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Abstract

Very complex systems require sophisticated controllers in order to achieve high
performance. The demand for ever higher performance is putting the traditional
controllers in crisis especially when there is a lack of information on the envi-
ronment in which the system is operating or when the goals are not completely
clear.
These needs can be met by Intelligent Control (IC), a class of control techniques
whose development is recently increased thanks to modern processing capacity.
Flexibility is the key for intelligent controllers in order to adapt to different
scenarios. Therefore in this master thesis an intelligent control system was de-
signed by using Genetic Programming (GP) algorithm in Python.
The capabilities of genetic programming to generate a proper controller struc-
ture are shown in off-line process, where disturbances are not taken into account
and the control structure is not updated over time. In addition the behaviours
of several controllers are compared in presence of disturbances in order to un-
derstand the robustness.
Then an intelligent adaptive architecture has been proposed. In this instance
the update of the control structure is done by using genetic programming in
on-line adaptation process when a disturbance occurs in the plant.
The idea of the suggested method has been tested on mass-spring-damper sys-
tem and on a modified version of the standard Goddard problem. In these
problems the genetic programming receives as inputs the state of the plant so
that it generates the right values of control variables required in order to mini-
mize the discrepancies over time between the current and desired values of the
state variables.
The obtained results show the potentialities of genetic programming to adapt
the structure of the controllers for several conditions in which plant parameters
have been changed.



Contents

Abstract

Contents i

Acronyms iv

1 Introduction 1

2 Genetic programming 3
2.1 Preparatory steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Terminal set . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Function set . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Fitness function . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Other genetic programming parameters . . . . . . . . . . 8
2.1.6 Stopping criteria . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Executional steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Introns and bloat . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Intelligent control 17
3.1 Adaptive Intelligent Control . . . . . . . . . . . . . . . . . . . . . 18
3.2 Learning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 On-line and Off-line Control . . . . . . . . . . . . . . . . . . . . . 18
3.4 Intelligent control by using Genetic Programming . . . . . . . . . 20
3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Aerospace application . . . . . . . . . . . . . . . . . . . . 21
3.5.2 Non-Aerospace application . . . . . . . . . . . . . . . . . 22

4 Test case: mass-spring-damper system 25
4.1 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Genetic programming settings . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Primitive set . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Fitness function . . . . . . . . . . . . . . . . . . . . . . . 29

i



5 Aerospace case: Goddard problem 30
5.1 Dynamic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Controller design . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Genetic programming settings . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Primitive set . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Fitness function . . . . . . . . . . . . . . . . . . . . . . . 32

6 Results 33
6.1 Off-line design control for mass-spring-damper system . . . . . . 33

6.1.1 Genetic programming design results by varying set point
command . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.2 Behaviour of the controllers by varying system parameters 43
6.2 Off-line design control for Goddard problem . . . . . . . . . . . . 49
6.3 On-line design control for mass-spring-damper system . . . . . . 55
6.4 On-line design control for Goddard problem . . . . . . . . . . . . 60

6.4.1 High-performance computing . . . . . . . . . . . . . . . . 66

7 Conclusions and future work 70

Appendix A Pareto optimization I

Appendix B DEAP III

Appendix C Results: additional figures IV
C.1 Test case: mass-spring-damper system . . . . . . . . . . . . . . . IV

C.1.1 Off-line design . . . . . . . . . . . . . . . . . . . . . . . . IV
C.2 Aerospace case: Goddard problem . . . . . . . . . . . . . . . . . VIII

C.2.1 Off-line design . . . . . . . . . . . . . . . . . . . . . . . . VIII
C.2.2 On-line design . . . . . . . . . . . . . . . . . . . . . . . . IX

Appendix D Python Scripts XIII
D.1 MSD _ OFFLINE.py . . . . . . . . . . . . . . . . . . . . . . . . XIII
D.2 MSD _ ONLINE.py . . . . . . . . . . . . . . . . . . . . . . . . . XXIII
D.3 GODDARD _ OFFLINE.py . . . . . . . . . . . . . . . . . . . . XXXVII
D.4 GODDARD _ ONLINE.py . . . . . . . . . . . . . . . . . . . . . XLVIII

List of Figures iv

List of Tables vii

References viii

Acknowledgements xi

ii



Acronyms

AC Automatic Control. 17, 18

AI Artificial Intelligence. 1, 17, 18

ARC NASA Ames Research Center. 21

ASE Autonomous Science-craft Experiment. 21

CASPER Continuous Activity Scheduling Planning Execution and Replan-
ning. 21, 22

CGP Cartesian Genetic Programming. 6

DEAP Distributed Evolutionary Algorithms in Python. 33

EA Evolutionary Algorithm. 3, 25, 45

EO-1 Earth Observing One. 21, 22

GA Genetic Algorithm. 5, 23

GEP Gene Expression Programming. 5

GP Genetic Programming. 3, 4, 7, 8, 15, 20, 21, 25, 27, 31, 41, 43, 45, 49, 58,
62, 64, 66

HPC High Performance Computer. 67

IAE Integral Absolute Error. 29

IC Intelligent Control. 1, 17, 18

ISE Integral Squared Error. 29

ITAE Integral Time-weighted Absolute Error. 29

JPL Jet Propulsion Laboratory. 21

MAPE Mean Absolute Percentage Error. 55

MRAC Model Reference Adaptive Control. 22

iii



MSD Mass-Spring-Damper. 25–27, 29, 30, 33, 45, 55, 56

OR Operations Research. 17, 18

SCL Space Command Language. 22

iv



Chapter 1

Introduction

Many of the technologies in different fields use complex algorithms developed
with Artificial Intelligence (AI). Artificial Intelligence means the discipline that
deals with to provide computer models for the development of systems, both
hardware and software, whose operating principle is based on human reason.
Recently the interest of the scientific community has been captured and for that
reason a strong development of the field is started. Although the first work in
artificial intelligence dates back in the early forties, the fame of Artificial Intelli-
gence (AI) can only be noticed in 2010. This can be easily explained considering
the different possibilities offered by new innovative technologies now on the mar-
ket and they prove to be more and more efficient and cutting-edge, constituting
the foundations of this discipline.
The fields of applications of artificial intelligence are considerable and range
from medicine to agriculture up to engineering. Thus from the development of
the theory of automatic controls a class of control techniques was born and it
is called Intelligent Control (IC). It arises from the need to have systems capa-
ble of responding efficiently and at the same time reliable in cases where there
is a lack of information on the control variables or the operating environment
or when some characteristics of the system components vary according to non-
deterministic mathematical models.
In the aerospace sector, controllers are partially responsible of increased aerospace
system performance. And not only that, control systems together to other new
technologies in the aerospace sector, will represent the key elements in defining
not only the performances but also the reliability and the real costs of future
aerospace systems.
In the space sector many agencies and private companies have already recently
expressed real interest on it, not only for satellite, space stations and interplan-
etary probe controllers but also for the management and use of various tools
used in them.
Regarding the control engineering, the substantial advantage of the use of IC
during the design phase is that the design process would no longer be analyti-
cal but computational. For that reason these algorithms could be adapted and
applied without particular efforts for the design of other controllers that have
different requirements.
Therefore a sort of conflict and challenge between man and machine is born.
Suffice it to say that currently in many fields the AI manages to carry out com-
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plex problems in a much more accurate way and sometimes even in very short
time compared to what men are capable of doing.
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Chapter 2

Genetic programming

The Genetic Programming (GP) belongs to the category of Evolutionary Al-
gorithm (EA), a branch of machine learning. It was born to satisfy one of the
very first needs required by artificial intelligence to machines: to solve problems
independently without the need for them to be explicitly programmed for a
specific problem.
As can be guessed from the name, genetic programming is inspired by Darwin-
ism, i.e. the theory of biological evolution.
A population, made up of different computer programs called individuals, evolves
from generation to generation through genetic operators up to the determina-
tion of a program, often represented by the best individual, able of solving tasks
more or less complex [16].
Just like nature, genetic programming is a completely random process [25]. If
on one hand sometimes satisfactory results cannot be guaranteed through its
use, on the other it turns out to be a very effective technique that allows us to
overcome the limitations present in deterministic methodologies.

2.1 Preparatory steps
There are some main sets to be defined and initially required by genetic pro-
gramming:

• terminal set

• function set

• fitness measure

• genetic programming parameters

• stopping criteria

3



Figure 2.1: Preparatory steps as inputs of genetic programming [25]

As shown in figure 2.1, the main steps can be considered the inputs of genetic
programming. Their definition is strictly dependent on the type of problem that
one intends to solve and not on the type of evolutionary strategy that one wants
to use.
The identification of the first two sets, respectively the terminal and the function
set, automatically defines the size of the search space. The direction of the search
is indicated by the third requisite required as input, the fitness measure. The
last two, the GP parameters and the stopping criteria, regulate the evolution
process.

2.1.1 Representation
Before analyzing each of previous steps, it is good to describe how a program
created through Genetic Programming (GP) is represented.

2.1.1.1 Tree representation

There are different ways to represent a program and among these the tree syntax
is one of the most used.
For example consider the following tree:

Figure 2.2: Syntax tree representing a program [11]

In the figure 2.2 the tree program is represented and it can be traced back
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to the following mathematical function:

(2.2− X

11
) + (7 ∗ cos(Y ))

Notice that the structure of these trees is composed of nodes and leaves, in
this example (2.2, 11, 7, X, Y ) are the leaves whilst (+,−,÷, cos) are the nodes.
Each program will be built according to this structure which has a node as its
base, called the main root which acts as a glue between the various branches.

Figure 2.3: General structure of a parse tree [25]

A tree can develop both in height and in width. However, there are several
limitations on these dimensions as one of the most well-known problematic phe-
nomenon in genetic programming is bloat: the uncontrolled growth of the size
of the trees.

2.1.1.2 Linear chromosome representation

In Gene Expression Programming (GEP) the programs share a particular aspect
by GA, the programs are encoded in linear chromosomes of fixed length. Despite
the fixed length of the string, the programs can be translated in trees with
different sizes and shapes. A genotype/phenotype system is so created in GEP.
For example, the linear string, representing the genotype:

01234567

can be transcoded in a visual form representing the phenotype as:

Q ∗ −+ abcd

where Q represents the square root function and a, b, c, d are the variables and
the constants used in it. These linear strings are called k-expressions and this
structural organization allows to the genetic operations to create always valid
individuals.
A more detailed description of genetic expression programming can be found in
[5].

5



2.1.1.3 Cartesian representation

Another form of genetic programming, the Cartesian Genetic Programming
(CGP) uses a graph representation. Such representation is inspired by a method
used in digital circuits. The genotype in this case is represented by a list of
integers and the programs are represented in a grid of nodes, hence its name
Cartesian.
For example a typical cartesian individual is defined as a set {G,ni, no,nn, F ,
nf ,nr,nc,l}, where:

• G is a set of integers representing the genotype

• ni are the program inputs

• nn are the node input connections and functions

• no are the program output connections

• F is a set in which the nf functions are stored

• nr and nc are respectively the numbers of nodes in a row and column

• l is the level back parameter which defines the program interconnectivity
and determines how many previous column of cells may have the outputs
connected to a node in the current column

Figure 2.4: Genotype and phenotype of a cartesian genetic program [30]

The figure 2.4 shows the form of genotype and the corresponding phenotype
of a program created by CGP.
More details on cartesian genetic programming can be found in [13].
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2.1.2 Terminal set
The terminal set consists of:

• arguments

• constants

In the tree representation these terms constitute the leaves of the tree.
The arguments are the variables, i.e. the external inputs. The constants can be
predefined or randomly generated.
A particular type of constants called ephemeral random constant have been
created to solve the problem of constant creation according to [17]. Randomly
created constants that are inserted and fixed in the initial individuals, without
any change in value for the rest of the simulation.
In the example given in figure 2.2 the variables are (X,Y ) while the constants
used are (2.2, 7, 11).
It is necessary to specify that unfortunately the definition of the constants is not
always simple, in fact it is one of the main open issue og GP. The identification
of the constants is difficult, especially in cases where there is no clear idea of
the form of the final solution.

2.1.3 Function set
The function set is the second main ingredient for the creation of initial indi-
viduals. It consists of a set of arithmetic functions.
In the graphical representation the functions are the nodes of the tree. Like the
terminal set, the choice of functions must primarily respect two requirements:
closure and sufficiency.
The first one ensures that all functions give as output results all of the same
type. It would indeed be impossible to mix both numbers and booleans in the
same arithmetic function or even without considering an appropriate conversion
system.
It should also be noted that during the simulation individuals interact with each
other through genetic operators, so it is necessary to prevent future individuals
from containing illegal genetic information.
The second requirement is that the definition of both the Functional set and
the Terminal set is made taking into consideration that a possible solution to
the problem can be expressed only through the elements contained in them.
It becomes appropriate to have a theoretical knowledge or at least an idea based
on the experience of the problem, perhaps using other methods at disposal.
To satisfy the sufficiency requirement one could think of adding more and more
terms, this does not slow down the search process but could lead to the achieve-
ment of a final result that is not completely satisfactory as expected.
The sum of the two sets is called Primitive set. Its good definition can be well
acceptable if among the combinations of the elements that it contains there is
a satisfactory solution to solve the problem.
Returning to the example tree in figure 2.2, the functions used are (+,−, ∗, /, cos).
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2.1.4 Fitness function
After having seen how to correctly define the Primitive set, it is now appropri-
ate to show how the method is used to evaluate each individual present in a
population.
So once we have defined the search space in which the solution is contained we
do not know the position of the solution in this space. In order to point the
search in the exact direction to that region, it is necessary to introduce a new
concept linked to the numerical evaluation of an individual. The definition of
the fitness function is of fundamental importance for the search for an optimal
solution.
There are many ways to evaluate a program, just think that the same program
could also be evaluated on more than one aspect, i.e. the Multi-objective opti-
mization.
An individual who has a better fitness function than another is more likely to
pass on his genes to later generations.

2.1.5 Other genetic programming parameters
The user must also define the control parameters inherent to genetic program-
ming. They define the behavior of a simulation.
The most important parameters of the GP are the size of the generation and the
population and the numerical values of probability that the user must assign to
genetic operators.
There are no precise rules for optimizing these parameters but they are selected
only after several simulations. The choice of parameters obviously must be
performed taking into consideration the time that this technique requires. For
example, a very big population size may require consequently a large evaluation
time.

2.1.6 Stopping criteria
The last step is the definition of a criterion to terminate the search process.
In general the stop condition could be determined by choosing a tolerance value
on the fitness function values which, once reached from generation to genera-
tion, is equivalent to having an acceptable solution for the problem. Otherwise
another stopping criteria could be represented by the maximum number of gen-
erations that one wants to run, once you reach the last generation, the search
is automatically completed. The solution is again represented by the individual
with the best value of fitness function seen among all the generations.

2.2 Executional steps
Having thus defined the main ingredients in order to be able to perform a simu-
lation, a series of steps are now introduced that are different for each problem.
These steps are performed autonomously in fact generally there is no interaction
of the human intervention during a simulation.
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The executional steps of genetic programming are as follows:

• initialisation;

• iterative processes on a population by using genetic operations;

• end simulation with best element that meets the termination criteria.

The operations that are performed during the genetic programming algorithm
are shown in figure 2.5:

Figure 2.5: Genetic programming flowchart [15]

9



2.2.1 Initialisation
The first step is the initialization of the population. A series of individuals at
generation 0 is randomly created by the algorithm.
Individuals are generated using the functions, constants and variables previously
defined in the primitive set by the user.
As already mentioned, the creation of these initial individuals takes place in
a completely random manner, so that the definition of the initial region, from
which the search is carried out, will also be random [16].
The individuals present in generation 0 are individuals of fixed size through the
parameters present in the fourth step of the preparatory step, they can all have
the same size or have a variable size.
There are several methods for initializing individuals:

1. full: create trees all the same size

mul

sub protectedDiv

3.5 X 4.0 1.9

add

sub sub

1.2 X 3.5 X

add

add mul

-0.2 3.4 X X

sub

sub mul

X X X 1.1

Figure 2.6: Full initialisation

2. grow: creates trees of varying size

-3.6

add

add mul

X -0.2 4.9 X

sub

1.9 -4.2

X

Figure 2.7: Grow initialisation

3. half and half: it creates one half of the trees all the same size and the
other half a variable size

protectedDiv

-4.2 2.4

add

3.5 4.7

sub

add -4.2

X -1.7

sub

protectedDiv 3.9

-1.6 1.6

Figure 2.8: Half and half initialisation
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All individuals, created in this phase, are characterized by not optimal fitness
values and are therefore unable to represent a solution [25]. They are in fact
primordial individuals, still very simple programs. Nevertheless, each individual
has a different fitness value than another, so there will be better programs and
at the same time worse than others. It is precisely on these differences that
genetic programming bases its entire evolutionary process.
Thus the process of initializing individuals is of crucial importance for the rest
of the search. Future generations will converge around the local minimum found
during this very first phase.

2.2.2 Selection
As was already anticipated, the individuals are programs who are still too far
away to be a solution. They need to undergo a process of evolution. The ques-
tions thus arise spontaneously: which individuals must be selected to pass on
their genetic material?
The basis of this technique is the diversity among individuals which suggests
that the selection method should not be very rigorous. Therefore, even if the
selection is based on fitness function values, this does not mean that the worst
individual should be completely discarded. In this way genetic information could
be lost without being exploited, which could perhaps be important in popula-
tions of successive generations.
Just as deduced by Charles Darwin, the selection process is one of the key mech-
anisms of evolution. It is therefore partly thanks to it that there is a progressive
increase in individuals with optimal characteristics, capable of solving tasks in
the environment in which they live best.
According to [25], there are two main strategies developed for the process of
selection of individuals within the population in mono-objective optimization
such as:

• roulette wheel

• tournament selection

2.2.2.1 Roulette wheel

The selection process is based on the fitness value of individuals so an individual
with better fitness is more likely to be chosen, according to [19].
The Roulette wheel method owes its name to the famous casino game.
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Figure 2.9: Roulette wheel selection method [2]

Imagine having a roulette wheel as shown in the figure 2.9. Notice its subdi-
vision into parts, each characterized by a different angular opening proportional
to the value that belongs to it.
Similarly, in genetic programming the roulette is divided into as many parts
as individuals in a population and the breadth of the angular sector is always
proportional to the fitness value attributed to each individual.
The area of each angular sector, which represents the probability of selection,
can be expressed in mathematical terms such as:

pi =
ffi∑N
j=1 ffj

(2.1)

where N is the total number of individuals in a population and ff is the
fitness evaluation. It is therefore seen that with this type of selection an element
that has a worse fitness value can also survive in the next generation than a
better one, since the probability of selection is never zero.

2.2.2.2 Tournament selection

Another method always based on the fitness value is called tournament selection
and consists in selecting a group of individuals present within a population, se-
lecting the best one. Consequently the most important parameter of this method
is the tournament size that is the number of individuals selected to participate
in the tournament.
Remember that the choice of individuals also in this method is handled ran-
domly.
Very large tournament size values correspond to a decrease in diversity in later
generations [3], as the probability to select the same individuals over and over
again in a population grows proportionately with the increase in tournament
size.

2.2.3 Operators
An essential aspect for evolution is certainly the variation of genetic information
within individuals generation after generation.
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After the evaluation of the fitness and the selection process, each individual
selected is subject to one of the three main genetic operators:

• crossover

• mutation

• replication

2.2.3.1 Crossover

The crossover operator consists of combining genetic information from two dif-
ferent individuals, called parents, present in a population, to create new off-
spring.

Figure 2.10: Parents and offspring [27]

In crossover operation two individuals are selected from the population and
play the role of parents, as shown in figure 2.10. It is also important to notice
that the length of their trees does not necessarily have to coincide, for that
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reason it is generally very probable that the two parents have more often than
not a different length. The first step that the crossover makes is the random
selection on both individuals of a point, called a crossover point.

Subsequently the creation of the two individuals is automatically completed.
The linking of the branch above the crossover point from the first generator and
the branch below to the crossover point from the second parent forms a new
individual offspring. The second is also created symmetrically, as shown in the
figure 2.10.
It is an operation that tends to preserve the position of genetic material, oper-
ators who act in this way are called homologous as stated in [23].
So the basic idea of the crossover is precisely to create new and increasingly
complex individuals through the exchange of mathematical blocks (genetic ma-
terial) between them. Obviously the implementation requires special attention
in order to create structurally valid individuals.

2.2.3.2 Mutation

Another genetic operator used in genetic programming is the mutation operator.
Just as in the crossover a random point is identified within the structure of an
individual. Subsequently, the sub-branch is completely replaced by another that
is automatically generated randomly.
This operator allows to expand the search field in which to find the optimal
solution.

Figure 2.11: Mutation [24]

The generation of new tree structures is controlled by limits that regulate
the maximum reachable depth.
Even though its useful the mutation operator is most often omitted in some
problems.

2.2.3.3 Replication

Replication is another very important operator for the evolutionary process. It
ensures stability in the successful of the search process and consists in the ex-
act copy of the best individual in the next generation without it suffering any
alteration.
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It also called elitism and is attributed to the ability of the algorithm to memo-
rize the best solution found on which part of the new individuals are created.

pR = 1− pC − pM (2.2)

From the formula (2.2) the probability of replication of an individual in future
generations is definitively obtained once that the probability parameters have
been defined for the crossover and mutation operators.

Figure 2.12: Common percentages of genetic operations in genetic
programming [29]

2.3 Introns and bloat
Sometimes the performance of GP may be drastically reduced. The main cause
is that it fails because of the formation of blocks that do not modify the fitness
values. These blocks give the name of introns [22]. Particular attention should
be paid to individuals who behave differently, even if they are different.
There is a close relationship between introns and bloat, as specified in [25]. The
term bloat refers to the phenomenon whereby the size of the trees, representing
the individuals, is rapidly growing without any improvement in terms of fitness.
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Suffice it to say that a structural growth of individuals corresponds to a pro-
portional growth of computational complexity, which represents a real problem
for computers. Especially in controllers where the speed of response assumes a
certain importance in time-dependent systems. In addition to the waste of com-
puter resources, bloat is the cause of a double slowing down of the search process,
as it is very difficult to modify the individuals affected by this phenomenon. The
computation times to find the best solution thus increase exponentially when
bloat occurs. Because of the derived problems, bloat has been a studied phe-
nomenon over the past decades. Many techniques have been developed. The
simplest technique consists in imposing a maximum limit on the height and
depth reachable by the trees. Obviously the addition of these constraints must
be done in such a way that the programs created are able to take a suitable
form to solve the problem. It will then be essential to initially have an estimate
of the minimum size attributable to the solution.

2.4 Convergence
The convergence is another phenomenon in evolutionary algorithms, as reported
in [1] "The fundamental problem which many meta-heuristic optimization meth-
ods aim to counteract with various algorithmic tricks is the stagnation in a lo-
cally, but not globally optimal solution". Remembering that the key of evolution
is the diversity to create a best individual who survives in the environment, the
convergence problem consists on creating a generation in which all individuals
are the same. It happens especially when the probability parameter of mutation
is very low, so that the crossover tends to converge in a single solution.
There are some techniques to avoid the converge and to encourage the diversity
as suggested in [25]:

• by using a small tournament size;

• by not using the reproduction operator;

• by splitting large populations into demes (sub-populations).

