
POLITECNICO DI TORINO
Master’s Degree in Aerospace Engineering

Master’s Degree Thesis

Development of innovative
prognostic methods for EMAs

Applied to aerospace systems

Supervisors
Eng. Matteo D. L. Dalla Vedova
Prof. Paolo Maggiore

Candidate
Gaetano Quattrocchi

October 2019

ii

Ringraziamenti

Vorrei in primis ringraziare l’Ing. Matteo Dalla Vedova, relatore di questa tesi,
per la sua disponibilità e per i suoi consigli, fondamentali per la stesura di questo
lavoro. Inoltre, un grazie va anche al prof. Paolo Maggiore per il suo supporto
durante la realizzazione del presente. Un ringraziamento sentito va all’Ing. Pier
Carlo Berri per la sua continua disponibilità e per il suo fondamentale supporto
nella stesura e revisione del codice di calcolo.

Un grazie sentito va a tutti i miei colleghi ed amici, che hanno reso questi due
anni un’esperienza memorabile. In particolare Samuele, Alessandro, Francesco e
Giuseppe.

È doveroso un grande ringraziamento a Giorgia, la mia fidanzata, che mi è
sempre stata vicina, anche nei momenti di difficoltà; il suo supporto è stato
fondamentale.

Volevo infine ringraziare la mia famiglia sia per il sostegno economico ma princi-
palmente per quello morale; ringrazio mia sorella Francesca per la sua pazienza
e per la comprensione che ha sempre avuto. Ringrazio mio padre, mia madre e i
miei nonni per il continuo incoraggiamento e per l’aver sempre creduto in me.

Infine, un ringraziamento al piccolo Attila, che è sempre riuscito a strapparmi
una risata, anche nei momenti di solitudine e scoramento.

Gaetano Quattrocchi

iii

Summary

In recent years, the adoption of Electro-Mechanical Actuators (EMA) in the
aerospace sector, mainly as secondary actuation devices, is strongly increasing,
in particular in the more electric and all electric design philosophies. These
approaches aim at creating a single form of secondary power, in order to drive all
users (systems); the only form of energy so versatile to be capable of accomplishing
such task is electric energy. While using electricity, EMAs provide the natural
electro-mechanical interface needed to convert secondary power, electricity, to
useful mechanical work.

At this moment, the use of EMAs in large scale commercial aircrafts is
relegated to secondary flight control actuation (flaps, slats, airbrakes), while the
use as main flight control surfaces actuation is still limited to small UAVs. The
manufacturers’ choice has multiple reason: firstly, in large power applications,
electro-hydraulic actuators are still lighter and more compact; in second place,
EMAs are still recent technology, so there is not a complete literature on their
failure modes nor an established prognostic methodology.

One approach that could led to fault detection and subsequent isolation is the
use of a properly trained Neural Network, evaluating the response of the EMAs
and/or the motor to a given signal and outputting an estimate of convenient
values measuring a relative level of performance degradation. This is the aim
of this work, to test and validate innovative methods for Electro-Mechanical
Actuators (EMAs) prognosis, based on the use of Neural Networks.

In this work, the motors analyzed and modeled are 3-phases Brushless DC
traprzoidal motors (BLDCs), widely used in the aerospace sector.

In order to collect the substantial amount of data needed to properly train
the Network, a very detailed Simulink model has been used, modeling in detail
both electrical and mechanical components; the model derives directly form Eng.
M. Dalla Vedova PhD dissertation [12] . This approach has multiple benefits
compared to physical testing: low cost, fast deployment, good accuracy.

iv

There are five variables modeling all the possible faults condition analyzed:
three representing a partial shortage of each phase, one modeling the static
eccentricity value and the last representing the phase of such imbalance.

The Simulink model has been run thousands of times, imposing each time a
different set of faults conditions; current, voltage and position have then been
logged for each iteration.

Using the aforementioned physical data, a MATLAB algorithm has been used
in order to properly reconstruct the Counter Electro-Motive Force (CEMF); the
CEMF signals have then been suitably sampled and used as training set for
various neural networks.

Performance are evaluated on a test set not previously used in training,
highlighting the difference between different architectures and sampling strategies.

v

Contents

Ringraziamenti iii

Summary iv

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Overview . 1
1.2 Prognostics . 3
1.3 Flight controls . 5

1.3.1 Primary flight controls 5
1.3.2 Secondary flight controls 8

1.4 Actuation systems . 10
1.4.1 Hydromechanical . 11
1.4.2 Electrohydraulic . 11
1.4.3 Electrohydrostatic (EHA) 12
1.4.4 Electromechanical (EMA) 12

2 Brushless motors 16
2.1 Stator . 17
2.2 Rotor . 19
2.3 Operation principles . 20
2.4 Mechanical characteristics . 23
2.5 Motor control . 26

2.5.1 Speed control . 26
2.5.2 Torque control . 28

2.6 Protection systems . 29

vi

3 EMA model description 31
3.1 Model overview . 31
3.2 Com subsystem . 32
3.3 Trapezoidal EMA subsystem . 33

3.3.1 Control electronics . 34
3.3.2 Hall sensors . 34
3.3.3 Inverter model . 35
3.3.4 BLDC electromagnetic model 37

3.4 Transmission dynamical model 38
3.5 Longitudinal dynamics block . 40

4 Fault modes and modeling 42
4.1 EMAs fault modes . 43
4.2 Short circuit fault . 46

4.2.1 Short circuit fault implementation 46
4.3 Rotor eccentricity fault . 47

4.3.1 Rotor eccentricity fault implementation 49
4.4 Noise fault . 50

4.4.1 Noise fault implementation 52
4.5 Friction fault . 53

4.5.1 Friction fault implementation 54

5 Data analysis 56
5.1 Faults generation . 56
5.2 CEMF reconstruction . 57
5.3 Sampling strategy . 58
5.4 ANN overview . 61

5.4.1 Components . 62
Neurons . 63
Layers . 63
Connections and weights 63
Propagation function . 64

5.4.2 Learning . 64
Learning rate . 64
Cost function . 64
Backpropagation . 65

5.4.3 Training paradigms . 65
Supervised learning . 65
Unsupervised learning 65
Reinforcement learning 66

5.5 ANN implementation . 66

vii

5.5.1 Parameters choice . 66
Network topology . 67
Training function . 67
Training goal . 68
Performance function . 68
Transfer function . 68

5.6 Results . 69
5.6.1 One sample per commutation 69
5.6.2 Two samples per commutation 70
5.6.3 Three samples per commutation 71
5.6.4 Three samples per commutation, two layers 72

6 Conclusions 73

Appendix 1 MATLAB code 75
1.1 Faults generation . 75
1.2 Optimal sampling strategy . 78
1.3 Neural network creation and training 80

Appendix 2 Detailed results 82
2.1 Verification set . 82
2.2 3 inputs per commutation, shallow networks 83
2.3 3 inputs per commutation, deep networks 85
2.4 2 inputs per commutation, shallow networks 86
2.5 1 input per commutation, shallow networks 88

Bibliography 89

viii

List of Figures

1.1 Prognostics and diagnostics [6] 2
1.2 Flight control surfaces of Boeing 727 [16] 6
1.3 Aircraft body axis convention [15] 7
1.4 BAC/Aérospace Concorde [25] 8
1.5 Typical scheme of powered flight controls [23] 9
1.6 Flaps and slats types [3] . 10
1.7 Typical scheme of hydromechanical actuation [27] 11
1.8 Two stage flapper-nozzle valve [13] 12
1.9 EHA system architecture and valve schematic 13
1.10 Electromechanical actuator scheme [6] 14
1.11 Ball screw and roller screw [27] 15
2.1 BLDC Motor Cross Section [7] 17
2.2 Slotted and slotless configurations [34] 18
2.3 Star (left) and triangle (right) configurations [6] 18
2.4 Isotropic (left) and anisotropic (right) rotors [6] 20
2.5 Typical BLDC commutation scheme [23] 21
2.6 BLDC electrical scheme [27] . 22
2.7 BLDC motor timing diagram [11] 23
2.8 Ideal BLDC speed-torque characteristic [23] 25
2.9 Realistic BLDC speed-torque characteristic [23] 25
2.10 Realistic BLDC speed-torque characteristic, simplified [23] . . . 26
2.11 PWM signal generation [6] . 27
2.12 Speed control implementation, block diagram [6] 28
2.13 Torque control implementation, block diagram [6] 29
3.1 Simulink model overview . 32
3.2 Com block overview . 33
3.3 Trapezoidal EMA subsystem . 33
3.4 Control electronic subsystem . 34
3.5 Hall sensors subsystem . 35
3.6 Inverter model in detail . 36
3.7 Phase evaluation and hysteresis PWM subsystems details 36

ix

3.8 H-bridge subsystem . 37
3.9 CEMF coefficient calculation block 38
3.10 3-phase RL model block . 39
3.11 Motor torque evaluation block 39
3.12 Transmission dynamical model 40
3.13 Longitudinal dynamics block . 41
4.1 Air gap considering static eccentricity [6] 48
4.2 Air gap magnetic circuit approximation [6] 49
4.3 White noise (left), autocorrelation (center) and power spectrum

(right) [33] . 52
4.4 EM noise implementation in Simulink model 53
4.5 Borello dry friction model implementation in Simulink 55
5.1 Sample CEMF reconstruction 59
5.2 Sample CEMF reconstruction, 0ř − 180ř mechanical 59
5.3 CEMF reconstruction, 5 conditions 60
5.4 Angular coefficient in function of sampling interval 61
5.5 CEMF final sampling . 62
5.6 Feedforward neural network . 62
5.7 Cascadeforward neural network 63
5.8 Commonly used transfer functions 69
5.9 6 inputs neural networks performance 70
5.10 12 inputs neural networks performance 70
5.11 18 inputs neural networks performance 71
5.12 18 inputs neural networks, 2 layers performance 72

x

List of Tables

2.1 Permanent magnet materials characteristics 19
4.1 Mechanical and structural fault modes 44
4.2 Motor fault modes . 45
4.3 Electrical and electronic fault modes 45
2.1 Verification faults set . 82
2.2 Relative errors, percentage, 3-inputs per commutation shallow

networks . 85
2.3 Relative errors, percentage, 3-inputs per commutation deep networks 86
2.4 Relative errors, percentage, 2-inputs per commutation shallow

networks . 87
2.5 Relative errors, percentage, 1-input per commutation shallow

networks . 88

xi

Chapter 1

Introduction

1.1 Overview
In recent years, prognostics techniques used to timely detect incipient failures

in components have sparked great interest in the aeronautical world, especially
in commercial and defense sectors.

But what is prognostics? Vachtsevanos et al. [32] give the following definition:
"Prognostics is an engineering discipline focused on predicting the time at which
a system or a component will no longer perform its intended function."

Every system and components has certain level of performance required;
when this condition is no longer satisfied, the system becomes failed. Integrating
prognostics in the design process has numerous advantages, including less time
spent on maintenance, cost saving and increased safety of operations. This new
design philosophy is called Prognostics and Health Management (PHM).

An important concept correlated to prognostics is the Remaining Useful Life
(RUL); it represents the estimated remaining time before the element will not
comply to the required specifications.

This concept is very significant when applied to safety critical components
such as flight control systems: today, such systems are designed using a safe-life
approach, where each component is replaced after a predetermined amount time,
irregardless of its status. Such approach has the benefit of having ample margins
of safety, since components are not used close to the theoretical maximum useful
life; on the other hand there is a twofold disadvantage: no initial defects deriving
from manufacture, capable of abruptly compromising the system and aircraft
safety, are considered in this approach and also still working components are
replaced, increasing cost.

1

Introduction

It is then evident that a modern PHM approach used in the design process of
these systmes has numerous advantages: reduction of cost thanks to decreased
frequency of maintenance events and to the lowering of needed redundancies,
thus making the system more appealing to customers; at the same time, an
increased safety and reliability is obtained.

Figure 1.1: Prognostics and diagnostics [6]

The previous figure (1.1) shows the evolution of the impact of a flaw in a
component: initially, when an incipient fault occurs, the effect is limited to the
component and not affecting other elements in the system. As the fault starts to
propagate to the related components, the margin of safety of the system rapidly
decreases; if no corrective measure is taken, this can lead to secondary damage
and catastrophic failure.

The time interval between fault detection and propagation is indeed the RUL,
so it is paramount to timely detect any fault occurring in each component before
they can propagate to other elements affecting the performance level; by doing
so, an effective maintenance schedule can be planned and executed.

If the fault has already compromised system performance, then that is the field
of diagnostics, whose scope is to identify and isolate the faulted component(s)
while maintaining an acceptable level of performance in order to safely complete
the task and mission, by virtue of hot and cold redundancies. Generally, in this

2

Introduction

phase, faults effects are much more evident, so intervention is somewhat easier.

Many different specialties are involved in the PHM philosophy, including:
• Monitoring: in order to have an updated situation report, this is a fun-

damental process. To properly evaluate the condition of a system and/or
component, data gathering and analysis is needed. This is accomplished by
the use of sensors; these are critical elements in the monitoring process: high
accuracy and precision is required in order to correctly sense any anomaly
in the behavior of the monitored element; furthermore, a substantial level
of reliability is needed, e.g. a greater MTBF compared to the monitored
element, to avoid false detection or even the complete fault misidentification.

• Prognostics: this engineering discipline focuses on making reasonable pre-
diction about the health level of a component, allowing maintenance events
to occur before failure propagation and thus augmenting the safety margin
of the system. Prognostics approaches are applicable in those cases where
the failure modes are progressive and monitorable, i.e. affecting the system
performance in a measurable way; on the contrary, these approaches are not
useful when dealing with elements showing sudden, unpredictable failure
modes. Redundancy and other means of safety augmentation are needed in
these cases if such events compromise safety and reliability.

• Diagnostics: this is a process used to detect, diagnose and isolate any failure
point in a system. Three main phases are comprised in the process: system
monitoring, gathering and collecting data; following a successful detection
of a non-routine behavior by comparison to another source (i.e. duplicated
element, control algorithm, etc.), the process aims at the identification
of the severity of the event (e.g. safety-critical) to take the appropriate
corrective measures; finally, the failed element is deactivated or bypassed
and, if present, redundant components are activated to bring back the
system as close as possible to nominal status.

• Health Management: consists in saving gathered data in order to use them
as comparison to highlight degradation trends; this process also aims at
assessing, in case of a non time sensitive failure, a more detailed diagnosis
of the fault. Furthermore, these data can be used for statistical purposes,
e.g. to correct life estimates or as feedback for product improvement.

1.2 Prognostics
As briefly introduced in the previous section, prognostics is the engineering

discipline of making accurate prediction regarding the remaining useful life (RUL)

3

Introduction

of a component or system, i.e. the amount of time until the element will be able
to operate within its specifications [32].

Several steps can be identified in the prognostics process:

• Data collection: the element under examination is equipped with sensors, in
order to evaluate fundamentals parameters characterizing the current status.
In the case of this work, since a BLDC driven EMA is analyzed, important
parameters are currents, voltages, torques, angular position and velocities.
Since several sensors are used to sense each variable, it is imperative to
include a logic capable of detecting anomalies in the readings, caused by
electrical or mechanical noise.

• Data filtering: since each sensor not only senses the value to be measured
but also the inevitable noise introduced by the operating environment, a
filtering stage, either analog or digital, is fundamental in order to eliminate
fluctuations that can have detrimental effects on the subsequent stages.

• Threshold comparison: having now a clean signal, a threshold crossing
verification is made, either using historical data or requirement imposed to
the element.

• RUL prediction: using suitable methods (e.g. neural networks, algorithms,
statistics), an accurate prediction of the RUL is made and future maintenance
events are planned accordingly.

Several prognostics approaches can be defined, based on the fundamental
characterization of the system:

• Model-based prognostics: this approach focuses on the modeling of suitable
physical models in the prediction of the RUL. Modeling can either be done
at the macro or micro level; in the former, a relation is obtained between
the inputs and state variables, in a simplified form; this approach is useful
for the analysis of whole systems; in the latter case, a system of dynamic
equation relating degradation and the operating condition is used. This
approach permits then the inclusion of empirical knowledge in the RUL
estimation. Main disadvantages are uncertainty related to the simplifications
made in the model and the generally high complexity, even at macro level,
when modeling complex systems.

• Data-driven prognostics: in this case, the use of pattern recognition and
machine learning is exploited to detect changes in system states [24]. Nu-
merous techniques can be adopted, starting from autoregressive models up
to Neural Networks (NN). This approach is appropriate in case of high

4

Introduction

system complexity or when some aspect of the component behavior are not
fully understood. The use of data-driven prognostics permit a wider scope
for the analysis, being capable of analyzing whole systems, even tough a
substantial amount of data is needed during the training phase. Two main
strategies are possible: modeling cumulative damage and then evaluating a
threshold or directly learning the RUL from data.

