficiently reliable way
the real system behavior when a motor degradation occurs. The faults we are going to focus on, are the
within-phase short circuits and rotor static eccentricity (see sections 3.1.4 and 3.1.5). Typically, this kind
of actuators are employed for mobile surfaces handling by an all or more-electric flight control system
architecture: basically the input signal given by the pilot or by the autopilot, is processed by the flight
control computer and sent to an electric motor, directly responsible of the surface mechanical actuation.
As an example, the figure below shows the typical Boeing FCS schematized architecture:

Figure 1.1: Boeing 777 and 787 FCS architecture

Before facing the Matlab-Simulink models utilized within this work, a deeper look at brush-less,
sinusoidal electric motors is required, in order to better understand their functioning principles.
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Chapter 1. Introduction

1.1 Brush-less Electrical Motors

The Brush-less Direct Current (BLDC) motor is a DC electric motor with a permanent magnet rotor
and a rotating magnetic field stator.

Figure 1.2: Four poles BLDC motor scheme

In a traditional brushed motor, the brushes mechanical contact with the rotating manifold closes
the electric circuit between the power supply and the windings on the rotor, periodically reversing the
direction of current circulation in the coils. Conversely in a BLDC, the switching of current circulating in
the stator windings, and therefore their magnetic field direction changing, needs an electronic control; this
way, beyond the reduction of the overall dimensions with the same provided power, big advantages come
from the electrical creeping contacts avoidance:

• Mechanical resistance reduction: the absence of creeping parts allows to reduce the friction
contribution to the resistant torque;

• Chance of sparks forming elimination: in a brushed motor, with a huge rotational speed,
sparks generation is very probable. By eliminating this components, no more open flames danger on
board is ensured;

• Reduction of periodical maintenance: no more consuming parts, means less maintenance
needed.

Therefore, the motor expected life will be increased, the electromagnetic noise, instead, will be
considerably reduced and an overall efficiency growth due to the necessity of generating the rotor magnetic
field lack, will be ensured. The permanent magnets on the rotor, are by now realized with special
materials allowing to further reduce its inertia and, consequently, to have extremely precise control
both in speed and acceleration. Some of these materials, which are now replacing ferrite, both for mass
and generated magnetic field density matters, are Neodymium (Nd), Samarium-Cobalt (SmCo) and the
Neodymium-Ferrite-Boron alloy (NdFeB). Since the BL motor operates in direct current, an electronic
circuit composed by power transistors controlled by a micro-controller is used and, this latter, takes care
of current switching, whose variation, in turn, causes the stator generated magnetic field rotation. On the
other hand, however, since the controller must know the rotor position with respect to the stator in order
to determine the direction to be given to the magnetic field (hence the nickname of synchronous motor),
an Hall effect sensor like a pick-up or a more precise resolver adoption is necessary. Anyway, it’s easy to
understand that all these advantages cause a device cost increasing: unlike brushed motors, in which the
control is made by a potentiometer or a rheostat (inefficient systems, but extremely cheap), the electronic
control for speed regulation in BL motors (supplied by the motor manufacturer or by third parties), has
an additional cost and must be entirely dedicated to a single motor. Especially in the aeronautical sector,
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Chapter 1. Introduction

the increase in reliability and, therefore in safety, is one of the requirements to be complied with in the
design phase and in the choice of components. Thus, the consequent cost increasing is a factor playing
a secondary role and, often, the most common choice is the more reliable and, in this case, even more
efficient.
A further distinguishing, among the BLDC motors, needs to be done between trapezoidal and sinusoidal
wave form ones. The main difference between these two configurations deals with the different way of coils
supplying: the first one, as shown in figure 1.3, sees a squared current signal which induces a trapezoidal
waveform in the back EMF of the single coils.

Figure 1.3: Trapezoidal motor wave forms

These latter have a 120° offset between each other in order to ensure a uniform coverage during the
complete revolution. Conversely, the sinusoidal motor, supplies the single coils with a such waveform,
each with a 120° offset (see figure 1.4), inducing an analogous response in terms of back EMF.
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Chapter 1. Introduction

Figure 1.4: Sinusoidal motor wave forms

This latter motor ensures a smoother electro-magnetic field transition during the revolution and, thus,
even a smoother rotor motion.

1.1.1 Clarke-Park

As first operation, a reference plan change is required: since we have a rotating object (motor shaft),
we need to use a united reference to it in order the latter to be inertial. That’s why we use the Clarke-Park
transformation: the first step is using the Clarke matrix, [C] which transforms the fixed coils system
coordinates into those of another fixed, right-handed one, given by α−β axes (α ≡ A and β perpendicular
to it, see figure 1.5), thus having the following current components;

{
Iα
Iβ

}
= [C] ·

IAIB
IC

 =
2

3
·
[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
·

IAIB
IC

 (1.1)

Causing:

{
Iα = 2

3IA −
1
3 (IB + IC)

Iβ =
√

3
3 (IB − IC)

(1.2)

Where IA, IB , IC are the phase currents for a star configuration.
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A α

β

q

dB

C

𝜃𝑒

90°𝑒 = 45°𝑚

Figure 1.5: Clarke-Park reference plans

The second step is to move into the rotary reference, through the Park matrix, [P ] which indeed,
transforms the Clarke plan coordinates into those of a changing system, integral with the rotor, and
composed by direct (d) and quadrature (q) axes;{

Id
Iq

}
= [P ] ·

{
Iα
Iβ

}
=

[
cos θe sin θe
− sin θe cos θe

]
·
{
Iα
Iβ

}
(1.3)

The direction d̂, given by the direct axis, points to one of the rotor north poles, while q̂ indicates the
quadrature direction, perpendicular to it in terms of electrical angle, in such a way a right-handed system
is obtained. Be aware that, since we are using electrical angle, the actual “mechanical” one depends upon
the poles pairs number, indeed:

θe = Np · θm (1.4)

which in our case, choosing Np = 2, leads to a mechanical angle between d̂ and q̂ given by:

θmC−P
= π/4 = 45◦ (1.5)

From the 1.3 we have: {
Id = Iα cos θe + Iβ sin θe

Iq = −Iα sin θe + Iβ cos θe
(1.6)

Where Id is the direct current and Iq the quadrature one. Finally, the full Clarke-Park transformation
is given by the following:

{
Id
Iq

}
= [P ] ·

{
Iα
Iβ

}
= [P ] · [C] ·

IAIB
IC

 =

=
2

3
·
[

cos θe sin θe
− sin θe cos θe

]
·
[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
·

IAIB
IC


(1.7)

With:
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Chapter 1. Introduction

Id =
[

2
3IA −

1
3 (IB + IC)

]
cos θe +

√
3

3 (IB − IC) sin θe

Iq =
[
− 2

3IA + 1
3 (IB + IC)

]
sin θe +

√
3

3 (IB − IC) cos θe
(1.8)

Where we have the quadrature and direct currents as a function of the phase ones and of rotor electrical
position.
It is possible, of course, operating the reverse transformation, by using the inverse Clarke and Park
matrices:

[C]−1 =

 1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

 (1.9)

[P ]−1 =

[
cos θe − sin θe
sin θe cos θe

]
(1.10)

[C]−1 is obtained through the Moore-Penrose inverse, the most diffused way to calculate the matrices
pseudoinverse, while being [P ] an orthogonal matrix, we have:

[P ]−1 = [P ]t ⇒ [P ] · [P ]t = [I] (1.11)

Thus, the overall inverse conversion is given by the following:

IAIB
IC

 = [C]−1 ·
{
Iα
Iβ

}
= [C]−1 · [P ]−1 ·

{
Id
Iq

}
=

=

 1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

 · [cos θe − sin θe
sin θe cos θe

]
·
{
Id
Iq

} (1.12)

Leading to: 
IA = Id − Iq sin θe

IB = 1
2

[
(
√

3Iq − Id) cos θe + (
√

3Id + Iq) sin θe

]
IC = 1

2

[
(−
√

3Iq − Id) cos θe + (−
√

3Id + Iq) sin θe

] (1.13)
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2 | High Fidelity Model

Since the aim of this work is to provide a simplified model for an Electro-Mechanical Actuator (EMA),
able to run in real time during the actuation, in order to provide early information about possible failures
which are already happening or, in a most suitable case, which are going to occur in the very next future, a
sinusoidal EMA high fidelity model, deeply described in [1], has been modified in terms of current output.

2.1 Model Description

As showed by figure 2.1, the Matlab-Simulink model is composed by several subsystems, each of them
accomplishing a specific task.

com	

theta_u

Dtheta_m	

I_ref

Control	Electronics
	(PID)

I_ref

theta_e

I_A

I_B

I_C
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Inverter	Model

theta_m
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T_m

I_A

I_B

I_C

A

B

C
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Model

load

T_m

theta_m

Dtheta_m

theta_u

Motor-Transmission
Dynamical	Model

I_A

I_B

I_C

theta_e

I_3eq	
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Figure 2.1: High Fidelity PMSM EMA model

• Control Electronics (PID): takes the position command, the feedback utilizer position and motor
angular speed as inputs, and provides the reference current to be given forward;

• Resolver Model: simply converts the motor mechanical angular position to the electrical one,
through the expression θe = Np · θm, with Np poles pair number;

• Inverter Model: receives the reference current, the motor electrical position, and the three-phased
current as feedback; it’s physically connected to the BLDC EM Model through A, B, C connections.
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Chapter 2. High Fidelity Model

Figure 2.2: High Fidelity Inverter model

The figure 2.2, shows that the Phase Current Evaluation box transforms the single-phased reference
current into the three-phased one; this box contains the Clarke-Parke transformation described in the
dedicated section (1.1.1), while the outputs are subtracted with the current feedback. Afterwards,
the Hysteresis PWM box contains the pulse width modulation process, whose products feed the
3-phase Bridge box, containing the three-phase bridge electrical model;

• BLDC Electromagnetic Model: receives motor angular position and speed as feedbacks, com-
putes the back EMF coefficients and, through an ohmic-inductive model, calculates the motor torque
and phase currents;

• Motor-Transmission Dynamical Model: fed by the motor torque and the external load, it
contains the mechanical model of the motor-reducer group, including the Borello’s friction model, is
able to provide motor angular speed and position, as much as the utilizer one;

• Single-Phase Transformation: computes a single-phasic current “proportional” to the three-
phasic one. It’s content is going to be deeply described in the next section;

Notice that the Control Electronics (PID) and Motor-Transmission Dynamical Model boxes, are going
to be widely described in the Simplified Model section (3), given the fact they’re exactly the same.

