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Abstract 
 

CubeSats are becoming an important reality in space exploration both in 

academia and industry. The increasing capabilities of this kind of system enable 

new kind of missions able to fulfill more diverse mission goals. Despite their 

reduced complexity, spacecraft operations do not scale down with the size. Hence, 

training future spacecraft operators via CubeSat operations would be an important 

method to increase the effectiveness of future operations with already trained 

experts. 

To tackle these issues, the thesis presents Cubesat Control Centre (C3) is an 

innovative ground segment to support Cubesat Operations directly from 

Politecnico di Torino. It is composed by a ground station and a control centre 

operated by students and non-professional operators.  

Control Centre’s software for the unpacking of telemetries data and the 

scheduling of operations are implemented by Python. The aim of this software is 

to provide an interface that can read automatically telemetries data and using 

scheduled protocols for sending telecommands. The process is monitored by 

several consistency checks which identify the correct acquisition of the package, 

identify the type of package, extract the data and convert them into an engineering 

language.  

The main component of this process is a database that helps software and 

consistency checks to perform their tasks. The operator can see an interface where 

the following are displayed: type of arriving packet, check of correct acquisition 

and validation of packets, binary code from satellite, engineering value of arriving 

data. From the interface the operator can also select the mission protocols to use 

for the mission, can simulate the command to send and sends command directly to 

satellite when it is in visibility. 

C3 is one of the one of the first academic control centres in Italy using the 

ESA CCSDS’s standards and it is a useful facility for educational and research 

purposes. Control Centre is divided into three areas: Flight Operation: Where 

CubeSats receives telecommands, sends telemetries and where the team evaluate 

follow up operations; Payload Data Ground Segment: where the management of 
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payload data happens; User Segment: where consumer could request a series of 

products by means of a formal request. 

By providing to primary mission fast delivery information and high-quality 

data, sending scheduled commands and assisting in managing requests from 

stakeholders, C3’s control centre is a valid resource and cheap support for 

operation, enabling great learning opportunities and effacement operations with an 

open source vison to support CubeSat community.  
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1. INTRODUCTION 
 

Communication between ground stations and CubeSats is a complicated 

endeavour. There are standardizations that have been set in place by 

organizations, like Consultative Committee for Space Data System (CCSDS), or 

the European Cooperation for Space Standardization (ECSS), to resolve this 

issue and to simplify the construction of communication systems and to promote 

their interoperability and uniformities.  

The CCSDS is an organization with the aim to define and maintain 

standards for data systems and to provide communication between them in space. 

These standards cover a large number of fields for a specialized implementation to 

fit the need of the project. The ECSS is another organization that takes the 

implementation deriving from CCSDS recommendations and define the 

requirements that user must to follow. These requirements are used by space 

organization as a way to simplify the collaboration between them and 

organizations and companies in other countries. The ECCS takes some of CCSDS 

standards and consolidates them into more rigid requirements,[1].  

According to these rules and recommendations, the thesis presents the 

CubeSat Control Centre (C3), an innovative ground segment to support Cubesat 

Operations directly from Politecnico di Torino following the CCSDS standards. 

The major aim of this work of thesis is to develop a control centre to support 

CubeSat operations focused on CCSDS packet utilization for Telemetry 

acquisitions and Telecommand generation. 

A ground system has two main purposes: to support space segment 

(spacecraft bus and payloads) and to transmit missions data derived from on-

board computer to the mission stakeholders. The same concept is applied to both 

large and small satellites, such as CubeSats. Then, what are the real needs and the 

real benefits in developing a Ground Control Centre totally focused on CubeSats? 

A first answer could be to reduce the costs, but even is important, the expenses 

related to ground station operations are not the main concern. The most important 

benefit in developing a CubeSat control centre is the exploitation of university 

facilities and the national autonomy. 
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In this perspective, the C3 project was created to offer students and non-

professional operators a facility where is possible to manage and control CubeSat 

missions in complete freedom. Being free to explore different design possibilities 

allows to extrapolate the better project according to the national infrastructure and 

needs. 

The first step to know the system of interest is to identify the conventional 

ground station operations taking into account that the ground station is a part of 

the space mission architecture. Figure 1 shows a typical mission architecture 

adapted to a CubeSat mission. The architecture is the same for small and large 

satellites, the only main difference is that the mission control, ground segment and 

communication control architecture could join into a single segment. 

To achieve the main functions (send telecommand, receive telemetry, track 

the CubeSats and process their data) having only one ground station is generally 

enough, but the project design must follow special requirements and 

characteristics to work effectively like a ground segment. 

 

Figure 1: A traditional CubeSat Mission Architecture, adapted from [2] 

 

For the design project of the ground segment is necessary to analyze the 

space segment parameters to support them and to derive some functional 

requirements. 
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2. THE C3 PROJECT 
 

The objectives pursued by the team on the C3 project are the following: 

• To have a Control Centre at Politecnico di Torino for the 

communication between the space segment, ground operators and 

users 

• The CubeSat Control Centre (C3) aims to support CubeSats mission 

operations with capabilities and performance beyond traditional 

radio amateur C3s, but at a lower cost than professionally driven 

ground segment (control centre and ground station) 

• C3 is the mission, spacecraft bus and payload control centre of the 

SROC mission and manages its payload while interfacing with other 

stations/centres involved in the Space Rider Mission. 

2.1 DESIGN APPROACH: FUNCTIONAL ANALYSIS 
 

According to the system engineering approach, the project followed a list of 

process steps that helped to better understand the real needs of the design. 

The first step of the System Engineering analysis consists basically of the 

need statement. Once they are established, the identification of stakeholders and 

requirements definition is conducted through iterative processes and generation of 

goal and mission objectives. This stage is concluded by generating the concept of 

operations, which shows the system behavior into their operational work. 

The second step is related to the requirement analysis where the 

stakeholders’ needs are converted into requirements and they are analyzed 

qualitatively and quantitatively to achieve the better design of the project. 

In the last steps, the functional analysis and the life cycle analysis are 

conducted to conceptualize all the systems behaviors and their functions, and to 

evaluate the operating environment in order to specify all the systems in more 

details. At the end, the result of this analysis is the project baseline proposal in 

which all the systems are assigned to their physical components. 

The result of the mission needs led the team to the first requirements 

analysis. In this phase the C3’s requirements identify the functions, physical 
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characteristics or quality factors that limit the needs of the product or process for 

which a solution is pursued. Therefore, Table 1 shows some of the mission 

requirements identified for the C3 project according to the division indicated in 

the ECSS standards [3]. 

 

Table 1: Mission Requirements 

To fill the different categories of requirements a functional analysis is 

mandatory to better identify the correct functions of the project and to understand 

what kind of systems could achieve those functions.  

For the ground station, the blocks describe its main function with shallow 

details. However, it is important to say that at this stage of the system 

development, the entire operation of the planned C3 is already covered. 

According to the functional tree shown in Figure 2, it is possible to build the 

operational mode and state diagrams for the station, where the states are the 

operating levels of the systems characterizing the ground segment and the modes 

are the functions that run the system under these levels (e.g. operative status and 

data acquisition mode). This kind of analysis increases system knowledge. This is 

helpful for a better assignment of functions to physical components for the 

creation of the product tree.  

 

 

ID Requirement Text

C3-MIS--1 C3 shall support Cubesats mission operations from ground when they are in LEO orbit

C3-MIS--2 C3 shall guarantee the management of the operations for PoliTO/Cubesat Team missions

C3-MIS--3 C3 shall be located at Politecnico di Torino in TBD location

C3-MIS--4 C3 shall manage mission data from CubeSats payload

C3-MIS--7 C3 shall manage CubeSats housekeeping data

C3-MIS--8 C3 shall manage telecommands to CubeSats

C3-MIS--9 C3 shall guarantee the managment of the planning activities on the CubeSats

C3-MIS--10 C3 shall be operated by students and non-professional operators

C3-MIS--11 C3 shall cost less than 30K

C3-MIS--12 C3 shall implement at least E2 level of autonomy

C3-MIS--13 C3 shall be designed manufactured, integrated and tested in 35 months from the KOM

C3-MIS--14 C3 shall be flexible with respect to the protocols, the frequency bands, the type of signals

C3-MIS--15 C3 shall operate in UHF,VHF, S-band and X-band

C3-MIS--16 C3 shall manage data,voice, image and video

C3-MIS--17 C3 shall satisfy applicable emission regulations (ITU, Ministry of Communications, …)

MISSION REQUIREMENTS
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Figure 2: First Level of the Functional Tree 

 

The functional tree, in particular the last level, made it possible to identify 

the subsystems that make up the ground segment. These elements, as seen in the 

product tree in Figure 3, determine the characteristics of the system of interest and 

therefore, the better architectural solution for the ground station (Figures 4-6). 
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Figure 3: Product Tree (First Level) 
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Figure 4: RF System Block Diagram 
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Figure 5: Tracking System Block Diagram 

 

Figure 6: Control Centre System Block Diagram 
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2.2 DESIGN APPROACH: STATE ANALYSIS 
 

The operative modes of the ground segment are also identified, during the 

design process, to better estimate the project mission plan and all the scenarios in 

which the station will operate. During this analysis, as seen in Table 2, four 

phases are identified; each phase is characterized by scenarios that describe in 

detail the phase, and each scenario is described by objectives, constraints, and 

duration.  

