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Abstract 
A new AOCS called “High Precision Attitude and Orbit Control System Based on the Emission of 

Electromagnetic Radiation” (PACER) is currently under development at the Institute of Space 
Systems (IRS) of the University of Stuttgart. 

This thesis deals a new high precision thrust balance in the sub micro-Newton range, with a new 
concept of active damping system, based on the emission of electromagnetic waves. The chosen 
radiation source are LEDs because of the low thermal radiation component, the low energy 
consumption and the continuous improvement of this technology in recent years. 

Goal of this project will be the measurement of the light pressure emitted by LEDs, to evaluate a 
possible use of these technology for the PACER. 

The motivation for the investigation of a such system based on upcoming and planned satellite 
missions within the commercial and scientific sector, where an ever-increasing demand on precision 
accuracy can be observed. For example, the “Lisa Pathfinder” mission demands on the AOCS require 

thrust as low as 1 µN with a thrust noise of 0,1 µN and a lifetime of 5 years. 

A steady-state thrust stand based on a fiber-suspended torsion pendulum was developed, with thrust 
range 50 nN - 400 nN and a sensibility of 25 nN, that can be controlled and monitored by a PC using 
MATLAB, with a revolutionary damping system and an estimated cost less than 1000€.                       
This stand could represent an excellent compromise for a first evaluation of the effects of 
electromagnetic radiation propulsors. 

  



 
 

 

 

Page 5 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Index 
 

Index                    5 

Table of Figures 8 

Table of Tables 11 

Nomenclature 12 

Abbreviations 14 

Introduction 15 

1 Basics 17 

1.1 LED Technology 17 

1.1.1  p-n junction 17 

1.1.2  Output Power 19 

1.2 Optics Basics 21 

1.2.1  Geometrical optics 21 

1.2.2  Lenses and Conical Mirrors 23 

1.3 Photonic Propulsion 25 

1.3.1  Existing and Future Photonic Thrusters 25 

1.3.2  Physical Basics for Photonic Propulsion 26 

1.4 Torsional Pendulum Dynamics 27 

1.5 Existing Torsion Pendulum Thrust Balances 28 

1.5.1  Overview 28 

1.5.2  2001) nN Thrust Stand by Jamison, Ketsdever and Muntz [3] 29 

1.5.3  2001) Sub-µN Thrust Stand by Ziemer [4] 29 

1.5.4  2002) nN Thrust Stand by Phipps and Luke [6] 30 

1.5.5  2003) µN Thrust Stand by Lake, Cavallaro and Spanjers [5] 31 

1.5.6  2003) Sub-µN Thrust Stand by Gamero-Castaño [8] 32 

1.5.7  2006) nN Thrust Stand V2.0 by Phipps, Luke and Helgeson [7] 33 

1.5.8  2012) µN Thrust Stand by Y. Yang, Tu, S. Yang, Luo [9] 34 

1.5.9  2013) Sub-µN Thrust Stand by Soni and Roy [10] 34 

1.5.10  Summary 36 

2 Requirements and Boundary Conditions 37 

2.1 Requirements 37 

2.2 Boundary Conditions 38 

3 Thrust Balance model 39 

3.1 Specifics 39 

3.2 Possible Damping Cases 43 

3.2.1 First case 44 

3.2.2 Second case 45 

3.3 Conclusions 46 



 
 

 

 

Page 6 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

4 First Concept 48 

4.1 Specifics 48 

4.1.1 Measurement system 48 

4.1.2 High Powered light source 50 

4.1.3 Light Transport Through Mirror Reflection 53 

4.1.4 Software and Hardware 53 

4.1.4 Summary 53 

4.2 LEDs of the Damping System 55 

4.2.1 Common LEDs 55 

4.2.2 Specialized LEDs 56 

4.3 Cost Analysis 58 

4.4 System Changes 58 

5 Damping System Design 60 

5.1 LED System 60 

5.1.1 First solution 61 

5.1.2 Second solution 61 

5.1.3 Third solution 63 

5.1.4 Radiant Power Model of LEDs 64 

5.1.5 Efficiency Model of Conical Reflectors 66 

5.1.5 Fourth solution 69 

5.2 Mirrors System 72 

5.3 Optical Aberrations 73 

5.4 Cooling System 73 

6 Swing Arm 77 

6.1 Cooling System 77 

6.2 Auxiliary damping system 78 

6.3 Fiber Selection 79 

6.4 Calibration Method 80 

7 Measurement System 82 

7.1 Laser Deflection System 82 

7.1.1 Simulation n°1 82 

7.1.2 Simulation n°2 83 

7.2 Electrical-Digital Measurements 85 

8 Power and Control systems 87 

8.1 Damping system Power Consumption 87 

8.2 Measurement system Power Consumption 88 

8.3 Total Power Consumption 89 

8.4 LEDs Damping System Power Control 89 

8.5 Measurement System Digital Control 91 



 
 

 

 

Page 7 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

9 Final concept 93 

9.1 List of Components 93 

9.2 Design Description 95 

9.2.1 Damping System Operation 95 

9.2.2 Measurement System Operation 97 

9.2.3 Swing Arm Operation 98 

9.2.4 Nano Newton Thrust Stand by IRS 99 

9.3 Cost Analysis 100 

10 Conclusions 101 

References 102 

 

  



 
 

 

 

Page 8 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Table of Figures 
Figure 1: a) Inner workings of a LED; b) Band-bending effect when a bias voltage is applied. 17 
Figure 2: Correlation of semiconductor materials with light colour, wavelength and photon energy.
 18 
Figure 3: Colour temperature on Kelvin scale. 18 
Figure 4:  Emission spectra of cool and warm white LEDs, daylight used as reference. 19 
Figure 5: Three methods to obtain white LEDs: a) blue LED die coated in yellow phosphor; b) 3-
colour combination of distinct LED dies; c) UV LED die coated with distinct red, green, and blue 
phosphor coatings. 19 
Figure 6: The radiant flux, measured as a function of forward current from a typical LED. 20 
Figure 7: Rays and Wavefront generated by an emitting point source. 21 
Figure 8: Geometry of specular reflection. 22 
Figure 9: Geometry of refraction. 22 
Figure 10: a) Positive-Converging lens; b) Negative-Diverging lens. 23 
Figure 11: Longitudinal, transverse spherical aberration and the circle of least confusion for the lens.
 24 
Figure 12: The undercorrected longitudinal chromatic aberration of a simple lens. 24 
Figure 13: a) Parabolic reflectors; b) Elliptical reflector. 25 
Figure 14: Schematic operation principles of PACER with LED array, accumulation and collimation 
system, and thrust vectoring system. 26 
Figure 15: Torsional pendulum a) Characteristics; b) Response amplitude for damping coefficient 𝜁 <
1. 28 
Figure 16: Schematic structure of the Jamison et al. thrust stand and its liquid seal damping system.
 29 
Figure 17: Schematic design of the Ziemer thrust stand configuration. 30 
Figure 18: Schematic design of the First Phipps et al. thrust stand configuration. 31 
Figure 19: Schematic design of the Lake et al. thrust stand configuration. 32 
Figure 20: Schematic design of the Gamero-Castaño thrust stand configuration. 33 
Figure 21: Schematic design of the Second Phipps et al. thrust stand configuration. 33 
Figure 22: Schematic design of the Yang et al. thrust stand configuration. 34 
Figure 23: Schematic design of the Soni and Roy thrust stand configuration. 35 
Figure 24: Pendulum diagram. 40 
Figure 25: Example of 𝐹𝑚 for 𝑚 = [1 2 3] and 𝐹𝑡𝑒𝑠𝑡= 500nN. 41 
Figure 26: 𝐹𝑡𝑒𝑠𝑡= 500nN and m=[1 2 3] a) angular displacement 𝜃𝑚; b) angular velocity 𝜔𝑚; c) 
angular acceleration 𝛼𝑚; d) damping force 𝐹𝑚. 41 
Figure 27: Example for 𝐹𝑡𝑒𝑠𝑡= 500nN how work the damping system: blue 𝜃𝑚 , red 𝜃𝑖𝑚𝑚 a) 𝜃0 and 
𝜃𝑖𝑚1; b) 𝜃1 and 𝜃𝑖𝑚2; c) 𝜃2 and 𝜃𝑖𝑚3. 42 
Figure 28: a) Damping force 𝐹𝑚; b) Potential energy of the system 𝑈𝑚 during time; c) Potential 
energy of the system 𝑈𝑚 for displacement. 43 
Figure 29: a) First case: Single pulse, magnitude control; b) Second case: Multiple pulses, frequency 
control. 43 
Figure 30: Maximum elastic response, rectangular and triangular load pulses [36]. 45 
Figure 31: First Case: 𝐹𝑚𝑖𝑛= 50nN and: a) angular displacement 𝜃𝑚; b) angular velocity 𝜔𝑚; c) 
angular acceleration 𝛼𝑚; d) damping force 𝐹(𝑚). 47 
Figure 32: Second Case: 𝐹𝑚𝑖𝑛= 50nN a) angular displacement 𝜃𝑚; b) angular velocity 𝜔𝑚; c) angular 
acceleration 𝛼𝑚; d) damping force 𝐹(𝑚). 47 
Figure 33: ELCOMAT autocollimator model choice depending on measuring accuracy and range [39].
 49 
Figure 34: Measuring principle of the autocollimator [39]. 49 
Figure 35: a) Electromagnetic spectrum b) Visible spectrum. 50 
Figure 36: Mirrors schematic configuration of thrust stand. 53 
Figure 37: Data path and light path of the system. 53 
Figure 38: C-LED Royal Blue λ: 440-450nm: a) Real image; b) Relation Electric and Radiated power 
[46]. 55 



 
 

 

 

Page 9 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Figure 39: First concept of high emitting light source: 3 configurations. 55 
Figure 40: S-LED ASMT-JL31-NRS01, Colour: Royal Blue, Wavelength λ(nm): 440-460. 56 
Figure 41: S-LED ASMT-JL31-NRS01: a) Typical Characteristics [48]; b) Configuration concept.
 56 
Figure 42: UV-LED LZ1-00UAP5: Colour: Violet; Wavelength λ(nm):  395. 57 
Figure 43: UV-LED LZ1-00UAP5: a) Typical forward current characteristics; b) Typical normalized 
radiant flux over current [49]. 57 
Figure 44: Evaluation cost of the project 58 
Figure 45: Typical 100W W-LED characteristics. 60 
Figure 46: a) Reflector collimator; b) Lens; Lens characteristics [52]. 61 
Figure 47: a) LED, reflector, lens and starting of the tubing; b) Complete system with mirrors in blue.
 61 
Figure 48: a) Parabolic mirror; b) How it works; Characteristics. 62 
Figure 49:a) ACL5040U Aspheric Condenser Lens; b) How it works; Characteristics. 62 
Figure 50: Chosen Fresnel lens characteristics. 62 
Figure 51: a) Component design to support the aspheric lens; b) Complete system. 63 
Figure 52: Optgeo simulation of the second solution, the element in green is the strike point. 63 
Figure 53: Chosen Elliptic reflector characteristics. 63 
Figure 54: Optgeo simulation of the third solution, the element in green is the hitting point. 64 
Figure 55: Luminous Efficiency Function, V(λ). 64 
Figure 56: W-LED YJ-BC-160H-G01 characteristics [57]. 65 
Figure 57: a) Spectral power distribution YJ-BC-160H-G01; b) Luminous efficiency function; c) 
product between graph a) and b). 65 
Figure 58: First reflector: a) 3D; b) 2D; Characteristics. 66 
Figure 59: Second reflector: a) 3D; b) 2D; Characteristics. 66 
Figure 60: Third reflector: a) 3D; b) 2D; Characteristics 67 
Figure 61: The reflection of the radiation flux generates a force perpendicular to the mirror. 67 
Figure 62: LED Intensity distribution:  a) 3D; b) 2D 68 
Figure 63: Intensity distribution after reflector: a) 1th; b) 2th; c) 3th : 1) 3D; 2) 2D; 3) with inclination 
effect. 69 
Figure 64: a) Typical car headlights LEDs; b) Light distribution inside reflector. 69 
Figure 65: First concept 3 LEDs of 10 mm diameter: a) Frontal view; b) 3D View; c) LEDs inside 
reflector. 70 
Figure 66: Second concept 5 LEDs of 10 mm diameter: a) Frontal view; b) 3D View; LED 
Characteristics. 70 
Figure 67: a) Inclination effect depending on view angle; b) Configuration. 71 
Figure 68: Optgeo simulation of the Fourth solution, the element in green is the hitting point at 350 
mm from the end of the reflector, or rather 450 mm from the focus. 71 
Figure 69: a) Hitting area depending on view angle; b) Distribution of radiated power emitted. 72 
Figure 70: Complete system with mirrors; Table with quantity and sizes of mirrors. 72 
Figure 71: a) Chosen servomotor; b) Maximum limit angles; Characteristics. 73 
Figure 72: Water cooling system scheme and Components. 74 
Figure 73: a) Water pump; b) Heat exchanger radiator; c) Fan; d) Tank. 74 
Figure 74: a) Typical Water block [63]; b) Designed Water block; c) Radiator fins; d) Front view; e) 
Lateral view; Characteristics. 75 
Figure 75: Configurations: a) 1; b) 2; c) 3. 75 
Figure 76: Cross section of the arm; Characteristics. 77 
Figure 77: Eddy-current damp system; Legend. 78 
Figure 78: Force diagram acting on pendulum; Legend. 80 
Figure 79: Complete arm configuration. 80 
Figure 80: Basic laser deflection Simulation n°1; Components; 82 
Figure 81: Simulation n°1: Scheme after mirror deflection and results; Results. 83 
Figure 82: Schematic configuration of Simulation n°2; Components. 83 
Figure 83: a) Plano-Convex lens; b) Plano-Concave lens; Characteristics. 84 
Figure 84: Simulation n°2: Scheme after mirror deflection a) Conf. 1; b) Conf. 2; Results. 84 



 
 

 

 

Page 10 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Figure 85: Simulation n°2 laser beam diameter: a) Conf. 1; b) Conf. 2; Legend. 85 
Figure 86: Photoresistor LDR GL5528 shape; Characteristics [71]; 85 
Figure 87: Simulation of electronic measurement using photocells. 86 
Figure 88: Circuit diagram of LEDs system. 87 
Figure 89: Circuit diagram of LEDs Cooling system. 87 
Figure 90: Circuit diagram of Servo rotating the pivot mirror. 88 
Figure 91: Circuit diagram of Laser, main voltage coming from Servo circuit. 88 
Figure 92: Circuit diagram of a Multiplexer with 8 Photocells. 88 
Figure 93: Circuit diagram of Arduino board supplying 5 Multiplexers. 89 
Figure 94: Circuit diagram of the thrust stand systems requiring electrical power supply. 89 
Figure 95: Gears system: Servomotor controls potentiometers rotations: a) Trim POT; b) Rotary POT.
 90 
Figure 96: Damping system: Mirror-servo and Gear-servo control made by Arduino Nano: 91 
Figure 97: Multiplexer connections with photocells and resistances, and main pins. 91 
Figure 98:  Arduino Mega pins connections with the 5 multiplexers. 92 
Figure 99: Reflector with LEDs, Water block and fittings: a) Front view; b) Side view. 95 
Figure 100: Damping system: a) Side view; b) Top view. 96 
Figure 101: Light beams on the final mirror on the swing arm: a) Front view; b) 3D view. 96 
Figure 102: Water cooling system for the LEDs of the damping system. 97 
Figure 103: Measurement system based on laser deflection. 97 
Figure 104: Final laser beam size, tested for 𝐹𝑚𝑖𝑛= 50nN and 𝐹𝑀𝑎𝑥= 500nN. 98 
Figure 105: Screen to manually measure the angular displacement or electronically using the LDR 
system. 98 
Figure 106: Thrust stand arm. 99 
Figure 107: Schematic design of the IRS thrust stand configuration. 99 
Figure 108: Details of the: a) Main LEDs electromagnetic damping system; b) Auxiliary Eddy-Current 
damping system. 100 
Figure 109: Cost analysis of the thrust stand. 100 
 
  



 
 

 

 

Page 11 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Table of Tables 
Table 1: Overview of the thesis’ chapters and summary of their respective content 16 
Table 2: Characteristics of common lens types. 23 
Table 3: Overview of existing concepts for thrust stands in the sub micro-Newton range based on 
torsion pendulum sorted by year. 36 
Table 4: Thrust stand requirements. 38 
Table 5: Thrust stand boundary conditions. 38 
Table 6: Pendulum data. 39 
Table 7: Angular displacements produced by maximum and minimum thrust 44 
Table 8: Results of the two cases simulated. 46 
Table 9: General elements of the thrust stand. 54 
Table 10: Resume of changes after meeting. 59 
Table 11: Data of the MATLAB simulation for different types of reflectors. 68 
Table 12: Data of the Fourth solution MATLAB simulation. 71 
Table 13: Data of the thrust stand fiber. 79 
Table 14: Sensibility Simulation n°2; 85 
Table 15: All MUXes pins connections with Arduino Mega board. 92 
Table 16: List of the thrust stand components. 94 
 
 
  



 
 

 

 

Page 12 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Nomenclature 
Symbol Unit Description 

𝐴0 − Radiant flux constant 
𝐴1 − Radiant flux linear constant 
𝐴2 − Radiant flux square constant 
𝑐 𝑘𝑔 𝑚2/𝑠 Pendulum damping constant 
𝑐0 𝑚/𝑠 Speed of light 
𝑐𝑝 𝐽/(𝑚𝑜𝑙 𝐾) Heat capacity at constant pressure 
𝑑 𝜇𝑚 Pendulum fiber diameter  
𝐷 𝑚𝑚 Laser beam diameter  

𝐸𝑝ℎ𝑜𝑡𝑜𝑛 𝑒𝑉 Energy carried by a photon  
𝐸𝑅𝑒𝑓 − Reflector efficiency 

𝐸𝑅𝑒𝑓_𝑓𝑖𝑛 − Reflector efficiency depending on inclination and perfect reflection 
𝐸𝑅𝑒𝑓_𝑖𝑛𝑐𝑙 − Reflector efficiency depending on inclination 

𝑓 𝑚 Lens or mirror focus  
𝐹 𝑁 Force applied to the pendulum arm 
𝐹𝑖 𝑁 Ideal Force generated by a radiant flux 
𝐹𝑚 𝑛𝑁 Force generated by the damping system 

𝐹𝑡𝑒𝑠𝑡 𝑛𝑁 Force generated by the thruster tested 
𝐹𝜙 𝑁 Force generated by a flux of photons 
𝐺 𝑀𝑃𝑎 Torsional modulus of the pendulum fiber 
ℎ 𝑘𝑔 𝑚2/𝑠 Planck constant 
𝐼 𝑘𝑔 𝑚2 Pendulum moment of inertia 
𝑖 ° Inclination of the radiation respect to the normal of the mirror 
𝐼𝑒 𝑊/𝑠𝑟 Intensity of a light source radiant flux 
𝐼𝐹 𝐴 LED current 
𝐼𝑣 𝐽 Intensity of a light source luminous flux 
𝐽 𝑘𝑔 𝑚2 Polar moment of inertia of the pendulum fiber 

𝑘0 𝑁𝑚/° Spring constant of the pendulum fiber 
𝐿𝐸𝑅 𝑙𝑚/𝑊 Luminous Efficacy of Radiation  

𝑚 𝑘𝑔 Pendulum arm mass 
𝑀 𝑔/𝑚𝑜𝑙 Pendulum material molar mass 

𝑚𝑙𝑖𝑚𝑖𝑡 𝑘𝑔 Maximum safe carrying capacity of the pendulum fiber 
𝑀𝑡 𝑁 𝑚 Torsional moment applied to the pendulum 
𝑛 − Photons number of a flux 
𝑛1 − Lower index of refraction 
𝑛2 − Higher index of refraction 
𝑃𝑖𝑛 𝑊 LED electric power 

𝑝𝑝ℎ𝑜𝑡𝑜𝑛 𝐽 𝑠/𝑚 Impulse carried by a photon 
𝑄 𝐽 Heat transferred from the LEDs to the Pendulum arm 
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𝑅 𝑚 Pendulum lever length 
𝑅1 𝑚𝑚 Curvature radius of the lens surface closer to the light source 
𝑅2 𝑚𝑚 Curvature radius of the lens surface farther to the light source 

𝑆(𝜆) 𝑊/𝑛𝑚 Spectral power distribution of a light source 
𝑡 𝑠 Time 
𝑇 𝑠 Pendulum period 
𝑡𝑑 𝑠 Single pulse acting time of the damping system 
𝑇𝐽 𝐾 LED junction temperature 

𝑈𝑚 𝐽 Pendulum potential energy  
𝑣 𝐻𝑧 Frequency 

𝑉(𝜆) − Luminous Efficiency Function 
𝑉𝐹 𝑉 LED voltage 
𝑉𝑖𝑛 𝑉 Voltage of the main power 
𝑥𝑛 𝑚𝑚 Amplitude of the nth peak of oscillation 
𝛽 ° Laser initial inclination 

𝛥𝑇 𝐾 Temperature difference between LEDs and pendulum arm 
𝛥𝑥1 𝑚𝑚 Initial laser length displacement, before lenses 
𝛥𝑥2 𝑚𝑚 Final laser length displacement, after lenses 

𝜁 − Pendulum damping coefficient 
𝜃 ° Pendulum angular displacement 
𝛩 𝑟𝑎𝑑 Laser beam divergency 
𝜃̇ °/𝑠 Pendulum angular velocity 
𝜃̈ °/𝑠2 Pendulum angular acceleration 
𝜃𝑖 ° Incident ray angle 
𝜃𝑅 ° Refracted ray angle 
𝜃𝑟 ° Reflected ray angle 

𝜃𝑠𝑒𝑛𝑠 ° Pendulum angular sensibility 
𝜆 𝑛𝑚 Wavelength 
𝛬 − Logarithmic decrement of the calibration method 

𝜙0 𝑊 Radiant flux of a light source at 0 K 
𝜙𝑒 𝑊 Radiant flux of a light source 

𝜙𝑒_𝑓𝑖𝑛 𝑊 Radiant flux with effects: Reflector, Inclination, Reflection 
𝜙𝑝ℎ𝑜𝑡𝑜𝑛𝑠 1/𝑠 Flux of photons 

𝜙𝑣 𝑙𝑚 Luminous flux of a light source 
𝜔𝑑 𝑟𝑎𝑑/𝑠 Pendulum damped frequency 
𝜔𝑛 𝑟𝑎𝑑/𝑠 Pendulum natural frequency  

 



 
 

 

 

Page 14 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

Abbreviations 
Abbreviation Description 
AOCS Attitude and Orbit Control Systems 
C-LEDs Common LEDs 
COB Chip On Board 
C-POT Current control Potentiometer 
DSMC Direct Simulation Monte Carlo 
ESA European Space Agency  
FEEP Field Effect Electric Propulsion Subsystem 
FMEJ Free Molecular Electro Jets 
FWHM Full Width at Half Maximum  
GaAs Gallium Arsenide 
GaAsP Gallium Arsenide Phosphide  
GaN Gallium Nitride  
GaP Gallium Phosphide  
GFPPT Gas-Fed Pulsed Plasma Thrusters  
In-FEEP Indium Field Emission Electric Propulsion 
IR Infrared Radiation 
IRS Institut für Raumfahrtsysteme 
LDR Light Dependent Resistor 
LDS Laser Distance Sensors 
LED Light Emitting Diode 
LER Luminous Efficacy of Radiation  
LPT Laser Plasma Thruster  
LVDT Linear Variable Differential Transformer  
MEMS Microelectromechanical Systems 
MUX Multiplexer 
PACER Precision Attitude Control system based on Electromagnetic Radiation emission 
PID Proportional Integral Differential 
PPT Pulsed Plasma Thrusters  
PWM Pulse With Modulation 
S-LEDs Specialized LEDs 
SPD Spectral Power Distribution  
UV Ultraviolet Radiation 
VAT Vacuum Arc Thrusters 
VLM Vaporizing Liquid Microthruster  
V-POT Voltage control Potentiometer 
W-LEDs White LEDs 
ZnSe Zinc Selenide  
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Introduction 
Relevance of the Topic 
The high-Precision Attitude Control system based on the emission of Electromagnetic Radiation 
(PACER) is a new type of propellant-less photonic propulsion system currently under development at 
the Institute of Space Systems (IRS – German abbreviation for “Institut für Raumfahrtsysteme”) [1].  
With a projected thrust generation of 1μN and an active thrust vectoring system, it is meant to become 
an alternative to current micro-thruster technology. Micro-thrusters are spaceflight propulsion systems 
operating in a thrust range of micro-Newtons. They are used for precise attitude and orbit control 
systems (AOCS) of satellite and probe missions for their highly precise thrust capabilities. 

Current AOCSs can generally be divided into: Chemical systems, Electrical systems and Propellant-less 
systems like reaction wheels and photonic propulsion systems. Chemical and electrical propulsion 
devices all depend on propellant mass, thus making propellant storage and distribution systems 
necessary. Photonic propulsion systems like PACER only need electrical power in the range of around 
1kW, which can easily be provided by a spacecraft’s solar power supply. Because of this independency, 

photonic systems could significantly reduce a spacecraft’s overall system complexity and operate for a 

theoretically infinite time. The system is based on the physical principle that 1W of emitted 
electromagnetic radiation corresponds to 3.3nN of thrust independent from the radiation’s wavelength. 
The emitted thrust is scalable over a wide range of thrust levels also in sub-micro Newton.  

PACER is designed to fulfil requirements mission as the ones of the Lisa-Pathfinder launched in 2015. 
Lisa-Pathfinder is a test satellite of the European Space Agency (ESA) to test the performance of 
measurement devices for the later mission “Evolved Laser Interferometry Space Antenna/ New 
Gravitational Wave Observatory” (eLISA/NGO). This mission consists of three spacecraft in a triangle 
constellation with 2.5 million kilometres between each of the craft. Because of the distance between the 
craft a highly precise attitude control system with 1μN of thrust and 0.1μN thrust noise was needed [2].  