2.2 Equivalent Single-Phasic current computation

It has been necessary to build a single-phasic equivalent current in pursuance of having a compa-
rable output parameter with the monitor model, which is indeed, single-phasic. This aim has been
reached through Single-Phase Transformation box, reported in figure 2.3, which uses the Clarke-Park
transformation and gives a two components output current:

~I3eq
= Iq · q̂ + Id · d̂

Id = 0
(2.1)

Iq =

[
− IA +

1

2
(IB + IC)

]
sin θe +

√
3

2
(IB − IC) cos θe (2.2)

Where Iq and Id are respectively the quadrature and direct current (see section 1.1.1, for further
information). Since a good permutation sequence requires the resultant coils supply current to be always
perpendicular (in terms of electric angle) to the rotor magnetic field, this condition has been used to
ensure a proper permutation and explains the fact that Id is always going to be null, thus causing

~I3eq
= Iq · q̂ (2.3)

13



Chapter 2. High Fidelity Model

Figure 2.3: Single-Phase Transformation box

Furthermore, this characteristic widely justifies the choosing of quadrature current as the comparison
parameter; in the figure just above, we can see the three-phase current contributions of the single coils
coming from the BLDC Electro-Magnetic Model and being the Clark box input, which contains the
Clark matrix [C](equation 1.1); Indeed, its outputs are Iα and Iβ , which are going to enter the Park box
together with the rotor electrical angle, containing the Park matrix [P] (equation 1.3). Once obtained the
direct and quadrature currents, it’s needed a filtering stage cleaning up the signal from higher frequencies
given by superior order phenomena such as PWM and undesired numerical noise. Finally, we have the
single-phasic equivalent current ~I3eq

, which is going to be used as the comparison parameter with the
monitor model we are going to describe in the next section.
Here follows the figure showing the highest level of the model described above, just to give an overall
sight and better clarify where the inputs signal comes from, as much as where the output ones go to.

Com

Load

theta_m

Dtheta_m

theta_u

I_3eq

Sinusoidal	EMA	High	Fidelity

Com

Load

Scope

I_3eq
To	Work-Space

Load
To	Work-Space

Figure 2.4: High Fidelity model overall sight
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3 | Simplified Model

In this section we are going to describe a “low fidelity” model coming from the exemplification of the
high fidelity one presented in the previous chapter. The main operation conduced for this purpose, is
been “condensing” the red boxes of figure 2.1 into a single one, as shown in figure 3.1:

Output

Control
Electronics

(PID)

Motor-Transmission
Dynamical	Model

Continuous

1
Com

2
Load

1
Theta_m

2
Dtheta_m

3
Theta_u

4
I_f

Electrical
Model

Theta_m
[rad]

Theta_m
[rad]

Dtheta_m
[rad/s]

Dtheta_m
[rad/s]

Dtheta_m
[rad/s] Dtheta_m

[rad/s]

Theta_u
[rad]

Theta_u
[rad]

[rad]

[Nm]

I_ref
[A] TM

[Nm]

I
[A]

I_f
[A]

Figure 3.1: Low Fidelity PMSM EMA model

Basically, it’s been skipped the three-phase current conversion and, thus, no Clarke-Park inverse
transformation, hysteresis PWM generation and three-phase bridge electrical model (see figure 2.2) are
needed anymore. At the same time, the electro-magnetic model doesn’t require computation of three
back EMF coefficients, currents, inductances and voltages, allowing to replace everything with a simpler
single-phasic ohmic-inductive model (Electrical Model in figure 3.1), which is going to be described below.

3.1 Model Description

Let’s see in detail the monitor model, shown in figure 3.1: there is a position command given in radians
(Com), which is elaborated by Control Electronics (PID) box, together with “low speed” shaft angular
position (Theta u, due to a reduction stage downstream of the motor) and motor speed loops (DTheta m,
related to “high speed” shaft), which produces a reference current I ref as output.

3.1.1 Control Electronics (PID)

The control electronics box, represented in figure 3.2, calculates the position error (Err Pos=Com-
Theta u) and both uses it as input to the proper PID box and multiplies it by the controller proportional
gain, set to:

Gprop = 10−5

[
1

s

]
(3.1)
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Chapter 3. Simplified Model

Figure 3.2: Control Electronics (PID) box LF EMA model

Thus, the actuation speed is obtained, followed by its saturation set to:

ωreflim = ± 8000 [RPM ] · 2π

60
= ± 800 · π

3

[
rad

s

]
(3.2)

The next step is the speed error calculation (Err W=W ref-DTheta m), which enters along with
the motor speed, the PID box (see section 3.1.1.1). Its output is the reference motor torque (TM ref )
being multiplicated by the gain torque constant (GT ) inverse, contained in the gain box 1/GT ; this way,
the reference current I ref is obtained, and enters the Current Reference Limiter box, which states its
admitted boundary values:

Ireflim = ± ImaxHF
= ± 22.5 [A] (3.3)

Where ImaxHF
= 22.5 [A], is the maximum allowed current for the high fidelity model.

The Band-Limited White Noise box, simulates the signals white noise, by adding a certain frequency
fluctuation, which in this case is null since not needed for the monitoring model aims.

3.1.1.1 PID

Figure 3.3: PID box LF EMA model

From the figure 3.3, we can see the speed error entering the Proportional Gain box and, in there, being
multiplied by the:

GAP = 0.05

[
Nm · s
rad

]
(3.4)

The output of the orange box has torque dimensions, indeed we have:
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Chapter 3. Simplified Model

[
rad

s

]
·
[
Nm · s
rad

]
= [Nm] (3.5)

and feeds both the Derivative and Integrative branches; the first one contains the related dynamics,
given by the f.d.t.:

TD · fb · s
TD · s+ fb

=
TD · s

TD

fb
· s+ 1

(3.6)

Where TD = 0 [s] is the characteristic time and fb = 1 [kHz] is the band pass; as we can see, his
contribution is null, due to a good model attitude, not requiring any further action in this sense, but it
can be set to different values in case of necessity by modifying the script parameters.

At the right bottom, we can see the motor shaft speed and its position error entering the Anti-Windup
box together with motor torque output loops, before and after the integrative Error Saturation, set to:

Esat = ±100 [Nm] (3.7)

All the outputs from the red box converge into the green one and, after the underwent integration
in there, we finally have the sum of three branches contribution, producing the reference motor torque
TM ref .

Figure 3.4: Anti-Windup box content

The figure 3.4 unveils the anti-windup box content and shows three different kind of filters.

• Anti-Windup Speed: inhibits the integrative branch if the rotation speed is null for more than
one integration step; it gives a value greater or lower than 0, feeding the switch contained into
Integrative Branch described below, in order to fulfill this task;

• Anti-Windup Position: inhibits the integrative branch if the position error is lower than a given
value (Tolli = 10−3 [rad]); if the condition is verified, the output is going to be 0, 1 in the other
cases;

• Anti-Windup Saturation: compensates for the integrative branch if there’s a command satura-
tion. Indeed, when the integrative error saturation occurs, the difference between After Sat and
Before Sat is compensated by the gain 1

Tt

[
1
s

]
, producing:

Sat = (After Sat−Before Sat) [Nm] · 1

Tt

[
1

s

]
= (After Sat−Before Sat)

[
Nm

s

]
(3.8)

Tt = 1 [s], being the filter characteristic time;
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Chapter 3. Simplified Model

Speed, Pos and Sat signals lead to the Integrative Branch box (see figure 3.3), composed as follows:

Figure 3.5: Integrative Branch box content

We can see the Manual Switch choosing between speed and position filtering and ensuring its output
to have torque dimensions; the signal coming From Proportional enters the Switch box (if speed filtering
is enabled), which selects 0 or the signal coming from proportional whether Speed is, respectively, greater
or lower then 0. On the other hand, if position filtering is selected, Pos simply multiplies the input from
proportional in such a way it can be 0 or itself. Downstream the manual switch, we find a gain box 1

Ti

multiplying the signal by:

1

Ti

[
1

s

]
= 10−4

[
1

s

]
(3.9)

which produces a quantity with the correct dimensions:

[Nm] ·
[

1

s

]
=

[
Nm

s

]
(3.10)

Next step is the sum between Sat and the latter gain box output, which can finally be integrated by
the green box and provide the integrative torque contribution to the PID controller.