16



Chapter 3

Intelligent control

Today highly sophisticated controllers are required for very complex systems
that require high performance. The demand for ever higher performance is
putting the traditional controllers in crisis. So most of these needs can be
met by Intelligent Control, the process of autonomous decision based on the
interaction of the disciplines of Artificial Intelligence (AI), Operations Research
(OR) and Automatic Control (AC).

Figure 3.1: Multidisciplinary of intelligent control [26]

In 1993 the IEEE Control Systems Society gave a proper definition of an
intelligent control system as described in the report [9]: "An intelligent control
system is designed so that it can autonomously achieve a high level goal, while
its components, control goals, plant models and control laws are not completely
defined, either because they were not known at the design time or because they
changed unexpectedly."
So, innovative control techniques, such as intelligent control result more appro-
priate for systems whose information is unknown or incompletely known.
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3.1 Adaptive Intelligent Control
In order to define a model of a plant usually one has to define before two major
steps which include the structural identification and the parameter identifica-
tion. Therefore the interpretation of the physical laws and the acquisition of the
values of the system’s functional parameters represent the fundamentals steps
to create a plant model.
As the main characteristics of an intelligent control systems is its ability to
control a plant whose model are unknown, in adaptive control real time mea-
surements of plant inputs and outputs are taken in order to develop a new plant
model on which a new controller will be designed.
Obviously not all adaptive controllers are intelligent. One can be grouped in IC
only when the control system is obtained by using methods of AI,OR and AC.
However it is necessary to clarify that a controller designed for example through
AI techniques is not necessarily intelligent because it must be able to adapt or
learn online as well.

3.2 Learning Control
A system is called learning if the information that comes from environment or
from other unknown resources is reused for new action commands. The learning
is a key characteristic of the autonomous systems, thank to which the perfor-
mance of the system will be improved.
The learning process can be applied in many control areas to enhance the per-
formances, for example learning about the plant how the changes occur to derive
new model plant or learning about the controller in order to tune control pa-
rameters.
It is important for learning process to have a memory where to store the infor-
mation to be learnt, otherwise every time that a change in the plant occurs the
system must adapt itself to the new operating conditions starting from scratch.
Moreover the quality and the quantity of information to store depend by the
designer.

3.3 On-line and Off-line Control
Three types of controls can be defined depending on the combination of use of
adaptive and learning capabilities and it is possible distinguish if a system is
characterized by on-line or off-line adaptation/learning and intelligence.
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1. Off-line adaptation/learning without update:

Figure 3.2: Off-line not intelligent control [26]

• the controls are computed, before the system is operated, by means
of an artificial intelligent strategy
• the controls are not updated during the operation of the plant
• the system is neither adaptive nor learning

2. Off-line adaptation/learning with update:

Figure 3.3: Off-line intelligent control [26]

• the controls are computed by means of an artificial intelligent strategy
• the controls are updated regularly off-line and uploaded to the plant

for operation
• the system is either adaptive or learning

3. Online adaptation/learning:

Figure 3.4: Online intelligent control [26]

19



• the controls are computed by means of an artificial intelligent strategy
• the controls are updated online during operations
• Adaptive or learning system

3.4 Intelligent control by using Genetic Program-
ming

Real systems are often constrained, there are many restrictions so that a system
can safely operate. These constraints can be soft or hard. Generally if a soft
constraint is violated, it can lead to a decrease in general performance of the
system. Instead the violation of hard constraints is different and sometimes it
can involve some serious damage. The constraints usually are defined during
the design phases. Sometimes can be very difficult to respect the constraints
especially when is difficult to take in consideration all the external and inter-
nal factors that can interact with the system. Furthermore such difficulties can
come for example from a lack of information on the control variable or on the
environment in which the system will operate or even when it is not possible to
predict the variation of some characteristics of the system over time.
A particular method to design an intelligent control by using GP is proposed.
The main intention is to reconstruct the structure of the controller when a
change occurs in plant parameters.
Both the off-line and on-line design approaches use genetic programming. Firstly
the design for the controller is computed by using specific design plant param-
eters, then if a variation in the plant occurs, new controller structures are re-
designed and the old laws are replaced.
The architecture is presented in the following figure:

Figure 3.5: Intelligent adaptive control architecture with genetic programming
technique

As already mentioned a disturbance in plant d starts the genetic program-
ming algorithm. Receiving as inputs, the reference model r and the outputs
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from the plant y, it generates the best controller c∗ that will be more suitable
to work with the new plant parameters. Then the old controller C, designed also
by genetic programming, will be replaced by the new more efficient controller.
Currently the main drawback of this architecture is the high computational cost.
For that reason it can be more easily applied in processes whose characteristic
times are long. The implementation of this architecture in processes with low
characteristic times can be a hazard because while the evolution algorithm is
operating, the system continues to work with the changed plant parameters and
if a valid controller is not given in time, the entire system could be severely
damaged. Therefore in order to accelerate the evolution process, the GP search
of optimal controller starts with an initial population whose individuals belong
to the off-line controller design.

3.5 Applications

3.5.1 Aerospace application
One of the most intelligent control application in aerospace field is the au-
tonomous flight software used in Earth Observing One (EO-1) as classified in
this taxonomy paper [4].
The Autonomous Science-craft Experiment (ASE) consists in a package of au-
tonomy software developed by NASA Ames Research Center (ARC) and Jet
Propulsion Laboratory (JPL). The main goal of such intelligent control sys-
tem is to construct a series of hierarchical instructions to be executed by the
spacecraft, as shown in figure 3.6:

Figure 3.6: Software layered architecture [6]

Interesting events are detected by the images taken by the scientific instru-
mentation on board the spacecraft. The Continuous Activity Scheduling Plan-
ning Execution and Replanning (CASPER) planner represents the high level
in the control and creates operation plans in order to enhance the efficiency of
acquiring scientific data, as demonstrated in figure 3.7:
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Figure 3.7: Autonomous science applications [6]

Moreover CASPER receives as inputs not only scientific data but even en-
gineering information in order to reach the correct spacecraft attitude.
Then the high level scheduled activities are passed to Space Command Lan-
guage (SCL) executive system. It consists in scripts and rules for execution of
the high level commands previously created by using the low-level actions.
These commands created by SCL can be adapted to environmental changes and
can alter the parameters of the controller on-line by taking autonomous deci-
sions.
The EO-1 spacecraft demonstrated for the first time the feasibility of an au-
tonomous science mission in which the spacecraft was able to plan and schedule
processing autonomously.

3.5.2 Non-Aerospace application
A very interesting medical application comes from the design of a bio cybernetic
system by Ivan Sekaj from Slovak University of Technology [14].
In particular an optimisation method was proposed for parameter setting of a
MRAC of blood glucose in the human body.
There are several theories and mathematical model for artificial pancreas, but
each patient needs a different parameter setting. "Conventional identification
and controller design methods based on analytical approaches are often not able
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to ensure good quality of the model and of the controller" [14], for that reason
an approach based on GA has been argued in this work.
Diabetes mellitus type 1 is one of the most frequent contemporary civilization
diseases with significant contribution to human mortality and its occurrence is
still growing.

Figure 3.8: Feedback closed loop for glycemia control [14]

As shown in figure 3.8 the feedback closed loop is presented in order to take
the level of sugar in blood constant within in precise range. Obviously the main
disturbance of plant, representing by the glycemia, is the taking meal.
The goal of this method is reduce the error between the value of glycemia and
basal value. The basal value is individual in each patient and depends by the
age and other many individual factors.

Figure 3.9: Glycemia control after disturbances [14]

The graph 3.9 shows the trend of glycemia during the time. It can be ob-
served that at certain time there are some disturbances that lead to an increasing
of glycemia from reference level. The grey areas show the error that must be
reduced.
The role of the controller is to administer insulin to control the glycemia level
just when the disturbance occurs and the error increases. To do this genetic al-
gorithm is applied. Simplify the argument supposing that the output controller
is:
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u(t) = f(parameters) (3.1)

So during the evolutionary search process, chromosomes are defined as vec-
tors which contain a certain number of coefficient parameters inside:

chromosome = {Γ1,Γ2,Γ3, γ1, γ2} (3.2)

In this instance the goal of evolutionary algorithm is to find the optimal val-
ues for these coefficients and so to seek the best vector of values which minimize
the error during the time.
A four-days test showed that the adaptive control improved the control of the
glycemia and resulted more accurate to respond to a disturbance compared to
manual setting.
The presented method described an intelligent system whose controller can
adapt its output when a variation of the plant conditions is caused by dis-
turbances. The glycemia trend varies depending on the type of food assumed
by the patient. So, the goal of the adaptive controller is that to find the right
parameters to inject the correct quantity of insulin whenever a meal is assumed
in order to achieve and stabilize the glycemia in a certain range of values.
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Chapter 4

Test case:
mass-spring-damper system

This section deals with two major contents: the implementation of genetic pro-
gramming to design an off-line controller structure for a Mass-Spring-Damper
(MSD) system first and then an intelligent method will be proposed regarding
how genetic programming can be also used to re-calculate the control structure
when the operating conditions change at a certain time point.
As first approach to evolutionary algorithms and particularly to the genetic pro-
gramming, there are some reasons because MSD was chosen as test case for a
first approach to EA and particularly GP:

• it is a very common problem to solve simply made up of few parameters
(three);

• the linear dynamic equation of equilibrium, neglecting non linear phenom-
ena like friction, is well known and easily mathematically derivable;

• it is a model that is well suited for modelling other objects with complex
properties.

4.1 Dynamic model
Mass-Spring-Damper (MSD) system is a linear problem with second order dy-
namic ordinary differential equation. Such system is composed by a mass moved
by an external force, a spring force and a damping force.
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Figure 4.1: Mass-spring-damper system

To simplify the model, let’s assume that the mass can move only toward a
direction on the plane without taking in consideration the friction between the
wheels and the surface.
Furthermore the spring is ideal and its stiffness is assumed as constant.
The governing equation of the system is derived by using the Newton’s second
law of motion:

M · ẍ(t) +B · ẋ(t) +K · x(t) = u(t) (4.1)

where M is the mass, B the damping coefficient, K the stiffness coefficient and
u(t) is the external force acting on the mass.

4.2 Controller design
As already mentioned, the proposed design of controller is applied on a MSD
system.
The goal is achieved if the mass position will follow the set point command for a
time interval. The set point command is the desired value for the mass position.
The block scheme of the closed loop is shown in figure 4.2:

Figure 4.2: Block scheme of the closed loop

Starting with initial conditions of the plant, the controller must be able to
reduce the error in each time step. The controller input is the error computed
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as the difference between the set point value and the real system value:

e(t) = r(t)− y(t) (4.2)

Then the controller is in charge to produce as output a value in terms of force
inside the plant. Therefore the controller output u(t) is seen by the MSD system
as an external force acting on the mass.
According to [29] generally if the structure of a controller is already defined and
if the task is only to optimize the parameters, genetic algorithm can be used
but if the form of the controller is unknown, a possible approach to define its
structure is the genetic programming.

Figure 4.3: Control design using GP [29]

The figure 4.3 shows the concept of control design by using GP.
During the process every individual, representing a possible candidate for being
the controller law, is evaluated by the dynamical system.
The evolutionary strategy is based on the phases described in the following
pseudo-code:
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Algorithm 1 Genetic programming
Input: POPsize, Pcrossover, Pmutation, nodes and leaves
Output: Sbest

1: procedure Genetic programming
2: Initialize the population
3: Evaluate the population
4: while stop condition() do
5: Selection of individual
6: Individual modification by genetic operators
7: Build next generation
8: return Sbest

At the end of the process, the individual with the minimum value of fitness
is selected as the best individual and it can be used as controller for the system.

4.3 Genetic programming settings
In this section the main genetic programming configuration, that has been used
in the simulations for the mass-spring-damper system, is described.

4.3.1 Primitive set
The variables in genetic programming are leaves in the tree representation of a
classic program. The following set of variables has been used:

variables = {err, derr, ierr}

where they respectively are the error, the derivative and the integral term of
the error.
Concerning the function, they are the nodes in three representation. The func-
tions are basically the arithmetic operations used to create the program. The
set of functions that have been used is:

functions = {Add, Sub,Mul,Abs, Log, Tanh, Sqrt}

where they respectively are addition, subtraction, multiplication, absolute value,
logarithm, hyperbolic tangent and square root operators. It is noted that these
operators receive a different number as argument which in logic and computer
science it is called the arity of a function. The specification of this number is
very important to create a valid syntax for the trees both during the initial
creation of the individuals and during the genetic operations.
The set of numeric constants used is:

constants = {pi, e, rand1, rand2, rand3, rand4}

where the first one is the pi constant, the second term is the Napier constant
and the remaining terms are random values called ephemeral random constants
as defined:

• rand101, rand102 in the range from -100 to 100 (decimals)
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• rand103, rand104 in the range from 0 to 9 (integers)

The value of an ephemeral constant is a random value picked within a specific
range and, once it is inserted inside a three, this value never changes unless it
is replaced by another ephemeral constant.
In the genetic programming the evolution of constants is still an opened issue.
The main issue is the difficulty to generate the right constants for a specific
problem whose the structure of the solution is not completely clear and at the
same time the process of optimization for the constants seems to be very tricky
during the evolution process, Koza argues in [18] that "the finding of numeric
constants is a skeleton in the GP closet".
The definition of the elements inside each set defines the search space and it
is fundamental for the creation of programs and for the general attitude and
performance of genetic programming optimization.

4.3.2 Fitness function
As already discussed before, the fitness function indicates how an individual is
appropriate to solve a specific problem. It represents the high level statement
whereby the programs are evaluated.
It is necessary to evaluate the closed loop performance in MSD case. In literature
there are several performance index that can be used as fitness function.
The three commonly used measures are defined in [28] as:

ISE =

∫
err2dt (4.3)

IAE =

∫
|err|dt (4.4)

ITAE =

∫
t · |err|dt (4.5)

respectively the Integral Squared Error (ISE), the Integral Absolute Error (IAE)
and the Integral Time-weighted Absolute Error (ITAE).
In this case the IAE performance index has been chosen because with respect
to the others it doesn’t use additional weights to the error and its answer tends
to manifest a less number of oscillations, as written in [20].
The discrete time form is:

IAE =

N∑
n=1

TN,n|errn| (4.6)

where TN,n is the simulation step size, n is the simulation step ans N is the
number of simulation steps.
Since it is also required to damp the oscillations, the derivative term was added
inside the performance index.
The final form is:

JIAE =

N∑
n=1

TN,n(|errn|+ α|derrn |) (4.7)

the α term is a constant that can be adjust experimentally. According to [14],
to increase α term in equation 4.7 equals to increase the oscillation dumping.
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Chapter 5

Aerospace case: Goddard
problem

After the methodology has been well tested on MSD test case, a well-known
aerospace case has been adopted to implement a similar control approach on it.
The Goddard problem has been proposed for the first time by Robert Goddard
in 1919. It concerns the ascent of a rocket in atmosphere and its main goal
is to reach the highest altitude as possible, considering the imposition of some
constraints like on the maximum fuel consumption.

5.1 Dynamic model
A varied version of the standard Goddard problem has been adopted whose
dynamical model of the rocket can be expressed by the following ordinary dif-
ferential equation: 

ṙ = vr

ω = θ̇ = vt
r

v̇r = (Tr−Dr)
m − g +

v2t
r

v̇t = (Tt−Dt)
m − (vr·vt)

r

ṁ = −
√
T 2
r +T 2

t

c

(5.1)

where r is the altitude from the center of the Earth, vr is the radial velocity
and vt is the tangential velocity measured respect to the center of Earth, ω is
the angular velocity, θ is the angular displacement, m is the mass of the rocket
and c is the exhaust speed along the axis of the engine that is possible to define
as:

c = g0Isp

where g0 is the standard acceleration due to gravity and Isp is the specific im-
pulse.
Notice that the gravitation acceleration g which appears in equation 5.1 is de-
fined as:

g = g0(
Re
r

)2
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where Re is the Earth radius and r is the current altitude.
The terms Dr and Dt represent the drag forces respectively for the radial and
tangential directions and that assume the following formulas:

Dr =
1

2
ρCdvr

√
v2
r + v2

tS

Dt =
1

2
ρCdvt

√
v2
r + v2

tS

(5.2)

in which ρ is the air density, Cd is the aerodynamic drag coefficient and S is the
reference area.
The Tr and Tt terms are the inputs of the system, i.e. the throttles.
Finally it is possible to define a vector containing the five states defined as:

{x} = {r, θ, vr, vt,m}

5.2 Controller design
The design approach follows that shown previously in figure 4.3 but a different
application in GP methodology is proposed in this instance.
The main intention is to create two controller laws at the same time both for
the radial and tangential throttles.
The tree syntax representation is used as before but now as already mentioned
the outputs of the evolution process is represented by two sub-trees that describe
the two control laws needed for this aerospace problem.

Figure 5.1: Multi-output genetic programming

As shown in the above graph 5.1, a multiple output program tree structure,
as presented in [32], has been adopted to minimize the errors between the states
of the real system and the references. The reference terms have been found
through a previous optimization work in order to achieve the optimal trajectory.
As before the reference or the set-point signal represents the optimal trend of
the states throughout the time.

5.3 Genetic programming settings
In this section the main genetic programming configuration, that has been used
in the simulations for the Goddard problem, is described.
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5.3.1 Primitive set
The set of variables to take in consideration is slightly larger then the previous
one due to the complexity introduced by this aerospace case:

variables = {errR, errTheta, errV r, errV t, errM}

these errors are computed as the discrepancies of states from the reference values
(R,Θ, Vr, Vt,M) during the time:

eR(t) = R(t)− r(t)

eΘ(t) = Θ(t)− θ(t)

eV r(t) = Vr(t)− vr(t)

eV t(t) = Vt(t)− vt(t)

eM (t) = M(t)−m(t)

The functions set is composed:

functions = {Add, Sub,Mul, TriAdd,Abs, Tanh, Sqrt}

where the TriAdd function returns the sum of three addends.
Notice that the Log function has been deleted from this set because this time
inside the terminal set there are constants with high values and overflow phe-
nomenon could occur during the evolution process.
So the set of numeric constants has been defined with ephemeral constants:

constants = {rand1, rand2, rand3, rand4}

where:

• rand1,rand2,rand3,rand4 in the range from -500 to 500 (decimals)

5.3.2 Fitness function
Basically the definition of the fitness function is the same of that used previously
but since the number of control variables is more than one, the multi-objective
optimization has been adopted. Therefore the selection of the individuals in
a population must considerate now more than one objective functions at the
same time, as proposed in [10]. In our case five fitness functions are minimized
simultaneously:

min(ffr, ffθ, ffvr , ffvt , ffm) (5.3)

The selection of individuals is more complex this time because more objec-
tives have to be considered. For that reason the selection of individuals has
done through Pareto set. It is a method frequently used in multi-objective op-
timization problems.
Nowadays there are no methods to improve at the same time all objective func-
tions at the same time for every single step in the optimization process. There-
fore the Pareto efficiency comes from the impossibility to enhance an object
function, harming seriously at the same time an another one (more information
in Appendix A).
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Chapter 6

Results

In this chapter the results to design the structure of the controller will be shown
in a first moment both for the MSD system and Goddard problem. All simu-
lations have been developed by using Distributed Evolutionary Algorithms in
Python (DEAP) library (see Appendix B).
The results in the first part of this chapter refer only to off-line design and
therefore no change in parameters of plant has been taken into account. The
control law is fixed during the total time of the simulation and there will not be
the necessity to be updated.
Instead in the second part of this chapter some changes of the plant parameters
will be considered during the time simulation. In this case some constraints
have been added into the system and if the error of the control variable to
be controlled is too high from the desired value in a such way that it could vi-
olate the constrains, the update of the controller law will be necessarily required.

6.1 Off-line design control for mass-spring-damper
system

6.1.1 Genetic programming design results by varying set
point command

Different set point commands have been used as input signals to the system to
show the capacity by which genetic programming develops the programs for the
controller on its own.
Classic set point signals in control engineering have been used:

• Sine wave

• Square wave

• Multi-step

For these first initial test, the genetic programming parameters have been set
up in the same way for a fair comparison.

33



Objective: Find a program whose solution matches
signal input command in time interval [0,20] seconds

Terminal set: [err, derr, ierr,R, pi, e], with R four ephemeral constants
Function set: [+,−, ∗, Log, Sqrt, Tanh,Abs]

Fitness measure: IAE
Selection: Tournament (size=3)

Initialization pop: Full
Parameters: pop size 200, gen size 100, crossover 60% , mutation 30%
Termination: generation size

Table 6.1: Genetic programming settings for MSD test cases

The values of plant parameters, previously described in figure 4.1 and now
taken as initial parameters to design the control laws are:

• M=1 kg

• B=10 Ns/m

• K=20 N/m

6.1.1.1 Sine wave signal

The sine wave command is a continuous wave and its form is a function of time:

y(t) = r(t) = A · sin(ωt) (6.1)

where A is the amplitude and ω the angular frequency, in this case A = 1 and
ω = 1 rad/s.

Figure 6.1: Genetic programming statistics during the generation evolution for
sine wave signal
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Figure 6.1 shows the trend of fitness function and the development on size
and shape of the trees throughout the generations.
It can be observed that for the initial generations, as already said previously,
the values of fitness is very high and then it tends to decrease until it stabilizes
to a value of 1.4096 in final generation. The lower the fitness value, the lower
the error is and the performance of system will be more accurate.
Obviously the size and the height of the trees increase during the optimization
process, so the best individual has the following mathematical form:

Mul(err,Add(Sub(Sub(Sqrt(−35.5586), Tanh(Sub(Sqrt(ierr), Sqrt(ierr))

)), Sub(Log(96.0902), Abs(Sub(Sub(Add(Log(Mul(Mul(Add

(pi, 41.9094),Mul(9, ierr)),−49.8909)), Abs(−45.0665)), Log(derr)

), Sub(Abs(derr), Abs(Mul(96.0902, Abs(Log(Mul(err, err))))))

)))),Mul(96.0902, Abs(Log(Mul(err, err))))))

(6.2)
It is possible to turn this long equation in the tree representation:

Figure 6.2: Best individual for sine wave signal
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From the figure 6.1 it can be noted the total time taken by optimization
process with genetic programming, it is approximately 35 minutes with the
parameters shown in table 6.1. The time taken by design the structure of the
controller isn’t a problem because it is done before that the system is running.
In the following figure 6.3 the mass position has been compared with the sine
wave command:

Figure 6.3: System position and set point (sine wave) command during the
time

The position of the mass seems to follow perfectly the set point but obviously
the error between the real position system and the reference will never be equal
to zero. It is possible to observe that in figure 6.4:

Figure 6.4: Error between the current position system and the commanded
position
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6.1.1.2 Square wave signal

There are more than one possibility to describe a square wave. It can be de-
scribed as the sign function of a sinusoid:

y(t) = r(t) = sgn(sin(ωt)) (6.3)

where ω = 2πf , f is the frequency of the square wave, in this case ω = 1 rad/s.
The maximum and the minimum values in the square wave signal are respec-
tively 1, -1 and 0 in the discontinuities.