 

Table 2: Mission Planning 

Four macro operative mode have been identified: 

• Visibility On represents the phase in which the satellite is in 

visibility of the ground station and real-time operations are carried 

out such as receiving telemetry by the satellite and sending remote 

control from the station. 

• Visibility Off is the phase in which the satellite is not in visibility of 

the ground station. This phase includes the preparation of the 

subsystems for the next passage of the satellite, communication with 

other stations involved in the mission for the exchange of 

information, and post-processing activities. 

Phase Scenario
1)Visibility On Real time operation

Setup - Preparation for the satellite 

visibility

Post processing activity

Checkout communication channel 

(internal and with other ground 

station)

Post processing analysis

Check of off nominal events

Mission planning activity

Post processing data sharing

Check out 

Telemetry Link

Command Link

4)Safe Mode Safe scenario

2)Visibility Off 

3)LEOP
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• LEOP (Launch and Early Orbit Phase): this phase is one of the 

most critical phases of a mission. Spacecraft operations engineers 

take control of the satellite after it separates from the launch vehicle 

up to the time when the satellite is safely positioned in its final orbit. 

During this period, the operators works 24 hours a day to activate, 

monitor and control the various subsystem of the satellite, including 

the deployment of any satellite appendages (antennas, solar array, 

reflector, etc.), and undertake critical orbit and attitude control 

manoeuvres. 

• Safe Mode: represents the security status of the ground segment in 

the presence of the catastrophic, critical or off-nominal events. It is 

the ability of the ground station, in the presence of a failure, to 

secure operators and all subsystem and to correctly protect the data. 

 

Each phase is characterized by different scenarios and each of them, as seen 

in Table 3, is described by: 

• General Description: a description of the scenario. 

• Initial Condition: a description of the condition for the start of the 

scenario. 

• Final Condition: a description of the condition for the end of the 

scenario. 

• Environment: a description of the environment in which the 

scenario is executed. 

• Top Level Objectives: a list of the high level objectives 

characterizing the scenario. 

• Required I/F with other systems: a description of all the interfaces 

required for the correct execution of the scenario. 

• Duration: duration of the scenario 

• Constraints: a list of all the constraints and requirements that 

describe the scenario. 

• Potential Off-Nominal Events: a description of the possible off-

nominal events related to that specific scenario. 
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Table 3: Phase-Scenario Description 

The identification of the operative mode and the relative operational 

requirements will allow to establish the schedule generation for the telecommand 

(TC) to communicate with CubeSats even when these are not in visibility of the 

ground station. 

2.3 DESIGN APPROACH: RISK ANALYSIS AND MANAGEMENT 
 

During the design process and mission analysis the risk analysis and 

management is essential because it allows to identify which are the several 

possible failures during the mission, in order to prevent them. Although it is 

almost not possible to avoid a risk, one of the aims of the study is to try to limit 

any possible damage in order to complete successfully the mission. Therefore, the 

study has been conducted in reference to the possible failures of the C3’s system. 

Furthermore, this allows to compare them and to highlight which risks would lead 

to compromise the mission’s feasibility or the achievement of mission aim. A 

study of catastrophic hazards has therefore been carried out; it has enabled the 

identification of possible project corrections. 

Characteristics Description

General description
Uplink and Downlink operations in satellite 

visibility

Initial Conditions Satellite comes in visibility

Final Conditions Satellite comes out visibility

Environment Earth eviroment

Top Level Objectives

Establish communication link                               

Up/Down link operations                                        

Track satellite passage                                           

To reduce space loss

Riquired I/F with other systems

Communication system I/F Tracking system 

(Move the Antenna)                                                                                      

Communication system I/F Control Centre                          

Tracking System I/F Control Centre

Duration 8/10 min (LEO Orbit)

Constraints
All operation must have a duration less than 

10 minutes

Potetial Off-Nominal Events
Loss of communication link                                 

Down/Up link operation failure 

Real time operation
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The risk analysis is based on Failure Modes, Effects and Criticality 

Analysis (FMECA) that is probably the most widely used and the most effective 

design reliability analysis method. It is a bottom-up analysis of all possible ways 

in which a component may fail, considering every failure mode one by one. This 

analysis is performed according to the following steps: 

• Identify each possible component in the system; 

• Determine all possible failures for the component; 

• Determine all the credible causes for each failure; 

• Determine the worst effect on the system considering every mission 

phase; 

• Determine severity and likelihood of each failure; 

• Determine criticality of each failure (criticality matrix); 

 

 

Figure 7: Risk Analysis Flowchart 
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The fundamental actions performed could be summarised in the following 

way: Risk Identification, Risk Decomposition, Risk Classification and Risk 

Reduction.  

During the Risk Identification, any risk that may arise is identified and 

divided into categories lifetime, schedule, costs and component. 

In the Risk Decomposition, each risk has therefore been divided into cause 

and effect to know which are the failures that could lead to the worst 

consequences. An inductive method is used so that, from the causes of the 

possible failures, it has been possible to move on to the effects. 

The Risk Classification is the most fundamental part of the risk analysis. It 

consists of a classification and assessment of risks by assigning to each one its 

probability of occurrence and its severity of consequences which are respectively 

the frequency of its occurrence and the importance of the consequences of an 

event on the mission purpose. The likelihood and severity index, established by 

[4], has been assigned to every risk. 

 

Figure 8: Risk Index and Magnitude Scheme (Before Risk Reduction Action) 
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Table 4: Risk Magnitude and Proposed Action for Individual Risk according to [4] 

The actions proposed to mitigate the risks are Accept, Watch, Mitigate and 

Research: they give the risk a trend that allows it to be downgraded according to 

the standards [4]. Accept is a partially preventive action that consists in accepting 

a problem that cannot be solved in any way. Watch is a partially reactive action 

which foresees the system monitoring and the research solutions for issues that 

could arise and have not been otherwise prevented. Mitigate is a preventive 

action that provides corrective strategies in order to improve mission project and 

prevent any possible problem. Research is a reactive action that gives possible 

solutions, even if the problem has not been estimated. 

 

Figure 9: Index and Magnitude Scheme (After Risk Reduction Action) 

The risk analysis made it possible to identify the redundancies to be 
implemented and to arrive at a new physical architecture. 

 

SEVERITY
Negligeble(1) Significant (2) Major (3) Critical (4) Catastrophic (5) 

E

L

I

K

E

D COM-03; 

E

L

I

H

O

C COM-17;  COM-18; LT-01; SCH-06;COM-02;  

LT-03; LT-06; SCH-03; SCH-

08; COS-02; COM-05; COM-

20;

COM-01; COM-06; COM-38; 

COM-39; COM-40; COM-41; 

COM-42; 

H

O

O B SCH-04 LT-02; LT-04; LT-10; 

LT-07; SCH-02; SCH-05; COS-

01; COM-23; COM-24; COM-

25; 

SCH-01; SCH-07; SCH-09; COS-

03; COM-07

LT-09; COM-04; COM-08; COM-

09; COM-19;

D

A COM-37 

LT-05; COM-12; COM-11; 

COM-16; COM-34;  COM-

35; 

LT-08; LT-11;LT-12
COM-13; COM-14; COM-43; 

COM-44; COM-45; COM-46;

COM-10; COM-15; COM-21; 

COM-22; COM-26; COM-27; 

COM-28; COM-29; COM-30; 

COM-31; COM-32; COM-33; 

COM-36; 
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2.4 DESIGN APPROACH: BASELINE PROPOSAL 
 

Three possible proposals of ground architectures are carried out to achieve 

the better configuration according to requirements and mission objectives. All the 

designs follow the KISS (Keep It Simple, Stupid) approach in order to work best 

if systems are kept simple rather than made complicated; therefore, simplicity is a 

key goal in design, and unnecessary complexity will be avoided. The three 

proposals are the following: 

• Compact Architecture: S-band and VHF/UHF-band together on the 

same rotator. X-band on a different rotator. 

• Large Architecture: S-band, X-band, VHF/UHF-band on three 

different rotators. 

• Compact Single Feed Architecture: S-band and X-band on the 

same rotator. VHF/UHF-band on a different rotator. 

In the definition of the system, a trade-off study consists of comparing the 

characteristics of each system element (figures of merit) for each candidate 

proposal architecture to determine the best solution that could better balances the 

choose criteria. For the three proposal the figures of merit are the following: 

• Cost: In order to satisfy all requirements with a budget of about 30 

k€, COTS components are considered to try to find, adapt and 

acquire items already available on the market while minimizing 

custom-made designs. This philosophy is a great incentive for the 

project because using these components could may increase the 

complexity of the ground station but with a lower cost. 

• Radio Frequency (RF) Performance: It refers to parameters like 

full duplex operation, bandwidth, losses, gain, link budget, 

efficiency, error rate and other specific RF attributes. 