3.1.2 Nominal Conditions Electrical Model

Once obtained the I ref from the Control Electronics (PID) box (see figure 3.1), the signal enters
Electrical Model system, containing the following:

Faults

1
TM

1
I_ref

2
Dtheta_m

3
Theta_m

2
I

-K-

Supply
Voltage

[V]	

Ohmic-Inductive
Motor	Model

Current
Sign

-K-

Gain	Torque
	[Nm/A]

-K-

Back	EMF	Coeff.
[Vs/rad]

	Torque
Saturation	

Sv_err
[V]

[A] Sv
[V]

[\]

[rad/s]

[Nm]I_err
[A]

[rad]

V
[V]

I_out
[A]

I_out
[A]

TM
[Nm]

Figure 3.6: Electrical Model box content

The I ref, subtracted with the I out loop, produces the I err :

I err = I ref − I out [A] (3.11)
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Chapter 3. Simplified Model

Which enters Current Sign box, extrapolating its sign in order to assign it to the Supply Voltage:

SV = ± 48 [V ] (3.12)

Another subtraction stage deprives SV of the Back Electro Motive Force contribution, given by motor
angular speed Dtheta m multiplied by the Back EMF Coefficient, equal to:

kBEMF =
0.0752

3

[
V · s
rad

]
(3.13)

Thus having, from a dimensional point of view:

V [V ] = Dtheta m

[
rad

s

]
· kBEMF

[
V · s
rad

]
(3.14)

Allowing us to write:

SV err = (SV − V ) [V ] (3.15)

Which feeds the Ohmic-Inductive Motor Model, containing the motor model t.f. given by:

1

Rm
[(
Lm

Rm
· Ntot

3

)
s+ 1

] (3.16)

Where, Ntot

3 is the mean percentage of working coils, being:

Ntot = NA +NB +NC (3.17)

With: NA,B,C percentage of windings A, B, C working coils and 0 ≤ NA,B,C ≤ 1, where 1 means
completely functional, while 0 means totally damaged. For nominal conditions, we have the following
data:


Rm = 2.130

2 [Ω]

Lm = 720
2 [µF ]

NA = NB = NC = 1

Ntot = 3

(3.18)

The I out coming from the green box, goes both to the output 2, as I, and through the Gain Torque:

GT = 0.0392

[
Nm

A

]
(3.19)

Obtained by the calibration process (see section 3.2).
After this step, we find the Torque Saturation box, given by the eventual I err saturation and equal to:

TMlim = ±1.689 [Nm] (3.20)

Finally, we have the TM as output number 1.

3.1.3 Electrical Model with Failures Modeling

Looking at figure 3.6, we can see the orange box Faults disconnected; in order to better understand its
working principles, in this section we are going to describe the process leading us to build the electrical
model, including the failures functions. This is the complete model looking, after connection:
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Faults
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1
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Figure 3.7: Electrical Model box content with failures modeling “enabled”

We can see there is a contribution to the BEM force to the output current I out and, also, to the
motor torque one TM, while the last input needed is the motor angular position Theta m. The scheme
inside the orange box is the following:

Rotor	Eccentricity
Correction

Winding	SC
Correction

4
I_out

1
V

3
TM

2
Theta_m

2
I

1
V_f

3
TM_f

Phi_E
[\]

Phi_E
[\]

Phi_SC
[\]

Phi_SC
[\]

[rad]

[A]

[V]

[Nm]

[A]

[V]

[Nm]

Figure 3.8: Faults box content

Winding SC Correction and Rotor Eccentricity Correction take Theta m input and contain form
functions able to model, respectively, the effect of partial windings short circuit and mechanical failures
due to rotor deformation or misalignment. In both cases, a non-dimensional multiplicative coefficient is
produced and is going to affect V (back EMF contribution), causing V f [V], I out, giving I [A] and TM,
having TM f [Nm]. Of course, the mechanical correction has no direct effects on the ohmic-inductive
motor model, that’s why I out is only divided by SC correction: looking at the t.f. of equation 3.16, the
most relevant contribution to I out is given by the motor phase-to-phase resistance Rm which, being
proportional to the number of working coils, needs to be multiplied by the SC correction coefficient.
Moreover, seen its negligible nature compared with Rm, in spite of complicating the model due to having
a precise contribution of the inductance Lm multiplying it by SC correction too, a better solution has
been considered using the mean working coils number Ntot

3 . This way, the motor t.f. affected by faults, is
going to be:

1

ΦSC ·Rm
[(
Lm

Rm
· Ntot

3

)
s+ 1

] (3.21)

Where, ΦSC is the SC correction function value; in the same way we have:{
Vf = ΦSC · ΦE · V [Ω]

TMf = ΦSC · ΦE · TM [Nm]
(3.22)
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ΦE being the eccentricity correction function parameter; for greater clarity, here the scheme of electrical
model with faults box “deployed” :
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Figure 3.9: Electrical Model box content, with Faults “deployed”

We can see the torque output too needs to be modified by the form functions: that’s because the gain
torque, which is basically the same as BEMF coefficient, is affected by the number of working coils and by
the air-gap depth, whose contributions are not included into the motor model t.f. modification, as might
be thought. In the next sections, we are giving a more in depth look at the correction functions.

3.1.4 Winding SC Correction

The Winding SC Correction box is able to provide an “instantaneous” coefficient, proportional to the
percentage of working coils [NA, NB , NC ] and to the motor angular position.

Partial	Winding	SC
Computation1

Theta_m
1

Phi_NC

Mechanical	to	Electrical
Conversion[rad] Theta_e

[rad]
[\]

Figure 3.10: Winding SC Correction box content

As first step, a mechanical to electrical motor angular position conversion is needed and achieved by
the Mechanical to Electrical Conversion box, containing the relation 1.4, while the Partial Winding SC
Computation contains the actual form function, modeling the eventual short circuits within the single
phase and having the following feature:

kft

{
NA
[
1 + kfs · sin2(θe + π)

]
+NB

[
1 + kfs · sin2

(
θe +

π

3

)]
+NC

[
1 + kfs · sin2

(
θe −

π

3

)]}
(3.23)

Where, kfs is the short circuit single contribution gain and kft is the short circuit total contribution
gain, which basically are needed for off-set adjusting between the high fidelity and the monitor model,
faced into the calibration section 3.2.
Given the fact that a function with the same frequency as the I3eq = Iq is needed and that the percentage
of working coil Ni is proportional to the phase current Ii, the structure of equation 3.23, comes from the
second of 1.8, indeed:

Iq =
[
− 2

3
IA +

1

3
(IB + IC)

]
sin θe +

√
3

3
(IB − IC) cos θe =

= −2

3
IA · sin θe +

1

3
IB(sin θe +

√
3 cos θe) +

1

3
IC(sin θe −

√
3 cos θe) =

=
2

3

[
− IA · sin θe + IB

(
1

2
sin θe +

√
3

2
cos θe

)
+ IC

(
1

2
sin θe −

√
3

2
cos θe

)] (3.24)

Remembering that:
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

√
3

2 = sin π
3

1
2 = cos π3
sin (α+ β) = sinα · cosβ + cosα · sinβ
sin (α− β) = sinα · cosβ − cosα · sinβ
sin (α+ π) = − sinα

(3.25)

We obtain:

Iq =
2

3

[
− IA · sin θe + IB

(
1

2
sin θe +

√
3

2
cos θe

)
+ IC

(
1

2
sin θe −

√
3

2
cos θe

)]
=

=
2

3

[
− IA · sin θe + IB

(
cos

π

3
· sin θe + sin

π

3
· cos θe

)
+ IC

(
cos

π

3
· sin θe − sin

π

3
· cos θe

)]
=

=
2

3

[
IA · sin (θe + π) + IB · sin

(
θe +

π

3

)
+ IC · sin

(
θe −

π

3

)]
∝

∝
[
NA · sin (θe + π) +NB · sin

(
θe +

π

3

)
+NC · sin

(
θe −

π

3

)]
(3.26)

Next operations take birth from necessity of the form function to be always positive, to have a
maximum value equal to one (when NA = NB = NC = 1), to have the chance to be calibrated on a given
reference model and to be non-dependent by kind (NA, NB or NC) and number of windings (just one, two
or all of them) underwent to short circuit. In particular, the fact that a sort of independence and a unitary
value for nominal conditions are needed, took us to add 1 to every windings contribution, as follows:

[
NA · sin (θe + π) +NB · sin

(
θe +

π

3

)
+NC · sin

(
θe −

π

3

)]
→

→ NA[1 + sin (θe + π)] +NB

[
1 + sin

(
θe +

π

3

)]
+NC

[
1 + sin

(
θe −

π

3

)] (3.27)

This operation even causes the form function to have a 3 value (for nominal conditions), effect which
is going to be compensated by insertion of kf parameters. Subsequently, during a trial and error process,
we had the necessity to increase the form function frequency, fulfilled by square elevating the sinusoidal
components:

NA[1 + sin (θe + π)] +NB

[
1 + sin

(
θe +

π

3

)]
+NC

[
1 + sin

(
θe −

π

3

)]
→

→ NA[1 + sin2 (θe + π)] +NB

[
1 + sin2

(
θe +

π

3

)]
+NC

[
1 + sin2

(
θe −

π

3

)] (3.28)

This made the trick for us in therms of frequency, but produced the side effect of rising the function
value to 4.5, in such a way the final adding of single contribution and total contribution gains had to take
that into account. Furthermore, the presence of these parameters guaranteed the chance to fit the function
output to different reference model configurations, conducing to the final SC form function expression:

ΦSC = kft

{
NA
[
1+kfs ·sin2(θe + π)

]
+NB

[
1+kfs ·sin2

(
θe +

π

3

)]
+NC

[
1+kfs ·sin2

(
θe −

π

3

)]}
(3.29)

In order to evaluate the nominal kfs and kft values, a “manual fitting” process, with windings conditions
set to NA = NB = NC = 1, has been conduced and led us to:{

kftNC
= 1

18

kfsNC
= 9

(3.30)

Those being the quantities which guaranteed the minimum (at sight) difference in terms of current
output between high fidelity and monitoring models. Indeed, by substituting those values inside the form
function expression, we obtain:
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ΦSC =
11

12
' 0.9167 (3.31)

No further actions were conduced in order to achieve the unity value, because we knew that a more
rigorous method in evaluating these parameters were needed anyway, so that an optimization processes
would have taken care of that (see section 3.2).