Figure 6.5: Genetic programming statistics during the generation evolution for
square wave signal

The trend of the fitness function and the shape of threes are equal to the
previous case but the time spent by the optimization process is almost tripled.
The mathematical expression of the best individual is bigger according to the
figure 6.5 :

Mul(Tanh(Mul(Sqrt(Sqrt(Sub(7,Mul(8,Mul(8,Mul(9, err)))))), Tanh(Tanh

(Mul(Sqrt(95.5874), Tanh(Tanh(Mul(Add(9, 7),Mul(9,Mul(Sqrt(Add

(Mul(8,Mul(9, err)), Add(e, e))), Tanh(Tanh(err)))))))))))),Mul(8, 5))

(6.4)
It is less complex if compared to the previous controller law expression found
for the sinusoidal signal, consequently the relative tree is slightly smaller:
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Figure 6.6: Best individual for square wave signal

With respect to the sinusoidal command where the error was very small for
the total time of the simulation, the error with a square wave signal is not always
small, especially when the variation of desired position occurs instantaneously
as can be observed in figure 6.7:
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Figure 6.7: System position and set point (square wave) command during the
time

An individual found as output of genetic programming is only one among
all potential optimal solutions.
Moreover the results obtained with the evolutionary algorithms come from dy-
namic processes and sometimes the form of the predicted solution can be com-
plex and difficult to handle. So, it is difficult to model or to attempt to change
the solution found if it does not solve the problem as expected.
For that reason particular importance is attributed to the effective use of the
results in the reality. Remarking that the results are the output of a stochastic
search algorithm, it is normally recommended to do more than just a simulation
to get solutions which are also statistically reliable.
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6.1.1.3 Multi-step signal

The multi-step command has been defined as steps with different values on the
position commanded during the time and in this case it is defined as following:

• to 1 m from 0 to 4 s

• to 5 m from 4 to 10 s

• to 2 m from 10 to 14 s

• to 8 m from 14 to 20 s

Figure 6.8: Genetic programming statistics during the generation evolution for
multi-step signal case

As shown in figure 6.8 the fitness stabilizes around a value of 4.601 after the
sixtieth generation. It has a value bigger than the two cases shown before cause
of the variation on the position values. In this way a bigger amount of error
is accumulated during the time so the fitness presents at the same time a big
value.
The best individual discovered is:

Mul(Mul(Tanh(Mul(Tanh(Mul(Tanh(Mul(Tanh(err), 81.6497)), Abs(8))),

Abs(Mul(Sqrt(Abs(pi)), Log(6))))), Abs(Abs(pi))), 81.6497)

(6.5)
and its tree representation is:
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Figure 6.9: Best individual for multi-step signal

Figure 6.10 shows an evident overshoot at 10 s.
It can be minimized or sometimes deleted by varying the genetic programming
parameters, for example by increasing the population and generation size.
In stochastic search algorithms as GP, even a little change in parameters as
probability of mutation or crossover, sometimes takes a big change in the evo-
lution process, but it is also true that sometimes big changes in GP parameters
can lead to small variations of the results.

41



Figure 6.10: System position and set point (multi-step) command during the
time

Magnifying the figure 6.10, a steady state error, however minimal, is always
present. To reduce it, a new control law is required. A new control law, i.e. a
new individual with a better value of fitness can help to minimize the overshoot,
the steady state error and the oscillations, shown below in figure 6.11:

Figure 6.11: Oscillations and steady state error between the real position
system and multi-step signal
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6.1.2 Behaviour of the controllers by varying system pa-
rameters

In real systems many components can be stressed or damaged during the oper-
ative life. This section deals with the changes of the plant parameters without
taking into account an update of the control law.
The goal is to show how the solutions found with design parameters work by
using different plant parameters. It is also interesting to notice in this case how
the trend of position error evolve during the time with the variation of these
plant parameters.
Therefore multiple controller laws have been tested with several parameters that
are different from those parameters on which the design of main control laws
are based. The values of the design parameters (M , B and K) are the same
introduced in the other previous cases.
The choice to use multiple controller laws, specifically three, comes from the
need to have more reliability of the results, remembering the fact that the pro-
cess of optimization is a stochastic search in evolutionary algorithm.
The multi-step signal, previously introduced, has been used as input signal for
these tests. One of the three controller laws has been shown before in equation
(6.5). The others two laws have been obtained with the same settings in table
6.1. Their mathematical forms (see Appendix C.1.1 for the tree representations
and GP statistics) are presented below:

• second controller law:

Mul(Abs(Add(Add(Add(Sub(err,−82.3398), Sub(6, Sub(Mul(Sub(Sub(Mul

(Sqrt(e), Sqrt(err)), err), Sub(Sub(err, Sub(Tanh(Mul(pi, 89.0697)), err)),

err)), Sqrt(err)), err))), Sub(Tanh(derr), Sub(Sub(Mul(Sub(Sub(Mul

(Sqrt(e), Sqrt(err)), err), Sub(Sub(err, Sub

(Sqrt(ierr), err)), Sub(Sqrt(ierr), err))), Sqrt(err)), err), err))), Sub

(err, Sub(Mul(Sqrt(Sqrt(Abs(err))), Tanh(derr)), err)))), Sqrt(ierr))

(6.6)

• third controller law:

Mul(ierr, Sub(Add(err,Add(err,Add(err, 37.7908))), Abs(Sqrt(Abs(6)))))

(6.7)

Considering that the simulations were run with the same GP settings, the three
solution can be compared in terms of fitness values:

third controller > second controller > first controller

so the first is the best among the three controllers.
In the following sections only the graphs including the errors will be shown, so
for the position graphs see the Appendix C.1.1.

6.1.2.1 Mass variation

The values of mass used for the tests have been chosen relatively close to the
design value as shown in the graphs below:
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Figure 6.12: Position errors by varying mass values for the first, second and
third controllers
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Remembering that the forms of the GP solutions are difficult to manage
and comprehend, therefore different values of mass can be found in the three
comparisons of the controllers. The main problem is that the controller law loses
its effectiveness for certain values and for that reason the error tends to increase
very quickly so that a comparison couldn’t be done with the same parameters.
An example of this phenomenon will be provided after. Generally solutions
found by EA are adequate only for the problem to solve, so a little change on
plant parameters can lead to a big variation on the behavior of the system.
Magnifying the graph of the first control and considering that the behaviour
doesn’t change for the other controllers:

Figure 6.13: Details of the first controller graph

an important observation from figure 6.15 is that the error trend decreases
during the time if the mass values are lower than the design mass value M =
1 kg. So in these cases the controller works better if compered to the case
with the design mass value. Considering now the MSD as a real case, the
plant parameters often tend to reduce their values and not the opposite. For
higher mass values the error tends instead to increase, as for example the third
controller case with a mass equal to 10 kg cannot be still defined as a controlled
system.

6.1.2.2 Spring stiffness variation

A similar analysis of the error propagation described for the mass variation case
section was used for the spring stiffness variation case.
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Figure 6.14: Position errors by varying spring values for the first, second and
third controllers)
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In this case for lower values of stiffness coefficient the error increase and
this behaviour appears even in the other controllers. The opposite behaviour
appears in error values if the stiffness coefficient increases.
Furthermore for the first controller, it is possible to notice that the curves even
for high value of stiffness get close, i.e. the error between them doesn’t vary
significantly.
As it is possible to notice from the second graph relative to the second controller
in figure 6.14, the variation of the stiffness values is very close to the design
one K = 20 N/m. Indeed returning to what was mentioned before, for some
solutions a small change sometimes can lead an unacceptable growth of the
error, as shown in the following figure:

Figure 6.15: Error trend in second controller with different values of stiffness
coefficient

A stiffness value of 0.5 N/m causes an error that becomes too high during
time for the third controller.
For that reason in a real system an update of the controller before the error of
the control variable achieves a certain value should be taken into account. The
update of the control form is really necessary especially in systems in which
there are constraints to prevent problems to the normal system operation or in
some cases to avoid catastrophic situations.

6.1.2.3 Damper variation

The variation of damping coefficient has been taken in consideration. The ap-
proach is still the same used in the previous variation cases, described in the
beginning of this section.
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Figure 6.16: Position errors by varying damping parameters for the first,
second and third controllers)
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As shown in figure 6.16, even in this test case it is possible to notice that the
controllers continue to manifest an acceptable behaviour if the variations from
the design damping value D = 10 Ns/m are moderate.
However the responds of the controllers show some differences for big variations.
With a damping value equal to 1 Ns/m the error trend tends to increase show-
ing an oscillatory behavior that is damped after a transitional period in the
first controller, whilst the same value of damping coefficient causes considerable
oscillations in the third controller.

6.2 Off-line design control for Goddard problem
The results obtained without considering disturbances over all time simulation
show possible structure form of the controller for Goddard problem.

Objective: Find programs whose solutions match
the optimal references in time interval [0,800] seconds

Terminal set: [errR, errTheta, errV r, errV t, errM,R],
with R four ephemeral constants

Function set: [+,−, ∗, T riAdd, Sqrt, Tanh,Abs]
Fitness measure: IAE

Selection: NSGA II
Initialization pop: Full

Parameters: pop size 500, gen size 500, crossover 70% , mutation 10%
Termination: generation size

Table 6.2: Genetic programming settings for Goddard problem

The table 6.2 shows the main GP settings used, notice that the population
and generation sizes are increased because the complexity of the problem, to be
solved, needs a more big search space.

49



Figure 6.17: Genetic programming statistics during the generation evolution
for Goddard offline design control

The simulation took 12 hours and 38 minutes, the time is considerably in-
creased but it can be disregarded in an off-line design.
Remember that the solution is represented by individual that contains two sub-
trees which are respectively the radial and the tangential throttle control laws
(see the Appendix C.2.1 for mathematical forms).
The controller form are very complex, the size of individuals becomes bigger
and bigger from generation to generation. In real applications a designer must
respect some constraints on the complexity of the controller given by hardware
specifications. In some applications the time responses must be supplied within
precise times and if the controller structure is more complex, this need could
not be met.
In those cases the designer may define an additional objective in which the
evaluation process deals with the program complexity.
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Finally the graphs of the states over time by using this controller are shown
below:
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Figure 6.20: Graphs of altitude, flight angle displacement, radial velocity,
tangential velocity and mass over time
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Also, figure 6.20 clearly shows the capabilities of genetic programming to
create the structure of the controller.
In fact it is possible see how genetic programming controller tends to minimize
the errors of all states between the current values and the desired values over
time.
It can be observed considering the Mean Absolute Percentage Error (MAPE)
defined as:

MAPE =
100%

n

n∑
i=1

|yi(t)− ri(t)|
ri(t)

(6.8)

where n is the number of the computed errors over time, y(t) is the current
state and r(t) is the commanded state.

State Mean absolute percentage error (%)
Altitude 0.04

Flight angle displacement 7.58
Radial velocity 21.92

Tangential velocity 5.49
Mass 4.60

Table 6.3: Mean absolute percentage error in state variables

The table 6.3 expresses the controller accuracy in percentage per each state
variables.
Moreover the Goddard rocket plant is more complex if compared to MSD be-
cause some parameters inside the plant are constrained in a specific interval of
values.
Genetic programming, as already stated, is a random search algorithm and it is
unconstrained by its nature.
The introduction of constraints shall be done carefully in genetic programming.
Some individuals may violate the constrains during the evolution therefore such
individuals must be necessarily penalized.
Constraint handling with penalty strategies have been proposed in works like
[31] and [7].

6.3 On-line design control for mass-spring-damper
system

In this section, the results for the design of the on-line intelligent controller are
presented. Firstly it is significant to introduce the presence of some constraints
that have been imposed on the position of the mass.
Position limit-switches have been used like constraints so that the mass cannot
exceed the position limit and remained within a precise position range. They
have been defined as:

• limit-switch on the maximum position reachable by the mass : 10 m

• limit-switch on the minimum position reachable by the mass: −5 m
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Now it is possible to explain in more details the concrete approach used in
the intelligent design of the controller.

Figure 6.21: Time line of the simulation process

As shown in the above figure 6.21 the simulation starts at t = 0, the plant is
controlled by a law designed in off-line trough genetic programming algorithm.
After the error occurs in the plant at t = t∗, the genetic programming seeks a
new individual whose behaviour is more suited for the plant that presents the
variation of the parameters. The length of the time interval ∆t, i.e. the time
taken by evolution algorithm is very important because it represents the time
in which the system works in altered conditions. Therefore it is very important
that the MSD system does not violate the constraints during this time interval
ranging from t = t∗ to t = t∗ +∆t. Once a new controller is found, it is updated
and the simulation ends when the time t = tend is reached.
Consider now the following example in which the position mass must follow the
multi-step setpoint signal defined as:

• to 1 m from 0 to 60 s

• to 2 m from 60 to 150 s

• to 4 m from 150 to 200 s

• to 5 m from 200 to 300 s

• to 6 m from 300 to 450 s

• to 9 m from 450 to 600 s
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The plant has the following parameters:

M = 1 kg B = 10 Ns/m K = 20 N/m

Figure 6.22: Online design control simulation

Figure 6.22 shows a complete run for 600 s.
The red dots represent the position values of the mass over time by using the
controller designed off-line. At the beginning of the simulation the general
behaviour of the system is acceptable as the mass position reaches the desired
position.
Hereunder the control equation and its tree representation found during the
off-line design are shown:

add(multiply(ierr, add(add(29.256, err), err)), Log(err)) (6.9)
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Figure 6.23: Offline-control law

As already mentioned, the plant components may manifest degradation in
real application. Therefore in order to simulate a such situation, the intro-
duction of a variation on the damping coefficient is considered at t∗ = 90 s.
The value of damping coefficient changes from the design value 10 Ns/m into 3
Ns/m. The blue dots represent the system working in off design conditions. So,
the system is now uncontrolled and manifests oscillations. These oscillations in-
crease in amplitude and such behaviour may be very dangerous for the integrity
of the system. In fact the purple dots shows the trend of mass position until to
the end of the time if no corrective action was taken. As can be observed from
the figure 6.22, the mass position at 453 s violets the maximum constraint on
position values, exceeding 10 m as represented by the blue asterisk in red circle.
The update of the control law is necessary to avoid such situation.
The green dots describe the position mass, the plant is controlled through the
update of the controller designed on-line by GP.
The new structure of the controller is:

add(multiply(ierr, absolute(add(Tanh(e), err))), add(ierr, err)) (6.10)
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Figure 6.24: Online-control law

Genetic programming took ∆t = 48 s in order to update the controller law
in this case. The update is introduced at t∗ + ∆t = 119 s, where t∗ is the time
instant when the variation on damping coefficient occurs and ∆t is the time
interval in which the system works in off design conditions.

Figure 6.25: Update of the controller law

Figure 6.25 shows in details the update of the controller. The oscillatory
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behaviour of the system is damped by the new control law. It is evident that the
update enhances the system performances so that the system may operate more
accurately with the new plant parameters and the violation of the constraint
does not occur any more.

6.4 On-line design control for Goddard problem
The same approach described before, see the figure 6.21, has been adopted in
Goddard problem in order to obtain the results for the on-line design of the
controller.
The previous result in off-line case, figure 6.18 and 6.19, has been used as initial
control structure during the period in which the system is operating in on-design
conditions where no disturbance is taken into account.
In this instance a variation of the drag coefficient is considered. The CD value
instantaneously varies from 0.3 to 12 at t∗ = 200 s. Such variation has been set
randomly in order to simulate the incoming of a change in the plant.
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Figure 6.26: States with on-line update of the controller (12 cores)
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The graphs in figure 6.26 show an attempt to re-establish the control on each
states after the incoming of the disturbance updating the controller through GP.
The red lines represent the system controlled by a law designed in off-line, in
fact one may notice that the state values follow the commanded values in red
dot lines.
The blue lines represent the response of the system in presence of the distur-
bance.
The behaviour of the system characterised by the new control structure is rep-
resented by the green lines.
Remember that the individuals found in off-line design case for Goddard prob-
lem have been used to initialize the starting population in genetic programming
evolution for the update.
The new control structures found are:

Figure 6.27: Update of the radial throttle control law
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Figure 6.28: Update of the tangential throttle control law

The action of the update controller using genetic programming is not satis-
factory even though the solution seems to be suitable to operate with the new
conditions. In fact the errors for some states, like position and radial velocity,
cannot be negligible.
It can be explained considering the time taken by genetic programming to find
the new controller. The results shown in figure 6.26 have been obtained using
12 cores (Intel R© CoreTM i7-8750H CPU @ 2.20GHz) and the time needed by
genetic programming for updating is ∆t ' 158 s.
Such amount of time is important because the initial conditions of the plant
are substantially changed from the conditions that genetic programming has
received as inputs at 200 s when the disturbance occurred in the plant.
Table below shows the computational time ∆t for different numbers of employed
cores (see the equations in Appendix C.2.2):

Core numbers ∆t (s)
1 746.146
3 450.855
6 336.408
9 191.109
12 158.383

Table 6.4: Computational time in on-line process depending by cores

63



Figure 6.29: Time spent by GP for updating varying the processing cores

It is clear from figure 6.29, representing only the altitude state, that the time
taken by GP considerably decreases employing more computing resources.
Suppose to freeze this time interval to 5 s, time in which genetic programming
seeks an individual able to operate better with the disturbance in the plant, i.e.
about 32 times less then the results found using 12 cores.
Considering this hypothesis, the results using as on-line structure of the con-
troller those in figures 6.27 and 6.28, are shown hereunder:
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Figure 6.30: States with on-line update assuming ∆t = 5 s

The graphs clearly show the capabilities of genetic programming in on-line
application. In fact after the disturbance, GP updates the controller in order
to restore the control of the plant afflicted by the disturbance as represented
by the green lines. Notice that if such update process does not occur, the state
variables would tend to diverge as described by the blue lines and the errors
would be large. In this instance, assuming short time ∆t = 5 s, the control
law is applied when the initial conditions are not very different from those with
which the genetic programming individuals have been evaluated. Therefore the
updated control laws are suitable to re-establish the desired plant behaviour
even in the presence of the disturbance.

6.4.1 High-performance computing
Since, as seen, the computational time is a key aspect for the update of the
controller in on-line process for Goddard problem, the simultaneous execution
of blocks code has been considered. Therefore a large population is divided in
a such way that each individual is evaluated at the same time by a different
processing core. Such technique is called parallel computing. All the results,
shown before, have been obtained using this technique but with a limited number
of processing cores (12).
In this instance higher computational capabilities are required so computational
resources were provided by HPC@POLITO, a project of Academic Computing
within the Department of Control and Computer Engineering at the Politecnico
di Torino in order to achieve the following results.
Legion was the employed computer cluster with the characteristics presented in
table below (more specifications can be found in [12]):
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LEGION
Architecture Linux Infiniband-EDR MIMD

Distributed Shared-Memory Cluster
Node Interconnect Infiniband EDR 100 Gb/s
Service Network Gigabit Ethernet 1 Gb/s
CPU Model Intel Xeon Scalable Processors Gold 6130

2.10 GHz 16 cores (2x)
Sustained performance (Rmax) 21.094 TFLOPS
Peak performance (Rpeak) 27.238 TFLOPS

Computing Cores 448
Number of Nodes 14

Total RAM Memory 5.376 TB DDR4 REGISTERED ECC
OS Centos 7.6.1810 - OpenHPC 1.3.8.1

Scheduler SLURM 18.08.8

Table 6.5: Legion computer cluster specifications

The current state of deap library allows to run the code only in local machine,
for that reason the computing capacity were limited in a single node. A node
has 32 cores whose 30 cores have been effectively employed in this work.
The results found are:

Core numbers ∆t (s)
30 61.532

Table 6.6: Computational time in on-line process on HPC single node

The parallel computing shows how the increased number of employed multi-
processors helps to speed up the code. In fact the computational time is reduced
and the ∆t is changed from roughly 158 s with 12 cores to 61.532 s with 30 cores.
The equations of the solution found using HPC can be found in Appendix
C.2.2.1.
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Figure 6.31: States with on-line update of the controller (30 cores)

In figure 6.31, the graphs prove in practice that in future genetic program-
ming could be implemented as a possible approach to update the structure of the
controller even in complex systems presenting uncertainties when the computer
technology will permit to reduce the computational times.
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Chapter 7

Conclusions and future work

Genetic programming is a powerful technique able to solve complex problems.
Its developing abilities are very suitable for designing control systems avoiding
the complexity of the control theory. Moreover, genetic programming method
is very effective in presence of uncertainties, for example when there is a lack
information on the plant or the operating environment. Although powerful tools
are provided to people who are not necessarily experts in that specific field, the
results obtained shall be carefully tested before a possible implementation.
In control engineering, the main advantage of this methodology is to find the
appropriate structure of the controller starting from a high-level problem state-
ment for a given problem without prior knowledge about the system is required.
Starting from basic control laws, more complex and suitable laws emerge auto-
matically during the evolution.
Space missions are characterized by large uncertainties due to external envi-
ronment and other many factors not well known therefore to afford them the
adaptive capabilities of genetic programming may be a possible key approach
to create an intelligent controller.
In this thesis, the demonstration of genetic programming capabilities has been
shown in the on-line reconstruction of the controller structure. Soon GP may
find applications thanks to innovative technologies which will decrease the com-
putational times, its current drawback.

For future work, a possible direction may be to create an evolutionary al-
gorithm to further reduce the computational times improving the parallel com-
puting and to develop a more efficient method to handle the constraints.
Moreover it would be very interesting to combine genetic programming with
other methodologies such as Artificial Neural Network (ANN) in intelligent con-
trol. There are two main possibilities to be explored:

• neural networks can be trained with disturbance pattern in order to allo-
cate the optimal constant terms in the trees, previously created by GP,
when a disturbance occurs in the plant;

• the architecture of the neural networks can be designed by GP considering
that such architectures require expertise knowledge and a lot of attempts.

GP/ANN applications could be very fascinating in intelligent control area
because such combination method would incorporate the adaptive ability of the
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genetic programming to the learning capacity of the artificial neural network,
fundamental aspects of intelligence.
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Appendix A

Pareto optimization

The concept of this method is named after Vilfredo Pareto, an Italian economist
and sociologist who used this concept in his studies of economic efficiency and
income distribution in 1906.
The Pareto optimization offers a good answer in terms of set of solutions that
define the best trade-off in problems where more than one objective function
must minimized or maximized [8]. In multi-objective the goodness of a solution
is determined by the dominance.