To accurately determine the performance of photonic emission thrusters, producing nano-Newtons of 
thrust, a new, highly accurate thrust stand must be developed. Here, it is reported the design and 
characterization of a thrust stand based on the principle of a torsion balance. The device is essentially a 
torsion fiber pendulum, which undergoes angular deflections when a force acts on the arm. This force 
can be measured as linear displacement of the balance arm at a known distance from the pivot.         
Jamison et al. [3], Ziemer [4], Lake et al. [5], Phipps et al. [6] [7], Gamero-Castaño [8], Yang et al. 
[9], Soni and Roy [10] have all built thrust stands with the same working principle, albeit with different 
methods of calibration, damping techniques, and displacement measurement.  

In comparison, Jamison et al. thrust stand was calibrated using DSMC techniques, and the lowest thrust 
measured was 88.8 nN. The steady state thrust measured by Ziemer was 1 μN using a FEEP thruster. 

Lake et al. measured the lowest thrust 5 μN of uPPT using LVDT, while Phipps et al. using a fiber 
suspended pendulum with a 254 μm steel fiber diameter has reached 100 nN. The lowest measured by 
Gamero-Castaño was 0.11 μN using an electrospray source and 7.89 μN using a colloid thruster. Yang 
et al. used a pendulum stage suspended from 502 μm titanium fiber calibrated by measuring the moment 

of inertia of the setup and oscillation frequency with a resolution of 90 nN. The most recent projected 
by Soni and Roy can measure a lowest thrust of 1.3 μN with an uncertainty of ±20%.                                              
In Chapter 1.5 the existing thrust stands previously mentioned are described individually and 
summarized for resolution and lower thrust measured. 

In order to validate the idea of the future PACER it was decided to design an innovative damping system 
based on the same technology. The displacement measurement is obtained by laser deflection and an 
auxiliary eddy-current damping system was chosen to validate the results of the first one.  
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Objectives and Structure of the Study 
This study present and examine existing thrust stand design concepts and determine the requirements 
for a new future thrust stand at the IRS. Based on this requirement profile and the recognized boundary 
conditions the project design is presented, from the first concept and primary cost analysis to the final 
ones, evaluating the use of different technologies and describing guidelines for future assembly.     The 
following table provides an overview of the thesis chapters. 

Number Chapter Name Content Summary 

   
1 Basics Lists of the most important equations and properties of LEDs, Optics, 

Photonic thrusters, Torsional pendulums. Eight existing nN-μN thrust 

stands based on torsional pendulum are presented separately and at the 
end there is a summary table with the most important information. 

2 Requirements and 
Boundary Conditions 

A list of requirements and boundary conditions is explained based on 
the existing thrust stands. The requirement profile lists several points 
which map out the targeted properties of the thrust stand while the 
boundary conditions describe the present dimensional capabilities. 

3 Thrust Balance 
Model 

The building of the pendulum simulator and some tests on how it works 
are presented. Two possible configurations of the damping system were 
evaluated and explained. At the end are presented the conclusions and 
the choice between the two configurations. 

4 First Concept First analysis of the components required to design the thrust balance. 
Analysis on the specifics of the system, research on the existing LEDs 
and its performance, primary evaluation of the thrust balance cost and 
the system changes after a project meeting. 

5 Damping system 
design 

All the consideration made on the design of the damping system from 
first ideas to the final concept. Design of the LED system, analysis on 
the real radiant power emitted, efficacy of the collimating system, sizing 
of the mirror system, design of the water-cooling system. 

6 Swing arm Design of the pendulum’s arm, dimension, material, cross section. 
Sizing of two configuration thrusters cooling system, choice of the 
vibration auxiliary damping system, pendulum fiber and calibration 
method. Sizing of the counter-balanced weight on the arm. 

7 Measurement System Development of the measurement system based on laser deflection over 
optical lens and mirrors. After two configurations are presented, the first 
with laser visible measurement on a chart, the second based on an 
electrical measurement system upgrading the first one.  

8 Power and Control 
System 

Design of power and control system, definition of all the electrical 
components. Electricity consumption of damping system, measurement 
system and the total thrust stand. Design and explanation of the control 
with Arduino with assembly guide. 

9 Final Concept Presentation of the final concept after the work made in the previous 
chapter. List of the all components of the thrust stand with the respective 
quantities and costs, an explication of how work the system, in the end 
a cost analysis and a comparison with the first concept. 

10 Conclusions The results and conclusions are summarized, and an overview of the 
future thrust stand design concept is given. 

Table 1: Overview of the thesis’ chapters and summary of their respective content 
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1 Basics 
This chapter introduces the technologies that have been used for the development of the thrust stand 
presented in this thesis. First, there is an analysis on LED technology that has been evaluated for the 
design of an active damping system based on electromagnetic emission and for a possible future use 
of this technology as photonic thrusters. For this reason, there are also an overview of the optics basics 
and an introduction to optical elements such as lenses and conical mirrors, followed by research on 
existing photonic thrusters and the presentation of future concepts. The last two sub-chapters focused 
on the dynamics of torsional pendulum and existing thrust stand based on that technology. 

The results have been used in Chapter 2 for an evaluation of requirements and boundary conditions 
of the project, and in Chapter 3 for an analysis on possible concepts. 

 

1.1 LED Technology 

This section discusses the full array of LED fundamentals, light emission mechanism including band 
energy, material and wavelength correlation. It is also described how the white LEDs work, how to 
determinate the radiant light power and which are the common effects that decrease this value during 
the diode lifetime. 

 

1.1.1  p-n junction  

As the name implies, a light-emitting diode (LED) is a semiconductor diode that emits photons when 
a current flows through the device. Application of a voltage across the 𝑝 and 𝑛 terminals of the device 
can impart enough energy to excite electrons into higher energy states. Then the excited electrons 
spontaneously drop from the conduction band to recombine with holes in the valence band, releasing 
a photon in the process [11], Figure 1. 

 

Figure 1: a) Inner workings of a LED; b) Band-bending effect when a bias voltage is applied. 

Selection of semiconductor materials with appropriate bandgap energies allows the control of the 
wavelength of photon emitted. Wider bandgaps will result in the production of higher energy light. 
The energy 𝐸 carried by a photon of a certain wavelength is given in Eq. 1. 

with ℎ being Planck’s quantum of action, 𝑣 the photon’s frequency and 𝑐0 the speed of light in a 
vacuum. The relationship of photon 𝜆 and its 𝑣 is: 

 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 =  
ℎ 𝑐0 

𝜆
= ℎ𝑣 (Eq. 1) 

 𝜆 =
𝑐0

𝑣
 (Eq. 2) 

a) b) 
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Traditionally, LEDs can be made from a wide range of semiconductor materials, each possessing a 
characteristic bandgap energy (EB), which corresponds to different wavelengths of light emission. 
Peak emission wavelengths of LEDs can range from ultraviolet (360 𝑛𝑚) to infrared (950 𝑛𝑚).  

The full spectrum of visible light can be produced using several material bases, including gallium 
arsenide (GaAs) for infrared emission [12], gallium arsenide phosphide (GaAsP) for red to yellow 
emission [13], gallium phosphide (GaP) for yellow to green emission [14], zinc selenide (ZnSe) in 
early blue emission [15], and gallium nitride (GaN) for green to ultra-violet emission [16].                   
The corresponding wavelength-colour association is depicted in Figure 2. 

 
Figure 2: Correlation of semiconductor materials with light colour, wavelength and photon energy. 

When considering the suitability of a light source for a particular application, factors such as luminous 
efficiency, effective brightness (measured in lumens, 𝑙𝑚), and colour temperature (measured in Kelvins, 
𝐾) are of importance. The colour temperature is referred to the temperature of an ideal black body, if 
that is heated its energy will increase entering the field of visible light, visible areas from low to high 
colour temperature is determined by the colour temperature orange → yellow → red → yellow → white 

→ blue [17]. Generally, a greater fraction of longer wavelength light is attributed with warmer light 
temperatures, as shown in Figure 3.  

 

Figure 3: Colour temperature on Kelvin scale. 

Figure 4 compares the emission spectra of cool and warm white LEDs with the daylight spectrum 
[18]. Current LED technology allows for light emission over the entire visible spectrum, as well as 
extending into the UV and IR regions. There are a few ways to achieve white lighting in solid-state 
LED technology. The most common and inexpensive of these are made possible with the development 
of colour altering phosphors which are used to coat the LED die post fabrication. A blue or ultraviolet 
LED emitting with a peak in the 450-500nm wavelength range is coated with a yellow phosphor. A 
portion of the light is converted into yellow light, resulting in a non-uniform full spectral range 
appearing as white light, as shown in Figure 5a. Variations in the properties and quality of both the 
LED die and the phosphor will result in varying qualities of light. A second way to produce white 
light is to combine the emissions of three or more LED dies covering the wavelength spectrum as in 
Figure 5b. This method is the most expensive approach due to the requirement for multiple LED dies 
and potentially multiple phosphor coatings. Finally, a third approach to producing white light is to 
coat an ultra-violet LED with multiple phosphor materials Figure 5c. This allows the production of a 
wide sampling of spectral peaks with relatively few LED die sources, producing a robust white 
appearance. Currently, the lighting industry regulates key parameters of LED products based on 
colour uniformity, emission brightness, power management, and colour temperature [19].  
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Figure 4:  Emission spectra of cool and warm white LEDs, daylight used as reference. 

 Figure 5: Three methods to obtain white LEDs: a) blue LED die coated in yellow phosphor; b) 3-colour 
combination of distinct LED dies; c) UV LED die coated with distinct red, green, and blue phosphor coatings. 
 

1.1.2  Output Power 

One of the problems with controlling the light output from LEDs is that the technology itself has some 
inherent nonlinearities. These nonlinearities stem from the way semiconductor materials behave when 
used in this way. Both the amount of current and the temperature of the device will change the 
properties of the resulting illumination. When an LED is operated with a forward voltage, heat is 
generated by non-radiative combination and photon absorption in the material. This injected heat 
increases the temperature of the junction until the heat production is balanced with the heat transfer 
from the devise. When an equilibrium is reached the device will have reached its operation 
temperature. Raised junction temperatures have a negative effect on device lifetime. 

The total radiant flux 𝜙 from a LED is influenced by current 𝐼 and junction temperature 𝑇𝐽 and several 
material and device characteristics, such as the crystal defect density, dopant concentration, current 
leaks etc. Since the materials used might be unknown, it must be used empirical models to describe 
the light output corresponding to a given set of 𝐼 and 𝑇𝐽. The emitted light power as a function of 
temperature 𝜙𝑒(𝑇) has been empirically determined to be an exponentially decaying function: 

where 𝑇0 is a material specific constant and 𝜙0 can be interpreted as the power emitted at 300 K [20]. 
Assuming 100 % quantum efficiency, the light output would be directly proportional to the current, 
since every electron-hole pair would be converted to a photon. However, it is seen that efficiency 
decreases with increasing current, the so-called droop effect. Different effects have been suggested as 
the cause for this efficiency decrease. Examples of such effects are Auger recombinations, surface 
recombinations, and defect recombinations [21].  

 𝜙𝑒(𝑇) ∝ 𝜙0 𝑒−(𝑇−300 𝐾)/𝑇0   (Eq. 3) 

a) b) c) 
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Incorporating all these effects in a purely empirical relation between output power and current, using 
a polynomial description: 

where 𝐴0, 𝐴1, 𝐴3 are fitting constants. The intersection 𝐴0 should of cause be zero as no current will 
give zero light output. The proportional term 𝐴1 can be interpreted as the linear relation between 
forward current and light output, that can be observed at low currents. The square term 𝐴2 can then 
be used to describe the droop, as shown in Figure 6. 

 

Figure 6: The radiant flux, measured as a function of forward current from a typical LED. 

The spatial distribution of light is generally required to have a high homogeneity of intensity and 
colour in the illuminated field. In relation to time dependent phenomenon in lighting, there is the issue 
of unwanted low frequency visual flicker, glare, changes over longer times in LEDs caused by heating 
of the junction and changes in light output caused by material degradation occurring over the lifetime 
of the device. For clustered light sources, there is the further issue of coloured shadows, occurring 
when the differently coloured light sources, set up together, cast differently coloured shadows at 
different angles. Attention to these issues is important when designing a lighting solution [22]. 

The definition of the is luminous intensity was adopted by General Conference on Weights and 
Measures in 1979, it is applicable to any spectral power distribution by employing a generalization of 
the spectral sensitivity of the human eye. For a source with radiant intensity 𝐼𝑒 the luminous 
intensity 𝐼𝑣 at a given wavelength 𝜆 is: 

where 𝑉(𝜆) is the luminosity function defining the eyes sensitivity. For a light source, the net amount 
of perceivable light is defined by the luminous flux, given by the integration or summation over all 
the spherical coordinates and 𝜆: 

where 𝜃 and 𝜑 are the spherical coordinates of a sphere around the light source. The integral over 𝜆  
from 380 𝑛𝑚 to 730 𝑛𝑚 denotes integration across the visible spectrum. When dealing with visual 
responses the integrals will yield zero outside the visual range and are therefore in the following given 
as indefinite integrals. 

 𝜙𝑒(𝐼) = 𝐴0 + 𝐴1𝐼𝐹 + 𝐴2𝐼𝐹
2 (Eq. 4) 

 𝐼𝑣(𝜆)  =  [683.002 
𝑙𝑚

𝑊
]  𝑉(𝜆)𝐼𝑒(𝜆) (Eq. 5) 

 𝜙𝑣  =  ∫ ∫ ∫ 𝐼𝑣(𝜆, 𝜃, 𝜑) 𝑠𝑖𝑛(𝜃)𝑑𝜆𝑑𝜃𝑑𝜑
730 𝑛𝑚

380 𝑛𝑚

𝜋

0

2𝜋

0

 (Eq. 6) 
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An important characteristic of an LED is its luminous efficacy, the ratio between luminous flux and 
electrical input power 𝜙𝑣/𝑃𝑖𝑛. The term is sometimes confused with luminous efficiency that 
describes the ratio between luminous flux and radiant flux, which gives an indication of the visual 
usefulness of the spectral power distribution (SPD) 𝑆(𝜆). 

Due to the variations in spectral power distribution caused by changes in the junction temperature it 
is important to keep the junction temperature of the LED constant during measurements. The most 
common way of characterizing LED devices is with an ambient temperature of 25°𝐶, using a very 
short current pulse. Due to the small width of the active region and the high current density, it must 
however be expected that a rapid temperature change will occur even over short time spans. This 
characterization method can be used to compare performance between different LED devices, but it 
will not be applicable in situations where an LED is operated continuously at a higher junction 
temperature. A typical change in dominating wavelength is on the order of 0.05 𝑛𝑚/°𝐶 [23], so with 
an operation temperature of 120°𝐶, the shift becomes 5 𝑛𝑚. Within the same temperature span the 
LED might loose between 5% and 30% of the luminous flux [24]. To be able to maintain and control 
a stable temperature for measurement of the LED, it should be mounted on a surface, which is 
thermally connected to a cooling system. 

LEDs have preponderant long lifetime up to 100 000 hours, the most common symptom of failure is 
the gradual lowering of the light output and the efficiency loss. Sudden failure, unlike incandescent 
and fluorescent lamps, is rare. With the development of high-power LEDs, the devices are subjected 
to higher junction temperatures and higher current densities than traditional devices, this causes stress 
on the material and may causes early light-output degradation [25]. 

 

1.2 Optics Basics 

This section discusses the geometric optics of an optical system based on reflection and refraction 
elements such as lenses and conical mirrors, to better understand of the thesis project, and the 
damaging effects of spherical and chromatic aberrations. 

 

1.2.1  Geometrical optics 

Geometrical optics is the geometry of light rays and their images, through an optical system [26]. It’s 

possible to think of light as rays pointing along the direction of wave propagation. A closer look to 
light waves allows a better understanding of geometrical optics. A wavefront is defined as a locus of 
points that connect identical wave displacements, as seen in Figure 7. 

 

Figure 7: Rays and Wavefront generated by an emitting point source. 

 
𝜙𝑣

𝜙𝑒
=  

∫ 𝑉(𝜆)𝑆(𝜆)𝑑𝜆

∫ 𝑆(𝜆) 𝑑𝜆
 (Eq. 7) 
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A ray is a line perpendicular to a series of successive wavefronts specifying the direction of energy 
flow in the wave. With the geometrical construct of a light ray it’s possible to describe propagation, 

reflection and refraction of light [27]. Geometrical optics is a robust model and a practical tool to 
solve optical problems. 

Reflection is the change of direction of electromagnetic radiation, such as light, by a surface upon 
which the radiation is incident. Depending on the sort of surface, reflection of light is either specular, 
as in mirrors, or diffuse, as in white marble. The law of reflection describes specular reflection. It 
states that the incident ray, the reflected ray and the normal to the reflecting surface all lie in one 
plane. And that the angle 𝜃𝑖 between the incident ray and the normal is equal to the angle 𝜃𝑟 between 
the reflected ray and the normal, as shown in Figure 8.  

 

Figure 8: Geometry of specular reflection. 

Opposing to specular reflection where an incident ray is reflected at only one angle, in diffuse 
reflection an incident ray is reflected in many angles.  

Refraction is the change of direction of a wave at an interface between two optical media. An optical 
media can be described in terms of index of refraction, which is defined as the ratio between the speed 
of light in a vacuum and the speed of light in the medium, 𝑛 = 𝑐0/𝑐𝑚. Air and most gases have an 
index of refraction nearly equal to one, while other materials have values greater than one. Snell’s law 

shows that rays travelling from a lower index medium to a higher index medium bend toward the 
perpendicular to the interface. Calling the lower index of refraction 𝑛1, the higher one 𝑛2 and the 
angle of refraction 𝜃𝑅. Snell’s law states: 

 

Figure 9: Geometry of refraction. 

Figure 9 illustrates the refraction phenomenon, where a wave, propagating in the optical medium 1, 
approaches the boundary surface obliquely. The velocity of propagation of medium 2 is slower than 
in medium 1, which forces waves to slow down as they enter medium 2. This makes the direction of 
travel to bend towards the perpendicular of the surface boundary. By the contrary if the velocity of 
medium 2 is greater than that of medium 1 the direction of travel would bend outwards. 

 

 𝜃𝑖 =  𝜃𝑟 (Eq. 8) 

 𝑛1 𝑠𝑖𝑛(𝜃𝑖) =  𝑛2 𝑠𝑖𝑛 (𝜃𝑅) (Eq. 9) 
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1.2.2  Lenses and Conical Mirrors 

Elements useful to focus, diverge or collimate a light beam are lenses and conical mirrors, they allow 
rays inclination change, the first by exploiting the phenomenon of refraction through curved surfaces, 
and the second using reflection. 

The lenses are classified according to the curvature of the two optical surfaces, in the following table 
the applications and the shapes of the most common are summarized [28]. 

Lens Focal length Application Form 

Plano-
Convex Positive 

Focusing a Collimated Beam; 

Collimating a Point Source 

 
Bi-
Convex Positive 

Relay Imaging; 

Focusing a Divergent Beam 

 
Plano-
Concave Negative 

Diverging a Collimated Beam; 

Collimating a Convergent Beam 

 
Bi-
Concave Negative 

Relay Imaging; 

Diverging a Convergent Beam 

 
Table 2: Characteristics of common lens types. 

The focal length (𝑓) is one of the main feature of lens and conical mirror, in the table above is defined 
positive or negative depending on its position on the lens axis of the object and for the converging (+) 
or diverging effects (-), as shown in the Figure 10.  Other properties are: 𝑑 the thickness of the lens 
(the distance along the lens axis between the two surface vertices), 𝑅1 the radius of curvature of the 
lens surface closer to the light source, 𝑅2  the radius of curvature of the lens surface farther from the 
light source [29]. 

 
Figure 10: a) Positive-Converging lens; b) Negative-Diverging lens. 

The focal length of a lens can be calculated from the Lensmaker's equation, where 𝑛 as explained 
before is the refractive index of the lens material: 

 
1

𝑓
= (𝑛 − 1) [

1

𝑅1
−

1

𝑅2
+

(𝑛 − 1)𝑑

𝑛𝑅1𝑅2
] (Eq. 10) 

a) b) 



 
 

 

 

Page 24 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

These elements are typical subjects to side effects caused by shape and material which are neglected 
in the simple analytic treatment but present in real behavior, below are reported two types of 
aberrations important for the thesis work. 

Spherical Aberration: a type of aberration found in optical systems that use elements with spherical 
surfaces. Figure 11 illustrates a particular case of third-order spherical aberration in which the rays of 
light are parallel to the optical axis on the lens-side of the system. 

 

Figure 11: Longitudinal, transverse spherical aberration and the circle of least confusion for the lens. 

The longitudinal spherical aberration 𝐿𝑆𝐴 is defined as the distance between the intersection of a ray 
with the optical axis and the paraxial focus. The transverse spherical aberration 𝑇𝑆𝐴 is defined as the 
perpendicular distance above (or below) the paraxial focus that a ray pass. The circle of least confusion 
is the region between the intersection of all the rays with the optical axis and the paraxial focus where 
the rays form their narrowest beam. 

Chromatic Aberration: aberration caused by the dispersion of the lens material, the variation of its 
refractive index 𝑛 with the wavelength of light 

 

Figure 12: The undercorrected longitudinal chromatic aberration of a simple lens.  

From the Eq. 10 𝑓 is dependent upon n, it follows that light of different wavelengths is focused to 
different positions. Chromatic aberration of a lens is seen as fringes of colour around the image. It can 
be minimized by using an achromatic doublet in which two materials with differing dispersion are 
bonded together to form a single lens. This reduces the amount of chromatic aberration over a certain 
range of wavelengths, though it does not produce perfect correction. Different lens materials may be 
used to minimise chromatic aberration, such as specialized coatings or lenses made from the crystal 
fluorite. This naturally occurring substance has the highest known Abbe number, indicating that the 
material has low dispersion.  

During the project two other types of lenses where used: Aspheric condenser lenses and Fresnel lenses. 
The first ones are ideal for collimating incoherent light from a lamp or LED, or similar light source 
with a highly uniform illumination pattern, they are designed for high-efficiency illumination 
applications and they offer reduced spherical aberration with large apertures and low f-numbers [30].  
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The seconds offer light focusing and collimation without the bulk associated with traditional lenses, 
their design allows the construction of lenses of large aperture and short focal length without the mass 
and volume of material that would be required by a lens of conventional design. A Fresnel lens can 
be made much thinner than a comparable conventional lens, in some cases taking the form of a flat 
sheet [31]. 

Other elements introduced before are the conical mirrors, also called spherical reflectors [29], two 
concave types were used during the project, one with a parabolic shape and the other elliptical, their 
applications are shown in Figure 13. 

 

Figure 13: a) Parabolic reflectors; b) Elliptical reflector. 

a) A parabolic reflector is a reflective surface used to collect or project light energy, its shape is 
part of a circular paraboloid, that is the surface generated by a parabola revolving around its 
axis. They can be used to focus radiation from an isotropic source into a narrow beam. 

b) An elliptical reflector is a light control device with an ellipsoid shape, that collects light rays 
generated from a primary focal point and directs it to a secondary focal point. 

These two mirrors are subjected as lens to spherical aberration but not to chromatic aberrations, that 
is produced when light passes through a material, this is also one of many reasons why large telescopes 
use mirrors rather than lenses for their primary optical elements [32]. 

 

1.3 Photonic Propulsion 

Photonic propulsion systems use the force created by reflecting or emitting electromagnetic radiation 
for spacecraft propulsion, they are inherently propellant-less. Theoretical advantages of propellant-
less propulsion systems are a general reduction of the system’s complexity and mass as well as a 

significantly increased lifetime. 

 

1.3.1  Existing and Future Photonic Thrusters 

Most designs currently in development consist of large reflective membrane sails to exploit the 
reflective radiation pressure either from the sun or laser systems. Two examples of existing spacecraft 
with photonic propulsion systems are the Japanese IKAROS spacecraft (launched 2010) [33] and the 
most recent LightSail 2 (launched 2019) [34]. 

The IKAROS probe was specifically designed to test solar sails as a main propulsion and power 
generation system for interplanetary missions. IKAROS’ quadratic sail, measuring 20m in diameter 
and 7.5μm in thickness. The reflectivity of said panels was variable, thus allowing attitude control by 

applying different amounts of reflective radiation pressure on specific areas of the sail.   

a) b) 
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The LightSail 2 was designed to demonstrate controlled solar sailing in low Earth orbit, raising the 
orbit apogee and increasing orbital energy following sail deployment. The design challenge was to 
maximize the surface area of the sail while minimizing the mass of the spacecraft all while adhering 
to the standard 3-unit CubeSat size limitation. The photonic propulsor is composed by four triangular 
sails forming a square, measuring 8m in diameter and 4.5μm in thickness. 

PACER is a new photonic propulsion system for AOCS [1], it consists of an electromagnetic radiation 
source, an optical accumulation and collimation system and a beam vectoring system (Figure 14). The 
currently preferred design uses an array of light-emitting diodes (LEDs) in the visible spectral range, 
specifically 100 Broadcom 3W LED Emitters. The produced light is then guided through optical fibers 
into a collimator array, where it is accumulated and aligned. The resulting light beam is then reflected 
off a pivot mirror into the desired thrust direction. With an approximate thrust generation of 3.3nN 
per Watt of radiation power, the thrust of PACER in this configuration ideally sums up to around 1μN.  

 

Figure 14: Schematic operation principles of PACER with LED array, accumulation and collimation system, 
and thrust vectoring system. 

 

1.3.2  Physical Basics for Photonic Propulsion 
Even though photons are inherently massless, each photon with a wavelength 𝜆 carries an impulse 
𝑝𝑝ℎ𝑜𝑡𝑜𝑛 that can be described as 

The force applied by a flux 𝜙 of 𝑛 photons within a time span 𝑡 can be calculated with  

with the energy 𝐸𝑝ℎ𝑜𝑡𝑜𝑛 from Eq. 1, the general relation 𝑃 = 𝐸/𝑡 for power, the resulting force in 
dependency of the applied power 𝜙𝑒 of an electromagnetic radiation source can be calculated:  

Eq. 13 shows that 1𝑊 of electromagnetic radiation corresponds to about 3.3 𝑛𝑁 of force, so it could 
be defined an ideal force 𝐹𝑖 depending on a constant 𝜖 = 3.3 𝑛𝑁/𝑊 and the radiant flux 𝜙𝑒. 