• Hybrid approaches: these approaches tries to mix the strength of the two
previous approach. In general, most type of analysis are hybrid, since seldom
occurs that it is either fully data-driven or completely model-based. There
are two families of hybrid methods: pre-estimation fusion of models and data,
used when run-to-failure data are not available [21] (i.e. when diagnostics
positively identifies faults that are then corrected by maintenance), has
the aim of better leveraging the RUL of the component; post-estimation
fusion is generally used in uncertainty management, in order to reduce the
uncertainty interval and thus increasing accuracy; the approach is based on
the concept that more classifiers are better than a single one.

In this work, an hybrid, pre-estimation approach is used; CEMF data gathered
using a detailed micro, component-level physical model are used in the training
of a Neural Network, subsequently used to estimate the damage level of the same
system.

In conclusion, a successful and accurate prognostics can ultimately lead to
increased safety and reliability, while decreasing logistics effort and maintenance
cost.

1.3 Flight controls
Flight controls are a fundamental element to control an aircraft. The scope is

to properly modify the shape of some aerodynamic surfaces in order to change
the flight characteristics of the aircraft itself. A distinction is made between
primary and secondary flight controls.

1.3.1 Primary flight controls
Primary flight controls are used to create imbalance torques around the three

body axis, namely pitch, roll and yaw, resulting in a change of the aircraft
attitude. Since these commands are operated continuously, their actuation must
be instinctive, so that the pilot can be facilitated in the actuation, and propor-
tional, especially in augmented flight controls, so that the feedback can give the

5

Introduction

Figure 1.2: Flight control surfaces of Boeing 727 [16]

pilot back an indication of the forces acting on the moving surfaces. Additional
requirements are that of high cut-off frequency, since the actuation command can
vary multiple time a second and finally a very high level of reliability is required,
since the failure of primary controls is a safety-critical event and often leads to
aircraft loss. In order to mitigate such risk, multiple redundancies are used for
various of the system in conjunction to alternative backup operating modes.

In traditional architectures, each control surface was design to maximize
actuation on a single axis while decreasing, as much as possible, coupling on
others.

Such surfaces are called:

• Elevators: surfaces actuated to create pitch moments along the longitudinal
x axis (from aft to bow); located on the horizontal tailplane surface, behind
the stabilizer.

• Ailerons: actuated in opposition to create a roll moment along the lateral y
axis (from left to right wing); located on the trailing edge of each wing.

6

Introduction

• Rudder: located on the vertical tailplane, the actuation creates yaw moments
around the vertical z axis (from top to bottom of the aircraft).

The axis convention is shown in figure 1.3, following the one used in [15].

Figure 1.3: Aircraft body axis convention [15]

More modern implementations can include the coupling of two different
functions in a single surface, like in the Aérospatiale/BAC Concorde, where
control surfaces located along the wing trailing edge, called elevons, absolve
both pitch and roll functions, since the aircraft architecture does not have any
horizontal tailplane and subsequently no dedicated elevators (fig. 1.4).

Another distinction can be made between reversible and powered or augmented
commands.

Reversible commands provide a direct mechanical connection between the
surfaces and the pilot, in either a push configuration, using rigid bars, or in a
push-pull configuration, using steel cables. The limit of such configuration is
that the hinge moment of the surface must be overcome by pilot’s strength alone.
One method adopted to ease the pilot task was aerodynamic compensation, but
these devices couldn’t provide enough benefit at very high speed or with very
large surfaces.

7

Introduction

Figure 1.4: BAC/Aérospace Concorde [25]

The pilot inability to effectively actuate primary commands was overcome with
the use of powered commands, where additional power is given by the hydraulic
and more modernly electrical system. In today’s aircrafts, the pilot only gives
an input signal to a digital computer system that subsequently proceeds to the
actuation and monitoring of the surfaces, in an implementation called fly-by-wire
or even fly-by-light, depending on the nature of the data bus (electrical signals
in the former, light signals in the latter).

Since the direct mechanical linkage between pilot and surface isn’t anymore
present, an artificial feel system needs to be included in the commands architec-
ture to provide realistic feedback to the pilot, visible in fig. (1.5).

1.3.2 Secondary flight controls
Secondary flight controls function is to modify the geometrical and conse-

quently aerodynamic characteristics of the main lifting surfaces, especially the
wing, to adapt performances to all flight conditions (e.g. take-off, landing). Sec-
ondary flight control are not usually used continously, but are instead actuated
in particular part of the flight mission; consequently, the actuation logic is typ-
ically stepped, with either ON/OFF logic (e.g. slats) or in well defined steps

8

Introduction

Figure 1.5: Typical scheme of powered flight controls [23]

(e.g. 0°-30°-45° for flaps). Actuation, except for spoilers in particular cases, is
symmetrical.

The most common types of secondary flight controls are introduced.

• Flaps: typically installed on the trailing edge of the wing, flaps primary
purpose is to increase lift coefficient CL increasing camber of the surface,
the wetted surface or both (fig. 1.6a), allowing lower stall speeds. The lift
variation causes both an increase in induced drag and in positive (nose
downward) pitch moment. Flaps are commonly used during take-off and
especially during landing, allowing lower speed approach to the runway.
Many different architectures have been proposed and installed during the
years, starting form simple plain flap to double or even triple slotted fowler
flaps on latest generation wide-body aircrafts.

• Slats: located on the leading edge of the wing, these surfaces energize and
redirect the incoming airflow in order to increase adherence to the airfoil
and delay separation to higher angle of attacks. Like flaps, many different
architectures and implementations exist; some are shown in fig. 1.6b.

• Spoilers: installed on the upper wing surface, their function is to reduce lift
while increasing drag. Useful for airspeed control and to descent without
gaining excessive speed.

Modern implementations, like in military fighter aircrafts, include combination
of secondary and primary flight control in a single surface. One example is the F16
flaperons, which has both primary (aileron) and secondary (flaps) functionality.

9

Introduction

(a) Most common flap types (b) Most common slat types

Figure 1.6: Flaps and slats types [3]

1.4 Actuation systems

Servomechanism are often used in aircrafts to actuate control surfaces. Servos
generally measure their outputs and use them in a feedback loop, in order to
achieve the required target requested, continuously updating the error value
between command and current status. The most adopted actuation systems will
now be briefly described.

10

Introduction

1.4.1 Hydromechanical
Hydromechanical actuation has been the first to be employed on aircrafts.

Pilot’s command is transmitted via a mechanical linkage to an hydraulic valve,
whose activation actuates the control surface. In typical configurations (e.g.
F15, B737), a spool valve is used (fig. 1.7). Position feedback is achieved via a
mechanical linkage; this type of response is subsequently proportional to the
pilot input. After reaching the commanded position, error is null and no more
actuation is provided.

Figure 1.7: Typical scheme of hydromechanical actuation [27]

1.4.2 Electrohydraulic
An evolution of hydromechanical, electrohydraulic actuation uses an electric

input instead of a mechanical one. The main element of the system is an
electrohydraulic valve, commonly two-stage flapper-nozzle type (fig. 1.8), even
tough many different types exist, like jet-pipe. Spool position is fed back to the
first stage via a feedback spring, while the piston position is generally evaluated
via a LVDT (Linear Variable Differential Transducer) to be sent to control
electronics. Since the command is given using a fly-by-wire system, integration
in autopilot and other control logics in the FCC (Flight Control Computer) is
straightforward.

11

Introduction

Figure 1.8: Two stage flapper-nozzle valve [13]

1.4.3 Electrohydrostatic (EHA)
Modern more-electric and all-electric trends favor the use of electric power

for flight controls actuation; following these doctrines, hydraulics systems are
becoming obsolete and are then being progressively replaced by integrated
electrical actuators. One type is the electrohydrostatic actuator (EHA), where
a brushless DC motor (BLDC) actuates a fixed displacement piston pump in
a self-contained hydraulic loop: the resulting pressurized fluid is then used to
actuate a jack connected to the surface to be controlled (fig. 1.9a). LVDTs
are used to monitor jack position and feed it back to the control electronics.
Additional elements includes anti cavitation valves, pressure relief valves and a
small internal reservoir to account for thermal expansion of the fluid.

EHAs are becoming increasingly popular in new generation aircrafts, both
military (e.g. F22 Raptor, F35 Lightning II) and civil (Airbus A350, A380),
either as main or backup actuators.

1.4.4 Electromechanical (EMA)
The other typology of actuators favored in more-electric philosophy is the

electromechanical actuator (EMA). This system is composed of a power source,
almost exclusively a BLDC motor, a mechanical transmission connecting the
power source and the final user, generally realized with gear reducer or rotary to
linear converters (e.g. jack screw, ball screw, roller screw), and a feedback loop.

12

Introduction

(a) EHA system implementation [2]

(b) EHA valve schematic [6]

Figure 1.9: EHA system architecture and valve schematic

EMAs are generally lighter, cheaper and easier to maintain compared to EHAs.
To this date, on the other side, fault modes of EMAs are not fully understood,
so their use as safety-critical elements (i.e. primary flight controls actuation) is
still relegated to small scale UAVs, where hydraulic system installation would
be too costly and impractical. EMAs are instead widely used as backup power
source, like in the Boeing B787.

Referring to fig. 1.10, several elements are comprised a typical implementation:

• ACE (Advanced Control Electronics): this unit implements the particular
control logic chosen for the actuator, calculating the error signal comparing
the FBW signal and the feedback position signal.

• PDE (Power Drive Electronics): responsible of modulating the 3-phase AC
power input in order to actuate the motor using the error signal deriving
from the ACE.

• Electric Motor: usually a BLDC. It is the actuator source of mechanical
power.

13

Introduction

Figure 1.10: Electromechanical actuator scheme [6]

• Reduction gear and screw jack: this is the mechanical transmission used to
connect the motor and the final user (typically a flight surface).

• RVDTs (Rotary Variable Differential Transducer): primary mean of angular
position acquisition, used to create a feedback loop to the ACE. Usually
used in conjunction with LVDTs to provide redundancies.

One important parameter characterizing EMAs is the transmission ratio,
defined as

τ = ϑṁ

ϑu̇

= 1
η

Tu

Tm

that is, the ratio between motor and user angular speed or vice-versa the ratio
between user and motor torque, divided by η which is the transmission efficiency.

The transmission ratio is important since reasonably sized BLDCs provide very
little torque at very high angular speeds (several thousands to tens of thousands
RPM) while the user requires angular speeds in the order of tens of degrees per
second and high torques, so a transmission with a very high transmission ratio
(hundreds or thousands to one) and high efficiency is mandatory to effectively
actuate the user.

The type of reducers capable of such ratios while still having moderate size
and weights are either epicyclic (planetary) gears or uncommon devices like
harmonic gears.

14

Introduction

Finally, rotary to linear conversion is achieved using either a ball or roller
screw (fig. 1.11). A set of spheres or rollers rolls in a threaded path between the
internal and external face of the screw. This leads to an overall higher efficiency
compared to lead screws, since the elements are mainly rolling, so the main
resistance is rolling resistance that is much lower than friction resistance. Higher
maximum loads and better wear resistance are other prominent advantages.

Figure 1.11: Ball screw and roller screw [27]

One of the biggest disadvantage of EMAs is the difficulty to hold a commanded
position in presence of external disturbance loads: at zero or low speed, most of
the energy given to actuate the BLDC is dissipated through the stator coils due
to Joule effect. This could lead to overheating and possible damage of the motor.
One solution could be the use of an irreversible transmission, but this approach
has many drawbacks (lower efficiency, transmission lock in case of motor failure).
A new solution to this problem is the adoption of a new type of motor, the
hybrid stepper motor, capable of delivering high torque at zero or low speed.

15

Chapter 2

Brushless motors

The most common type of electrical motor used in aerospace applications is
the BLDC Motor, or Brushless DC, also called Synchronous DC Motor, since
magnetic field and rotor angular frequencies are the same. As the name implies,
such motors transform DC power in rotary mechanical work; another advantage
on competing architectures is the fully electronic commutation in contrast to,
for example, classical brushed DC motors, where commutation is achieved by
using mechanical commutators (the brushes). In BLDCs, the commutation, as
mentioned before, is achieved electronically; there are multiple ways to achieve
this, but the most common is the Hall-sensor based design, where Hall sensors
located on the stator assembly senses the variation in magnetic filed induced
by the rotor magnets. Consequently, it is possible to determinate the angular
position of the rotor in order to properly activate the commutation sequence.
Other sensing techniques include the measure of the CEMF on non-active coils
to calculate rotor position, but this architecture is not well-suited for servo
applications, since CEMF is difficult to be accurately measured at zero or close
to zero angular velocity, where a servomechanism generally operates most of the
time.

The absence of mechanical friction-based commutation is a great advantage,
since there is much less wear and abrasive particle generation due to, as men-
tioned before, friction. Consequently, BLDCs operating life is much longer than
comparable brushed DC motors.

There are even more positive aspects, including better torque-weight char-
acteristics, higher maximum speed, better dynamic response and lower noise
emissions. This long list of positive characteristics makes the BLDC a perfect
candidate where reliability, weight saving and high performance are required,
like in aerospace.

BLDCs ar generally quite simple machines (fig. 2.1), consisting in an external

16

Brushless motors

enclosure (the stator), where the activation coils are located, and a rotor, where
a certain number of permanent magnet is fixed in place. Another fundamental
element is the control electronics and the relative position sensor for the rotor,
used to correctly commute the various phases driving the motor itself.

Figure 2.1: BLDC Motor Cross Section [7]

2.1 Stator
The stator of a BLDC motor is generally made of laminated steel, in order to

minimize losses due to eddy currents. It’s function is to hold the copper windings
making up the excitation coils, wound up on the protruding ends of the core in
the slotted configuration, one of the two possible configurations, the other being
the slotless core (fig. 2.2).

The benefit of the slotless configuration is a lower inductance, leading to faster
commutation and consequently higher maximum speed. Teeth absence in the
core implies a reduction in cogging torques, making this architecture well-suited
for low speed applications, while, on the other side, the increased air gap leads
to an increase of ventilation losses and then a lower maximum useful torque.

17

Brushless motors

Finally, slotless core have less irregularity in output torque, since the absence of
teeth does not create ripples [10].

Figure 2.2: Slotted and slotless configurations [34]

Stators’ electrical architectures can be of two different types, either a star or
∆ (commonly called triangle) configuration (fig. 2.3).

Figure 2.3: Star (left) and triangle (right) configurations [6]

The difference between the two architectures is the voltage seen by each
winding: in the delta configuration, the phase voltage is equal to line voltage,
while in the star configuration the phase voltage is equal to 1√

3 of line voltage. This

18

Brushless motors

implies, using the same line voltage, a higher current in the delta configuration,
and thus higher torque. There is a drawback tough, since at each moment, using
the ∆ configuration, all the phases need to be powered. This also means a
different commutation scheme compared to the star connection, which is why
the latter is generally preferred, excluding some particular applications.

2.2 Rotor
The rotor is the mechanically active component of the motor. Several architec-

tures have been developed, but all includes permanent magnets in the assembly.
Magnets of various nature have been used, ranging from cheap but not very
effective Ferrite to more expensive but performing rare earth based.

Material Ferrite AlNiCo SmCo NdFeB

Attraction force Good Average Strong Very strong
Max temperature ≃ 200◦ ≃ 450◦ ≃ 200◦ ≃ 80◦

Corrosion resistance Very good Very good Good Average
Demagnet. resistance Average Low Very high High
Price Very reasonable High Very high Reasonable

Table 2.1: Permanent magnet materials characteristics

In aerospace, Neodymium based magnets (NdFeB - Neodynium-Iron-Boron)
are almost exclusively used, given the very high magnetic flux generation (> 1 T).
Such high value of the induction field are beneficial, increasing stator-rotor
magnetic coupling constant, and thus torque.

Another design parameter is the number of rotor poles, varying depending on
the particular application, generally ranging from two to eight pairs. A higher
number of poles is useful to have smoother torque output, at the cost of maximum
speed, given the increased commutation frequency and the physical limits of the
bridge driving transistors (generally high power application MOSFETs).

Finally, the physical arrangement of the magnets inside the rotor core can
be of two main typologies: isotropic and anisotropic (fig. 2.4). In the former
configuration, magnets are installed on the external surface of the rotor, while in
the latter they are inserted inside the rotor itself. A careful physical connection
is mandatory in order to avoid magnets detachment and consequent catastrophic

19

Brushless motors

motor failure at high speed, given the extremely high maximum speed, in the
order of the tens of thousands of RPM and the subsequents centrifugal forces.

Figure 2.4: Isotropic (left) and anisotropic (right) rotors [6]

2.3 Operation principles
As the name implies, BLDCs convert DC current in mechanical energy. It

is possible, in a very similar architecture, the Brushless AC Synchronous, to
use sinusoidal AC current to drive the motor. Synchronous AC motors have the
advantage of a more regular torque output, but are harder to manufacture and
control, so BLDCs are more widely used.