Figure A.1: Dominated and non-dominated solutions [21]

Consider as example the problem shown in the figure above A.1 that rep-
resents solutions to solve a problem in which both fitness functions f1 and f2

must be maximized.
A solution x dominates another solution y if:

• x is no worse in all objectives then y

• x is equal to y in some objectives but is at the same time strictly better
in one other at least
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The point C is dominated by both point A and B. But as far as the point B
or point A are concerned, neither solution dominates. Such solutions are called
non-dominated solutions and all of them form a set of solutions that are not
dominated by others also present in this set, called Pareto front.
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Appendix B

DEAP

Distributed Evolutionary Algorithms in Python (DEAP) is developed at the
Computer Vision and Systems Laboratory (CVSL) at Université Laval, in Que-
bec city, Canada.
It is a novel evolutionary computation framework for rapid prototyping and
testing of ideas. It seeks to make algorithms explicit and data structures trans-
parent. It works in perfect harmony with parallelisation mechanism such as
multiprocessing.
The DEAP framework is built over the Python programming language that pro-
vides the essential glue for assembling sophisticated evolutionary computation
systems. Its aim is to provide practical tools for rapid prototyping of custom
evolutionary algorithms, where every step of the process is as explicit and easy
to read and understand as possible. It also places a high value on both code
compactness and code clarity.
More details can be found in [10].
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Appendix C

Results: additional figures

C.1 Test case: mass-spring-damper system

C.1.1 Off-line design

Figure C.1: Genetic programming statistics during the generation evolution
for multi-step signal (second run)
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Figure C.2: Best individual for multi-step signal (second controller)
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Figure C.3: Genetic programming statistics during the generation evolution
for multi-step signal (third run)

Figure C.4: Best individual for multi-step signal (third controller)
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Figure C.5: System position and set point (multi-step) command during the
time (second controller)

Figure C.6: System position and set point (multi-step) command during the
time (third controller)
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C.2 Aerospace case: Goddard problem

C.2.1 Off-line design
• mathematical expression of the radial throttle control law:

Sqrt(TriAdd(Abs(Sub(Add(TriAdd(Sub(Sub(Sqrt(errR), Add(errV r,−336.252482))

, Sub(errV t, errV t)), errTheta,Abs(Abs(errV r))), T riAdd(Add(Sub(Mul(−70.85579

, 25.369957), T riAdd(errR, errR,−192.45208)), Sqrt(Mul(errV r, errm)))

, T riAdd(Sqrt(Abs(TriAdd(Sqrt(Sqrt(Sqrt(TriAdd(errTheta, errV t, errV r))))

, Add(Tanh(errm), Add(417.541074, errR)),Mul(Add(272.761683, errV t),

Abs(errTheta))))), Tanh(Tanh(189.147772)), Add(Mul(281.174641, errTheta),

Add(−463.187985,−44.566462))), errV t)), Add(Abs(Sub(Sub(−294.912831, errm),

Mul(errm, errV r))), Add(Tanh(Sqrt(Add(356.090788, Sub(errTheta, errV t)))),

Sqrt(Mul(errV t,−163.151633)))))),Mul(Add(Sub(errm,Abs(Sqrt(Add(450.227029,

errV r)))),Mul(Sqrt(Sqrt(Tanh(Abs(Abs(Sub(Add(errTheta, Tanh(Sub(errm,

errV r))), Add(Abs(Mul(errTheta, errTheta)), Abs(Mul(Tanh(errV t),

Mul(TriAdd(Mul(errV r, 165.979145), Sqrt(errR), Abs(Sub(Sub(errm,−383.76704),

Sqrt(errm)))), Tanh(Add(errR,Mul(Sub(Tanh(Add(errTheta, errm)), Abs(errm)),

Abs(Sqrt(errV t))))))))))))))), Tanh(TriAdd(Mul(Mul(errm, errV r),

Abs(31.587732)), Sqrt(Abs(errR)), Sqrt(TriAdd(errV r, errR,

Sqrt(Mul(Tanh(115.522294), T riAdd(errTheta, 19.959912, 78.486749))))))))),

Sqrt(Add(TriAdd(Sub(Tanh(Abs(Sqrt(Add(errTheta,Abs(Sqrt(errR)))))), Add(errV r,

−186.266856)),−393.259084, errV t), Sub(errTheta, 304.859982)))),Mul(errm,

114.654252)))

(C.1)
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• mathematical expression of the tangential throttle control law:

TriAdd(Sqrt(Mul(errm, 56.715711)), T riAdd(TriAdd(Sub(Tanh(TriAdd(errTheta,

−435.431012,−288.399033)), Sqrt(Sub(−269.090055,−216.348377))), Sqrt(errm),

Add(Mul(Abs(TriAdd(Add(Tanh(errV r), Tanh(Mul(Mul(errV r, errV t), T riAdd(errV t,

Add(Abs(Abs(errV t)), Sqrt(Add(errm, 189.687451))),Mul(Sqrt(Sub(Mul(Abs(errV t),

errTheta), Tanh(errTheta))), Sqrt(Sqrt(Abs(TriAdd(Sqrt(Mul(Tanh(Sub

(−72.106792, errTheta)), Add(TriAdd(errV r, errm, errV t),Mul(−214.408013,−424.368337)))),

Tanh(−484.034856), Abs(errV t)))))))))), Sqrt(errm), Tanh(Abs(TriAdd(errR,

Abs(−407.653047), errV r))))), 82.141667), T riAdd(Abs(errV r),

T riAdd(Sqrt(Sub(errR,−358.30903)), errm, Sub(errR, Tanh(Sqrt(Mul(181.443512,

errV r))))), Tanh(Tanh(errV t))))), Sqrt(Mul(265.132498, errm)),

Sqrt(TriAdd(Abs(errm), Sqrt(−217.067638), T riAdd(Sqrt(−95.90338), errm,

Mul(Sub(Tanh(Add(Abs(errm), T riAdd(errTheta, 151.21694, errV t))),

Sub(Sub(Mul(errTheta,Add(errR, errR)), Add(Sub(Add(Add(errV r, errR),

Add(132.515184, errm)), Add(TriAdd(errV t, Sub(Add(Sqrt(Sub(−493.510467,

errV r)), Sqrt(188.460917)), Add(Tanh(Mul(errV r, errR)), Sub(−22.727781,

errV r))), errm), T riAdd(errR, 421.834855, 228.627005))),

Sqrt(Tanh(330.127231)))), Tanh(errm))), Sqrt(Abs(Tanh(Sub(134.690301,

errTheta))))))))), Tanh(Add(errV t,Mul(errR, errm))))

(C.2)

C.2.2 On-line design
• mathematical expression of the radial throttle control law (1 core):

Sub(TriAdd(Abs(Sub(errV r, 7.900593)), Tanh(−354.893854), Abs(Add(errV t,Mul(

Sqrt(499.496265), Sqrt(errm))))),−47.247372)

(C.3)

• mathematical expression of the tangential throttle control law (1 core):

Sub(Sqrt(Sub(Sub(Abs(errR), Abs(errm)), T riAdd(Mul(411.628734

, errV t), T riAdd(errV t, 343.34771, errV r), T riAdd

(Mul(Mul(Sqrt(Tanh(Add(errR, 226.82443))),Mul

(TriAdd(−388.762661, 242.483295,−195.313505), Tanh

(115.641917))), Sqrt(−69.938948)), Tanh(Mul(TriAdd(errR, errR, errV r), Add(errV t,

errV r))), errV r)))), Tanh(−1.144805))

(C.4)

• mathematical expression of the radial throttle control law (3 cores):

Sub(Abs(Add(Sqrt(Abs(Mul(Mul(Abs(Mul(errm,−51.765722)), errR),Mul(Tanh

(Tanh(Sqrt(errV t))),−174.463585)))),Mul(errV t, errV r))),−47.247372)

(C.5)
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• mathematical expression of the tangential throttle control law (3 cores):

TriAdd(errV t, T riAdd(Add(−328.487666, errV t), Sub(Abs(TriAdd(errm, errV t,

errTheta)), errV r), T riAdd(Sub(Sub(errTheta, errm), Sqrt(errTheta)

), errTheta, 97.024843)), Abs(TriAdd(errm, errTheta, errR)))

(C.6)

• mathematical expression of the radial throttle control law (6 cores):

TriAdd(errV t,Abs(TriAdd(Mul(Sqrt(errm), errV r), Sqrt(Sqrt(−483.694546)), T riAdd

(TriAdd(Sqrt(Mul(−498.911321, errV r)), T riAdd(Abs(TriAdd(

Tanh(Tanh(Add(errV r, errV r))), errTheta, errV t)), T riAdd(Tanh(Add(

Mul(TriAdd(errm,−165.266, errm), Add(errV t, errV t)),Mul(Add(errV r, errTheta),

Abs(errTheta)))), errR, errR), T riAdd(Add(errR, errV r),

T riAdd(Sub(Sub(errR, errV t),Mul(−50.59781, errR)), errR

, errV t),Mul(errTheta, TriAdd(Sqrt(−466.870687),

Tanh(Sqrt(Add(Sub(errm, errm), T riAdd(errTheta,

errR, errV r)))), Sub(TriAdd(Sqrt(95.63591), Add(errV t,

268.723319), T riAdd(errTheta, errR,−197.353347)), Abs(Sub(errR,

56.058507))))))), Abs(Sub(Sub(Sub(Add(errm, errV t),

T riAdd(−272.084422, errm, errm)), errV r), errTheta))),

Sqrt(errm), Add(Add(Tanh(Sqrt(errm)), errV t),

Sqrt(Sub(errV t, errm)))))), errV t)

(C.7)

• mathematical expression of the tangential throttle control law (6 cores):

Add(Sqrt(Sub(Tanh(Sub(Abs(Sub(85.290271, errR)), Tanh(Abs(Sub(errm, errV t))))),

Add(−47.247372,Mul(Tanh(errTheta), Add(Sub(errTheta

, Tanh(Sub(Sqrt(errV t), Abs(Sub(errV r, errm))))), Abs(Add(Sub

(Mul(Sub(455.88907, errm), Abs(errm)), T riAdd(TriAdd(errR,−331.028936

, errV r), Add(errV r, 463.268523), T riAdd(Abs(Sub(errR, 168.295835)

),−81.538744, T riAdd(errTheta, errV t, errR)))), errR)))))))

, Sqrt(TriAdd(TriAdd(errm, errR, errV t), errR,

Tanh(TriAdd(−85.772341,−254.968912, errR)))))

(C.8)
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• mathematical expression of the radial throttle control law (9 cores):

Sub(Abs(Sub(TriAdd(Add(Add(Tanh(errR), T riAdd(errV r, errTheta,

errV r)), T riAdd(Tanh(Sqrt(Sub(Tanh(TriAdd(Sub(Add(errV r, errTheta)

,Mul(errR, errV t)), T riAdd(Tanh(errR), Sub(13.106664, errV r),

Tanh(errV t)), Add(Tanh(261.88947), Tanh(−188.276585)))), errV t)

)), Add(Add(Tanh(Sub(errm, errV t)), Sqrt(Add(errV r,−380.439634)))

, Add(TriAdd(Abs(errV r), Add(errR, TriAdd(errR, errR, errm))

, Abs(178.600458)), errm)), T riAdd(Sub(errm, errV t), Add(−492.07265,

errV r),Mul(245.276733, errV r)))), T riAdd(errm,Add(Abs(Sub

(Tanh(Abs(374.297369)), T riAdd(Sqrt(errTheta), Sqrt(−414.255018), Abs(errR)))),Mul(

errTheta, errV r)), errm), Tanh(Mul(errV t, errTheta))),

−84.899681)), Tanh(errTheta))

(C.9)

• mathematical expression of the tangential throttle control law (9 cores):

Sub(Sqrt(Sub(403.641953, T riAdd(Tanh(Add(Sqrt(−166.112045),

Tanh(TriAdd(Tanh(Sub(errV r,Abs(errV t))), Sub(Add(errTheta,

468.125334), Sqrt(errV t)), Add(Tanh(errm), Add(Sqrt(Sub(errR,

errV t)), Tanh(Abs(errR)))))))),Mul(errm, Sub(Add(TriAdd(errV t,

Sub(errTheta,−99.420895), errR), Sub(Add(TriAdd(errV t, errV r,

errR), Tanh(errV t)), Abs(TriAdd(errV t, errR, 268.869042)))),

Abs(TriAdd(errV t, errR, 268.869042)))), T riAdd(Add(Abs(Sqrt(Tanh

(errR))), T riAdd(Mul(errV t, errV r), errV t, errTheta)), Tanh(Abs(Tanh(errTheta))),

Tanh(Sqrt(errV t)))))), Tanh(−1.144805))

(C.10)

C.2.2.1 High-performance computer

• mathematical expression of the radial throttle control law:

Abs(Add(TriAdd(Mul(Sqrt(Sub(errV t, Tanh(97.249645))),

Sqrt(Add(errTheta, errm))), Add(377.308903, 291.6056),

Sub(Add(Abs(Sub(Add(errTheta,Mul(TriAdd(Add(Add(Abs(errV t),

T riAdd(errm, 160.462015, errm)), Sqrt(Sqrt(359.755819))), errTheta,

375.888504), Tanh(errm))), Add(errm, errTheta))), Abs(errTheta)),

Mul(Add(errV t, errV r), Tanh(errm)))), Abs(Add(errV t, errV r))))

(C.11)
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• mathematical expression of the tangential throttle control law:

Sub(Sqrt(Sub(403.641953, T riAdd(Sqrt(Sqrt(errm)),

Sqrt(−370.815091), T riAdd(Add(Mul(−246.639438, errm),

Sub(Sqrt(−82.537675), T riAdd(errTheta, Tanh(TriAdd(Mul(errV t, errV r),

Sub(errR, 23.525674), Add(errV r, errV t))),−30.844872))), errV t,

Sub(Abs(Sqrt(errm)),Mul(Add(errm, errV t), T riAdd(Tanh(errR),

Sqrt(errR),Mul(141.473099, errTheta)))))))),−246.639438)

(C.12)
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Appendix D

Python Scripts

D.1 MSD _ OFFLINE.py
The primit

/* This Source Code Form is subject to the terms of the Mozilla
Public

* License , v. 2.0. If a copy of the MPL was not distributed with
this

* file , You can obtain one at http: // mozilla.org/MPL/2.0/. */
/*
----- Copyright (C) 2019 University of Strathclyde and Authors ----

--
------------------ Author: Francesco Marchetti ------------------
-------------- e-mail: francesco.marchetti@strath.ac.uk -----------
-------------------- Author: Nicola Menga -------------------------
-------------- e-mail: nicola.menga@strath.ac.uk ------------------
-----------------------nicola.menga@studenti.polito.it-------------
*/

import tkinter as tk
import _pickle as cPickle
import pickle
from scipy.integrate import solve_ivp
from scipy.interpolate import PchipInterpolator
import numpy as np
from numpy import *
import networkx as nx
from networkx.drawing.nx_agraph import graphviz_layout
import pygraphviz as pgv
import random
from deap import gp
import matplotlib.pyplot as plt
import sys
import timeit
import time
import pandas as pd
from functools import reduce
from operator import *
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
import multiprocessing
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from interruptingcow import timeout
import matplotlib.animation as animation
from matplotlib import style
import itertools
from functools import wraps
from time import time

def Sqrt(a):
if a > 0:

return np.sqrt(a)
else:

return np.abs(a)

def Log(a):
if a > 0:

return np.log(a)
else:

return np.abs(a)

def Tanh(a):
return np.tanh(a)

def setpoint(t,type_set):
if type_set=="Multistep":

if (t > 0 and t < 4):
r = 1

elif (t > 4 and t < 10):
r = 5

elif (t > 10 and t < 14):
r = 2

elif (t > 14 and t < 21):
r = 8

else:
r = 0

elif type_set=="Sinusoidal":
A = 1
w = 1
r = A*np.sin(w*t)

elif type_set=="Constant":
r=7

elif type_set=="Square":
r=np.sign(np.sin(t))

return r

start = timeit.default_timer ()

a0 = 1 #MASS M [kg]
a1 = 10 #DAMPING C [Ns/m]
a2 = 20 #STIFNESS K [N/m]

top_end_stop = 10
bottom_end_stop = -1

rise_time = 1 #rising time [s]

total_time_simulation = 20

tempo = np.linspace(1e-05, total_time_simulation ,
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total_time_simulation * 50)

type_set= "Square" #Multistep , Sinusoidal , Constant , Square signal

set_point = []
for items in tempo:

set_point.append(setpoint(items ,type_set))

set_interp = PchipInterpolator(tempo , set_point)
r_max = np.amax(set_point)
r_min = np.amin(set_point)

ar = 2 * r_max / (rise_time ** 2)
vr = ar * rise_time
yr = 0.9 * r_max
force_constraint = a1 * vr + a2 * yr + a0 * ar

old = 0

size_pop = 300 #Population size
size_gen = 50 #Generation size
Mu = int(size_pop)
Lambda = int(size_pop * 1.5)
pb_cross = 0.6 #crossover probability
pb_mut = 0.3 #mutation probability
limit_height = 17 #Max height
limit_size = 400 #Max size

def main():
""" The main function is defined as a container in order to execute

the evolutionary process. Here
the type of algorithm to be used
is chosen like the probability of
crossover and mutation. Moreover
the post processing of the

results as graph of position mass
and the forms of the trees are

inserted in this main function.
"""

pool = multiprocessing.Pool(12) parallel computing

toolbox.register("map", pool.map)

global size_gen , size_pop , Mu , Lambda , pb_mut , pb_cross ,
random_individual

random.seed()
print("INITIAL POP SIZE: %d" % size_pop)

print("GEN SIZE: %d" % size_gen)

print("\n")

pop = toolbox.population(n=size_pop)
hof = tools.HallOfFame(size_gen)
Mu = int(size_pop)
Lambda = int(size_pop * 1.5)

stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
stats_height = tools.Statistics(attrgetter("height"))
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mstats = tools.MultiStatistics(fitness=stats_fit , height=
stats_height , size=stats_size
)

mstats.register("avg", np.mean , axis=0)
mstats.register("min", np.min , axis=0)
mstats.register("max", np.max , axis=0)

pop , log = algorithms.eaMuPlusLambda(pop , toolbox , Mu, Lambda ,
pb_cross , pb_mut , size_gen ,
stats=mstats ,halloffame=hof ,
verbose=True)

stop = timeit.default_timer ()
total_time = stop - start
mins , secs = divmod(total_time , 60)
hours , mins = divmod(mins , 60)

gen = log.select("gen")
fit_min = log.chapters["fitness"].select(’min’)

perform = []
p = 0
for items in fit_min:

perform.append(fit_min[p][0])
p = p + 1

height_avgs= log.chapters["height"].select("avg")
size_avgs = log.chapters["size"].select("avg")
fig , ax1 = plt.subplots ()
line1 = ax1.plot(gen , perform , "b-", label="Minimum Fitness

Performance")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
for tl in ax1.get_yticklabels ():

tl.set_color("b")

ax2 = ax1.twinx()
line2 = ax2.plot(gen , size_avgs , "r-", label="Average Size")
line3 = ax2.plot(gen , height_avgs , "g-", label="Average Height"

)
ax2.set_ylabel("Size , Height", color="y")
for tl in ax2.get_yticklabels ():

tl.set_color("y")

lns = line1 + line2 + line3
labs = [l.get_label () for l in lns]
ax1.legend(lns , labs , loc="center right")
textstr = (’Total Running Time:\n %dh %dm %.3fs’ % (hours ,

mins , secs))
ax1.text(0.65 , 0.9, textstr , transform=ax1.transAxes , fontsize=

10,
horizontalalignment=’right’)

plt.savefig(’Stats_OFFLINE ’)
plt.show()

print("\n")
print("THE BEST VALUE IS:")
print(hof[0])
print("\n")
print("THE HEIGHT OF THE BEST INDIVIDUAL IS:")
print(hof[0].height)
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print("\n")
print("THE SIZE OF THE BEST INDIVIDUAL IS:")
print(len(hof[0]))

with open("Control Law.txt", "w") as file:
file.write(str(hof[0]))

with open("Best individuals.txt", "w") as bestever:
for i in range(size_gen):

bestever.write(str(hof[i]))
bestever.write("\n \n")

print("\n")

value = toolbox.evaluate(hof[0])
print("THE EVALUATION OF THE BEST INDIVIDUAL IS:")
print(value)
print("\n")

expr = hof[0]
nodes , edges , labels = gp.graph(expr)
g = pgv.AGraph ()
g.add_nodes_from(nodes)
g.add_edges_from(edges)
g.layout(prog="dot")
for i in nodes:

n = g.get_node(i)
n.attr["label"] = labels[i]

g.draw("tree.png")

image = plt.imread(’tree.png’)
fig , ax = plt.subplots ()
im = ax.imshow(image)
ax.axis(’off’)
plt.show()
sys.stdout.write("TOTAL RUNNING TIME:\n %d (h):%d (m):%.3f (s)

\n" % (hours , mins , secs))

x_ini = [1e-05, 1e-05, 1e-05]

def sys2GP(t, x):
global a0, a1, a2
M, C, K = a0, a1, a2

y = x[0]
dydt = x[1]
ei = x[2]
dxdt = [1e-05 , 1e-05, 1e-05]

r = set_interp(t)
e = r - y

ctrl = toolbox.compile(hof[0])
u = ctrl(e, -dydt , ei)

dxdt[1] = (- C * dydt - K * y + u) / M
dxdt[0] = dydt
dxdt[2] = e

return [dxdt[0], dxdt[1], dxdt[2]]
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tevals = np.linspace(1e-05 , total_time_simulation , 100000)

solgp = solve_ivp(sys2GP , [1e-05 , total_time_simulation], x_ini
, first_step=0.0001 , t_eval=
tevals)

ygp = solgp.y[0, :]
dyy = solgp.y[1, :]
ttgp = solgp.t

controller_value = np.array(controller_value)

set_point_off = []
for items in ttgp:

set_point_off.append(set_interp(items))
r = set_point_off

errgp = r - ygp

fig , ax2 = plt.subplots ()
ax2.set_xlabel("time [s]")
ax2.set_ylabel("position [m]")
plt.plot(ttgp , ygp , label="GENETIC PROGRAMMING")
plt.plot(ttgp , set_point_off , ’r--’, label="SET POINT")
plt.legend(loc="lower right")
plt.savefig(’Position_plot_OFFLINE.png’)
plt.show()

fig1 , ax3 = plt.subplots ()
ax3.set_xlabel("time [s]")
plt.plot(ttgp , ygp , label="POSITION [m]")
plt.plot(ttgp , errgp , label="ERROR [m]")
plt.plot(ttgp , dyy , label="VELOCITY [m/s]")
plt.plot(ttgp , r, ’r--’, label="SET POINT [m]")
plt.legend(loc="lower right")
plt.savefig(’Motion_graphs_OFFLINE.png’)
plt.show()

chapter_keys = log.chapters.keys()
sub_chaper_keys = [c[0].keys() for c in log.chapters.values ()]

data = [list(map(itemgetter(*skey), chapter)) for skey , chapter
in zip(sub_chaper_keys , log.chapters.values ())]

data = np.array([[*a, *b, *d] for a, b, d in zip(*data)])

columns = reduce(add , [["_".join([x, y]) for y in s] for x, s
in zip(chapter_keys ,
sub_chaper_keys)])

df = pd.DataFrame(data , columns=columns)

keys = log[0].keys()
data = [[d[k] for d in log] for k in keys]
for d, k in zip(data , keys):

df[k] = d
df.to_csv(’Evolution process.csv’, encoding=’utf -8’, index=

False)

# plt.figure(figsize =(18,18),dpi=500)
# graph = nx.DiGraph(history.genealogy_tree)
# graph = graph.reverse ()
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# colors = [toolbox.evaluate(history.genealogy_history[i])[0]
for i in graph]