This physical principle is the base for all photonic propulsion systems like PACER or photonic sails. 

 𝑝𝑝ℎ𝑜𝑡𝑜𝑛 =
ℎ

𝜆
=

ℎ𝑣

𝑐0
   (Eq. 11) 

 𝐹𝜙 = 𝜙𝑝ℎ𝑜𝑡𝑜𝑛𝑠  
ℎ𝑣

𝑐0
=

𝑛

𝑡
 
ℎ𝑣

𝑐0
=

𝐸𝑝ℎ𝑜𝑡𝑜𝑛

𝑡 𝑐0
 (Eq. 12) 

 𝐹𝜙 =
𝜙𝑒

𝑐0
  (Eq. 13) 

 𝐹𝑖 = 𝜖 𝜙𝑒 = [3.3
𝑛𝑁

𝑊
] 𝜙𝑒  (Eq. 14) 
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1.4 Torsional Pendulum Dynamics 
A first research on existing thrust stands showed that usually they are based on torsional pendulum, 
so this section describes the torsional pendulum dynamics. 

Torsional pendulum can be described by the general pendulum equation of motion for a second order 
system [35]: 

where 𝐼 is the system’s moment of inertia, 𝜃 the angular pendulum displacement, 𝑐 is the system’s 

damping constant, 𝑘0 the systems resulting spring constant and 𝐹(𝑡) the force acting at a distance 𝑅 
from the pendulum’s system of rotation and 𝑡 the time variable, Figure 15 a). By adding the definitions 
of the damping coefficient 𝜁 and the systems undamped natural frequency 𝜔𝑛: 

The differential Eq. 15 can be brought into the standard form: 

If a constant force 𝐹(𝑡) = 𝐹 is applied to the pendulum, the solution of the second-order differential 
Eq. 18, as found by Ziemer [4], is: 

where 𝜔𝑑 is the damped frequency that can be calculated with the natural frequency and the damping 
coefficient:  

For steady-state measurements (𝑡 → ∞) the solution in Eq. 19 can be written as: 

Ideal torsional pendulums are not affected by gravity and the Eq. 19 can be used to define the response 
of the system to an applied force for underdamped motion, 𝜁 < 1, Figure 15 b). 

For torsional pendulums, especially the fiber-suspended type, additional equations can be used to 
describe the system properties. The angular pendulum displacement 𝜃 of a torsion pendulum’s swing 

arm can be calculated by the relation: 

 𝐼𝜃̈ + 𝑐𝜃̇ + 𝑘0𝜃 = 𝐹(𝑡)𝑅 (Eq. 15) 

 𝜁 =
𝑐

2
√

1

𝐼𝑘0
 (Eq. 16) 

 𝜔𝑛 = √
𝑘0

𝐼
 (Eq. 17) 

 𝜃̈ + 2𝜁𝜔𝑛𝜃̇ + 𝜔𝑛
2𝜃 = 𝐹(𝑡)

𝑅

𝐼
 (Eq. 18) 

 𝜃(𝑡) =
𝐹𝑅

𝐼𝜔𝑛
2

[1 − 𝑒−𝜁𝜔𝑛𝑡 (𝑐𝑜𝑠(𝜔𝑑𝑡) +
𝜁

√1 − 𝜁2
𝑠𝑖𝑛(𝜔𝑑𝑡))] (Eq. 19) 

 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 (Eq. 20) 

 𝜃(𝑡 → ∞) = 𝜃𝑠𝑠 =
𝐹𝑅

𝑘0
 (Eq. 21) 

 𝜃 =
𝑀𝑡

𝑘0
=

𝐹𝑅

𝑘0
 (Eq. 22) 
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with 𝑀𝑡 being the torsional moment on the torsion spring, 𝐹 the applied force and 𝑅 the distance 
between the rotational centre of the system and the force’s point of attack. For a fiber-suspended 
torsion pendulum the spring constant 𝑘0 can be further defined as: 

where 𝐺 is the torsional modulus of the suspending fiber, 𝐽 is the fiber’s polar moment of inertia and 
𝐿 is the effective fiber length. Knowing the fiber effective diameter (𝑑) 𝐽 is defined as: 

 
Figure 15: Torsional pendulum a) Characteristics; b) Response amplitude for damping coefficient 𝜁 < 1.  

 

1.5 Existing Torsion Pendulum Thrust Balances 

The following subchapter provides an overview of several existing torsion pendulum thrust balances, 
based on spring and fiber suspended, and their respective performances. With the growing demand 
for high precision micro- and nano-thrusters, highly accurate thrust and impulse measurement 
techniques become inevitable. 

 

1.5.1  Overview 

The most important requirements of a thrust stand are the high accuracy and reliability of the measure. 
Load cells are often used for high-level thrusters, where the applied force can be measured directly. 
For micro- and nano-thrusters and their extremely low thrust-to-weight ratio this method becomes no 
longer sustainable, as the thrust force is overwhelmed by the thruster’s weight and other forces 

involved in the measurement process [35]. For that reason, indirect force measurements are preferred, 
where the applied thrust is calculated from the displacement of a pendulum or similar device. These 
devices can generally be split up into three different categories: hanging pendulums, inverted 
pendulums and torsional pendulums. These pendulums, all different configurations of a mass-spring-
damper system, have implemented themselves as the most common and practical method for 
measuring low thrust levels. A selection of several existing torsional thrust balances sorted by year of 
publication, that are suitable for the targeted thrust range, is presented in the following sub-chapter. 
For each devise is reported the type of thrusters that can be tested, size of the system, measuring and 
damping system characteristics, calibration mode, lowest thrust detectable and sensibility. 

 𝑘0 =
𝐺𝐽

𝐿
 (Eq. 23) 

 𝐽 =
𝜋𝑑4

32
 (Eq. 24) 

a) b) 
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1.5.2  2001) nN Thrust Stand by Jamison, Ketsdever and Muntz [3] 

The Nano-Newton thrust stand by Jamison, Ketsdever and Muntz was developed by the Department 
of Aerospace and Mechanical Engineering at the University of Southern California and the Air Force 
Research Laboratory Propulsion Directorate and it consists in a spring-suspended torsion pendulum. 
The goal of the development was the creation of a simple device to reliably measure the performance 
of MEMS fabricated systems, for example the Free Molecule MicroResistojet. The length of the swing 
arm was 0.25 𝑚 completely symmetrical from the centre of rotation and it was suspended on two 
flexural pivots with a total approximate spring constant of 0.0016 𝑁𝑚/°.  

The thrust is calculated by measuring the linear displacement of the swing arm with a linear variable 
differential transformer (LVDT). With a linear displacement of the swing arm of 0.264 𝜇𝑚 at 100 𝑛𝑁 
applied force. 

A direct mechanical connection between the movable swing arm and the surrounding area (by 
powerlines and propellant feed lines) was bypassed by using a specially designed liquid oil bath. This 
bath acts as both liquid seal for propellant transfer and viscous damper for vibration damping, as 
shown in Figure 16. The liquid used for the bath was Dow Corning oil with a viscosity of 
10 000 𝑚𝑚2/𝑠 and a specific gravity of 0.971 𝑔/𝑐𝑚3. The oil was selected because of its high 
viscosity and low vapor pressure for operating in the vacuum chamber. The stand was calibrated by 
measuring the arm displacement produced by an under expanded orifice in the free molecule flow 
regime. The expected thrust of the orifice was prior determined using the Direct Simulation Monte 
Carlo numerical method (DSMC) with experimentally determined values as inputs for the simulation.       
The estimated calibration error, mostly a result of the experimental input values, was ±12.6%. The 
thrust stand was installed in CHAFF-IV vacuum chamber at an ultimate pressure of 1.33 × 104 𝑃𝑎.                                   

The stand was capable of measuring forces as low as 88.8 𝑛𝑁 with an estimated error of ±16% and 
734 𝑛𝑁 with an estimated error of ±2%. 

 

Figure 16: Schematic structure of the Jamison et al. thrust stand and its liquid seal damping system. 

 

1.5.3  2001) Sub-µN Thrust Stand by Ziemer [4] 

The Sub-micro-Newton thrust stand by Ziemer was developed in the Advanced Propulsion 
Technology Laboratory at NASA Jet Propulsion Laboratory (JPL) and it consists in a spring-
suspended torsion pendulum. The goal was the performance validations of devices such as vacuum 
arc thrusters (VAT), gas-fed pulsed plasma thrusters (GFPPT), indium field emission electric 
propulsion thruster (In-FEEP), vaporizing liquid microthruster (VLM), and a micro-cold gas thruster 
developed by Moog, Inc. The test mass or thruster is mounted to a horizontal arm which is supported 
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by two flexural pivots as shown in Figure 17. To reduce the influence of gravity, the thruster is 
counter-balanced so the centre of mass (CG) of the entire thrust arm is close to the pivot axis.                   

A LVDT with sub-micron resolution is used to interpret the linear voltage output proportional to 
position, this system measures the linear displacement instead of the angular displacement that is 
calculated knowing the distance of measuring point from the rotational axis. In case of small 
deflections (𝜃 < 4°) the position can be determined within 0.1%.  

The external damping system of the pendulum is based on damping coils. The calibration is made 
supplying a known impulse to the thrust arm by a piezoelectric force transducer mounted at the end 
of a rod called the “calibration hammer,” as shown in Figure 17. The mounting rod is blocked at an 
angle by an electromagnet that is switched off to release the hammer. Upon impact, the transducer 
outputs a voltage proportional to the instantaneous force which can then be integrated to determine 
the calibration impulse. The impulse magnitude can be changed by changing the cocking angle of the 
electromagnet.  

The resolution of the stand has been characterized experimentally as < 1 𝜇𝑁 for steady-state thrust 
measurements and < 1 𝜇𝑁 for impulse measurements. 

 

Figure 17: Schematic design of the Ziemer thrust stand configuration. 

 

1.5.4  2002) nN Thrust Stand by Phipps and Luke [6] 

The Nano-Newton thrust stand by Phipps and Luke was developed by Photonic Associates LLC in 
collaboration with the University of New Mexico and it consists in a fiber-suspended torsion 
pendulum. This thrust stand was developed to accurately measure the performance of their newly 
developed laser plasma thruster (LPT). The LPT works through laser ablation, a method in which a 
laser is focused on an ablative plate, emitting a directed plasma jet in the process. The swing arm is 
hung on a 78 𝜇𝑚 diameter fused silica fiber.  

The angular deflection of the swing arm is measured by reflecting a 1 𝑊 probe laser off a micro-
mirror located at the swing arm’s centre of rotation onto a ruled chart mounted to the inside of the 
vacuum chamber. The angular resolution of this method was approximately 210 𝜇𝑟𝑎𝑑.  

The upper end of the fiber is fixed in a fiber vise, while at the lower end a stabilization mass is 
submerged in an oil bath for vibration damping. The calibration was made observing the pendulum’s 

resonant frequency and calculating the effective rotating mass applying a known force with a standard 
pendulum, with an estimated calibration error of 5%. The system was housed in a vacuum chamber 
at a constant pressure of 4 × 10−2𝑃𝑎.  
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The maximum resolution of the thrust stand was stated to be 4 𝑛𝑁. The lowest detectable thrust was 
not officially stated but corresponds to approximately 6.6 𝑛𝑁. 

 

Figure 18: Schematic design of the First Phipps et al. thrust stand configuration. 

 

1.5.5  2003) µN Thrust Stand by Lake, Cavallaro and Spanjers [5] 

The Micro-Newton thrust stand by Lake, Cavallaro and Spanjers was developed in the Air Force 
Research Laboratory at Edwards Air Force Base and it consists in a spring-suspended torsion 
pendulum. The goal of the development was the creation of a device to reliably measure the 
performance of micro pulsed plasma thrusters (uPPT). The torsion springs used are two Lucas 
Aerospace 5016 − 800 torsional pivots. Roll and pitch locations of the swing arm are adjustable via 
two stepper motors. 

The displacement of the swing arm is measured using a LVDT. Instead of measuring the displacement 
of the swing arm at a steady-state, this design measures the amplitude of the swing arm in a resonating 
state. The thruster mounted on the swing arm is fired in resonance with the systems oscillation. This 
leads to an amplification of the oscillation amplitude of the swing arm, creating a forced harmonic 
oscillator. With this method the oscillating system is mostly insensitive to outside vibrations and only 
the difference between the oscillation’s minima and maxima is measured.  

An automatic routine was developed for thrust stand calibration, where an electromagnet, attached to 
the thruster position of the swing arm via a 0.13 𝑚𝑚 fishing line over an aluminum pulley, pulls up 
a calibration weight. The magnet is activated when the swing arm is moving in the same direction as 
the force applied by the thruster. The amplitude is stored, and the cycle repeated until an asymptotical 
limit is reached. Then the entire process is repeated for a different calibration mass. The results are 
used to create a calibration curve. The thrust stand operates in a vacuum chamber at a pressure between 
4 × 10−3 − 8 × 10−3𝑃𝑎. 

The thrust stand can achieve a measurement resolution of 0.04 𝜇𝑁 with an estimated accuracy of 
±1.3% for forces of 5 𝜇𝑁. 
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Figure 19: Schematic design of the Lake et al. thrust stand configuration. 

 

1.5.6  2003) Sub-µN Thrust Stand by Gamero-Castaño [8] 

The Sub-Micro-Newton thrust stand by Gamero-Castaño, M. was developed at the Massachusetts 
Institute of Technology supported by a NASA Phase II SBIR and it consists in a spring-suspended 
torsion pendulum. The goal of the development was the performance validations of devices such as 
colloid thrusters and FEEPs. A symmetric aluminium arm, with a colloid source in one of its ends, is 
fixed to the balance frame by means of two flexural pivots. Each pivot has a nominal torsional spring 
rate of 1.6 × 10−3 𝑁𝑚/°, and can hold an axial load of up to 20 𝑁. The motion of the arm is 
constrained by the pivots to rotation only. As a reference, the length and height of the arm are 48 𝑐𝑚 
and 22 𝑐𝑚 respectively. 

The measuring system was based on a fiber optic displacement sensor (LDS) for measuring the 
angular displacement of the balance’s arm with a resolution of 5 𝑛𝑚 in the DC-100 Hz range up to 
0.15 𝜇𝑚 at a frequency of 200 kHz. 

The external damping circuit can apply a torque proportional to the angular velocity of the balance 
arm. It consists in an electrode facing the right side of the balance’s arm, the voltage of this electrode 
is determined by an electronic circuit that takes the displacement of the arm as an input, computes its 
derivative, and generates a positive high voltage signal proportional to it. The calibration of the system 
is made using the electrostatic force between two charged electrodes. A base of a cylindrical electrode 
with a diameter and a height of 12 𝑚𝑚 and 13 𝑚𝑚, is fixed to one side of the balance’s arm, at 21 𝑐𝑚 
from its axes. A second larger electrode, physically isolated from the balance, faces it.  The thrust 
stand has been tested in a cylindrical vacuum chamber with a diameter of 0.66 𝑚, length of 0.77 𝑚 
and pressure of 1.3 × 10−3𝑃𝑎.    

It can be measured comfortably thrust values as low as 0.11 𝜇𝑁 with a resolution of 0.01 𝜇𝑁, which 
were generated with a single emitter colloid source. 
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Figure 20: Schematic design of the Gamero-Castaño thrust stand configuration. 

 

1.5.7  2006) nN Thrust Stand V2.0 by Phipps, Luke and Helgeson [7] 

This thrust balance is essentially an upgraded version of the system presented in Subchapter 1.5.5.                           
The thruster and the power supply are both mounted on the swing arm, eliminating the need for a 
physical connection between the movable arm and the surrounding other than the supporting fiber. 
The total mass of the swing arm accumulated to 15 𝑘𝑔. The swing arm is suspended from a steel fiber, 
measuring 254 𝜇𝑚 in diameter and 40 𝑐𝑚 in length. The fiber upper end is attached to a frame, 
supporting the entire setup.  

The angular deflection is measured via a newly designed device roughly based on a Mach-Zehnder 
interferometer. At the centre of the arm’s rotation, a corner-cube reflector is attached. The other three 
optical components necessary for such an interferometer are installed outside the vacuum chamber. 
This optical measurement method can register angular deflections as low as 2 𝜇𝑟𝑎𝑑, about one order 
of magnitude lower than necessary for the targeted thrust stand resolution. 

The whole system is critically damped, by submerging a flag, roughly mounted directly under the 
thruster’s centre of thrust, into an oil bath. The thrust stand was calibrated using the magnetic torque 
between two Helmholtz coils. The large coil was in a fixed position, while the second, small coil was 
mounted directly to the swing arm of the balance. Calibration errors were estimated to be ±10%.  

The balance was able to resolve force changes of 25 𝑛𝑁 with a lower force limit of around 100 𝑛𝑁. 
 

Figure 21: Schematic design of the Second Phipps et al. thrust stand configuration. 
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1.5.8  2012) µN Thrust Stand by Y. Yang, Tu, S. Yang, Luo [9] 

The Micro-Newton thrust stand by Y. Yang, L. Tu, S. Yang and J. Luo was developed in the School 
of Physics at Huazhong University of Science and Technology and it consists in a fiber-suspended 
torsion pendulum. The goal of the development was the ground testing of micro-Newton pulsed 
plasma thrusters (PPT) developed for Chinese TEPO mission. The pendulum body is made of an 
aluminium rectangular block with dimension of 27 × 3 × 6 𝑐𝑚3 approximately that is suspended by 
a tungsten fiber with a length of 1160 𝑚𝑚 and a diameter of (502.0 ± 6.1)𝜇𝑚 with torsion spring 
constant     𝑘 = 8.47 × 10−4𝑁𝑚/𝑟𝑎𝑑.  

A PPT is mounted on one end of the pendulum, and the nozzle axis is aligned to be a tangent to the 
twist motion of the pendulum. When the thruster is firing, the pendulum responds by rotating about 
the fiber axis, the angular displacement of the pendulum is monitored by an electronic autocollimator 
ELCOMAT vario 140/40 with a measurement range of ±2880 𝑎𝑟𝑐𝑠𝑒𝑐 and an accuracy of 2 𝑎𝑟𝑐𝑠𝑒𝑐.  

An 850 𝑔 copper counterweight is mounted on the opposite side of the PPT in order to balance the 
weight of the thruster and adjust the attitude of the pendulum by adjusting the four copper nuts, which 
makes the thrust vector both vertical to the gravity vector and tangent to the twist of the pendulum. 
The upper end of the fiber is connected to a rotational vacuum feedthrough fastened on the top of the 
vacuum chamber, which is used to adjust the initial amplitude and position of the pendulum.                
No information was reported on the damping system used in this thrust stand. The calibration method 
is based on a pair of electrostatic actuators, parallel to the pendulum surface with a gap of 4 𝑚𝑚 to 
form the differentially capacitive transducer, that is used to adjust the amplitude of the pendulum for 
the impulse and the thrust measurements in open loop mode conveniently. In closed-loop mode, the 
electrostatic actuators are used to balance the pendulum in the null position by using a proportional 
integral differential (PID) compensator. The system was housed in a vacuum chamber at a constant 
pressure of 1 × 10−3𝑃𝑎 

The thrust stand can measure impulses up to 1350 𝜇𝑁 with a resolution of 0.47 𝜇𝑁, and the thrust up 
to 264 𝜇𝑁 with a resolution of 0.09 𝜇𝑁, which is limited by the accuracy of angular measurement. 
 

Figure 22: Schematic design of the Yang et al. thrust stand configuration. 

 

1.5.9  2013) Sub-µN Thrust Stand by Soni and Roy [10] 

This thrust stand, called APRG-μNTS (Applied Physics Research Group micro-Newton thrust stand) 
by Soni and Roy was developed by the University of Florida and it consists in a spring-suspended 
torsion pendulum. The goal of the development was the testing of plasma micro-thrusters called the 
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Free Molecular Electro Jets (FMEJ) capable of delivering sub-micronewton level thrust for 
nanosatellites. The length of the swing arm was 0.285 𝑚 and the torsional springs, which provide the 
restoring force for the system with spring constants of 0.0036 𝑁𝑚/° and an error of ±10%.  

The angular displacement of the arm was measured using the Philtec Model D-100 linear optical 
displacement sensor.  

An electromagnetic eddy-current damping system was used for vibration damping. The damper 
consisted of a strong neodymium permanent magnet (𝐵𝑠𝑢𝑡𝑓𝑎𝑐𝑒 = 0.6619 𝑇) and a cylindrical copper 
block (diameter 63.5 𝑚𝑚, height 31.75 𝑚𝑚). The relative motion of the block and the magnet, 
produced by oscillations in the swing arm, induce eddy-currents in the copper block. These currents 
generate their own magnetic field, countering the applied field and providing damping.                          
The thrust stand was calibrated using the logarithmic decrement method. This method estimates the 
spring constant of the system, by backing out the system’s damping ratio based on successive peaks 

of oscillation in conjunction with the measured damped frequency. The result of the logarithmic 
decrement method was then compared to an electrostatic calibration method. The system was housed 
in a vacuum chamber sized 25 × 25 × 56 𝑐𝑚3. 

The thrust stand was capable of measurements with a resolution of 0.01 𝜇𝑁 and lowest thrust of 
1.3 𝜇𝑁. 

 

Figure 23: Schematic design of the Soni and Roy thrust stand configuration. 
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1.5.10  Summary 
The following table provides an overview of the most important properties of the thrust balances 
previously presented.  

As before the devices are sorted by year of publication, in order to better understand the table below 
a legend has been created:  

a) Spring-suspended=Spr-Susp;  
b) Fiber-suspended=Fib-Susp;  
c) Not mentioned=Nm. 

Year 
 

Author/ Team 

 

Operation 
Principle 

Resolution 
(nN) 

Lower thrust 
limit (nN) 

Measurement 
technique 

Damping 
system 

Calibration 
Source 

2001 Jamison  
et al. [3] 

Spr-Susp. 
Steady-state Nm 88.8 LVDT Viscous 

(oil bath) 
Orifice 

Thruster 

2001 Ziemer 
[4] 

Spr-Susp. 
Steady-state 

Nm 1000 LVDT Damping coil Impact 
Pendulum 

2002 Phipps  
and Luke [6] 

Fib-Susp. 
Steady-state 

4 6.6  
(Ideally) 

Laser 
deflection 

Viscous 
(oil bath) 

Known  
Force 

2003 Lake  
et al. [5] 

Spr-Susp. 
Resonant 

40 5000 LVDT - Calibration 
Weight 

2003 Gamero-
Castaño [8] 

Spr-Susp. 
Steady-state 

10 110 Optical LDS Electrostatic Electrostatic 

2006 Phipps  
et al. [7] 

Fib-Susp. 
Steady-state 

25 100 Mach-Zehnder 
interferometer 

Viscous 
(oil bath) 

Magnetic 
Torque 

2012 Yang  
et al. [9] 

Fib-Susp. 
Steady-state 

90 Nm Autocollimator Air Damping Free 
Oscillations 

2013 Soni  
and Roy [10] 

Spr-Susp. 
Steady-state 

10 1300 Optical LDS Electromagnetic 
(eddy-current) 

Log 
Decrement 

Table 3: Overview of existing concepts for thrust stands in the sub micro-Newton range based on torsion 
pendulum sorted by year. 
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2 Requirements and Boundary Conditions 
For the design of a completely new thrust stand it was necessary to define the requirements and the 
boundary conditions of the system, this was made using information from an old thesis work made on 
this project and the one collected after the research on real thrust stands, Chapter 1.5. Also, the 
preliminary ideas, formulated when it was conceived the intention to build a thrust stand for future 
electromagnetic radiation thrusters, were used to define the thrust stand conditions. In this chapter are 
presented the initial requirements from which the thrust stand project started, during the development 
of the project other were defined. 

 

2.1 Requirements 

Starting from the idea of a real thrust stand where the purpose is to have a system able to carefully 
measure the thrust of the tested elements, it was observed that the first requirement that could also be 
called “the principal one” was the sensibility of the system. In Chapter 1.5 micro- and nano-Newton 
real thrust stand with sensibility from 4 nN up to 100 nN were analysed, these values were obtained 
using different technologies. Considering that the thrusters that will be tested could potentially been 
use for mission where are demanded better accuracy than the one requested by Lisa Pathfinder AOCS 
[2], an ideally resolution of 10 nN was established. 

To reach this resolution it was analysed the chosen measurement system, that depended on the chosen 
type of thrust stand. The one designed in this thesis is a fiber suspended pendulum, so it should be 
designed a measurement system able to measure the angular displacement made by the pendulum’s 
arm with a sensibility of 10 nN.  

Another factor that was decisive for the operation of the project was the minimal force that could be 
detected by the system, as could be seen from the Table 3 in Chapter 1.5.10 the lower thrust limit 
depends by the type of torsional pendulum chosen. From the research it was established that the best 
values are reached by fiber instead of spring-suspended torsional pendulum. Considering that this 
stand was designed to test photonic thrusters that generate sub micro-Newton forces, the lower thrust 
limit was set at 50 nN. 

In order to obtain that limit a fiber with a low value of elastic constant should be used, so an analysis 
on this constant should be required and the purpose of that should be to find fibers that permit to 
measure small forces for big angular displacement. Also, this value influences the response time of 
the pendulum, the system should provide a short time from resting to measurement position, that could 
be obtained by designing a good damping system, and a short relaxation time. It is recommended to 
balance calibrate the system before a new measurement and to make it in a short time. Working on 
these time spans could increase the efficiency of the thrust stand allowing more tests in small time.  

A maximal force limit should be set in order to design the maximal radiation power generated by the 
experimental damping system radiation source. 

Another necessary requirement was the tensile strength of the fiber that should be able to support the 
weight of the pendulum’s arm, from a first evaluation on existing thrusters it could be seen that this 
weight value is usually elevated. The one chosen was based on the Phipps and Luke system that had 
requirements and size like the one projected here. 