Analogously to "traditional" brushed DC motors, the operation logic is a
contionous rotor position feedback, to the control electronic in the brushless case,
to actuate a proper commutation logic. In the brushed case, commutation is
actuated by mechanical sliding contacts, the brushes, while, as aforementioned,
in the brushless architecture, commutation is achieved by the use of a solid state
inverter, creating AC phases from the supplied DC power.

To correctly time the commutation sequence, a rotor position feedback must
exist. This is generally achieved using three Hall sensors, distributed 120◦ apart
over the electrical revolution (function of number of poles), offering a 60◦ angular
resolution. The placement is important since magnetic field changes every 60◦ and
thus in one of the sensors. The sensed change is then fed back to the controller.

20

Brushless motors

Figure 2.5: Typical BLDC commutation scheme [23]

21

Brushless motors

In fig. 2.5 is shown the typical three phases BLDC commutation sequence. In
subfigure a, Hall sensors H1 and H3 are located directly above the magnet south
pole, so they give a high signal (logical 1), while sensor H2 is above the north
pole giving a low signal (logical 0).

Phase A is then unpowered, phase B is connected to supply and finally phase
C is shorted to ground. After 60◦, north pole is under sensor H1, which then
switches to a low signal; phase C is subsequently deactivated and phase A is
shorted to ground, rotating the induction magnetic field 60◦ counterclockwise
(subfig. b).

In subfig. c is shown the situation 60◦ later, where sensor H2 commutes to
high, phase B is switched off and phase C is connected to line voltage, rotating
the magnetic field further 60◦ counterclockwise. Commutation is then continued
analogously to complete a full rotation as shown in the remaining subfigures.

Figure 2.6: BLDC electrical scheme [27]

In fig. 2.6 is shown the complete electrical scheme, where Hall sensors’ data
are used as input in the decoder circuit where, using a timing table (fig. 2.7),
six different signals are generated (three pairs), used as control signals for the
six power transistors used to power the three motor coils. All transistors are
connected to both line voltage and ground, and each couple control a single
phase, to have both forward and backward action.

The timing diagram (fig. 2.7) shows the sequence used to activate the six
transistors (Q1L to Q3H) and the state of the three phases in each commutation

22

Brushless motors

Figure 2.7: BLDC motor timing diagram [11]

state depending on the signal given by each Hall sensor. The correct actuation
of the transistors by the controller is of paramount importance to the proper
function of the motor.

2.4 Mechanical characteristics
In a BLDC motor, as in every other electric motor, the mechanical action is

created by the interaction of the two magnetic fields generated by stator and
rotor. The stator coil can be modeled as a magnetic dipole immersed in an
external magnetic field created by the rotor’s permanent magnets. The magnetic
dipole can be calculated as:

m = NAin

where m is the magnetic dipole moment, n is the normal versor to the spire
plane, A is the area of each winding and N is the number of turns in the coil.

The torque can then be evaluated as:

T = m × B .

In general, torque is proportional to applied current by means of a coefficient
kT , called motor torque constant. Using a vector approach, torque can be thought
as a vectorial sum of three contributes, one for each of the phases.

Using the previous equation, it can be seen that torque is maximum when
magnetic dipole moment and magnetic field are orthogonal to each other; this
phenomenon is used during commutation, trying to maintain the coil-induced
magnetic field as close to 90◦ in advance in respect to the rotor magnetic field as
possible.

There are several ways to increase maximum torque: either by changing coils
geometry (increasing the area and/or the number of turns, but this means bulkier

23

Brushless motors

and heavier motors), using higher rotor’s magnetic fields (adopting stronger
magnets) and by increasing supplied current. However, there is a maximum
level of current, since Joule’s Law states that ohmic losses are proportional to
the square of resistance, so there is a non linear relation between current and
heat, leading to overheating and, possibly, damage. Another limit is set by the
saturation of flux density in the magnets, so no further torque can be generated
in saturation condition.

A variation of the magnetic flux is generated in each coil due to rotor motion,
which induces, according to Faraday’s Law, a counter electromotive force on the
coil itself; such voltage is, approximately, proportional only to angular speed
by a coefficient ke called counter electromotive force coefficient or simply motor
voltage constant. It can be shown that ke = kT .

It is apparent that torque and current progressively decrease as angular speed
increases, since:

V = Ri + kT ω ,

and consequently:

T = kT i = V kT

R
− k2

T

R
ω .

It follows that output power is:

Pout = Tω = V kT

R
ω − k2

T

R
ω2 .

These trends, which are approximations, are shown in fig. 2.8.

Up to this point, a very simplified model has been used, not taking into
account all non-linear effects. A much more realistic speed-torque characteristic
is presented in fig. 2.9, where an efficiency graph is superimposed. It is apparent
that highest efficiency is achieved at high RPMs; this is one of the reason why
gearings are often necessary in servomechanisms operating at low speed.

Furthermore, two different regions can be individuated: the continuous opera-
tion zone, below the green line, and the intermittent operation zone, between
the green and blue line. It is indeed possible to operate a BLDC at very high
currents, much higher than nominal continuous condition, for short periods of
time, and thus at very high torques. The drawback is that the action must be
limited in time and an appropriate amount of time is needed in order to cool
the stator coils.

24

Brushless motors

Figure 2.8: Ideal BLDC speed-torque characteristic [23]

Figure 2.9: Realistic BLDC speed-torque characteristic [23]

25

Brushless motors

In fig. 2.9, three saturations are introduced: one capping the max allowable
angular speed, another limiting max stall torque and finally a limit on commuta-
tion frequency. It is then possible to graph a simplified motor characteristic (fig.
2.10).

Figure 2.10: Realistic BLDC speed-torque characteristic, simplified [23]

2.5 Motor control
There are various ways to control a BLDC motor, using different control

parameters depending on the type of regulation required.

2.5.1 Speed control
This kind of regulation is most often used in applications where a predeter-

mined rate is used as control variable, e.g. hydraulic compressor, or when used
as inner control loop in position control machines, e.g. servoactuators.

Since the phase commutation sequence is only controlled by the rotor position,
as measured by sensors, it cannot be used as control variable. Angular speed
regulation is then achieved by modifying the supplied voltage amplitude.

The problem is now shifted on creating a desired voltage amplitude by
modifying supply voltage. This can be achieved either analogously, by using

26

Brushless motors

a potentiometer, but this solution has terrible efficiency and relies on moving
physical components reliability.

The modern solution is to use PWM - Pulse Width Modulation; using this
fully-electronic digital technique, it is possible to create potentially every voltage
between line and ground, depending on the maximum supported frequency. In
essence, the techniques consists in the modulation of the duty cycle of a high-
frequency carrier wave using the reference signal. The output voltage is then
proportional to the duty cycle of each square wave.

Figure 2.11: PWM signal generation [6]

The following block diagram (fig. 2.12) shows the most commonly used
architecture to implement speed control: given a required speed constraint, the
speed computation block calculates angular speed based on Hall sensor switching
speed; this information is then fed to the controller that subtracts this value
to desired one determining the error signal. Via a PID controller, or similar, a
PWM signal is created and then feed to the inverter powering the transistors.
The loop is then closed by the commutation logic block, where the signal for
each of the six control lines is created.

27

Brushless motors

Figure 2.12: Speed control implementation, block diagram [6]

2.5.2 Torque control
The other method to achieve regulation is torque control, used in some

industrial implementations where a continuous level of torque is required or,
again, as inner feedback loop of a position control servomechanism.

In this logic, output torque is desired to be constant, so motor speed is changed
to achieve this also accounting for varying external loads.

Since motor torque output is dependent on magnetic flux in the stator coils,
a realistic implementation is not easy to achieve and advanced analysis, like
electromagnetic FEM analysis will be required; nonetheless, a simplified model
can be implemented, recalling the direct proportionality between torque and
current by means of the motor torque coefficient, kT .

Torque control is thus achieved modifying phase currents: total current can
be computed using ground resistance line, since this resistance create a voltage
drop. The measured voltage drop, multiplied by kT , is compared to the required
torque value; the difference is then the error signal, fed to the PID (or similar)
controller in order to modify the PWM duty cycle, analogously to the speed
control logic.

The only difference between this two logics is just the variable used to compute
the error value, as visible in the block diagram representation (fig. 2.13).

28

Brushless motors

Figure 2.13: Torque control implementation, block diagram [6]

2.6 Protection systems
Several condition cam make the motor operation unsafe or even dangerous.

In order to protect the motor itself, a series of limits need to be imposed
regarding different variables. For example, if the rotor gets stuck, the CEMF
drops to zero and there is a sudden current and power surge to the phase coils,
causing overheating and possibly shorts, magnets demagnetizations (operation is
confined under the Curie temperature) or power electronics destruction. Another
dangerous situation is a speed reversal: the sudden change in magnetic flux
induced by the stator can potentially demagnetize the rotor permanent magnets.

To prevent such conditions, a series of safes are set in place. One of them is
peak current, i.e. the maximum allowable current allowed during motor start-up;
if a higher value is computed by the driving electronics, a saturation at this level
is set for each value above.

Similar to peak current, maximum working current is the maximum allowable
current during nominal operations; the same saturation logic is applied in this
case.

Other integrated protection system shield the motor from undervoltage while
battery-powered, since lithium or lithium-polymer batteries rapidly degrades if
voltage drops under a certain level. Overvoltage protection is always applied since
high voltages can damage controller, power electronics or the coils, potentially
causing an electric arc.

29

Brushless motors

Finally, a logic to determine faulty Hall sensors is integrated, since such
sensors are fundamental in the correct operation of the motor; implementation
is relatively simple since only predetermined combination of their outputs is
allowed by motor geometry. Furthermore, only one sensor can change its state at
every commutation and the tree sensors can not output the same value. Anyway,
since such failure is usually sudden and leads to total loss of the motor, it is not
useful for prognostic purposes.

30

Chapter 3

EMA model description

In this chapter, the EMA model used for approximating the real-life response
of an electromechanical actuator will be described.

As mentioned above, a very detailed MATLAB-Simulink EMA model has been
used to perform analysis sensing the variation of CEMF in function of various
damage parameters. This approach has many advantages over real-life systems:
much lower cost, faster simulation, ease of simulation since progressive faults,
e.g. partial coil shorts, are easily implemented by just varying the appropriate
coefficients. In particular, the system modeled is a F-16 combat flap, which has
an intermediate response time between a primary and secondary flight control.

Since a wide range of phenomena is modeled in the system, a very step size
has been chosen, thus making the simulation very resource intensive. The time
interval selected for the analysis is equal to 1 s, approximately taking 50 s to
simulate using a step size equal to 1 · 10−6 s = 1 µs.

The integrator chosen is first-order Runge-Kutta with a fixed step size, com-
monly known as Euler’s method. Higher order integrators might have delivered
faster simulations, but the stiff nature of the equations used might have posed
a convergence problem where the solver would have decided to use longer time
step sizes.

3.1 Model overview
The model (fig. 3.1) is composed of various subsystem that will be further

explored in the following subsections.
On the left one can see the Com block, which is the subsystem used to model

the commanded position to be achieved by the system.

31

EMA model description

Figure 3.1: Simulink model overview

The commanded position is used as input in the trapezoidal EMA block,
modeling the proper servoactuation system.

Finally, the F16 longitudinal dynamics subsystem models the response of the
aerodynamic surface considered.

Additional elements are placed on the right-hand side; these elements are
scopes used to quickly monitor important electric and mechanical variables during
and after the simulation.

As previously mentioned, the system is quite complex since it is modeled
up to component level, so every subsystem will now be further expanded and
commented, expanding each sequent subsystem up to component level.

3.2 Com subsystem

This block (fig. 3.2) is responsible of generating the user command, choosing
from different options (step, ramp, sine wave, chirp or user-defined). Several
parameters can be altered in order to achieve the desired command. Several
different can be used in conjunction simply by selecting the appropriate base
functions.

32

EMA model description

Figure 3.2: Com block overview

3.3 Trapezoidal EMA subsystem
The trapezoidal EMA subsystem is the most complex block included in the

model. In fig. 3.3, the subsystem elements are clearly visible. This system is
composed of multiple subsystems, including electric, electronic and mechanical
elements. It has to be noted the useful values for further analysis are filtered
using a low-pass filter before being saved in the MATLAB workspace.

Figure 3.3: Trapezoidal EMA subsystem

33

EMA model description

3.3.1 Control electronics
Starting on the left-hand side, the first subsystem encountered is the Control

electonics (PID) block (fig. 3.4). Its task is to calculate the error signal, based
on commanded value (com input line) and user position (θu line). The block
receives one more input, that is motor angular velocity (θ̇m) to also evaluate the
angular speed error.

The controller used in the system is a simple PID controller, which uses a
combination of a proportional action, as the name implies having a proportional
relation to the error signal via a coefficient, an integral action, used to correct
steady-state errors that would not be possible to eliminate using a solely linear
action and finally a derivative gain, useful during rapid command variation
augmenting the system response time.

It has to be noted that both speed and current are limited using two saturations,
since it is unrealistic to allow the system to operate over stated specifications,
since such conditions will cause damage to the motor assembly.

Finally, some electrical noise is added in order to include small, realistic
disturbance to the main signal.

Figure 3.4: Control electronic subsystem

3.3.2 Hall sensors
Hall sensor block is relatively simple, taking as input the mechanical angular

position of the motor and outputting three variables, H1, H2 and H3, representing
the high/low signal emitted by the sensor themselves.

34

EMA model description

The implementation (fig. 3.5) starts with the computation of θe, the electrical
angle, based on mechanical position θm and the number of motor pole pairs, p,
using the following formula:

θe = 2π

(︄
p θm

2π
− floor

(︄
p θm

2π

)︄)︄

After having determined the electrical angle, three simple lookup tables are
used in order to decide if the signal of each sensor should either be high or low.

Figure 3.5: Hall sensors subsystem

3.3.3 Inverter model
The inverter model (fig. 3.6) is used to model a digital PWM inverter. The

assembly takes 7 inputs (3 Hall sensors signals, 3 phase currents and the reference
current).

Firstly, the reference current signal (a purely controllistic value, not related
to any physical quantity) is ’split’ in three different reference currents by using
the three Hall sensor signals (fig. 3.7a). This is done passing as input each error
signal through an hysteresis block, which returns 1 if the input is greater than
+hb, that is greater than half of the set deadband, 0 if it is less than −hb (again,
half of the deadband) and keeps the previous value until the signal gets inside
the deadband value.

One limitations on the integrations step is posed by the Nyquist-Shannon
sampling theorem; the integration (and consequently discretization) step must
be at least one order of magnitude greater than the intended maximum switching
frequency (i.e. above 10 kHz) to avoid aliasing problems.

35

EMA model description

Figure 3.6: Inverter model in detail

After reference currents calculation, the current error signals are generated
and fed to the hysteresis PWM subsystem, used to generate the three PWM
signals used to drive the 3-phase H-bridge (fig. 3.7b).

(a) Active phase evaluation block (b) Hysteresys PWM block

Figure 3.7: Phase evaluation and hysteresis PWM subsystems details

The last element composing the subsystem is the 3-phase H-bridge (fig. 3.8).
Subsystem inputs are the 3 PWM signals. The actual modeling is done using a
Universal Bridge Simulink block, from the Simscape library, capable of easily
simulating various complex system, including electrical components; the bridge
is then connected to a DC power source, that is the inverter supply voltage.

It has to be noted that, when one bridge transistor is active, that is connecting

36

EMA model description

one phase to line voltage, the corresponding same-phase transistor, connecting
the same phase to ground is off, in order to avoid a short to ground. This is done
easily since the PWM signals are complementary.

The output of the block and also of the Inverter model subsystem are the
three voltages A1, A2 and A3, that will be passed to the BLDC electromagnetic
model subsystem that will be shortly described.

Figure 3.8: H-bridge subsystem

3.3.4 BLDC electromagnetic model
This subsystem aims at modeling the electromagnetic interaction between the

motor rotor and stator.

The first subsystem encountered is block calculating the back-EMF (or CEMF)
coefficients (fig. 3.9).

The actual value calculated is the normalized CEMF, defined as:

CEMF norm = CEMF

ωm
= kcemf

that is the ratio between the actual CEMF and the motor angular speed.

37

EMA model description

In every motor with a number of pole pairs greater than one, the rotor
eccentricity effect is function of the rotor position, such as:

ki
cemf = ki

e(θm)
(︄

1 + ζ cos
(︄

θm + 2(i − 1)
3 π

)︄)︄

where ki
e is the trapezoidal wave-shaped normalized CEMF relative to the

i-th phase of the non-damaged model, while ζ = x0
g0

is the ratio between the rotor
axis offset from the center and the nominal air gap.