# positions = graphviz_layout(graph , prog="dot")
# nx.draw_networkx_labels(graph , positions)
# nx.draw_networkx_nodes(graph , positions , node_color=colors)
# nx.draw_networkx_edges(graph , positions)
# plt.savefig(’HISTORY.png ’,dpi=500)
# plt.show()

master = tk.Tk()
master.title("GP Mass -Spring -Damper")

w_width = 1000
w_height = 500

init_pos = [500 , 250]
w = tk.Canvas(master , width=w_width , height=w_height)
w.pack()

x0 = init_pos[0]
y0 = init_pos[1]
block = w.create_rectangle(x0 - 50, y0 - 50, x0 + 50, y0 + 50,

fill="black")
floor = 350

ceiling = 50
w.create_line(50, ceiling , 50, floor , width=3, fill="brown")
w.create_line(50, floor , w_width - 50 , floor , width=3)

w.create_line(50, y0 + 20 , 70 , y0 + 20, width=2, fill="red")
damper2 = w.create_line(70 , y0 + 20, 100 , y0 + 20, width=20 ,

fill="red")
damper1 = w.create_line(100 , y0 + 20 , x0 , y0 + 20, width=4)
pos_old = 0

base_spring = w.create_line(50, y0 - 20, 70, y0 - 20 , width=2,
fill="green")

final_spring = w.create_line(150 , y0 - 20 , x0 , y0 - 20, width=3
)

spring_1 = w.create_line(70 , y0 - 20, 250 , y0 + 5, width=3)
spring_2 = w.create_line(250 , y0 + 5, 300 , y0 - 5, width=3)
spring_3 = w.create_line(200 , y0 - 20, 199 , 100 , width=3)

wheel_1 = w.create_oval(0, 0, 0, 0)
wheel_2 = w.create_oval(0, 0, 0, 0)

for j in dyy:
w.move(block , j / 100 , 0)
pos = w.coords(block)

if pos[2] > pos_old or pos[2] == pos_old:
w.delete(damper1)
w.delete(final_spring)
w.delete(spring_1)
w.delete(spring_2)
w.delete(spring_3)
w.delete(wheel_1)
w.delete(wheel_2)
damper1 = w.create_line(100 , y0 + 20 , pos[0], y0 + 20,

width=5, fill="red")
final_spring = w.create_line(abs(pos[0] - 300), y0 - 20

, pos[0], y0 - 20 ,
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width=2, fill="green"
)

pos_final_spring = w.coords(final_spring)
wheel_1 = w.create_oval(pos[0], floor - 50, pos[0] + 25

, floor , fill="blue")
wheel_2 = w.create_oval(pos[2] - 25, floor - 50 , pos[2]

, floor , fill="blue")
spring_1 = w.create_line(pos_final_spring[0] - 10,

pos_final_spring[1] +
20, pos_final_spring

[0],
pos_final_spring[1], width=3, fill="green")
pos_s1 = w.coords(spring_1)
spring_3 = w.create_line(70 , y0 - 20, 90, y0 - 40 ,

width=3, fill="green"
)

pos_s3 = w.coords(spring_3)
spring_2 = w.create_line(pos_s3[2], pos_s3[3], pos_s1[0

], pos_s1[1], width=3
, fill="green")

pos_s2 = w.coords(spring_2)
pos_old = pos[2]

else:
w.delete(damper1)
w.delete(final_spring)
w.delete(spring_1)
w.delete(spring_2)
w.delete(spring_3)
w.delete(wheel_1)
w.delete(wheel_2)
final_spring = w.create_line(abs(pos[0] - 300), y0 - 20

, pos[0], y0 - 20 ,
width=2, fill="green"
)

pos_final_spring = w.coords(final_spring)
damper1 = w.create_line(100 , y0 + 20 , pos[0], y0 + 20,

width=5, fill="red")
wheel_1 = w.create_oval(pos[0], floor - 50, pos[0] + 25

, floor , fill="blue")
wheel_2 = w.create_oval(pos[2] - 25, floor - 50 , pos[2]

, floor , fill="blue")
spring_1 = w.create_line(pos_final_spring[0] - 10,

pos_final_spring[1] +
20, pos_final_spring

[0],
pos_final_spring[1], width=3, fill="green")
pos_s1 = w.coords(spring_1)
spring_3 = w.create_line(70 , y0 - 20, 90, y0 - 40 ,

width=3, fill="green"
)

pos_s3 = w.coords(spring_3)
spring_2 = w.create_line(pos_s3[2], pos_s3[3], pos_s1[0

], pos_s1[1], width=3
, fill="green")

pos_s2 = w.coords(spring_2)

master.update ()

pool.close()
return (pop , log , hof)
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flag = False
flag2 = False
flag3 = False
pas = False
fitness_old = 10e10
penalty=0

def evaluate(individual):
""" The evaluate function is the fundamental function in which

individuals are evaluated in
order to define how an individual
is able to solve the problem. In
this problem , the fitness

function is defined to reduce the
error between the current states
and the desired states through

the adoption of the Integral of
Absolute Error method."""

global flag , flag2 , flag3 , pas , old , fitness_old , rise_time ,
total_time_simulation ,
force_constraint ,penalty

old = 0

flag = False
flag2 = False
flag3 = False
pas = False
penalty=0

func = toolbox.compile(expr=individual)

def sys(t, x):
global a0, a1, a2 , old , flag , flag2 , flag3 ,penalty

y = x[0]
dydt = x[1]
dyi = x[2]

dxdt = [1e-05 , 1e-05, 1e-05]

fix = old

r = set_interp(t)

e = r - y

value = func(e, -dydt , dyi)

dxdt[0] = dydt
dxdt[2] = e

if value > -force_constraint and value < force_constraint:
dxdt[1] = (- a1 * dydt - a2 * y + value) / a0
old = value
flag3 = True

else:
dxdt[1] = (- a1 * dydt - a2 * y + fix) / a0
flag2 = True
penalty += abs(force_constraint-value)
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return [dxdt[0], dxdt[1], dxdt[2]]

passs = (total_time_simulation) * 50
tev = np.linspace(1e-05, total_time_simulation , int(passs))
x_ini = [1e-05, 1e-05, 1e-05] # initial conditions

try:
with timeout(10, exception=RuntimeError):

sol = solve_ivp(sys , [1e-05, total_time_simulation],
x_ini , t_eval=tev)

except RuntimeError:
return np.random.uniform(fitness_old * 1.2, fitness_old * 1

.6),

yy = sol.y[0, :]
dyy = sol.y[1, :]
tt = sol.t

set_point_off = []
for items in tt:

set_point_off.append(set_interp(items))
r = set_point_off

err1 = r - yy

i = 0
step = []
step.append(tt[1] - tt[0])
while i < len(tt) - 1:

step.append(tt[i + 1] - tt[i])
i = i + 1

#INTEGRAL OF ABSOLUTE ERROR
IAE = []
alpha = 0.1
for p, m, n in zip(err1 , dyy , step):

IAE.append(n * (abs(p) + alpha * abs(m)))

if flag2 is True:
pas = True
x = sum(IAE) + penalty

if flag3 is True and flag2 is False:
fitness = sum(IAE)
if fitness < fitness_old:

fitness_old = fitness

return (x,) if pas is True else (fitness ,)

""" The Primitive set is determined in the following code lines. The
mathematical operations ,

constants and variables are
defined. Such step is very
important for the algorithm
because with such definition the
size of search space is
automatically defined."""

pset = gp.PrimitiveSet("MAIN", 3)
pset.addPrimitive(np.add , 2, name="Add")
pset.addPrimitive(np.subtract , 2,name="Sub")
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pset.addPrimitive(np.multiply , 2,name="Mul")
pset.addPrimitive(np.abs , 1,name="Abs")
pset.addPrimitive(Log , 1)
pset.addPrimitive(Tanh , 1)
pset.addPrimitive(Sqrt , 1)
pset.addTerminal(np.pi , name="pi")
pset.addTerminal(np.e, name="e")
pset.addEphemeralConstant("rand101", lambda: round(random.uniform(-

100 , 100), 4))
pset.addEphemeralConstant("rand102", lambda: round(random.uniform(-

100 , 100), 4))
pset.addEphemeralConstant("rand103", lambda: random.randint(0, 9))
pset.addEphemeralConstant("rand104", lambda: random.randint(0, 9))
pset.renameArguments(ARG0=’err’)
pset.renameArguments(ARG1=’d_err ’)
pset.renameArguments(ARG2=’i_err ’)

creator.create("Fitness", base.Fitness , weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree , fitness=creator.

Fitness)
toolbox = base.Toolbox ()
toolbox.register("expr", gp.genFull , pset=pset , min_=1, max_=2)
toolbox.register("individual", tools.initIterate , creator.

Individual , toolbox.expr)
toolbox.register("population", tools.initRepeat , list , toolbox.

individual)
toolbox.register("compile", gp.compile , pset=pset)
toolbox.register("evaluate", evaluate)
toolbox.register("select", tools.selTournament ,tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("mutate", gp.mutUniform , expr=toolbox.expr , pset=

pset)
toolbox.decorate("mate", gp.staticLimit(key=attrgetter("height"),

max_value=limit_height))
toolbox.decorate("mutate", gp.staticLimit(key=attrgetter("height"),

max_value=limit_height))
toolbox.decorate("mate", gp.staticLimit(key=len , max_value=

limit_size))
toolbox.decorate("mutate", gp.staticLimit(key=len , max_value=

limit_size))
# history = tools.History ()
# toolbox.decorate ("mate", history.decorator)
# toolbox.decorate (" mutate", history.decorator)

if __name__ == "__main__":
pop , log , hof = main()

D.2 MSD _ ONLINE.py

/* This Source Code Form is subject to the terms of the Mozilla
Public

* License , v. 2.0. If a copy of the MPL was not distributed with
this

* file , You can obtain one at http: // mozilla.org/MPL/2.0/. */
/*
------------ Copyright (C) 2019 University of Strathclyde----------
--------------------- Author: Nicola Menga ------------------------
-------------- e-mail: nicola.menga@strath.ac.uk-------------------
-----------------------nicola.menga@studenti.polito.it-------------
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*/

import _pickle as cPickle
import pickle
from scipy.integrate import solve_ivp
from scipy.interpolate import PchipInterpolator
import numpy as np
from numpy import *
import networkx as nx
from networkx.drawing.nx_agraph import graphviz_layout
import pygraphviz as pgv
import random
from deap import gp
import matplotlib.pyplot as plt
import sys
import timeit
import time
import pandas as pd
from functools import reduce
from operator import *
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
import multiprocessing
from interruptingcow import timeout
import matplotlib.animation as animation
from matplotlib import style
import itertools
from functools import wraps
from time import time

def Sqrt(a):
if a > 0:

return np.sqrt(a)
else:

return np.abs(a)

def Log(a):
if a > 0:

return np.log(a)
else:

return np.abs(a)

def Tanh(a):
return np.tanh(a)

def top_endstop(t, top_end_stop):
return top_end_stop

def bot_endstop(t, bottom_end_stop):
return bottom_end_stop

def setpoint(t):
if (t > 0 and t < 60):

r = 1
elif (t > 60 and t < 150):

r = 2
elif (t > 150 and t < 200):

r = 4
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elif (t > 200 and t < 300):
r = 5

elif (t > 300 and t < 450):
r = 6

elif (t > 450 and t < 601):
r = 9

else:
r = 0

return r

a0 = 1
a1 = 10
a2 = 20

top_end_stop = 10
bottom_end_stop = -1

rise_time = 1

total_time_simulation = 600

tempo = np.linspace(1e-05, total_time_simulation ,
total_time_simulation * 50)

set_point = []
for items in tempo:

set_point.append(setpoint(items))

set_interp = PchipInterpolator(tempo , set_point)
r_max = np.amax(set_point)
r_min = np.amin(set_point)

if r_max > top_end_stop:
print("MAXIMUM POSITION CONSENTED: %d [m]" % top_end_stop)
print("COMMAND NOT GRANTED by the presence of the end stop")

if r_min < bottom_end_stop:
print("MINIMUM POSITION CONSENTED: %d [m]" % bottom_end_stop)
print("COMMAND NOT GRANTED by the presence of the end stop")
sys.exit(0)

ar = 2 * r_max / (rise_time ** 2)
vr = ar * rise_time
yr = 0.9 * r_max
force_constraint = a1 * vr + a2 * yr + a0 * ar

old = 0

size_pop = 150
size_gen = 100
Mu = int(size_pop)
Lambda = int(size_pop * 1.5)
pb_cross = 0.6
pb_mut = 0.1
limit_height = 17
limit_size = 400
flag_offdesign = False

def main():
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""" The main function is defined as a container in order to execute
the evolutionary process. Here
the type of algorithm to be used
is chosen like the probability of
crossover and mutation. Moreover
the post processing of the

results as graph of position mass
and the forms of the trees are

inserted in this main function.
"""

pool = multiprocessing.Pool(12)
global flag_offdesign
if flag_offdesign is True:

toolx.register("map", pool.map)
else:

toolbox.register("map", pool.map)

global size_gen , size_pop , Mu , Lambda , pb_mut , pb_cross ,
random_individual

random.seed()
print("INITIAL POP SIZE: %d" % size_pop)

print("GEN SIZE: %d" % size_gen)

print("\n")

if flag_offdesign is True:
pop2 = toolx.population ()
pop3 = toolx.popx(random_individual)
final_pop= pop2 + pop3
individualss = [ind for ind in final_pop]
fitnesses = toolx.map(toolx.evaluate , individualss)
for ind , fit in zip(individualss , fitnesses):

ind.fitness.values = fit
hofx = tools.HallOfFame(size_gen)
Mux = int(len(final_pop))
Lambdax = int(len(final_pop)*1.5)

else:
pop = toolbox.population(n=size_pop)
hof = tools.HallOfFame(size_gen)
Mu = int(size_pop)
Lambda = int(size_pop * 1.5)

stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
stats_height = tools.Statistics(attrgetter("height"))
mstats = tools.MultiStatistics(fitness=stats_fit , height=

stats_height , size=stats_size
)

mstats.register("avg", np.mean , axis=0)
mstats.register("min", np.min , axis=0)
mstats.register("max", np.max , axis=0)

if flag_offdesign is True:
popx , logx = algorithms.eaMuPlusLambdaTol(individualss ,

toolx , Mux , Lambdax ,
pb_cross , pb_mut ,
size_gen , 15 , stats=
mstats , halloffame=hofx ,
verbose=True)

else:
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pop , log = algorithms.eaMuPlusLambda(pop , toolbox , Mu,
Lambda , pb_cross , pb_mut ,
size_gen , stats=mstats ,

halloffame=hof , verbose=
True)

if flag_offdesign is True:
expr = hofx[0]
nodes , edges , labels = gp.graph(expr)
g = pgv.AGraph ()
g.add_nodes_from(nodes)
g.add_edges_from(edges)
g.layout(prog="dot")
for i in nodes:

n = g.get_node(i)
n.attr["label"] = labels[i]

g.draw("tree_NEW_IC.png")

gen = logx.select("gen")
fit_min = logx.chapters["fitness"].select(’min’)

perform = []
p = 0
for items in fit_min:

perform.append(fit_min[p][0])
p = p + 1

height_avgs = logx.chapters["height"].select("avg")
size_avgs = logx.chapters["size"].select("avg")
fig , ax1 = plt.subplots ()
line1 = ax1.plot(gen , perform , "b-", label="Minimum Fitness

Performance")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
for tl in ax1.get_yticklabels ():

tl.set_color("b")

ax2 = ax1.twinx()
line2 = ax2.plot(gen , size_avgs , "r-", label="Average Size"

)
line3 = ax2.plot(gen , height_avgs , "g-", label="Average

Height")
ax2.set_ylabel("Size , Height", color="y")
for tl in ax2.get_yticklabels ():

tl.set_color("y")

lns = line1 + line2 + line3
labs = [l.get_label () for l in lns]
ax1.legend(lns , labs , loc="center right")

plt.savefig(’Stats_ONLINE ’)
plt.close()

else:
expr = hof[0]
nodes , edges , labels = gp.graph(expr)
g = pgv.AGraph ()
g.add_nodes_from(nodes)
g.add_edges_from(edges)
g.layout(prog="dot")
for i in nodes:

n = g.get_node(i)
n.attr["label"] = labels[i]

g.draw("tree_old.png")
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gen = log.select("gen")

fit_min = log.chapters["fitness"].select(’min’)

perform = []
p = 0
for items in fit_min:

perform.append(fit_min[p][0])
p = p + 1

height_avgs = log.chapters["height"].select("avg")
size_avgs = log.chapters["size"].select("avg")
fig , ax1 = plt.subplots ()
line1 = ax1.plot(gen , perform , "b-", label="Minimum Fitness

Performance")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
for tl in ax1.get_yticklabels ():

tl.set_color("b")

ax2 = ax1.twinx()
line2 = ax2.plot(gen , size_avgs , "r-", label="Average Size"

)
line3 = ax2.plot(gen , height_avgs , "g-", label="Average

Height")
ax2.set_ylabel("Size , Height", color="y")
for tl in ax2.get_yticklabels ():

tl.set_color("y")

lns = line1 + line2 + line3
labs = [l.get_label () for l in lns]
ax1.legend(lns , labs , loc="center right")

plt.savefig(’Stats_OFFLINE ’)
plt.close()

pool.close()
return (popx , logx , hofx) if flag_offdesign is True else (pop ,

log , hof)

flag = False
flag2 = False
flag3 = False
pas = False
fitness_old = 10e10
penalty=0

def evaluate(individual):
""" The evaluate function is the fundamental function in which

individuals are evaluated in
order to define how an individual
is able to solve the problem. In
this problem , the fitness

function is defined to reduce the
error between the current states
and the desired states through

the adoption of the Integral of
Absolute Error method."""

global flag , flag2 , flag3 , pas , old , fitness_old , rise_time ,
total_time_simulation ,
force_constraint ,penalty ,
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flag_offdesign

old = 0

flag = False
flag2 = False
flag3 = False
pas = False
penalty=0

if flag_offdesign is True:
func = toolx.compile(expr=individual)

else:
func = toolbox.compile(expr=individual)

def sys(t, x):

global a0, a1, a2 , old , flag , flag2 , flag3 ,penalty ,
force_constraint

y = x[0]
dydt = x[1]
dyi = x[2]

dxdt = [1e-05 , 1e-05, 1e-05]

fix = old

r = set_interp(t)
e = r - y

value = func(e, -dydt , dyi)

dxdt[0] = dydt
dxdt[2] = e

if value > -force_constraint and value < force_constraint:
dxdt[1] = (- a1 * dydt - a2 * y + value) / a0
old = value
flag3 = True

else:
dxdt[1] = (- a1 * dydt - a2 * y + fix) / a0
flag2 = True
penalty += abs(force_constraint-value)

return [dxdt[0], dxdt[1], dxdt[2]]

if flag_offdesign is True:
passintt = (total_time_simulation - (change_time))*50
tev = np.linspace(change_time , total_time_simulation , int(

passintt))
try:

with timeout(5, exception=RuntimeError):
sol = solve_ivp(sys , [change_time ,

total_time_simulation
], xnew_ini ,
t_eval=tev)

except RuntimeError:
return 100000 ,

else:
passs = (total_time_simulation) * 50
tev = np.linspace(1e-05, total_time_simulation , int(passs))
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x_ini = [1e-05, 1e-05, 1e-05]
try:

with timeout(7, exception=RuntimeError):
sol = solve_ivp(sys , [1e-05, total_time_simulation]

, x_ini ,t_eval=
tev)

except RuntimeError:
flag=True
return 100000 ,

yy = sol.y[0, :]
dyy = sol.y[1, :]
tt = sol.t

set_point_off = []
for items in tt:

set_point_off.append(set_interp(items))
r = set_point_off

err1 = r - yy

i = 0
step = []
step.append(tt[1] - tt[0])
while i < len(tt) - 1:

step.append(tt[i + 1] - tt[i])
i = i + 1

IAE = []
alpha = 0.1
for p, m, n in zip(err1 , dyy , step):

IAE.append(n * (abs(p) + alpha * abs(m)))

if flag2 is True:
pas = True
x = sum(IAE) + penalty

if flag3 is True and flag2 is False:
fitness = sum(IAE)
if fitness < fitness_old:

fitness_old = fitness

return (x,) if pas is True else (fitness ,)

""" The Primitive set is determined in the following code lines. The
mathematical operations ,

constants and variables are
defined. Such step is very
important for the algorithm
because with such definition the
size of search space is
automatically defined."""

pset = gp.PrimitiveSet("MAIN", 3)
pset.addPrimitive(np.add , 2)
pset.addPrimitive(np.subtract , 2)
pset.addPrimitive(np.multiply , 2)
pset.addPrimitive(np.abs , 1)
pset.addPrimitive(Log , 1)
pset.addPrimitive(Tanh , 1)
pset.addPrimitive(Sqrt , 1)
pset.addTerminal(np.pi , name="pi")
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pset.addTerminal(np.e, name="e")
pset.addEphemeralConstant("rand101", lambda: round(random.uniform(-

100 , 100), 4))
pset.addEphemeralConstant("rand102", lambda: round(random.uniform(-

100 , 100), 4))
pset.addEphemeralConstant("rand103", lambda: random.randint(0, 9))
pset.addEphemeralConstant("rand104", lambda: random.randint(0, 9))
pset.renameArguments(ARG0=’err’)
pset.renameArguments(ARG1=’d_err ’)
pset.renameArguments(ARG2=’i_err ’)

creator.create("Fitness", base.Fitness , weights=(-1.0,))
creator.create("Individual", gp.PrimitiveTree , fitness=creator.

Fitness)
toolbox = base.Toolbox ()
toolbox.register("expr", gp.genFull , pset=pset , min_=1, max_=2)
toolbox.register("individual", tools.initIterate , creator.