The last requirements that were followed during all the project design were the simplicity of the 
system operations and assembly, and the preference for high efficiency but low-cost solutions.  
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In Table 4 are reported the requirements of the system: 

Requirements 
Sensibility of the system 10 nN 

Lower thrust limit 50 nN 

Fiber elastic constant low to measure       
10 nN displacement 

Time spans < 15 minutes 

Upper thrust limit maximum value 
damped 

Fiber Tensile strength withstand < 20 kg 

Simplicity and high efficiency easy assembly 

Cost  < 2 000 € 

Table 4: Thrust stand requirements. 

 

2.2 Boundary Conditions 

The thrust stand will work in a vacuum chamber to not have the damaging effects of air resistance, so 
the first boundary condition described are the ones inside the vacuum chamber and then outside, or 
rather the conditions of the Lab where the chamber is placed. 

In the vacuum chamber the pressure is close to 0 Pa and its size were supposed to be 2 x 1 x 0,5 m3, 
due to the absence of air the heat exchange can be made only by contact and radiation, all the 
components of the stand should be prepared to work in these conditions. 

Outside the vacuum chamber it was hypothesized the Standard Ambient Temperature and Pressure, 
temperature of 25°C and ambient pressure of 1 bar. 

Boundary conditions 

Vacuum 
Chamber 

Pressure Close to 0 Pa 

Size 2 x 1 x 0.5 m3 

Heat exchange Contact or radiation 
   
Outside  
Chamber 

Pressure 1 bar 

Temperature 25°C 

Table 5: Thrust stand boundary conditions. 
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3 Thrust Balance model 
In this chapter are presented the building of the pendulum simulator and some tests on how could 
work the system. In the first subchapter are reported all the data of the pendulum, the equations used 
to build the simulator and an analysis on the energy of the system, then in the second there were 
evaluated 2 possible configurations of the damping system. The first possibility was a constant 
damping force acting on the arm for a time equal to half a period of the pendulum and changing value 
at the end of that time, the second one was a fixed force activated in the same time of the one before 
but with value modulated in frequency. At the end are presented the conclusion of that simulations 
and a first evaluations on the real damping system. 

 

3.1 Specifics 

In this subchapter as explained above are presented all the parameters used to model the thrust balance 
and how was build the MATLAB model. 

The thrust balance is based on a fiber-suspended torsion pendulum, the model is like the Philips and 
Luke system, the thrusters and the power supply are both mounted on the swing arm, but with an 
active damping system based on the emission of LEDs electromagnetic waves. 

The data of the pendulum were obtained from a previous thesis work on this system, the length of the 
pendulum’s arm is 1.5 m with lever length of 1 m. The swing arm is a hollow aluminium profile, with 
square cross section, outer width of 4 cm and inner width of 3 cm. The total mass of the pendulum 
was estimated of 7.5 kg, and this value was fundamental for the calculation of the spring constant of 
the fiber and the inertia of arm.  

The following table shows the data used to simulate the pendulum with a MATLAB model: 

Lever length (m) 1.00 

Mass (kg) 7.50 

Inertia (kg m2) 1.41 

Spring constant (Nm/°) 1.714 x 10-5 

Table 6: Pendulum data. 

The first hypothesis is that the fiber damping ratio is neglected, considering that the real pendulum in 
the vacuum chamber doesn’t have air resistance so that the damping ratio of the fiber is close to 0. 

The second and third hypothesis come from the small force values of the thrusters that will be tested, 
so it is possible to use the theory of small oscillation, the pendulum from now on is considered as a 
linear system and the Superposition principle is applicable [36]. 

First it was developed a model with a damping ratio of 𝜁 = 0.3 − 0.5 to have an idea of how should 
work the system in case of undamped oscillations, from Eq. 18 𝐹 = 𝐹𝑡𝑒𝑠𝑡 is the force made by the 
thruster that the system is going to measure. It was decided to model an undamped oscillation cause 
to the uncertainty of the future damping system behaviour, it was supposed that a damping ratio            
𝜁 > 0.5 would have required a high light radiation source difficult to find or design, as confirmed in 
the conclusion of this chapter. 
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then there were calculated the external forces 𝐹𝑚 needed each half oscillation period to emulate the 
previously ideal damping. Forces that should be generated by the high-powered source’s radiations of 
the external damping system which strike on a mirror placed on one extreme of the arm, at the same 
length of the thruster, 𝑅. In Figure 24 the positions of the thruster and the mirror are shown. 

 

Figure 24: Pendulum diagram. 

Starting from the no damped system equation and its solution 𝜃0: 

defined 𝑚 ≥ 1, the number corresponding to the damping force active in a given half period,  
or rather in the second half period from 𝑇 2⁄  to 𝑇 the damping force 𝐹𝑚=1 is active, then in the third 
from 𝑇 to 3/2 𝑇 the force 𝐹𝑚=2 is active and so on.  

Defining 𝜃𝑖𝑚(𝑚) the displacement made by each  𝐹𝑚, the displacement after 𝑛 external damp forces 
𝜃(𝑚) could be calculated:  

In this way is possible to know each half period which damping force is acting and how it is changing 
the final displacement 𝜃(𝑚). 

In Figure 25 is shown a graph with the damping forces depending on time for m=3, in the first 𝑇 2⁄  
no damping force is acting so 𝐹𝑚=0 = 0, from 𝑇 2⁄  to 𝑇 the 𝐹𝑚=1 is pointing in the same direction of  
𝐹𝑡𝑒𝑠𝑡 because the idea is to slow the moviment of the arm moving in the opposite direction, then 𝐹𝑚=2 

 𝜃̈𝑖𝑑 + 2𝜁𝜔𝑛𝜃̇𝑖𝑑 + 𝜔𝑛
2𝜃𝑖𝑑 =

𝐹𝑡𝑒𝑠𝑡𝑅

𝐼
 (Eq. 25) 

 𝜃̈0 + 𝜔𝑛
2𝜃0 =

𝐹𝑡𝑒𝑠𝑡𝑅

𝐼
 (Eq. 26) 

 𝜃0 = (1 − cos(𝜔𝑛𝑡))
𝐹𝑡𝑒𝑠𝑡𝑅

𝐼𝜔𝑛
2

 (Eq. 27) 

 𝐹(𝑚) = (𝜃𝑖𝑑 − 𝜃(𝑚−1))
𝑡=𝑇

2⁄ (𝑚+1)

𝑘

2𝑅
 (Eq. 28) 

 𝜃𝑖𝑚(𝑚) = (1 − cos(𝜔𝑛(𝑡 − 𝑇
2⁄ 𝑚))

𝐹(𝑚)𝑅

𝐼𝜔𝑛
2

 (Eq. 29) 

 𝜃(𝑚) = {
𝜃(𝑚−1) ,                         𝑡 < 𝑇

2⁄ 𝑚

𝜃(𝑚−1) + 𝜃𝑖𝑚(𝑚), 𝑡 ≥ 𝑇
2⁄ 𝑚

 (Eq. 30) 
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is opposite to 𝐹𝑡𝑒𝑠𝑡 and so on. For that reason, it was decided to use a convention: 𝐹(𝑚) > 0 when 
pointing in the same direction of 𝐹𝑡𝑒𝑠𝑡, and negative if on the contrary. That explained also why the 
force 𝐹𝑚=2 is greater than 𝐹𝑚=1. 

 

Figure 25: Example of 𝐹𝑚 for 𝑚 = [1 2 3] and 𝐹𝑡𝑒𝑠𝑡= 500nN. 

After the model was rebuilt to simulate the real test condition, the first half period the pendulum is 
not damped, then when the maximum displacement is reached the program analyses the data about 
time, displacement, velocity and acceleration to obtain the experimental values of spring constant and 
a first data about the thrust that is measured. With these values the program calculates the forces 𝐹𝑚 
needed to damp the system for a previously chosen damp ratio, and an estimation of the relaxation 
time. 

The program shows in a graph the evolution of angular displacement θm , angular velocity ωm ,  
angular acceleration αm and the damping force Fm, in Figure 26 is simulated Ftest= 500nN for m=3 
while in Figure 27 in red are shown the 𝜃𝑖𝑚(𝑚) for m=[1 2 3] and in blue the 𝜃(𝑚) for m=[0 1 2]. 

 

Figure 26: 𝐹𝑡𝑒𝑠𝑡= 500nN and m=[1 2 3] a) angular displacement 𝜃𝑚; b) angular velocity 𝜔𝑚; c) angular 
acceleration 𝛼𝑚; d) damping force 𝐹𝑚. 

a) 

b) 

c) 

d) 
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Figure 27: Example for 𝐹𝑡𝑒𝑠𝑡= 500nN how work the damping system: blue 𝜃𝑚 , red 𝜃𝑖𝑚(𝑚) a) 𝜃0 and 𝜃𝑖𝑚(1); b) 
𝜃1 and 𝜃𝑖𝑚(2); c) 𝜃2 and 𝜃𝑖𝑚(3). 

As explained before it is possible to see that the forces 𝐹𝑚 are activated every time that the angular 
velocity is 0, their values are constant during all the half period of activation, in this way the forces 
slow down the swing arm up to allow the measurement of the thrust Ftest at relaxation time. 

To have information about energy of the system 𝐸 it is not possible to use the Superposition principle 
so the interactions between the response were considered, it’s possible to calculate the potential energy 
𝑈 for 𝑚 ≥ 0: 

The first half period it is not damped so for the conservation of energy 𝐸0 is the total energy of the 
system, then when the external forces started to hit the swing arm there is no more conservation of 
energy, and it’s not possible to calculate the total Energy 𝐸𝑡𝑜𝑡. 

 After the experimental relaxation time the value of the energy will be close to ideal: 

In Figure 28 are reported the damping force Fm and the potential energy of the system Um during 
time, the third graph is the potential energy of the system Um depending on displacement. 

 𝑈𝑚 =
1

2
𝑘𝜃𝑚

2 (Eq. 31) 

 𝐸0 =
1

2
𝑘(𝜃0)𝑡=𝑇/2

2  (Eq. 32) 

 𝐸𝑓 ~ 
1

2
𝑘 (

𝐹𝑡𝑒𝑠𝑡𝑅

𝐼𝜔𝑛
2

)
2

 (Eq. 33) 

a) b) c) 
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Figure 28: a) Damping force 𝐹𝑚; b) Potential energy of the system 𝑈𝑚 during time; c) Potential energy of the 
system 𝑈𝑚 for displacement. 

 

3.2 Possible Damping Cases 

Defined a working model it was analysed the possibility to damp the system using a specific force 
each half period or a pulsed force that changing the frequency and the effective number of pulses 
reach the same result. 

This analysis is crucial to define the light source, because using a specific force for each half period 
involves that the power of the high light source should be controlled on magnitude to generate a 
specific electromagnetic radiation, on the other side the source should be controlled on frequency. 

To be clearer, in the first case each half period the light source generates an individual square pulse 
for a time that is exactly half of a period, in the second case the light source generates a constant 
periodic square pulse.  

In the next figure are shown the first case on the left, one force constant for all the half period, and 
the other one on the right, constant force control in frequency. 

 
Figure 29: a) First case: Single pulse, magnitude control; b) Second case: Multiple pulses, frequency control. 

a) b) c) 

a) b) 
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To set the analysis it was necessary to define a minimum and maximum force that the system would 
have been able to measure, from the requirements a minimum force of 50nN and a maximum of 500nN 
were chosen. From the theory using the Eq. 14 knowing the maximum force, it is possible to define 
the electromagnetic radiation power emitted by a light source, ideally a power of 150W is needed to 
generate 500nN of thrust. 

The choice of the maximum and the minimum is also important to prove that the initial hypothesis 
made in the previous subchapter can be used, the displacements made by these thrusts are reported 
below: 

 Force [nN] Displacement [°] 

Minimum 50 0.0029° 

Maximum 500 0.0290° 

Table 7: Angular displacements produced by maximum and minimum thrust 

the values of the angles are very low, so it is possible to use the previous hypotheses of small 
oscillation and Superposition principle. 

For the next simulation was chosen a damping ratio 𝜁 = 0.5. 

 

3.2.1 First case 
An individual square pulse is acting during a time 𝑡𝑑 that is exactly half oscillation period 𝑡𝑑/𝑇 =

0.5, the displacement made by the impulse for 𝑡 < 𝑡𝑑 is 𝜃𝑖𝑚: 

when the impulse load is no longer acting 𝑡 ≥ 𝑡𝑑, the system is responding in free vibration and the 
response of the system become [36]s: 

with 𝑡̅ = 𝑡 − 𝑡𝑑. 

For 𝑡𝑑/𝑇 = 0.5, the angular velocity (𝜃̇𝑖𝑚)𝑡=𝑡𝑑
= 0, and the angular dispalcement                 

(𝜃̇𝑖𝑚)𝑡=𝑡𝑑
= 2

𝐹𝑖𝑚𝑅

𝐼𝜔𝑛
2, so the dynamic amplification is 𝐷 = 2 and the response for 𝑡 ≥ 𝑡𝑑 is: 

This is confirmed also from the figure below where for rectangular pulses at 𝑡𝑑/𝑇 = 0.5 the 
amplification is doble. 

 𝜃̈𝑖𝑚 + 𝜔𝑛
2𝜃𝑖𝑚 =

𝐹𝑖𝑚𝑅

𝐼
 (Eq. 34) 

 𝜃𝑖𝑚 = (1 − cos(𝜔𝑛𝑡))
𝐹𝑖𝑚𝑅

𝐼𝜔𝑛
2

 (Eq. 35) 

 𝜃𝑖𝑚 = (𝜃̇𝑖𝑚)𝑡=𝑡𝑑
𝑠𝑖𝑛( 𝜔𝑛𝑡̅ ) + (𝜃𝑖𝑚)𝑡=𝑡𝑑

cos( 𝜔𝑛𝑡̅ ) (Eq. 36) 

 𝜃𝑖𝑚 = cos( 𝜔𝑛𝑡̅ ) 2
𝐹𝑖𝑚𝑅

𝐼𝜔𝑛
2
 (Eq. 37) 
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Figure 30: Maximum elastic response, rectangular and triangular load pulses [36]. 

then using the Superposition principle this response is sum to the undamped response, the result is 
identical to the one calculated in the previous subchapter, 𝐹𝑖𝑚 = 𝐹(𝑚) for 𝑚 ≥ 1 : 

Then it was made a simulation for the minimum 50nN and the maximum 500nN thrusts tested, 
considering the linearity of the system the results are proportional and in Chapter 3.3 is reported the 
simulation for the minimum. 

 

3.2.2 Second case 
A periodic square pulse has a period of 2𝑡𝑑, where 𝑡𝑑 is the time of each singular pulse, for 𝑡 < 𝑡𝑑 
and 𝑡 ≥ 𝑡𝑑 like before the system is working with the Eq.s 34, 35, 36 but the value of the angular 
velocity is different from zero and the dynamic amplification is less than before [36]: 

Considering that the response of the system after each pulse is always the same: 

it is possible to sum the responses of all the pulses every period 2𝑡𝑑 obtaining the displacement called 
𝜃𝑝(𝑚) until the maximum of that is equal to the 𝜃 needed to damp the system: 

Also, in this case |𝐹𝑖𝑚(𝑡>𝑇
2⁄ )| = 𝑐𝑜𝑛𝑠𝑡. , for 𝑚 ≥ 1: 

 𝜃(𝑚) = {
𝜃(𝑚−1),                                                𝑡 < 𝑇

2⁄ 𝑚

𝜃(𝑚−1) + 𝜃𝑖𝑚(𝑚),                              𝑡 ≥ 𝑇
2⁄ 𝑚

 (Eq. 38) 

 (𝜃̇𝑖𝑚)𝑡=𝑡𝑑
≠ 0 (Eq. 39) 

 𝐷 = 2sin (π
𝑡𝑑

T
) < 2 (Eq. 40) 

 𝜃𝑖𝑚(𝑚) = {
0,                                        𝑡 < 2𝑡𝑑(𝑛 − 1)

(𝜃𝑖𝑚)(𝑡−2𝑡𝑑(𝑚−1)),           𝑡 ≥ 2𝑡𝑑(𝑛 − 1)
 (Eq. 41) 

 𝑚𝑎𝑥 (𝜃𝑝(𝑚) = ∑ 𝜃𝑖𝑚(𝑎)

𝑏

𝑎=1

) = (𝜃𝑖𝑑 − 𝜃(𝑚−1))
𝑡=𝑇

2⁄ (𝑚+1)
 (Eq. 42) 

 𝐹𝑖𝑚(𝑚) = {
+ |𝐹𝑖𝑚(𝑡>𝑇

2⁄ )|,                            𝑇 2⁄ (2𝑚 − 1) < 𝑡 ≤ 𝑇
2⁄ (2𝑚)

− |𝐹𝑖𝑚(𝑡>𝑇
2⁄ )|,                            𝑇 2⁄ (2𝑚) <  𝑡 ≤ 𝑇

2⁄ (𝑚 + 1)
 (Eq. 43) 
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then using the Superposition principle, the response 𝜃𝑝(𝑚) is sum to the undamped response, 𝑚 ≥ 1 : 

As in the previous case it was made a simulation for the minimum and the maximum thrusts tested, 
also here for the linearity of the system the results are proportional and for that in the following chapter 
is reported only the simulation for the minimum 50nN. 

 

3.3 Conclusions 

In Figure 31 and Figure 32, in the next page, are reported the simulation for the first and second case 
with 𝐹𝑚𝑖𝑛= 50nN, while in the table below are reported the maximum values of 𝐹(𝑛) calculated in the 
two simulations for 𝐹𝑡𝑒𝑠𝑡 minimum and maximum: 

 Case 𝐹𝑚𝑖𝑛= 50nN 𝐹𝑚𝑎𝑥= 500nN 

𝐹(𝑚) 𝑚𝑎𝑥 
First 20 nN 200 nN 

Second 60 nN 600 nN 

Table 8: Results of the two cases simulated. 

The data forces 𝐹(𝑚) needed to obtain the same damping ratio for each case, so same displacement 
𝜃(𝑛), were analysed and from Figure 31 d) and Figure 32 d) and the data in the Table 8 above it was 
confirmed that the second case needs forces that are almost three times bigger than the first, and that 
its values should be bigger than the force made by the thruster tested. 

In the following consideration it was assumed that the hypothetical high light power source could 
have been a LED. Due to the difficulty to find info about its electromagnetic radiated power 
everything was referred to the electrical power using a first approximation, it was chosen an average 
efficiency of 40% (other 60% lost in heat) [37]. 

In the first case for 𝐹𝑚𝑎𝑥 is needed a damping force  𝐹1~200𝑛𝑁, that corresponds to 40% of the max 
thrust, from Eq. 14 60.61 𝑊 of light power should be needed, so the needed electrical power should 
be of 151.51 𝑊. Thanks to the scalable nature of the system for the minimum 𝐹𝑚𝑖𝑛 = 50𝑛𝑁, as show 
in Figure 31 d)  𝐹1~20𝑛𝑁 so 15.15 𝑊 of electrical power are needed. 

In the other case to damp is needed a force 𝐹1~600𝑛𝑁 that corresponds to 120% of the max thrust, 
emitted radiated power of 181.82 W, then for LED efficiency 40% the needed electrical power is 
454.55  𝑊. It is not possible to use 𝐹1~600𝑛𝑁 to damp the system for 𝐹𝑚𝑖𝑛 and for that as shown in 
the Figure 32 d)  it was chosen 𝐹1~60𝑛𝑁, which for the same reasoning as before has an electrical 
power of 45.46 W. 

From this last part and the basics of Chapter 1.1 it was established that:  

a) is difficult to control in frequency a high intensity light source to damp the 𝐹𝑚𝑖𝑛; 
b) more than one light source for the second case should be needed to reach the same result of 

the first one; 
c) is hard to find a LED with that elevated electrical power and having a small size; 
d) the use of high frequencies may not allow the achievement of the right junction temperature 

for the correct operation of the LED, resulting in incorrect and non-constant radiation. 

After these considerations it was chosen to use the first case to develop the damping system. 

 𝜃(𝑚) = {
𝜃(𝑚−1),                                          𝑡 < 𝑇

2⁄ 𝑚

𝜃(𝑚−1) + 𝜃𝑝(𝑚),                           𝑡 ≥ 𝑇
2⁄ 𝑚

 (Eq. 44) 
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Figure 31: First Case: 𝐹𝑚𝑖𝑛= 50nN and: a) angular displacement 𝜃𝑚; b) angular velocity 𝜔𝑚; c) angular 
acceleration 𝛼𝑚; d) damping force 𝐹(𝑚). 

 

 
Figure 32: Second Case: 𝐹𝑚𝑖𝑛= 50nN a) angular displacement 𝜃𝑚; b) angular velocity 𝜔𝑚; c) angular 

acceleration 𝛼𝑚; d) damping force 𝐹(𝑚). 

 

  

a) 

b) 

c) 

d) 

a) 

b) 

c) 

d) 



 
 

 

 

Page 48 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

4 First Concept 
This chapter is a first analysis of the components required to design the thrust balance and it is 
structured in this way: at first an analysis on the specifics of the system, where are reported all the 
general information data on the components and on the project; after a research on the existing LEDs 
and its performance in order to project an efficient damping system; then a primary evaluation of the 
thrust balance cost; finally are reported the system changes  after a meeting where the results of this 
chapter analysis were exposed. Particularly attention was posed on the design of the measurement 
system and damping system. During the project design the requirement and boundary conditions 
exposed in Chapter 2 were followed. 

 

4.1 Specifics 

The research started form the existing thrust balances shown in Chapter 1, each system was made by 
a combination of common sub-systems that can be summarized in: pendulum’s arm, measurement 
system and damping system. The thrust balance presented in this chapter is composed by:  

1) a fiber suspended pendulum’s arm with thruster and the power supply both mounted on the 
swing arm;  

2) a measurement system able to measure the small angular displacement of the pendulum’s arm 
generated by thrusters up to 500 nN with a sensibility of 10 nN;  

3) an external damping system working on the emission of electromagnetic light radiation made 
by a high light source power (potentially by LEDs).  

The analysis on the swing arm is not reported because was already described in Chapter 3. 

 

4.1.1 Measurement system 

In Chapter 1 were analysed the measurement systems of real thrust balances, the technologies used 
were inductive electromagnetic sensor (LVDT), laser deflection, optical linear displacement sensor 
(LDS), Mach-Zahner interferometer and autocollimator. The last one can measure the angular 
displacement by laser or LED deflection at the rotation centre of the swing arm. 

Starting from the requirements in Chapter 2 a sensibility of 10nN is needed, the model developed in 
Chapter 3 permit to define the angular displacement for this sensibility: 

The sensibility of 10nN was reached by the Phipps and Luke [6], the Gamero-Castagno [8] and Soni 
and Roy [10] thrust balances. The first one using a laser deflector and the last two using optical LDSs. 
A simple temporal analysis, as shown in Table 3, has result that the most recently used technologies 
are autocollimator and optical LDS. These two types were analyzed, also considering the elevated 
angular sensibility and accuracy of the recent autocollimators. 

The thrust stand of this thesis is based on a fiber suspended, so it is more similar to the one of           
Yang et al. [9] compared to that of Soni and Roy, based on a spring suspended. Anyway, a research 
on LDSs having the angular sensibility 𝜃𝑠𝑒𝑛 was made but with negative results. Despite having with 
Soni and Roy the same sensibility requirement, a different angular sensibility requirement is generated 
by the different pendulum size and suspended type. So, they weren’t chosen as measuring system.                  

 𝜃𝑠𝑒𝑛 = 0.000583° (Eq. 45) 
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Also, laser deflection was not chosen, because the electronic autocollimator represents an evolution 
of this technology, greater precision and a digital data collector. So, an autocollimator was chosen as 
the best measuring system solution for the thrust stand.  

 

Existing high-resolution autocollimators 

An autocollimator as the thrust stand designed by Yang et al. was chosen as first solution to reach the 
high sensibility, for this kind of technology is good to use the unit arcsecond, 𝜃𝑠𝑒𝑛 = 2.0988′′.  

In their project Yang et al. used the autocollimator “ELCOMAT vario 140/40” with high measurement 
resolution selectable from 0.005 ′′up to 10′′, a recommended resolution of 0.5′′ and a measuring 
uncertainty of ±2′′ [38]. They finally reach a resolution of 90nN, but considering the differents data 
on fiber suspended, inertia and size of the arm of this project it will probably lead to a different result. 
One advantage of the autocollimator line “vario” of ELCOMAT is that it can be used at different 
distances from the interested point, 0.3m up to 3 m, and mains voltage between 90 up to 250V at 50 
or 60 Hz. On the other side exist a line “direct” of ELCOMAT with a fix max distance and main 
voltage of 5V via USB, for example the “ELCOMAT direct 140/40” has a maximum measurement 

distance of 0.75m [39].  

In Figure 33 is shown the selection criteria of ELCOMAT autocollimators depending on measuring 
accuracy and measuring range that was found online on the company website. 

 
Figure 33: ELCOMAT autocollimator model choice depending on measuring accuracy and range [39]. 

Considering that this measurement system needs a resolution at list of 2’’ and that the maximum 

angular displacement made by 𝐹𝑚𝑎𝑥 = 500𝑛𝑁 is 𝜃𝑚𝑎𝑥 = 0.058° = 208.8′′, the measuring range is 
between −208.8′′ and 208.8′′, so 417.6′′ a ELCOMAT direct 140 or 200 could be fine. 

 

Figure 34: Measuring principle of the autocollimator [39]. 

In Figure 34 is shown how these autocollimators work, they measure the deflection of a LED beam 
on a mirror that could be fixed on the rotation centre of the swing arm. 
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One problem is that these types of autocollimators are not prepared to work in a vacuum chamber, so 
they should work outside like in the Yang et al. project. That make the location of the autocollimator 
at a variable large distance from mirror and that could explain the choice of Yang et al. to use a vario 
instead of a direct. 

After a research on autocollimators with sensibility 𝜃𝑠𝑒𝑛 and able to work in a vacuum chamber was 
made. An excellent result could be the “TriAngle TA 100-38” with high measurement resolution 

0.10 ′′ and accuracy of 2.5′′, that is prepared for an ambient pressure between 0 to 0.1 bar so could be 
used inside the vacuum chamber. TriAngle has a program online to custom the autocollimator on the 
accuracy parameters [40]. 