Figure 3.9: CEMF coefficient calculation block

After multiplication with the motor angular speed, the value is passed to the
three phase RL model (fig. 3.10).

The block, fully developed using Simscape library, models each stator coil
behavior. The block receives three commanded voltages and three CEMF values,
previously calculated.

The block outputs are the actual voltage drops across the phases and each
phase current. The subsystem includes conversion blocks, useful to convert the
Simscape signals to Simulink data, just like a real-life sensor (e.g. voltmeter, amp-
meter) in order to save them in the MATLAB workspace for further processing.

Finally, in the motor torque calculation block (fig. 3.11), the actual torque
output is calculated in function of the three coils currents and CEMF coefficients.
The three contributions are summed to obtain the resultant torque that is limited
with a saturation block to account for the stator core magnetic flux saturation.

3.4 Transmission dynamical model
The next important subsystem aims at properly model the transmission

between motor and final user.
The subsystem inputs are the motor torque and the external load applied to

the surface. The system outputs are user position and angular speed.

38

EMA model description

Figure 3.10: 3-phase RL model block

Figure 3.11: Motor torque evaluation block

The motor-user transmission is evaluated as a single degree of freedom, second
order system, including inertial and viscous effects. Non-linearities are also

39

EMA model description

Figure 3.12: Transmission dynamical model

considered, including end-stops inside which the user is constrained to move and
dry friction in the form of the Borello friction model, a more modern and robust
implementation of the Coulomb friction model, which avoids limit cycles and
with a small calculation footprint.

The model then estimates the user position accounting for backlash effect and
the transmission ratio between motor and user, that is between fast and slow
shaft. Finally, the rotor electric position is also evaluated, as described before
(properly accounting for the number of pole pairs) in order to be fed back to the
EM model, where is then used to evaluate the counter electromotive force and
the phase switching logic.

3.5 Longitudinal dynamics block
The last block composing the Simulink model is the longitudinal dynamics

block, representing the dynamic response of the entire aircraft considered (fig.
3.13).

The block takes as inputs both the initial conditions (F16.x0(5)) and the
surface deflection previously calculated, δe.

The initial conditions are mandatory since the model is discretized in a space-
state model, so the derivatives of the variables are equaled to a matrix product
between a coefficient matrix and the state vector itself.

40

EMA model description

Finally, the block outputs are the aerodynamic variables of interest, that are
speed (V), angle of attack (α), Euler body pitch angle (θ), pitch rate (q), surface
deflection (δe) and hinge moment.

Figure 3.13: Longitudinal dynamics block

41

Chapter 4

Fault modes and modeling

As stated in the introduction, EMAs are a relatively new technology compared
to hydromechanical or electrohydraulic actuators, so their use in aerospace is,
at this time, confined to non-safety critical applications, since reliable fault
statististics is not yet available and combined faults condition response is still
not fully understood.

In modern aircrafts, EMAs are primarily used in trim-tab actuations, spoilers
speedbrakes actuation. On some more-electric aircrafts, most notbaly Boeing 787,
the use has been extended to slats and flaps operation. Typical configurations is
based on a centralized power source, connected via kinematics chains to each
user, ensuring symmetrical actuation of the command. In particular, a reducer is
almost inevitably present since compact sized BLDCs delivers too little torque
to directly actuate an aerodynamic surface, but on the flip side they usually
have the most efficient operation zone at very high speed (thousands of RPMs);
BLDCs are used in place of traditional hydraulic motors.

Military aircrafts follow the same trends, using EMAs in non-safety critical
operations. On some current 5th generation aircrafts, e.g. F-22 Raptor, F-35
Lightining II and F/A-18E/F/G Super Hornet, electrohydrostatic actuators are
used in place of more traditional hydromechanical actuators in order to save
weight and reduce the impact of a damaged hydraulic line. At the same time,
much effort is put in the development of EMAs as utility actuators, replacing
EHAs in roles like landing gear actuation, refueling doors and bomb bay doors
operation on future 6th generation aircrafts, and possibly their use as primary
controls actuation giving enhanced performance compared to more traditional
counterparts [9].

42

Fault modes and modeling

4.1 EMAs fault modes
EMAs fault modes can be broadly divided in four categories:

1. Motor faults: some of the most common typologies of failure in EMAs.
BLDCs typically operated at very high speed, inducing vibrations on rotor
bearings and inertial loads, due to high rotational speed, on the permanent
magnets rotor core interface. Furthermore, heat management is another issue,
due to the compact motor size and the absence of active cooling elements,
in contrast tot hydraulic-based systems. Excessive heat can lead to several
pathological conditions, including degradation of stator coil insulation and
rotor permanent magnet demagnetization if temperature rises over the
relative Curie temperature.

2. Mechanical faults: mostly affecting reducers and transmissions, these faults
are generally of important entity considering the environment in which
EMAs are operating is very demanding; proper monitoring is then required.
Faults of this nature have several causes, including excessive external loads,
lubrication deficiencies and unidentified manufacturing defects.

3. Sensor faults: since EMAs operation is based on feedbacks, even for motor
control, sensor faults are generally of critical severity. Such faults often leads
to dynamic characteristics alteration or even actuator loss. Classification
has three types of sensor faults: bias, drift or scaling.

4. Electrical and electronic faults: they share many similarities with faults
found in other similar aerospace system, including both power or control
segment. Main causes are found in overheating, short circuits, possibly
caused by particles contamination, overcurrents, overvoltages, vibration or
out-of-specifications environment.

In tables 4.1, 4.2 and 4.3, based on [6], the most common EMAs failure modes
are described.

The faults implemented in the work will now be described in detail; in
particular, this work focuses on the effect of partial electrical shorts of stator
coils and rotor eccentricity.

43

Fault modes and modeling

C
om

po
ne

nt
Fa

ul
t

Fa
ilu

re
P

ro
ba

bi
lit

y
C

ri
ti

ca
lit

y
M

od
el

ty
pe

Sc
re

w
sp

al
lin

g
vi

br
at

io
ns

,m
et

al
fla

ke
s

5
3

H
yb

rid
we

ar
/b

ac
kl

as
h

ba
ck

la
sh

7
3

D
at

a

N
ut

sp
al

lin
g

vi
br

at
io

ns
,m

et
al

fla
ke

s
5

3
H

yb
rid

ba
ck

la
sh

se
iz

ur
e/

di
sin

te
gr

at
io

n
7

3
D

at
a

de
gr

ad
ed

op
er

at
io

n
se

iz
ur

e/
di

sin
te

gr
at

io
n

3
5

D
at

a
bi

nd
in

g/
st

ick
in

g
se

iz
ur

e/
di

sin
te

gr
at

io
n

3
3

D
at

a
be

nt
/d

en
te

d/
wa

rp
ed

se
iz

ur
e/

di
sin

te
gr

at
io

n
1

5
D

at
a

Ba
ll

re
tu

rn
s

ja
m

se
iz

ur
e/

di
sin

te
gr

at
io

n
5

8
H

yb
rid

Be
ar

in
gs

sp
al

lin
g

vi
br

at
io

ns
/m

et
al

fla
ke

s
5

3
H

yb
rid

bi
nd

in
g/

st
ick

in
g

se
iz

ur
e/

di
sin

te
gr

at
io

n
2

4
D

at
a

co
rr

od
ed

vi
br

at
io

ns
,m

et
al

fla
ke

s
2

5
H

yb
rid

ba
ck

la
sh

vi
br

at
io

n,
di

sin
te

gr
at

io
n

7
3

D
at

a
Pi

st
on

cr
ac

ks
st

ru
ct

ur
al

fa
ilu

re
1

10
D

at
a

D
yn

am
ic

se
al

s
we

ar
st

ru
ct

ur
al

fa
ilu

re
4

6
Ph

ys
ic

s
st

ru
ct

ur
al

fa
ilu

re
sa

m
e

3
8

D
at

a
St

at
ic

se
al

s
st

ru
ct

ur
al

fa
ilu

re
sa

m
e

2
8

D
at

a

Ba
lls

sp
al

lin
g

vi
br

at
io

ns
,m

et
al

fla
ke

s
5

3
H

yb
rid

we
ar

ba
ck

la
sh

7
5

H
yb

rid
M

ou
nt

in
gs

cr
ac

k
co

m
pl

et
e

fa
ilu

re
1

7
D

at
a

Lu
br

ic
an

t
co

nt
am

in
at

io
n

se
iz

ur
e/

di
sin

te
gr

at
io

n
8

5
D

at
a

ch
em

ic
al

br
ea

kd
ow

n
se

iz
ur

e/
di

sin
te

gr
at

io
n

4
5

Ph
ys

ic
s

ru
n-

dr
y

se
iz

ur
e/

di
sin

te
gr

at
io

n
3

10
H

yb
rid

Ta
bl

e
4.

1:
M

ec
ha

ni
ca

la
nd

st
ru

ct
ur

al
fa

ul
t

m
od

es

44

Fault modes and modeling

C
om

po
ne

nt
Fa

ul
t

Fa
ilu

re
P

ro
ba

bi
lit

y
C

ri
ti

ca
lit

y
M

od
el

ty
pe

C
on

ne
ct

or
s

de
gr

ad
ed

op
er

at
io

n
di

sc
on

ne
ct

io
n

5
6

D
at

a
in

te
rm

itt
en

t
co

nt
ac

t
di

sc
on

ne
ct

io
n

3
7

D
at

a

St
at

or
st

at
or

co
il

fa
ils

op
en

sa
m

e
4

4
Ph

ys
ic

s
in

su
la

tio
n

de
te

rio
ra

tio
n

sh
or

t
ci

rc
ui

t
5

5
D

at
a

R
es

ol
ve

r
co

il
fa

ils
op

en
sa

m
e

4
10

Ph
ys

ic
s

in
te

rm
itt

en
t

co
il

fa
ilu

re
s

pe
rm

an
en

t
co

il
fa

ilu
re

s
5

7
D

at
a

in
su

la
tio

n
de

te
rio

ra
tio

n
sh

or
t

ci
rc

ui
t

5
7

D
at

a

R
ot

or
/m

ag
ne

ts
bo

nd
de

te
rio

ra
tio

n
m

ag
ne

t
se

pa
ra

tio
n

2
10

D
at

a
ro

to
r

ec
ce

nt
ric

ity
be

ar
in

g
fa

ilu
re

3
6

Ph
ys

ic
s

Ta
bl

e
4.

2:
M

ot
or

fa
ul

t
m

od
es

C
om

po
ne

nt
Fa

ul
t

Fa
ilu

re
P

ro
ba

bi
lit

y
C

ri
ti

ca
lit

y
M

od
el

ty
pe

C
on

tr
ol

le
r

ca
pa

ci
to

rs
di

el
ec

tr
ic

br
ea

kd
ow

n
sh

or
t/

op
en

ci
rc

ui
t

4
8

H
yb

rid
C

on
tr

ol
le

r
tr

an
sis

to
rs

di
el

ec
tr

ic
br

ea
kd

ow
n

sh
or

t/
op

en
ci

rc
ui

t
4

8
H

yb
rid

W
iri

ng
sh

or
t

ci
rc

ui
t

sa
m

e
5

10
H

yb
rid

op
en

ci
rc

ui
t

sa
m

e
5

10
H

yb
rid

in
su

la
tio

n
de

te
rio

ra
tio

n
sh

or
t/

op
en

ci
rc

ui
t

5
8

D
at

a
So

ld
er

jo
in

ts
in

te
rm

itt
en

t
co

nt
ac

t
di

sc
on

ne
ct

io
n

5
8

H
yb

rid

Po
we

r
su

pp
ly

sh
or

t
ci

rc
ui

t
sa

m
e

5
10

H
yb

rid
op

en
ci

rc
ui

t
sa

m
e

5
10

H
yb

rid
in

te
rm

itt
en

t
pe

rfo
rm

an
ce

sh
or

t/
op

en
ci

rc
ui

t
5

8
D

at
a

th
er

m
al

ru
na

wa
y

di
el

ec
tr

ic
br

ea
kd

ow
n

6
10

H
yb

rid

Ta
bl

e
4.

3:
El

ec
tr

ic
al

an
d

el
ec

tr
on

ic
fa

ul
t

m
od

es

45

Fault modes and modeling

4.2 Short circuit fault
Short circuit events are generally caused by operating the motor over its

designed maximum temperature. Heat dissipated via Joule effect may damage
the polymeric insulation of the wires making up the stator coils windings. When
the insulations is broken, it is possible that two contiguous spires may form a
short circuit. This event is not desirable, since it tends to propagate and amplify
the short circuit damage. In fact, in case of partial short, motor inductance and
resistance decrease, and consequently an increase of the current passing through
the coil, and consequently heat dissipated, is observed. The final outcome of the
progressive advancement of the failure is coil total short and motor loss.

It is possible to identify several short circuit types, based on the components
involved:

• coil-coil, short between windings of the same coil;

• phase-phase, between windings of different coils (phases);

• phase-ground, between one of the windings and the stator iron core.

In general, coil-coil are the initial manifestation of short circuit faults, even-
tually propagating to other modes when additional elements are involved, due
to the progressive nature of the fault; when a phase-phase or phase-ground
short circuit is observed, the motor is in total breakdown condition. The aim
of prognostics is then to locate and identify short circuits in low-entity coil-coil
conditions, before the rapid propagation to nearby components.

4.2.1 Short circuit fault implementation
Since the model used in the analysis models individual and with high-fidelity

each of the three phases of the considered BLDC motor, it is relatively ease to
implement such fault.

The effects of a partial coil-coil short are, as mentioned above, a reduction in
coil inductance and resistance, proportional to the number of shorted windings,
while at the same time reducing CEMF and torque coefficients. The variation of
kcemf can be approximated by:

kcemf = GM = ∂φ

∂θm
= nA

∂

∂θm

(︃∫︂
A

B · n dS
)︃

where n is the number of windings making up the coil, A is the total winding
area and B is the magnetic flux density of the rotor.

46

Fault modes and modeling

Now, defining Ni as the normalized value of shorted coil windings in respect
to n, the total number of coil windings, that is the fraction of shorted windings,
it is possible to define:

Ri = NiR

Li = N2
i L

ki
e = Nike

where Ri, Li and ki
e are respectively resistance, inductance and normalized CEMF

coefficient of the i-th phase and R, L and ke are the nominal values, referring to
a zero-fault condition.

4.3 Rotor eccentricity fault
Eccentricity is defined as an alignment error between a rotor rotation axis

and its axis of symmetry. Two different types of eccentricities can be defined:
static and dynamic. Static eccentricity refers to a condition where the rotor axis
is not coincident with the rotor symmetry axis, while dynamic eccentricity refers
to a mismatch between rotor rotation axis and its rotational inertia axis. Static
eccentricity leads to irregularities in the air gap surrounding the rotor, making it
different for each of the phases, while dynamic eccentricity produces vibrations
due to the non-symmetrical distribution of masses around the rotation axis,
causing premature bearing wear and irregular force output.

In this work only static eccentricity will be considered, since this kind is
the only one strongly impacting motor, and thus actuator, performance, while
dynamic eccentricity effects can only be evaluated by direct measurement of the
vibrations of the components.

The rotor is assumed to be a rigid body, so no deformation is considered.
With respect to the stator, the air gap is fixed and will not be affected by the
rotor angle. A depiction is presented in fig. 4.1.

Two different circles can be individuated, describing rotor and stator:

x2 + y2 = R2
r

(x − x0)2 + y2 = R2
s

In polar coordinates the equations are:

ρ = Rr

ρ2 − 2ρ cos θ + x2
0 = R2

s

47

Fault modes and modeling

Figure 4.1: Air gap considering static eccentricity [6]

Air gap, g, is defined as:

g =x0 cos θ + Rs

√︄
1 − x0

Rs

2
sin2 θ − Rr ≃

≃ x0 cos θ + Rs

[︄
1 − 1

2

(︄
x0

R2

2
)︄

sin2 θ

]︄
− Rr ≃

≃ x0 cos θ + g0

where g0 = Rs − Rr is the air gap considered during nominal conditions. In other
words, the air gap is function of the angle θ , and it is defined as the difference
of distances ρ of rotor and stator.

A new parameter can be introduced, that is the eccentricity parameter, defined
as:

ξ = x0

g0

so that the air gap can be expressed as:
g ≃ g0(1 + ξ cos θ)

Now, the magnetic flux Φ, calculated solving the circuit between two consecu-
tive rotor poles (fig. 4.2), is:

Φ =
Fm

g(θ1)
µ0S

+
g
(︂
θ1 + π

P

)︂
µ0S

=
Fmµ0S

g(θ1) + g
(︂

π
P

)︂

48

Fault modes and modeling

where Fm is the rotor permanent magnet MMF (magneto-motive force), P is the
number of poles and S is the surface crossed by the magnetic flux.

