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1 Introduction

This thesis work has the aim to study a rotor disk of a compressor for aero-
nautical applications. It’s known, that if a rotor disk of a compressor is
considered, from a failure point of view, the blades are the most critical
component. The main cause derives mostly from vibrations generated from
external forces. This phenomenon it’s cause of a reduction of the time to
failure of the compressors. In this thesis, first some theory about systems of
compressor and mistuning is given. This helps to understand the dynamic
behaviour of a rotor disk and how it changes when the geometry of the disk is
slightly different from the nominal one and cannot be modelled under cyclic
symmetry conditions. Deviation of the disk’s geometry from the nominal
one is known to us as “Mistuning”. More simply, mistuning means that the
rotating disk is not perfectly symmetric along the rotation axis. To study
the effects of mistuning on the dynamic behaviour of the disk first an ap-
proximation of the system is needed. This task is very demanding because it
depends on many factors and some of them are difficult to predict. In this
work a “Full disk model” geometry has been developed with a two degrees of
freedom (DoF’S) per sector. In this model, all the sectors of the rotor wheel
have been considered and modelled. After this, a “Sector cyclic model”, made
with only one disk sector of three degrees of freedom (DoF’s) then reduced
to two, has been developed. It’s better to specify that one sector compre-
hends a slice of disk and one blade. For this reason, the number of sectors
will be always equal to the number of blades. The ”Sector cyclic model”
it’s simpler than the ”Full disk model” because it considers only one sector
instead of all of them. Dynamic results from the ”Full disk model” (the
benchmark) and from the ”Sector cyclic model”, under appropriate model
and calculus assumption, have been compared. The aim of the comparison
is to check if dynamic analysis performed on a single sector are reliable and
gives dynamic response with enough degree of accuracy. Since a model of
two degrees of freedom (DoF’s) per sector it’s too approximative, another
system of twenty-four blades disk is developed with the help of the software
ANSYS. This model will be the benchmark for the further steps. The goal
of this second part is to investigate about the possibility to find a reduced
model of the disk that can approximate the study of a rotor wheel without
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mistuning. In this manner it will be possible to study the full model con-
sidering few nodes. These nodes are called “master nodes”. The reduction
of the number of nodes has been done on the interfaces between the sectors
of the disk. This reduction was done with the help of some shape functions
obtained with different methods. These methods are respectively; SEREP
(System equivalent expansion reduction process), Four-noded rectangular el-
ement reduction, Eight-noded rectangular element reduction and Nine-noded
rectangular element reduction. In the conclusions it’s shown which methods
better approximate the results obtained from the model developed on AN-
SYS. The results of this work could be than used to study a rotor wheel in
presence of mistuning.
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1.1 Explanation of the sections of the thesis

This work is divided into three parts. The first part, that comprehends re-
spectively chapter 2 and chapter 3, gives some basic theory about the dynamic
behaviour of a bladed disk and the calculation of natural frequencies with and
without external force. The aim of this first part is to understand properly
how it’s possible to describe through graphs and numbers the behaviour of
a bladed disk under certain working conditions. Another aim of this part is
to explain and demonstrate the advantages of considering a ”Sector Cyclic
model” instead of a ”Full disk model”.
The second part has the aim to propose some reduction methods to decrees
the number of nodes on the interfaces between the sectors of the disk. In this
manner it’s possible to study the same system but with a reduced number of
degrees of freedom (DoF’s). The big advantage to do so is the smaller quan-
tity of data that have to be managed. The third part, in the appendices,
comprehends a general and basic view of mistuning and his effects on the
final results of a bladed disk. This last part gives the possibility to use the
conclusions obtained in the second part applying them on a mistuned rotor
wheel.
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2 Dynamics of Bladed Disk without external forces

2.1 Basic theory of disk and Nodal diameter

A bladed disk or rotor wheel is a component of the turbo-machine which con-
sists of two main parts, a disk and blades attached on it. These components,
when are designed and defined on the software, are characterized by a perfect
cyclic symmetry around the rotation axis.
To make things more understandable, the bladed disk could be considered as
a membrane. This membrane under certain working conditions will displace
from the original plane. To every point of the bladed disk will be associated
a displacement. Of course, it’s an initial approach that makes the physical
meaning more understandable in every configuration in which the system vi-
brates.

Figure 2.1.1: Example of rotor wheel or bladed disk

In Figure 2.1.1 it’s shown a rotor wheel built with the blisk technology. This
kind of technology consists of just one part, instead of an assembly of a disk
and individual blades.
In general the main concept of this paragraph is that during each working op-
eration of the engine, the rotor wheels will vibrate with a specific frequency.
This vibration will produce displacements of every point of the disk except
of the one along the nodal diameter. With the term ”nodal diameter”
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it’s meant a group of points called ”nodes”, in which the value of the dis-
placement from the original plan is equal to zero. There are several nodal
diameters and each of them corresponds to a particular value of frequency. In

Figure 2.1.2: Table of Nodal diameters and circles

Figure 2.1.2 it’s possible to see that also ”nodal circles” exist.They have
the same explanation of ”nodal diameters” but instead of having a linear
geometry they have a circular one. In this thesis the work will be focused
only on ”nodal diameters”. The main concept is that more the frequency
is increased and more diameters will occur on the disk. This concept could
be explained with the help of the following figure.
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Figure 2.1.3: Spectrum of rotor wheel vibration

The symbol f01 refers to the frequency in which zero nodal diameters and
one circular diameter occur. The same will be with the other ones. In Fig-
ure 2.1.3 it’s possible to see that if ”m” (number of nodal diameters) it’s
increased, the frequency increases too.
The number of nodal diameters is also strictly connected to the number of
sectors of the evaluated component.
In order to simplify our studies, the sector will always comprehend a blade
and the correspondent slice of disk body. In this way the opening angle (A)
of the slice of disk will be equal to:

A =
360

N

Where N is the number of blades.
Once we defined the number of sectors, that is equal to the number of blades,
we can find the correlation between the number of nodal diameters (n) and
the number of sectors (N) in the following way.

• 0 ≤ n ≤ N
2 if N is even

• 0 ≤ n ≤ N−1
2 if N is odd

13



2.2 Modelling of the Full Disk Model

In this chapter an approximation of the disk and blade with the Full Disk
Model it’s built to develop the main mathematical equations.

Figure 2.2.1: Complete system

In 2.2.1 it’s shown the approximation considered. It’s visible that there are
two types of mass; the mass of the disk (md) and the mass of the blade (mb).
We have also three types of stiffness, respectively stiffness of the blade (kb),
the stiffness of the disk (kd) and the stiffness of the connection part (kc).
It’s possible to understand visually that every sector has two DOF’s (degrees
of freedom). Another approximation is that all the distributed mass of the
disk and blades are been simplified in point like masses. The equation needed
to solve the system is the following:

[M ]{Ẍ}+ [K]{X} = {0} (2.2.1)

The Equation 2.2.1 calculates the solutions of the system.
In the next pages the letter ”N” represents the number of sectors of the
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complete structure.
In this analysis, as already said, two DOF’s for each sector are considered.
The vector {x} represents the physical displacement coordinates of dimension
2N×1 and [M] and [K] respectively the mass and stiffness matrix of dimension
2N × 2N .
To better understand how this two matrices are built, it’s necessary to decide
the order of the displacements variables. Each degree of freedom will have
his proper displacement. The degrees of freedom are ordered as it follows.