From this analysis it resulted that using an autocollimator could be a good way to reach the sensibility 
of 2′′, also it could be used to measure the displacement of the arm in a 2D (two dimensions) plane  
providing in the future more complex thrust tests. Another advantage is that the high measuring range 
up to 4000’’ could allow the measure of a bigger 𝐹𝑚𝑎𝑥 up to 9.52𝜇𝑁. 

Big problem of this technology is the expensiveness, the price of the ELCOMAT direct 140/40 is 
starting from 8 880 €, with higher price for higher resolutions, while the TriAngle TA 100-38 is more 
expensive starting from 11 100 €, as well higher price for higher resolutions. 

To elaborate the data coming from the autocollimator a computer is needed, these data should enter 
in the MATLAB program descripted in Chapter 3, that could control the power output of the high-
power source of the damping system as analysed next. 

 

4.1.2 High Powered light source 

The high-powered light source is the innovative part of the project because it will be in charge of 
radiation power generation that will be used as force opposing the pendulum’s arm movement, 
damping the system. The goal of this research part was to find a source with elevated radiation power, 
in order to obtain an elevated damping force. 

First, the research started from the Planck relation, that expresses the value of the photon energy 𝐸 
depending on the ℎ plank costant and its frequency 𝜐, Eq. 1. From that relation it is possible to say 
that lowest is the value of 𝜆 and bigger will be the value of 𝐸, considering that ℎ and 𝑐0 are costant in 
a vacuum. As explained in Chapter 1.1 the wavelengths that can be generate by LEDs are limited and 
it was made an analysis on the possible ones. 

 

Figure 35: a) Electromagnetic spectrum b) Visible spectrum. 

As shown in Figure 35 the wavelengths’ interval between 390 nm and 700 nm (colours from violet 
red) is the visible spectrum where are present the colours that can be seen by the human eye, usually 
LEDs produce radiations in this spectrum because of their common utilization in ambient lighting.  

a) 

b) 
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Existing high-powered light sources 

A research was carried out on existing high-power light sources with low wavelength radiation, this 
for the high energy emitted in this range, here are reported 2 of the best examples found online:  

1) Prizmatix UHP-T2-LED-White with an ultra-high-power white LED (50 W of electrical 
power) produces a collimated optical power output > 2.5 W, so an efficiency 5% [41];  

2) Prizmatix UHP-Mic-LED-405 with an ultra-high-power violet LED (32W) that produce a 
collimated optical power output > 2.0 W, so efficiency 6.25% [42].  

For the low efficiency of these ones and their non-predisposition to work in a vacuum chamber a new 
light source was needed to be design, the idea was to use the same technology of the thrusters that 
will be tested on this thrust stand, or rather a new kind of Nano Newton thrusters propelled by 
electromagnetic radiation from a light source. 

The research continued looking for LEDs with a wavelength between 400 nm and 500 nm, close to 
the violet and blue colour, also looking for white LEDs with an elevated value of colour temperature. 
That could be obtained by a blue LED die coated with yellow phosphor or a specific combination of 
Blue, Green and Red colours, the LEDs manufacturing methods where explained in Chapter 1.1.  

For a White LED higher is the colour temperature value and more will be the power of the Blue light 
emitted, while on the contrary for lower values more will be the power of Red light emitted, as shown 
in Figure 3. For what explained before Blue radiation is more powerful than Red, so there were 
preferred White LEDs with high colour temperature also called “cold” white. 

The value of the wavelength is a good start point to define the power emitted by ideal LEDs while for 
real light source the information given by the seller is required. Usually in the datasheet of a common 
LED there is information about the total amount of light emitted. For diodes with a wavelength close 
to the Ultra-Violet light is reported the information about the electromagnetic power emitted in        
Watt (W). While for the LEDs emitting visible light often is expressed the value of the total quantity 
of visible light emitted in Lumen (lm), this is due to the common use of these sources. 

For this project is important to know the value of radiant power emitted by LEDs, but this can’t be 

obtained only knowing the value in Lumen. Because an integration of the specific electromagnetic 
spectrum emitted by the LED is needed, for monochromatic light it is easier bur for white LEDs 
became more complicated. During the project when it was impossible to obtain or calculate this value 
for missing of data, it was supposed and efficiency of 40% [37], as made in Chapter 3.3. 

 

Light Transport and Collimation 

Ones defined the kind of light that should be used, it became necessary to define how this light would 
have been transported by the source to the strike point in one extreme of the pendulum’s arm.             
High power LEDs with high efficiency are usually the COB (Chip On Board), disadvantages of this 
configurations are the elevated beam angle that could be up to 120° [43]. For the project is preferred 
a light beam angle as possible close to 0° and a small strike area, so if the COB LEDs are used, a light 
collector will be needed. 

First idea was to use a model like the one presented for PACER [1], there it was evaluated the 
possibility to transport the light via optical fibers to an optical collimator, in order to have a final 
collimated beam of light that could have been directed by reflection on a mirror Figure 14. For the 
thrust stand project, the final reflected beam could be used to hit a point of the arm damping the 
system. 
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Radiation Power Control 

After it was analysed how control the power emitted by the high source, to change the damping force 
of the system, the most simple way is to control the electrical power sent to the LED but considering 
that a specific output is needed and that the input data are coming from a computer after the elaboration 
of autocollimator data, a digital control is required. This digital control could be made by an Arduino, 
it is possible to PWM (Pulse Width Modulation) to change the brightness of the LED and accordingly 
change the light power emitted [44].  

For LED until 100W is possible to PWM using an Arduino but for bigger power specific and more 
expensive components are needed [45]. There is not a linear proportion between the electromagnetic 
power emitted by the LED and the electrical power consumption of the source, as explained in    
Chapter 1.1. That for the technology of the diode that emit for values above a certain voltage, so ones 
defined a real system the power radiated should be tested. 

 

Junction Temperature Control 

In order to guarantee the correct working of the LED, avoiding the change of the junction temperature 
which would lead to a variation of the radiated power, a cooling system is needed (Chapter 1.1).          
At the end of the Chapter 3 it was obtained the maximum value of the electrical power needed to 
damp, 151.51 W. As explain before as first approximation the 60% of this power will be converting 
to heat, so at least 91 W should be dissipated. In this case it was important to consider the boundary 
conditions inside the vacuum chamber, the heat could have been transfer only for conduction or 
radiation, so the following possibilities were evaluated:  

a) Water cooling system; 
b) Cooling block; 
c) Force heat transfer with a Peltier cell.  

For each possibility heat pipes or conductive blocks could be used to transfer the heat from the LED 
back surface to the cooling system. 

The water cooling system would be composed by a pump, a water reservoir and a radiator to ensure 
the water to air heat exchange, collocated outside the vacuum chamber, then 2 tubes water In and 
water Out would be connected to a cooling block attached to the backside of the LED inside the 
chamber.  

As second solution it was evaluated a Cooling block that could be used to control the LED 
temperature, for example an aluminium block at a specific low temperature could be located inside 
the vacuum chamber attached to the backside of the diode, the heat produced would be transferred to 
the block and during the test period the Cooling block would increase its temperature matching an 
equilibrium. 

The third was a Peltier cell that could be used to force the transferring heat from the LED. To force 
the transfer of 91 W of heat more electrical power should be used, a cooling system should be designed 
to cool the cell inside the vacuum chamber for a cooling power bigger than just the once produced by 
the diode. Due to this disadvantageous effect this solution could be used only to force the heat transfer. 
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4.1.3 Light Transport Through Mirror Reflection 

Once the collimated light beam is produced it is necessary to define how this would hit the extreme 
of the swing arm, as mentioned before mirrors could be used to easily direct the light.                      

The pendulum is moving in one direction, so the beam will hit a surface perpendicular to the pendulum 
movement decreasing the velocity of the arm, 5 mirrors would be used to direct the beam instead of 
2 LEDs located in opposite direction, parallel to movement directions of the arm.                                     
This idea provides less power consumption and it does not require another or bigger cooling system 
for a second LED, it guarantees more free space in the vacuum chamber and it is simpler to control.  
One disadvantage is that a pivot mirror is necessary to direct the beam.  

The system includes 4 fixed mirrors and 1 pivot mirror as shown in Figure 36, which can be moved 
by a servomotor controlled by an Arduino, to have a digital control of the angular rotation 

 

Figure 36: Mirrors schematic configuration of thrust stand. 

 

4.1.4 Software and Hardware 

As explained before the angular displacement data detected by the autocollimator are sent to a 
computer, then the MATLAB script made in Chapter 3 could be used to calculate the force needed to 
damp the system, and after an Arduino could sent an electrical signal to drive the LEDs and to move 
the pivot mirror in the correct position. 

 

4.1.4 Summary 

In Figure 37 are reported the data path and the light path of the system, the first highlights the exchange 
of data between the elements of the thrust balance, the second shows the elements that deal with 
directing the light beam. The last cell on the right is the mirror located on one extreme of the arm, as 
explained in Chapter 3.1 is the element that transmits the force of light to the swing arm. 

 
Figure 37: Data path and light path of the system. 
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Everything starts from a New displacement made by the thrusted tested that is measured by the 
autocollimator, which sends the angular data to a computer with MATLAB in operation.                     
This is in charge of the calculation of the damping force value, so the intensity of the LED’s 
electromagnetic radiation, and the control of the servo right position moving the pivot mirror. The 
light coming from the high-power source is directed by the pivot mirror to the fixed mirrors and then 
to the mirror on the arm. At the end a new displacement is generated by the combination of thruster 
and damping force on the arm closing the loop. 

In the next table are reported the general elements of the thrust stand, particularly the measurement 
system and damping system, in the same order as reported before.   

Elements Sub-Elements Description 

   Autocollimator - Information about the angular displacement 
of the pendulum’s arm. 

High Powered  

Light Source 

LEDs Generation of radiant electromagnetic 
power, controlled by Arduino. 

Optical fibers Transfers the light from the individual chip 
LED to the collimator. 

Collimator Collimate the light coming from the LEDs 
in a single beam. 

Cooling system Needed to cool the LED and to make it work 
at a specific junction temperature. 

Mirrors Pivot Mirror Direct the light beam in the opposite 
direction of the moving pendulum. 

Servomotor Needed to move the pivot mirror to the 
correct angular configuration. 

Computer Standard Computer Enough power to run MATLAB and 
acquired data from autocollimator. 

Arduino (or similar board) Control the power of the LED and the 
rotation of the servomotor. 

Table 9: General elements of the thrust stand. 
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4.2 LEDs of the Damping System 

In this sub-chapter different types of LEDs and some high-power light source designs have been 
analyzed. As explained in the subchapter before the first research was on LEDs with low wavelengths 
and high efficiency, as initial idea a system without the optical fibers and the collimator was 
considered. That because ones of the goals of the project are the cheapness and the simplicity. 

 

4.2.1 Common LEDs 
The LEDs research starts with an analysis of common and cheap diode, that can be find on ordinary 
web shops, as eBay or Amazon, in the thesis work from this point on this type is call C-LEDs 
(Common LEDs). This type is usually made in stock of 0.25 W up to 100 W and just basics data are 
reported by the seller as Voltage, Current and Luminous flux.  

From Chapter 3.3 the maximal radiant power to damp the system was calculated, it was 60.61 W.     
No information about the efficiency of these diodes was found so it was made an initial approximation 
estimating an efficiency at 40%, so 151.51 W of needed radiated power. 

The initial ideas were to use 1 LEDs of 150W, or 1 of 50 W and 1 of 100 W but considering the 
difficulty to drive a 100W diode it was chosen to build a modular configuration. This involves the use 
of LEDs maximum of 50 W, as example there were reported the data of a C-LED found on eBay, this 
is a Blue LEDs with specific colour: Royal Blue, Wavelength λ(nm): 440-450, [46].  

 

 
Figure 38: C-LED Royal Blue λ: 440-450nm: a) Real image; b) Relation Electric and Radiated power [46]. 

The absence of information on the radiated power and the spectrum of the light emitted is common 
for C-LEDs, this makes it difficult to use them for a project because the real power could only be 
measured by testing real components. As mentioned before there is no presence of a collimating 
system based on optical fibers, so it was thought to use a lens to collimate the light emitted by the 
LEDs and there were evaluated some configuration to minimize the space between each diode and to 
size the hypothetical lens diameter, as show in the following picture. 

 

Figure 39: First concept of high emitting light source: 3 configurations. 
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Advantage of this modular configuration was the possibility to not modulate the power of each LEDs 
but only switch ON the diodes needed to reach the radiation power, each LED needed an individual 
driver to be powered.  

Disadvantages were the big size of the LEDs and most important the difficulty to collimate the light 
coming from source with different viewing angle and sizes, distributed in a no proportional way. 

 

4.2.2 Specialized LEDs 
The next idea was to use small LEDs with the same power consumption to ensure an easily control 
and a right light collimation. The research focused on LEDs with better characteristics and more 
expensive than before, found on more specialized sites as Mouser Electronics and Digi-Key 
electronics, in the thesis work from this point on this type is call S-LEDs (Specialized LEDs). 

The first one presented here is the: S-LED ASMT-JL31-NRS01, Colour: Royal Blue, Wavelength 
λ(nm): 440-460, the choice of this component was due to the low wavelength that guarantees an 
elevated radiation power and an efficiency declared by the manufacturer close to 40%: This is a small 
3 W LED with a maximum radiation of 1020 mW at the room temperature of 25°C [47]. 

 
 

 Fix 𝐼𝐹  = 700 mA (T=25°C)  
Radiant Flux (𝜙𝑒) 1020 mW 

Voltage (𝑉𝐹) 3.6 V 

Figure 40: S-LED ASMT-JL31-NRS01, Colour: Royal Blue, Wavelength λ(nm): 440-460. 

In Figure 41 are reported the characteristics of the diode, in Figure 41 a) a graph of the relative 
luminous flux depending on the current and in Figure 41 b) an ideal LEDs matrix configuration               
8 x 8. The small dimensions of the matrix permitted to size a smaller lens than before, but the elevated 
viewing angle of 165° made impossible the collimation by lens. This was an error happened due to a 
primary research of high-power LEDs with high efficiency, the difficulty to find information about 
the radiated power had overwhelmed the need for diode with small view angle, however these LEDs 
are good candidates not to be underestimated for a future system with optical collimated system. 

  
Figure 41: S-LED ASMT-JL31-NRS01: a) Typical Characteristics [48]; b) Configuration concept. 

Advantages of these diodes are the compact size: 5 mm x 4 mm, the high-performance energy 
efficiency. Also, the price of a singular chip on Mouser is 3.28 € [47], for the matrix system 64 diodes 
would be needed so 210 €.  

a) a) b) 
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The most important disadvantage is that can only be used with an optical fibers collimations. The 
value 192W reported in Figure 41 b) referred to the total electric power required to use all the diodes 
in the matrix, for an efficiency of 40%, the total value of radiated power is 76.8 W, bigger than the 
one required due to the possible presence of unpleasant effects. 

After it was evaluated the possibility to use LEDs with wavelengths close to the UV (values close to 
395nm), because it was easier to have information about the radiant power emitted, reported in the 
datasheet, and for the high efficiency of this diodes. 

The second diode presented here is the UV-LED LuxiGenTM LZ1-00UAP5, Colour: Violet, 
Wavelength λ(nm): 395, the choice of this component was due to the elevated radiation power and an 
efficiency declared by the manufacturer close to 50%: This is a small 3.4 W LED that at maximum 
power 4.1 W generates a radiation power of 2.0 W at the room temperature of 25°C [49]. 

 

 

 Fix IF = 1000 mA (T=25°C) 

 Minimum Maximum 

Radiant Flux (𝜙𝑒) 1.6 W 2.0 W 

Voltage (VF) 3.1 V 4.1 V 

Figure 42: UV-LED LZ1-00UAP5: Colour: Violet; Wavelength λ(nm):  395. 

In Figure 43 are reported the characteristics of the diode, in Figure 43 a) a graph of the typical current 
characteristics and in Figure 43 b) the relative luminous flux depending on the current. The typical 
working point is at 3.4 W of electrical power circa 1.7 W of radiation power are emitted,                          
but as explained before could reach 2.0 W. 

  
Figure 43: UV-LED LZ1-00UAP5: a) Typical forward current characteristics; b) Typical normalized radiant 

flux over current [49]. 

Advantages of these diodes are the compact size: 4.4mm x 4.4mm, close to the one before, and the 
possibility to emit 4.1W flux output from 1 mm2 chip at 3000 mA. Also, equally relevant is the view 
angle of 85°, much smaller value than the one before, which increases the ease collimating.  

On the other side one disadvantage is the expensive price, on Mouser is 12.86 € for one [50], for a 
matrix system like the one presented before 36 would be needed, so 462.92 €. To calculate the number 
of diodes in the matrix it was used the same consideration explained for the previous LED. 

The low view angle of this diode permits its use for lens or optical fiber collimating system, in any 
case the second one is better because guarantees less power losses, and it is more expensive than the 
first one. After this research the diode UV-LED LuxiGenTM LZ1-00UAP5 was considered as the best 
option that could be used in the system, for the elevated radiant power and efficiency. 

a) b) 
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4.3 Cost Analysis 

To have a complete view of the project it was necessary a primary evaluation of the thrust balance 
cost, the price of a possible computer to run MATLAB was not considered because a standard 
Laboratory one could be use. For the Arduino in charge of LEDs power control was estimated a cost 
of 20 €, the cooling system price was estimated 100 €, looking at efficient CPU cooling systems 
having the same power dissipation of the damping system, and the price of mirrors and servomotor 
was estimated 20 €. 

In Figure 44 are reported the initial total cost evaluations, the chosen diodes of the damping system 
are the UV-LEDs LuxiGenTM LZ1-00UAP5, also are reported the maximum price of 11 702 € 
calculated considering the more expensive autocollimator TriAngle TA 100-38 and the minimum of 
9402 €, choosing the autocollimator ELCOMAT direct 140/40.  

 
Figure 44: Evaluation cost of the project 

From the figure above it's obvious that the autocollimator represent the component with the most 
elevated cost, this is justified by the high sensibility required by the measurement system, between 
the two presented the best solution could be TriAngle TA 100-38 for its predisposition to work in a 
vacuum chamber, quality absent in the other one. 

 

4.4 System Changes 

After the primary evaluation cost analysis, a meeting was made with the responsible professor and the 
following decisions were taken: 

It was discussed the elevated autocollimator price and it was established that a new measuring system 
needed to be design. The expense would have been expensive considering the first stage of the project 
and the not predictable working result of the electromagnetic thrust radiation made by LEDs.             
This new system should work on the deflection of a laser to reduce the cost, if the experiment work 
successfully, the possibility to buy an autocollimator will be evaluated. 

Then it was analysed the dangerousness of the UV-LEDs, it would be necessary to work with this 
technology in a prepared environment wearing protective eyewear, so they were not suggested for the 
project. It was decided that the research should be focus on LED emitting White-cool light, with high 
colour temperature, so high presence of blue radiations, and elevated value of luminous flux, from 
this point on this type is call W-LED (White LED). 

1
1

7
0

2

1
1

1
0

0

5
6

2

2
0

2
0

9
4

0
2

8
8

0
0

5
6

2

2
0

2
0

T O T A U T O C O L L I M A T O R H I G H  P O W E R E D  
L I G H T  S O U R C E

M I R R O R S C O M P U T E R

MAX

min



 
 

 

 

Page 59 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

It was approved the possibility to use a water-cooling system inside the vacuum chamber to cool the 
damping system source, also it was decided to evaluate the possibility of using a Peltier Cell, while 
for the cooling system of the thrusters on the swing arm the water one was not recommend.                  
Due to the difficulty design and the unwanted vibrations generated by the water flow, it was decided 
to design a sized cooling block. 

The Table 10 show a summary of the system changes decided after the meeting and that are analysed 
in Chapters 5: 

  Sub-Systems New Options 

Measuring System Laser Deflection 

LEDs W-LEDs 

  Cooling System Water Cooling / 
Peltier Cell 

Table 10: Resume of changes after meeting.  
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5 Damping System Design 
This chapter is focus on the design of the damping system, here are reported all the consideration 
made on the project from the first ideas to the final concept. As mentioned at the end of Chapter 4.4, 
after a meeting with the responsible professor it was decided to use W-LED instead of UV-LEDs due 
to their danger. The first subchapter is on the design of the LED system, some concepts have been 
testes with an analysis on the real radiant power emitted and the efficacy of the light collimating 
system. The second on the sizing of the mirror in charge of direct the light; the last one on the design 
of the water-cooling system. 

 

5.1 LED System 

The research started from the assumptions made in Chapter 4.2, that is a research focused on the use 
of W-LEDs with high colour temperature and high radiation power. The supervisor suggested to 
design a system without optical fibers, simple as possible to minimize the cost, to be easily tested and 
proving the efficacy of this damping system based on light radiation technology. 

First it was suggested to search for the most common W-LEDs and to not use a combination of diodes, 
as the one presented in Chapter 4.2.1 due to the absence of an optical fibers collimating system.           
So, it would be preferred to use a single chip able to generate at least 60W of radiating power, 
considering the low efficacy of this diode that before it was overestimated of 40%, an electrical power 
between 100W and 150W is needed. 

Usually this type of diodes has dimensions 4 x 4 cm and a chip size of 2 x 2 cm, they can reach a 
luminous power of 9 000-10 000 lm, sometimes 11 000 lm [51]. They need to be cooled because the 
elevated junction temperature quickly increases lowering down the value of the radiating power, 
typical behaviour of the emitting diodes. The information about the radiant power presented in the 
datasheets are usually referred to an ambient temperature of 25°C and as made before when there is 
no information about the value of radiated power it will be consider an efficiency of 40%.                     
The viewing angle should be low as possible, online they can be found chips with angle between 0° 
and 180°, and the idea was to collimate this using lensed.  

In Figure 45 are reported the common characteristics of a 100 W W-LED, it is possible to observe 
that that view angle is elevated, because these diodes are usually used to illuminate rooms, and that 
they have also an elevated luminous flux. 

 

 

 Characteristics (T=25°C) 
 Luminous Flux (𝜙𝑣) 10000 lm 

Power (𝑃𝑖𝑛) 100 W 

Efficiency 40% [37] 

Viewing angle 140° 

Figure 45: Typical 100W W-LED characteristics. 

The idea was to use this type of diodes in the damping system but due the elevated viewing angle 
something was needed to decrease this value, in order to hit the mirror on one extreme of the 
pendulum’s arm in a smaller area.  
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5.1.1 First solution 
The first test was evaluating some common cheap solutions to focus the light using lens and it was 
found online a simple system that could reduce the viewing angle. This was composed by two 
elements: one small conical mirror, used as a reflector collimator, which task was to collimated the 
light emitted for viewing angles close to 140°, in order to not lose this power; a glass lens with light 
transmittance of 98%, and a view angle of 60° [52].  

In Figure 46 are reported the data of the components of this system that were used as inspiration for 
later designs. 

  

 

 Lens Char. 

Diameter 44 mm 

Height 18 mm 

Transmittance 98% 

Viewing angle 60° 

Focal Length 52 mm 

Figure 46: a) Reflector collimator; b) Lens; Lens characteristics [52]. 

Then it was considered that to prevent light reflection in the vacuum chamber, produced by the light 
coming from the LED and the one reflected by the mirrors, a tunnel way for the light pass was needed. 
To prevent the born of new heating source PVC white tubes were chosen to cover the light way starting 
from the lens and ending close to the extreme of the pendulum’s arm. In following figure is shown 
how this system should have worked, in Figure 47 a) there are the LED with the view angle decreasing 
system, and in Figure 47 b) the complete system with mirrors inside a tubing tunnel. 

  

Figure 47: a) LED, reflector, lens and starting of the tubing; b) Complete system with mirrors in blue. 

This system would never work as mentioned because the viewing angle after the lens was too high to 
define a long way until it hits the pendulum’s arm, the final size of the beam would have been too big, 
and a lot of radiant power would be lost. Anyway, this first try was used to estimate the mirrors size, 
the light way length from the LED to the arm and the complete size of the system. From this system 
it was observed that a component was needed to collimate the light for the upper viewing angle, as 
the conical mirror, and that a sized lens was needed to collimate the lower ones. 

 

5.1.2 Second solution 
The second idea was to use a parabolic mirror for the first purpose and a convergent lens for the 
second one (exposed before), then a big divergent lens to focus the light coming from the components 
before. In this case the PVC tubing system wasn’t chosen to be used, if necessary, at the end of the 
project it would have been design. 

a) b) 

a) b) 
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The parabolic mirror would have changed the direction of the light collimating it, as shown in       
Figure 48, and increased the quantity of light that in the preview configuration would have been 
wasted. The first parabolic reflector tested was found online, it was a cheap solution and it was decided 
to use its characteristics for a first design [53].  

  
 

 Characteristics  

Diameter 125 mm 

Height 100 mm 

Transmittance 98% 

Viewing angle 20° 

Figure 48: a) Parabolic mirror; b) How it works; Characteristics. 

Not all the light emitted by the LED would have been collimated by the reflector, so an aspheric 
condenser lens was chosen to collimate the light coming from the incoherent source.                                      
The one chosen for the project was the: ACL5040U Aspheric Condenser Lens [54], diameter: Ø50 
mm, focus length: 40 mm, Uncoated, found on Thorlabs online store. 

  
 

 Characteristics 

Diameter 50 mm 

Height 21 mm 

Focal Length 26 mm 

Glass Type B270 

Figure 49:a) ACL5040U Aspheric Condenser Lens; b) How it works; Characteristics. 

With this configuration at the end of the parabolic mirror at least a diameter of 100 mm of collected 
light could be generated, then a Fresnel Lens could be used to focus the light at the needed length. 
The light coming out from this lens need circa 350 mm to complete the mirrors way and hit the swing 
arm, so a Fresnel lens with diameter Ø110 mm and focus length: 350 mm was found [55]. 

 

 

 Characteristics 

Diameter 110 mm 

Height 10 mm 

Focal Length 350 mm 

Material Plastic 

Figure 50: Chosen Fresnel lens characteristics. 