Figure 4.2: Air gap magnetic circuit approximation [6]

Expressing Φ as function of the nominal flux Φ0 and of the nominal air gap
g0, one can found that:

Φ =
2Φ0g0

g(θ1) + g
(︂

π
P

)︂
thus implying that, since the air gap has a 2π periodicity, the CEMF coefficient,
being the magnetic flux time derivative, is only affected if the number of pole
pairs is greater than one; in case of a single pole pair one can obtain:

f(θ1) + g(θ1 + π) = 2g0

4.3.1 Rotor eccentricity fault implementation
The effect of rotor static eccentricity can be modeled quite accurately and

relatively easily, as shown by [4], without the use of electromagentic FEM analysis;
this result can be achieved by modulation of the CEMF coefficient as function

49

Fault modes and modeling

of both rotor position and eccentricity:

ki
cemf = ki

e(θm) ·
(︄

1 + ξ cos
(︄

θm + 2(i − 1)
3 π

)︄)︄

where ki
e(θm) is the non-faulty condition trapezodial-shaped coefficient, according

to [31]. As described in the previous chapter, the eccentricity fault is implemented
in the subsystem BLDC Motor Electromechanical model; this allows to accurately
represent the motor behavior numerically simulating a magnetic interaction
between the two main motor components, stator and rotor.

4.4 Noise fault
One definition for noise is a general term for unwanted (and, in general,

unknown) modifications that a signal may suffer during capture, storage, trans-
mission, processing, or conversion [30]. Noise is a physical phenomenon that is
impossible to eliminate, albeit various means exist to reduce its effect. Noise
can have different origins, like background environmental noise, thermal-induced
noise, RF pollution and component-induced noise, since every component doesn’t
behave as an ideal component.

Noise can lead to error in signal transmission, so noise management is an
essential element in every electronic circuit. In particular, processing noise can
lead to false results not accurately representing system behavior; this can lead to
improper commands imparted by the control system that might lead to reduced
performance, unpredictable responses or even catastrophic failure; consequently,
proper signal filtering, being it software or hardware, analogical or digital, is
mandatory in complex electronic circuits.

A broad noise classification can be made based on the underlying phenomena
generating it. One of such classification is:

1. Electromagnetic noise: generated by moving electrical charges, i.e. electric
currents. Depending on the oscillating frequency, the whole EM spectrum
can be covered, even tough almost exclusively present in the radio waves
range. EM noise is generated by virtually any electric and electronic device,
so a steady background noise is almost always present.

2. Electrostatic noise: generated by the accumulation of charges, i.e. in presence
of high voltages, with or without current flow. One of the most common
causes is the use of fluorescent lights.

50

Fault modes and modeling

3. Channel noise: encompassing a wide array of phenomena (distortions, fad-
ing, echoing), is caused by the non-ideality of components present in a
transmission or reception line. Depending on the operating frequency, the
environment can have a great impact on channel noise, e.g. microwave
transmission adopted in mobile phones.

4. Processing noise: generated by, as the name implies, the either analogical
or digital processing of any signal, e.g. discretization of a continuous signal
or data packets alteration during encoding.

5. Acoustic noise: produced by any moving mechanical system, it is caused
by imperfection in the elements, producing random vibrations; virtually
every everyday machine produces acoustical noise, so if a high degree of
accuracy is needed, proper measure must be enforce in order to reduce
acoustic background noise.

As previously mentioned, noise in one of its form is produced by every electric,
electronic or mechanical system. In EMAs case, the main noise generator are the
electric motor (BLDC), producing acoustic noise (vibrations, audible sounds) and
electric noise (rotating magnets inducing voltages in surrounding conductors) and
the power electronics, producing EM noise, partly due to the PWM logic used
for phase switching. Moreover, environment noise, being mechanical, electrical
or else, has to be accounted for, e.g. lighting, communication and navigation
equipment, radars or even ECM jammer in military implementations.

Another noise classification can be made considering the frequency band
covered and the temporal characteristics. As reported in [33], the following
categorization can be performed:

1. Narrowbad noise: characterized by limited spectral band, it can be caused
by switching (e.g. PWM high frequency noise, around the switching fre-
quency) or constant frequency transmission (e.g. electrical lines ’humming’
at 50/60 Hz).

2. White noise: totally random noise with uniform power density distribution
in respect to frequency (fig. 4.3).

3. Band-limited white noise: similar to white-noise, but spanning a finite
frequency band.

4. Colored noise: random noise with a non-uniform power density distribution,
unlike white noise. Examples are red, gray or pink noises.

51

Fault modes and modeling

5. Impulsive noise: it consists of relatively short-duration pulses, with random
amplitude and duration.

6. Transient noise pulses: they consist of relatively long duration pulses, as
opposed to impulsive noise, again with random duration and amplitude.

Figure 4.3: White noise (left), autocorrelation (center) and power spectrum
(right) [33]

Ideal white noise is a unrealistic idealization, since its range would span from
0 to ∞ frequency, with a constant power density; this implies an infinite power.

Autocorrelation of continuous white noise, with zero mean and σ2 variance is
a particular delta function [33], assuming the form:

rnn(τ) = E[N(t)N(t + τ)] = σ2δ(τ)

while the power spectrum of white noise can be obtained by means of Fourier
analysis applied to the precious equation, yielding:

Pnn(f) =
∫︂ ∞

0
rnn(t)e−i2πft dt = σ2

Last equation shows, as previously stated, a constant power distribution along
all frequencies, thus infinite power.

4.4.1 Noise fault implementation
In the model, a band-limited white noise is introduced, since, as previously

proved, white noise is related to infinite power. To obtain accurate results, the
highest noise frequency is set at less than half of the sampling rate. The spectrum
of band-limited noise, having half-bandwidth B and centered on frequency f0,

52

Fault modes and modeling

can be expressed as:

Pnn(f) =
⎧⎨⎩σ2, if |f − f0| < B

0, if |f − f0| ≥ B

This implies that total power of band-limited white noise is equal to 2Bσ2. The
autocorrelation function is, in case of discrete-time, equal to:

rnn(Tsk) = 2Bσ2 sin(2πBTsk)
2πBTsk

where Ts is the sampling period, generally assumed to be equal to unity for
simplicity sake.

In detail, noise is added to the reference current signal, that means downstream
of the most sensitive electronic subsystems. Such approach allows to simulate
the final effect of noise introduced by the electronic on the control signal used to
drive power electronics (fig. 4.4).

Figure 4.4: EM noise implementation in Simulink model

4.5 Friction fault
Dry friction is affected by mechanical wearing, increasing with time. The

progressive deterioration of surface finish of components in mutual contact leads
to an increase of the friction coefficient, and thus of the reaction forces present
in the system; this implies higher motor currents, that is higher torques, in order
to compensate for the increased forces that have to be overcome. If friction

53

Fault modes and modeling

deterioration is neglected, a number of dynamical condition can not be modeled,
e.g. a possible actuator jam might not be correctly assessed, with disastrous
consequences.

Many models have been proposed to model dry friction. One of the most
accurate yet simple is Borello dry friction model [8], that will be adopted in the
Simulink model. The model is an evolution of Coulomb’s model, particularly apt
for numerical simulations, allowing:

1. friction torque sign discrimination as function of velocity direction;

2. stick/dynamic friction evaluation, allowing different values for each condi-
tion;

3. sudden stop of moving part evaluation;

4. stick motion propagation in time;

5. sudden component starting;

6. ease of integration in end-stop model.

Mathematically, the model can be described as:

Ff =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Fact, ẋ = 0 ∧ |Fatt| ≤ Fsj

Fdj · sgn(Fact), ẋ = 0 ∧ |Fatt| > Fsj

Fdj · sgn(ẋ), ẋ ̸= 0

where Ff is the calculated friction force, Fact is the active force applied to the
component, Fsj and Fdj are the friction force in stick (static) and dynamic
condition, respectively. The model uses a zero-crossing detection on velocity
to identify direction reversal and component stoppage: if a component velocity
changes sign, velocity is reset to zero in the following timestep to allow stick
condition identification. In sequent timesteps, if the acting force is greater than
the maximum stick force, the component will start moving again; otherwise,
it will not move. Another advantage in using Borello’s model is the avoidance
of non physical parameters (e.g. Karnopp’s model dead-band, Quinn’s model
hyperviscous coefficient) used for convergence.

4.5.1 Friction fault implementation
As previously stated, the Borello dry friction model has been implemented in

the Simulink model (fig. 4.5) in order to correctly simulate friction phenomena
present in reality.

54

Fault modes and modeling

Figure 4.5: Borello dry friction model implementation in Simulink

It has to be noted that velocity signal used for zero-crossing detection must
refer to the current timestep, in order to avoid an algebraic loop; this is achieved
by using the integrator State port, used to reset the integrator itself; the state
port signal is evaluated before the integration operation and has the same signal
as the integrator output except when reset, where the value is equal to that the
output would assume if wouldn’t have been reset.

55

Chapter 5

Data analysis

In this chapter, the data elaboration and analysis will be described, starting
from data faults list generation, to CEMF reconstruction from model variables
to neural nets training and performance evaluation.

5.1 Faults generation
The first step in the analysis has been the generation of a suitable number of

faults configuration, used to simulate the behavior of a damaged BLDC motor
actuating an EMA. In order to get a suitable data sample, a relatively high
number of faults combination has been generated and subsequently evaluated
in the detailed Simulink EMA model described in previous chapters, logging
relevant variables such as currents, voltages, angular position and speed.

The faults configuration have been modeled using a vector containing five
different values:

k = [Na, Nb, Nc, ξ, φ]

where Na, Nb, Nc represents the percentage of shorted coils relative to each phase,
ξ is the nominal value of static eccentricity and φ is its relative phase.

To create a suitably diversified data sample, a modified latin hypercube
approach has been used; the complete MATLAB code can be found in App. 1.1.

The regular latin hypercube uses a linear sampling for each of the N variables
used in the sampling process, in this case, five. Since these faults conditions
are relating to progressive faults, the linear modeling isn’t the most well suited;
instead, an exponential distribution, for each variable, has been achieved by

56

Data analysis

exponentiating the initial, linear distribution and then scaling it back to the [0−1]
interval, thus obtaining a non linear, exponentially biased variables distribution.
It has to be noted that the scaling has only been carried out for the first four
variables, that is Na, Nb, Nc and ξ, since the static eccentricity phase has been
kept as a linear distribution.

To obtain meaningful values, i.e. prognostics-compatible values, a maximum
amount of cumulative damage has been imposed: to do so, the root sum squared
value of the three phases damage (using the rssq function) has to be less than an
arbitrary threshold, otherwise the fault combination is discarded; simultaneously,
the static eccentricity value has to be less than a different arbitrary threshold.

In this work, the two arbitrary thresholds are set as:⎧⎨⎩nphases =
√︂

N2
a + N2

b + N2
c = 0.5

necc = ξ = 0.5

This final check is done in order to avoid faults combination that would yield
a damage too high to be still considered in the prognostics domain; in fact, too
high faults values would lead to such degraded performance that diagnostics and
fault isolation would be the primary disciplines involved.

5.2 CEMF reconstruction
After each simulation has been carried out using one faults vector, the CEMF

along the whole mechanical rotation needs to be reconstructed based on the
saved variables during the simulation, i.e. 3 currents, 3 voltages, mechanical angle
and angular velocity, since direct measure is almost practically unfeasible. This
prognostics approach, i.e. using the counter EMF has several advantages: the
value is not significantly affected by either motor operation nor environmental
conditions, and it is highly sensitive to electrical failure modes.

Assuming the motor is near nominal conditions, the following equation holds:

Vj − Ej = Vj − kcemfj ϑṁ = Rmij + Lm
dij

dt

where j = A, B, C. Solving for kcemfj one can obtain:

kcemfj =
Vj(t) − Rmij(t) − Lm

dij(t))
dt

ϑm(t)̇

57

Data analysis

where Rm and Lm are known values, and all other quantities varies as time
functions, sampled with a certain sampling frequency. As a result, a CEMF
estimation is obtained at sampled time steps.

The following step is to correlate the calculated CEMF coefficient with the
rotor angular position, thus obtaining kcemfj (ϑṁ). To do so, as a first approxi-
mation, ϑm vector is re-sampled and then average the CEMF coefficient values
in proximity of each wanted angular position ϑm,k, that is:

kcemfj (ϑm,k) = 1
n

n∑︂
l=1

kcemfj ((ϑm,k − ε) ≤ ϑm ≤ (ϑm,k + ε))

This calculation allows a reduction in numerical and sensor noise on the
CEMF signals.

Finally, the equivalent single-phase CEMF coefficient is simply calculated as:

kcemf = |kcemfA
| + |kcemfB

| + |kcemfC
|

This value will then be sampled, as described in the following section and then
used as input for a series of neural networks.

5.3 Sampling strategy
In order to feed the reconstructed CEMF data to a neural network, a sampling

strategy has to be implemented. Since the CEMF curves have a certain regularity,
corresponding to each electrical commutation, it was chosen not to define a custom
function summarizing the CEMF behavior; instead, a direct sampling strategy
has been implemented.

A sample CEMF reconstruction is reported in fig. 5.1, obtained with the
following parameters k = [0.3, 0.05, 0.12, 0.24, 0.4]. The non constant nature of
the CEMF constant can be identified. In particular, remembering that each
commutation lasts 30◦ mechanical, and that the motor has 2 poles pairs, then
each commutation happens every 15◦ electrical. This behavior can be exploited
by using only 180◦ mechanical, corresponding to a full electrical revolution.

Around the end of the mechanical revolution, the reconstructed CEMF tends
to diverge. This phenomenon can be explained considering that at low speeds
the CEMF coefficient, being kCEMF = V/ω, will tend to have very high values.
One possible mitigation technique is to simulate the system for a longer period
of time and then discard all measures where the angular velocity is less than a
certain value.

58

Data analysis

Figure 5.1: Sample CEMF reconstruction

Nonetheless, considering only the first 180◦ mechanical, corresponding to a
full electric revolution, no divergence in CEMF constant is observed, so the
problem is avoided altogether (fig. 5.2).

Figure 5.2: Sample CEMF reconstruction, 0◦ − 180◦ mechanical

59

Data analysis

As previously stated, the commutations positions are relatively regular in this
model (ideally, commutations are instantaneous and always happen at the exact
timestep) as visible in fig. 5.3, so this fact is exploited in order to get a sampling.
Sampling is necessary to get values that will be then used as inputs in the neural
networks.

Figure 5.3: CEMF reconstruction, 5 conditions

The sampling strategy implemented has three different sampling modes: the
first samples only the median point of each commutation, calculated based on
the ideal commutation length; the second mode samples two points for each
commutation, in order to have a better approximation of the commutation shape;
finally, the third mode is a fusion of the previous two methods, i.e. sampling
three points for each commutation, one being the median point.

In regard of the second sampling mode, a dedicated algorithm has been
devised in order to evaluate the angular coefficient of each commutations. This
is necessary since, for each different fault condition, the commutations shape
varies, and so there is a need to determine the maximum sampling width, with
respect to the midpoint of each commutation, that can be used. The bigger the
sampling width, the better for global commutation approximation. This is true
while the angular coefficient is relatively constant; this means the approximation
is relatively accurate and local effects such as ripple are not affecting the sample.
On the other hand, choosing a too big sampling width might mean falling in the
commutation switch, totally falsifying the sampled results. As shown in figure 5.4,

60

Data analysis

the coefficients have a relatively constant value for δ values around 15 timesteps,
so this value has been chosen. The complete script is reported in App. 1.2.

Figure 5.4: Angular coefficient in function of sampling interval

In fig. 5.5, the final sampling strategy has been reported for 5 different
conditions; the red marks represent the theoretical commutations switch, while
the green mark represent the median point of each commutation and finally the
black marks represents the two additional sampled points.

Considering 6 different commutations, the number of points sampled is 6, 12
and 18, respectively choosing the first, second or third sampling strategy. All
these conditions will be tested in opportune ANNs in order to evaluate eventual
differences between each sampling strategy in complexity and accuracy.

5.4 ANN overview
Artificial neural networks (ANN) are a powerful machine learning tool. The

name is a reflection on the principle of operation, resembling biological neural
networks. The system ’learns’ to perform different tasks based on examples,
generally without specific programming rules.

The principal structure is based on a series of fundamental elements, called
neurons, opportunely connected to others, depending on the architecture, similar
to the biological synapses.

61

Data analysis

Figure 5.5: CEMF final sampling

5.4.1 Components

As previously mentioned, ANN are strongly inspired by biological neural
networks. In the following pages the main elements constituting the ANN will
be briefly described, based on [35]. The individual combination of neurons and
connections uniquely defines the network’s topology; two of the most common
architectures are shown in figs. 5.6 and 5.7. The first topology describes a
feedforward network, that is a network where each layer is fully connected to each
neuron of the previous and following layers only; the other type, cascadeforward
adds a cascade connection from each of the previous layers to the current layer.