• Tracking Performance: It refers to parameters like angular 

resolution, rotating speed, vertical load, breaking and turning torque. 

• Ground Station Performance: It refers to global parameters like 

number of satellites with which the station can communicate at the 

same time, and the quality of the visibility window. 

https://en.wikipedia.org/wiki/Simplicity
https://en.wikipedia.org/wiki/Design
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• Architectural Reliability: It aim is to minimize the probability of 

failures and their severity and criticality to achieve high reliability. 

To achieve this important goal, possible solutions could be fewer 

components, redundant components (whenever possible), low 

complexity components, components protection and distributing the 

capabilities of the architecture to lower criticality of faults (separate 

rotators for example). 

• Footprint: In order to install the antennas on a roof, this figure of 

merit is fundamental for the trade-off analysis. 

• Mass 

• RF Flexibility: It refers to the ability of the ground station to operate 

at various microwave frequencies without sacrificing much 

performance, and it refers to the capability to move to other 

frequency while replacing the minimum number of components. 

• Tracking Flexibility: It refers to the high resolution of rotators to 

move to higher frequencies, which require high pointing accuracy. 

• Simplicity: the ability of the design project to remain in the KISS 

approach. 

 

Figure 10: Trade-Off Analysis Results 
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As seen in Figure 10, the best proposal for the project is the Compact 

Architecture with S-band and VHF/UHF-band on the same rotator and the X-

band on a different rotator. 

In conclusion the Compact Architecture proposal present the follow 

characterizes as show in Tables 5-6. 

 

Table 5: C3 Cost Budget for Line and Cost Budget for Discipline 

 

 

 

Figure 11: Cost Budget Diagram for Line 

X-Line (€) 14620,94

S-Line (€) 8014,303

VHF/UHF-Line (€) 5910,03

Total (€) 28545,27

Cost Budget

Support (€) 3600

RF (€) 18581,27

Tracking (€) 6364

Cost Budget



30 
 
 

 

Figure 12: Cost Budget for Discipline 

As seen in Table 5 the total cost of the CubeSat Control Centre (C3) is about 

29 k€ according to the mission requirement that limit the total cost of the ground 

segment to 30 k€. 

 

 

Table 6: C3 Mass Budget 

According to Table 6, the total weight of the station (antennas and rotators) 

is less than 210 Kg. This number is important to respect the security standard for 

the future installation on a roof. 

In conclusion the total consumption of the station in Watt is less than 2 kW. 

These characteristics are important for the management of the project, but also for 

the developing of the control centre that has the aim to manage and control the 

entire station and to communicate with the satellites. 

 

 

  

X-Line (Kg) 83

VHF/UHF-Line + S-Line (kg) 124

Total (Kg) 207

Mass Budget



31 
 
 

3. THE CONTROL CENTRE DESIGN 
 

The objective of this thesis is to develop a full software to manage 

telemetries from CubeSats and telecommands from ground, that non-professional 

operators and students could use without issues. This software will be integrated 

in the C3’s control centre environment and will be the core of the design 

architecture. In this section the design of control centre functional architecture 

will be described in detail, as well as the details of CCSDS standards that helped 

to uniform the software to the European requirements. The mission objectives that 

led to the actual architecture are shown in Table 7. 

 

Table 7: Control Centre mission requirements 

To achieve these requirements, at the beginning, a functional analysis was 

conducted, and the thesis subsequently focused on the software implementation 

that will be discuss in Chapter 4. 

 
 
 

  

ID Requirement Text

C3-MIS--1
C3 shall support Cubesats mission operations from ground 

when they are in LEO orbit

C3-MIS--2
C3 shall guarantee the management of the operations for 

PoliTO/Cubesat Team missions

C3-MIS--4 C3 shall manage mission data from CubeSats payload

C3-MIS--7 C3 shall manage CubeSats housekeeping data

C3-MIS--8 C3 shall manage telecommands to CubeSats

C3-MIS--9
C3 shall guarantee the managment of the planning 

activities on the CubeSats

C3-MIS--10
C3 shall be operated by students and non-professional 

operators

MISSION REQUIREMENTS
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3.1 CONTROL CENTRE ARCHITECTURE 
 

Figure 13 shows the global architecture of the control centre, in particular 

the input to processor and all the interface required by the software. 

 

Figure 13: C3 Control Centre Architecture 

The first step for the design of the C3 Control Centre is the definition of the 

inputs (S\c telemetry and ground station subsystems telemetry) and outputs (S\c 

telecommand and information sharing with mission users). The three main inputs 

that were identified, shown in Figure 14, in details, are: 

• RF Telemetry Acquisition: this block concerns all the telemetry 

from the radiofrequency subsystems like the antenna status, SDR 

signals and other hardware telemetry. In this environment the control 

centre could be able to interface itself with the software that manage 

the RF functions to control them or only to manage them. 

• Payload and S\c Acquisition: this block concerns all the telemetry 

(TM) packets sent from the satellite to ground, black line (input), 

and all the telecommand (TC) packets sent from the ground to the 

satellite, red line (output). In the input phase, TM packet from the 

satellite are acquired and checked for a correct acquisition, therefore 

the useful data, contained within the packets, are extracted, 

converted and brought to the attention of the operators for the post 

processing activities. In the output phase, commands from ground 

Control Centre

Users
Users

Data Managing System

Processing System

Payload 
Acquisition
/Command

Tracking 
Acquisition
/Command

Control CPU/
PROCESSOR

Memory

Monitors

Servers

Users

RF 
Telemetry 

Acquisition

Database

SimulatorOperators
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are organized in TC packets and then they are sent to the satellite 

when it is in visibility of the ground station, or like a schedule 

organization when the satellite is not in visibility. The satellite 

acquires the TC packets and executes the command and returns to 

ground another TM packet as result of the correct execution of the 

command. 

• Tracking Acquisition: this block concerns all the telemetry from 

the tracking subsystems like the antenna rotators, TLE software and 

other hardware telemetry. In this environment the control centre 

could be able to interface itself with the software that manage the 

tracking functions to control them or only to manage them. 

 

Figure 14: Control Centre Acquisitions 

After the acquisitions, the analysis and the processing phase are the major 

aim of the Processing Systems that is a computer composed by different blocks 

whit different function as shown in Figure 13. In other terms the main objectives 

of the processing systems are: 

• Check the correct acquisition of the TM and TC packets. 

• In input, identify the correct useful data (metadata) in the TM 

packets, and correctly extract that metadata. 
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• In input, convert the extracted metadata in engineering language and 

display that information to the operators for the post-processing 

activities. 

• In output, identify the correct command, put them in TC packets and 

send them to the satellite and monitor the correct execution of the 

command by the S\c. 

• Save and track all actions and activities of the operators. 

• Display and share the information with the major mission 

stakeholders or with the public. 

To perform these objectives in Figure 15, the blocks that compose the 

processing system are shown. 

 

Figure 15: Processing System Architecture 

Figure 15 shows in detail: 

• Control Software Block: The principal aim of this block is to 

acquire the packets and control them for a correct acquisition. This 

block is the first step for packet filtering: in this way the correctly 

acquired packets pass thought the data extraction phase, while those 

that present errors or incorrect acquisition are discarded and 

requested again by the satellite. 

• CPU/Processor Block: This block is the core of the control centre. 

Its major aims are to extract metadata, convert them and perform all 

the processing and post processing activities of all ground segment. 

• Memory Block: This block has the function of archiving all the 

packets and metadata that arriving to the ground station. The 
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memory block also has the objective of tracking all the activities and 

actions performed by operators. 

• Database Block: This block helps the processor unit to extract 

metadata from TM packets and to convert them into engineering 

language. In the control centre software, the database is composed 

by roots and dictionaries in which are expressed the TM/TC packets 

structures for packets construction and packets extraction, 

conversion methods, packet rows and packets check loops to control 

the correct acquisition of the packets, the correct extraction of the 

metadata, the correct conversion and the control of the conversion 

value. 

• Simulator Block: This block is fundamental in the command 

construction phase. This environment can simulate the execution of 

the command and to display the correct result of this execution. It is 

able to simulate the spacecraft OBC, housekeeping and science 

telemetry and merge them to generate a realistic simulated data 

stream. The command packet is sent in input to the simulation 

environment and it is tested for the correct execution and to be 

secure that the command create by the operators is correct. Once the 

TC packet passed the simulation, it is ready to be sent to the real S\c. 

• Operators: This block represents the operators working on the 

platform interface. It is important to say that the station is managed 

by non-professional operators and by students, so a training period 

for the operators is mandatory in the design process. 

In conclusion, in Figure 16, the last part of the control centre architecture is 

shown. In this part the following block are considered: 

• Monitors Block: This block has the function of displaying 

telemetries and telecommands to the operators through an interface 

and monitors.  

• Server Block: This block represents the archive where the operators 

can save all the information about the mission (telemetries, images). 
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This is an open archive where the major mission stakeholders can 

take the access and use the information saved. 

• Users Block: This block represents the major mission stakeholders 

that can require to the operators or to the servers of the ground 

segment information about a specific mission. 