To support the aspheric condenser lens inside the parabolic mirror a component was design, this 
support could be printed in 3D and its information are shown in Figure 51 a), while Figure 51 b) shows 
the complete system and how it works. 
To simulate the system the program Optgeo was used, the first results showed that the system wasn’t 

working well and only a few quantities of light was really focused to the strike point, as shown in   
Figure 52. Where the red lines are the light rays emitted and the green element represents the extreme 
of the arm at 350 mm from the Fresnel lens (light distance, not the realistic one between the two 
elements). The size of the strike a was chosen with the same dimensions of the chip LED. 

a) b) 

a) b) 
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Figure 51: a) Component design to support the aspheric lens; b) Complete system. 

Considering that the real LED is not a point source but a composition of more punctual sources, it 
was simulated as a composition of 3 punctual sources having all the same viewing angle, one 
positioned in the centre and two positioned at the extreme of the LED length. 
The reasons why this system didn’t work was the difficulty of the Fresnel lens to focus the light 
coming from a no punctual source. Also, the use of more elements to direct the light complicated the 
system making it more sensible to errors. The system was subject to Spherical Aberration. 

 
Figure 52: Optgeo simulation of the second solution, the element in green is the strike point. 

 

5.1.3 Third solution 
After previous simulations it was decided to no use more the Fresnel lens, to change the parabolic 
mirror in an elliptic reflector, so to focus the light immediately without having more elements 
directing the light, as explained in Chapter 1.2.2. Also, the possibility to collimate the light not focused 
by the mirror using an aspheric lens has been abandoned because didn’t work properly. 

To design the elliptic mirror first was decided to use the same dimension of the parabolic ones so: 

 

 

 

 Characteristics 

Diameter 125 mm 

Height 100 mm 

Focal Length 350 mm 

Transmittance 98% 

Figure 53: Chosen Elliptic reflector characteristics. 

First results showed that the light was more focused than before but as previously mentioned the size 
of the LED was decreasing the possibility to be focused well. Also, a lot of light radiation of the rays 
not focused by the reflector was lost. With the program Optgeo was difficult to define the quantity of 
power lost so a MATLAB programme was built to calculate it. 

a) b) 
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Figure 54: Optgeo simulation of the third solution, the element in green is the hitting point. 

 

5.1.4 Radiant Power Model of LEDs 
After simulation with cheap W-LEDs it was decided to build a program to calculate the amount of 
power emitted by LEDs knowing the luminous power and the spectrum characteristics. To do that it 
was necessary to define the Luminous Efficiency Function. This function describes the average 
spectral sensitivity of human visual perception of brightness, ISO 11664-1:2007, and it can be 
approximated by the function [56]: 

In Figure 55 is reported the graph of the function 𝑉(𝜆) depending on the wavelenght. 

 

Figure 55: Luminous Efficiency Function, V(λ). 

Knowing the spectrum radiant power of a source 𝜙𝑒,𝜆(𝜆), it is possible to calculate the luminous flux 
𝜙𝑉 with the following function: 

In order to calculate radiant power could be use the Luminous Efficacy of Radiation (LER) to have 
data about how well the source produces visible light, unit lm/W: 

 

 𝑉(𝜆) = 1.019 𝑒(−285.4 (𝜆/1000−0.559)2) (Eq. 46) 

 𝜙𝑣 = 683.002 𝑙𝑚/𝑊  ∫ 𝑉(𝜆)
∞

0

𝜙𝑒,𝜆(𝜆)𝑑𝜆 (Eq. 47) 

 𝐿𝐸𝑅 =   683.002 𝑙𝑚/𝑊  
∫ 𝑉(𝜆) 𝜙𝑒,𝜆(𝜆)𝑑𝜆

∞

0

∫ 𝜙𝑒,𝜆(𝜆)𝑑𝜆
∞

0

 (Eq. 48) 
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And then finally the total radiant power 𝜙𝑒 knowing the luminous power 𝜙𝑣: 

The MATLAB script works with the data input of the spectrum radiant power and the luminous power 
of the LED. 

As mentioned before the size of the LED were creating problems in the light focusing so a research 
was made to find diode of 100 W with characteristics like the ones presented before but with smaller 
dimensions. Online W-LED with circular chip were found, better for light distribution, and with small 
diode size having a diameter of 1 cm. 

In Figure 56 are reported the data of the YJ-BC-160H-G01 High CRI LED chosen as a candidate for 
subsequent tests [57]. 

 
 

 Characteristics (T=25°C) 
 Luminous Flux (𝜙𝑣) 6000 lm 

Power (𝑃𝑖𝑛) 100 W 

Colour Temperature  5900 K 

Viewing angle 120° 

Chip Diameter  10 mm 

Figure 56: W-LED YJ-BC-160H-G01 characteristics [57]. 

In the datasheet the data of the typical spectral distribution graphs were presented, so it was possible 
to calculate the radiant power using the MATLAB program. In Figure 57 are shown: a) the Spectral 
power distribution of the diode; b) the Photonic spectral luminous efficacy curve, other name for the 
Luminous Efficiency Function; c) the product of the previous curve. 

 Figure 57: a) Spectral power distribution YJ-BC-160H-G01; b) Luminous efficiency function; c) product 
between graph a) and b). 

 

 𝜙𝑒 =   
𝜙𝑣

𝐿𝐸𝑅
 (Eq. 49) 

a) 

b) 

c) 
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The total radiant power 𝜙𝑒 of the diode is estimated to be 23.49 W and LEF 255.47 lm/W,                      
the efficiency calculated is of 23.5% so less than expected before but explained by the smaller quantity 
of luminous flux than before (YJ-BC-160H-G01 𝜙𝑣=6 000 lm and previous 100 W W-LED           
𝜙𝑣=10 000 lm) . 

 

5.1.5 Efficiency Model of Conical Reflectors 
Then it was built a MATLAB program to calculate the efficiency of the reflector so to have an 
evaluation of the final radiation power, at first there were designed 3 types of reflector: the first with 
the same shape of the one presented before, the lasts were designed trying to focus as much possible 
light but in two different ways. 

The first one presented in Figure 58 was designed to focus the light coming from the focus to 450 mm 
of length, the red point in the figure b) is the focus. It has a max diameter of 115 mm and it was 
estimated a transmittance of 98%. With this configuration not all the light emitted could be reflected 
by the conical mirror but only the light with an inclination angle from 30° to 60°. 

 

 

 

 Characteristics  

Max Diameter  115 mm 

Height 100 mm 

Transmittance 98% 

a 235 mm 

b 67.9 mm 

c 67.9 mm 

Figure 58: First reflector: a) 3D; b) 2D; Characteristics. 

The second reflector presented in Figure 59 was designed trying to focus more quantity of light than 
before increasing the height up to the next focus, that increases the inclination angle from 14° to 60°, 
for this configuration they should be use 2 LEDs and 2 reflectors instead of the pivot mirror and the 
mirrors to direct the light. 

 

 

 

 Characteristics  

Max Diameter 166 mm 

Height 200 mm 

Transmittance 98% 

a 130 mm 

b 83 mm 

c 83 mm 

Figure 59: Second reflector: a) 3D; b) 2D; Characteristics. 

The third one presented in Figure 60 was designed as before to increase the quantity of light but this 
time increasing the maximum diameter, the LED is facing in the opposite direction than before, in 
this way the only light that is not focused is the one coming back to the diode after reflection. As the 
second configuration 2 LEDs and 2 reflectors should be needed because the area section of the 
radiation would be elevated, and it could be not possible to size a mirrors light way. 

a) b) 

a) b) 
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 Characteristics  

Max Diameter 338 mm 

Height 100 mm 

Transmittance 98% 

a 320 mm 

b 234.5 mm 

c 234.5 mm 

Figure 60: Third reflector: a) 3D; b) 2D; Characteristics 

Then the program evaluates the typical LED spatial distribution of Intensity, that can be found on the 
datasheet of the diode and it was supposed that the volume of this distribution is the total power 
emitted by the diode. 

Where 𝐼(𝜃) is the Intensity depending on the angle of view 𝜃, and all the theta limits are calculated 
by the program depending on the chosen reflector size, the volume is calculated considering the 
rotation of the function 𝐼(𝜃) around the axis y. 

This value compared with the total radiant power emitted by the LED also give an information about 
the efficiency of the reflector: 

Then was made a consideration on the hitting point at the extreme of pendulum’s arm, this need to be 
a mirror, which ideal size should be the same of the LED, so that the final reflected radiation can 
generate a pressure perpendicular to the mirror plane. This is the same working principle of the solar 
sails [58], the value of the generated pressure depends on the inclination of the hitting light rays 
following the law reported in Eq. 52 as shown in Figure 61. 

 

Figure 61: The reflection of the radiation flux generates a force perpendicular to the mirror. 

 𝜙𝑒,𝜃1,𝜃2
= 𝜙𝑒   

2𝜋 ∫ 𝐼(𝜃)𝜃𝑑𝜃
𝜃2

𝜃1

2𝜋 ∫ 𝐼(𝜃)𝜃𝑑𝜃
𝜃𝑀𝐴𝑋

𝜃𝑚𝑖𝑛

 (Eq. 50) 

 ERef =   
𝜙𝑒,𝜃1,𝜃2

𝜙𝑒
 (Eq. 51) 

 𝐹 =   𝐹0 cos2 (𝑖) (Eq. 52) 

a) b) 
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𝐹0 is the force generated by LED radiation after the reflector and 𝑖 is the inclination of the radiantion 
respect the normal of the mirror surface, if it is considered the mirror as a perfect reflection plane the 
law can be rewrote as: 

So, it should be important to know 𝑖 in order to define a good value of final efficiency of the system. 
In the program it was created a relation between the inclination and the view angle of the LED and 
for the dependency of the intensity on the inclination: 

Then as explained before if the arm-mirror is perfectly reflecting, the ending efficiency of the reflector 
could be rewritten as: 

After the MATLAB script was completed, the 3 reflectors designed before were tested and in          
Table 11 them efficiency are reported: 

Reflector N° 1 2 3 

Efficiency of the reflector (ERef) 68.18 % 91.53 % 99.94 % 

Efficiency of the reflector with inclination effects (ERef_incl) 67.76 % 63.93 % 99.66 % 

Efficiency of the reflector with perfect reflecting mirror (ERef_fin) 135.56 % 127.86 % 199.32 % 

Final W-LED YJ-BC-160H-G01 radiation power (𝜙𝑒_𝑓𝑖𝑛) 31.84 W 30.03 W 46.82 W 

Table 11: Data of the MATLAB simulation for different types of reflectors. 

In Figure 62 there is reported the typical spatial distribution of Intensity depending on the angle of 
view of the W-LED YJ-BC-160H-G01 [57], a) in 3D and b) in 2D. Then in Figure 63 in next page it 
is reported how this distribution vary with the reflectors, in the first 2 column the first effect of 
reflector on the distribution of intensity is shown, as before in 3D and 2D. In the third column there 
are reported in blue the effects of inclination on the Intensity and in red the same one with the 
limitation of the reflector. 

  

Figure 62: LED Intensity distribution:  a) 3D; b) 2D 

From the Table 11 and the Figure 63 in the next page, it can be seen that the best reflector would be 
the third one but considering its big dimension, the needed space to be build and a needed identical 

 𝐹 =  2 𝐹0 cos2 (𝑖) (Eq. 53) 

 ERef_incl =   
2𝜋 ∫ 𝐼(𝜃)𝜃cos2 (𝑖)𝑑𝜃

𝜃1

𝜃2

2𝜋 ∫ 𝐼(𝜃)𝜃𝑑𝜃
𝜃𝑀𝐴𝑋

𝜃𝑚𝑖𝑛

 (Eq. 54) 

 ERef_fin =  2 ERef_incl (Eq. 55) 

a) b) 
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system on the other side of the arm, the first one remains the best option. Also, if the effects of the 
inclination had not been taken in consideration the second reflector would have been the best solution.  

   
 

 
 

 

 
 

 

Figure 63: Intensity distribution after reflector: a) 1th; b) 2th; c) 3th : 1) 3D; 2) 2D; 3) with inclination effect. 

After the results of the simulations it was considered to continue using reflector as the type of the first 
one presented before, for the small size and the good efficiency, then in case this solution would not 
be work well the third solution could be taken in consideration. 

 

5.1.5 Fourth solution 
 

 
Figure 64: a) Typical car headlights LEDs; b) Light distribution inside reflector. 

To improve the system, it was decided to find LEDs with better radiant power and with small chip 
size in order to have a better light focalization. The initial idea was to use the car headlights LEDs 
and from that build a better system. In Figure 64 a) a typical LED configuration used in a car is shown 

a) b) 

a.1) 

b.1) 

c.1) 

a.3) 

b.3) 

c.3) 

a.2) 

b.2) 

c.2) 
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[59], from that was chosen to change the orientation of the LED inside the reflector Figure 64 b). In 
this way the quantity of light focused would be bigger, the spherical aberration effect would be 
smaller, also smaller reflector and mirrors would be needed. 

First it was designed a system with the W-LED presented before but instead of using just one, 3 of 
this type were disposed in the way reported in Figure 65, each diode has an angular view of 120° and 
a chip diameter of 10 mm: 

 

  
Figure 65: First concept 3 LEDs of 10 mm diameter: a) Frontal view; b) 3D View; c) LEDs inside reflector. 

Due to the big angle of view the value h=2.88 mm reported in the image would be too small to permit 
the design of an efficient heat exchanger of the cooling system. One solution could be to remove one 
of them, so increasing the space available and the efficiency of the exchange. 

After this also LEDs with smaller view of angle and small power were evaluated, for example it was 
analysed the W-LED, TX-1818W20FC65-CUVCNG-A01 [60], same size of the previously one.              
Less luminous power emitted, based on singular chip emitting, so the light can be focused better 
considering the diode as a point source. 

 
 

 

 Char. (T=25°C) 

Luminous Flux (𝜙𝑣) 1700 lm 

Power (𝑃𝑖𝑛) 20 W 

Colour Temperature  7500 K 

Viewing angle 65° 

Diameter Chip 10 mm 

Figure 66: Second concept 5 LEDs of 10 mm diameter: a) Frontal view; b) 3D View; LED Characteristics. 

This configuration with 5 diodes was tested as the ones before but the calculation changed cause to 
the different orientation of the LEDs. First it was analysed the power produced by just one of them 
and it was considered the same efficiency of the W-LED YJ-BC-160H-G01, so LED efficiency        
23.5 %. 

Than was evaluated the effect of the reflector (same reflector of before), all the light emitted by the 
LED is focused by the reflector because there are not angular limitations, so the Intensity graph results 
the same of Figure 62, and the first effect of the reflector has a value of 100%.  

Than as before it was build a relation between the view angle and the reflected angle in order to 
calculate the inclination effect, the view angle is expressed in this form: all the light reflected in the 

a) b) c) 

a) b) 
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left zone of the reflector is considered with a negative view angle while the other side positive, as 
shown in Figure 67.  

 
 

Figure 67: a) Inclination effect depending on view angle; b) Configuration. 

The efficiency of the reflector with the inclination effect was calculated as a ratio between the volume 
of the Intensity with inclination effect and the ones without, the volumes were calculated with a triple 
integral as reported below: 

As before in presence of perfect reflection ERef_tot became the double of ERef_incl, for an individual 
chip. If in the system are used 5 LEDs disposed as in the Figure 45 a), the total power radiated by the 
system is 5 times the power of one. 

Efficiency of the reflector (ERef) 100 % 

Efficiency of the reflector with inclination effects (ERef_incl) 99.89 % 

Efficiency of the reflector with perfect reflecting mirror (ERef_fin) 199.78 % 
Final W-LED TX-1818W20FC65 radiation power (𝜙𝑒_𝑓𝑖𝑛) 9.19 W 
System 5 W-LED TX-1818W20FC65 (𝜙𝑒_𝑓𝑖𝑛) 45.95 W 

Table 12: Data of the Fourth solution MATLAB simulation. 

This system should be better than the one simulated before because the light can be all focus by the 
reflector, the inclination effect is least, and it is easier to control the radiated output.  

The final total radiated power is 45.95 W, 1.44 times bigger than before with the same power 
consumption, in Figure 68 is reported also a simulation in Optgeo. 

 

 
Figure 68: Optgeo simulation of the Fourth solution, the element in green is the hitting point at 350 mm from 

the end of the reflector, or rather 450 mm from the focus. 

 ERef_incl =   

∫ (∫ (∫ 𝑑𝐼
𝐼𝑚𝑎𝑥(𝜃𝑥,𝜃𝑦)cos2 𝑖(𝜃𝑥)

𝐼𝑚𝑖𝑛(𝜃𝑥,𝜃𝑦)
)

𝜃𝑦𝑚𝑎𝑥(𝜃𝑥)

𝜃𝑦𝑚𝑖𝑛(𝜃𝑥)
𝑑𝜃𝑦) 𝑑𝜃𝑥

𝜃𝑥𝑚𝑎𝑥

𝜃𝑥𝑚𝑖𝑛

∫ (∫ (∫ 𝑑𝐼
𝐼𝑚𝑎𝑥(𝜃𝑥,𝜃𝑦)

𝐼𝑚𝑖𝑛(𝜃𝑥,𝜃𝑦)
)

𝜃𝑦𝑚𝑎𝑥(𝜃𝑥)

𝜃𝑦𝑚𝑖𝑛(𝜃𝑥)
𝑑𝜃𝑦) 𝑑𝜃𝑥

𝜃𝑥𝑚𝑎𝑥

𝜃𝑥𝑚𝑖𝑛

  (Eq. 56) 

a) b) 
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Then it was also made an analysis on the radiant area hitting the reflector, from Figure 69 it is possible 
to see that most of the radiated power is located on the right side of the reflector. So, the final power 
hitting the mirror at the extreme of the swing arm should have the same shape and distribution as the 
one in Figure 69 b).  

 

 

Figure 69: a) Hitting area depending on view angle; b) Distribution of radiated power emitted. 

The system presented before called fourth solution was chosen to be used in this project, anyway the 
MATLAB script could be used to test other different configurations and LEDs. 

 

5.2 Mirrors System 

Once defined the LEDs and the focusing system, it was time to size the mirrors needed to direct the 
light from the reflector to the arm-mirror on the swing arm. To do that it was created in Optgeo the 
reflector with all the 5 LEDs, and then the mirrors have been designed. It was decided to use this 
program to easily see the light reflections. 

The mirrors were disposed in order to minimize the size of the system and depending on the size of 
the reflector. A smaller reflector could be used, but the one chosen could be used for different 
configuration in case the one presented before should not work properly. 

 

 

Circular plane mirrors 
Quantity Diameter 

1 120 mm 

2 100 mm 

2 70 mm 

2 15 mm 

Figure 70: Complete system with mirrors; Table with quantity and sizes of mirrors. 

In Figure 70 is reported the complete system, plane circular mirrors are needed in these quantities and 
sizes: 1 pivot with diameter of 120 mm; 2 fixed of 100 mm; 2 fixed of 70 mm; 2 fixed on the extreme 
of pendulum’s arm in opposite directions at least of 15 mm. The complete system has a size of 260 x 
270 x 120 mm. 

a) b) 
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The rotation of pivot mirror could be controlled by an Arduino using a servomotor.                                    
So, a servomotor was chosen based on the elevated stall torque, on the possible angular rotation 
between 0° and 180° and the operating speed. The mirror rotation axis will be the same of the servo 
so to minimize the power needed to rotate it.  

For the project the mirror should rotate 90°, as showing in Figure 71 b), considering an operating 
speed of 0.15 sec/60° with no load, the mirror should complete 90° in ≈ 0.4 𝑠𝑒𝑐  ( for a load effect of 
+70%).  

The servomotor will start from a zero position with the mirror's face parallel to the reflector open face, 
in this position no light is directed to the arm. After the first half period of the pendulum, when all the 
swing arm data is calculated by the program of Chapter 3, then it rotates the mirror every half period 
of the pendulum, the first rotation is of 45° and the others of 90°.  

A first Arduino script was written to test the possibility to drive the servo and below there are reported 
the data of the chosen one SUNFUONDEN 55g [61]. 

  

 

 Characteristics 

Dimensions 54.1 x 20 x 44.3 mm 

Max Stall Torque  15kg/cm (6V) 

Rotation 0°-180° 

Operating speed (no load) 0.15 Sec/60° 

Figure 71: a) Chosen servomotor; b) Maximum limit angles; Characteristics. 

 

5.3 Optical Aberrations 

In the systems presented in Chapter 5.1 the presence of spherical surfaces implies the birth of a side 
effects as Spherical aberration and Chromatic aberration, described in Chapter 1.2.2, whose effects 
could be amplified in the system of Chapter 5.2.  

The effect of Spherical aberration causes a wrong reflection of the light rays that strike a spherical 
surface off-centre by changing the inclination effect. This does not create problems for the Fourth 
solution because the configuration was studied to minimize the inclination effect, Figure 67.  

While the First and Second solutions were affected by Chromatic aberration, failure of lenses to focus 
all wavelength (colors) to the same point, the Fourth not using lenses is no affected. 

 

 

5.4 Cooling System 

In order to have a perfectly working LEDs, so of all the damping system, it was necessary to design 
a cooling system to keep the temperature close to 25°C, as explained in Chapter 1.1.2, the one 
proposed was a water-cooling system, Chapter 4.4. 

Not all the total dissipation power of all the LEDs (100 W) is going to be transformed in heat, but it 
was suggested to design a system able to cool this quantity, this value is close to the one emitted by 
the ordinary pc CPU [62], so it was decided to start from this type of system. 

Usually these systems are composed by a water pump, a heat exchanger radiator, a water tank, a water 
block and a tubing system to connect all these components.  

a) b) 
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The ones required for this project should work as showing in Figure 72, the water block, in charge of 
transfer heat from the diodes to the water, should be the only component working inside the vacuum 
chamber. 

 
 

Water Cooling system 

N° Component 

1 LED 

2 Cooling block 

3 Heat Exchanger Radiator 

4 Pump 

5 Tubing 

6 Fan 

7 Fittings 

8 Water tank 

Figure 72: Water cooling system scheme and Components. 

The components chosen are usually used in CPU water cooling systems of 100 W dissipation:  

a) a water pump with: Hydraulic head: 3 m, Volumetric flow rate: 280 l/h, Power: 5 W;  
b) a heat exchanger radiator: Size: 157 mm x 120 mm x 32 mm, Material: Aluminium;  
c) a Fan: Size: 120 mm, Airflow: 89.5CFM;  
d) a water tank of 1 litre, this component could be also bigger if the radiator could not cool 

enough the water.  

In Figure 73 the photos of the chosen components are reported. 

    
Figure 73: a) Water pump; b) Heat exchanger radiator; c) Fan; d) Tank. 

One water block that could be used for the W-LED YJ-BC-160H-G01 is the Asiproper CPU Copper 
Water Block [63], Figure 74 a), while for the W-LEDs TX-3636W90FC120-NUVENG-A01 a new 
one is needed to be designed, cause to the orientations of the diodes Figure 66 a).  

The idea was to replace the copper base of the Asiproper water block with a pentagonal cylinder, 
Figure 74 b), and each LED would be attached with thermal paste to one of the five external face of 
the prism. Inside the cylinder each internal face could have designed fins to allow the heat exchange 
with all the LEDs. In Figure 74 c) there are also 2 examples of water block fins that could be used, 
the material of the block should be copper, and the sizes are shown in Figure 74 d) e) and f). 

For this designed water block there are 2 configurations that need to be tested, shown in Figure 75 a) 
and b) next page: 

a) extreme of the pentagonal cylinder close, water come in and out from the bottom of the block; 
b) extreme of the pentagonal cylinder open, used as the way out for water coming from the 

bottom of the block; 

a) b) c) d) 
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Water block 
Material Copper 

Pentagon 
Height 14 mm 
Length 30 mm 

Base 
Height 40 mm 
Thick.s 3 mm 

Figure 74: a) Typical Water block [63]; b) Designed Water block; c) Radiator fins; d) Front view; e) Lateral 
view; Characteristics. 

In case this configuration should not work properly cause more cooling power is needed, this 
component could be replaced with one of same size but full of copper, so no water inside.                    
Also, a Peltier Cell could be placed between this and the water block to increase the heat transfer,                
Figure 75 c), in that case a more powerful water-cooling system would be needed, to cool the heat 
radiated by the hot face of the cell.  

   
Figure 75: Configurations: a) 1; b) 2; c) 3. 

To connect all the previous components a PVC tubing system could be used, with diameter of 
10/8mm, and cause to the boundary conditions to prevent water coming out inside the vacuum 
chamber it is suggested to use fittings connections 1/4 Inch or 11/8 mm. 

Then another component necessary for the system already mentioned is the Thermal paste, a thermally 
conductive compound used as an interface between the water block and the LEDs, so to eliminate the 
space between the interfaces in order to maximize heat transfer. 

As first approximation it could be considered a limited LEDs working temperature of 50°C, the water 
enters inside the water block at 25°C and goes out at the limit temperature, perfect heat transmission. 
Then the hot water is transferred inside the tubing to the heat exchange radiator outside the vacuum 
chamber, here it is cooled by the work of the fan that pull colder air again the fins. After the water 
enters the 1 litre water tank at ambient temperature and it is forced by the water pump immersed inside 
to reach the water box in the vacuum chamber closing the loop. 

 

a) b) c) 

d) e) 

a) b) c) 
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As a critical factor the time to heat all the water inside the circuit without the radiator effect was 
calculated, so to have information on the ideal working time of the damping system for a 𝑃𝑖𝑛=100 W 
source. 

This value with the presence of the radiator and the fan should increase, data about cheap radiator are 
difficult to find, so it was assumed a radiator with 18 FPI, using the datasheet of the radiator Koolance 
HX-422 Radiator [64].  

The heat dissipation of this component plus a fan at 2 LPM is close to 300W for ∆𝑇 = 25°𝐶, so the 
time should be enough for this project also imagining a cheaper radiator with just 50% efficiency of 
the one that was hypothesized. 

The thesis did not treat the specific design of the cooling system, but it was oversized because the 
system will be adjusted once built, to cool the real power dissipation of the LEDs. 