Individual , toolbox.expr)
toolbox.register("population", tools.initRepeat , list , toolbox.

individual)
toolbox.register("compile", gp.compile , pset=pset)
toolbox.register("evaluate", evaluate)
toolbox.register("select", tools.selTournament ,tournsize=3)
toolbox.register("mate", gp.cxOnePoint)
toolbox.register("mutate", gp.mutUniform , expr=toolbox.expr , pset=

pset)
toolbox.decorate("mate", gp.staticLimit(key=attrgetter("height"),

max_value=limit_height))
toolbox.decorate("mutate", gp.staticLimit(key=attrgetter("height"),

max_value=limit_height))
toolbox.decorate("mate", gp.staticLimit(key=len , max_value=

limit_size))
toolbox.decorate("mutate", gp.staticLimit(key=len , max_value=

limit_size))

if __name__ == "__main__":
pop , log , hof = main()

best_oldfit=toolbox.evaluate(hof[0])
print(best_oldfit)

a0_old = a0
a1_old = a1
a2_old = a2

change_time = 90 # [s]
print("\n ADD SOME ALTERATIONS TO PHYSICAL COMPONENTS OF THE PLANT

AT %.2f [s]" % change_time)
print("WRITE THE NUMBER FOR THE PARAMETER THAT YOU WANT CHANGE:

MASS ( 1 ), SPRING ( 2 ), DAMPER
( 3 )")

flag = int(input())
if flag == 1:

a0 = float(input("CHANGE VALUE OF THE MASS in [Kg] : "))
elif flag == 2:

a1 = float(input("CHANGE VALUE OF THE SPRING in [N/m] : "))
elif flag == 3:

a2 = float(input("CHANGE VALUE OF THE DAMPER in [Ns/m] : "))
else:

print("ERROR , please digit 1 for mass , 2 for spring or 3 for
damper")

sys.exit[0]
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ar = 2 * r_max / (rise_time ** 2)
vr = ar * rise_time
yr = 0.9 * r_max
force_constraint = a1 * vr + a2 * yr + a0 * ar

x_ini = [1e-05, 1e-05, 1e-05]

def sys2GP(t, x):
global a0_old , a1_old , a2_old
M, C, K = a0_old , a1_old , a2_old

y = x[0]
dydt = x[1]
ei = x[2]
dxdt = [1e-05 , 1e-05, 1e-05]

r = set_interp(t)
e = r - y

ctrl = toolbox.compile(hof[0])
u = ctrl(e, -dydt , ei)

dxdt[1] = (- C * dydt - K * y + u) / M
dxdt[0] = dydt
dxdt[2] = e

return [dxdt[0], dxdt[1], dxdt[2]]

passint = (total_time_simulation) * 4
tevals = np.linspace(1e-05 , total_time_simulation , int(passint))

solgp = solve_ivp(sys2GP , [1e-05 , total_time_simulation], x_ini ,
t_eval=tevals)

ygp = solgp.y[0, :]
dyy = solgp.y[1, :]
ttgp = solgp.t

rrr = []
for i in ttgp:

rrr.append(set_interp(i))

tes = np.zeros(len(ttgp), dtype=’float’)

ii = 0
for i in ttgp:

tes[ii] = top_endstop(i, top_end_stop)
ii = ii + 1

errgp = rrr - ygp

bes = np.zeros(len(ttgp), dtype=’float’)

ii = 0
for i in ttgp:

bes[ii] = bot_endstop(i, bottom_end_stop)
ii = ii + 1

figManager = plt.get_current_fig_manager ()
figManager.resize(*figManager.window.maxsize ())
plt.ion()
plt.plot(ttgp , rrr , ’r--’, label="SET POINT [m]")
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plt.plot(ttgp , tes , ’k’, label="TOP END -STOP [m]")
plt.plot(ttgp , bes , ’k’, label="BOTTOM END -STOP [m]")
animated_plot = plt.plot(ttgp , ygp , ’r.’, label="ON DESIGN")[0]

i = 0
x=0
for items in ttgp:

plt.figure(1)
plt.ylim(bottom_end_stop - 1, top_end_stop + 1)
plt.xlim(0, total_time_simulation)

if items > change_time:
index , = np.where(ttgp == items)
break

animated_plot.set_xdata(ttgp[0:i])
animated_plot.set_ydata(ygp[0:i])
plt.draw()
if (i%5)==0:

plt.savefig(’video/’+"img" + str(x) + ".png")
x=x+1

plt.pause(0.00000001)
i = i + 1

xnew_ini = [float(ygp[index]), float(dyy[index]), float(errgp[index
])]

u_design = hof[0]
init_height=hof[0].height

print("Initial heigh:")
print(init_height)

print("\n OFF DESIGN CONTROLLER")
print(u_design)
print("\n \n")

output = open("hof_MSD.pkl", "wb")
cPickle.dump(hof , output , -1)
output.close ()

objects = []
with (open("hof_MSD.pkl", "rb")) as openfile:

while True:
try:

objects.append(pickle.load(openfile))
except EOFError:

break

start = time()
flag_gpnew = True

if __name__ == "__main__":
random_individual=int(size_gen)
flag_seed_populations = True
flag_seed_populations1 = True
flag_offdesign = True
size_pop , size_gen , pb_mut , pb_cross = size_gen , 5, 0.5, 0.1

def initPOP1 ():
global objects
return objects[0]
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toolx = base.Toolbox ()

toolx.register("expr", gp.genHalfAndHalf , pset=pset , min_=
init_height , max_=init_height
+3)

toolx.register("individual", tools.initIterate , creator.
Individual , toolx.expr)

toolx.register("popx", tools.initRepeat , list , toolx.individual
)

toolx.register("population", tools.initIterate , list , initPOP1)
toolx.register("compile", gp.compile , pset=pset)
toolx.register("evaluate", evaluate)
toolx.register("select", tools.selTournament , tournsize=5)
toolx.register("mate", gp.cxOnePoint)
toolx.register("mutate", gp.mutUniform , expr=toolbox.expr , pset

=pset)
toolx.decorate("mate", gp.staticLimit(key=attrgetter("height"),

max_value=limit_height))
toolx.decorate("mutate", gp.staticLimit(key=attrgetter("height"

), max_value=limit_height))
toolx.decorate("mate", gp.staticLimit(key=len , max_value=

limit_size))
toolx.decorate("mutate", gp.staticLimit(key=len , max_value=

limit_size))

popx , logx , hofx = main()
end = time()
t_offdesign = end - start
print("RUNTIME GENETIC PROGRAMMINF FOR IC:")
print(t_offdesign)

print("\n NEW INTELLIGENT ON DESIGN CONTROL LAW:")
print(hofx[0])
print("\n")

def sys2GP_c(t, x):
global a0, a1, a2 , u_design
M, C, K = a0, a1, a2

y = x[0]
dydt = x[1]
ei = x[2]
dxdt = [1e-05 , 1e-05, 1e-05]

r = set_interp(t)
e = r - y

ctrl = toolbox.compile(u_design)
u = ctrl(e, -dydt , ei)

dxdt[1] = (- C * dydt - K * y + u) / M
dxdt[0] = dydt
dxdt[2] = e

return [dxdt[0], dxdt[1], dxdt[2]]

passint_c = (change_time + t_offdesign - (change_time)) * 4
tevals_c = np.linspace(change_time , change_time + t_offdesign , int(

passint_c))

XXXIV



passint_wwc = (total_time_simulation- (change_time)) * 8
tevals_wwc = np.linspace(change_time , total_time_simulation , int(

passint_c))

solgp_c = solve_ivp(sys2GP_c , [change_time , change_time +
t_offdesign], xnew_ini , t_eval=
tevals_c)

solgp_wwc = solve_ivp(sys2GP_c , [change_time , total_time_simulation
], xnew_ini , t_eval=tevals_wwc)

ygp_c = solgp_c.y[0, :]
dyy_c = solgp_c.y[1, :]
ttgp_c = solgp_c.t

ygp_wwc = solgp_wwc.y[0, :]
dyy_wwc = solgp_wwc.y[1, :]
ttgp_wwc = solgp_wwc.t

rrr_c = []
for i in ttgp_c:

rrr_c.append(set_interp(i))

errgp_c = rrr_c - ygp_c

plt.ion()
animated_plot_c = plt.plot(ttgp_c , ygp_c , ’b.’, label="OFF DESIGN")

[0]

i = 0
for items in ttgp_c:

plt.figure(1)
if ygp_c[i] >= top_end_stop:

print("WARNING: position of system exceed the top end stop:
TRY WITH A SMALLER MASS"

)
if ygp_c[i] <= bottom_end_stop:

print("WARNING: position of system exceed the top end stop:
TRY WITH A SMALLER MASS"

)
animated_plot_c.set_xdata(ttgp_c[0:i])
animated_plot_c.set_ydata(ygp_c[0:i])
plt.draw()
if (i%5)==0:

plt.savefig(’video/’+"img" + str(x) + ".png")
x=x+1

plt.pause(0.00000001)
i = i + 1

ttgp_wwcc=[]
ygp_wwcc=[]

for t,y in zip(ttgp_wwc ,ygp_wwc):
if t > t_offdesign+change_time:

ttgp_wwcc.append(t)
ygp_wwcc.append(y)
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plt.ion()
animated_plot_wc = plt.plot(ttgp_wwcc , ygp_wwcc , ’m.’, label="OFF

DESIGN - NO IC")[0]
i = 0
for itmemms in ttgp_wwcc:

plt.figure(1)
animated_plot_wc.set_xdata(ttgp_wwcc[0:i])
animated_plot_wc.set_ydata(ygp_wwcc[0:i])
if ygp_wwcc[i] >= top_end_stop:

print("WARNING: position of system exceed the top end stop"
)

plt.draw()
plt.plot(itmemms ,ygp_wwcc[i],"*")
break

if ygp_wwcc[i] <= bottom_end_stop:
print("WARNING: position of system exceed the top end stop"

)
plt.draw()
plt.plot(itmemms , ygp_wwcc[i], "*")

break
plt.draw()
if i%5==0:

plt.savefig(’video/’+"img" + str(x) + ".png")
x=x+1

plt.pause(0.001)
i = i + 1

passint_IC = (total_time_simulation - (change_time + t_offdesign))
* 4

tevals_IC = np.linspace(change_time + t_offdesign ,
total_time_simulation , int(
passint_IC))

xnew_ini_gp = [float(ygp_c[-1]), float(dyy_c[-1]), float(errgp_c[-1
])]

def sys2GP_IC(t, x):
global a0, a1, a2
M, C, K = a0, a1, a2

y = x[0]
dydt = x[1]
ei = x[2]
dxdt = [1e-05 , 1e-05, 1e-05]

r = set_interp(t)
e = r - y

ctrl = toolx.compile(hofx[0])
u = ctrl(e, -dydt , ei)

dxdt[1] = (- C * dydt - K * y + u) / M
dxdt[0] = dydt
dxdt[2] = e

return [dxdt[0], dxdt[1], dxdt[2]]

solgp_IC = solve_ivp(sys2GP_IC , [change_time + t_offdesign ,
total_time_simulation],
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xnew_ini_gp , t_eval=tevals_IC)

ygp_IC = solgp_IC.y[0, :]
dyy_IC = solgp_IC.y[1, :]
ttgp_IC = solgp_IC.t

plt.ion()
animated_plot_gp = plt.plot(ttgp_IC , ygp_IC , ’g.’, label="

INTELLIGENT CONTROL")[0]

i = 0
for items in ttgp_IC:

plt.figure(1)
if items == change_time + t_offdesign:

plt.legend(loc=’best’)
animated_plot_gp.set_xdata(ttgp_IC[0:i])
animated_plot_gp.set_ydata(ygp_IC[0:i])
plt.draw()
plt.pause(0.00000001)
if (i%5)==0:

plt.savefig(’video/’+"img" + str(x) + ".png")
x=x+1

i = i + 1
plt.show(block=True)

D.3 GODDARD _ OFFLINE.py

/* This Source Code Form is subject to the terms of the Mozilla
Public

* License , v. 2.0. If a copy of the MPL was not distributed with
this

* file , You can obtain one at http: // mozilla.org/MPL/2.0/. */
/*
----- Copyright (C) 2019 University of Strathclyde and Authors ----
------------------ Author: Francesco Marchetti ------------------
-------------- e-mail: francesco.marchetti@strath.ac.uk -----------
-------------------- Author: Nicola Menga -------------------------
-------------- e-mail: nicola.menga@strath.ac.uk ------------------
-----------------------nicola.menga@studenti.polito.it-------------
*/

from scipy.integrate import solve_ivp
import numpy as np
import operator
import pygraphviz as pgv
import random
from deap import gp
import matplotlib.pyplot as plt
import sys
import timeit
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
from deap.algorithms import varOr
import multiprocessing
from scipy.interpolate import PchipInterpolator
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import matplotlib.animation as animation
from matplotlib import style
import datetime
from time import time
from functools import partial
import _pickle as cPickle
import pickle
from interruptingcow import timeout

def TriAdd(x, y, z):
return x + y + z

def Abs(x):
return abs(x)

def Tanh(a):
return np.tanh(a)

def Mul(left , right):
try:

return left * right
except (RuntimeError , RuntimeWarning , TypeError ,

ArithmeticError , BufferError ,
BaseException , NameError ,

ValueError ,
FloatingPointError , OverflowError):

return left
def Sqrt(x):

try:
if x > 0:

return np.sqrt(x)
else:

return abs(x)
except (RuntimeError , RuntimeWarning , TypeError ,

ArithmeticError , BufferError ,
BaseException , NameError ,

ValueError):
return 0

def xmate(ind1 , ind2):
i1 = random.randrange(len(ind1))
i2 = random.randrange(len(ind2))
ind1[i1], ind2[i2] = gp.cxOnePoint(ind1[i1], ind2[i2])
return ind1 , ind2

def xmut(ind , expr):

i1 = random.randrange(len(ind))
i2 = random.randrange(len(ind[i1]))
choice = random.random ()
indx = gp.mutUniform(ind[i1], expr , pset=pset)
ind[i1] = indx[0]
return ind ,

start = timeit.default_timer ()

class Rocket:

def __init__(self):
self.GMe = 3.986004418 * 10 ** 14 #Earth gravitational

constant [m^3/s^2]
self.Re = 6371.0 * 1000 #Earth Radius [m]
self.Vr = np.sqrt(self.GMe / self.Re) #[m/s]
self.H0 = 10.0 #[m]
self.V0 = 0.0
self.M0 = 100000.0 #[kg]
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self.Mp = self.M0 * 0.99
self.Cd = 0.6
self.A = 4.0 #[m2]
self.Isp = 300.0 #[s]
self.g0 = 9.80665 #[m/s2]
self.Tmax = self.M0 * self.g0 * 1.5
self.MaxQ = 14000.0 #[Pa]
self.MaxG = 8.0
self.Htarget = 400.0 * 1000 #[m]
self.Rtarget = self.Re + self.Htarget #[m/s]
self.Vtarget = np.sqrt(self.GMe / self.Rtarget) #[m/s]

@staticmethod
def air_density(h):

global flag
beta = 1 / 8500.0
rho0 = 1.225
try:

return rho0 * np.exp(-beta * h)
except RuntimeWarning:

flag = True
return rho0 * np.exp(-beta * obj.Rtarget)

Nstates = 5
Ncontrols = 2
obj = Rocket ()
nEph = 2
mutpb = 0.25
cxpb = 0.55
change_time = 200

size_pop = 700 #Population size
size_gen = 900 #Generation size
Mu = int(size_pop)
Lambda = int(size_pop * 1.4)

limit_height = 17 #Max height
limit_size = 400 #Max size

nbCPU = multiprocessing.cpu_count ()

tref = np.load("time.npy")
total_time_simulation = tref[-1]
del tref

flag=False
flag_time=False
flag_notgood=False
feasible=True

def main():
""" The main function is defined as a container in order to execute

the evolutionary process. Here
the type of algorithm to be used
is chosen like the probability of
crossover and mutation. Moreover
the post processing of the

results as for example the graphs
of position mass , the statistics
of each run and the forms of the
trees are inserted in this main

function."""
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global flag_seed_populations , flag_seed_populations1
global tfin , flag
global size_gen , size_pop , Mu , Lambda , mutpb , cxpb
global Rfun , Thetafun , Vrfun , Vtfun , mfun

flag = False
fit_old = [1e5 , 1e5 , 1e5 , 1e5 , 1e5]
Rref = np.load("R.npy")
Thetaref = np.load("Theta.npy")
Vrref = np.load("Vr.npy")
Vtref = np.load("Vt.npy")
mref = np.load("m.npy")
tref = np.load("time.npy")
tfin = tref[-1]

Rfun = PchipInterpolator(tref , Rref)
Thetafun = PchipInterpolator(tref , Thetaref)
Vrfun = PchipInterpolator(tref , Vrref)
Vtfun = PchipInterpolator(tref , Vtref)
mfun = PchipInterpolator(tref , mref)

del Rref , Thetaref , Vrref , Vtref , mref , tref

pool = multiprocessing.Pool(nbCPU)

toolbox.register("map", pool.map)
pop = toolbox.population(n=size_pop)

print("INITIAL POP SIZE: %d" % size_pop)

print("GEN SIZE: %d" % size_gen)

print("\n")

random.seed()
history.update(pop)

hof= tools.ParetoFront ()

stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
stats_height = tools.Statistics(operator.attrgetter("height"))
mstats = tools.MultiStatistics(fitness=stats_fit , height=

stats_height , size=stats_size
)

mstats.register("avg", np.mean , axis=0)
mstats.register("min", np.min , axis=0)
mstats.register("max", np.max , axis=0)

pop , log = algorithms.eaMuPlusLambda(pop , toolbox , Mu, Lambda ,
mutpb , cxpb , size_gen , stats=
mstats , halloffame=hof ,
verbose=True)

stop = timeit.default_timer ()
total_time = stop - start
tformat = str(datetime.timedelta(seconds=int(total_time)))

res = open("HallOfFame_2Cont", "w")
for i in range(len(hof)):
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res.write("{}: 1".format(i) + str(hof[i][0]) + "\n" + "{}:
2".format(i) + str(hof[i]
[1]) + "\n")

res.close()

gen = log.select("gen")
fit_avg = log.chapters["fitness"].select(’min’)

perform = []
perform2 = []
perform3 = []
perform4 = []
perform5 = []
p = 0
for items in fit_avg:

perform.append(fit_avg[p][0])
perform2.append(fit_avg[p][1])
perform3.append(fit_avg[p][2])
perform4.append(fit_avg[p][3])
perform5.append(fit_avg[p][2])
p = p + 1

fig , ax1 = plt.subplots ()
ax1.plot(gen[1:], perform[1:], "b-", label="Minimum Theta

Fitness Performance")
ax1.plot(gen[1:], perform2[1:], "r-", label="Minimum Position

Fitness Performance")
ax1.plot(gen[1:], perform3[1:], "g-", label="Minimum Vr Fitness

Performance")
ax1.plot(gen[1:], perform4[1:], "k-", label="Minumum Vt Fitness

Performance")
ax1.plot(gen[1:], perform5[1:], "m-", label="Minimum Mass

Fitness Performance")
ax1.set_xlabel("Generation")
ax1.set_ylabel("Fitness", color="b")
ax1.legend(loc="best")
for tl in ax1.get_yticklabels ():

tl.set_color("b")
textstr = (’Total Running Time: {}’.format(tformat))
ax1.text(0.65 , 0.9, textstr , transform=ax1.transAxes , fontsize=

10,
horizontalalignment=’right’)

plt.savefig(’Stats_OFFLINE ’)
plt.show()

expr1 = hof[0][0]
expr2 = hof[0][1]
nodes1 , edges1 , labels1 = gp.graph(expr1)
nodes2 , edges2 , labels2 = gp.graph(expr2)
g1 = pgv.AGraph ()
g1.add_nodes_from(nodes1)
g1.add_edges_from(edges1)
g1.layout(prog="dot")
for i in nodes1:

n = g1.get_node(i)
n.attr["label"] = labels1[i]

g1.draw("tree1.png")

g2 = pgv.AGraph ()
g2.add_nodes_from(nodes2)
g2.add_edges_from(edges2)
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g2.layout(prog="dot")
for i in nodes2:

n = g2.get_node(i)
n.attr["label"] = labels2[i]

g2.draw("tree2.png")

image1 = plt.imread(’tree1.png’)
fig1 , ax1 = plt.subplots ()
im1 = ax1.imshow(image1)
ax1.axis(’off’)
image2 = plt.imread(’tree2.png’)
fig2 , ax2 = plt.subplots ()
im2 = ax2.imshow(image2)
ax2.axis(’off’)
plt.show()

sys.stdout.write("TOTAL RUNNING TIME: {} \n".format(tformat))

fTr = toolbox.compile(expr=expr1)
fTt = toolbox.compile(expr=expr2)
x_ini = [obj.Re, 0.0, 0.0, 0.0, obj.M0]

def sys2GP(t, x):
R = x[0]
theta = x[1]
Vr = x[2]
Vt = x[3]
m = x[4]

r = Rfun(t)
th = Thetafun(t)
vr = Vrfun(t)
vt = Vtfun(t)
mf = mfun(t)

er = r - R
et = th - theta
evr = vr - Vr
evt = vt - Vt
em = mf - m

dxdt = np.zeros(Nstates)

rho = obj.air_density(R - obj.Re)
Dr = 0.5 * rho * Vr * np.sqrt(Vr ** 2 + Vt ** 2) * obj.Cd *

obj.A
Dt = 0.5 * rho * Vt * np.sqrt(Vr ** 2 + Vt ** 2) * obj.Cd *

obj.A
g = obj.g0 * (obj.Re / R) ** 2
g0 = obj.g0
Isp = obj.Isp

dxdt[0] = Vr
dxdt[1] = Vt / R
dxdt[2] = fTr(er, et, evr , evt , em) / m - Dr / m - g + Vt

** 2 / R
dxdt[3] = fTt(er, et, evr , evt , em) / m - Dt / m - (Vr * Vt

) / R
dxdt[4] = - np.sqrt(fTr(er, et, evr , evt , em) ** 2 + fTt(er

, et, evr , evt , em) ** 2)
/ g0 / Isp
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return dxdt

solgp = solve_ivp(sys2GP , [0.0, tfin], x_ini)
rout = solgp.y[0, :]
thetaout = solgp.y[1, :]
vrout = solgp.y[2, :]
vtout = solgp.y[3, :]
mout = solgp.y[4, :]
tgp = solgp.t

if tgp[-1] < tfin:
print("integration stopped prematurely")

rR = np.zeros(len(tgp), dtype=’float’)
tR = np.zeros(len(tgp), dtype=’float’)
vrR = np.zeros(len(tgp), dtype=’float ’)
vtR = np.zeros(len(tgp), dtype=’float ’)
mR = np.zeros(len(tgp), dtype=’float’)

ii = 0
for i in tgp:

rR[ii] = Rfun(i)
tR[ii] = Thetafun(i)
vrR[ii] = Vrfun(i)
vtR[ii] = Vtfun(i)
mR[ii] = mfun(i)
ii = ii + 1

fig2 , ax2 = plt.subplots ()
ax2.set_xlabel("time [s]")
ax2.set_ylabel("altitude [km]")
plt.plot(tgp , (rout-obj.Re)/1e3 , label="GENETIC PROGRAMMING")
plt.plot(tgp , (rR-obj.Re)/1e3 , ’r--’, label="SET POINT")
plt.legend(loc="best")
plt.savefig(’Altitude_OFFLINE.png’)

fig3 , ax3 = plt.subplots ()
ax3.set_xlabel("time [s]")
ax3.set_ylabel("flight angle displacement [deg]")
plt.plot(tgp , np.rad2deg(thetaout), label="GENETIC PROGRAMMING"

)
plt.plot(tgp , np.rad2deg(tR), ’r--’, label="SET POINT")
plt.legend(loc="best")
plt.savefig(’Flight_angle_displacement_OFFLINE.png’)

fig4 , ax4 = plt.subplots ()
ax4.set_xlabel("time [s]")
ax4.set_ylabel("radial velocity [m/s]")
plt.plot(tgp , vrout , label="GENETIC PROGRAMMING")
plt.plot(tgp , vrR , ’r--’, label="SET POINT")
plt.legend(loc="best")
plt.savefig(’Radial_velocity_OFFLINE.png’)

fig5 , ax5 = plt.subplots ()
ax5.set_xlabel("time [s]")
ax5.set_ylabel("tangential velocity [m/s]")
plt.plot(tgp , vtout , label="GENETIC PROGRAMMING")
plt.plot(tgp , vtR , ’r--’, label="SET POINT")
plt.legend(loc="best")
plt.savefig(’Tangential_velocity_OFFLINE.png’)

fig6 , ax6 = plt.subplots ()
ax6.set_xlabel("time [s]")
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ax6.set_ylabel("mass [kg]")
plt.plot(tgp , mout , label="GENETIC PROGRAMMING")
plt.plot(tgp , mR , ’r--’, label="SET POINT")
plt.legend(loc="best")
plt.savefig(’Mass_OFFLINE.png’)
plt.show()

pool.close()
return pop , log , hof

def evaluate(individual):
""" The evaluate function is the fundamental function in which

individuals are evaluated in
order to define how an individual
is able to solve the problem. In
this problem , the fitness

function is defined to reduce the
error between the current states
and the desired states through

the adoption of the Integral of
Absolute Error method."""

global flag , flag_notgood
global Rfun , Thetafun , Vrfun , Vtfun , mfun , Trfun
global tfin , t_eval2 , penalty , fit_old

penalty = np.zeros ((13))
flag = False
flag_notgood=False

fTr = toolbox.compile(expr=individual[0])
fTt = toolbox.compile(expr=individual[1])

x_ini = [obj.Re, 0.0, 0.0, 0.0, obj.M0]

def sys(t, x):
global penalty , flag , flag_notgood , cd_var
R = x[0]
theta = x[1]
Vr = x[2]
Vt = x[3]
m = x[4]

r = Rfun(t)
th = Thetafun(t)
vr = Vrfun(t)
vt = Vtfun(t)
mf = mfun(t)

if R < obj.Re:
penalty[0] = penalty[0] + abs(R - obj.Re) / obj.Htarget
R = obj.Re
flag = True
if t < 100:

penalty[0] = penalty[0] + abs(R - obj.Re) / obj.
Htarget

elif R > obj.Rtarget:
penalty[1] = penalty[1] + abs(R - obj.Rtarget) / obj.