 

Figure 16: Control Centre sharing blocks 
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3.2 CONTROL CENTRE CCSDS STANDARDS OVERVIEW 
 

The Consultative Committee for Space Data Systems (CCSDS) is an 

organisation officially established by the management of member space agencies. 

The committee meets periodically to address data systems problems that are 

common to all participants, and to formulate some technical solutions to these 

problems. Insofar as participation in the CCSDS is completely voluntary, the 

result of Committee actions are termed recommendations and are not considered 

binding on any Agency [5]. 

At the start of this master thesis there was a period of information gathering. 

This entailed a prolonged study of recommendation documents from CCSDS and 

ECSS. These documents covered information about how the TM packets, TC 

packets and image packets (IMG) are to be structured, about how to encode and 

decode the communications to ensure error-free transmission and how to 

determine when data has been lost. From all standards and recommendations, a 

rough idea of a structure of the packets, transfer protocol and their implementation 

could be formed. In Figure 17 a description of all the communication protocol 

according to the CCSDS standards is shown. 

 

Figure 17: Overview of the Communication Protocol Core 

In Figure 17, it is possible to see the different modules, depicted as squares, 

which make up the core of communications. Each module fills a specific function 



38 
 
 

in the communication with the ground station. The top row encodes the telemetry 

and the bottom row decodes telecommands. In the next section, it is described in 

detail how telemetry branch, telecommand branch and image branch are 

structured and how they are encoded and decoded. 

3.2.1 CCSDS OVERVIEW: TELEMETRY CONSTRUCTION 
 

According to [5], TM is constructed as shown in Figure 18 with the Space 

Packet placed inside an Advanced Orbiting System Transfer Frame (AOSTF) 

which is in turn inside a Channel Access Data Unit (CADU). The telemetry 

construction process is from the inside out. 

 

Figure 18: TM Structure 

In specific terms, Figure 19 describes data structures used to transfer 

metadata from on board systems to ground systems. 

 

Figure 19: CCSDS TM Packet Data System 

The aim of the packet telemetry concept is to permit multiple application 

process running in on-board sources to create units of data as best suits each data 

source, and then to allow the on-board systems to transmit these data over a 

space-to-ground communication channel in a way that enables the ground systems 

to receive the data with efficiency and reliability and provide them to the 

operators. To achieve these functions, the CCSDS Recommendation defines 
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different structure such as: Source Packets, and Source Packets from various 

Application Processes (APIDs). 

Source Packet (PKT), which is also termed packet, is a data structure 

generated by an on-board APID in a way that is responsive to the needs of that 

process. It could be generated at fixed or variable intervals and may be fixed or 

variable length. The packet structure is composed by a header that identifies the 

source and the characteristics of the incoming packet and identifies the APID that 

controls the internal data content of the packet. Each packet is defined by a fixed 

frame called header, at the beginning of the packet, and a tail, at the end of the 

packet. The useful field of the packet contains the telemetries generated on-board 

and it is characterized by parameters of variable length. 

 

Figure 20: Global Packet Structure 

The Packet will encapsulate all the information and the data application 

which are to be transmitted from a specific APID in space to one o several 

channels on the ground. As aforementioned, the source packet will consist in two 

major fields, positioned contiguously, in the following sequence: PKT Primary 

Header (mandatory) and PKT Data Field (mandatory). 

 

Figure 21: Source Packet Format [5] 



40 
 
 

As shown in Figure 21, the packet will consist of a least 7 and at most 

65542 octets. 

The PKT Primary Header is mandatory and will consist of the four fixed 

fields positioned contiguously, in the following order: 

− Version Number (3 bits length) 

− Packet Identification (13 bits) 

− Packet Sequence Control (16 bits) 

− Packet Data Length (16 bits) 

Each field contains a different information. 

• VERSION NUMBER: will be contained within the bits 0-2 of the 

PKT Primary Header, and will identify the data unit as a source 

packet and shall be set to “000” 

• PKT IDENTIFICATION FIELD: will be contained within the bits 

3-15 of the PKT primary Header. It is divided into three sub-fields:  

− TYPE INDICATOR (1 bit): it will identify the type of 

packet. Because the CCSDS TC packet uses a similar 

structure, the type indicator distinguishes between telemetry 

and telecommand data units. For TM packet will be set to 

“0”, instead for TC packet will be set to “1”. 

− PACKET SECONDARY HEADER FLAG (1 bit): it will 

indicate the presence or the absence of the PKT Secondary 

Header within this packet. It will be set to “1” if a PKT 

Secondary Header is present, it will be set to “0” if a PKT 

Secondary Header is not present. This flag will be static with 

respect to the APID throughout a mission phase. 

− APID (11 bits): it will be different for different application 

processes on the same transmission channel. The Application 

Process defines the context of the data field and control all 

the useful data of the packet for the correct construction on-

board and the correct extraction on ground. 
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• PKT SEQUENCE CONTROL FIELD: it will be contained within 

bits 16-31 of the PKT Primary Header. It is divided into two sub-

groups as follows: 

− GROUPING FLAGS (2 bits): expresses the segmentation of 

the packet groups. It will be set to “01” for the first packet of 

the group, to “00” for a continuing packet of the group and 

to “10” for a last packet of the group. If there is no 

segmentation, it will be set to “11”. All packets belonging to 

a specific group of packets will be identified by a unique 

APID. 

− SOURCE SEQUENCE COUNT (14 bits): it will provide 

the sequential binary count of each packet generated by an 

APID. The purpose of this field is to order a specific packet 

with other packets generated by the same APID, even though 

their natural order may have been disturbed during the 

transmission to the operators on the ground. This field is 

normally associated to a Time Code [6] (its insertion is, 

however, not mandatory) to provide unambiguous ordering. 

• PKT DATA LENGTH FIELD: it will be contained within bits 32-

47 of the PKT Primary Header. This 16 bit field will contain a 

binary number equal to the number of the octets in the PKT Data 

Field minus 1. The value contained in this field may be variable and 

it is in the range of 0 to 65535, corresponding to 1 to 65536 octets. 

The PKT Data Field follows, without gap, the PKT Primary Header. This 

field is mandatory, and it is divided in two field with a variable length, positioned 

contiguously, as follows: 

• PKT SECONDARY HEADER: follows, without gap, the PKT 

DATA LENGTH FIELD and it is mandatory if there is not Data 

Field, otherwise it is optional. In any case the presence or the 

absence of the PKT Secondary Header will be signalled by the PKT 

SECONDARY HEADER FLAG. If present, the PKT 

SECONDARY HEADER DATA FIELD, consists of an integral 
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number of octets. This field contains the CCSDS time codes formats 

defined in [6]. In this field is defined the time of packet construction 

and transmission according to the CCSDS recommendation. The 

time code defined in [6] generally consists of an optional P-Field 

(Preamble Field) which identifies the time code choice and its 

characteristics like period, epoch, length and resolution, and a 

mandatory T-Field (Time Field). The time code selected must be 

static for a given APID throughout all mission phases. All the field 

associated to the PKT Secondary Header depending on what time 

code is selected for the packet construction. 

• SOURCE DATA FIELD: If this field is present, it will follow, 

without gap, the PKT Secondary Header. This field is mandatory in 

the case of absence of PKT Secondary Header, otherwise it is 

optional. The field contains the source data (metadata) from a 

specific APID and the length of this field may be variable: it will 

contain an integral number of octets. 

 

All the fields described are fundamental for a correct construction of the 

packets. When the packets are constructed, they are ready to be sent to the ground 

through a space-to-ground channel. This channel allows to transfer these packets 

to the ground and, in addition this aim, consents to control and check the correct 

construction (and on the ground the correct extraction) of the packets using 

several consistency checks like CRC (Cyclic Redundancy Check) loops or other 

consistency checks to monitor the correct acquisition of the bits in space and on 

the ground. It is important to say that, on the ground, the extraction process uses 

the same packet structures to make simple the metadata research, the metadata 

extraction and the metadata conversion. 
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3.2.2 CCSDS OVERVIEW: TELECOMMAND CONSTRUCTION 
 

According to [7]-[9], TC construction is shown in Figure 22 with the Space 

Packet placed inside a Telecommand Transfer Frame (TCTF) which is in turn 

inside a Communication Link Transmission Unit (CLTU). Telecommands are 

decoded from the outside in. 

 

Figure 22: TC Structure 

The Space Packet is the common standard for the structure of packets that 

are sent as telemetry or telecommand. The structure for TM and TC packets is 

almost identical, but there are some differences. The structure of the TC packets is 

shown in Figure 23. 

 

Figure 23: TC Packet Format [8] 

The TC decoding process can be split into three main parts shown in Figure 

24. The first part is the channel coding and synchronization (the receiver) and the 

second part is the TC data link protocol which in-turn can be split into the lower 

procedures. Each part is coded and tested separately before being integrated into 

one cohesive piece of code. 
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Figure 24: Structure Overview of the Decoding Process 

The standard data structures are the Acquisition Sequence, CLTU, and the 

Idle Sequence. They are used to provide synchronization of the symbol stream 

and are described below. 