3.1.5 Rotor Eccentricity Correction

Something very similar to the previous section happens with the Rotor Eccentricity Correction, whose
content is shown in the figure below:

Rotor	Eccentricity
Computation

1

Theta_m

1

Phi_E

Eccentricity
Gain

Eccentricity
Phase

[\][\]

phi
[\]

Z
[\]

[rad]

Figure 3.11: Rotor Eccentricity Correction box content

It produces a non-dimensional coefficient ΦE , affecting the BEMF and the output torque, without
causing variations to the current output because of its merely mechanic nature; the way this parameters are
influenced by ΦE , is already reported in equations 3.22. In particular, the Rotor Eccentricity Computation
aim is representing the static misalignment due to the eventual rotor deformed axis, by taking as input a
magnitude value (indicating the maximum deformation point) referred as:

0 ≤ Z ≤ 1⇒ 0 ≤ ∆

Z0
≤ 1 (3.32)

Static eccentricity, means that the deformed rotor axis coincides with the rotational one, in such a
way the closest and furthest points to the stator, are always in the same angular position. We can see
Z = ∆

Z0
in the equation above, where ∆ is the distance between rotational axes in nominal and deformed

condition, while Z0 is the nominal air gap depth[2].
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Δ ෨𝜙𝑍𝑒Z0 𝛼

𝛽

𝐴

Rotor

Stator

Figure 3.12: Static eccentricity scheme: the dotted circle represents the rotor in nominal conditions, the blue one is
the stator, the yellow one is the rotor with a static eccentricity

That’s said, it’s easy to understand that 0 represents the situation with no axis deformation and 1, the
condition which would cause creeping between stator and rotor (∆ = Z0). A second information, given by
the maximum deflection angular position (in respect to the referring system: see figure 3.12 for greater
clarity), is stated to:

0 ≤ φZ ≤ 1⇒ 0 ≤ φ̃Zm ≤ (2π)m ⇒ 0 ≤ φ̃Ze ≤ (4π)e ⇒

⇒ φZ =
φ̃Zm

(2π)m
=

φ̃Ze
(4π)e

(3.33)

In this case, 0 indicates alignment with phase A, while 1 represents the interval upper bound of the
chosen angular motor position kind (mechanical or electrical). Indeed the subscripts m and e denote
respectively mechanical or electrical angle, and φz is the normalized value of φ̃Z in respect to considered
angle.
The remaining input is θm, which is converted in electrical angle inside the Rotor Eccentricity Computation
box, containing the following:

θe = Np · θm = 2 · θm →
→ ΦE = 1− kfE · ZE [cos (θe + φ̃Ze)]

(3.34)

Since ΦE needs to be ineffective when the input parameters are null, we find kfE · ZE [cos (θe + φ̃Ze)]
subtraction to 1, while for the SC computation we had to add the related contribution to 1. The parameter
kfE is homologous to kfs , and is needed in order to have the chance to calibrate the monitoring model
upon the high fidelity one. As starting value has been chosen the one well working for a trapezoidal wave
form motor, as stated in the article (P. C. Berri, M. D. L. Dalla Vedova, P. Maggiore)[3], and has been set
to:

kfE = 0.42 (3.35)

Which is going to be optimized as much as the other failure parameters (see section 3.3).

3.1.6 Output

The orange box Output, represented in figure 3.1, only contains low pass filters for both I and motor
torque TM, and “saving-to-workspace” feature for the latter quantity.
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Figure 3.13: Output box content

The filters represented in the figure above are exactly the same between each other and as those
used in the high fidelity model; actually their functionality here it’s not related with the signal filtering
necessity, but they are needed in order to introduce the same delay the HF model is affected by, due to
their presence. The t.f. used for this purpose is the following:

1

(τf · s+ 1)3
=

1

[(5 · 10−5)s+ 1]3
(3.36)

Which is a third order t.f., guaranteeing a strong signal attenuation (−60 dB/decade) starting from
the cutoff frequency, given by:

fc =
1

τf
=

1

5 · 10−5
=

105

5
= 20 [kHz] (3.37)

3.1.7 Motor-Transmission Dynamical Model

A second order system has been used in the Motor-Transmission Dynamical Model (see figure 3.1),
represented in the figure below:
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Figure 3.14: Motor-Transmission Dynamical Model box content

The inputs are given by Load and motor torque TM coming from the Electrical Model (section 3.1.3);
the first one is multiplied by the Gear Ratio:

τ =
1

500
(3.38)

This value can be obtained thanks to what an epicyclical reducer could be, but this goes beyond the
present work aims. The first operation box encountered downstream of τ is the algebraic sum where we
can see TM subtracted of the load contribution and of viscous friction factor, given by:

(Cm + Cu) · ˙θm = Ctot · ˙θm (3.39)

Where, the dumping component of the system is equal to:

Ctot = Cm + Cu = 5.172−5

[
Nm · s
rad

]
(3.40)
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With Cm and Cu being, respectively, the motor and utilizer contribution. This way we have:

TM [Nm]− τ · Load [Nm]− Ctot · ˙θm

[
Nm · s
rad

]
·
[
rad

s

]
= T [Nm] (3.41)

The next step is the active torque calculation Act Tb, where “b” means “before” the withe box
producing Act T as output; we have, indeed:

Act Tb = T − Tf [Nm] (3.42)

With Tf being the Coulomb friction contribution to the motor torque, calculated by Borello Friction
Model [8] (see section 3.5), which basically chooses between static and dynamic friction coefficients by
evaluating whether the motor angular speed changed sign or not, through a detection point. When this
happens, the green box sends a reset signal to the first integrator (reset 1 ), in such a way it can set the
speed output to zero; in order to fulfill its task, the friction model receives as inputs two consecutive motor
speed steps (DTheta m(-1) and DTheta m) and the torque T, which is needed for understanding whether
we are in aiding or opposing conditions. The Act Tb enters a switch box which verifies whether mechanical
end-stops conditions occurred or not and states which output we are going to have, respectively, between
zero and the input active torque. Indeed, this box needs the saturation port Saturation signal, coming
from the integrator relative to θm, which is going to produce the values:


+1 Upper mechanical end− stop
0 Not limitated

−1 Lower mechanical end− stop
(3.43)

Thus, if Act Tb has the same sign as Saturation, then the output is going to be null, while in all the
other cases, it states Act T = Act Tb. Notice that, if Saturation is other then zero, a second kind of
reset signal reset 2 is sent to the first integrator, allowing it to produce a null speed value for the next
integration step. The Act T encounters the gain:

1

Jm + Ju
=

1

Jtot
=

1

2.5−5

[
rad

kg ·m2

]
(3.44)

With Jtot being the system total moment of inertia, given by the sum of the motor (Jm) and utilizer
(Ju) ones. In such a way, we obtain the motor angular acceleration D2Theta m, applying the fundamental
law of rotational dynamics, given by:

T = J · θ̈m ⇒ θ̈m =
T

J
(3.45)

The following step is the first integration, providing the angular speed DTheta m and whose box has a
reset signal input port and a state port about which has already been discussed. The second integration
box is limited, as could be understood from what was said above, and these limits represent the mechanical
end-stops in terms of motor angular position; its output is, indeed, motor mechanical angle Theta m. As
last “non-linearity” we have a Backlash box, coarsely modeling the reducer mechanical clearance as a
simple dead band. For sure this solution will need an upgrade in future developments, but since that’s a
conservative assumption, it’s been considered to be enough precise for this application. Before obtaining
the utilizer angular position Theta u, the variable Theta m BL goes through the reducer gear ratio τ ,
which decreases by 500 times the motor-shaft angular speed and position. Finally, the dynamical model,
has provided the output quantities needed: θm, ˙θm and θu.
Just like already done in the previous charter for HF model, here follows the highest level of the LF one,
whose sight helps in understanding the involved data flow, by giving an overall picture of the system.
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Figure 3.15: Monitoring model overall sight

As we can see, Com and Load boxes are the inputs, the orange ones save load torque and filtered
current to the workspace, which, along with the other output parameters coming from the mechanical
model, are plotted through Scope box. In the next sections, we are going to calibrate the model upon the
HF one for nominal conditions, as much as optimize the failures parameters in degraded circumstances.
Since the kind of faults, aimed to be subjects of the early detection in question, are characterized by
medium-to-long performance time frames (we are talking about tens of hours), the “before flight” testing
it’s been considered to be a proper contest to run the diagnostic checks for that specific failures. In these
conditions, the control surfaces are not invested by the aerodynamic flow, neither subjected to load factors
other then 1, making reasonable the choice to conduce calibration and optimization by setting Load = 0.
Not the same for command signal which, indeed, has been chosen to be a chirp kind: sine curve starting
with 0.005

[
rad
s

]
amplitude and null frequency, the latter of which linearly increases up to a 15 [Hz]

maximum value after 0.5 [s].
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Figure 3.16: Chirp command trend

3.2 Model Calibration

Clarified the command and load conditions at which we’re are going to test our monitor model, let’s
remember that we’re going to focus on the current output, calibrating some parameter in order to have
the best fitting possible to the HF model equivalent current (see 2.2), because the effects of faults we’re
examining are visible only there; that’s why the response in therms of motor and utilizer angular position,
compared to the given command, has not been studied even though, of course, the model provides these
informations too.
The reasons why a calibration process is needed are multiples and they all deal with the fact that an
extreme exemplification has been made in order to obtain a lighter and faster model, without considering
ΦSC in nominal conditions is not exactly unitary (see section 3.1.4). The parameters affected by having
completely taken off the three-phase structure are BEMF coefficient kBEMF and the gain torque GT ,
where the first one strictly deals with the current wave form, while the second one directly affects the
motor torque which, through its influence on the motor angular speed calculation (see section 3.1.7),
again has impact on the BEMF coefficient and on the current. As starting values, has been assigned,
respectively: kBEMF = 0.0752

3

[
Nm
A

]
GT = 0.0752

2

[
Nm
A

] (3.46)

From which we can see the parameters are related by the equation:

GT =
3

2
· kBEMF (3.47)
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The reasons of this relationship is explained by the fact that, if the single-phase transformation
decreases the three-phase current by a 2

3 factor and its taken into account by construction, not the same
happens for the torque in the HF model. In order to have a comparable behavior, indeed, we need to
multiply the gain torque of the LF model by a 3

2 factor, which compensates the just explained effect
through its influence on the BEMF contribution to the voltage. The process called calibration, here,
is intended to be an optimization trial whose aim is minimization of the Mean Squared Error (MSE)
between currents, in nominal conditions. This operation has been fulfilled by employment of Matlab
Optimization tool running a Genetic Algorithm (GA) able to generate a certain number of kBEMF and
GT casual combinations, to evaluate the MSE at each iteration, and to end the process when some exit
criteria are satisfied.