{X} = xi

where xi is the displacement of the i-th mass, it could be both mass of the
blade or of the slice of the rotor wheel. In this case, the following numeration
system has been given.

• i 3 [1,N], degrees of freedom of the slices of the rotor wheel.

• i 3 [N+1,2N],degrees of freedom of the blades.

It follows a more precise explanation of how the mass matrix [M] and the
stiffness matrix [K] are built. [M] matrix is an all zero matrix except in the
main diagonal where in the first N-elements the values are all equal to the
disk mass and from element N+1 to 2N the mass of the blades. It follows a
representation of this matrix.

[M ] =


md 0 ... ... ... 0
0 md ... ... ... 0
... ... ... ... ... ...
0 0 ... ... mb 0
0 0 ... ... ... mb


As already said the dimension of [M] is 2N × 2N .
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For the construction of the [K] matrix, an assembly method similar to the
one used to assembly nodes in FEM techniques has been used. The first
step is to generate the three local matrixes for the stiffness. They are the
following:

[Kc] =

[
kc −kc
−kc kc

]

[Kb] =

[
kb −kb
−kb kb

]

[Kd] =

[
kd −kd
−kd kd

]
With respectively [Kc], [Kb] and [Kd] the local matrixes of connection, blade
and slice of the disk. Furthermore a numerical order to the degree of freedom
was given. In the case of study the order of the DOF’s related to the slice
of disk was starting from 1 to N. The order of the DOF’s for the blades
is starting from N+1 and ending with 2N. In figure 2.2.2 is given a visual
example of this numerical order.
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Figure 2.2.2: Order of the nodes for the complete system

In this way it’s possible to build the global stiffness matrix [K] by assem-
bling the three local matrixes by considering the order number.
As the global mass matrix [M], the stiffness matrix [K] is of dimension
2N × 2N .
To better understand this assembly process an example of a system of 4 sec-
tors is reported. The order of the numbers will be, from 1 to 4 for the DOF’s
of the slice of disk and from 5 to 8 for the DOF’s of the blades. The global
stiffness matrix [K] of such a system is the following:

[K] =



ks −kc 0 −kc −kb 0 0 0
−kc ks −kc 0 0 −kb 0 0

0 −kc ks −kc 0 0 −kb 0
−kc 0 −kc ks 0 0 0 −kb
−kb 0 0 0 kb 0 0 0

0 −kb 0 0 0 kb 0 0
0 0 −kb 0 0 0 kb 0
0 0 0 −kb 0 0 0 kb


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In Equation 2.2.1 no external forces are applied, for this reason the damp-
ing matrix [C] is not considered. It is also known that these kinds of linear
differential equations admit solution as it follows:

{X} = {X0}cos(ωt+ θ) (2.2.2)

with {X0} 3 Rn.

By taking, then, the first and the second derivative in the time domain of the
coordinates {X}, it is possible to insert them in equation 2.2.1 obtaining the
following system of equation.

([K]− ω2[M ]){X0} = 0 (2.2.3)

The non trivial solution is the one that must be considered as it follows.

det([K]− ω2[M ]) = 0 (2.2.4)

It’s possible then to solve the characteristic equation 2.2.4 which represents
the eigenvalues. On the diagonal of the matrix of the eigenvalues it’s possible
to find the natural frequencies (ω)i where the subscript (i) goes from 1 to 2N.
For this reason, the matrix of eigenvalues will be of dimension 2N × 2N . In
case of a tuned rotor wheel, this mean that that disk is perfectly symmetric
along the rotation axis, the 2N frequencies will be in couples. This result
comes from the property of symmetry. There is only an exception in the
first and last frequency that will not be in couple. An example of the first
frequencies obtained in the case of study is reported in the following table.
In this table some values of frequencies with an increasing order are reported
for a bladed disk with a number of sectors (N) equal to 50, a disk mass md =
1.5Kg and a blade mass to mb = 0.5Kg. The frequencies for disk, connection
and blade are respectively kd = 300Hz, kc = 300Hz and kb = 100Hz.
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Frequencies [Hz] Mode shape number

97.9893 1st shape mode

98.023 2nd shape mode

98.023 3th shape mode

98.1172 4th shape mode

98.1172 5th shape mode

98.2544 6th shape mode

98.2544 7th shape mode

98.4138 8th shape mode

98.4138 9th shape mode

98.5774 10th shape mode

98.5774 11th shape mode

98.7329 12th shape mode

98.7329 13th shape mode

... ...

Table 2.2.1: Calculated frequencies by increasing order with related shape modes for a full disk
model of two DoF’s per sector
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In order to visualize the mode shapes for different natural frequencies we
used the matrix of eigenvectors. This matrix represents the displacement of
the DOF’s for a certain frequency. With this values it’s possible to build the
following diagrams reported in Figure 2.2.3 and 2.2.4. In these diagrams it’s
possible to see the and understand the displacement for every DOF of the
disk. In these diagrams the 50 sectors rotor wheel is evaluated.

Figure 2.2.3: Rotor wheel (only) with two nodal diameters
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Figure 2.2.4: 4th mode shape displacement diagram

In Figure 2.2.4 it’s possible to see the typical 4th mode shape for the disk.
In this case, is visible the presence of two nodal diameters (the curve intersect
the x axis four times). To explain this concept in a proper way it’s better
to start from the geometry of a bladed disk like shown in Figure 2.2.3. In
this diagram two nodal diameters are represented, it means that along this
lines the amplitude of the displacements is equal to zero. By taking a look
along the external circumference of the disk (the border) it’s possible to see
that this curve meet the nodal diameters four times. In this case, on the
first sector (0◦) or equal to 12 o’clock, the displacement is zero (due to the
correspondence with a nodal diameter). It’s possible to see the same in Figure
2.2.4. The same theory could be applied for the sectors in correspondence
with (90◦),(270◦) and again (360◦).
Since from the matrix of eigenvalues we get couple of frequencies, as already
showed in the table of the frequencies, it means that there are couples of
shape modes that have the same frequency but have a different phase angle.
With the help of Figure 2.2.5 and 2.2.6 it’s easier to explain this concept.
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It is also visible in Figure 2.2.6 that the nodal diameters for the 4th and the
5th mode shape are shifted of 45◦. This angle, called phase angle, is obtained
mathematically by the half of the angle between two nodal diameters. Since in
the 4th mode shape occur two nodal diameters perfect orthogonal, the angle
between them is 90◦. This angle is shown in Figure 2.2.3. To obtain the
phase angle between two shape modes with the same frequency it’s necessary
to divide this angle by two.

Figure 2.2.5: 4th and 5th shape mode comparison complete system

Figure 2.2.6: 4th and 5th shape mode comparison on disk for complete system
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It’s possible to do the same for higher frequencies. In the following figures
are shown the comparison of the shift angle between the 8th - 9th and 12nd
- 13rd shape mode.