Htarget
R = obj.Rtarget
flag = True

if m < obj.M0 - obj.Mp:
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penalty[2] = penalty[2] + abs(m - (obj.M0 - obj.Mp)) /
obj.M0

m = obj.M0 - obj.Mp
flag = True

elif m > obj.M0:
penalty[3] = penalty[3] + abs(m - obj.M0) / obj.M0
m = obj.M0
flag = True

if Vr > 1000:
penalty[4] = penalty[4] + abs(Vr - 1000) / 765.

0826978731632
Vr = 1000
flag = True

elif Vr < -30:
penalty[4] = penalty[4] + abs(Vr - 30) / 765.

0826978731632
Vr = -30
flag = True

elif Vr < 0 and t < 100:
penalty[4] = penalty[4] + abs(Vr) / 765.0826978731632
flag = True
Vr = 0

if Vt > 10000:
penalty[5] = penalty[5] + abs(Vt - 10000) / 7684.

936222117861
flag = True
Vt = 10000

elif Vt < 0:
penalty[5] = penalty[5] + abs(Vt - 0) / 7684.

936222117861
Vt = 0
flag = True

if theta > 1.0472:
penalty[6] = penalty[6] + abs(theta - 1.0472) / 0.

8666158523063785
theta = 1.0472
flag = True

elif theta < 0:
penalty[6] = penalty[6] + abs(theta - 0) / 0.

8666158523063785
theta = 0
flag = True

er = r - R
et = th - theta
evr = vr - Vr
evt = vt - Vt
em = mf - m

rho = obj.air_density(R - obj.Re)
Dr = 0.5 * rho * Vr * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var *

obj.A
Dt = 0.5 * rho * Vt * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var *

obj.A
g = obj.g0 * (obj.Re / R) ** 2
g0 = obj.g0
Isp = obj.Isp

Tr = fTr(er, et, evr , evt , em)
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Tt = fTt(er, et, evr , evt , em)

if (fTr(er, et, evr , evt , em) > 0 and fTr(er, et, evr , evt ,
em) < obj.Tmax) and (

fTt(er, et, evr , evt , em) > 0 and fTt(er, et, evr ,
evt , em) < obj.
Tmax):

# if (fTr(er, et, em) > 0 and fTr(er , et, em) < obj.
Tmax) and (fTt(er , et
, em) > 0 and fTt(er,
et, em) < obj.Tmax):

dxdt = np.array ((Vr,
Vt / R,
Tr / m - Dr / m - g + Vt ** 2 / R,
Tt / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(Tt ** 2 + Tr ** 2) / (g0 *

Isp)
))

else:
dxdt = np.array ((Vr,

Vt / R,
0 / m - Dr / m - g + Vt ** 2 / R,
0 / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(0 ** 2 + 0 ** 2) / (g0 * Isp)

))

flag_notgood = True
return dxdt

tin = 0.0
teval = np.linspace(0.0, tfin , int(tfin*3))
sol = solve_ivp(sys , [tin , tfin], x_ini , t_eval=teval)
y1 = sol.y[0, :]
y2 = sol.y[1, :]
y3 = sol.y[2, :]
y4 = sol.y[3, :]
y5 = sol.y[4, :]
tt = sol.t

r = Rfun(tt)
theta = Thetafun(tt)
vr = Vrfun(tt)
vt = Vtfun(tt)
m = mfun(tt)

err1 = (r - y1) / obj.Htarget
err2 = (theta - y2) / 0.8666158523063785
err3 = (vr - y3)/obj.Vtarget
err4 = (vt - y4)/obj.Vtarget
err5 = (m - y5) / obj.M0

i = 0
pp = 1
step = np.zeros(len(y1), dtype=’float’)
step[0] = tt[1] - tt[0]
while i < len(tt) - 1:

step[pp] = tt[i + 1] - tt[i]
i = i + 1
pp = pp + 1

IAE = np.zeros ((5, len(err1)))
j = 0
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for a, b, c, d, e, n in zip(err1 , err2 , err3 , err4 , err5 , step)
:

IAE[0][j] = n * abs(a)
IAE[1][j] = n * abs(b)
IAE[2][j] = n * abs(c)
IAE[3][j] = n * abs(d)
IAE[4][j] = n * abs(e)
j = j + 1

fitness = [sum(IAE[0]), sum(IAE[1]), sum(IAE[2]), sum(IAE[3]),
sum(IAE[4])]

if flag_notgood is True:
return [10000 ,10000 ,10000 ,10000 ,10000]

if flag is True:
x = np.array([fitness[0] + (penalty[0] + penalty[1]) /

fitness[0],
fitness[1] + (penalty[6]) / fitness[1],
fitness[2] + (penalty[4]) / fitness[2],
fitness[3] + (penalty[5]) / fitness[3],
fitness[4] + (penalty[2] + penalty[3]) /

fitness[4]]
)

return x if flag is True else fitness

""" The Primitive set is determined in the following code lines. The
mathematical operations ,

constants and variables are
defined. Such step is very
important for the algorithm
because with such definition the
size of search space is
automatically defined."""

pset = gp.PrimitiveSet("MAIN", 5)
pset.addPrimitive(operator.add , 2, name="Add")
pset.addPrimitive(operator.sub , 2, name="Sub")
pset.addPrimitive(operator.mul , 2, name="Mul")
pset.addPrimitive(TriAdd , 3)
pset.addPrimitive(Abs , 1)
pset.addPrimitive(Tanh , 1)
pset.addPrimitive(Sqrt , 1)
for i in range(nEph):

pset.addEphemeralConstant("rand{}".format(i), lambda: round(
random.uniform(-500 , 500), 6)
)

pset.renameArguments(ARG0=’errR’)
pset.renameArguments(ARG1=’errTheta ’)
pset.renameArguments(ARG2=’errVr ’)
pset.renameArguments(ARG3=’errVt ’)
pset.renameArguments(ARG4=’errm’)

creator.create("Fitness", base.Fitness , weights=(-0.2, -0.4, -4.0,
-0.1, -2.0))

creator.create("Individual", list , fitness=creator.Fitness , height=
1)

creator.create("SubIndividual", gp.PrimitiveTree , fitness=creator.
Fitness)

toolbox = base.Toolbox ()
toolbox.register("expr", gp.genFull , pset=pset , type_=pset.ret ,

min_=1, max_=2)
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toolbox.register("leg", tools.initIterate , creator.SubIndividual ,
toolbox.expr)

toolbox.register("legs", tools.initRepeat , list , toolbox.leg , n=
Ncontrols)

toolbox.register("individual", tools.initIterate , creator.
Individual , toolbox.legs)

toolbox.register("population", tools.initRepeat , list , toolbox.
individual)

toolbox.register("compile", gp.compile , pset=pset)
toolbox.register("evaluate", evaluate)
toolbox.register("select", tools.selNSGA2)
toolbox.register("mate", xmate)
toolbox.register("expr_mut", gp.genFull , min_=1, max_=3)
toolbox.register("mutate", xmut , expr=toolbox.expr_mut)
toolbox.decorate("mate", gp.staticLimit(key=operator.attrgetter("

height"), max_value=limit_height)
)

toolbox.decorate("mate", gp.staticLimit(key=len , max_value=
limit_size))

if __name__ == "__main__":
obj = Rocket ()
pop , log , hof = main()

D.4 GODDARD _ ONLINE.py

/* This Source Code Form is subject to the terms of the Mozilla
Public

* License , v. 2.0. If a copy of the MPL was not distributed with
this

* file , You can obtain one at http: // mozilla.org/MPL/2.0/. */
/*
----- Copyright (C) 2019 University of Strathclyde and Authors ----
------------------ Author: Francesco Marchetti ------------------
-------------- e-mail: francesco.marchetti@strath.ac.uk -----------
-------------------- Author: Nicola Menga -------------------------
-------------- e-mail: nicola.menga@strath.ac.uk ------------------
-----------------------nicola.menga@studenti.polito.it-------------
*/

from scipy.integrate import solve_ivp
import numpy as np
import operator
import pygraphviz as pgv
import random
from deap import gp
import matplotlib.pyplot as plt
import sys
import timeit
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
import multiprocessing
from scipy.interpolate import PchipInterpolator
from time import time
from interruptingcow import timeout
import pickle
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def TriAdd(x, y, z):
return x + y + z

def Sqrt(a):
if a > 0:

return np.sqrt(a)
else:

return np.abs(a)

def Log(a):
if a > 0:

return np.log(a)
else:

return np.abs(a)

def Tanh(a):
return np.tanh(a)

def Mul(a, b):
return a * b

def Sub(a, b):
return a - b

def Add(a, b):
return a + b

def Abs(a):
return np.abs(a)

def xmate(ind1 , ind2):
i1 = random.randrange(len(ind1))
i2 = random.randrange(len(ind2))
ind1[i1], ind2[i2] = gp.cxOnePoint(ind1[i1], ind2[i2])
return ind1 , ind2

def xmut(ind , expr):

i1 = random.randrange(len(ind))
i2 = random.randrange(len(ind[i1]))
choice = random.random ()
indx = gp.mutUniform(ind[i1], expr , pset=pset)
ind[i1] = indx[0]
return ind ,

class Rocket:

def __init__(self):
self.GMe = 3.986004418 * 10 ** 14 #Earth

gravitational constant [m
^3/s^2]

self.Re = 6371.0 * 1000 #Earth
Radius [m]

self.Vr = np.sqrt(self.GMe / self.Re) #[m/s]
self.H0 = 10.0 #[m]
self.V0 = 0.0
self.M0 = 100000.0 #[kg]
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self.Mp = self.M0 * 0.99
self.Cd = 0.6
self.A = 4.0 #[m2]
self.Isp = 300.0 #[s]
self.g0 = 9.80665 #[m/s2]
self.Tmax = self.M0 * self.g0 * 1.5
self.MaxQ = 14000.0 #[Pa]
self.MaxG = 8.0
self.Htarget = 400.0 * 1000 #[m]
self.Rtarget = self.Re + self.Htarget #[m/s]
self.Vtarget = np.sqrt(self.GMe / self.Rtarget) #[m/s]

@staticmethod
def air_density(h):

global flag
beta = 1 / 8500.0
rho0 = 1.225
try:

return rho0 * np.exp(-beta * h)
except RuntimeWarning:

flag = True
return rho0 * np.exp(-beta * obj.Rtarget)

Nstates = 5
Ncontrols = 2
obj = Rocket ()
nEph = 2
mutpb = 0.1
cxpb = 0.7
change_time = 200

size_pop = 30 #Population size
size_gen = 30 #Generation size
Mu = int(size_pop)
Lambda = int(size_pop * 1.4)

limit_height = 17 #Max height
limit_size = 400 #Max size

cd_var=12

tref = np.load("time.npy")
total_time_simulation = tref[-1]
del tref

flag=False
flag_time=False
flag_notgood=False
feasible=True
flag_offdesign= False
flag = False

Rref = np.load("R.npy")
Thetaref = np.load("Theta.npy")
Vrref = np.load("Vr.npy")
Vtref = np.load("Vt.npy")
mref = np.load("m.npy")
tref = np.load("time.npy")
tfin = tref[-1]

Rfun = PchipInterpolator(tref , Rref)
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Thetafun = PchipInterpolator(tref , Thetaref)
Vrfun = PchipInterpolator(tref , Vrref)
Vtfun = PchipInterpolator(tref , Vtref)
mfun = PchipInterpolator(tref , mref)

def main():
""" The main function is defined as a container in order to execute

the evolutionary process. Here
the type of algorithm to be used
is chosen like the probability of
crossover and mutation. Moreover
the post processing of the

results as graph of position mass
and the forms of the trees are

inserted in this main function.
"""

global flag_offdesign
global tfin , flag
global size_gen , size_pop , Mu , Lambda , mutpb , cxpb
global Rfun , Thetafun , Vrfun , Vtfun , mfun

pool = multiprocessing.Pool()
toolx.register("map", pool.map)
pop2 = toolx.population ()
pop3 = toolx.popx(random_individual)
final_pop= pop2 + pop3

individualss = [ind for ind in final_pop]
fitnesses = toolx.map(toolx.evaluate , individualss)
for ind , fit in zip(individualss , fitnesses):

ind.fitness.values = fit

hofx = tools.ParetoFront ()
Mux = int(len(final_pop))
Lambdax = int(len(final_pop)*1.5)

print("INITIAL POP SIZE: %d" % size_pop)

print("GEN SIZE: %d" % size_gen)

print("\n")

random.seed()

if flag_offdesign is True:
popx , logx = algorithms.eaMuPlusLambda(individualss , toolx ,

Mux , Lambdax , mutpb ,
cxpb , size_gen ,
halloffame=hofx , verbose=
True)

reson = open("HallOfFame_2Cont_ON", "w")
for i in range(len(hofx)):

reson.write("{}: 1".format(i) + str(hofx[i][0]) + "\n" + "{
}: 2".format(i) + str(
hofx[i][1]) + "\n")

reson.close()

expr1 = hofx[0][0]
expr2 = hofx[0][1]

nodes1 , edges1 , labels1 = gp.graph(expr1)

LI



nodes2 , edges2 , labels2 = gp.graph(expr2)
g1 = pgv.AGraph ()
g1.add_nodes_from(nodes1)
g1.add_edges_from(edges1)
g1.layout(prog="dot")
for i in nodes1:

n = g1.get_node(i)
n.attr["label"] = labels1[i]

g1.draw("tree1.png")

g2 = pgv.AGraph ()
g2.add_nodes_from(nodes2)
g2.add_edges_from(edges2)
g2.layout(prog="dot")
for i in nodes2:

n = g2.get_node(i)
n.attr["label"] = labels2[i]

g2.draw("tree2.png")

plt.show()
plt.close()

image1 = plt.imread(’tree1.png’)
fig1 , ax1 = plt.subplots ()
im1 = ax1.imshow(image1)
ax1.axis(’off’)
image2 = plt.imread(’tree2.png’)
fig2 , ax2 = plt.subplots ()
im2 = ax2.imshow(image2)
ax2.axis(’off’)
plt.show()
plt.close()

sys.stdout.write("TOTAL RUNNING TIME: {} \n".format(tformat))

pool.close()
pool.join()
return (popx , logx , hofx) if flag_offdesign is True else (pop ,

log , hof)

def evaluate(individual):
""" The evaluate function is the fundamental function in which

individuals are evaluated in
order to define how an individual
is able to solve the problem. In
this problem , the fitness

function is defined to reduce the
error between the current states
and the desired states through

the adoption of the Integral of
Absolute Error method."""

global flag , flag_offdesign ,flag_notgood
global Rfun , Thetafun , Vrfun , Vtfun , mfun , Trfun
global tfin , t_eval2 , penalty , cd_var

penalty = np.zeros ((7))
flag = False
flag_notgood=False

fTr = toolx.compile(expr=individual[0])
fTt = toolx.compile(expr=individual[1])
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def sys(t, x):
global penalty , flag ,flag_notgood , cd_var
R = x[0]
theta = x[1]
Vr = x[2]
Vt = x[3]
m = x[4]

r = Rfun(t)
th = Thetafun(t)
vr = Vrfun(t)
vt = Vtfun(t)
mf = mfun(t)

if R < obj.Re:
penalty[0] = penalty[0] + abs(R - obj.Re)/obj.Htarget
R = obj.Re
flag = True
if t<100:

penalty[0] = penalty[0] + abs(R - obj.Re) / obj.
Htarget

elif R > obj.Rtarget:
penalty[1] = penalty[1] + abs(R - obj.Rtarget)/obj.

Htarget
R = obj.Rtarget
flag = True

if m < obj.M0 - obj.Mp:
penalty[2] = penalty[2] + abs(m - (obj.M0 - obj.Mp))/

obj.M0
m = obj.M0 - obj.Mp
flag = True

elif m > obj.M0:
penalty[3] = penalty[3] + abs(m - obj.M0)/obj.M0
m = obj.M0
flag = True

if Vr > 1000:
penalty[4] = penalty[4] + abs(Vr - 1000)/765.

0826978731632
Vr = 1000
flag = True

elif Vr < -30 :
penalty[4] = penalty[4] + abs(Vr - 30)/ 765.

0826978731632
Vr = -30
flag = True

elif Vr < 0 and t < 100:
penalty[4] = penalty[4] + abs(Vr)/ 765.0826978731632
flag = True
Vr = 0

if Vt > 10000:
penalty[5] = penalty[5] + abs(Vt - 10000)/7684.

936222117861
flag = True
Vt = 10000

elif Vt < 0 :
penalty[5] = penalty[5] + abs(Vt - 0)/ 7684.

936222117861
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Vt = 0
flag = True

if theta > 1.0472:
penalty[6]=penalty[6] + abs(theta - 1.0472)/0.

8666158523063785
theta=1.0472
flag=True

elif theta < 0:
penalty[6] = penalty[6] + abs(theta - 0)/0.

8666158523063785
theta=0
flag=True

er = r - R
et = th - theta
evr = vr - Vr
evt = vt - Vt
em = mf - m

rho = obj.air_density(R - obj.Re)
Dr = 0.5 * rho * Vr * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var *

obj.A
Dt = 0.5 * rho * Vt * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var *

obj.A
g = obj.g0 * (obj.Re / R) ** 2
g0 = obj.g0
Isp = obj.Isp

Tr = fTr(er, et,evr , evt , em)
Tt = fTt(er, et,evr , evt , em)

if (fTr(er, et, evr , evt , em)>0 and fTr(er , et , evr , evt ,
em)<obj.Tmax) and (fTt(er
, et, evr , evt , em)>0 and
fTt(er, et, evr , evt , em

)<obj.Tmax):
dxdt = np. array((Vr,

Vt / R,
Tr / m - Dr / m - g + Vt ** 2 / R,
Tt / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(Tt ** 2 + Tr ** 2) / (g0 *

Isp)
))

else:
dxdt = np. array((Vr,

Vt / R,
0 / m - Dr / m - g + Vt ** 2 / R,
0 / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(0 ** 2 + 0 ** 2) / (g0 * Isp)

))

flag_notgood=True
return dxdt

tin = 0.0

if flag_offdesign is True:
x_ini = xnew_ini
tin = change_time
teval = t_eval2
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try:
with timeout(1.2, exception=RuntimeError):

sol = solve_ivp(sys , [tin , tfin], x_ini , t_eval=teval)
except RuntimeError:

return [1e20 ,1e20 ,1e20 ,1e20 ,1e20]

y1 = sol.y[0, :]
y2 = sol.y[1, :]
y3 = sol.y[2, :]
y4 = sol.y[3, :]
y5 = sol.y[4, :]
tt = sol.t

r = Rfun(tt)
theta = Thetafun(tt)
vr = Vrfun(tt)
vt = Vtfun(tt)
m = mfun(tt)

err1 = (r - y1) / obj.Htarget
err2 = (theta - y2) / 0.8666158523063785
err3 = (vr - y3)/765.0826978731632
err4 = (vt - y4)/7684.936222117861
err5 = (m - y5) / obj.M0

i = 0
pp = 1
step = np.zeros(len(y1), dtype=’float’)
step[0] = tt[1] - tt[0]
while i < len(tt) - 1:

step[pp] = tt[i + 1] - tt[i]
i = i + 1
pp = pp + 1

IAE = np.zeros ((5, len(err1)))
j = 0
for a, b, c, d, e, n in zip(err1 , err2 , err3 , err4 , err5 , step)

:
IAE[0][j] = n * abs(a)
IAE[1][j] = n * abs(b)
IAE[2][j] = n * abs(c)
IAE[3][j] = n * abs(d)
IAE[4][j] = n * abs(e)
j = j + 1

fitness = [sum(IAE[0]), sum(IAE[1]), sum(IAE[2]), sum(IAE[3]),
sum(IAE[4])]

if flag_notgood is True:
return [1e20 ,1e20 ,1e20 ,1e20 ,1e20]

if flag is True:
x = np.array([fitness[0] + (penalty[0] + penalty[1])/

fitness[0],
fitness[1] + (penalty[6])/fitness[1],
fitness[2] + (penalty[4])/fitness[2],
fitness[3] + (penalty[5])/fitness[3],
fitness[4] + (penalty[2]+ penalty[3])/fitness[4]])

return x if flag is True else fitness
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""" The Primitive set is determined in the following code lines. The
mathematical operations ,

constants and variables are
defined. Such step is very
important for the algorithm
because with such definition the
size of search space is
automatically defined."""