3.2.1 Optimization Toolbox

Global Optimization Toolbox [4] provides functions searching for global solutions to problems that
contain multiple maximum or minimum points. Toolbox solvers include surrogate, pattern search, genetic
algorithm, particle swarm, simulated annealing, multi-start, and global search. Each of these solvers can be
used for optimization problems where the objective or constraint function is continuous, discontinuous,
stochastic, does not possess derivatives and includes simulations or black-box functions. For problems with
multiple objectives, a Pareto front1 can be identified by using GA or pattern search solvers. Furthermore,
solver effectiveness can be improved by adjusting options and, for applicable solvers, customizing creation,
update, and search functions. Custom data types can be used with the GA and simulated annealing
solvers, able to represent problems not easily expressed with standard data types. Finally there is even
an hybrid function option allowing the improvement of a solution by applying a second solver after the
first. In our case, since our problem is a multiple variables one, with unknown evolution pattern, the more
effective solution has been considered to be the GA utilization.

3.2.2 Genetic Algorithms

The GA[5], by exploiting a natural selection process that mimics biological evolution, is a method for
solving both constrained and unconstrained optimization problems. The algorithm repeatedly modifies
a population of individual solutions and, at each step, the GA randomly selects individuals from the
current population in order to use them as “parents” to produce the “children” for next generation. Over
successive generations, the population “evolves” toward an optimal solution. The GA can be applied in
order to solve problems that are not well suited for standard optimization algorithms, including problems
in which the objective function is discontinuous, non-differentiable, stochastic, or highly nonlinear. For a
better understanding of the process a GA uses in order to generate children for next stages, here the rules
followed:

1) Selection rules: select the parents contributing to the population at the next generation;

2) Crossover rules: two parents combination in order to form children for the next generation;

3) Mutation rules: random changes application to individual parents before forming children;

The (two) main differences intervening between GA and a classical, derivative-based, optimization
algorithm (that we are going to call CA) are explained below.

• Point generation

- Classical Algorithm: a CA generates a single point at each iteration and, if the problem is
well-posed, the sequence of points approaches an optimal solution;

- Genetic Algorithm: a GA produces a population of points at each iteration, the best among
which, approaches an optimal solution.

• Point selection for next iteration

- Classical Algorithm: a CA selects the next point in the sequence by a deterministic compu-
tation;

1Pareto front: a set of non-dominated solutions, being chosen as optimal, if no objective can be improved without
sacrificing at least one other objective.

29



Chapter 3. Simplified Model

- Genetic Algorithm: a GA chooses the next population by computation using random number
generators.

Let’s see in detail the steps a GA does, during its utilization[6]: first of all, creates a random initial
population, scores each member of it by computing its fitness value (raw fitness scores) and scales these
latter to convert them into a more usable range of numbers, by creating the expectation values.

Figure 3.17: Example of initial population created by a GA: note that all the individuals in the initial population
lie in the upper-right quadrant of the picture, that is, their coordinates lie between 0 and 1

After that, selects parents, based on their expectation, and classifies them as elite individuals, which
are directly passed to the next population, if they have the best fitness scores. Anyway, children are
produced either by making random changes to a single parent (mutation) or by combining the vector
entries of a parents pair (crossover). The following figure, shows the three types of children generated by
the initial population of the figure above:

Figure 3.18: First generation children, classified by type of their generation

For mutation children and unconstrained problems, the algorithm adds by default a random vector
from a Gaussian distribution to the parent, while, for bounded or linearly constrained problems, the child
remains feasible. Instead, regarding the crossover children, at each coordinate of the child vector, the
default function randomly selects an entry, or gene, at the same coordinate from one of the two parents
and assigns it to the child. When dealing with problems characterized by linear constraints, the crossover
function creates the child as a random weighted average of the parents. Following these tasks generation
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by generation, the individuals in the population of our example get closer together and approach the
minimum point ([0, 0]); this behavior is well shown by following figures, representing respectively the
population at 60th, 80th, 95th and 100th generations.

Figure 3.19: 60th and 80th generations population

Figure 3.20: 95th and 100th generations population

There are several conditions the GA verifies at each iteration, in order to understand whether it has to
stop or not, and are listed below.

• Generations: when the number of generations reaches the maximum set value (100 · ParNumber
by default, which means 200 in our case);

• Time limit: if the maximum chosen time is reached (infinite by default and for our application);

• Fitness limit: whether the fitness function reaches the minimum imposed value (-infinite by default
and for us);

• Stall generations: when the fitness function average relative value change is lower then Function
tolerance when the number of generation takes over the set value (50 by default and for this
application);

• Stall time limit: if the objective function value doesn’t improve for a certain amount of time
(infinite by default, no changes);

• Stall test: here the kind of test to be run for the stall generations conditions verification can be
set. The options are average change or geometric weighted, where in case of the latter choice, the
weighting function is set to 1

2·n , whit n the number of generations prior to the current (average
value our choice);

• Function tolerance: when the average relative changing of the objective function doesn’t exceed
the set value (10−6 by default, set to 10−9 by us);
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• Constraint tolerance: not used as stopping criterion, but to determine the feasibility with respect
to nonlinear constraints. (10−3 by default, no changes);

The user has the faculty to change each of these parameters, knowing that GA stops as soon as anyone
of these conditions is met. Notice that, if the algorithm stops due to one of these constraints, different by
Stall generations, Fitness limit or Function tolerance, there are good possibilities the problem has not
been well-posed.

3.2.3 Monitoring Model Current Response Analysis

Clarified the functioning principles of a GA, let’s focus on our application and examine the current
response, by both monitoring and HF models, before any optimization process is run, to the command
presented in figure 3.16:
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Figure 3.21: HF and LF current response to a chirp command, with no load

We can see the amplitude of both responses increasing as the command frequency grows, even if
the latter magnitude remains the same along the whole actuation. That’s attributed to inertial forces
increasing as much as the frequency does, indeed, when faster direction inversions are required, the system
undergoes to greater acceleration, traducing in greater actuation speeds and greater torque required
when the next direction changing is imposed. The current is directly proportional to the motor torque,
so it grows and decreases in the same way the latter does. Furthermore can be noticed the horizontal
stretches gradually become more steep, as much as the required actuation speed increases and the same
does position error, till they almost become vertical lines. One last thing to talk about are the real vertical
stretches, representing the conditions when the static friction needs to be overcome: the command has
changed direction, the system feels it (through the position error evaluation), and reacts with its own
dynamics, the actual position speed needs to be inverted, so that at a certain point the actuator has to
stop; when this happens, the kind of friction torque to be faced is the static one, which is bigger than the
dynamic friction and a sudden current gain is needed in order to start the system up again, producing
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those kind of jumps in the current trend.
All this said, here follows the monitor model current response, along with position command θcom, reference
current IrefLF , utilizer position θu, position error θerr and actuation speed θ̇u:
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Figure 3.22: Monitoring system response to a chirp command with no load

Let’s examine what happens at the very first stages of the actuation:
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Figure 3.23: First stages of monitoring system response to a chirp command with no load
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We can see, the kind of current trend we have, is similar to one typical of the second order systems
(even though that’s not the case, since we’re not studying a variable obtained by double integration of
something proportional to the command): an horizontal tangent start and a sort of overshoot before
the curves horizontal assessment. Starting from the origin, the position command becomes other than
zero, but the system is still stuck because it has to overcome the static friction, so that the reference
current grows continuously until the actuation speed differs from zero; when this happens, the error on
reference speed decreases and thus the reference current too, producing the cusp visible in the figure
above. In the meanwhile, the blue curve follows the red one with the delay characteristic of an RL circuit
(τe = R

L ' 0.34 [ms]”) and smooths the cusp thanks to the inductive effect of the motor model. The
second point in the red curve, indicates the moment when the utilizer position becomes other than zero,
and causes another reference current decreasing due to its positive contribution to the position error. This
behavior it’s not visible in the blue line, because it’s been dumped by the motor RL effect, but let’s see
better what happens to the speed and position signals:
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Figure 3.24: Detail on speed and position at first stages of monitoring system response to a chirp command with
no load

We sudden notice that the utilizer speed becomes positive, while it’s position is still null; of course
that’s not possible in reality and this happens because of both the backlash effect and the way θ̇u has
been calculated: the first one imposes to the position to be stuck, but does nothing to the motor speed,
from which the utilizer one has been obtained, multiplying it by the gear ratio, and causes this kind of
mismatching in certain situations. Indeed, being the backlash downstream of the motor, the fact that
rotor moves, but the utilizer does not, is perfectly coherent and, in order to have the real utilizer speed, a
model improvement would be required; the correct behavior would have been to have the utilizer speed
stuck to zero, as long as the position is, but considered its marginal influence on the model response, this
implementation would need an undue complexity enhancement, considered the present application, so
much to leave the things the way they are.
Another conduct worthing to be examined is that showing up when the first command direction changing
occurs: we can notice the reference current suddenly decreases, sign that the utilizer has stopped during
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the direction changing and needs to be restarted towards the opposite way, as the friction force is beaten.
The noticeable thing is that the actuation stops before the position error goes though zero, and is clearly
visible in the following figure:
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Figure 3.25: Detail on speed and error position at first command inversion

The cyan curve settles to zero, before the position error does, but, this time, everything is correct:
the position error drops below the threshold ensuring a torque able to overcome the dynamic friction,
before the error becomes null; this provokes the reset signal sending to the acceleration integration box,
thus causing the speed to stay null and the position to remain the same, until the error grows again and
produces a motor torque able to overcome the static friction one.
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Figure 3.26: Detail on positions at first command inversion

Again, when the latter condition is reached, the system speed becomes negative, but the position
doesn’t change until the dead band given by the backlash is overtaken, thus causing in the reference
current the same behavior had before: a double cusp, as shown in the figure below.
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Figure 3.27: Detail on the system response first command inversion
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However, once more the current doesn’t feel any of these jumps and is able to smooth everything out
again. Looking at figure 3.22, it’s easy to notice how, on the next command direction changes, the integra-
tive branch can’t foresee anymore this behavior, due to the increased actuation speed, indeed, the utilizer
always stops after the position error has changed its sign. Furthermore, it can be noticed how the reference
current cusps get smoothed out too, as the actuation frequency increases; this is due to the fact that
backlash dead band is always faster overtaken, allowing an always smaller amount of time to the reference
current to feel it (and thus to react to it), until it simply doesn’t show up anymore in the current figure scale.