Figure 2.2.7: 8th and 9th shape mode comparison complete system
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Figure 2.2.8: 12nd and 13rd shape mode comparison complete system

If the 8th and the 9th shape modes are considered, it’s possible to see that
the number of nodal diameters will be equal to four. For this reason the angle
between the diameter in the 8th shape mode will be equal to 45◦. The phase
angle between the 8th and the 9th shape mode will be 22.5◦.
It’s also visible in the previous diagrams, Figure 2.2.7 and 2.2.8, that more we
increase the frequency and more the shape of the curve appears less smooth.
This reason comes from the choice of the number of sectors. In the previous
study the number of sectors (N) is equal to 50. If this number it’s increased
for example to 150, it’s possible to obtain a smoother mode shape. In this first
study a small number of sectors was chosen not to perform big calculations.
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2.3 Modelling of the cyclic symmetry structure

In this chapter an approximation of the slice of the rotor wheel and the blade
with the Sector Cyclic Model it’s built. In general it’s possible to say that a
tuned bladed disk satisfies the property of cyclic symmetry along the rotation
axis. This property could be used to study the disk’s dynamics, reducing a lot
the steps to compute big systems of data with many degrees of freedom and
sectors. The aim is to build a model that satisfies the property of symmetry
to be able to focus the attention only on one sector. This sector then, with
the help of the phase angle, will be repeated to reproduce all the sectors of
the complete disk. In this way, the process of calculation will be shorter and
easier. Among the various types of systems, a sector model is defined we
three degrees of freedom (DOFs) respectively for the three masses.

Figure 2.3.1: Sector cyclic model
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For reasons connected to symmetry, the mass of the slice of the rotor wheel
has been divided into two half masses.
For this new system, a new displacement’s vector {x} must be created as it
follows:

{x} = {xd,l, xb, xd,r}

Where:

• xd,l is the coordinate for the left slice of rotor wheel mass

• xd,r is the coordinate for the right slice of rotor wheel mass

• xb is the coordinate for the blade mass

By doing a comparison between the Full Disk Model and the Sector Cyclic
Model it’s possible to see that in the first model the degrees of freedom
(DOF’s) of one sector were two. In this new model the number of degrees of
freedom (DOF’s) are three. In the following pages a way to link the DOF of
the right mass of the disk and the DOF of the left mass of the disk will be
explained. By doing so the DOF’s will be two as in the Full Disk Model.
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Once generated the coordinates system, mass matrix [Ms] and stiffness
matrix [Ks] must be found in the following way.

Ms =

md

2 0 0
0 mb

md

2

0 0 md

2



Ks =

kd + kc + kb −kb −kc
−kb kb 0
−kc 0 kc


To solve the system it’s necessary to find the solution to the following equa-
tion.

[Ms]Ẍ + [Ks]X = 0 (2.3.1)

Until now, still no information about the other of the sectors has been
introduced. First, as already explained in the previous page, the system
needs an equation that connects the degree of freedom (DoF) of the left disk
mass with the one of the right mass. This could be done by introducing a
phase angle {µ} calculated by Equation 2.3.2

µ = +
2π

N
n (2.3.2)

Where:

• N is the number of sectors

• n is the number of nodal diameters that we want to study n = [0,...,N2 ]
and N even number

In this way is possible to built the complex constrains able to reduce the
number of degrees of freedom from three to two. The new coordinate system
{x’} will be as it fallows.

{xd,r} = eiµ{xd,l}

T =

 1 0
0 1
eiµ 0


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The new system of coordinates {x′} will be defined as it follow:

{x′} = {xd,l, xb}T

In this case new matrixes of dimension 2× 2 are developed:

M ′
s(µ) = [T ]T [Ms][T ]

and
K ′s(µ) = [T ]T [Ks][T ]

By replacing this new matrixes in Equation 2.3.1 it’s possible to obtain
the following system’s equation:

[M ′
s(µ)]Ẍ ′ + [K ′s(µ)]X ′ = 0 (2.3.3)

It’s possible then to solve this equation and obtain the eigenvectors matrix
[ψ(µ)] of dimension 2× 2. For a comparison with the eigenvectors matrix of
the complete system further steps must be done.

First a transformation matrix [Tψs
] should be developed in the following

way:

[Tψs
] =

 ...

eikµ[I]
...


Where [I] is the Identity Matrix 2X2 and the index k = 0, ..., N − 1.
It’s possible then to obtain the matrix of eigenvectors for the cyclic system
expanded [ψexp(µ)]:

[ψexp(µ)] = [Tψs
][ψ(µ)]

The eigenvectors contained in the expanded matrix [ψexp(µ)] are complex. It
is then experimentally verified that they have a phase angle respect to the
fully study system.
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3 Dynamics of Bladed Disk with external force

In this Chapter the same steps of Chapter 2 will be followed. The system
will be studied both in Full Disk Model and Sector Cyclic Model with an
additional external force. For this reason, in the main equation of the system,
a study of a damping matrix it’s also necessary. In the following studies a
force will be applied on the blades of the rotor wheel. This force is generated
by the flow that passes through the blades of the compressor. It’s known that
this force creates a tangential component (Ra) and an axial component (Ru).
There is also a radial force but in this picture is not shown for simplifying
reasons. This concept is shown in Figure 3.0.1

Figure 3.0.1: Components of the force applied on the blade

To simplify the study, only the tangential component (Ru) is considered,
as shown in Figure 3.0.2.
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Figure 3.0.2: Disk with external force (F) applied

Through the blades the Force (F) applied on the blades will stress also the
disk. For this reason, as shown in Figure 3.0.2, the force is applied on the
circumferential part of the disk. The direction of this force is the same of the
springs of the model. It means that if we choose tangential displacements,
and for this reason we consider the direction of the springs that simulate the
stiffness of the material tangential, the force component that we consider is
the tangential one. The same concept could be applied to the axial and the
radial component. Anyway this choice doesn’t change our calculation.
F is expressed by the following equation:

F = F0sin(ωt) (3.0.1)

where ω is the excitation frequency and Ω is the rotational frequency of the
disk. This external force is given by the interaction between the gases entering
in the compressor. The fact that this force is transmitted from the gas by
the rotation of the rotor wheel allows that this force could be considered as a
”Rotation Force”. The excitation frequencies that make resonance occurs are
multiple directly with the rotational speed of the rotor wheel. In literature,
this concept is described by a value called Engine Order. The engine order
(EO) expresses the ratio between the excitation frequency and force. This is
not completely true because the interaction between the gas fluxes and the
blades is impulsive. Anyway, a Fourier series study can be operated to deal
with harmonic functions. The Engine Order (EO), is defined by EO = ω

Ω .
This value can be also obtained by EO = N ± n where N is the number of
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sectors and n is the nodal diameter. The Engine Order, defined in this way, is
meant to excite, in resonance condition, a mode associated to a specific nodal
diameter. In the previous equations this concept is mathematically shown.
A mode with nodal diameter n can be excited by an Engine Order having the
same value but also by an Engine order equal to N±n. The cause of this last
concept is linked with the ”aliasing phenomenon”. In this case, the rotation
of the bladed disk, considering that the blades are not continuous because
they are equally spaced, causes a sampling effect of the harmonic forcing
function. When the EO is bigger than N

2 the sampling of this forcing signal
is not considered ”correct”. It means that the disk can’t see such excitation
force but it sees a force with a lower excitation frequency. Then, each blade,
undergoes the same excitation force in terms of amplitude but with a phase
lag that depends on the position of the blade.
The excitation force vector F acting on the blades, in the rotating reference
frame fixed to the disk, can be written as it follow.

{F} = {F0}eiωtand{F0} = {F0}eiφm (3.0.2)

Where:

• {F0}, is amplitude vector of the forcing function (F0 is a real number)

• φ , inter-blade phase angle (φ = 2π
N n = 2π

N EO)

• m, position number of the blade (m = 1, ..., N)
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3.1 Modelling of the complete structure with external force applied

In order to evaluate the forced response of the complete system, a damping
matrix [C] has to be calculated. For simplicity we consider a proportional
viscous damping. This allows us to build the damping matrix by fixing a
value of modal damping ratio ζc for each mode.