pset = gp.PrimitiveSet("MAIN", 5)
pset.addPrimitive(operator.add , 2, name="Add")
pset.addPrimitive(operator.sub , 2, name="Sub")
pset.addPrimitive(operator.mul , 2, name="Mul")
pset.addPrimitive(TriAdd , 3)
pset.addPrimitive(Abs , 1)
pset.addPrimitive(Tanh , 1)
pset.addPrimitive(Sqrt , 1)
for i in range(nEph):

pset.addEphemeralConstant("rand{}".format(i), lambda: round(
random.uniform(-500 , 500), 6)
)

pset.renameArguments(ARG0=’errR’)
pset.renameArguments(ARG1=’errTheta ’)
pset.renameArguments(ARG2=’errVr ’)
pset.renameArguments(ARG3=’errVt ’)
pset.renameArguments(ARG4=’errm’)

creator.create("Fitness", base.Fitness , weights=(-0.5, -0.2, -0.5,
-0.1, -1.0))

creator.create("Individual", list , fitness=creator.Fitness , height=
1)

creator.create("SubIndividual", gp.PrimitiveTree , fitness=creator.
Fitness)

obj = Rocket ()

x_ini = [obj.Re, 0.0, 0.0, 0.0, obj.M0]

def sys2GP(t, x):
R = x[0]
theta = x[1]
Vr = x[2]
Vt = x[3]
m = x[4]

r = Rfun(t)
th = Thetafun(t)
vr = Vrfun(t)
vt = Vtfun(t)
mf = mfun(t)

errR = r - R
errTheta = th - theta
errVr = vr - Vr
errVt = vt - Vt
errm = mf - m

Tr = Sqrt(TriAdd(Abs(Sub(Add(TriAdd(Sub(Sub(Sqrt(errR), Add(
errVr , -336.252482)), Sub(
errVt , errVt)), errTheta , Abs
(Abs(errVr))),TriAdd(Add(Sub(
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Mul(-70.85579 , 25.369957),
TriAdd(errR , errR , -192.45208
)), Sqrt(Mul(errVr , errm))),
TriAdd(Sqrt(Abs(TriAdd(Sqrt(
Sqrt(Sqrt(TriAdd(errTheta ,
errVt , errVr)))), Add(Tanh(
errm), Add(417.541074 , errR))
,Mul(Add(272.761683 , errVt),
Abs(errTheta))))), Tanh(Tanh(
189.147772)),Add(Mul(281.
174641 , errTheta), Add(-463.
187985 , -44.566462))), errVt)
),Add(Abs(Sub(Sub(-294.912831
, errm), Mul(errm , errVr))),
Add(Tanh(Sqrt(Add(356.090788 ,
Sub(errTheta , errVt)))),

Sqrt(Mul(errVt , -163.151633))
)))), Mul(Add(Sub(errm , Abs(
Sqrt(Add(450.227029 , errVr)))
), Mul(Sqrt(Sqrt(Tanh(Abs(Abs
(Sub(Add(errTheta , Tanh(Sub(
errm , errVr))), Add(Abs(Mul(
errTheta , errTheta)), Abs(Mul
(Tanh(errVt), Mul(TriAdd(Mul(
errVr , 165.979145), Sqrt(errR
), Abs(Sub(Sub(errm , -383.
76704), Sqrt(errm)))),Tanh(
Add(errR , Mul(Sub(Tanh(Add(
errTheta , errm)), Abs(errm)),
Abs(Sqrt(errVt))))))))))))))

), Tanh(TriAdd(Mul(Mul(errm ,
errVr), Abs(31.587732)), Sqrt
(Abs(errR)),Sqrt(TriAdd(errVr
, errR , Sqrt(Mul(Tanh(115.
522294), TriAdd(errTheta , 19.
959912 , 78.486749))))))))),
Sqrt(Add(TriAdd(Sub(Tanh(Abs(
Sqrt(Add(errTheta , Abs(Sqrt(
errR)))))), Add(errVr , -186.
266856)), -393.259084 , errVt)
,Sub(errTheta , 304.859982))))
, Mul(errm , 114.654252)))

Tt = TriAdd(Sqrt(Mul(errm , 56.715711)), TriAdd(TriAdd(Sub(Tanh(
TriAdd(errTheta , -435.431012 ,
-288.399033)), Sqrt(Sub(-269

.090055 , -216.348377))), Sqrt
(errm),Add(Mul(Abs(TriAdd(Add
(Tanh(errVr), Tanh(Mul(Mul(
errVr , errVt), TriAdd(errVt ,
Add(Abs(Abs(errVt)), Sqrt(Add
(errm , 189.687451))), Mul(
Sqrt(Sub(Mul(Abs(errVt),
errTheta), Tanh(errTheta))),
Sqrt(Sqrt(Abs(TriAdd(Sqrt(Mul
(Tanh(Sub(-72.106792 ,
errTheta)),Add(TriAdd(errVr ,
errm , errVt), Mul(-214.408013
, -424.368337)))), Tanh(-484.
034856),Abs(errVt)))))))))),
Sqrt(errm), Tanh(Abs(TriAdd(
errR , Abs(-407.653047), errVr
))))),82.141667), TriAdd(Abs(
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errVr), TriAdd(Sqrt(Sub(errR ,
-358.30903)), errm ,Sub(errR ,
Tanh(Sqrt(Mul(181.443512 ,

errVr))))),Tanh(Tanh(errVt)))
)), Sqrt(Mul(265.132498 , errm
)), Sqrt(TriAdd(Abs(errm),
Sqrt(-217.067638), TriAdd(
Sqrt(-95.90338), errm , Mul(
Sub(Tanh(Add(Abs(errm),
TriAdd(errTheta , 151.21694 ,
errVt))), Sub(Sub(Mul(
errTheta , Add(errR , errR)),
Add(Sub(Add(Add(errVr , errR),
Add(132.515184 ,errm)), Add(
TriAdd(errVt , Sub(Add(Sqrt(
Sub(-493.510467 , errVr)),Sqrt
(188.460917)),Add(Tanh(Mul(
errVr ,errR)),Sub(-22.727781 ,
errVr))),errm),TriAdd(errR ,
421.834855 ,228.627005))),Sqrt
(Tanh(330.127231)))),Tanh(
errm))),Sqrt(Abs(Tanh(Sub(134
.690301 , errTheta))))))))),
Tanh(Add(errVt , Mul(errR ,
errm))))

rho = obj.air_density(R - obj.Re)
Dr = 0.5 * rho * Vr * np.sqrt(Vr ** 2 + Vt ** 2) * obj.Cd * obj

.A
Dt = 0.5 * rho * Vt * np.sqrt(Vr ** 2 + Vt ** 2) * obj.Cd * obj

.A
g = obj.g0 * (obj.Re / R) ** 2
g0 = obj.g0
Isp = obj.Isp

dxdt = np.array ((Vr,
Vt / R,
Tr / m - Dr / m - g + Vt ** 2 / R,
Tt / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(Tt ** 2 + Tr ** 2) / g0 / Isp))

return dxdt

tevals = np.linspace(0.0, change_time , int(change_time*3))
tevalsref = np.linspace(0.0, total_time_simulation , int(

total_time_simulation*3))

solgp = solve_ivp(sys2GP , [0, change_time], x_ini , t_eval=tevals)
rout = solgp.y[0, :]
thetaout = solgp.y[1, :]
vrout = solgp.y[2, :]
vtout = solgp.y[3, :]
mout = solgp.y[4, :]
ttgp = solgp.t

solgppp = solve_ivp(sys2GP , [0, total_time_simulation], x_ini ,
t_eval=tevalsref)

ttgppp = solgppp.t

rR = Rfun(tevalsref)
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tR = Thetafun(tevalsref)
vrR = Vrfun(tevalsref)
vtR = Vtfun(tevalsref)
mR = mfun(tevalsref)

i = 0
for i in range(len(ttgp)):

if ttgp[i] >= change_time:
index = i
break

objects = []
with (open("hof_GODDARD.pkl", "rb")) as openfile:

while True:
try:

objects.append(pickle.load(openfile))
except EOFError:

break

init_height1=int(objects[0][0].height)
init_height2=(objects[0][1].height)

start = time()
if __name__ == "__main__":

random_individual=int(size_gen)

def initPOP1 ():
global objects
return objects[0]

toolx = base.Toolbox ()
toolx.register("expr", gp.genFull , pset=pset , type_=pset.ret ,

min_=init_height1 , max_=
init_height1)

toolx.register("leg", tools.initIterate , creator.SubIndividual ,
toolx.expr)

toolx.register("legs", tools.initRepeat , list , toolx.leg , n=
Ncontrols)

toolx.register("individual", tools.initIterate , creator.
Individual , toolx.legs)

toolx.register("popx", tools.initRepeat , list , toolx.individual
)

toolx.register("population", tools.initIterate , list , initPOP1)
toolx.register("compile", gp.compile , pset=pset)
toolx.register("evaluate", evaluate)
toolx.register("select", tools.selNSGA2)
toolx.register("mate", xmate)
toolx.register("expr_mut", gp.genFull , min_=2, max_=5)
toolx.register("mutate", xmut , expr=toolx.expr_mut)
toolx.decorate("mate", gp.staticLimit(key=operator.attrgetter("

height"), max_value=
limit_height))

toolx.decorate("mate", gp.staticLimit(key=len , max_value=
limit_size))

obj = Rocket ()
xnew_ini = [float(rout[index]), float(thetaout[index]), float(

vrout[index]), float(vtout[
index]), float(mout[index])]

t_eval2 = np.linspace(change_time , tfin , int(tfin*3))
flag_seed_populations = True
flag_offdesign = True
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flag_prop = False
size_pop , size_gen , cxpb , mutpb = size_gen , 100 , 0.8, 0.1
popx , logx , hofx = main()

end = time()
t_offdesign = end - start

def sys2GP_c(t, x):
global cd_var

R = x[0]
theta = x[1]
Vr = x[2]
Vt = x[3]
m = x[4]

r = Rfun(t)
th = Thetafun(t)
vr = Vrfun(t)
vt = Vtfun(t)
mf = mfun(t)

errR = r - R
errTheta = th - theta
errVr = vr - Vr
errVt = vt - Vt
errm = mf - m

Tr = Sqrt(TriAdd(Abs(Sub(Add(TriAdd(Sub(Sub(Sqrt(errR), Add(
errVr , -336.252482)), Sub(
errVt , errVt)), errTheta , Abs
(Abs(errVr))), TriAdd(Add(Sub
(Mul(-70.85579 , 25.369957),
TriAdd(errR , errR , -192.45208
)), Sqrt(Mul(errVr , errm))),
TriAdd(Sqrt(Abs(TriAdd(Sqrt(
Sqrt(Sqrt(TriAdd(errTheta ,
errVt , errVr)))), Add(Tanh(
errm), Add(417.541074 , errR))
, Mul(Add(272.761683 , errVt),
Abs(errTheta))))), Tanh(Tanh

(189.147772)), Add(Mul(281.
174641 , errTheta), Add(-463.
187985 , -44.566462))), errVt)
), Add(Abs(Sub(Sub(-294.
912831 , errm), Mul(errm ,
errVr))), Add(Tanh(Sqrt(Add(
356.090788 , Sub(errTheta ,
errVt)))), Sqrt(Mul(errVt , -
163.151633)))))), Mul(Add(Sub
(errm , Abs(Sqrt(Add(450.
227029 , errVr)))), Mul(Sqrt(
Sqrt(Tanh(Abs(Abs(Sub(Add(
errTheta , Tanh(Sub(errm ,
errVr))), Add(Abs(Mul(
errTheta , errTheta)), Abs(Mul
(Tanh(errVt), Mul(TriAdd(Mul(
errVr , 165.979145), Sqrt(errR
), Abs(Sub(Sub(errm , -383.
76704), Sqrt(errm)))), Tanh(
Add(errR , Mul(Sub(Tanh(Add(
errTheta , errm)), Abs(errm)),
Abs(Sqrt(errVt))))))))))))))
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), Tanh(TriAdd(Mul(Mul(errm ,
errVr), Abs(31.587732)), Sqrt
(Abs(errR)), Sqrt(TriAdd(
errVr , errR , Sqrt(Mul(Tanh(
115.522294), TriAdd(errTheta ,
19.959912 , 78.486749))))))))

), Sqrt(Add(TriAdd(Sub(Tanh(
Abs(Sqrt(Add(errTheta , Abs(
Sqrt(errR)))))), Add(errVr , -
186.266856)), -393.259084 ,
errVt), Sub(errTheta , 304.
859982)))), Mul(errm , 114.
654252)))

Tt = TriAdd(Sqrt(Mul(errm , 56.715711)), TriAdd(TriAdd(Sub(Tanh(
TriAdd(errTheta , -435.431012 ,
-288.399033)), Sqrt(Sub(-269

.090055 , -216.348377))), Sqrt
(errm), Add(Mul(Abs(TriAdd(
Add(Tanh(errVr), Tanh(Mul(Mul
(errVr , errVt), TriAdd(errVt ,
Add(Abs(Abs(errVt)), Sqrt(

Add(errm , 189.687451))), Mul(
Sqrt(Sub(Mul(Abs(errVt),
errTheta), Tanh(errTheta))),
Sqrt(Sqrt(Abs(TriAdd(Sqrt(Mul
(Tanh(Sub(-72.106792 ,
errTheta)), Add(TriAdd(errVr ,
errm , errVt), Mul(-214.

408013 , -424.368337)))), Tanh
(-484.034856), Abs(errVt)))))
))))), Sqrt(errm), Tanh(Abs(
TriAdd(errR , Abs(-407.653047)
, errVr))))), 82.141667),
TriAdd(Abs(errVr), TriAdd(
Sqrt(Sub(errR , -358.30903)),
errm , Sub(errR , Tanh(Sqrt(Mul
(181.443512 , errVr))))), Tanh
(Tanh(errVt))))), Sqrt(Mul(
265.132498 , errm)), Sqrt(
TriAdd(Abs(errm), Sqrt(-217.
067638), TriAdd(Sqrt(-95.
90338), errm , Mul(Sub(Tanh(
Add(Abs(errm), TriAdd(
errTheta , 151.21694 , errVt)))
, Sub(Sub(Mul(errTheta , Add(
errR , errR)), Add(Sub(Add(Add
(errVr , errR), Add(132.515184
, errm)), Add(TriAdd(errVt ,
Sub(Add(Sqrt(Sub(-493.510467 ,
errVr)), Sqrt(188.460917)),

Add(Tanh(Mul(errVr , errR)),
Sub(-22.727781 , errVr))),
errm), TriAdd(errR , 421.
834855 , 228.627005))), Sqrt(
Tanh(330.127231)))), Tanh(
errm))), Sqrt(Abs(Tanh(Sub(
134.690301 , errTheta)))))))))
, Tanh(Add(errVt , Mul(errR ,
errm))))

if m <= obj.M0-obj.Mp:
Tr = 0.0
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Tt = 0.0
m = obj.M0 - obj.Mp

rho = obj.air_density(R - obj.Re)
Dr = 0.5 * rho * Vr * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var * obj

.A
Dt = 0.5 * rho * Vt * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var * obj

.A
g = obj.g0 * (obj.Re / R) ** 2
g0 = obj.g0
Isp = obj.Isp

dxdt = np.array ((Vr,
Vt / R,
Tr / m - Dr / m - g + Vt ** 2 / R,
Tt / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(Tt ** 2 + Tr ** 2) / g0 / Isp))

return dxdt

passint_c = (change_time + t_offdesign - (change_time)) * 4
tevals_c = np.linspace(change_time , change_time + t_offdesign , int(

passint_c))
xnew_ini = [float(rout[index]), float(thetaout[index]), float(vrout

[index]), float(vtout[index]),
float(mout[index])]

solgp_c = solve_ivp(sys2GP_c , [change_time , change_time +
t_offdesign], xnew_ini , t_eval=
tevals_c)

rout_c = solgp_c.y[0, :]
thetaout_c = solgp_c.y[1, :]
vrout_c = solgp_c.y[2, :]
vtout_c = solgp_c.y[3, :]
mout_c = solgp_c.y[4, :]
for i in range(len(mout_c)):

if mout_c[i] < obj.M0-obj.Mp:
mout_c[i] = obj.M0-obj.Mp

ttgp_c = solgp_c.t

for i in range(len(ttgp_c)):
if ttgp_c[i] >= t_offdesign+change_time:

index_c = i
break

passint_gp = (tfin - (change_time + t_offdesign)) * 4
tevals_gp = np.linspace(change_time + t_offdesign , tfin , int(

passint_gp))
xnew_ini_gp = [float(rout_c[index_c]), float(thetaout_c[index_c]),

float(vrout_c[index_c]), float(
vtout_c[index_c]), float(mout_c[
index_c])]

def sys2GP_gp(t, x):
global flag_prop ,cd_var
fTr = toolx.compile(hofx[0][0])
fTt = toolx.compile(hofx[0][1])
R = x[0]
theta = x[1]
Vr = x[2]
Vt = x[3]
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m = x[4]

r = Rfun(t)
th = Thetafun(t)
vr = Vrfun(t)
vt = Vtfun(t)
mf = mfun(t)

er = r - R
et = th - theta
evr = vr - Vr
evt = vt - Vt
em = mf - m

Tr = fTr(er, et, evr , evt , em)
Tt = fTt(er, et, evr , evt , em)

if m <= obj.M0 - obj.Mp:
Tr = 0.0
Tt = 0.0
m = obj.M0 - obj.Mp

rho = obj.air_density(R - obj.Re)
Dr = 0.5 * rho * Vr * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var * obj

.A
Dt = 0.5 * rho * Vt * np.sqrt(Vr ** 2 + Vt ** 2) * cd_var * obj

.A
g = obj.g0 * (obj.Re / R) ** 2
g0 = obj.g0
Isp = obj.Isp

dxdt = np.array ((Vr,
Vt / R,
Tr / m - Dr / m - g + Vt ** 2 / R,
Tt / m - Dt / m - (Vr * Vt) / R,
-np.sqrt(Tt ** 2 + Tr ** 2) / g0 / Isp))

return dxdt

flag_prop = False
solgp_gp = solve_ivp(sys2GP_gp , [change_time + t_offdesign , tfin],

xnew_ini_gp , t_eval=tevals_gp)

rout_gp = solgp_gp.y[0, :]
thetaout_gp = solgp_gp.y[1, :]
vrout_gp = solgp_gp.y[2, :]
vtout_gp = solgp_gp.y[3, :]
mout_gp = solgp_gp.y[4, :]

for i in range(len(mout_gp)):
if mout_gp[i] < obj.M0 - obj.Mp:

mout_gp[i] = obj.M0 - obj.Mp
ttgp_gp = solgp_gp.t

passint_cp = (tfin - change_time + t_offdesign) * 10
tevals_p = np.linspace(change_time + t_offdesign , tfin , int(

passint_cp))
xnew_inip = [float(rout_c[index_c]), float(thetaout_c[index_c]),

float(vrout_c[index_c]), float(
vtout_c[index_c]), float(mout_c[
index_c])]
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solgpp = solve_ivp(sys2GP_c , [change_time + t_offdesign , tfin],
xnew_inip , t_eval=tevals_p)

rp = solgpp.y[0, :]
thetap = solgpp.y[1, :]
vrp = solgpp.y[2, :]
vtp = solgpp.y[3, :]
mp = solgpp.y[4, :]
tp = solgpp.t

cc=np.zeros(len(ttgppp), dtype=’float’)
for i in range(len(ttgppp)):

cc[i]=obj.M0 - obj.Mp

plt.figure(3)
plt.ylim(bottom=-20,top=700)
plt.ylabel("altitude [km]")
plt.xlabel("time [s]")
plt.plot(ttgppp , (rR-obj.Re)/1e3 , ’r--’, label="SET POINT")
plt.plot(ttgp , (rout-obj.Re)/1e3 , ’r’, label="GENETIC PROGRAMMING (

OFF -LINE DESIGN)")
plt.plot(ttgp_c , (rout_c-obj.Re)/1e3 , color=’b’, label="OFF -DESIGN

CONDITIONS")
plt.plot(tp, (rp-obj.Re)/1e3 , color=’b’)
plt.plot(ttgp_gp , (rout_gp-obj.Re)/1e3 , color=’g’, label="GENETIC

PROGRAMMING (ON -LINE DESIGN)")
plt.legend(loc=’best’)
plt.savefig(’Altitude_ONLINE.png’)
plt.show()

plt.figure(4)
plt.ylim(bottom=-1,top=70)
plt.ylabel("flight angle displacement [deg]")
plt.xlabel("time [s]")
plt.plot(ttgppp , np.rad2deg(tR), ’r--’, label="SET POINT")
plt.plot(ttgp , np.rad2deg(thetaout),’r’, label="GENETIC PROGRAMMING

(OFF -LINE DESIGN)")
plt.plot(ttgp_c , np.rad2deg(thetaout_c), color=’b’, label="OFF -

DESIGN CONDITIONS")
plt.plot(tp, np.rad2deg(thetap), color=’b’)
plt.plot(ttgp_gp , np.rad2deg(thetaout_gp), color=’g’, label="

GENETIC PROGRAMMING (ON-LINE
DESIGN)")

plt.legend(loc=’best’)
plt.savefig(’Flight_angle_displacement_ONLINE.png’)
plt.show()

plt.figure(5)
plt.ylim(bottom=-20,top=1100)
plt.ylabel("radial velocity [m/s]")
plt.xlabel("time [s]")
plt.plot(ttgppp , vrR , ’r--’, label="SET POINT")
plt.plot(ttgp , vrout ,’r’, label="GENETIC PROGRAMMING (OFF -LINE

DESIGN)")
plt.plot(ttgp_c , vrout_c , color=’b’, label="OFF -DESIGN CONDITIONS"

)
plt.plot(tp, vrp , color=’b’)
plt.plot(ttgp_gp , vrout_gp , color=’g’, label="GENETIC PROGRAMMING

(ON -LINE DESIGN)")
plt.legend(loc=’best’)
plt.savefig(’Radial_velocity_ONLINE.png’)
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plt.show()

plt.figure(6)
plt.ylim(bottom=-100 ,top=9000)
plt.ylabel("tangential velocity [m/s]")
plt.xlabel("time [s]")
plt.plot(ttgppp , vtR , ’r--’, label="SET POINT")
plt.plot(ttgp , vtout ,’r’, label="GENETIC PROGRAMMING (OFF -LINE

DESIGN)")
plt.plot(ttgp_c , vtout_c , color=’b’, label="OFF -DESIGN CONDITIONS")
plt.plot(tp, vtp , color=’b’)
plt.plot(ttgp_gp , vtout_gp , color=’g’, label="GENETIC PROGRAMMING

(ON -LINE DESIGN)")
plt.legend(loc=’best’)
plt.savefig(’Tangential_velocity_ONLINE.png’)
plt.show()

plt.figure(7)
plt.ylim(bottom=-10,top=101000)
plt.ylabel("mass [kg]")
plt.xlabel("time [s]")
plt.plot(ttgppp , mR, ’r--’, label="SET POINT")
plt.plot(ttgp , mout ,’r’, label="GENETIC PROGRAMMING (OFF -LINE

DESIGN)")
plt.plot(ttgp_c , mout_c , color=’b’, label="OFF -DESIGN CONDITIONS")
plt.plot(tp, mp, color=’b’)
plt.plot(ttgp_gp , mout_gp , color=’g’, label="GENETIC PROGRAMMING (

ON-LINE DESIGN)")
plt.plot(ttgppp , cc, color=’k’, label="MASS CONSTRAINT")
plt.savefig(’Mass_ONLINE.png’)
plt.legend(loc=’best’)
plt.show()

print("\n")
print("Tr new: ", hofx[0][0])
print("Tt new: ", hofx[0][1])

print(hofx[0].fitness)

print(t_offdesign)

with open("Control Laws.txt", "w") as file:
file.write(str(hofx[0][0]))
file.write("\n \n")
file.write(str(hofx[0][1]))

with open("RUNTIME.txt", "w") as file:
file.write(str(t_offdesign))
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