Looking back at figure 3.21, we can see how the current trends are perfectly comparable, except for an
offset in terms of magnitude, that we are going to compensate as best as we can, using the Matlab GA,
about which has been widely discussed in the section 3.2.2. As already mentioned, the parameters we
are going to change are BEMF coefficient and motor gain torque of the monitor model, giving them the
possibility to change up to ±20% of the initial values (reported in the equation 3.46). The second thing
to do is the choice of the objective function, which is going to be the value GA will try to minimize; the
current Mean Squared Error (MSE) has been chosen and has the following expression:

MSE =

∑n
i=1(I3eqi − Ii)2

n
[A2] (3.48)

I3eqi and Ii are, respectively, the HF and LF current components at each integration step, while n is
the samplings number. Before the optimization process the MSE obtained has been:

MSEbef = 0.157 [A2] (3.49)

While, after the GA run, the objective function has decreased of about one Order Of Magnitude
(O.D.M.) and assessed to:

MSEopt = 0.023 [A2] (3.50)

Indeed, the figure comparing currents after the optimization process is the following:
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Figure 3.28: HF and LF current response to a chirp command, with no load, after calibration

Where we can see an almost perfect matching between the curves; here follows the table with data
recap for before and after calibration situations:

kBEMF GT MSE

Before 0.0251 0.0376 0.157
After 0.0210 0.0392 0.023

Table 3.1: Before/After calibration data summary

3.3 Model Optimization

After being able to match the current trends for nominal condition, through what we called the
calibration process just described, the same has to be done in degraded occurrences, when the failures
form function strongly influence the monitoring system response. In order to distinguish this process from
the other one, it will be referred to as optimization procedure, even though it will be accomplished by
running the same GA, but for different parameters and objective function. The reason why a such process
is needed, is to be sure the LF current is able to fit the HF one, with different faults kind and entity and,
hopefully, to extrapolate a law relating these latter with failures parameters (whose nominal values are):

kfs = 9

kfs = 1
18 = 0.0556

kfE = 0.42

(3.51)
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In order to do that, several optimizations has been run, first by applying different greatness to a single
kind of failure and, after, by producing random degraded situations, collecting, of course, parameters
and objective function values. The latter has changed in respect to the one used for calibration process,
indeed, with the first tests results, we realized it was needed a function able to calculate the discrepancy
between curves towards each point normal direction. That’s because, whether phase displacement occurs,
the mean squared error, calculates the difference between currents along the vertical direction (at the
same integration step, which means same horizontal axis value), and the GA minimize that discrepancy,
focusing its attention to the phase difference. The following figure clarifies in what kind of conditions this
detail makes difference:

Figure 3.29: Example of a situation, where utilization of normal error makes difference

The vectorial total mean squared error [7], instead, by taking into account the currents difference along
the normal direction to the reference trend, focuses the target more on the minimization of magnitude
then on the phase displacement, which has been considered to be the best solution for this application. In
figure 3.29, DIn stands for delta i normal, while DI means delta i. Furthermore, another modify has been
conduced, is the error normalization in respect to the conditions before the optimization, thus producing
the final objective function form given by:

MSEf =

∑n
i=1

(
I3eqi−Ii

(I3eqi−Ii)
′
0+1

)2

n
[A2] (3.52)

Where:
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(I3eqi − Ii)
′

0 =
d(I3eqi − Ii)

dt
· 1

RMS0
[/] (3.53)

And:

RMS0 =

√√√√ n∑
i=1

(
dI3eqi0
dt

)2 [
A

s

]
(3.54)

Being root mean square of the equivalent current derivate, calculated before optimization. The
contribution of equation 3.52, responsible of the normal calculation, is the squared elevated element
denominator, coming from geometrical considerations and leading to the form 1 + 3.53. Here comes the
latter contribution necessity to be normalized in respect to something able to give the same weight to
time and amplitude discrepancy, resulted to be the RMS0 (for further explanation see P. C. Berri, [2]).

3.3.1 Single Winding Short Circuit

All of this clarified, the first optimization iterations has dealt with the winding A partial SC, by setting
the following working coil percentages: 75%, 50%, 39%25%, 23%, where 39 and 23 values were randomly
generated. Here we report the case that produced the best improvement throughout the optimization,
allowing to see better the difference in terms of current trend, which is the last one:
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Figure 3.30: Current output comparison before and after optimization, with 23% of winding A working

The first thing to be noticed is the curves amplitude, definitely increased in respect to that shown in
figure 3.28; the reason for this, can be found in the fact that, according to the Ohm law V = RI, when
a short circuit occurs, the resistance decreases, causing a growth in the absorbed current, at the same
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level of voltage supply, indeed: I = V
R . The second effect to put in evidence are the oscillations along the

signal, caused by the SC form function effect on the motor model, affecting more the trend, when the
phase A contribution has greater influence (when the motor angular position is “aligned” to winding A).
However, be aware that this fault entity already produces effects on the actuation, in such a way the EMA
going through this, is to be considered irreversibly damaged and to be dismissed. Furthermore, the fact
the curves have a good fitting already before optimization, means that a good job in the assumptions of
failure functions form and parameters has been done (see section 3.1.4). The optimized failure parameters
values, in this case, producing a MSEf ' 1, 05 [A2], are the following:

{
kfs23 = 11.24

kft = 1
18 = 0.0444

(3.55)

While the MSEf value before optimization was 2.05 [A2]. All the other parameter values for the
remaining studied conditions, are reported in the table below:

NA kfs kft MSEfbef MSEfopt
[%] [/] [/] [A2] [A2]

100 9 0.0556 0.157 0.023
75 10.52 0.0487 0.0872 0.0816
50 11.15 0.0458 0.2421 0.1668
39 10.03 0.0500 0.4525 0.3514
25 10.93 0.0484 3.0710 2.8889
23 11.24 0.0444 2.0526 1.0495

Table 3.2: Winding A SC data summary

To be noticed the fact that values of MSEf increase as much as the working coils percentage decreases,
since mismatching between high fidelity and monitoring models becomes greater. Anyway, that’s not a
problem, since the application range for which the monitoring model has been thought, is that dealing
with very small amount of failed coils, which is the kind of situations relevant for early warning and fault
detection; moreover, the entity of “bad” matchings is confined, in the worts case, within something similar
to the 6% of maximum current value, which can be considered acceptable. Below the interpolation charts
produced by data of table 3.2:
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Figure 3.31: Kfs optimized data interpolation, with winding A SC
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Figure 3.32: Kft optimized data interpolation, with winding A SC

N.B.: In all the interpolation graphs the following applies:



kfs = kf1
kft = kf2
kfE = kf3
NA = N1, NB = N2, NC = N3

Z = E1, φZ = E2

(3.56)

We can see from the figure above, both kfs and kft are well fitted by a linear interpolation, in which
has been included the nominal conditions value for both parameters. This gives us the chance to enhance
the monitoring model in the future, by implementing something similar to a look-up table, able to choose
the right parameters value in function of the simulated faults. Here we report all the other test current
trends, before ad after the optimization, even though there will be difficult to see any differences between
them, due to very small entity of the MSEf variation.
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Figure 3.33: Current trends with winding A 75% SC, respectively: before, after optimization, all togheter
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Figure 3.34: Current trends with winding A 61% SC, respectively: before, after optimization, all togheter

In all these figures, we are going to see a gradual decreasing in current magnitude and oscillation entity
due to increasing of the working coils percentage.

47



Chapter 3. Simplified Model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s -6] 105

-15

-10

-5

0

5

10

15
I [

A]

I

I3eq

I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s -6] 105

-15

-10

-5

0

5

10

15

I [
A]

I

I3eq

I

Figure 3.35: Current trends with winding A 50% SC, respectively: before and after optimization
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Figure 3.36: Current trends with winding A 25% SC, respectively: before and after optimization
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3.3.2 Multiple Windings Short Circuit

The second kind of tests conduced, involved the SC failure of all the windings contemporary, and
randomly generated. Anyway a further action has been accomplished: in order to have a uniform samplings
distribution with the same interval amplitude, regardless of the distance from the coordinate origin, the
randomly generated faults, has been elevated with the number of variables involved. This operation results
useful to the fact that, being the main values range aimed for this application really near to 1 (meaning
small percentage of failed coils), the number of samplings remains the same as that near to the origin.
Thus, in this specific instance, the random generation involved the working coils percentage [NA, NB , NC ],
in such a way the latter data have been set to:

[NA, NB , NC ] = 1− rand(3)3 (3.57)

Where, the Matlab command rand(3), generates a vector with three casual components having values
between 0 and 1. Actually, 21 different data were generated, for a total of 7 diverse faults combinations,
to which our monitor model was subjected in order to evaluate its response with multiple low entity SC
failures. At the same time, MSEf has been evaluated before and after optimization, as well as the failure
parameters, which have all been reported in the following table:

NA NB NC kfs kft MSEfbef MSEfopt
[%] [%] [%] [/] [/] [A2] [A2]