[cr] = diag(2ζc
2
√
krmr)

Where kr and mr are respectively the stiffness and the masses modal ma-
trix. At this moment is possible to calculate the damping matrix [C] by the
following equation.

[C] = ([Ψ]T )−1[cr][Ψ]−1

Where [Ψ] represents the matrix of eigenvectors obtained from the system
without external forces applied.

[M ]Ẍ + [C]Ẋ + [K]X = F (3.1.1)

Then it’s possible to solve the main equation 3.1.1.
First, it’s possible to calculate a dynamic stiffness matrix

[Kdyn] = [K]− ω2[M ] + iω[C]

and then use this matrix to solve the equation that can gives us the displace-
ments.

X0 = [Kdyn]
−1{F0}

It follows a forced response of the blades for a value of EO = 1 and f =
98.023Hz (it means for one nodal diameter). The force, as already said is
only applied on the blade’s degree of freedom (DOF).
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Figure 3.1.1: Forced response for the first nodal diameter
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3.2 Modelling of the cyclic symmetry with external force applied

The forced response of the system can be also obtained by using the cyclic
symmetry property. The excitation force is applied in the degree of freedom
DOF of the blade. Through the phase φ, the continuity relation between the
left side and the right one is established. It’s possible to obtain the damping
matrix in the same way as in the Full disk model. The step to follow are the
same of the one followed in the Full disk model. The general equation of the
system is:

Ms′(µ)Ẍ ′ + Cs′(µ)Ẋ ′ +Ks′(µ)X ′ = F0se
iωt (3.2.1)

Being {x′} = {xd,l, xb}T the vector of the displacements.
In this vector it’s possible to see the displacements for the blade and for the
left slice of the mass of the disk. The amplitude force vector is then generated
as {F0s} = {0, F0}T .
The forced response can be computed through the inversion of the dynamic
stiffness matrix, as in the case of the Full disk model. At the end it’s possible
to compare the Forced response diagram obtained with the Full Disk Model
and the Sector Cyclic Model. In Figure 3.2.1, is shown a comparison of this
two graphs. The comparison is done for the curve obtained with an EO = 1
and a frequency f = 98.023Hz.
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Figure 3.2.1: Forced response comparison between complete system and cyclic method for the first
nodal diameter

It’s possible to see from the forced response obtained by applying the two
methods that the results are similar. For this reason, the previous chapters
where used to demonstrate the capability of the Sector Cyclic Model to cal-
culate a good approximation of the results obtained by a Full disk model.
The advantages of this model is the simplicity. This characteristic is helpful
to decrease the necessary time needed for calculation.
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4 Modelling the ”First reduced model” (FRM) of the disk

In the previous chapters the main theory behind the Mode shape analysis and
the theory of Sector Cyclic Model where explained. It’s easy to understand
that both the models, Full disk model and Sector Cyclic model, with only
two DOF’s per sector, are a big approximation of a real bladed disk. It must
be evaluated that is normal to evaluate several hundreds of nodes for one
sector to obtain accurate results.
The big problem of such systems is the difficulty to manage and generate
matrixes necessary to solve the model. This matrixes, due to the many
DOF’s per sector have large dimensions.
For this reason, in this chapter with the help of the software ANSYS a first
reduction is done. This first reduction will create the ”First reduced model”.
This simplification will keep only the nodes on the two contact faces of the
sector and the nodes where the force (F) and reaction (R) are applied.
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4.1 Generating the ”First reduced model” (FRM) of one sector of the rotor
wheel

A simple sector of a rotor wheel was designed with the help of the software
NX 12.0 and then loaded on ANSYS. With the help of ANSYS then the mesh
was built under constrains. The sector of the disk is designed to be part of a
24 sectors disk. In Figure 4.1.1 is reported the sector of the rotor wheel.

Figure 4.1.1: Sector of the simplified disk

An important characteristic that was required from mesh was that the coor-
dinates of the nodes in the left face and in the right face were corresponded.
This means that the coordinates of the nodes on the interfaces are perfectly
coincident. This step was done in order to allow the assembly process, be-
cause even in this case, as done before the complete rotor wheel could be
studied by only considering one sector that then will be repeated and trans-
lated with a phase angle. The efficiency of this method has been already
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demonstrated in the previous chapters.
With the help of ANSYS it’s possible to see the placement of the nodes cre-
ated from the mesh. As it’s possible to see in Figure 4.1.2 they are several
hundreds.

Figure 4.1.2: Nodes of the sector designed on ANSYS
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In order to reduce the number of nodes, only the one placed on the connec-
tion surfaces (interfaces) and the two nodes where the force (F) and reaction
(R) are applied were kept. For this reason four groups where selected. The
first group of nodes is the one of the left contact surface. This group is shown
in Figure 4.1.3. The second one is for the nodes on the right contact surface.

Figure 4.1.3: Group of nodes of the left face of contact or left interface

The third group, is a single node on the surface of contact between gas
and blade. In this node will be applied the external force (F). In the opposite
face of the blade is then chosen another node opposite to the one where the
external force is applied. On this last node the reaction force (R) will be
applied.
In the following picture, Figure 4.1.4 it’s specified where the external force
node and his reaction node are positioned. In Figure 4.1.3 it was shown the
group of nodes of the left contact face.

The same will be for the nodes of the right contact faces.
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Figure 4.1.4: Position of the external force and reaction force on the surfaces of contact between
gas flow and blade
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The total number of nodes in this first simplified model is 100. They are
45 for the left contact face, 45 for the right contact face, 2 respectively for
the external force (F) and reaction (R) and 8 for the shape modes. For this
reason, since the degrees of freedom (DoF’s) for each node are three, the
matixes have a dimension equal to 300 × 300. To make the following steps
more understandable this model in the following pages will be called ”First
reduced model”. In the following chapters several reduction procedures are
evaluated to find the one that can give the most accurate results.
In the appendices is dedicated a part to explain more how the Full model
on ANSYS was developed. In this part is also developed an explanation
through images of the frequencies obtained and the displacements for each
shape mode.
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4.2 Comparison of the frequencies of the ”First reduced model” with the ”Full
model” (FM) considering only one sector

The aim of this chapter is to compare the First reduced model (FRM), where
only four groups of nodes where kept, and the full model (FM) considering
only one sector of the rotor wheel. For the full model (FM) the results were
obtained directly from ANSYS. For the First reduced model (FRM) a script
on MatLab was developed to extract the reduced matrices of stiffnes and
mass. These matrixes, as already said, have dimension 300× 300.

A comparison between the ”First reduced model” (FRM) developed on
Matlab and the ”Full model” (FM) on ANSYS is done. This comparison is
done for the frequency of the first shape modes.
In the following table, table 4.2.1, is possible to see this comparison.

Frequencies of FM [Hz] Frequencies of FRM [Hz] Percentage error

0 0 ...

0 0 ...

0 0 ...

0 0 ...

0 0 ...

0 0 ...

1394.82 1395.17 2.4939e-4

1872.16 1873.21 5.574e-4

3190.11 3195.2919 1.626e-3

3221.1 3228.654 2.3461e-3

3535.74 3548.96 3.738e-3

4710.53 4724.76 3.02e-3

5069.76 5080.104 2.04e-3

5694.31 5080.104 3.782e-3

6305.58 6370.03 0.01

... ... ...