• Acquisition Sequence: it is a data structure forming an introduction 

which provides for initial symbol synchronization within the 

incoming stream of detected symbols. The length of the Acquisition 

Sequence will be selected according to the mission telecommand 

link performance requirements, but the preferred minimum length is 

16 octets. The length is not necessary to be an integral multiple of 

octets. The pattern will be alternating “ones” and “zeros”, starting 

with either a “one” or a “zero”. 

• CLTU: it contains the data symbol that are to be transmitted to the 

S\c. Each code block within the CLTU provides at least 2 data 

transitions. The CLTU as delivered to the physical layer must have a 

random component to guarantee sufficiently frequent transitions for 

adequate symbol synchronization [7]. 
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Figure 25: CLTU Starting Sequence Pattern according to [7] 

• Idle Sequence: it is the data structure which provides for 

maintenance of symbol synchronization in the absence of CLTUs. 

The bit pattern is a sequence of alternating “1” and “0”. The length 

of the idle sequence is an unconstrained number of bits. 

3.2.3 CCSDS OVERVIEW: IMAGE COMPRESSION CONSTRUCTION 
 

The CCSDS organization has recommended an image data compression and 

construction standard: CCSDS 122.0-B-2 [10], to be used on-board space data 

systems. This recommendation describes the algorithm implementation of the 

CCSDS image data compression standard (IDC) on “Digital Signal Processor” 

(DSP) platform. The algorithm is applied to two-dimensional digital grey scale 

image data from imaging payload devices and uses two-dimensional “Discrete 

Wavelet Transform” (DWT) followed by progressive “Bit Plane Encoder” (BPE) 

to generate the compressed encoded bit stream. 

Image data compression is an important element in the on-board space data 

systems. It enables to reduce the amount of image data, in order to reduce the on-

board memory and the downlink transmission bandwidth requirements for space 

missions. Imaging payloads of space data systems belong to one of the following 

two categories: 

• CCD Arrays: generate frames of images. 

•   Sensors: acquire a line or strip of an image at a time. 

 

An image compression scheme has generally two functional modules. The 

de-correlation of data is performed by some mathematical transform whereas the 

transformed data is processed by an encoder which performs the quantization and 

encoding to produce compressed image. Similarly, the [10] uses two functional 
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modules i.e. the discrete wavelet transform (DWT) and the bit plane encoder 

(BPE) modules. It can perform both lossy and lossless compression and has very 

low complexity so that it can be implemented with minimum power and 

processing resources requirements. 

 

Figure 26: Functional Block Diagram [10] 

As aforementioned, image compression system consists of the following 

two main blocks: 

• Encoder: Figure 27 shows the basic building blocks of a source 

encoder. Mapper module maps the input image pixels performing 

the de-correlation using transform. The quantize block limits the 

accuracy of the mapper output values. This is the step where major 

compression takes place. 

• Decoder: The decoder performs the reverse function of that of the 

encoder. However, quantization is generally irreversible hence the 

quantization block is excluded from the decoder as shown in Figure 

27. 

 

Figure 27: Image Compression Model: Encoder and Decoder 

According to the CCSDS standards, the algorithm works on the two 

dimensional digital image data i.e. grey scale images from panchromatic single 

channel image sensors in space imaging systems. The de-correlation module 

consists of discrete wavelet transform which is followed by the progressive BPE 
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(Bit Plane Encoder) module. The BPE produces encoded output bit-stream in the 

form of a single segment or a series of segments. Each segment has a segment 

header which is followed by the encoded data. 

All the processing steps are based on the DCT (Discrete Cosine Transform). 

Source image samples are grouped into 8x8 blocks, shifted from unsigned integers 

to signed integers and input to the DCT. The following equation is the idealized 

mathematical definition of the 8x8 DCT: 

 
The DCT takes such a signal as its input and decomposes of the 64 unique 

two-dimensional “spatial frequencies” which comprise the input signal’s 

“spectrum”. The output of the DCT is the set of 64 basis-signal amplitudes (DCT 

coefficients) whose values can be regarded as the relative amount of the 2D 

spatial frequencies contained in the 64-pint input signal. The DCT coefficients are 

divided into “DC coefficient” and “AC coefficients”. DC coefficient is the 

coefficient with zero frequency in both dimensions, and AC coefficients are 

remaining 63 coefficients with non-zero frequencies. The DCT step can 

concentrate most of the signal in the lower spatial frequencies. In other words, 

most of the spatial frequencies have zero or near-zero amplitude and need not be 

encoded. 

The BPE encodes the bit planes starting from most significant bit plane to 

the least significant bit plane. 
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Figure 28: Block and Group structure of DWT transformed data 

Within a single coded segment (or image packet), the segment header is 

coded first. After the quantized DC coefficients are coded, the AC coefficient bit 

depths are implemented and then the bit planes of the DWT coefficient block are 

coded as shown in Figure 29. 

 

Figure 29: Structure of an Image Packet 

In details, there are: 

• Segment Header: it consists of the follow four parts: 

− Part I: (3 or 4 bytes - Compulsory) 

− Part II: (5 bytes – Optional) 

− Part III: (3 bytes – Optional) 

− Part IV: (8 bytes – Optional) 

• Initial Coding of DC coefficient: it is performed into two stages: 

− Coding quantized DC coefficients 

− Coding additional bit planes of DC coefficients 
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• Stages of Bit Plane Encoding: each bit plane is encoded in multiple 

stages from 0 to 4 as shown in Figure 30. Stage 0 coding for each 

block is the most significant bit of each DC coefficient. Stage 1 

encodes the bit planes containing magnitudes of parent coefficients 

in a segment. Stage 2 encodes children coefficients and Stage 3 

encodes bit planes containing magnitudes of grand-children 

coefficients in a segment. Stage 4, in conclusion, encodes the 

remaining bits of each AC coefficient. 

 

Figure 30: Bit Plane Encoder [10] 
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3.2.4 CCSDS OVERVIEW: MISSION PLANNING & SCHEDULING 
 

Mission planning and Scheduling are integral parts of Mission Operations 

and closely related to the other aspects of the overall monitoring and control space 

missions. In some space mission, in particular for CubeSat missions, the planning 

may be centralized in a single function. The distribution of functions over 

different entities depends by a number of factors such as the availability of 

facilities with unique capabilities, the existence of groups of experts with specific 

knowledge and availability of planning experts [15]. 

 

Figure 31: Example of Federated Planning for a Science Mission [15] 

According to the recommendation plan a space mission requires the 

collaboration of different elements that have a flow of information at different 

levels. For example, the output of a planning function could be the input for a new 

planning function at the same level or in a lower level as show in Figure 32. 

 

Figure 32: Planning Information Flow 
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As shown in Figure 32, a Planning flow has the following steps: 

• Planning User: a generic function that is responsible for submitting 

request to the planning function and control. It also receives 

feedbacks on the status of Planning Requests, the generated plans, 

and the status of the planning process. It is not a Planning function 

itself, but it is a user of Planning data and service. In the specific 

case of SAT SIM software, the user plan is the operator that generate 

the schedule. 

• Planning: this is the function responsible for performing Mission 

Planning. The output of the Planning function is the plan that is 

retrieved by the Planning Users and distributed to Plan Execution 

functions. 

• Plan Execution: this is the function responsible for executing a Plan 

(or part of one). It is possible to have multiple plan execution 

functions distributed between space and ground segments. It is not a 

Planning function itself, but it does support a common model of the 

plan in its interface with Planning [15]. 

In conclusion, the generation and the execution of a mission plan is a 

monitored process from the start to the end of its protocols and it provide an 

important and autonomous way for the execution of all the phases of a mission. 
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4. SOFTWARE PHILOSOPHY & ARCHITECTURE 
 

The thesis follows the Python Multithreading Approach. In this section the 

overview of the code philosophy and the software architecture will be explained 

in detail. 

Python is a computer programming language designed for readability and 

functionality. One of Python’s design goals is that the aims of the code are easily 

understood because of the very clear syntax of the language. The Python language 

has a specific form (syntax) and semantics which are able to express computations 

and data manipulations which can be performed by a computer. Python’s 

implementation was started in 1989 by Guido van Rossum at CWI (Centrum 

Wiskunde & Informatica, research institute in the Netherlands) as an update and a 

successor to the ABC programming language. 

Python is an interpreted language, meaning  a programming language whose 

programs are not directly executed by the host CPU but rather executed (or as said 

“interpreted”) by a program known as an interpreter. The source code of a Python 

program is partially compiled to a bytecode form of a Python “process virtual 

machine” language. This is one of the major distinctions with the C codes which 

are compiled to CPU-machine code before the run-time. 

Another characteristic of Python is that it is “dynamically typed”, that 

means that most of its type checking is performed at run-time as opposed to at 

compile-time. Other dynamically typed languages are JavaScript, Ruby and 

Objective-C. 