86.18 3.86 99.94 10.90 0.0458 2.0259 1.3882
99.71 87.11 71.04 9.58 0.0531 0.0863 0.0804
82.50 98.00 86.18 8.19 0.0600 0.0745 0.0742
100 99.90 99.50 8.99 0.0558 0.0490 0.0481

54.93 86.90 17.32 10.94 0.0466 1.5289 1.2485
38.87 79.92 79.41 10.03 0.0500 0.4525 0.3514
22.94 55.60 91.44 11.24 0.0444 2.0525 1.0495

Table 3.3: Windings A, B, C SC data summary

Subsequently, the failure parameters have been interpolated in respect to each windings faults. Since,
every kfi value has been influenced by all windings SC, we expect to see a grater data dispersion, best
fitting the winding failures which has better uniform coverage of the faults interval ([0, 1]). However,
looking at MSEf , again the differences between before and after optimization in therms of current
matching are going to be very difficult to see, without considering the fact that the values are not bad
even before the GA does its trick.
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Figure 3.37: Current trends with [NA, NB , NC ] = [0.86, 0.038, 0.99], respectively: before, after optimization, all
togheter

Here, the trend is similar to the one reported in figure 3.30, except for location, number and amplitude
of the oscillations: since the relevant failures are those imposed to windings A and B, is reasonable
attributing these differences to the fact that, in this case the current suffers modifications more times per
motor revolution, and with more strength.
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Figure 3.38: Current trends with [NA, NB , NC ] = [0.99, 0.87, 0.71], respectively: before, after optimization, all
togheter

In the figures above, instead, the faults combination causes the “chopping” of the current peaks seen
until now, and a strong oscillations reduction. Furthermore, seen the minor SCs entity, the magnitude has
definitely decreased.
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Figure 3.39: Current trends with [NA, NB , NC ] = [0.82, 0.98, 0.86], respectively: before, after optimization, all
togheter

The figures 3.39, show a trend very similar to the nominal one, due to the fact that the windings A
and C SCs are very similar between each other, while the winding B SC is almost null.
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Figure 3.40: Current trends with [NA, NB , NC ] = [1, 0.99, 0.99], respectively: before, after optimization, all togheter

Here the current is basically the same as the one shown into figure 3.28, due to the faults combination
very small amount.
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Figure 3.41: Current trends with [NA, NB , NC ] = [0.54, 0.86, 0.17], respectively: before, after optimization, all
togheter

That’s the current response to fifth faults combination: again, very strong oscillations due to the bad
interaction between damaged windings and rotor angular position, even causing the growth in absorbed
current amplitude.
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Figure 3.42: Current trends with [NA, NB , NC ] = [0.38, 0.79, 0.79], respectively: before, after optimization, all
togheter

These figures show the current wave-form, responding to the set of faults indicated in the sixth row ot
table 3.3. Due to identical values of the SCs on windings B and C, the trend is very similar to the one
reported in figure 3.30.
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Figure 3.43: Current trends with [NA, NB , NC ] = [0.22, 0.55, 0.91], respectively: before, after optimization, all
togheter

For the last faults generation, the strong combination between windings A and B SCs, causes the great
growth in therms of currents amplitude shown in figures above, so much to cause the saturation in the
very last peak, before the end of simulation. After examining all the responses to the randomly generated
short circuits faults combinations, here comes the turn of failure parameters interpolation in respect to
each winding faults evolution, remembering the equivalence stated in the equations 3.56:
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Figure 3.44: Kfi optimized data interpolation, with A winding SC

Here the data fitting with the interpolation line is good, due to a pretty uniform points distribution;
to be noticed two values between 0.8 and 0.9 of NA, being completely different between each other, but
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almost not affecting the interpolation line because of their symmetry with respect to it. This behavior, as
already mentioned at the section beginning, is due to the influence the other windings faults have on the
parameters. However, we can see the trends are perfectly comparable with those given by figures 3.31 and
3.32.
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Figure 3.45: Kfi optimized data interpolation, with B winding SC

With the B winding faults data, instead, we can see a certain points concentration near to the nominal
conditions, causing a great dispersion, whose cause is to be found, beside the other windings faults
conditions, in the fact that the kfi only have influence when failures occurs, meaning that is reasonable to
have different values minimizing the objective function, for very small damages. Nevertheless, the fitting
lines are very similar to the others found before.
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Figure 3.46: Kfi optimized data interpolation, with C winding SC

Here happens the same as with winding B; Furthermore to be considered the number of samplings it’s
not statistically relevant: a greater number of tests couldn’t be run due to the huge amount of time the
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GA optimization required to be accomplished. Just think that every iteration took about 8 hours, for a
total of around 56 straight hours of running code. That said, this is definitely one of the thing to be done
in the future: enhance the number of tests and, if necessary, ensure an isolation between the windings
affected by faults.

3.3.3 Multiple Windings Short Circuit and Rotor Eccentricity

The last kind of tests carried out, included multiple windings short circuit along with mechanical
failures given by the occurrence of rotor statical eccentricity (see section 3.1.5). In this case, the faults
randomly generated, have been treated as follows:


faults = rand(5)5

[NA, NB , NC ] = 1− faults(1 : 3)

[Z, φZ ] = faults(4, 5)

(3.58)

And we have one more degree of freedom to add to minimization problem of the objective function;
indeed, if for the previous tests the parameters to be evaluated have been just those related with the SC
(kfs and kft), now even kfE needs to be involved. This will for sure put under stress the GA, which has
to handle three parameters variation and, due to this, we would not be surprised if some results would
not produce a prefect current matching, or a perfect interpolation path. Indeed, seen the larger variables
number involved, we expect to find a data dispersion at least equal to that seen in the previous section.
Let’s take a look at following table, containing the relevant data dealing with the simulations in question:

NA NB NC Z φZ kfs kft kfE MSEfbef MSEfopt
[%] [%] [%] [%] [%] [/] [/] [/] [A2] [A2]

99.98 97.27 68.28 51.57 0.07 8.8925 0.0543 0.3150 2.0401 1.1189
99.32 98.43 88.90 5.04 42.90 6.8198 0.0693 0.3150 0.0803 0.0717
90.42 98.22 99.22 9.35 0.03 6.7648 0.0692 0.3150 0.1100 0.0847
71.09 99.73 64.79 6.97 0.06 11.0662 0.0465 0.3155 0.1986 0.1605
100.00 96.60 95.71 0.04 0.01 7.0863 0.0675 0.3469 0.0514 0.0496
30.66 96.52 99.47 0.25 0.06 10.7502 0.0462 0.5250 0.7435 0.3896
71.91 63.46 27.00 2.32 1.57 9.7322 0.0522 0.3152 0.7939 0.7369

Table 3.4: Windings A, B, C SC and E data summary

Even in these tests, the MSEf values, except for few cases, always remains pretty low and with a
small variation between before and after optimization. Here follow the currents graphs, referred to data
reported in the table above.
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Figure 3.47: Current trends with [NA, NB , NC ] = [0.99, 0.97, 0.68] and [Z, φZ ] = [0.51, 0.0007] respectively: before,
after optimization, all togheter

The one reported in the figures above, is definitely the worst matching we’ve been through among all
the cases. We can see that, if in therms of amplitude there is a good correspondence, not the same in
therms of oscillations. This could depend upon many factors: the most relevant is the huge eccentricity
entity, indeed, we can see Z = 0.51; in this conditions, the actuation is completely compromised, therefore
this event goes beyond the field of applicability this work deals with. Anyway it’s important to know
where the monitoring model limits are, thus making relevant this kind of results too. The second reason
that could have caused this kind of mismatching is a bad optimization result: for example the GA could
have slipped into a local minimum, or simply, for the reasons explained before, the interaction between the
parameters is so strong that that’s the best result possible. All of this said, in order to further investigate
this situation, more then one optimization cycle on the same failures conditions would have been required,
but, due to a lack of time, this is one of the things to be done in the future developments. Anyway, there
was a great improvement in therms of MSEf , as can be seen in the table 3.4.
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Figure 3.48: Current trends with [NA, NB , NC ] = [0.99, 0.98, 0.88] and [Z, φZ ] = [0.05, 0.42] respectively: before,
after optimization, all togheter

The second set of faults, due to their very small entity, really little affects the current trend, thus
giving the chance to a perfect matching. Anyway, there are a few oscillations visible and, that, exactly
represents the kind of failures to be relevant for this work: for sure, nothing is going to be notable in
therms of actuation, but the faults are there and, through the current output evaluations, we are able to
detect them and, eventually, make the situation safe.
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Figure 3.49: Current trends with [NA, NB , NC ] = [0.90, 0.98, 0.99] and [Z, φZ ] = [0.09, 0.0003] respectively: before,
after optimization, all togheter

Here the situation is basically the same as the previous one, given the almost identical faults values, as
we can see from the figures notes: very slight oscillations and perfect matching between the curves.
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Figure 3.50: Current trends with [NA, NB , NC ] = [0.71, 0.99, 0.64] and [Z, φZ ] = [0.06, 0.0006] respectively: before,
after optimization, all togheter

With the fourth set of faults, seen the higher SCs percentage, we find the usual oscillation and notice
the growth of current magnitude; even in this case, the matching between the curves is almost perfect.
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Figure 3.51: Current trends with [NA, NB , NC ] = [1, 0.96, 0.95] and [Z, φZ ] = [0.0004, 0.0001] respectively: before,
after optimization, all togheter

The conditions reported above are basically the nominal ones. Indeed, beyond for the fact that the
objective function is defined in a different way, even the MSEf has a value very similar to the one obtained
with the calibration process (see section 3.2).
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Figure 3.52: Current trends with [NA, NB , NC ] = [0.30, 0.96, 0.99] and [Z, φZ ] = [0.0025, 0.0006] respectively: before,
after optimization, all togheter

The sixth set of faults, allows us to see a little better the improvement the GA optimization brings:
indeed The MSEf almost gets halved, even though its value stands under 1 [A2]. The prevalent effect is
given by the SCs, so much that the current response has the same characteristics seen in those kind of
failures. As always, when the amount of working coils percentage is low, the current amplitude significantly
grows.
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Figure 3.53: Current trends with [NA, NB , NC ] = [0.71, 0.63, 0.27] and [Z, φZ ] = [0.02, 0.01] respectively: before,
after optimization, all togheter

With the last randomly generated failures, again the most relevant effect is that produced by the
windings SCs. The matching between curves is very good, but the improvement conduced by GA it’s
definitely not visible, except for the MSEf data reported in table 3.4.
Next, we are going to interpolate the failure parameters, with respect to the single kind of faults. The
same has been done in the previous section, but this time we will even have kfE charts, related with Z
and φZ , so keep in mind the equivalences stated in equation 3.56.