Table 4.2.1: Comparison of the calculated frequencies between the Full model and the First reduced
model with percentage error considering only one sector
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Thanks to table 4.2.1 it’s possible to notice that even by studying the
sector with the First reduced model (FRM) it’s possible to obtain a good
approximation of the results for one sector. The error between the results
obtained from the two methods is very small. With this comparison was
possible to understand that even with a reduced model is possible to study a
system with the advantage that the quantity of DoF’s that must be managed
is smaller and simpler. In the next paragraph the process of assembly is
developed so it will be possible to compare the results for all the 24 sectors.
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4.3 Assembly process of the stiffness matrix and the mass matrix for two sectors
of the First reduce model (FRM)

The final goal of this section is to built the First reduced model of the disk
considering all the sectors. Previously this comparison has been done with
only one sector. Now a proof that this method works even with two sectors
is done. It will be done even with three and all sectors. In Figure 4.3.1 it’s
shown the two sectors assembly.

Figure 4.3.1: Assembly of two sectors of the First reduced model (FRM)
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In the following table it’s possible to see a comparison as done for one
sector between the First reduced model (FRM) and the Full model (FM).In
this case, the comparison is done for two sectors assembled.

Frequencies of FM [Hz] Frequencies of FRM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1218.65 1219.564 7.525 ×10−4

1404.02 1404.462 3.153 ×10−4

1526.43 1529.08774 1.74 ×10−3

2191.65 2195 1.53 ×10−3

2773.6 2776.985 1.22 ×10−3

3181.57 3184.92 1.05 ×10−3

3213.51 3219.135 1.75 ×10−3

3999.02 4003.2537 1.059 ×10−3

4006.29 4017.1678 2.715 ×10−3

... ... ...

Table 4.3.1: Comparison of the calculated frequencies between the Full model and the First reduced
model with percentage error considering two sectors
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4.4 Assembling process of the stiffness matrix and the mass matrix for three
sectors of the First reduce model (FRM)

As done for two sectors the same will be done with three sectors as shown in
Figure 4.4.1.

Figure 4.4.1: Assembly of three sectors
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And the same for the comparison of the frequencies obtained with the Full
model (FM) and the First reduced model (FRM).

Frequencies of FM [Hz] Frequencies of FRM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1040.58 1041.2431 6.38 ×10−4

1050.22 1051.1095 8.43 ×10−4

1422.93 1423.5 4 ×10−4

1473.65 1475.898 1.52 ×10−3

1577.66 1581.518 2.44 ×10−3

2171.35 2175.71 2 ×10−3

2398.87 2401.307 1.01 ×10−3

2412.22 2415.35 1.29 ×10−3

3234.06 3239.785 1.76 ×10−3

... ... ...

Table 4.4.1: Comparison of the calculated frequencies between the Full model and the First reduced
model with percentage error considering only three sectors
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4.5 Assembling process of the stiffness matrix and the mass matrix for all the
sectors of the First reduce model

In this last step is studied the First reduced model (FRM) considering all the
24 sectors. In the following figure it’s shown the bladed disk studied.

Figure 4.5.1: Assembly of all sectors
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And the same for the comparison of the frequencies obtained with the Full
model (FM) and the First reduced model (FRM).

Frequencies of FM [Hz] Frequencies of FRM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

161.0263 161.15 7.65 ×10−4

161.0263 161.0263 7.65 ×10−4

283.431 283.7195 1.01 ×10−3

366.7925 367.0455 6.89 ×10−4

366.7925 367.0455 6.89 ×10−4

570.28 570.6 5.54 ×10−4

570.28 570.6 5.54 ×10−4

570.63 571.107 8.3 ×10−4

570.63 571.107 8.3 ×10−4

... ... ...

Table 4.5.1: Comparison of the calculated frequencies between the Full model and the First reduced
model with percentage error considering all the sectors
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5 Reduction of the nodes on the interfaces of the sector

In the First reduced model evaluated previously, the number of nodes for each
interface was 45. From the Full model to the First reduced model (FRM)
already one step of reduction was developed.
In the following chapters some methods of reduction of the number of nodes
on the interfaces of the sector will be done. The first reduction it’s called
”System equivalent expansion reduction process” (SEREP). This method hy-
pothetically is able to reduce furthermore the number of nodes on the inter-
faces of the sector without affecting too much the results.

The second reduction called ”Four-noded rectangular element reduction”
consists to keep only four nodes on every interface of the sector. This means
that the total number of nodes for one sector will be 18 and respectively 54 de-
grees of freedom (DoF’s). The further reductions respectively called ”Eight-
noded rectangular reduction” and ”Nine-noded rectangular reduction” con-
sist in keeping respectively 8 and 9 nodes on every interface of the sector.
The results then will be compared with the Full model both for the sector
and for the complete disk assembled.

50



5.1 Reduction with SEREP

In this method it’s possible to calculate the eigenmodes and eigenfrequencies
of the original model. As it’s possible to see, in the following formula the
displacements {x} are divided in master and slave. The first one are active
and the second one are omissive. ψ and q represent respectively the modal
matrix and the vector of modal coordinates.

x =

(
xm
xs

)
=

(
ψm
ψs

)
q

(
xm
xs

)
=

(
ψm
ψs

)
(ψm)+xm = TSEREPxm

In the previous formula (ψm)+ represents the pseudo-inversion of ψm. First,
a verification of the efficiency of this method on a simple beam is done. The
beam considered is shown in Figure 5.1.1.

Figure 5.1.1: Model of a simple beam
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It’s possible to see in Figure 5.1.1 that the beam has been divided in small
elements. The number of elements in this case is 19 with 20 nodes. Every
node has 3 degrees of freedoms Dof’s so the total number of DoF’s is 60. To
simplify the model, the hypothesis that each element has the same properties
is done. To give then, to this model the characteristics of a cantilever beam
it’s necessary to fix the constrains. This means that all the three DoF’s of
the firs node are blocked. In this case rotation and the two 2-D translations
along the axis are fixed. Since this method with the equations above was
not able to aproximate the results properly, the decision to try with other
reduction methods was taken. These methods use the Polynomial Series.
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5.2 Four-noded rectangular element reduction

Since the SEREP method didn’t work a new method had to be studied.
This method, as the SEREP method, splits the nodes in master nodes and
omissive nodes. As did before the sector of the disk is consider as shown in
Figure 5.2.1. In the further steps of this method both the left and the right

Figure 5.2.1: Left interface of the disk’s sector

interface of the disk’s sector are considered. To simplify the explanation in
the further steps only the left interface is considered but the same steps are
done also for the right interface. The left interface, as visible in Figure 5.2.1
it’s the face with the x-axis positive. The distribution of nodes of the left
interface for the First reduced system is shown in Figure 5.2.2.
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Figure 5.2.2: Left interface of the disk’s sector with reference system and number of nodes

To make the Four-noded reduction it’s important to focus on the four
nodes at the vertices of the face. In particular these nodes have the number
39, 44, 53 and 55. These four nodes will be the master nodes. Since there
is a total of 45 nodes on the face, the other 41 nodes are all omissive nodes.
In Figure 5.2.3 it’s possible to see the four master nodes (nodes at the four
vertices).
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Figure 5.2.3: Left face of the disk’s sector with number of nodes

To simplify the study of this method, two new transformation coordinates
are introduced. These coordinates are the following:

ε =
y

a
;

η =
z

b
;

With (a) and (b) the length of respectively the short and the long side of
the interface. (y) and (z) are respectively the general coordinate of the short
and the long side of the interface. In Figure 5.2.4 it’s shown the left interface
in the new transformation coordinates and the position of the four master
nodes. These coordinates η and ε go from zero to one. It’s important to say
that the same procedure has been done for the right interface also.