Figure 5.6: Feedforward neural network

62

Data analysis

Figure 5.7: Cascadeforward neural network

Neurons

The fundamental element of an ANN is, as previously mentioned, the neuron.
Each neuron receives one or more inputs, combine such values according to
their internal state using a function called activation function and produces one
output using an output function.

Layers

Depending on the type of layers, a network can be defined as shallow if there is
only one hidden layer, while it is said to be deep otherwise. Shallow networks are
very ease to setup and offer a good ease in learning and have proved effective at
a multitude of task, while deep networks offers much more powerful capabilities.
The drawback of deep networks is the high difficulty to achieve good training
and general network complexity, tough its use is widespread in convolutional
neural networks, where convolution filters are applied to the input data and
possibly during the elaboration, between layers. CNNs can be extremely complex
albeit have extremely powerful capabilities; in fact, CNNs are generally used in
difficult task such as image and speech recognition.

Connections and weights

The network consists of a series of neurons opportunely connected, where
each neuron’s output is used as input in one or more neurons. Each connection
has a weight associated, representing its relative importance.

63

Data analysis

Propagation function

The propagation function has the task of evaluating the neuron input based on
the output of connected predecessor neurons as a weighted sum; optionally, a bias
term can be added as an additional parameter to each neuron, both increasing
network complexity and capabilities.

5.4.2 Learning
The learning process is fundamental before ANN operations. The process

can be summarized as error minimization of samples outputs. Learning can be
considered complete when additional observation do not improve the minimum
error achievable by the network. Such error evaluation is typically achieved
defining a cost function whose value is continuously evaluated during the learning
process. If the cost function keeps on decreasing, the learning process continues;
otherwise, the learning stops and the network is then fully trained. Cost function
are numbers, so the difference between output and correct answer is small, when
the error is low.

Learning rate

This parameter defines the size of the corrective steps the network has to
take in order to reduce errors in each observation. Learning rate values defines
the maximum potential ANN accuracy: in fact, lower level of learning rate
offers higher potential accuracy, whilst increasing the learning time needed;
on the other hand, higher learning rate values shortens training time at the
expense of accuracy. Advanced refinements, especially the use of adaptive learning
algorithms, introduces the concept of momentum, that is a weighting of the
gradient and the last step, in order to avoid oscillation and increase stability.
Momentum values are between 0 and 1, where the former emphasizes the gradient
value while the latter only considers last change.

Cost function

The cost function is a measure of how precise the ANN in respect to the given
training data sample and the wanted outputs. In general, cost functions can be
dependent not only on the training sample inputs and the ANN outputs, but
can also include weights and biases, such as:

C = C(W, B, Sr, Er)

64

Data analysis

where W are the neural network’s weights, B are ANN’s biases, Sr is the input
of a single training sample and Er is the desired output relative to that training
sample [1].

Backpropagation

Backpropagation is one of the methods that can be used to adjust connection
weights, compensating for each error found during the learning process, basically
dividing the error amount among the connections. In particular, backpropagation
calculates the gradient of the cost function associated to a particular state in
respect to the ANN’s weights. The weight update can be done by means of
different methods, e.g. stochastic gradient descent, ’weightless’ networks [18],
Extreme Learning Machines [19], training without backtracking [26].

5.4.3 Training paradigms
The three main learning paradigms are supervised learning, unsupervised

learning and reinforcement learning, each corresponding to a particular task.

Supervised learning

Supervised learning uses a set of related inputs and outputs; the task is
to produce a correct output given a particular input. In this paradigm, cost
function is related to eliminating ANN’s incorrect deductions. One of the most
common cost function used is the mean squared error (MSE), whose objective is
minimizing the average squared error between network’s outputs and the desired
(correct) inputs. These paradigm is effective when dealing with problem related
to pattern recognition, i.e. classification and regression, and function fitting.
Other notable uses are gestures and handwriting recognition, that is applications
where sequential data are available.

In other words, the learning process can be viewed as learning with a ’teacher’,
in the form of a cost function, continuously monitoring and giving feedback
about the network performance in order to improve solutions quality.

Unsupervised learning

In this learning paradigm, input data, cost function of the data d and ANN’s
output are given. Generally, an a priori assumption is made (e.g. model properties
and parameters) and the definition of the cost function is made depending on
the particular task to be solved. Unsupervised learning is applied to estimation

65

Data analysis

problem, including clustering, statistical distributions estimations, filtering and
compression.

Reinforcement learning

The aim of this paradigm is to define the network’s weight in order to perform
actions minimizing long-term cost. At any point in time, the external agent
performs an action, and the environment response is then measured and evaluated
according to some arbitrary rules. It has to be noted that rules and long-term
cost can only be estimated and not exactly calculated. Agent actions can uncover
the cost of new, not yet tried actions or to use prior learning in order to have a
quicker learning.

Reinforcment learning is mainly used in control problems, games and sequential
decision making tasks. Furthermore, dynamic programming coupled with ANNs
has been successfully applied to complex problems, i.e. vehicle routing [28],
natural resource management [13] and medicine [14].

5.5 ANN implementation
The ANNs creation and training has been done in MATLAB, using the Deep

Learning Toolbox. The Parallel Computing Toolbox has also been used in order
to parallelize the training workload using multithreading; GPU acceleration
has also been tested but has not been used since its limited training functions
support.

Only feedforward networks have been used, even tough cascading network
have been tried yielding very similar result to feedforward networks but with a
greater complexity, given the higher number of connections, and thus weights.
The full artificial neural network script is presented in App. 1.3.

5.5.1 Parameters choice
The main parameters set are:

1 net = feedforwardnet([5]);
2
3 net.trainFcn = 'trainlm'; % 'trainbr'
4 net.trainParam.showCommandLine = true;
5 net.trainParam.epochs = 1e3;
6 net.trainParam.goal = 1e-6;

66

Data analysis

7 net.trainParam.max_fail = 10;
8 net.trainParam.mu_max = 1e6;
9 net.performFcn = 'mse';

10
11 net.layers{:}.transferFcn = 'satlins';

Network topology

As previously described, only feedforward neural networks are used. The
topology is created using the feedforward([n]) function, creating a network
object that has n neurons; n can be a vector, thus defining the number of neurons
for each layer of the network.

Training function

The first parameter, net.trainFcn defines the type of training function
used in the training process [22]. There are plenty of available training functions
in the Deep Learning Toolbox, but in this study, two have been used.

trainlm The first function, trainlm, uses the Levenberg-Marquardt algo-
rithm to perform backpropagation. In essence, the algorithm has the advantage
of almost second-order training speed without calculating the Hessian matrix.
In typical feedforward networks, the performance function can be expressed as
the sum of squares; consequently, the Hessian matrix and the gradient can be
approximated as:

H = JT J g = JT e

where J is the Jacobian matrix containing the derivatives of the network errors
calculated in respect to the weight and biases, while e is a vector of network
errors. The advantage of not directly calculating the Hessian matrix is that it is
generally much harder to compute than the Jacobian.

The weights and biases updates follow a Newton-like form:

xk+1 = xk − [JT J + µI]−1JT e

where µ is a scalar. In particular, when µ is zero, the method coincides with
Newton’s method; on the other hand, when µ is large, the method becomes a
gradient descent algorithm with a small step size. The aim of the algorithm is
to approach Newton’s method as soon as possible, since Newton’s method is

67

Data analysis

faster and more accurate in proximity of an error minimum. So the scalar µ is
decreased after each successful step and is increased only when the tentative
step would increase the performance function. The application of the algorithm
to neural network is found at [17].

traibr The other function used for ANNs training was traibr, whose
implementations uses Bayesian regularization to perform backpropagation. In
short, Bayesian regularization minimizes a linear combination of squared errors
and weights; it also modifies the linear combination so that at the end of training
the resulting network has good generalization qualities [5].

Based on the Levenberg-Marquardt algorithm, it includes the following modi-
fications:

jj = jX · jX

je = jX · e

dX = −(jj + I · µ)/je

where e represents the errors and I is the identity matrix [5].

The regularization process can help in those cases where the number of samples
is not enough to train the network without overfitting; the method has also
been used in this study since it wasn’t known a priori if 3000 samples would be
enough to achieve good accuracy without incurring in overfitting, even tough
the number of samples is relatively high.

Training goal

The training goal, set using net.trauParam.goal has been arbitrarily set
to 10−6, since such value of performance would imply a very good accuracy.

Performance function

As previously stated, the most common performance function used in relatively
simple feedforward networks is mean squared error; the same is true for this
work, where the performance function is set by net.performFcn and then set
to ’mse’.

Transfer function

The Deep Learning toolbox offers several different transfer function, also called
activation function. In this case, a saturated symmetrical linear transfer function
(fig. 5.8a) has been used, even tough the hyperbolic tangent sigmoid function

68

Data analysis

(fig. 5.8b) has also been tested yielding marginally worse results. In any case, the
definition is done by net.layers{:}.transferFcn = ’satlins’, that
means that every neuron in every layers uses the saturated symmetrical linear
transfer function.

(a) Symmetric saturating linear
transfer function [29]

(b) Hyperbolic tangent sigmoid
transfer function [20]

Figure 5.8: Commonly used transfer functions

5.6 Results

Different neural networks have been created depending on the number of
inputs, that is on the sampling strategy used. In any case, the number of neurons
has been varied between the input layer size (either 6, 12 or 18) and the output
layer size (5 for every case). It has to be noted that all networks have one layer
(shallow networks) except for the 18 inputs, 2 layers configuration.

5.6.1 One sample per commutation

This sampling strategy provides 6 inputs to the neural network, that is the
median value for each commutation as previously described. The number of
neurons has been set to either 5 or 6. In the following graph the performance has
been evaluated for both cases, using both trainlm and trainbr methods.

As clearly visible form figure 5.9, there is a significant boost in performance
just by adding a single neuron, even tough the performance score is still high
(i.e. low accuracy). The trainbr achieves significantly better performance with
5 neurons, while the difference is negligible considering 6 neurons.

69

Data analysis

Figure 5.9: 6 inputs neural networks performance

5.6.2 Two samples per commutation

In this case, the number of inputs is increased to two per commutation, that is
12 in total. The neural networks have now increased complexity but also achieve,
globally, a better performance score. For this condition, 6, 9 and 11 neurons
networks have been considered.

Figure 5.10: 12 inputs neural networks performance

70

Data analysis

As expected, the performance score (lower is better) decreases with the
increase of neurons to value less than 10−5 in the case of 9 or 11 neurons (fig.
5.10), thus making much more accurate predictions compared to the 1 input per
commutation architecture. The difference between the two training algorithm
is marginal; considering 6 neurons, trainbr is superior, while the opposite is
true when considering 9 neurons. The difference is basically negligible in the 11
neurons case.

5.6.3 Three samples per commutation

This is the most complex of the configuration analyzed thus far, having now
three samples per commutation, thus 18 total inputs. The number of neurons
has been set to 8, 10, 12, 14, 16 and 18 neurons.

Figure 5.11: 18 inputs neural networks performance

Continuing the established trend, an increase in neuron numbers implies a
decrease in performance score, meaning better and more accurate predictions.
This time, the best score achieved was almost as close as the target score,
10−6, as visible in fig. 5.11. Opposite to the previous cases, the trainlm
algorithm performs better with fewer neurons, while the contrary is true for
higher complexity networks.

71

Data analysis

5.6.4 Three samples per commutation, two layers
This configuration is different from the other analyzed since it is a deep

network, having two layers in feedforward configuration.

Figure 5.12: 18 inputs neural networks, 2 layers performance

The achieved score is not always better compared to the previous analysis.
This means that an increase in the number of layers is not always associated
with an increase in the neural network performance. It has to be noted that
the increased complexity of the network, both in terms of neurons increase and
connection increase has resulted in much longer training time, about a three-fold
increase when compared to the most expensive, 1-layer configuration.

The only configuration capable of achieving score better than the shallow
configuration is the 16-8 network using trainbr algorithm. In this case, the
performance score has been less than the set 10−6, thus achieving the best score
of all the considered configurations.

72

Chapter 6

Conclusions

In this work, the application of artificial neural networks for prognostic
purposes of electromechanical actuators for aerospace applications has been
investigated.

After an initial description of the EMAs, the detailed Simulink model used in
the analysis has been described, followed by a summary of the most common
failure modes of such systems. The work focused only on particular motor
progressive faults, i.e. partial electrical short-circuit and static eccentricity faults.

The process used to evaluate the performance of ANNs has been described
in detail in chapter 5 and can be summarized as such: initially, an algorithm
generating a vector of faults has been used to create a matrix describing three
thousands faults combination between arbitrarily chosen thresholds. After that,
every faults vector has been fed to the Simulink model in order to simulate
the real system and important variables such as currents, voltages, mechanical
position and angular speed have been saved. These data have then been used to
reconstruct the counter electromotive force coefficient in function of the angular
position of the motor. The reconstructed CEMF has then been sampled using
an algorithm to provide data inputs for various ANNs architectures.

Different ANNs architecture have been used as prognostics tools, showing
very good performance score, even for very basic architectures. Various sampling
strategies have been adopted, generally improving the predictive accuracy of the
network increasing the number of inputs of the network itself, i.e. using a higher
number of samples for each electrical commutation (as shown in sec. 5.6).

The study has proved that ANNs can be effectively used as prognostics tools
for aerospace EMAs. The next step would be to conduct a parametric analysis
in function of the many different variables defining a neural network, e.g. the

73

Conclusions

network architecture, the performance function, the training function, etc. After
such analysis, a development in lower level language, e.g. C++ can be used to
speed up the computation and possibly to allow a field testing campaign in order
to evaluate the real-world behavior and the possible implementation on OBCs
(On-Board Computers) in prevision of a full-scale, commercial implementation.

74

Appendix 1

MATLAB code

1.1 Faults generation
This simple MATLAB script creates a custom bounded list of faults condition
using a modified latin hypercube approach.

1 % Fault generation using LHS with exponential spacing
2 %
3 % G. Quattrocchi - 05/2019
4
5 % Initialization
6 clc; clear; close;
7
8 % Flags
9 useModifiedLHS = 1;

10 saveData = 0;
11
12 % Fundamental values
13 nVars = 5;
14 faultsDiscretization = 6;
15 sampleNumbers = 1e5;
16
17 % Fault treshold verification data
18 nTresh = 0.5;
19 nEcc = 0.5;
20
21
22 if ~useModifiedLHS
23

75

MATLAB code

24 %% Method 1: Output matrix creation using combvec
25 % If the average of the faults value is greater

than a cutoff value,
26 % the row might be canceled following the result of

a rng
27
28 S = 10; % Scaling factor
29
30 % Generic fault vector - logarithmically spaced
31 faultVec = exp(linspace(log(1), log(2*S),

faultsDiscretization)) - 1;
32 faultVec = faultVec/(2*S-1);
33 %plot(faultVec)
34
35 % Phase vector definition - linearly spaced
36 initAngle = 0;
37 finalAngle = 360;
38
39 phaseVec = linspace(initAngle, finalAngle,

faultsDiscretization);
40
41 outMat = combvec(faultVec, faultVec, faultVec,

faultVec, phaseVec)';
42
43 cutoff = 0.1; % Cut-off

value used to evaluate possible row deletion
44
45 for ind = 1:size(outMat, 1)
46 rowSum = sum(outMat(ind, 1:4));
47 if rowSum > cutoff
48 if rowSum >= rand(1) % Compare row

average with a rng
49 outMat(ind, :) = NaN; % If

verified, set the row to NaN
50 end
51 end
52 end
53
54 outMat = rmmissing(outMat); % Delete all

NaN rows

76

MATLAB code

55
56 else
57
58 %% Method 2: Modified latin hypercube
59 % Scaling factor definition
60 SF = 1e3;
61
62 % Creation of LHS with exponential spacing
63 seedLHS = lhsdesigncon(sampleNumbers, 5, [1 1 1 1

1], [SF SF SF SF 360],...
64 [true true true true false]);
65
66 % Normalization
67 for i = 1:sampleNumbers
68 seedLHS(i, 1:4) = seedLHS(i, 1:4)./norm(seedLHS(i

, 1:4));
69 end
70 outMat = seedLHS;
71 end
72
73 % Phase scaling
74 outMat(:, 5) = outMat(:, 5)*pi/180 - pi;
75
76 % Fault treshold verification
77 for ind = 1:size(outMat, 1)
78 if rssq(outMat(ind, 1:3)) > nTresh || outMat(ind, 4)

> nEcc
79 outMat(ind, :) = NaN;
80 end
81 end
82
83 outMat = rmmissing(outMat);
84
85 outMat(:, 5) = interp1([-pi pi], [0 1], outMat(:, 5));
86
87 faultsList = outMat;
88 clear outMat;
89
90 if saveData
91 save('faultsList_30k.mat','outMat');