83



Chapter 3. Simplified Model

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N1 [%]

6

7

8

9

10

11

12
k f1

 [-
]

kf1,1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N1 [%]

0.04

0.045

0.05

0.055

0.06

0.065

0.07

k f2
 [-

]

kf2,1

Figure 3.54: Kfi optimized data interpolation, with A winding SC + E

We can see, as expected, there is a strong dispersion among data to be attributed to the influence the
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faults have between each other and to the small amount of points; indeed the interpolation lines slope has
increased compared with those of figure 3.44.
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Figure 3.55: Kfi optimized data interpolation, with B winding SC + E

In the figures above, the situation is even worst, but here, one more factor has a role: the fact 6 of 7
points are between 95% and 100% of B working coils. Indeed, as already explained, in those conditions,
the influence of kfi parameters on the objective function is very slight, causing the spread shown in figures
3.55, along with the other reasons already presented.
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Figure 3.56: Kfi optimized data interpolation, with C winding SC + E

Nothing, that hasn’t already been said, to add: strong data dispersion. It’s evident that, this kind
of tests (with this non statistically relevant samplings), are not suitable for data interpolation, at least,
for those related with short circuits, being apparently, strongly connected. For sure, the fact that each
windings component is multiplied by the same factor, doesn’t play a good role in this game, but, the
eventuality of utilizing three different coefficients must be carefully taken into account. Indeed, the
parameters to be optimized, in this case, would become 5, and with this quantity of d.o.f. a neural network
employment would be needed, with all the complexity this would involve. Seen the goodness of the model,
even without parameters optimization, that simply doesn’t worth it.
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Figure 3.57: KfE optimized data interpolation, with rotor static eccentricity

Regarding the eccentricity parameter kfE , instead, it looks like it’s not influenced by short circuits

88



Chapter 3. Simplified Model

failures, indeed its value stays almost constant, if we exclude the outstanding value greater than 0.5 from
the interpolation. That’s a reasonable thing to do because of the fact that, when Z is really close to zero,
whatever parameter multiplies it, the results is always going to be zero, and that justifies the huge gap
between those values and the exclusion of the bigger one. In the second of the 3.57, because of their
proximity, two points are hidden by others, but become visible whether a logarithmic scale is used for the
horizontal axis:
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Figure 3.58: KfE optimized data interpolation, with rotor static eccentricity, in a logarithmic horizontal scale

To be noticed that, due to the scale changing, the interpolating line looks no more straight, but be
aware that is just a “visual” effect.

3.4 Model Validation

In order to have a more rigorous confirmation of the monitoring model goodness, it was underwent to
a hundred casual faults combinations, calculating at each test the Normalized Root Mean Squared Error
(NRMSE) defined as follows:

NRMSE =

√∑n
i=1(I3eqi−Ii)2

n

max(I3eqi)−min(I3eqi)
[%] (3.59)

The choice of this parameter has been given by the fact that, in literature, is one the most diffused
way to estimate the error between curves, and by the need of tearing down the calculation time. Indeed,
the NRMSE is way faster to estimate than the MSEf given by 3.52.
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Figure 3.59: NRMSE histograms graph, with validation data Gaussian ditribution

As we can see, the Gaussian distribution curve center stands around a NRMSE value of 0.6%, which
is considered to be small enough for our applications. Therefore, according to what can be done without
having an experimental feedback, the model can be considered validated. To be noticed that this tests
have been run with no parameters optimization; The model, indeed, would require an upgrade in order to
implement the “failure parameters linear interpolation” which is going to be part of the next steps to do
(see section 4).

3.5 Borello-Dalla Vedova Dry Friction Model

In this section, we are going to examine the mathematical model related to a dry friction innovative
numerical simulation routine (developed by Prof. Lorenzo Borello ed implemented in Matlab-Simulink
environment by Eng. Matteo D. L. Dalla Vedova); the proposed numerical model is considered to be
enough consistent with the classical Coulomb friction model (as long as necessary data are available) ed
it’s easily integrable with more complex calculation programs (related to. for example, servomechanisms
or whole actuation systems), proving, furthermore, a particular robustness towards the specific simulated
conditions. The model proposed overcomes the limits showed by other solutions and reflects the physic
model behavior assumed as target by this work; indeed its main tasks are listed below.

• Distinguishes the friction torque sign in function of the speed direction;

• Discriminates adherence from dynamic conditions (indeed two different values can be as-
signed to the friction torque: FSJ for statical condition and FDJ for dynamical ones);

• Evaluates the eventual stoppage of the mechanical component, moving at the beginning;

• Assesses the eventual element restart, still at the beginning;

• Correctly keeps arrested (or in motion) the mechanical component;

• Takes into account the presence of eventual mechanical end-stops, against which a com-
pletely inelastic shock is supposed to occur.

The considered model, starting from the classical Coulomb formulation, describes the dry friction
effects as a function of speed and active torque according to the following modeling:
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Figure 3.60: Borello dry friction Grafic representation

Whose mathematical model can be formulated as follows:

FF ≡ Tf =


Fatt ≡ T if v ≡ ˙θm = 0 ∧ |T | ≤ FSJ
sgn(T ) · FSJ if ˙θm = 0 ∧ |T | > FSJ

FDJ if ˙θm 6= 0

(3.60)

Where FF is our equivalent Tf , the torque coming as model output, and represents the calculated
friction torque; FSJ is the static friction torque, FDJ the dynamic friction one and Fatt is our T .
Numerical simulation programs, build upon the mathematical model described just above, in order to
avoid numerical instability phenomena similar to those manifested, for example, in the Karnopp model,
are made in such a way the mechanical system stop is imposed whether angular speed changes sign during
the integration step, that is:

˙θm(ti+1) = 0 if ˙θm(ti+1) · ˙θm(ti) ≤ 0 (3.61)

In case this kind of imposed stop would not appear to be correct, due to active torque exceeding
the passive one (friction), the imbalance between forces acting on the system, would cause its proper
restart at the next calculation step. It can be said that the conditions related to the speed, represents one
among the fundamental innovations in respect to the models reported in literature and, in its apparent
obviousness, dwell the method robustness and accuracy. Moreover, the model we’re talking about, is able
to distinguish aiding and opposing conditions, by comparing the load sign with the actuation speed one
and choosing, time after time, the right parameters to use. Anyway, since the monitor model described
in section 3, has been tested in zero-load conditions, the necessity of operating the distinction between
the two cases above fails, allowing us to streamline the numerical calculation, by avoiding the load input
furniture to the Borello model box.
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Figure 3.61: Borello Friction Model box content

The produced output is the friction torque T f performing in those conditions, which is subtracted (or
could be added, whether aiding conditions would be considered) to the torque T.
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It can be said the aim purposed at the beginning of the present work has been reached: build up a light
model enough precise in therms of current output, able to well reproduce partial windings short circuits
and rotor mechanical failures, with the future target of real time run, in order to perform diagnostic and
prognostic features for flight control EMAs. At the current state, the monitoring model is able tu run a
0.5 [s] simulation in about 1.8 [s], with Simulink acceleration feature set on, while in normal mode, it
takes around 7.8 [s]. The HF model, instead, takes around 3.8 [s] with acceleration mode and 11.7 [s]
with the normal one. To be noticed, this estimations have been done considering only the simulation
time, excluding all the data loading, and accessories operations. Furthermore, the acceleration mode
gave several problems during the calibration and optimization processes, so much that it required to be
deactivated, justifying that big amount of time taken by the operations reported in section 3.3.

MODE HF LF TR
[s] [s] [%]

Norm 11.7 7.8 34
Acc 3.8 1.8 53

Table 4.1: Models simulation time summary

In the table above is reported a run-time summary, where TR stands for Time Reduction and is
expressed in percentage related to the HF model simulation time. We can notice a 34% of reduction in
normal mode and a 53% one in accelerated conditions; both are considered good improvements, even
though, for sure more can be done. It’s been considered to be a good idea to make a point of the current
state of the work and to give some cues for future developments. Even though all the “weak points” have
already been putted in evidence as they were find along the present study, here follows a list of thing “to
be done” :

• Backlash model improvement: a smart solution needs to be find, in oder to let the model
consider the backlash effects in all possible occurrences, without weighting it down too much;

• ΦE function improvement(?): it could be evaluated whether or not, this failure function needs
to be modified in order to well reproduce medium-to-high entity of static eccentricity faults;

• Running statistically consistent tests for better parameters interpolation: in order to
have a more precise reply in therms of failures parameters variation with different kind of faults, the
number of tests conduced must be increased. Furthermore, a better faults category isolation should
be taken in to account;

• Run-time tear down: since the final aim of the monitoring model is to be run in real-time, during
the actuation, the simulation time should undergo to a further cut-out. A good result could be
reached, for example, by simplifying the control logics and removing the anti wind-up filters; of
course, all of this to be done after deep consequences evaluation in therms of model fidelity;

• Experimental validation: this step, would have been part of the present work, but since the test
bench assembly requires way more time than that given for this study, it will be passed to the “next
generation”İn particular, the failures will be reproduced in laboratory, in order to verify the current
matching goodness and some other “home-made” prognostic algorithms effectiveness.
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