55



Figure 5.2.4: Transformation of the left interface of the disk’s sector on the new coordinates system

In order to connect the omissive nodes that are the one not positioned at
the vertices of the rectangle and the master nodes, it’s necessary to calculate
for each omissive node the form functions. In this case the form functions
will be four because four master nodes are considered. These functions are
respectively N1, N2, N3 and N4 and they are the following:

N1 = ε(1− η)

N2 = εη

N3 = (1− ε)η
N4 = (1− ε)(1− η)

In this manner N1 will be equal to 1 on the node number 39 and zero in all
the other nodes. N2 will be equal to 1 in the node number 44 and zero in all
the others. This will be the same for the other two functions. In the following
Figures are shown the four form functions.
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Figure 5.2.5: Form function N1

Figure 5.2.6: Form function N2
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Figure 5.2.7: Form function N3

Figure 5.2.8: Form function N4
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At this point it’s necessary to built a transformation matrix that will
connect, through the form functions (N), all the omissive nodes to the master
nodes. It’s necessary to remember that in each interface of the sector of the
disk there are 45 nodes. These nodes are visible in Figure 5.2.3.
In the following steps the goal is to build the transformation matrix [T]. This
matrix it’s necessary to connect the nodes that are kept (master nodes) with
all the nodes of the sector of the First reduced model(FRM). The general
equation is the following:

x =



All
the

DoF ′s

of
the

sector

 =
[
T
]


All
the

DoF ′s

kept

in

the
sector


The vector {x} is the one that comprehends all the degrees of freedom (DoF’s)
of the sector. From position 1 to 135 there are the (DoF’s) of the left interface
in the same order as generated from ANSYS. From position 136 to 270 there
are all the DoF’s of the right interface in the same order as generated from
ANSYS. From position 271 to 273 there are the DoF’s of the external force.
From position 274 to 276 there are the DoF’s of the reaction. From position
277 to 300 there are the DoF’s of the nodal modes. In particular an example
of the system of the equations for the Four-noded model (FNM) is shown as
it follows.
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x =



u39
v39
z39
u40
v40
z40
...
...
...
u259
v259
z259
u268
v268
z268
u270
v270
z270
...
...
...
u276
v276
z276



=



1 0 0 ........................0......................
0 1 0 ........................0......................
0 0 1 ........................0......................

N1(40) 0 0 N2(40) 0 0 N3(40) 0 0 N4(40) 0 0
0 N1(40) 0 0 N2(40) 0 0 N3(40) 0 0 N4(40) 0
0 0 N1(40) 0 0 N2(40) 0 0 N3(40) 0 0 N4(40)

........

........

........

N1(41) 0 0 N2(41) 0 0 N3(41) 0 0 N4(41) 0 0
0 N1(41) 0 0 N2(41) 0 0 N3(41) 0 0 N4(41) 0
0 0 N1(41) 0 0 N2(41) 0 0 N3(41) 0 0 N4(41)

........

........

........
I[30, 30]





u39
v39
z39
u44
v44
z44
u53
v53
z53
u55
v55
z55
u31
v31
z31
u37
v37
z37
u61
v61
z61
u71
v71
z71
u259
v259
z259
u268
v268
z268
u270
v270
z270
...
...
...
u276
v276
z276


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To built the transformation matrix [T] it’s necessary to keep the following
relations:

• for all the DoF’s of the master nodes of the both interfaces, in this case
node number (39, 44, 53, 55) for the left interface and (37, 31, 61, 71)
for the right face, the equation must be u39 = u39, v39 = v39 and so on.

• for all the DoF’s of the omissive nodes the equation should be u40 =
N1(40)u39+N2(40)u44+N3(40)u53+N4(40)u55, v40 = N1(40)v39+N2(40)v44+
N3(40)v53 +N4(40)v55 and so on.

• for all the DoF’s of the force (259) and reaction (268) and the shape
modes (from 270 to 276) the equation should be u259 = u259, v259 = v259

and so on.

The position of the identity matrixes and the form functions (N) is determined
from the order of the degrees of freedom (DoF’s) chosen in the vector of the
nodes kept. Once the transformation matrix [T] it’s calculated it’s possible
to proceed with the calculation of the frequencies. First it’s necessary to
calculate the reduced mass matrix [Mred] and the reduced stiffness matrix
[Kred]. These are the equation that allow to calculate them:

[Kred] = [T ]T [K][T ]

[Mred] = [T ]T [M ][T ]

Where [K] and [M] are respectively the stiffness and mass matrixes of the
First reduced model (FRM). The comparison of the frequencies between the
First reduced model (FRM) and the Four-Noded model (FNM) is done in
the following table.
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Frequencies of FRM [Hz] Frequencies of FNM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1395.17 20135 45.87

1873.21 2423 29.36

3195.2919 3870 21.13

3228.654 5200 61

3548.96 5507 55.17

4724.76 6666 41.1

5080.104 8285 63.1

5080.104 9938 73.86

6370.03 10456 64.15

... ... ...

Table 5.2.1: Comparison of the calculated frequencies between the Full model and the Four-noded
model with percentage error considering only one sector

As visible in table 5.2.1, the percentage error of this Four-Noded reduction
method are too high. For this reason this method it’s too approximative. In
the next methods the form functions will be changed to approximate better
the results. For this reason it’s uselessness to continue with the assembly
of all the sectors using the Four-noded model as method of reduction of the
nodes on the interfaces.
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5.3 Eight-noded rectangular element reduction

The steps to follow to develop the Eight-noded rectangular element reduction
are similar to the ones that were followed for the Four-noded rectangular ele-
ment reduction. The first step is to transform the general coordinates of the
nodes created on the model generated on ANSYS in a system of coordinates
that are simpler and more intuitive. The left interface of the sector of the
disk in the new coordinate system have the following positions as shown in
Figure 5.3.1. In this case η and ε go from -1 to 1.

Figure 5.3.1: Transformation of the left interface of the disk’s sector on the new coordinates system
for the Eight-noded model (ENM)

As did previously, in order to connect the omissive nodes with the eight
master nodes, the following eight form functions are introduced.

N1 = (
1

4
)(1 + ε)(1− η)(−1 + ε− η)

N2 = (
1

4
)(1 + ε)(1 + η)(−1 + ε+ η)

N3 = (
1

4
)(1− ε)(1 + η)(−1− ε+ η)

N4 = (
1

4
)(1− ε)(1− η)(−1− ε− η)
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N5 = (
1

2
)(1 + ε)(1− ε)(1 + η)

N6 = (
1

2
)(1 + ε)(1− ε)(1− ε)

N7 = (
1

2
)(1 + ε)(1 + η)(1− η)

N8 = (
1

2
)(1− ε)(1− η)(1 + η)

The property of these functions are that on one node they are equal to zero.
For example N1 is equal to one on the node 39 as shown in Figure 5.3.2.