The data which a Python program deals must be described precisely. The 

description of variables is referred to as the data type. In the case of Python, the 

fact that it is dynamically typed means that the interpreter will figure out what 

type a variable is at run-time, so the programmer doesn’t have to declare variable 

types himself. Python is “strongly typed”, meaning that it will raise a run-time 

type error when the programmer has violated the Python syntax rule as to how 

types can be used together in a statement. Of course, all these facts do not mean 

that the programmer can be neglecting and hoping Python to figure out things. 
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Figure 33: Example of how Python can figure out the type at run-time 

4.1 PYTHON MULTITHREADING APPROACH 
 

To better explain the processes occurring in the master thesis architecture, it 

is important to have an overview about the Python’s concurrency, multiprocessing 

and multithreading philosophy. 

The concurrency, in Python, is the occurrence of two o more events at the 

same time. In terms of programming language, concurrency is the overlapping of 

two tasks in execution. With concurrent programming, the performance of 

software systems can be improved because it can concurrently deal with the 

requests rather than waiting for a previous one to be completed. 

Thread is a small unit of execution that can be performed in an operating 

system. It is not itself a program but runs within a program; it means that threads 

are not independent from one other. Each thread shares code section, data section, 

etc. with other threads. A thread has the following components: 

− Program counter which consist of the address of the next executable 

instruction. 

− Stack. 

− Set of registers. 

− Unique ID thread. 

Instead, multithreading is the ability of the CPU to manage and control the 

use of operating systems by executing multiple threads concurrently. The main 

concept of the multithreading philosophy is to achieve parallelism by dividing a 

process into multiple threads [11]. 

A process is defined as an entity, which represents the basic unit of the code 

implemented in the system. In other words, the programmer writes his program 

and when he executes it, it becomes a process that performs all the tasks in the 

program. During the process execution, the code passes through the stages shown 

in Figure 34. 
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Figure 34: Different stages of a process [11] 

A process can only have a thread (primary thread) or multiple threads where 

each of them have their own set of registers, program counter and stack as shown 

in Figure 35. 

 

Figure 35: Comparison between process with 1 thread (left) and process with multiple thread 
(right) [11] 

Typically, a thread can exist in five different states: 

• New Thread: a new thread begins its life cycle in the new state. At 

this stage, it has not yet started, and it has not been allocated any 

resources (it is only an instance of an object). 

• Runnable: the thread is started, and it is waiting to run. At this time, 

the thread has all the resources but still task scheduler has not 

scheduled it to run. 

• Running: the thread makes progress and executes the task, which 

are running in the task scheduler. At this moment, the thread can go 

to either the dead state or the non-runnable/waiting state. 

• Non-running/waiting: the thread is paused because it is waiting for 

the response of some I/O request or waiting for the completion of the 

execution of other thread. 
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• Dead: the thread enters the terminated state when it completes its 

task (the thread is terminated). 

The complete thread life cycle is shown in Figure 36. 

 

Figure 36: Thread complete life cycle 

In conclusion, in table 8 an overview of advantages and disadvantage of 

using threads is shown. 

 

Table 8: Advantages and Disadvantages of using threads 

 

 

 

 

 

  

Advantages Disadvantage

Thread library contains code for creating and destroying threads, for 

passing message and data between threads, for scheduling thread 

execution and for  saving and restoring thread contexts.

In a typical operating system, 

most system call are blocking

Thread can run on any operating system

Multithreading application 

cannot take advantage of 

multiprocessing

Scheduling can be application specific in the thread

Threads are fast to create and manage
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4.2 SAT SIM OVERVIEW: SOFTWARE ARCHITECTURE 
 

Figure 37 shows the global architecture of the SAT SIM library. 

 

Figure 37: SAT SIM Architecture 

In this architecture the main software blocks are shown, and for each block 

all the methods selected to achieve the blocks’ functions are highlighted. 

From the global overview it is possible to see two main threads SAT SIM 

and GS SIM. 

• SAT SIM Thread: this thread (Satellite Simulator) has the main 

function of generating telemetries, pack them and send the CCSDS 

standard packets to the GS SIM thread. The SAT SIM thread has 

also the aim of  receiving telecommands from the GS SIM thread, 

recognizing them and executing the telecommand and, in 

conclusion, sending new telemetry as proof of the correct execution 

of sent telecommand. 

• GS SIM Thread: this thread (Ground Station Simulator) has the 

main function of receiving telemetries, recognizing them and 

extracting the useful data from packets. The GS SIM has also the 

aim of generating telecommand packets and sending them to the 

SAT SIM thread. In the GS SIM there is also an additional branch to 

manage the images from the satellite. The main function of this 
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branch is to receive the images, recognize them and to display 

images to the operators. 

In the next section, the details of the branches will be examined to better 

explain all the methods that compose the software architecture of the master thesis 

work. 

It is important to say that all the architecture uses different databases to store 

data and to read the structure of the packets to build them. 

 

Figure 38: Example of SAT SIM Databases 

4.3 SAT SIM OVERVIEW: TELEMETRY BRANCH 
 

In the previous section it was explained the main block of the SAT SIM 

architecture. In this section, the telemetry branch will be analyzed. The objectives 

that led to the construction of this branch are the following: 

• To simulate a CubeSat architecture to generate realistic telemetries. 

• To generate packets with the CCSDS standards. 

• To generate packet strings to send to the GS SIM. 

• To take track of all the action done during the generation of 

telemetries. 

In Figure 39 the TM branch is shown with the detail of all the methods and 

database that led to the CCSDS packets generation.  
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Figure 39: SAT SIM - TM Branch 

The generation of telemetry is dedicated to the Python class SAT SIM. This 

thread is organized into different module with different functions (methods). The 

TM Gen module has the purpose to simulate the CubeSat architecture and to 

generate realistic telemetries. 

 

Figure 40: TM Gen Module 

In TM Gen has different methods, as follows: 

• TM_map (): is the method that generates the telemetry when it is 

called. The telemetry is generated in form of dictionary and the 
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gen_fileJSON() method saves it in the TM Archive. In the archive, 

there are the telemetries generated saved in form of 

“Sat_Telemetry_date and time of generation.json” (i.e. 

“Sat_Telemetry_2019_06_01-22_33_18 .json”). The structure of the 

TM dictionary is taken from the TM/Packet Archive, where the 

structure of dictionaries that the thread needs are saved. 

• gen_fileJSON (): this method saves the generated telemetries in the 

TM Archive in form of JSON file when it is called. These files are 

dictionaries that, when they are called in the software, make it easy 

to unpack data and search different fields faster. 

• Get_TM_file (): this method takes the saved files from the TM 

Archive and read them to generate new packets. The TM dictionary 

structure is created as object in the code, and, when a TM profile is 

generated, this structure is filled and saved as json file in the archive. 

The output of this module is the TM dictionary where there are the useful 

data to packetize according to the CCSDS standards. This dictionary is the input 

for the Packet Gen module. 

The Packet Gen module has the aim to use the telemetries data, divide them 

for the different subsystems, and to generate the CCSDS packet. 

 

Figure 41: Packet Gen Module 

The methods in this module according to the specific on-board system, take 

the useful data and generate the packets according to the standards specified in the 

section 3.2.1. To build the packets this module uses the packet structures saved in 

the TM/Packet Dicts Archive where there are all the dictionary structures, divided 

by sub-systems, to fill to build a packet. The output of this module is, for each 
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system, a binary string that represents all the packet fields. These strings are the 

input to the TM Queue Gen module as shown in Figure 42. 

 

Figure 42: TM Queue Gen Module 

The TM Queue Gen module has the main purpose of generating a sequence 

of strings that represent the incoming packets from the satellite. The TM_Flow () 

method generates the queue, saves it in the Packet Sent Archive in the form of 

“TM Queue_2019_07_12-21_25_48.txt” and, in conclusion, sends it to the GS 

SIM thread for the ground station packet extraction. 

 

Figure 43: GS SIM Extraction Module 

The TM Queue generated is sent to the GS SIM thread’s extraction module. 

The method extraction () receives in input the telemetry queue and the packets 

dictionary structure from the GS Packet Dicts Archive and extracts the useful data 

from the packets. These data are saved in the GS Extractions Archive in form of 

dictionary divided by on-board system (for example ADCS_RW.json is the ground 

extraction related to the reaction wheels), and then they are sent to the Control 

Loop module. 
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Figure 44: GS SIM Control Loop Module 

The Control Loop module receives in input the extracted data and check if 

it is acceptable or if it is not acceptable. According to [1], the criteria used to 

evaluate the data are the following: 

• Checked: the data is acceptable. 

• Alarm: the data is not acceptable and not tolerable. 

• Tolerance: the data is not acceptable, but it is tolerable. 

• OOL: the data is out of the prefixed limits. 

The results of the Control Loop module are saved in the Logs Archive and, 

if it happened, a message of alert is sent to the operator’s mobile. This is an 

important skill for the control centre because in this way the operator can check 

the incoming telemetries directly from his mobile phone and he is not forced to be 

constantly present in the control center office. 

 

 

 

 

 

 

 

 

 



62 
 
 

4.4 SAT SIM OVERVIEW: TELECOMMAND BRANCH 
 

The telecommand generation has a path similar to the telemetry generation. 