77

MATLAB code

92 end

1.2 Optimal sampling strategy
This scripts determines the optimal sampling spacing for the second sampling
strategy.

1 % Optimal sampling spacing determination
2 %
3 % G. Quattrocchi - 09/2019
4
5 clc; clear; close;
6 qplot = 1;
7 fitPlot = 1;
8 fitPlotComms = 1;
9 fitPlotMid = 1;

10 fitPlotExt = 1;
11
12 load('BEMF_HF_3k.mat');
13
14 phaseLen = round(500/6);
15 halfPhase = round(phaseLen/2);
16
17 commExt = 1:phaseLen:500;
18 commExt = commExt + halfPhase;
19 halfPts = commExt + halfPhase; halfPts(end) = [];
20
21 delta = 1:halfPhase;
22 rowsCons = [4 8 15 16 23 42];
23
24 for k = 1:6
25 for j = 1:length(rowsCons)
26 rowTrial = rowsCons(j);
27 for ind = delta
28 q(ind) = (BEMFMat(halfPts(k) + ind, rowTrial

) - ...
29 BEMFMat(halfPts(k) - ind, rowTrial))/ind

;
30 qp(ind, j, k) = q(ind);
31 end

78

MATLAB code

32 end
33 end
34
35 deltaChc = 15;
36 halfPts
37 addPts = sort([halfPts + deltaChc, halfPts - deltaChc])
38 totalPts = sort([halfPts, addPts])
39
40 if qplot
41 for l=1:6
42 subplot(3, 2, l, 'align')
43 plot(qp(:, :, l));
44 str = ['Angular coefficient - Commutation ',

num2str(l)];
45 title(str)
46 xlabel('Sampling interval width - \delta'),

ylabel('q')
47 grid on
48 end
49 end
50
51
52 if fitPlot
53 nCurve = sort(randi(3e3, 1, 5));
54 figure();
55 plot(BEMFMat(1:600, nCurve))
56 hold on, grid on
57 if fitPlotComms
58 plot(commExt, BEMFMat(commExt, nCurve), 'r*')
59 end
60 if fitPlotMid
61 plot(halfPts, BEMFMat(halfPts, nCurve), 'g*')
62 end
63 if fitPlotExt
64 plot(addPts, BEMFMat(addPts, nCurve), 'k*')
65 end
66 title('CEMF constant sampling'), xlabel('Point'),

ylabel('k')
67 end

79

MATLAB code

1.3 Neural network creation and training

This script is used to create the neural network object, set the various parameters,
perform the training and finally evaluate the performance of the network.

1 % Neural network creation, training and evaluation
2 %
3 % G. Quattrocchi - 2019
4
5 %% Init
6 clc; clear; close;
7
8 %% Crete neural network object
9 net = feedforwardnet([5]); format short;

10
11 %% Load datasets
12 load('BEMF_HF3k_1pts.mat');
13 load('faults_3k.mat');
14 BEMF = BEMFMat_1points;
15 faultsList = faults_3k;
16
17 %% Training
18 net.trainFcn = 'trainlm'; % 'trainbr'
19 net.trainParam.showCommandLine = true;
20 net.trainParam.epochs = 1e3;
21 net.trainParam.goal = 1e-6;
22 net.trainParam.max_fail = 10;
23 net.trainParam.mu_max = 1e6;
24 net.performFcn = 'mse';
25
26 net.layers{:}.transferFcn = 'satlins';
27
28 net = train(net, BEMF', faultsList','useParallel', 'yes'

,'showResources','yes');
29
30 %% Verification
31 verificationFaults = cell2mat(struct2cell(load('

verMatFaults.mat')))
32 verificationSet_3pts = cell2mat(struct2cell(load('

BEMF_HF_ver_1pts.mat')))';
33

80

MATLAB code

34 verificationOut = net(verificationSet_3pts)'
35
36 abserr = (verificationFaults - verificationOut)
37 relerr = 100*(verificationFaults - verificationOut)./

verificationFaults

81

Appendix 2

Detailed results

2.1 Verification set

The following set has been used as verification set for each neural network. It
is composed by 10 different faults conditions randomly generated, spanning the
same possible interval used during training.

Na Nb Nc ξ φ

6.58E-02 1.12E-02 2.44E-02 1.47E-01 3.50E-01
4.41E-02 1.95E-02 6.48E-02 5.18E-02 6.90E-01
1.36E-01 1.99E-02 7.51E-02 3.46E-02 3.40E-01
2.97E-02 4.00E-03 2.02E-02 1.34E-02 5.63E-02
8.63E-02 6.98E-02 2.10E-01 1.75E-02 5.43E-01
3.81E-02 3.43E-02 7.74E-02 3.76E-02 4.79E-01
7.46E-02 8.00E-04 3.45E-02 3.84E-02 6.24E-01
4.37E-02 1.62E-02 7.33E-02 3.26E-02 4.47E-01
3.68E-02 4.73E-02 1.36E-02 1.70E-03 3.38E-01
1.33E-01 8.80E-03 2.66E-02 7.93E-02 2.17E-01

Table 2.1: Verification faults set

For each neural network, the results are reported in the following sections, in
the form of relative error with respect to the faults set.

82

Detailed results

2.2 3 inputs per commutation, shallow networks

trainlm trainbr

Na Nb Nc ξ φ Na Nb Nc ξ φ

18 neurons 18 neurons

0.27 -8.19 0.44 0.22 -7.03 1.92 -14.41 -1.92 -1.06 -1.09
-0.49 -4.33 0.32 3.34 5.02 0.32 -5.02 1.12 1.58 0.62
0.53 1.69 -0.96 1.74 -0.67 -0.23 2.39 1.27 3.47 -9.73
-2.53 -23.85 -2.62 3.77 99.77 0.86 -10.64 -3.88 0.07 -50.88
0.69 2.98 -2.13 -7.35 11.85 0.33 1.07 -1.66 -10.94 2.56
-0.62 -1.11 0.38 2.60 -4.43 0.19 0.58 0.93 1.88 7.78
0.85 -162.56 -2.71 2.29 -0.19 1.86 -206.91 -2.57 2.64 -5.57
-0.39 -4.84 0.33 2.46 -3.64 0.36 -1.58 0.83 2.01 3.67
-1.63 0.96 -6.82 -27.44 -31.00 0.81 1.26 -7.67 -30.09 -35.26
0.80 -2.06 -1.38 -2.28 -7.66 1.17 -11.29 0.80 -0.34 1.81

16 neurons 16 neurons

0.87 -6.01 -1.28 -2.62 2.60 0.61 -10.44 2.33 -0.80 9.01
-0.23 -3.70 -0.23 3.21 0.14 -0.01 -2.25 0.40 3.68 -6.83
0.25 3.13 -1.11 0.01 8.78 0.02 0.37 -0.42 2.90 -2.96
1.09 -35.71 -7.66 6.78 99.77 1.36 -18.33 -1.49 -3.69 -9.11
0.43 3.52 -1.18 -11.58 6.32 0.22 2.47 -1.66 -14.28 5.71
0.16 -2.11 -0.50 -0.50 0.02 -0.22 -0.82 0.86 0.22 -1.38
1.69 -99.24 -2.13 3.79 -2.90 1.01 -169.04 -1.77 2.08 6.70
-0.14 -6.71 -1.06 -0.98 -2.84 -0.47 -5.24 0.59 0.58 -8.95
-0.44 -0.60 -10.35 -104.67 -18.28 -1.08 -0.74 -14.55 -56.65 -33.44
1.09 -6.62 -5.37 -3.06 -21.72 0.81 -2.43 -2.60 -1.16 5.13

14 neurons 14 neruons

0.86 -3.96 -5.42 -2.87 -0.13 0.00 -17.69 0.93 0.25 -37.32
-1.04 -4.13 -1.72 0.49 -0.52 -1.32 -6.23 1.69 1.04 7.24

83

Detailed results

trainlm trainbr

-0.57 3.60 -2.68 -2.06 9.23 -0.19 0.95 0.42 5.45 -0.35
0.68 -17.48 -12.10 -3.68 99.77 -0.66 -34.84 -1.96 -1.99 -36.55
-0.91 3.58 -2.31 -9.49 4.42 0.33 -1.07 -1.46 -5.70 -8.23
-0.60 -1.58 -1.29 -3.53 5.14 -1.82 -1.66 1.61 1.63 -16.46
0.80 -158.55 -7.52 1.09 -3.97 1.01 -240.81 -0.50 3.17 1.75
-1.32 -4.42 -1.56 -4.25 5.92 -1.27 -5.38 1.42 2.81 -19.53
0.22 2.43 -15.98 -23.03 -27.15 2.39 2.43 -10.04 -2.15 -32.11
0.71 3.95 -7.60 -2.24 7.59 1.01 -13.61 0.31 -2.88 3.68

12 neurons 12 neurons

4.93 -18.90 -1.25 2.48 -6.35 1.29 -0.39 1.55 -3.00 1.20
-2.46 -4.79 -1.21 1.33 1.72 -0.34 -6.07 0.66 3.45 2.11
0.83 -2.02 -0.82 3.72 1.22 -0.62 -2.25 -1.27 7.79 3.13
-4.62 -62.39 -10.64 15.31 99.77 3.24 -18.19 -0.96 7.36 99.77
1.61 3.44 -1.24 -9.61 1.73 0.87 4.11 -0.94 -8.36 4.65
-1.94 -1.16 0.38 0.61 6.83 -1.07 -2.44 -0.03 6.53 -4.24
0.48 -204.45 -7.62 2.84 -1.44 1.29 -71.17 1.67 5.29 -1.90
-0.22 -4.17 0.52 0.87 4.16 -0.64 -7.58 -0.08 7.66 -4.99
-1.65 -3.77 -24.20 41.45 -25.80 -5.18 -0.18 -28.10 -102.80 -36.09
2.96 -17.56 -4.99 1.88 6.00 0.38 2.11 -3.40 -1.52 -26.68

10 neurons 10 neurons

-1.32 -12.50 -7.75 -3.59 0.11 3.46 10.18 -2.91 -2.74 -12.84
1.53 0.68 -0.80 2.59 -1.11 3.52 -14.66 -0.77 4.91 -4.68
-1.50 5.41 1.99 4.57 6.52 -0.64 4.62 -0.18 -2.07 -17.35
1.22 -2.68 1.14 -6.56 99.77 -3.60 11.81 -0.36 -3.09 99.77
0.35 2.32 -1.93 -8.12 3.76 -0.06 4.21 -1.74 -22.06 1.16
1.99 1.74 0.52 2.00 9.43 1.94 -1.90 0.79 -1.50 -0.86
2.23 11.98 -1.11 3.38 -2.13 1.37 -203.20 -2.65 -1.02 0.87
0.50 0.84 -0.01 1.51 12.06 0.66 -2.50 1.06 -3.23 -6.63
0.84 1.21 -2.71 -77.19 -31.35 -0.91 3.66 -4.91 -69.39 -35.86

84

Detailed results

trainlm trainbr

-0.95 -5.88 -1.09 -1.38 -3.73 2.39 12.12 -3.92 -0.48 -0.62

8 neurons 8 neurons

18.47 -60.96 20.53 1.68 1.78 11.67 -1.11 99.98 -3.34 -1.56
-7.89 6.68 -2.22 -0.30 12.06 4.68 -1.87 0.05 -1.98 -2.13
0.06 2.26 -1.46 -0.78 10.37 0.30 -0.47 0.19 4.26 -3.02
1.22 -38.96 -4.56 -5.45 18.46 -2.45 -100.23 -25.86 -9.98 99.77
-2.17 3.16 -0.99 -5.88 -1.67 7.41 -2.09 2.73 68.14 11.96
4.33 -2.69 1.15 2.63 2.05 3.55 -0.22 -2.08 -3.38 -4.64
-0.38 -107.50 -1.97 -0.42 2.46 2.83 -194.68 -0.47 -2.88 -4.10
2.17 -7.37 0.16 2.92 11.87 4.24 -2.49 0.09 -5.83 -2.51
13.20 -6.40 12.96 -4.86 -23.42 0.21 6.95 -50.56 -487.84 -25.26
1.82 -23.08 -1.31 0.16 -6.92 5.19 44.96 28.17 -13.60 9.38

Table 2.2: Relative errors, percentage, 3-inputs per commutation shallow networks

2.3 3 inputs per commutation, deep networks

trainlm trainbr

Na Nb Nc ξ φ Na Nb Nc ξ φ

16-8 neurons 16-8 neurons
2.80 -4.35 -5.44 -1.41 9.22 1.62 -10.17 -2.49 -0.69 5.14
-0.13 -0.76 2.01 -2.09 1.64 -0.60 -2.59 0.90 -1.84 1.55
0.00 4.04 0.45 -2.03 -3.77 0.42 1.59 0.10 -0.49 5.68
-3.74 -21.00 -1.57 5.55 29.82 2.94 -16.60 -3.75 2.12 36.76
-0.85 2.51 -1.96 -5.74 2.13 -0.18 -0.11 -1.57 -10.58 9.36
-0.25 -1.66 1.58 -4.23 -4.38 -1.49 -0.97 0.52 1.78 -9.80
1.55 -161.91 1.54 -4.20 2.09 0.64 -136.97 -3.32 0.51 -0.16
0.00 -5.38 0.94 -5.72 -7.23 -0.26 -3.50 0.51 -0.21 -2.69
2.24 1.37 2.59 98.27 -12.88 -3.22 0.55 -9.41 98.27 -14.85
2.23 1.20 -4.69 -1.91 -11.09 1.29 -5.82 -3.49 -2.01 16.13

85

Detailed results

trainlm trainbr

14-7 neurons 14-7 neurons
-0.51 -12.22 -1.83 -1.57 0.51 0.95 2.74 -2.37 -1.46 -3.56
-0.03 -1.36 1.28 0.84 0.51 1.57 -3.73 -0.15 1.53 -4.20
0.03 0.52 2.54 2.32 -5.9 -0.07 -0.71 0.39 0.54 -0.94
4.16 -15.37 -7.77 10.03 61.67 -1.20 -74.98 -3.25 -1.78 34.98
-0.75 1.44 -1.52 -16.7 -4.52 0.36 2.69 -1.88 -8.80 6.03
-0.31 0.44 2.04 1.14 5.49 1.67 0.90 0.45 5.71 -1.77
1.99 -146.09 -0.56 0.77 -0.5 1.39 -74.67 -2.06 4.70 -1.45
-0.41 -2.47 2.14 0.98 3.79 2.13 -2.35 -0.08 5.70 -0.64
2.87 3.46 -16.44 -61.66 -18.69 -0.76 3.69 -15.17 -249.07 -19.87
0.31 -12.1 -2.83 -2.91 -14.44 2.94 14.76 -7.95 -2.39 12.36

12-6 neurons 12-6 neruons
-0.44 -3.84 3.49 -2.44 3.18 3.25 -2.83 2.62 -1.21 2.01
0.38 -2.11 0.43 -1.15 1.70 0.53 4.56 3.02 0.96 8.23
0.14 3.25 -1.92 4.22 -12.67 -0.58 -2.73 0.12 -1.82 -8.98
0.91 -19.07 -3.55 6.03 -67.40 0.30 2.60 -0.27 -3.10 -134.72
-2.21 0.19 -3.15 3.90 -6.23 0.92 1.76 -1.69 -13.34 -8.69
1.04 0.93 0.42 -1.73 -1.32 -0.37 -2.10 1.52 2.43 11.31
0.91 -49.20 -5.07 -1.61 4.02 1.32 -129.88 0.75 2.20 -1.79
1.35 2.59 -0.38 -2.31 -6.34 -0.89 -6.11 1.96 1.42 8.07
-1.30 -1.29 -5.46 98.27 -35.48 -0.79 -4.97 -50.25 4.60 -31.25
1.29 9.22 -0.19 -3.19 -1.94 1.27 -9.61 1.96 -3.88 -24.89

Table 2.3: Relative errors, percentage, 3-inputs per commutation deep networks

2.4 2 inputs per commutation, shallow networks

trainlm trainbr

Na Nb Nc ξ φ Na Nb Nc ξ φ

11 neurons 11 neurons
1.33 -9.11 3.78 -2.81 -1.35 3.34 0.60 -1.22 -3.29 2.65
-4.36 -1.72 2.19 1.89 -1.74 -2.38 -1.14 0.50 4.52 0.09