Figure 5.3.2: Form Function N1

The Form Function N6 is equal to one on the node 56 as shown in Figure
5.3.3. The same for the Form Function N8 that is equal to one on the node
220 as shown in Figure 5.3.4.
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Figure 5.3.3: Form Function N6

Figure 5.3.4: Form Function N8
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The next step, again is to build the transformation matrix that allows to
connect the omissive nodes to the eight master nodes. Nothing changes from
the Four-noded method. The only change is that instead of keeping four
nodes for each interface now eight nodes are kept. The formula that connects
all the degrees of freedom (DoF’s) to the master nodes it’s always the same:

x =



All
the

DoF ′s
of
the
sector

 =
[
T
]


All
the

DoF ′s
kept
in
the

sector


Once again the transformation matrix [T] is obtained, the reduction of the
stiffness matrix [K] and the mass matrix [M] is done at it follows:

[Kred] = [T ]T [K][T ]

[Mred] = [T ]T [M ][T ]

The reduced stiffness matrix [Kred] and the reduced mass matrix [Mred] will
be of dimension 78 × 78. The comparison between the First reduced model
(FRM) and the Eight-noded model (ENM) is shown in table 5.3.1.
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Frequencies of FRM [Hz] Frequencies of ENM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1395.17 1463 4.87

1873.21 1964 4.85

3195.2919 3364 5.289

3228.654 3597 11.39

3548.96 3955 11.43

4724.76 5042 6.7

5080.104 5195 2.26

5080.104 7569 32.41

6370.03 8761 37.53

... ... ...

Table 5.3.1: Comparison of the calculated frequencies between the Full model and the Eight-noded
model with percentage error considering only one sector

As visible in table 5.3.1, the percentage error is smaller than in the Four-
noded model. For this reason the Eight-noded model guarantees a better
approximation of the results obtained for the study of one sector of the disk.
Anyway, a Nine-noded reduction model has been developed to test if it is
possible to reduce more the percentage error in the comparison of the results
with the First reduced model (FRM).
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5.4 Nine-noded rectangular element reduction

For the Nine-noded rectangular element reduction the steps will be the same
as the previous. The left interface of the sector in the new coordinate system
is shown in Figure 5.4.1. Even in this case η and ε go from -1 to 1. In this

Figure 5.4.1: Transformation of the left interface of the disk’s sector on the new coordinates system

case the form functions will be the followings:

N1 = (−1

2
)ε(1− ε)(−1

2
)η(1− η)

N2 =
1

2
ε(1 + ε)(−1

2
)η(1− η)

N3 =
1

2
ε(1 + ε)

1

2
η(1 + η)

N4 = (−1

2
)ε(1− ε)(1

2
)η(1 + η)

N5 = (1 + ε)(1− ε)(−1

2
)η(1− η)

N6 = (
1

2
)ε(1 + ε)(1 + η)(1− η)

N7 = (1 + ε)(1− ε)(1

2
)η(1 + η)
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N8 = (−1

2
)ε(1− ε)(1 + η)(1− η)

N9 = (1 + ε)(1− ε)(1 + η)(1− η)

Once again the transformation matrix [T] must be generated as was done for
the previous methods. Then the procedure continues with the calculation of
the reduced stiffness matrix [Kred] and the reduced mass matrix [Mred] as it
follows.

[Kred] = [T ]T [K][T ]

[Mred] = [T ]T [M ][T ]

In this case these two matrixes have the dimension 84. It follows then the
comparison in table 5.4.1 between the First reduced model (FRM) and the
Nine-noded model (NNM).

Frequencies of FRM [Hz] Frequencies of NNM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1395.17 1463 4.87

1873.21 1964 4.85

3195.2919 3363 5.25

3228.654 3597 11.39

3548.96 3954 11.41

4724.76 5042 6.7

5080.104 5195 2.26

5080.104 7569 32.41

6370.03 8760 37.51

... ... ...

Table 5.4.1: Comparison of the calculated frequencies between the Full model and the Nine-noded
model with percentage error considering only one sector

69



It’s visible from the table that the results didn’t change significantly from
the Eight-noded model (ENM). For this reason, for the assembly process of
all the 24 sectors, was decided to keep the Eight-noded model (ENM). The
Eight-noded model (ENM) gives approximately the same results of the Nine-
noded method (NNM) but with one node less.It’s visible from the tables that
the results didn’t change significantly from the Eight-noded model (ENM).
For this reason, for the assembly process of all the 24 sectors, was decided to
keep the Eight-noded model.
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6 Assembly process of the all twenty-four sectors using the Eight-
noded rectangular element reduction

In the previous chapters the comparison between the frequencies of the vari-
ous reduction methods have been shown. Anyway, all these comparisons were
done considering the frequencies calculated for only one sector.
In this chapter is explained the assembly process of the entire disk (consider-
ing the twenty-four sectors) with the Eight-noded reduction method (ENM).
The first step is to understand how the nodes between to sectors must be
connected. To do so, in Figure 6.0.1 and Figure 6.0.2 are shown two sectors
with the related left and right interfaces.

Figure 6.0.1: Right Interface of the first sector
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Figure 6.0.2: Left Interface of the second sector

The nodes in the new coordinate systems of the two previous interfaces
are shown in Figure 6.0.3 The nodes that have the same coordinate in the

Figure 6.0.3: Left and Right Interfaces of the first and second sector

new coordinates system must be connected during the assembly process. For
this reason, the node 37 must be connected with the node 44 and so on. This
operation is done for all the sectors. The assembly is done clockwise, it means
that the right interface of the previous sector must be assembled with the left
interface of the following sector. This process goes on until the 24th sector.
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After the assemblage is completed, two new matrixes have been generated.
These matrixes are called global stiffness matrix [Kglob] and the global mass
matrix [Mglob]. These two matrixes are of dimension 1296 × 1296. This
dimensions are correct since there are 54 degrees of freedom for each sector.
The last step is to write a comparison table 6.0.1 of the frequencies obtained
from the Eight-noded model (ENM) and the First reduced model (FRM)
assembled with all 24 sectors.

Frequencies of FRM [Hz] Frequencies of ENM [Hz] Percentage error

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

161.15 150 6.91

161.15 150 6.91

283.7 280 1.3

367.0455 388 5.7

367.0455 388 5.7

570.6 570 0.10

570.6 570 0.10

571.107 628 9.96

571.107 628 9.96

... ... ...

Table 6.0.1: Comparison of the calculated frequencies between the Full model and the Eight-noded
model with percentage error considering all the twenty-four sectors
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7 Conclusions

Through all the methods that were developed, it’s possible to have an idea
on which best fit the model of a disk of a compressor for aeronautical appli-
cations. As demonstrated in the various comparisons done in the previous
paragraphs, the conclusions are that the Eight-noded rectangular element re-
duction is the one that gives the most accurate results. Thanks to this model
it was possible to reduce the number of nodes for each sector from several
hundreds to eighteen. This reduction allows to calculate the frequencies with
a good approximation but with a model that is lighter. As already said, this
reduction is based on a system that is perfectly symmetric along the rotation
axis. With the help of some ”sensitivity” models, it will be possible to ap-
ply the Eight-noded rectangular element reduction to systems that are not
symmetrical along the rotation axis. An example of these systems could be
when the mistuning phenomenon occurs.
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Appendices

A Mistuning

A.1 History and basic theory

The phenomenon of mistuning strongly affects the vibration of a rotor wheel
and makes it’s design more difficult. The problem of this phenomenon is that
it could be generated from many causes. This makes the mistuning unpre-
dictable. The mistuning phenomenon occurs when the rotating wheel has not
a perfect symmetry a long the rotation axis. Causes of mistuning as already
said, could be multiple. The most common causes could be: irregularities
associated to the material properties of the blades or of the sectors of the
disk, asymmetry generated during assembly, during maintenance processes
or during engine’s operations. The main aim of this chapter is to understand
what does it means the word ”mistuning” and which are the main visible
differences with the results obtained from a tuned system (system without
mistuning).
In general this phenomenon can be reduced but not completely eliminated.
The problem of the presence of this phenomenon can have some impacts in
the designing process. For an engineer, usually to perform calculations of
a rotor wheel, it’s more convenient to use the cyclic symmetry assumption.
It was demonstrated that with this last approach the system is simplified.
The problem is that this approach can be used only for symmetrical systems
and a rotor wheel in which occurs the mistuned phenomenon is not. In this
thesis mistuned rotor wheel are not considered. This chapter is just used as
an introduction to the problems of mistuning and which differences should
be expected in the results. The methods of reduction developed during the
previous chapters could be then used to study a mistuned disk of compressor.