The process starts from the GS SIM thread that generate the TC packets and send 

them to the SAT SIM thread that extract the command from the packet and 

execute it. The architecture of the TC branch is shown in Figure 45. 

 

Figure 45:SAT SIM - TC Branch 

The generation of telecommand is dedicated to the Python class GS SIM. 

This thread is organized into different module with different functions (methods). 

The TC Gen module has the purpose to generate the command packet for each 

on-board system; from the TC interface, the operator can manage the on-board 

equipment parameters and generate the packets to send to the SAT SIM extraction 

module.  
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Figure 46: TC Gen Module 

The TC Gen module has different modules: 

• run (): this method starts the thread, calls all the method in the 

Python class and generates the interface for the generation of the 

telecommand. 

• Acquire_button (): for each on-board system, this method has the 

aim to check that all the parameters changed by the operator are 

correct and able to be sent to the satellite. The criteria to establish if 

the input parameter is acceptable are the same exposed in the section 

4.3. 

• Gen_TC_Packet (): for each on-board system, this method 

generates the packets according the CCSDS standards expressed in 

the section 3.2.2. To build the packets, this method refers to the 

packet dictionary structures saved in the  TC Packet Dicts Archive. 

• Sent_PKT_Button (): this method generates the packet string for 

each on-board system and send it to the SAT SIM extraction 

module. 

 

Figure 47: SAT SIM Extraction Module 
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The SAT SIM extraction module has objectives similar to the GS SIM 

extraction module. This method receives in input the packet strings and extracts 

all the packet fields from the strings. When the data is extracted, the extraction 

module executes the command updating the on-board equipment parameters and 

saving the data in the TC Extractions Archive. The useful data (in this case the 

command to execute) is sent to the GS SIM TM Queue Gen to generate new 

telemetry as proof of the correct execution of the command; from this point on, 

the path is the same path of the TM branch. In the case that the command is not 

executed, a message of error is sent to the operator to warn him on the incorrect 

event happened. 

 

Figure 48: New TM Gen after the command execution 

In conclusion, all the TC logs and data are sent to the TC Display module. 

 

Figure 49: TC Display module 

The Display_Command () module has the purpose of displaying the 

commands sent and all the messages of correct/incorrect command execution, 

correct/incorrect command sending and the new telemetry as proof of the correct 

command execution. 
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4.5 SAT SIM OVERVIEW: IMAGES MANAGEMENT BRANCH 
 

The control centre also presents the possibility to manage the incoming 

images sent from a payload camera. To achieve these functions, it was considered 

an image branch in the SAT SIM architecture called IMG SIM (Image Simulator). 

 

Figure 50: IMG SIM Branch 

To simulate the payload camera, the SAT SIM software refers to a dataset 

of images takes from the Sentinel Hub a database of multispectral images. The 

master thesis work takes in exams some spectral bands and image of Turin city 

[12]. This database is the input to the IMAGE_SIM module as shown in Figure 

51. 
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Figure 51: IMAGE_SIM Module 

The IMAGE_SIM module has different methods: 

• run (): this method starts the IMAGE_SIM thread and receive in 

input the files in the Sentinel Database. This function takes the files 

and compresses them into the CCSDS packets according the 

standards presented in the section 3.2.3. These packets are saved in 

the Image Processing Archive in form of files 

“Acquisition_2019_08_23-19_14_26_1.txt” and sent to the method 

Frame_Extraction (). 

• Frame_Extraction (): this method receives in input the image 

packets and extracts the useful data from them. When the extraction 

is ended, the frame extracted is decompressed and converted in the 

effective images and sent to the Image Display module. 
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Figure 52: Image Display Module 

The converted images coming from the IMAGE_SIM module are saved in 

the Image Acquisition Archive in form of file “Acquisition_2019_08_23-

17_30_27_18.jpg” and then they are sent to the Image Display module. This 

module has the following methods: 

• IMG_LIST (): this method displays to the operator all the incoming 

image packets. 

• window ():  this method allows the operator to display and share the 

incoming images. 

• Histogram (): this method provides the operator with the first post-

processing operations. This function generates the RGB diagram for 

each incoming image and display the diagrams to the operator. 

In conclusion, this branch is developed starting from the TC branch where, 

from the TC interface, the operator can require the sending of images from the S/c 

and display them. 

4.6 SAT SIM OVERVIEW: INTERFACE OVERVIEW 
 

The SAT SIM architecture is connected to an interface to allow the operator 

a simple use of the code to manage telemetry and commands. Python provide 

different tools to create interface for several applications like wxPython, PyQt and 

kivy. To achieve the functions of the control centre, the interface library used for 

the SAT SIM Interface is Tkinter (Tk Interface) [13]. 

Tkinter is Python’s standard cross-platform package for creating graphical 

user interfaces (GUIs). It provides access to an underlying Tcl interpreter with the 

Tk toolkit, with itself is a cross-platform, multilanguage graphical user interface 
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library [13]. Tkinter gives the ability to create windows with widgets (graphical 

component on the screen) in them. 

The SAT SIM Interface architecture is divided into different modules, each 

of which is linked to a branch of the software shown in the previous sections of 

chapter 4. 

 

Figure 53: SAT SIM Interface architecture 

As shown in Figure 53, the first module of the interface is the Log in 

Module. In this module the operator can register himself as operator or log in into 

the software with his credentials (name and password). 

 

Figure 54: SAT SIM Login/Register Interface 
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Figure 55: SAT SIM Login Interface 

 

Figure 56: SAT SIM Registration Interface 

After the Log-in phase, the operator can access the Main Enter Interface 

module. This is the high level interface of the SAT SIM software and from it the 

operator can access the TM branch or the TC branch or the STK simulations 

branch. 
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Figure 57: SAT SIM main interface 

Through the TM Viewer button, the operator can access the TM branch. The 

interface shows the results of the telemetry extractions of the incoming packets as 

shown in Figure 58. 

 

Figure 58: SAT SIM TM Interface 
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From the TM interface it is possible to see the following modules: 

• Incoming Packets: the queue of the incoming packets (in green 

correct acquisition of the packet, red incorrect acquisition) 

 

Figure 59: Queue of the incoming packets 

• Telemetry Display: The TM information are displayed and divided 

by on-board system (ADCS, EPS, TCS, OBC, PROPULSION and 

PAYLOAD). In this section there is also the displaying of the 

consistency check where it is shown if the parameters are acceptable 

or not acceptable. In addition, in this section are shown the packet 

type, the time of packet sent and the packet parameters. 

 

Figure 60: SAT SIM TM Display interface 



72 
 
 

• Packet Visualization: on the TM interface, the operator can also 

visualize the structure of the incoming packet divided by on-board 

system. In this way the operator can check if the structure of the 

CCSDS packet is respected. 

 

Figure 61: SAT SIM TM Packet Visualization 

From the TM Interface is possible to access to the packet archive. Through 

this ability is possible to check a specific packet sent in a specific data and time. 

 

Figure 62: Packet Archive 

After that the operator chooses the packet to display, he can open it packet 

and can display all the telemetry data sent in that specific data at that specific 

time. 
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Figure 63: Display of a specific TM packet 

The interface for the generation of the command packet is similar to the TM 

interface in which the operator can choose the parameters to change and generate 

TC packets to sent to the satellite. 

 

Figure 64: TC Interface 

In detail, from Figure 64 it is possible to distinguish the following modules: 

• Telecommand Manage Interface: from this module the operator 

can change the not acceptable parameters and can check if the new 

chosen parameter is acceptable or not through the Acquire button 

that call the consistency check methods to control the different data. 
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Figure 65: TC Manage Interface 

• TC Packet Generation Module: through the TC PKT GEN the 

operator generates the TC packets according to the CCSDS 

standards examined in the section 3.2.2. At this moment the packet 

is only a dictionary where the keys are the CCSDS packet fields and 

the values are the new parameters generated by the operator. Instead, 

with the Send button, the TC packet is converted into a binary string 

and sent to the extraction module of the SAT SIM thread. As proof 

of the correct sending, messages of information are displayed to the 

operator on the interface. 

 

Figure 66: TC Packet Generation Module Interface 

When the packet is sent to the extraction module, the S\c executes the 

command sent, updates the telemetry and generates a new TM packet as proof of 

the correct command execution. 
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Figure 67: Correct execution of the command 

The STK button allows the operator to call a new STK scenario to simulate 

access and different actions before effectively sending them to the satellite. Whit 

the STK software the operator can also simulate the track of satellite before 

update the TLE date in the real tracking system of the C3. 

The last part of the software is the capability of schedule different type of 

pre-set commands ordered by the operator and executed by the SAT SIM thread. 

The schedule part consists into receive in input a command with a specific 

structure shown in Figure 68. 

 

Figure 68: Command Structure 

The command structure in input is a dictionary that has the follow keys: 

• Command_name_dict: name of the dictionary that indicates the 

name of the command. 
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• Display name: is the name of the command displayed on the 

interface. 

• Description: is a brief description of what the command does. 

• Resources: are the sequence of resource involved in the execution 

of the command. 