86

Detailed results

trainlm trainbr

1.02 -0.66 -1.01 7.41 6.85 1.03 12.30 -0.22 1.78 -12.27
-3.51 -76.26 -12.65 3.14 99.77 7.56 -28.94 -2.26 6.44 -45.02
-1.13 2.37 -1.62 -14.56 4.45 -1.16 1.74 -1.91 -5.52 1.46
0.69 0.01 0.29 8.23 2.96 2.55 2.57 0.98 1.93 15.85
-0.13 -168.08 -0.77 5.46 -11.04 0.76 -91.21 -1.89 5.82 -10.55
1.19 -3.56 -0.08 9.19 2.84 2.02 6.70 0.65 1.94 10.40
-4.81 2.77 -3.90 -52.36 -35.50 11.83 -2.01 3.35 -40.89 -33.55
2.32 -3.38 -0.21 -1.97 -11.83 2.26 21.18 -1.47 -2.60 -29.21

9 neurons 9 neurons
4.88 8.44 0.23 -1.94 -0.17 8.40 25.08 13.02 -2.67 20.54
0.82 8.42 -0.06 -1.67 -9.48 -7.12 2.42 1.24 2.70 7.21
-0.89 9.25 -0.68 2.86 1.33 -2.20 5.04 2.23 4.94 -33.32
0.96 -52.14 -2.70 7.91 99.77 -11.12 16.47 -7.10 -1.40 -41.35
4.17 -1.96 -1.21 -28.11 5.10 -1.75 2.86 -1.78 -0.94 3.06
-1.49 -0.24 0.95 9.21 5.35 -7.59 2.53 2.32 2.39 -5.76
3.48 -213.05 -1.72 -0.13 -2.12 -2.42 -37.74 -0.85 3.84 9.52
-1.23 -1.78 0.66 9.16 8.65 -7.37 2.62 2.16 3.96 -12.28
1.49 -0.77 -3.40 -143.94 -30.58 -4.57 6.01 0.04 -160.65 -39.89
2.61 -2.15 -0.95 1.45 -11.22 2.10 29.51 2.15 1.45 -69.03

6 neurons 6 neruons
-8.43 32.79 -10.07 -3.84 -4.95 3.35 -138.03 -9.16 -13.99 -15.06
43.99 13.23 0.35 3.57 14.19 0.53 99.91 0.72 1.42 14.94
14.12 91.10 1.30 12.31 -4.57 0.81 -18.45 -0.35 -7.26 -16.19
-4.81 -63.70 -0.73 -2.36 77.88 -2.02 -21.18 -3.56 -41.71 -96.04
19.87 21.72 -1.95 4.60 -8.00 -2.05 7.31 -0.75 11.27 -4.71
-0.45 -7.79 1.32 2.59 -0.56 0.32 -4.59 0.95 -10.74 -7.84
15.48 97.87 -0.79 6.57 11.47 2.16 97.87 -3.58 -15.59 6.32
-7.43 -19.36 2.76 2.28 -8.48 1.44 -77.75 0.49 -21.71 -18.84
-54.27 -16.45 4.06 -254.56 -21.85 -2.48 -39.05 -4.79 -381.34 -29.98
-2.69 99.81 -4.84 0.80 -31.98 1.96 -204.28 -5.55 -15.40 49.70

Table 2.4: Relative errors, percentage, 2-inputs per commutation shallow networks

87

Detailed results

2.5 1 input per commutation, shallow networks

trainlm trainbr

Na Nb Nc ξ φ Na Nb Nc ξ φ

6 neurons 6 neurons
30.86 -206.47 -4.05 -13.92 -13.46 23.34 27.82 71.22 -16.59 6.12
3.72 99.91 4.69 3.91 13.59 16.37 5.39 42.27 19.54 17.49
2.84 -42.53 1.63 -10.12 -16.24 1.62 15.66 -6.63 44.12 -18.65
11.77 -19.79 18.82 -5.13 -74.42 0.32 -46.89 -15.34 -54.62 -91.36
3.01 6.31 -1.83 -0.68 -15.99 15.88 12.74 -0.20 99.83 5.34
8.02 8.39 1.16 -3.68 -9.38 24.42 6.43 -3.74 21.51 -3.10
9.38 -599.47 5.98 -8.85 1.58 6.24 -44.88 16.54 -11.73 12.88
14.71 -50.71 0.54 -13.13 -21.46 21.15 10.24 -11.96 15.40 -9.60
4.10 55.98 -116.67 -942.72 -44.31 26.55 4.43 -103.01 -943.07 -48.26
14.65 -388.15 3.98 -18.04 23.67 6.02 22.87 -82.98 -20.29 -52.23

5 neurons 5 neurons
99.99 30.32 -28.13 -3.76 -20.63 36.27 99.85 99.98 -9.76 -14.87
-43.21 99.91 -2.76 -21.14 13.80 -3.41 99.91 -7.48 -8.85 13.75
10.68 -5.29 -0.06 80.13 -8.42 10.38 -12.46 51.24 78.44 -13.85

-118.38 -159.31 -35.37 -255.38 -97.69 -102.19 -80.12 -193.51 -216.77 -94.88
4.11 11.02 -0.21 99.83 -8.04 78.13 7.05 7.02 99.83 6.51
-3.18 -23.59 -3.00 -21.97 -5.06 23.41 -24.95 10.60 -6.31 -10.95
-21.58 -335.31 -16.04 -29.55 6.79 -13.87 97.87 2.35 -22.35 6.05
-5.11 -111.36 -6.78 -45.01 -15.30 11.51 -115.42 12.49 -24.58 -21.16
-48.17 -36.71 -59.12 -935.84 -37.16 -70.55 -41.66 -171.43 -982.28 -44.24
73.12 -71.62 -22.95 22.29 32.88 7.62 -177.60 99.98 6.97 -21.69

Table 2.5: Relative errors, percentage, 1-input per commutation shallow networks

88

Bibliography

[1] A list of cost functions used in neural networks, alongside applications.
url: https://stats.stackexchange.com/questions/154879/
a-list-of-cost-functions-used-in-neural-networks-
alongside-applications.

[2] Reyad Abdel-Fadil, Ahmad Eid, and Mazen Abdel-Salam. “Fuzzy logic
control of modern aircraft actuators”. In: 3rd International Conference on
Energy Systems and Technologies.

[3] Federal Aviation Administration and Flight Standards Service. Pilot’s
handbook of aeronautical knowledge. US Dept. of Transportation, Federal
Aviation Administration, 2003, p. 6.9.

[4] Manuela Battipede et al. “Model Based Analysis of Precursors of Electrome-
chanical Servomechanism Failures”. In: AIAA Modeling and Simulation
Technologies Conference. 2015, p. 2035.

[5] Bayesian regularization backpropagation. url: https://it.mathworks.
com/help/deeplearning/ref/trainbr.html?searchHighlight=
trainbr&s_tid=doc_srchtitle.

[6] Pier Carlo Berri. “Genetic Algorithms for Prognostics of Electromechanical
Actuators”. Master Degree Thesis. Politecnico di Torino, 2016.

[7] BLDC Motor Cross Section. url: https://www.islproducts.com/
motors/brushless-motors-dc-bldc/bldc-motor-cross-
section/.

[8] L Borello and MDL Dalla Vedova. “Dry friction discontinuous computa-
tional algorithms”. In: International Journal of Engineering and Innovative
Technology (IJEIT) 3.8 (2014), pp. 1–8.

[9] PM Churn et al. “Electro-hydraulic actuation of primary flight control
surfaces”. In: IEE Colloquium on All Electric Aircraft. IET, 1998.

89

https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
https://stats.stackexchange.com/questions/154879/a-list-of-cost-functions-used-in-neural-networks-alongside-applications
https://it.mathworks.com/help/deeplearning/ref/trainbr.html?searchHighlight=trainbr&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/trainbr.html?searchHighlight=trainbr&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/trainbr.html?searchHighlight=trainbr&s_tid=doc_srchtitle
https://www.islproducts.com/motors/brushless-motors-dc-bldc/bldc-motor-cross-section/
https://www.islproducts.com/motors/brushless-motors-dc-bldc/bldc-motor-cross-section/
https://www.islproducts.com/motors/brushless-motors-dc-bldc/bldc-motor-cross-section/

BIBLIOGRAPHY

[10] Comparing Slotted vs. Slotless Brushless DC Motors. url: https://
www.haydonkerkpittman.com/-/media/ametekhaydonkerk/
downloads/white-papers/comparing_slotted_vs_slotless_
brushless_dc_motors%20l.pdf?la=en.

[11] Counterclockwise commutation table. url: https://www.lucidar.me/
en/actuators/commutation-for-bldc-motors/.

[12] Matteo D.L. Dalla Vedova. “Design of physical mathematical models suit-
able for advanced simulations and design of flight control and study related
innovative architecture”. Ph.D. Dissertation. Politecnico di Torino, 2007.

[13] Matteo D.L. Dalla Vedova, Paolo Maggiore, and Lorenzo Pace. “Proposal
of prognostic parametric method applied to an electrohydraulic servomech-
anism affected by multiple failures”. In: WSEAS Transactions on Environ-
ment and Development 10 (2014), pp. 478–490.

[14] Geng Deng and Michael C Ferris. “Neuro-dynamic programming for frac-
tionated radiotherapy planning”. In: Optimization in medicine. Springer,
2008, pp. 47–70.

[15] Bernard Etkin. Dynamics of atmospheric flight. Courier Corporation, 2012,
p. 112.

[16] Flight control surfaces of Boeing 727. url: http://www.faa.gov/
regulations_policies/handbooks_manuals/aircraft/amt_
handbook/media/FAA-8083-30_Ch03.pdf.

[17] Martin T Hagan and Mohammad B Menhaj. “Training feedforward net-
works with the Marquardt algorithm”. In: IEEE transactions on Neural
Networks 5.6 (1994), pp. 989–993.

[18] Geoffrey E Hinton. “A practical guide to training restricted Boltzmann
machines”. In: Neural networks: Tricks of the trade. Springer, 2012, pp. 599–
619.

[19] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learn-
ing machine: theory and applications”. In: Neurocomputing 70.1-3 (2006),
pp. 489–501.

[20] Hyperbolic tangent sigmoid transfer function. url: https://it.mathworks.
com/help/deeplearning/ref/tansig.html?searchHighlight=
tansig&s_tid=doc_srchtitle.

[21] Xiaodong Jia et al. “Assessment of data suitability for machine prognosis
using maximum mean discrepancy”. In: IEEE Transactions on Industrial
Electronics 65.7 (2017), pp. 5872–5881.

90

https://www.haydonkerkpittman.com/-/media/ametekhaydonkerk/downloads/white-papers/comparing_slotted_vs_slotless_brushless_dc_motors%20l.pdf?la=en
https://www.haydonkerkpittman.com/-/media/ametekhaydonkerk/downloads/white-papers/comparing_slotted_vs_slotless_brushless_dc_motors%20l.pdf?la=en
https://www.haydonkerkpittman.com/-/media/ametekhaydonkerk/downloads/white-papers/comparing_slotted_vs_slotless_brushless_dc_motors%20l.pdf?la=en
https://www.haydonkerkpittman.com/-/media/ametekhaydonkerk/downloads/white-papers/comparing_slotted_vs_slotless_brushless_dc_motors%20l.pdf?la=en
https://www.lucidar.me/en/actuators/commutation-for-bldc-motors/
https://www.lucidar.me/en/actuators/commutation-for-bldc-motors/
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_handbook/media/FAA-8083-30_Ch03.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_handbook/media/FAA-8083-30_Ch03.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aircraft/amt_handbook/media/FAA-8083-30_Ch03.pdf
https://it.mathworks.com/help/deeplearning/ref/tansig.html?searchHighlight=tansig&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/tansig.html?searchHighlight=tansig&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/tansig.html?searchHighlight=tansig&s_tid=doc_srchtitle

BIBLIOGRAPHY

[22] Levenberg-Marquardt backpropagation. url: https://it.mathworks.
com/help/deeplearning/ref/trainlm.html?searchHighlight=
trainlm&s_tid=doc_srchtitle.

[23] Paolo Maggiore and Matteo D.L. Dalla Vedova. Lectures notes from ’Model-
lazione, simulazione e sperimentazione dei sistemi aerospaziali’ course.
Politecnico di Torino.

[24] Ahmed Mosallam, Kamal Medjaher, and Noureddine Zerhouni. “Data-
driven prognostic method based on Bayesian approaches for direct remaining
useful life prediction”. In: Journal of Intelligent Manufacturing 27.5 (2016),
pp. 1037–1048.

[25] Tim Ockenden. Concorde takeoff. 2000. url: https://www.alamy.
com/stock-photo-concorde-takeoff-106408809.html.

[26] Yann Ollivier, Corentin Tallec, and Guillaume Charpiat. “Training recurrent
networks online without backtracking”. In: arXiv preprint arXiv:1507.07680
(2015).

[27] Stefano Re. “Development and comparison of prognostic methodologies
applied to electromechanical servosystems (EMA) for aerospace purposes”.
Master Degree Thesis. Politecnico di Torino, 2018.

[28] Nicola Secomandi. “Comparing neuro-dynamic programming algorithms
for the vehicle routing problem with stochastic demands”. In: Computers &
Operations Research 27.11-12 (2000), pp. 1201–1225.

[29] Symmetric saturating linear transfer function. url: https://it.mathworks.
com/help/deeplearning/ref/satlins.html?searchHighlight=
satlins&s_tid=doc_srchtitle.

[30] Vyacheslav Tuzlukov. Signal processing noise. CRC Press, 2018.
[31] Pranshu Upadhayay and KR Rajagopal. “Permanent magnet overhang

effect in PM BLDC motor using 2D & 3D finite element analysis”. In: 2012
Nirma University International Conference on Engineering (NUiCONE).
IEEE. 2012, pp. 1–3.

[32] George J Vachtsevanos et al. Intelligent fault diagnosis and prognosis for
engineering systems. Vol. 456. Wiley Hoboken, 2006.

[33] Saeed V Vaseghi. Advanced digital signal processing and noise reduction.
John Wiley & Sons, 2008.

[34] What are the differences between slotted and slotless motors? url: https:
/ / www . motioncontroltips . com / whats - the - difference -
between-slotted-and-slotless-motors/.

91

https://it.mathworks.com/help/deeplearning/ref/trainlm.html?searchHighlight=trainlm&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/trainlm.html?searchHighlight=trainlm&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/trainlm.html?searchHighlight=trainlm&s_tid=doc_srchtitle
https://www.alamy.com/stock-photo-concorde-takeoff-106408809.html
https://www.alamy.com/stock-photo-concorde-takeoff-106408809.html
https://it.mathworks.com/help/deeplearning/ref/satlins.html?searchHighlight=satlins&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/satlins.html?searchHighlight=satlins&s_tid=doc_srchtitle
https://it.mathworks.com/help/deeplearning/ref/satlins.html?searchHighlight=satlins&s_tid=doc_srchtitle
https://www.motioncontroltips.com/whats-the-difference-between-slotted-and-slotless-motors/
https://www.motioncontroltips.com/whats-the-difference-between-slotted-and-slotless-motors/
https://www.motioncontroltips.com/whats-the-difference-between-slotted-and-slotless-motors/

BIBLIOGRAPHY

[35] Jacek M Zurada. Introduction to artificial neural systems. Vol. 8. West
publishing company St. Paul, 1992.

92

	Ringraziamenti
	Summary
	List of Figures
	List of Tables
	Introduction
	Overview
	Prognostics
	Flight controls
	Primary flight controls
	Secondary flight controls

	Actuation systems
	Hydromechanical
	Electrohydraulic
	Electrohydrostatic (EHA)
	Electromechanical (EMA)

	Brushless motors
	Stator
	Rotor
	Operation principles
	Mechanical characteristics
	Motor control
	Speed control
	Torque control

	Protection systems

	EMA model description
	Model overview
	Com subsystem
	Trapezoidal EMA subsystem
	Control electronics
	Hall sensors
	Inverter model
	BLDC electromagnetic model

	Transmission dynamical model
	Longitudinal dynamics block

	Fault modes and modeling
	EMAs fault modes
	Short circuit fault
	Short circuit fault implementation

	Rotor eccentricity fault
	Rotor eccentricity fault implementation

	Noise fault
	Noise fault implementation

	Friction fault
	Friction fault implementation

	Data analysis
	Faults generation
	CEMF reconstruction
	Sampling strategy
	ANN overview
	Components
	Neurons
	Layers
	Connections and weights
	Propagation function

	Learning
	Learning rate
	Cost function
	Backpropagation

	Training paradigms
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	ANN implementation
	Parameters choice
	Network topology
	Training function
	Training goal
	Performance function
	Transfer function

	Results
	One sample per commutation
	Two samples per commutation
	Three samples per commutation
	Three samples per commutation, two layers

	Conclusions
	Appendix MATLAB code
	Faults generation
	Optimal sampling strategy
	Neural network creation and training

	Appendix Detailed results
	Verification set
	3 inputs per commutation, shallow networks
	3 inputs per commutation, deep networks
	2 inputs per commutation, shallow networks
	1 input per commutation, shallow networks

	Bibliography