 

 

  

 𝑡 =   
𝑄

𝑃𝑖𝑛
=  

𝑚 𝑐𝑝 ∆𝑇

𝑃𝑖𝑛
= 17,41 𝑚𝑖𝑛 (Eq. 57) 
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6 Swing Arm 
In this chapter the pendulum’s arm of the thrust stand is designed. The first subchapter is about the 
cooling system of the thrusters that will be tested on the swing arm and the second on the design of 
the auxiliary damping system. Then the third on the choice of the pendulum fiber based on the total 
mass of the components on the arm, and the last one on the calibration method of the thrust stand. 

 

6.1 Cooling System 

In Chapter 3 the data of the swing arm were described and there were defined the limits of the system, 
maximum thrust of 500 nN and a minimum of 50 nN. Ideally the LEDs that will be tested will have a 
high efficiency, more than the 40%, so the maximum radiated power by a LED for lowest efficiency 
is 378.8W.  The remaining 60% of the electrical power should be converted to heat making necessary 
the use of a cooling system for 𝑃𝑖𝑛=227.3 W. 

On the pendulum’s arm a water-cooling system as the ones presented in Chapter 5.4 couldn’t be used, 
due to the vibrations produced by the water movements, so the best idea was to transfer all the heat 
produced by the LED to the arm, that could work as a heating block. The arm should be designed to 
resist for a time close to 1 hour, to execute tests on thrusters, and up to a temperature of 50°C.                  
In Figure 76 are reported the swing arm data. 

 
 

 Characteristics 

Dimensions 1500 x 40 x 40 mm 

Material  Aluminium 

Cross section Square 

Figure 76: Cross section of the arm; Characteristics. 

At the beginning of the project the thickness of the hollow aluminium profile was h=5 mm, so the 
mass of the arm was 𝑚1 = 2.835 𝑘𝑔, for density of 2.7 g/cm2. So, it was possible to define the working 
time to increase the temperature of the profile from 25°C to the limit of 50°C, ∆𝑇1 = 25°𝐶: 

This time was too low and needed to be improved, so it was decided to work on the factor that could 
be modified.  The thickness of the profile was the first value changed from 10 to 20 mm, this increased 
the mass of the arm of 171.14%, up to 𝑚2 = 4.860 𝑘𝑔. This value should not be too high because it 
is limited by the tensile strength of fiber that hold it up. Then the initial temperature of the arm could 
be taken to 0°C and the limit temperature extended to 65°C, so ∆𝑇2 = 65°𝐶.  

The combination of all these changes increased the time of 445%: 

This is the heating time of an arm subject to the constant heat produced by the maximum thruster 
testable by the stand. In a real case, the test time of a thruster would be less than 10 minutes, therefore 
the calculated value is acceptable. Anyway, the mass value and the limited temperatures of the LEDs 
couldn’t be higher.  

 𝑡1 =   
𝑄1

𝑃𝑖𝑛
=  

𝑚1 𝐶𝑝(𝐴𝑙) ∆𝑇1

𝑃𝑖𝑛 𝑀𝐴𝑙
= 4,66 𝑚𝑖𝑛 (Eq. 58) 

 𝑡2 =   
𝑄2

𝑃𝑖𝑛
=  

𝑚2 𝐶𝑝(𝐴𝑙) ∆𝑇2

𝑃𝑖𝑛 𝑀𝐴𝑙
= 20.76 𝑚𝑖𝑛 (Eq. 59) 
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One idea expects that just for elevated thrust test, a secondary aluminium arm, with the same length 
but outer width of 3 cm and inner of 2 cm, could be put inside the one with inner of 3 cm.                         
This was thought because the changing mass modify the Inertia of the system and makes the pendulum 
less sensible.  

For example, for a thrust of 200 nN, initial arm temperature of 0°C, ∆𝑇2, and 𝑚1, mass of the initial 
designed arm, the final LED working time would be: 

Or the maximum thrust force could be limited to 300 nN for the first tests. 

These are just initial considerations because more effective ones could be done with real data on the 
future LED thrust that will be tested, it could be possible that these LED will have efficiency higher 
than 40%, more elevated upper limit working temperature or lower. 

 

6.2 Auxiliary damping system 

The system presented in Chapter 5 was designed as an external damping system necessary to slow 
down the oscillation effects made by the thrust on the arm. Due to the necessary experimentation of 
this system never found in literature, it was decided to use also an auxiliary damping system that could 
calibrate and verify the correct functioning of the first. As the first one the system should be external, 
so no oil damping was evaluated.  

From the analysis on existing thrust stand of Chapter 1.5 the most recent and simple system was the 
one used by Soni and Roy [10], Chapter 1.5.9. The typology chosen for their thruster stand was an 
electromagnetic damping system using eddy-currents, a non-contact method inherently frictionless 
generated inside a conductor by a changing magnetic field in it. 

The damping effects works when a magnet moves over a conductor, this movement inducts eddy 
currents inside the conductor, as explained by the Faraday's law of induction, and those generating 
their own magnetic field opposing the magnet movement make it slow down. The idea was to put a 
permanent magnet at the extreme of the short swing arm, side facing down on a copper block. Varying 
the distance between the magnet and the copper block the damping coefficient can be modified. 

 

 

Colours Description 

 Magnetic field 

 Eddy currents 

 Currents Magnetic field 

 Velocity of the Arm 

 Damping Force generated 

Figure 77: Eddy-current damp system; Legend. 

This may always be active during the assembly and operating procedures of the vacuum chamber to 
prevent side vibrations, and then if the primary damping system is active, the copper block will be 
moved away from the magnet during the thruster tests. 

 𝑡3 =   
𝑄3

𝑃𝑖𝑛
=  

𝑚1 𝐶𝑝(𝐴𝑙) ∆𝑇2

𝑃𝑖𝑛 𝑀𝐴𝑙
= 30.30 𝑚𝑖𝑛 (Eq. 60) 
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A research was made to found information about the sizing of this technology, but no specifications 
were found. So, the idea was to choose the same components of the ones used in real thrust stand.           
In the Soni and Roy system a cylindrical copper block of high conductivity was mounted on the 
balance arm, diameter 2 

1

2
′′ and height of 1′′ , and 2 neodyum permanent magnets placed under it, 

each one of 1 2⁄ ′′ and height of 1 2⁄ ′′ and a magnetic flux 𝐵𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 6619 𝐺𝑎𝑢𝑠𝑠 [65]. The amount 
of damping was controlled by varying the gap between the copper block and the permanent magnet 
from 0.5 up to 3 mm.  

The same components used by Soni and Roy were chosen for this project, the real efficacy of the 
system will be tested in future once built, the gap between the magnets and the copper block will 
permit to set the damping ratio value. For redundancy, if the primary damping system is ineffective, 
the auxiliary system will become the main system, without affecting the possibility of performing 
tests. 

 

6.3 Fiber Selection 

Once defined the weight of the swing arm that could be used as a heating block, it was necessary 
verify if the fiber chosen could hold up it. In a previously thesis on this project it was suggested to 
use a steel fiber of diameter 550 𝜇𝑚 for the elevated safe carrying capacity. In Table 13 are reported 
the fiber data: 

Fiber Length (m) 0.75 

Fiber Diameter (µm) 550 

Fiber Material Steel 

Tensile Strength (MPa) 1200 

Spring constant (Nm/°) 1.714 x 10-5 

Table 13: Data of the thrust stand fiber. 

Below the definition of the components weight is presented: 

1) Arm: As analysed in Chapter 6.1 for thrust lower than 300 nN, the pendulum’s arm weigh is 
𝑚1 = 2.835 𝑘𝑔, while for the second configuration with a little arm inside the standard one, 
thrusts from 300nN to 500nN, 𝑚2 = 4.860 𝑘𝑔. 

2) Battery: To power a LED of 227.3 W for 30.30 min a battery of 114.79 Wh is needed,                
or rather 120 Wh. The capacity to mass ratio of lithium ion batteries is 40 Wh/kg, thence 
𝑚𝐵1 = 3 𝑘𝑔 of battery. For the second configuration the max LED power is 378.8 W, the 
needed battery for 21 minutes is of 132.58 Wh, or rather 135 Wh and weight 𝑚𝐵2 = 3375 𝑘𝑔. 

3) Additional: 𝑚+ = 2 𝑘𝑔, in this value the weight of cables, LEDs, power control and of the 
magnets are considered.  

4) Total: 𝑚𝑡𝑜𝑡1 = 8 𝑘𝑔 and  𝑚𝑡𝑜𝑡2 = 10.5 𝑘𝑔. 

The steel fiber of 550 𝜇𝑚 with averages tensile strenght value of 1200 MPa can support up to 29.06kg 
and with a security factor of 1.5 up to 𝑚𝑙𝑖𝑚𝑖𝑡 = 19.37 𝑘𝑔. So, there should be no problems for the use 
of the first or second configuration.  

Due to the proximity of batteries weights of the two configurations, the heaviest will be used, so 
𝑚𝑡𝑜𝑡1 = 8.4 𝑘𝑔  
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The length of the fiber could be the same of the one suggested in Chapter 3.1, so also the effective 
spring constant of the system is the same. 

 

 

Colours Description 

 Distributed arm mass 

 Distributed other masses 

 Battery mass 

Figure 78: Force diagram acting on pendulum; Legend. 

The battery is placed on the short arm and works as counter balanced weight, so its position was 
calculated considering the additional weight 𝑚+ distributed on the total length of the arm.                    
For the first configuration it should be placed at 0.358 m from the fiber, Figure 78, while in the second 
at 0.508 m. So, there should be an adding mass of 1 kg on the short arm side of the pendulum without 
changing the battery position, the increasing total weight up to 𝑚𝑡𝑜𝑡2 = 11.5 𝑘𝑔 kg doesn’t create 

problem thanks to the elevated 𝑚𝑙𝑖𝑚𝑖𝑡. Also, if the adding mass is aluminium the time 𝑡2 calculate in 
chapter 6.2 became: 

making the use of a second configuration more convenient. 

In Figure 79 is reported the swing arm with all the components described before and on the left the 
thruster tested and the mirror of the damping system. As anticipated in the Chapter 5.2 the mirror has 
diameter of 15 mm, but for the final concept could be increase to 20 mm. 

 
Figure 79: Complete arm configuration. 

 

6.4 Calibration Method  

As analysed in Chapter 1.4, existing thrust stand based on fiber or spring torsion pendulums have a 
calibration method to determine the system’s effective spring constant. Common calibration methods 
include applying a known force or applying a known impulse, but recently analytical calibration 
methods are also used to find the unknown spring constant [35]. 

The calibration procedure of a thrust stand should generally be kept similar to the desired 
measurement procedure in terms of force range and force type, steady-state or impulse.                          

 𝑡2 =    
𝑄2

𝑃𝑖𝑛
=  

𝑚2+ 𝐶𝑝(𝐴𝑙) ∆𝑇2

𝑃𝑖𝑛 𝑀𝐴𝑙
= 25.03 𝑚𝑖𝑛 (Eq. 61) 
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The stand presented in this thesis favours steady-state operations, so impulse calibration methods were 
not evaluated. 

Soni and Roy [10] chose as calibration method for them stand one based on the logarithmic decrement 
method, they obtained a calculation error for 𝑘0 of 20.6%, most of it caused by the accuracy of the 
observed natural frequency. This accuracy is comparable to that obtained by other methods, so it was 
chosen as calibration method for the thrust stand presented here. The balance could be calmed 
previous to calibration and measurements allowing successive calibration and measurement by 
reducing the resting time of the system. 

The logarithmic decrement calibration method is an analytical method used to calculate the effective 
spring constant via the observed damped frequency and the damping ratio of the system.                        
The damping ratio is determined with the logarithmic decrement of two successive oscillation peaks 
[66]. The logarithmic decrement 𝛬 of 𝑛 oscillation cycles is defined as: 

with 𝑥0 and 𝑥𝑛 as the amplitudes of the first and the nth peak of oscillation.         
The damping ratio 𝜁 can then be calculated by Eq. 63: 

from which it is possible to determine the natural frequency 𝜔𝑛 via the relation between the system’s 

natural frequency and the observed damped frequency of the system 𝜔𝑑 , Eq. 20.  

The effective spring constant 𝑘0 of the system is than calculated by reformulating equation Eq. 17, 
where 𝐼 is the system’s moment of inertia which must be determined prior to calibration with very 
high precision. The moment of inertia could be calculated using the parallel axis theorem and the 
superposition of the moments of inertia of the thrust stand’s component shapes, as made by Soni and 
Roy.  

They also determined that the error of the logarithmic decrement method is generated by uncertainty 
values of the determined system’s moment of inertia and the observed natural frequency.                        
So, they formulated an uncertainty equation for the logarithmic decrement method for 𝑘0 [10]: 

One major downside of the logarithmic decrement method is its increasing inaccuracy for damping 
ratios greater than 0.5, which limits the maximum thrust stand damping, therefore increasing the 
expected response and relaxation time.  

However, the method clearly brings a lot of advantages like the absence of the need for special 
calibration equipment, other than the devices already built-in in the system, as well as the methods’ 

simplicity. It also allows for calibrations at different displacements and damping coefficients, thus 
ensuring the linearity of 𝑘0 over the desired measurement range and minimizing errors related to 
single-time events like steps or other harsh vibrations. 

 

  

 𝛬 =   
1

𝑛
𝑙𝑛 (

𝑥0

𝑥𝑛
) (Eq. 62) 

 𝜁 =   
1

√1 + (
2𝜋
𝛬 )

2
 

(Eq. 63) 

 𝛿𝑘0

𝑘0
=   √(

2𝑑𝜔𝑛

𝜔𝑛
)

2

+ (
𝑑𝐼

𝐼
)

2

 (Eq. 64) 
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7 Measurement System 
As mentioned at the end of Chapter 4 a new measurement system based on laser deflection was 
needed. At first, starting from basic laser deflection it was designed a visible measurement system on 
a chart, improved using lenses. After it was decided to create an electrical measurement system 
upgrading the one designed previously. A visibly measurement system based on laser deflection was 
already used by Phipps and Luke in the first version of the 2002 [6], then to increase the accuracy of 
measurement they decided to use a March-Zehnder interferometer in the second version of the 2006 
[7]. The possibility to use an interferometer for this project was declined for a cheaper and simpler 
solution, as the one used by them in 2002.  

The sensibility of the system should be of 10 nN as reported in the requirements of Chapter 2.1. 

 

7.1 Laser Deflection System 

In this subchapter two concept of measurement system based on laser deflection are described, the 
first is a basic laser deflection, while the second is an upgrading of the first improving the sensitivity 
of the measurement using lenses. 

 

7.1.1 Simulation n°1 

The design of the measurement system started with the definition of how the system should work.      
A laser inside or outside the vacuum chamber strikes a on a mirror, size 20 x 20 mm, that is fixed on 
the steel fiber of the pendulum. The rotation of the arm 𝜃0 makes the mirror rotate deflecting the laser 
beam for an angular displacement 𝜃1. The beam hits a plane screen outside the vacuum chamber where 
the displacement ∆𝑥2 could be visibly or electronically measured, as shown in Figure 80. 

 
 

Measurement system 

N° Component 

1 Laser source 

2 Mirror 

3 Screen 

Figure 80: Basic laser deflection Simulation n°1; Components; 

To simulate the system a MATLAB script was made. Simulation n°1 is a system with a laser source 
distant 0.25 m from the pendulum fiber.  

As first approximation, the beam is perpendicular to the mirror plane, so no initial inclination 𝛽 = 0°. 
To have information about the final diameter of the laser beam there were supposed a divergency   
Θ = 1.2 × 10−3𝑟𝑎𝑑 and an initial beam diameter of 𝐷0 = 1 𝑚𝑚, these values were chosen after a 
research on existing laser sources,. 
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Force 50 nN 

𝜃0 0.0058° 

𝜃1 0.0117° 

∆𝑥1 0.4 mm 

𝐷1 3.7 mm 

Figure 81: Simulation n°1: Scheme after mirror deflection and results; Results.  

The Figure 81 shows what happen at the beam after the mirror deflection. The system was simulated 
with the minimum force, 𝐹𝑚𝑖𝑛 = 50𝑛𝑁, 𝜃0 = 0.0058° is the angular displacement of the arm,          
𝜃1 = 0.0117° is the deflected beam angle and is the double of 𝜃0. On a fixed screen at 𝐿 = 2 𝑚 from 
the mirror ∆𝑥1 = 0.4 𝑚𝑚 is the distance between the laser initial point, for 𝐹 = 0𝑛𝑁, and the 
calculated one. 𝐷1 = 3.7 𝑚𝑚 is the diameter of the beam on the screen.  

It is possible to see that ∆𝑥1 is too small to be visibly measured, factors that influence this value are 
the distance 𝐿 and 𝜃1. Changing the initial inclination of the mirror 𝛽 generate a differents 𝜃0 and 𝜃1, 
but not ∆𝑥1. The solution came from the autocollimator measuring principle, shown in Chapter 4.1.1, 
where lenses are used to collimate or focus the laser or LED beam. 

 

7.1.2 Simulation n°2 

For the Simulation n°2 it was decided to use two lenses, one Plano-Concave and one Plano-Convex.  
The converging lens is posed inside or outside of the chamber on the laser way after the mirror 
deflection, so to collimate the beam respect its initial direction, then a diverging lens amplify the 
angular displacement in order to obtain a higher ∆𝑥2 on the screen. The Figure 82 shows the schematic 
configuration of the simulation. 

 
 

Measurement system 

N° Component 

1 Laser source 

2 Mirror 

3 Screen 

4 Converging Lens 

5 Diverging Lens 

Figure 82: Schematic configuration of Simulation n°2; Components. 

In this case the final length displacement is ∆𝑥2 and the angular 𝜃2. Like in Simulation n°1 as first 
evaluation there is no initial inclination 𝛽 = 0°, but this value will be changed one time that the thrust 
stand is built to adapt the system to the vacuum chamber window. Anyway, for 𝛽 ≠ 0°, 𝜃0 and 𝜃1 
would change but not the final ∆𝑥2. 
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Two different lenses configuration were designed in order to test the system:  

1) the first one with a Plano-Convex Lens (Uncoated) LA1252 (Ø25.0 mm N-BK7) [67] and a     
Plano-Concave Lens LC1054 (Ø1/2" N-BK7) [68];  

2) the second one with a Plano-Convex Lens (Uncoated) LA1464 (Ø1" N-BK7) [69] and same    
Plano-Concave lens as before [68]. 

 

 

 

Lens LA1252 LC1054 LA1464 

Diameter 25.0 mm 12.7 mm 25.4 mm 

Height 2.5 mm 4.7 mm 2.0 mm 

Focal Length 25.4 mm -25 mm 1000 mm 

Glass Type N-BK7 N-BK7 N-BK7 

Figure 83: a) Plano-Convex lens; b) Plano-Concave lens; Characteristics. 

In Figure 83 the lenses data are reported. The lenses positions were chosen depending on the focal 
lengths of each one, 𝐿1 is the distance between the mirror (fiber) and the first lens on the beam way, 
𝐿2 from the second to the screen. The distance between the lenses was chosen to reduce the laser beam 
diameter. In Figure 84 are shown the results this simulation. 

The first configuration showed an increment of 90.4‰ for displacement ∆𝑥2 = 3.6149 𝑚𝑚, while 
208.7‰ for the second configuration, ∆𝑥2 = 8.3499 𝑚𝑚, making this last one a better option. 

 

 

Force 50 nN 

𝜃0 0.0058° 

𝜃1 0.0117° 

∆𝑥1 0.0509 mm 

𝜃2 0.1167° 

∆𝑥2 3.6149 mm 

 

 

Force 50 nN 

𝜃0 0.0058° 

𝜃1 0.0117° 

∆𝑥1 0.2037 mm 

𝜃2 0.4667° 

∆𝑥2 8.3499 mm 

Figure 84: Simulation n°2: Scheme after mirror deflection a) Conf. 1; b) Conf. 2; Results. 

The simulation also analysed the final diameter of the beam 𝐷2 compared with the displacement ∆𝑥2. 
It can be seen from Figure 85 that diameters values are similar for those, but in the first configuration 
the big size of 𝐷2 and the small displacement ∆𝑥2 make difficult to appreciate with accuracy the 
different between the tests for F = 0 𝑛𝑁  and 𝐹𝑚𝑖𝑛 = 50 𝑛𝑁. 

It was also made a qualitative analysis on the light intensity of the final beam on the screen.     
Assuming that the laser has a Gaussian beam profile and that the Full Width at Half Maximum 
(FWHM) is half of the diameter before the Plano-Convex lens [70]. The final beam diameter for half 
intensity was calculated to have an idea of how the image on the screen will be and an idea of the 
difficulty measurement level.  

a) b) 

a) 

b) 
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Colour Force 

 0 nN 

 50 nN 

Line Intensity 

 Total 

 FWHM 

Figure 85: Simulation n°2 laser beam diameter: a) Conf. 1; b) Conf. 2; Legend. 

The ideal measurement system should provide a sensibility of 10 nN but with a simple system, like 
the ones described in this chapter, it is difficult to reach this value, in Table 14 are reported the 
sensibility values of Simulation n°2. 

 Option 1 Option 2 

Sensibility ΔF 25 nN 25 nN 

Displacement Δx 1.8 mm 4.2 mm 

Table 14: Sensibility Simulation n°2; 

The configuration 2 was chosen as solution of the thrust stand, it is a visible measurement system with 
sensibility of 25 nN for a displacement of 4.2 mm that could be used for an initial efficacy evaluation 
of LEDs thrusters. Then as reported in Chapter 4.4 in case of good results of this technology will be 
take in evaluation the purchase of an autocollimator. 

 

7.2 Electrical-Digital Measurements 

The system presented before was based on visible measurements of the length displacement, from 
where it is possible to calculate the angular displacement of the arm and then information about the 
force of the thrusters as explained in Chapter 3. It would be easier to design a system that electronically 
measure the displacement. 

The idea is not to have a measurement of the intensity of the laser light, but information about where 
it is lighting. To do that it could be used a line of photoconductive photocells. These components 
based on semiconductors, linearly vary the electrical resistance depending on the intensity of incident 
light. For this project they could be used as light sensors, in order to have information about the 
presence or not of Laser beam. 

 
 

 Characteristics (T=25°C)  
Size 4.3 x 5.1 x 2.4 mm 

Dark resistance 1 MΩ 

Illuminated resistance  8 up to 20 kΩ 

λ range 400 to 700 nm 

λ peak 540 mm 

Figure 86: Photoresistor LDR GL5528 shape; Characteristics [71]; 

a) b) 
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To reach a good sensibility of the instrument, each photocell should have sizes close to the system 
sensibility. So, they should be close to 4.2 mm or less and they should be in a number to archive the 
double of maximum displacement for 𝐹𝑚𝑎𝑥 = 500𝑛𝑁, that generates ∆𝑥2 = 83.5 𝑚𝑚, and         
∆𝑥𝑡𝑜𝑡 = 167 𝑚𝑚. In Figure 86 are reported the data of the chosen photoresistor LDR GL5528 [71]. 

For a length of 167 mm, a line of 40 cells is required. They could be controlled by an Arduino but 
considering that a normal one has only 5 analogic pins, some multiplexers are needed. Each 
multiplexer usually has 3 or more digital outputs, so an Arduino Mega is needed.  

The first idea is to use 5 8-channel analog multiplexer 74HC4051 [72], connected all of them to the  
Arduino Mega. Each photoresistor is an analog output, so 8 photoresistor are connected to each 
multiplexer. All the data would be transferred by the board to a computer and analysed, or from the 
Arduino itself, a graph would show which cells are illuminated by the laser beam. These data would 
be also sent to the MATLAB script of Chapter 3, to calculate the Force value of the testing thruster.  

In order to improve the efficiency of the photocell they could be placed inside a black box with an 
open side facing the laser beam. Also, the laser could be chosen with the wavelength close to the           
λ peak of the photocell, colour green.  

The servomotor and the damping system could be also controlled by the same Arduino. 

In Figure 87 is shown the ideal configuration, the LDRs illuminated by the beam create a distribution 
of intensity registered by the MATLAB script and depending on the max of the curve the position of 
the laser is determined, so also the angular displacement of the arm. 

 

Figure 87: Simulation of electronic measurement using photocells. 
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8 Power and Control systems 
This chapter is about the design of power and control system needed to power supply all the system 
of the thrust stand. The main power is provided by a power source at 12 V and for a correct sizing of 
the system all the components are considered working at maximum power.  

The first subchapter is about the calculation of the power needed by the damping system, the second 
on the power of the measurement system and the third on the total power required by all the systems. 
Then there is another subchapter on the digital and analogic control made using an Arduino board.  

The power of the battery on the short side of the swing arm was already calculated in Chapter 6.3, for 
the definition of the of the total weight of the arm. The design of the power control of this battery 
wasn't treated in this thesis due to the specific control needed by the future LED thrusters, that will 
be tested. But it could be imagined that a Buck or a Boost will be used to control the diode. 

In the following figures to each component pictured is associated a number that correspond to 
components numeration of the list in Chapter 9.1. 

 

8.1 Damping system Power Consumption 

The components of the damping system that need to be electrically powered are the LEDs, the pump 
and fan of the cooling system and the servomotor that rotates pivot mirror.  

First idea was to connect all the diodes in parallel, each one needs 4 V and 5 A, and to control the 
output voltage using only one buck converter. But another solution was chosen, due to the difficulty 
to find a converter with an elevated output of 25 A and the side effect of diodes parallel connection, 
the diode with the lowest forward voltage drop tries to carry a larger current risking overheating. 

It was decided to use a buck converter for each LED. The ones chosen are 5 DC to DC Buck Converter 
(5 - 32V to 0.8 - 30V), with 5A constant output current capability and maximum power of 75W.           
In Figure 88 is reported the circuit diagram of the LEDs. 

 Figure 88: Circuit diagram of LEDs system. 

Then the cooling system electrical power was designed. To control the fan airflow or the pump flow 
rate an optional buck converter could be used, as the DC to DC Buck Converter (3 - 40V to 1.5 - 35V), 
with a maximum output current of 3 A, and maximum power of 10W. 

 

Figure 89: Circuit diagram of LEDs Cooling system. 
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The last electric component of the damping system is the servomotor that rotates the pivot mirror, its 
control is made by an Arduino board as explained in Chapter 8.4. For the servo the same Buck 
converter of the fan presented before was chosen, in Figure 90 is shown the circuit diagram. 