75



A.2 Main effects of a mistuned rotor wheel

In this section will be shown how the forced response, that was calculated in
chapter three, changes with an alteration of some initial parameters. Gener-
ally, the change could affect the mass or the stiffness of some blades or some
sectors of the disk. This change is very little, about 0.05% or even less. If
it is very big, for example due to the lost of a blade, it’s not regarding the
mistuning phenomenon any-more. In this case, the change will affect the
mass of some blades chosen randomly. In the previous paragraphs, was said
that respectively the mass of the blade and of the slice of the disk were equal
to mb = 0.5 and md = 1.5 Kg. In the next steps these values are considered
as standard masses. This means that this is the mass that all the blades and
the slices of disk should have. In the case of a tuned system all these values
are the same for each sector. For a mistuned disk this is not true any more.
To generate this random variation from the standard values was decided to
generate a random vector (r) of ten numbers like it follows:

0.00814723686393179

0.00905791937075619

0.00126986816293506

0.00913375856139019

0.00632359246225410

0.000975404049994095

0.00278498218867048

0.00546881519204984

0.00957506835434298

0.00964888535199277

At this point, the equation to generate the new mass values for the first
ten blades was introduced as it follows:

mb,new = mb +mb ∗ r

Where mb,new is the new value of the mass of the blade and mb is the standard
value of the mass of the blade equal to 0.5Kg. With the help of this vector
it’s possible to generate 6 new mass values for 6 blades. To make this study
easier was decided to change the mass of the first six blades. It follows in
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Figure 5.2.1 an explicative distribution of masses. It’s possible to see that
only the first six blades have a very small change in mass from the standard
one.

Figure A.2.1: Distribution of masses

To see the changes in the results, the graph of the forced response for the
second blade and one nodal diameter is considered. The graph is shown in
Figure A.2.2 In Figure A.2.2 it’s possible to see that in the case of mistuned
system the curve represents two tips. In the case of the tuned system, as
we already studied in the previous chapters, the tip is only one. Is better
to specify that in the tuned system for each shape mode corresponds two
equal frequencies that makes a couple. In the table where were reported
the frequencies of the first shape modes this concept was visible. For this
reason, the curve that represents the tuned system has just one tip in which
two frequencies are corresponding. In the curve of the mistuned system the
couple of frequencies still exist, but the values are different. For this reason
the tips become two. An additional example could be done for another blade.
In Figure A.2.3 it’s represented the blade number 10.
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Figure A.2.2: 2nd blade comparison of the forced response diagram in the tuned and mistuned
cases
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Figure A.2.3: 9th blade comparison of the forced response diagram in the tuned and mistuned cases
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It follows the table of the frequencies calculated for a ”tuned” system.
This table was already calculated in the previous chapters.

Frequencies [Hz] Mode shape number

97.9893 1st shape mode

98.023 2nd shape mode

98.023 3th shape mode

98.1172 4th shape mode

98.1172 5th shape mode

98.2544 6th shape mode

98.2544 7th shape mode

98.4138 8th shape mode

98.4138 9th shape mode

98.5774 10th shape mode

98.5774 11th shape mode

98.7329 12th shape mode

98.7329 13th shape mode

... ...
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It follows the table of the frequencies calculated for a ”mistuned” system.

Frequencies [Hz] Mode shape number

97.7693 1st shape mode

97.9068 2nd shape mode

98.0016 3th shape mode

98.0494 4th shape mode

98.0869 5th shape mode

98.1855 6th shape mode

98.2072 7th shape mode

98.3292 8th shape mode

98.3634 9th shape mode

98.4913 10th shape mode

98.5299 11th shape mode

98.6501 12th shape mode

98.6714 13th shape mode

... ...

By comparing these two tables it’s possible to understand the concept previ-
ously explained.
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B Modal Analysis of the simplified disk with twenty-four sectors

In this appendix it’s explained more deeply how could be red the results
obtained from a Modal Analysis. In the Chapter 1 is explained the theory
that stays behind a Modal Analysis calculation. In this appendix the speech
will be focused more on the results obtained from ANSYS. Previously was
said that during the operations of a bladed disk some displacements from the
plan in not working conditions could occur. The displacements are different
from point to point. Anyway, at some particular frequencies, can occur that
there are some points that don’t move from the original plan of no working
conditions. When this locus of points make a line, this is called ”nodal
diameter”. In the following table the first frequencies of the modal shape
analysis for the twenty-four sectors rotor wheel are reported.

Frequencies [Hz] Mode shape number

0 1st shape mode

0 2nd shape mode

0 3th shape mode

0 4th shape mode

0 5th shape mode

0 6th shape mode

161.0263 7th shape mode

161.0263 8th shape mode

283.431 9th shape mode

366.7925 10th shape mode

366.7925 11th shape mode

570.28 12th shape mode

570.28 13th shape mode

570.63 14th shape mode

570.63 15th shape mode

...

82



The first step to read the results is to understand the legend that associates
the displacements to colours. This legend it’s shown in Figure B.0.1.

Figure B.0.1: Legend of the results generated from ANSYS for the twenty-four sectors disk

In this legend it’s clear that different colours correspond to a different
grade of displacement that occurs on the disk. In the table of the modal
shapes it’s then possible to see that the first six shape modes are equal to a
frequency of 0 Hz. These six mode shapes are shown in the following Figures.

Figure B.0.2: 1st shape mode
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Figure B.0.3: 2nd shape mode

Figure B.0.4: 3rd shape mode

Figure B.0.5: 4th shape mode
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Figure B.0.6: 5th shape mode

Figure B.0.7: 6th shape mode
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These first six modes have the common characteristic that the displace-
ments have no symmetry along an axis on the no working condition plan. In
the next two Figures, Figure B.0.8 and Figure B.0.9, the couple of the 7th
and 8th shape mode will be considered. In this case it’s possible to notice
that both shape modes have the same frequency and respectively two nodal
diameters.

Figure B.0.8: 7th shape mode

Figure B.0.9: 8th shape mode

In the 7th and 8th shape modes it’s possible to see that the two nodal
diameters in both cases are perpendicular to each other but their orientation
it’s different. As already said in Chapter 1, the phase angle (φ) in this case is
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of 45 degrees. It means that the frequency in both cases is equal but in the
8th shape mode the nodal diameters are rotated of 45 degrees if compared
with the one of the 7th shape mode.
This concept could be applied to every couple of shape modes that is reported
on the table of this appendix. Between all the couples of frequencies it’s pos-
sible to notice that the 9th mode shape it’s a single one. The displacements
of this shape mode are reported in Figure B.0.10.

Figure B.0.10: 9th shape mode
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