 

Figure 90: Circuit diagram of Servo rotating the pivot mirror. 

 

8.2 Measurement system Power Consumption 

The electrical components of the measurement system are the laser, the Arduino and the photocells. 
The chosen laser has a power output lower than 5 mW, this value does not generate an external force 
able to move the fiber where the reflecting mirror is disposed. The chosen colour is green to increase 
the efficiency of the photocells, λpeak=520nm [73]. The divergency of the beam is lower than the one 
tested in Chapter 7.1, so the electronic measurement should be more accurate.  

For the low value of current required by the laser it was decided to use a 50 mA Low Dropout Linear 
Regulator ADP3300, from 0.3 to 12V. One idea expects to increase the current needed by the Servo 
circuit up to 1 A and use the extra 100mA to power the laser, then a resistance of 10Ω could be used 

to drop the tension from 6 V to 5V required from the laser. 

 

Figure 91: Circuit diagram of Laser, main voltage coming from Servo circuit.  

Then the circuit of the 40 photocells controlled and powered by 5 multiplexers was designed.               
For each LDR a resistance between 1 and 10 kΩ could be used, as reported in the datasheet, the chosen 
ones are of 5.1 kΩ. Each multiplexer is powered from the 5V I/O port of the Arduino Mega.                
This board can work between 7 and 12 V but to avoid an excess of input voltage a buck converter at 
7 V is used, same model as that used for the LED cooling system fan. 

In Figure 92 the circuit diagram shows how 8 photocells are connected to each multiplexer, while in 
Figure 93 the circuit diagram of the Arduino which supplies 5 multiplexers is reported.  

 

Figure 92: Circuit diagram of a Multiplexer with 8 Photocells. 
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 Figure 93: Circuit diagram of Arduino board supplying 5 Multiplexers. 

 

8.3 Total Power Consumption 

Then it was calculated the electrical power required for entire thrust stand. Considering a total 
efficiency of 90% the input current needed is 10.9 A, so a 150 W AC/DC converter with maximum 
current output of 12 A was chosen. 

 

Figure 94: Circuit diagram of the thrust stand systems requiring electrical power supply. 

 

8.4 LEDs Damping System Power Control 

In this subchapter it is described how the damping system controls the power emitted by the LEDs. 
Each LED works at fix tension of 4V, the value of the radiation power emitted could be controlled 
varying the current of the diode from 0 up to 5A. As explained in Chapter 1.1.2 the relation between 
the radiation power and LED current could be approximated with a second order polynomial 
description, Eq. 4, here re-proposed with constant 𝐴0 = 0: 

The chosen buck converter of Chapter 8.1 can be controlled in voltage and current by two trimmer 
potentiometers 3296W-103-ND [74] present on board. For simplicity, the one who changes the 
voltage will be call V-POT (Voltage control Potentiometer), while the other one C-POT (Current 
control Potentiometer). 

The idea is to fix the output tension of each converter at 4V and vary the current rotating the yellow 
hat of the C-POT. This solution is effective but requires a manual control of the power supplied by 
the converter, the best idea should be to replace the trim pot with a digital one that could be controlled 
by an Arduino Nano. To do that it is necessary to have physically the converter board and test which 
digital pot may be suitable for the purpose, this is not a simple procedure and the pot couldn’t be 

chosen before knowing how the board works. For that reason, two solutions were elaborated.  

 𝜙𝑒(𝐼) = 𝐴1𝐼𝐹 + 𝐴2𝐼𝐹
2  (Eq. 65) 
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The first solution consists in a trim pots’ rotation made by a servomotor. The first step is desolder the 
trim C-POTs from each converter board and then reconnected with extension cables, this to place the 
POTs where the servomotor system will work. 

Then a gears system should be designed: a designed gear is fixed to each potentiometer’s yellow hats 
and to the servomotor. The servomotor is posed at the centre of the system and rotating it makes rotate 
all the potentiometers’ gears of the required same angle, called 𝛾. 

The design is shown in Figure 95 a), the servo is placed in the centre to provide the same rotating 
direction to all the gears connected to the potentiometers, in order that each converter supplies each 
LED with the same current.   

  
Figure 95: Gears system: Servomotor controls potentiometers rotations: a) Trim POT; b) Rotary POT. 

The second solution is based on the same principle of the first one but changing the trim pot with a 
rotary potentiometer. The C-POT mounted on the board is a 10 kΩ trim potentiometer with an 

effective travel of 25 turns that could be replaced by a 10 kΩ rotary knob 3590S-2-103L with 10 turn 
[75]. The solution is shown in Figure 95 b) and it would be easier to control than the first one, thanks 
to the larger size of the rotating hat. 

When the Damping system is built, each LED effective radiation power should be measured for each 
current caused by the rotation of the potentiometer 𝐼(𝛾), so to define the values of the constants 𝐴1 
and 𝐴2. 

Then the required rotation range of the potentiometers gears is defined, and the complete gears system 
could be sized. 

The servo used for the gear system could be same model of the one chosen for the pivot mirror 
rotation, for the elevated stall torque and the angular displacement of 180°, or if necessary one with 
more than 360°. It could be controlled by the Arduino Mega of the measurement system or to prevent 
errors and improve efficiency by an Arduino Nano.  

The task of the servomotor is to rotate for a specific angle each half period, to set the LED output 
power. This is similar to the mirror-servo’s task, that is the rotation of the pivot mirror to direct 
focused light, so these two components could be controlled by the same Arduino board. 

The mirror-servo’s power supply is described in Subchapter 8.1 and the gear-servo could have the 
same circuit diagram, Figure 90.  

 𝜙𝑒(𝛾) = 𝐴1𝐼𝐹(𝛾) + 𝐴2𝐼𝐹(𝛾)2  (Eq. 66) 

a) b) 
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They could be controlled by digital Arduino pins as shown in Figure 96, with the mirror-servo 
connected to pin 10 and gear-servo to pin 9. A simple Arduino script was created to try the 
servomotors work, and it’s possible to set the initial positions and the rotation degrees. 

The final idea is that the MATLAB program of Chapter 3 send back data to the Arduino about the 
mirror-servo and gear-servo new positions. The electrical power of the Arduino Nano could be made 
by connecting it via USB to the PC running MATLAB. 

 

Figure 96: Damping system: Mirror-servo and Gear-servo control made by Arduino Nano:  

 

8.5 Measurement System Digital Control 

In this subchapter it is explained how the components of electrical measurement system, described in 
Chapter 7.2, interface with each other. The electrical power and the circuit diagram of each component 
was already treated in Chapter 8.2, therefore this part of the thesis works also as a guideline for 
assembly. The systems were designed with the program Fritzing in order to project and test functional 
scripts and design the configurations. 

 

Figure 97: Multiplexer connections with photocells and resistances, and main pins. 

In Figure 97 are shown all the physical connection between one multiplexer and the 8 photocells.  
Each multiplexer has 3 digital outputs S0, S1 and S2, and one analogic input Z, which are all 
connected respectively to the Arduino digital and analogic pins. Then the VCC and the GND are 
connected to the board power pins. 

In Table 15 are reported all the pin connections between the Arduino Mega and each multiplexer,     
all the pins mentioned in the table are referred to the Figure 98 in the next page. The VCC and GND 
pins of each mux are connected in parallel with the power pins at 5V as presented in Figure 93. 
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 Multiplexer n°1 Multiplexer n°2 Multiplexer n°3 Multiplexer n°4 Multiplexer n°5 

 Digital Analogic Digital Analogic Digital Analogic Digital Analogic Digital Analogic 

S0 22 - 25 - 28 S0 22 - 25 - 

S1 23 - 26 - 29 S1 23 - 26 - 

S2 24 - 27 - 30 S2 24 - 27 - 

Z - A0 - A1 - A2 - A3 - A4 

 Power Power Power Power Power 

VCC M1+ M2+ M3+ M4+ M5+ 

GND M1- M2- M3- M4- M5- 

Table 15: All MUXes pins connections with Arduino Mega board. 

An Arduino script was written to acquire data from all the photocells, when one cell is illuminated its 
value change from 0 up to a default value. These data could be sent to the MATLAB pendulum script 
to calculate the laser beam position, so to derive the angular displacement of the pendulum swing arm 
and then the Force of the tested thruster, as described in Chapter 7.2. 

The Arduino Uno would have had a too low number of digital pins for this project, so the Arduino 
Mega became necessary, the free pins of this component could be used for futures upgrades. 

 

Figure 98:  Arduino Mega pins connections with the 5 multiplexers.  
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9 Final concept 
In this chapter the final concept of the thrust stand after the work made in the previous chapters is 
presented. At first a list with all the components of the stand is reported, then an explication on how 
the systems work, and at the end the cost analysis compared with the one made for the First concept, 
Chapter 4.3. 

 

9.1 List of Components 

In Table 16 are reported all the components of the thrust stand, for each one has been assigned a 
number, a basic information description is given and an estimate on the price of the product.          
Where the quantity is n.d. means that the number has not been defined yet.  

While when there is an underlined price it means that the cost was estimated, because the actual one 
has not yet been provided by the seller or no information has been found.  

       
N° Component Description Qty Price € 

      

LE
D

s 

1 LED 20W  TX-1818W20FC65-CUVCNG-A01: Luminous flux: 1700 lm, Colour 
temperature: 7500 K, View angle: 65°, Diameter: 10 mm 

5 70.00 

2 DC-DC Step 
Down 

Buck Converter: DC to DC 5-30V to 0,8-30V, Constant output current 
capability: 5A; Max power: 75W 

5 11.95 

3 Elliptic 
reflector 

Length: 100mm tall, Diameter: 115mm, Characteristics: Characteristics: 
a) 235 mm; b) 67.9 mm; c) 67.9 mm 

1 50.00 

4 Rotary Pot Model: Bluelover 5 3590S-2-103L, Capacity: 10KΩ, Turns: 10 5 15.89 
5 Servomotor Max stall Torque: 15 kg/cm (at 6 V), Dimensions: 54.1x20x44.3 mm 1 9.98 
6 Arduino Nano 

clone 
Elegoo Nano V3.0 CH340 ATmega328P  1 6.99 

      

M
irr

or
s 

sy
st

em
 

7 Servomotor Max stall Torque: 15 kg/cm (at 6 V), Dimensions: 54.1x20x44.3 mm 1 9.98 
8 Arduino Clone Elegoo Mega 2560 R3 Board ATmega2560 1 14.99 
9 Mirror 2 cm Mirror Diameter: 20 mm 2 1.00 

10 Mirror 7 cm Mirror Diameter: 70 mm 2 3.00 
11 Mirror 10 cm Mirror Diameter: 100 mm 2 3.00 
12 Mirror 12 cm Mirror Diameter: 120 mm 1 3.00 
13 DC-DC Step 

Down 
Buck Converter: DC to DC 3 - 40V to 1.5 - 35V, Max output current: 3A; 
Max power: 10W 

2 3.20 
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14 Water Cooling 
Block 

Asiproper CPU Water Block water cooler Computer Cooler for Intel 
AMD + Screws/ To be modified 

1 14.48 

15 Thermal Paste Arctic MX-2 Thermal Compound: Thermal Conductivity 5.6 W/(mK) 1 6.99 
16 Heat Exchang. 

Radiator 
KESOTO aluminium radiator water cooling for CPU 18 flat tubes 
120mm, 150x115x30mm 

1 10.22 

17 Water Pump Decdeal Max Height: 3 m, Power: DC 12 V and 5 W, Flow rate: 280L/H  1 5.75 
18 Tubing Masterkleer Schlauch Material: PVC, Diameter: 10/8mm (5/16"ID), 

Length: 3,3m (10ft)  
1 10.19 

19 Fan Koolance FAN-12025MBK, Size: 120x25mm, Airflow: 90CFM 1 8.99 
20 DC-DC Step 

Down 
Buck Converter: DC to DC 3 - 40V to 1.5 - 35V, Max output current: 3A; 
Max power: 10W 

2 3.20 

21 Fittings Connector:  Size: Inner:  Ø8 mm; Outer:  Ø 11 mm, Thread Size: 1/4 inch 4 18.76 
22 Water Tank Capacity: 1 litre 1 4.00 
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23 Laser Laser Diode: Colour: Green, Wavelength: 520nm, Output power: 5mW, 

Divergence Angle: < 0.7 mrad  
1 66.00 

24 Fixed Laser 
Stand 

Adafruit Fixed Laser Mounting Stand [ADA1094] 1 8.53 

25 Plano-Convex 
Lens 

Model: LA1464, Size: Ø1" (Ø25.4 mm), Focal length: 1000mm, Material: 
N-BK7  

1 17.36 

26 Plano-Concave 
Lens 

Model: LC1054, Size: Ø1/2" (12.7 mm), Focal length: -25mm, Material: 
N-BK7 

1 15.95 

27 Mirror Size: 20x 20 mm 1 1.00 
28 Screen Millimetre sheet to visibly measure the angle displacement 1 1.00 
29 Resistor 10  Resistor: 10 Ohm 1 0.25 
30 LDO Model:  ADP3300, Low Dropout Linear Regulator: 50 mA 1 1.48 

      

LD
R

s 

31 Photoresistor Model: LDR GL5528, Size: 4.3 x 5.1 x 2.4 mm, Illuminated resistance: 8 
up to 20 kΩ, λ peak: 540 mm 

40 11.20 

32 Multiplexer SparkFun Multiplexer Breakout: 8 Channel (74HC4051), Wide voltage 
supply range: 2 – 10V 

5 12.50 

33 Resistor 5.1 Resistor: 5.1 KΩ 40 10.00 
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34 Fiber Steel fiber: Diameter 550 μm, Spring constant: 1.714 x 10-5 Nm/°, 
Length: 0.75m 

1 70.00 

35 Aluminium bar 
n°1 

Hollow Aluminium profile square cross section: Length: 1.5 m, Outer 
width: 40 mm, Inner width: 30 mm. 

1 40.00 

36 Aluminium bar 
n°2 

Hollow Aluminium profile square cross section: Length: 1.5 m, Outer 
width: 30 mm, Inner width: 20 mm. 

1 40.00 

37 Battery Lithium power supply: 40.80Ah, 3.7V, 150Wh, Output DC 12 V, Weight: 
1.5 kg, Size: 80x165x175 mm 

1 100.00 

38 Copper block Dimensions: 2 1/2" dia. x 1" thick, Material: Copper 1 40.00 
39 Magnets Surface Field: 6619 Gauss, Dimensions: 1/2" dia. x 1/2" thick, Material: 

NdFeB, Grade N52, Weight: 12.1 g 
2 7.96 

      

Po
w

er
 s

ys
te

m
 

40 AC/DC 
Converter 

AC/DC converter: Input: 220 – 240 V AC/50 – 60 Hz, Output: 12 V DC, 
Max power 150W, Max current 12 A 

1 29.90 

41 Cable AC/DC Cable to connect the AC/DC to the AC power 1 2.00 
42 Cable Cables to connect all the components to the power source n.d. 10.00 
43 Digital 

Multimeter 
Necessary to test the system 1 10.00 

44 Arduino Cable To connect all the Arduino pins to the MUXes n.d. 5.00 
         TOT 145 786.00 

Table 16: List of the thrust stand components. 

The Damping system was divided in LEDs, Mirrors system and Cooling system, while the 
Measurement system in Laser system and LDRs. The power system reported is not as the one 
presented in the chapter 8, because its electronic components were included in the rows of the 
subsystem that they power. So, only the AC/DC converter and all the electric cables were included. 

As explained before same prices were supposed to have a reference value of the final stand’s cost,         
all these prices are underlined in the table. The sum of all the supposed prices is 232€, while 
hypothetical the total cost of the thrust stand is 786€. 
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9.2 Design Description 

This sub-chapter explains how the subsystems of the thrust stand are made and how they work,          
this information will be useful to build the system. 

The power and control system are the only ones not treated here, because in Chapter 8 there is reported 
all the necessary information, also all its components inside the figures of that chapter have already 
been reported with the list number. 

 

9.2.1 Damping System Operation 
The damping system is composed by the groups that in Table 16 were called: LEDs, Mirrors system 
and Cooling system, all the data of the components of which they are composed are specified there.  

As reported in Chapter 5 it was decided to use an elliptic reflector mirror with LEDs inside, each one 
distributed on the lateral faces of a copper pentagonal prism that is used also as designed water box. 
Each LED is an individual chip with a viewing angle of 65°, this configuration permit to focus all the 
light emitted by the diodes. In Figure 99 is shown how the components are disposed. 

 
 

Figure 99: Reflector with LEDs, Water block and fittings: a) Front view; b) Side view. 

Then it was designed a mirrors system to direct the light focused by the reflector to a small mirror at 
the end of the pendulum’s arm. This is composed by a pivot mirror moved by a servomotor controlled 
by an Arduino Nano, the details of the operation are presented in the Chapter 5.2, and 4 circular 
mirrors arranged at 45°. The height of the whole system was set at 175 mm from the centre of the 
water block to the ground. In Figure 100 of the next page the side and top view of the system are 
shown, the Figure 100 b) has been cut due to its size, but the symmetry of the system allows it to 
understand its arrangement. The complete sizes of the system are: 280x260x175 mm.  

After using the results of the last simulations presented in Chapter 5.2, the final size of the light beam 
that hits the mirror fixed on the swing arm was estimated. Each diode generates an individual beam 
with circular section but the reflection on the elliptical reflector changed the section to elliptical,         
the typical ellipse dimensions on the last mirror are 3.4x2.64 mm. Due to the different routes travelled 
by each LED beam the final dimensions of the ellipses on the mirror should be different. For that it 
was decided to electronically control each LED with a buck converter, in order to calibrate the output 
radiated power one time that the thrust stand is build, as explained in Chapter 8.4. 

a) b) 
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Figure 100: Damping system: a) Side view; b) Top view. 

In Figure 101 the ellipses are shown in red, the colour indicates also the distribution of power intensity 
of the beam, it could be seen that the high intensity is close to the centre of the mirror.                                  
In Figure 101 b) are reported in red the force vectors of the LEDs beams, their reflections on the 
mirror generate the damping force perpendicular to the mirror plane, in green, as explained in       
Chapter 5.1. 

  

Figure 101: Light beams on the final mirror on the swing arm: a) Front view; b) 3D view. 

a) b) 

a) 

b) 
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Then it was designed the cooling system of the LEDs system, to avoid the exit of water inside the 
vacuum chamber, which would immediately evaporate due to pressure, it was decided to use fitting 
to connect the tubes with the water block, and outside to the exchange radiator. The pump should be 
mounted inside the water tank to a minimum depth of 30 mm from the water level. The length of the 
tubes will be evaluated one time that the system is built. 

 

Figure 102: Water cooling system for the LEDs of the damping system. 

 

9.2.2 Measurement System Operation 
The measurement system is composed by the groups that in Table 16 were called: Laser system and 
LDRs, all the data of the components of which they are composed are specified there. The sensibility 
of the system is 25nN as explained in Chapter 7. 

A laser source is fixed at 25 cm from the mirror fixed on the fiber of the swing arm, the positioning 
outside or inside depends on the actual size of the vacuum chamber, in any case it is fixed with a laser 
stand. The angle β, generated by the mirror face with the arm axis, depend on where there is a window 
to let the laser beam out. Then outside the vacuum chamber at 1 m from the mirror there are two lenses 
a plano-convex and a plano-concave that increase the angular displacement of the arm. At 1 m away 
from the last lens a screen detects the final deviation of the laser beam, as shown in Figure 103. 

 

Figure 103: Measurement system based on laser deflection. 

The final chosen laser source has better characteristics than the one tested in Chapter 7, so the final 
beam sizes on the screen were calculated again and they are shown in Figure 104 for the minimum 
and maximum force that can be test on the pendulum. The decrease size of the final laser beam allows 
to increase the effectiveness of the system [73]. 
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Figure 104: Final laser beam size, tested for 𝐹𝑚𝑖𝑛= 50nN and 𝐹𝑀𝑎𝑥= 500nN. 

The system was designed to detect manually or electronically the angular displacement, in the first 
case with a millimetre paper sheet used as a chart and in the second with a LDRs system that is 
composed by 40 photocells arranged in a straight line. Each LDR sends an analogic output to a Mux 
that transforms it into digital one and sends it to the Arduino Mega, which deals with the organization 
and sending of the data collected to the MATLAB program of Chapter 3. The operations of the system 
are described in Chapters 7.2 and 8.5. In Figure 105 is shown how should be the LDRs system. 

 

Figure 105: Screen to manually measure the angular displacement or electronically using the LDR system. 

 

9.2.3 Swing Arm Operation 
The swing arm is composed by the homonymous group presented in Table 16, all the data of the 
components of which it is composed are specified there. 

The pendulum in Figure 106 was designed in Chapter 6. On one extreme of the arm are placed the 
mirror for the damping system and the future thruster that will be tested, on the other side the magnets, 
for the auxiliary eddy-current damp system, and the battery, to power the thrusters. The arm is used 
to detect the force generated by the thrusters tested, moving in 1 dimension, also it is used as a cooling 
block to accumulate the heat power produced by the thruster, to avoid a change in the junction 
temperature and make them work properly.  
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Before the test in the vacuum chamber the arm is cooled to the temperature of 0°C. If the main 
damping system is not active, the auxiliary one is used. The copper block of this system is posed on 
a support that can increase or decrease its height, varying the gap between it and the magnets, defining 
the damping ratio. 

For forces bigger than 300nN a small section arm, with same length size, is put inside the main one 
to increase the capacity of the cooling block, this solution will be tested to verify the actual need of 
more cooling. 

 
Figure 106: Thrust stand arm. 

 

9.2.4 Nano Newton Thrust Stand by IRS 
In the following figure is presented the final setup of the proposed thrust stand projected in this thesis. 
All systems are shown except for the cooling system of the damping system and the laser deflection 
of the measuring system, since they will be positioned outside the vacuum chamber and their assembly 
has already been described in Chapters 9.2.1 and 9.2.2: 

 Figure 107: Schematic design of the IRS thrust stand configuration. 
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a) 

 

Also, in the Figure 108 the details of the damping system and of the auxiliary one are pictured.  

  

Figure 108: Details of the: a) Main LEDs electromagnetic damping system; b) Auxiliary Eddy-Current 
damping system. 

 

9.3 Cost Analysis 

The thesis work ends with a cost analysis of the thrust stand, as made for the first concept in the 
Chapter 4.3, compared to that concept the cost was reduced by 93% thanks to the non-use of an 
autocollimator.  

In Figure 107 are reported the total price of each subsystem. The one having the highest price of 298€ 

is the swing arm due to the special steal fiber, that probably will be higher than the one estimated, and 
the high capacity battery to power the thrusters. The damping system that is composed by LEDs, 
Mirrors system and Cooling system has a total price of 286€, close to the one before, the components 
that make this value elevated are the LEDs and the reflector, for which it was supposed a cost of 50€ 

but probably could be higher considering that it should be built. 

 Figure 109: Cost analysis of the thrust stand. 

The final cost calculated is less than 1000€ and the system could represent an excellent compromise 
for a first evaluation of the effects of electromagnetic radiation propulsors.   

7
8

6

1
6

5

3
8 8

3 1
1

2

3
4

2
9

8

5
7

T O T L E D S M I R R O R S  
S Y S T E M

C O O L I N G  
S Y S T E M

L A S E R  
S Y S T E M

L D R S S W I N G  A R M P O W E R  
S Y S T E M

b) 



 
 

 

 

Page 101 

D
ev

el
op

m
en

t o
f a

 H
ig

h 
Pr

ec
is

io
n 

Th
ru

st
 B

al
an

ce
 

10 Conclusions 
The system presented in this thesis is a first elaboration of a thrust stand with an innovative active 
damping system based on electromagnetic radiation, for thrusters in the micro and nano-Newton 
range. The scope of the work has been achieved, first an introduction and research on real thrust stand 
were made, to know how they work and starting from this analysis design an innovative one.        
Second the recognition of the requirements and boundary conditions was made, these were followed 
during the entire project. A MATLAB script was built to simulate a real thrust stand in order to 
accurately size the elements of the system. During the design the actual cost of the components has 
always been evaluated and the philosophy of a high efficiency and low-cost project has been followed. 

An innovative damping system based on LEDs electromagnetic radiation power was designed, 
respecting the requirements, testing different configurations and providing MATLAB scripts to 
simulate the efficiency of the system. The high source generating the radiation power is based on the 
light focusing of 5 LEDs through an elliptic reflector and mirrors, its power and light direction control 
are made by an Arduino moving servos. The maximum force generated by system is of 151.63 nN 
and it permits to damp a thruster of 400nN. 

A previous work on a first design of this thrust stand was very helpful to design the pendulum,           
then its arm was sized to detect the force of the thrusters and to absorb their heating power cooling 
them. An auxiliary eddy-current damp system was presented if the main one, being experimental, 
should not work properly. 

The measurement system has a sensitivity of 25 nN and it was designed on laser deflection through 
lenses. The displacement data can be read on a graph, or electronically measured by a continuous line 
of LDRs, with an Arduino Mega that collects and digitizes them. The calibration is made using the 
logarithmic decrement method, the spring constant of the system is analytically estimated, from the 
system’s damping ratio based on successive peaks of oscillation in conjunction with the measured 
damped frequency. 

So finally, it was designed a steady-state thrust stand with thrust range 50 nN - 400 nN and a sensibility 
of 25 nN, that can be controlled and monitored by a PC using MATLAB, with a revolutionary damping 
system and an estimated cost less than 1000€.  

This thrust stand could represent an excellent compromise for a first evaluation of the effects of 
electromagnetic radiation propulsors. 

In future, in case of a positive results of electromagnetic radiation propulsors, more accurate elements 
could be used, such as: 

a) Autocollimators for the measurement system, in order to increase the sensibility from 25 nN 
to 10 nN, providing also a better communication between measurement and damping system 
and a much more reliable system, as shown in chapter 4.1.1; 

b) Optical fiber light collimation for the damping system, in order to make more use of the power 
emitted by the LEDs with more efficient collimating system, chapter 4.1.2; 

c) More powerful LEDs for the damping system, in order to increase the maximal thrust limit of 
500 nN up to 1 µN, as required by Lisa-Pathfinder. 
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