• Priority: is a number that establish the priority with which the 

command must be execute. The scheduler, in fact, will execute the 

command with the highest priority (priority = 1) and then in 

sequence all the others. 

In this part, 8 type of commands are pre-set in the scheduler. The commands 

are the following: 

• Pings: is the simple request to the satellite to ping a signal. 

• Error: is the command to evidence an error. 

• Connect: is the command to points antennas and starts broadcasting 

carrier signal to establish RF lock with the spacecraft. 

• Safe Mode: is the command to switch the spacecraft in its safe mode 

state. 

• Detumbling: is the command to star all the sequences for the 

execution of the spacecraft detumbling mode. 

• Offline: is the command to turn off all the systems. 

• Nominal: is the command to set all the systems in their operative 

mode (all the systems operate in their nominal mode). 

• Acquire Event: is the command to acquire a specific event with the 

payload. 

From the interface the operator can choose what kind of command want to 

select for the schedule. Each command is associate with a tab where there are all 

the details of the chosen command and the possibility to assign a priority number 

to it. After assigned the priority to the command, the operator can add the 

command to the schedule queue that are waiting to be executed. 
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Figure 69: Scheduler Interface Command Choose 

When the operator chooses the command to schedule, he can see all the 

details relative to that specific command as shown in Figure 70. 

 

Figure 70: Command detail window 

From the window shown in Figure 6, is possible to see the following fields: 

• Schedule ID: is the ID generate for the command to add to the 

schedule queue. 

• Command Name 

• Description: Description of the command to choose. 

• Resources: the resources involved in that specific command. 

• Priority: the operator can assign a priority number to the command. 

This number will be read by the scheduler that will execute all the 

schedule queue sorted by priority number. 

Through the ADD to Sched Queue button the operator can add the command 

to the queue and choose another command to schedule in the same way. 

 

Figure 71: Scheduler Queue Interface 
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Through the Execute Schedule button, the entire schedule will be execute 

starting from the command with the highest priority (1) and then in sequence all 

the other commands. 

 

Figure 72: Example of a schedule execution 

In conclusion, all the SAT SIM software provides the possibility to manage 

TM and TC and Images packets following the CCSDS standards and then to 

simulate a schedule of commands for the correct execution and monitoring of the 

spacecraft operations. 

In the next session it will be described all the test sessions used to validate 

and verify the entire software and its interface. 
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5. TEST & VALIDATION 
 

The software testing life cycle typically includes different phases like: 

Planning, Analysis, Design, Construction, Testing Cycles, Final testing and 

implementation and Post implementation. Each phase is described with the 

respective activities as follows [14]: 

• Planning: includes the high-level test plan, the quality goals plan, 

problem identification and classification, acceptance criteria, 

measurement criteria and the reporting procedures. 

• Analysis: involves activities that develop test cycles, identify test 

case, plan the test cycles required for the project and review of 

documentation. 

• Design: in this design phase the activities included are revision tests 

based on software changes, revision and addition of new test cases 

based on software changes, finalization of the test cycles (number of 

test case per cycle) and finalization of the test plan. 

• Coding: complete all plans from test cycle to the automated testing 

and fix the bugs (bug reporting, verification, and revision/addition of 

the test cases). 

• Verification: this phase includes the execution of all test cases 

(automated and manual), updating estimates for test cases and test 

plans, document test cycles, regression testing, and updating 

accordingly. 

• Validation: activities in this phase are review of the test cases to 

evaluate other cases to be automated, clean up the automated test 

cases and variables and review process of integrating results from 

automated testing in with results from manual testing. 

In the next sections it will be reported, for the SAT SIM software, all the 

test cases classification and tracking according to the test objectives and 

requirements. 
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5.1 OBJECTIVES & REQUIREMENTS 
 

The objectives of this last part of the master thesis work are to evaluate the 

software performances, to verify the software and to validate it with test cases. In 

particular, in this section all the procedures included in the verification of the 

software requirements and all the test cases used to validate the software will be 

explained. 

The Verification process checks if the software is conformed to its 

specification and requirements (in general this phase answer to the question “Are 

we building the product in the right way?”). Some of the requirements for the 

software are shown in Table 9. 

REQ ID Text 

REQ-1 C3 shall recognize the TM packets 

REQ-2 C3 shall acquire the TM packets 

REQ-3 C3 shall save the TM packets 

REQ-4 C3 shall recognize the TC packets 

REQ-5 C3 shall built the TC packets 

REQ-6 C3 shall save the TC packets 

REQ-7 C3 shall recognize the Image packets 

REQ-8 C3 shall acquire the Image packets 

REQ-9 C3 shall save the Image packets 

REQ-10 C3 shall share information with the mission stakeholders 

REQ-11 C3 shall share images with public 

REQ-12 C3 shall display the acquired information 

REQ-13 C3 shall guarantee the existence of an interface between operator and PC 

REQ-14 C3 shall be developed according to ECSS standards 

REQ-15 C3 shall be compliant to CCSDS standard 

REQ-16 C3's control centre shall be implemented in Python 

REQ-17 C3 Scheduler shall recognize a specific structure for pre-set commands 

REQ-18 
C3 Scheduler shall generate a unique ID for the pre-set commands each time 

a schedule is created 

REQ-19 C3 Scheduler shall provide an interface to display the commands information 

REQ-20 C3 Scheduler shall generate a queue sort by the command’s priority 

REQ-21 
C3 Scheduler shall provide an interface to display the correct execution of the 

schedule 

Table 9: Software Requirements 
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The Validation process, instead, checks if the software does what the user 

really requires; this goes beyond checking that the software meets its 

specification, but this phase requires that the software is able to achieve the 

mission objectives and the needs of the mission stakeholders [14]. The whole life-

cycle process of the Verification and Validation (V&V process) must be applied 

at each stage of the software process and has two principal objectives: 

• The discovery of defects in a system. 

• The assessment of whether or not the system is usable in an 

operational situation. 

 

 

 

Figure 73: The V-model of the V&V process 

The V&V process establishes a degree of confidence that the software is fit 

for purpose; this does not mean that it is completely free of defects and the degree 

of confidence depends upon several different factors as the test typology used to 

validate the software and the experience of who tests the code. 

To achieve the objectives of the V&V process, in the next sections all the 

tests conducted, and the respective results will be described. 
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5.2 TEST SESSIONS 
 

The test sessions have the main purpose of locating the defects of the 

software. Each test should be repeatable, but there are some exceptions in case the 

software changes the test environment without the possibility to restore it or in 

case there are some indeterministic elements (non-controllable inputs) in the code. 

To take a test it is useful to consider the following points: 

• It is important to know the expected behaviour to compare with the 

observed behaviour from the code. 

• During all the test it is important to have an Oracle that knows the 

expected results for each test case. It is possible to have a human 

Oracle, the operator follows the software specification and compare 

the expected results with the real results, or an Automatic Oracle that 

is generated by the software specification. It is possible that this 

oracle could be the same software but developed by other operators 

or a previous version of the same software. In this test session the 

oracle is the operator that compares the expected results with the real 

results. 

 

Figure 74: Test evaluation flowchart 
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To establish if a test is ended and if it is successful, it is important to create 

the pass criteria for each test, which establish if the test is passed by the software 

or if the test is failed by the software. The number of the tests that can occur in 

validating the software depends from time available for each test, coverage (test 

all the macro areas of the code) and from statistics criteria (if the last test cases are 

passed it is possible to end the validation process). 

It is not possible to evaluate the ideal number of the test cases, but each of 

them is described by the following parameters: 

• Effectiveness: it is the rate between the number of bugs found and 

the number of bugs to find. 

• Efficiency: it is the rate between the number of tests able to find 

bugs and number of total tests. 

To keep track of the results, each test is characterized by different 

identification field as shown in Table 10. 

 

Table 10: Test Classification 

From Table 10 it is possible to see: 

• Test Case ID: this is the identification code of each test conducted. 

The ID is simple and structured as in the example: TC-001 (the ID 

code of the first test case). 

• Test Case Description: this is a description of the objectives of the 

test case and how the test case is conducted. 

• Input Data/ Requirements: this field describes the type of inputs 

for each test case (if there are input) and which requirements the test 

case would  need to verify and test. 

• Expected Result: this field describes the expected result (if there is 

any) for each test case. 

• Pass/Fail: these are the results of the test. (P = pass, F = fail). 

 

  

Test Case ID
Test Case    

Description

Input Data/   

Requirements

Expected 

Result
Pass/Fail
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5.2.1 TEST SESSION: DEBUGGING PROCESS 
 

The Debugging process is concerned with locating and repairing the errors 

discovered in the code. Debugging involves: 

• To formulate a hypothesis about program behaviour. 

• To test these hypotheses to find the system error. 

There is no simple process for debugging and it often involves looking for 

patterns in test outputs with defect and using a programmer’s skill to locate the 

error. The Debugging process includes the location and repairing of errors like 

syntax errors (usually caught by the compiler which locates the error occurred in 

and the type of error), and semantic errors (logical error) which occurred when the 

software produces incorrect output on some input. These errors are harder to 

detect since the compiler may not able to indicate where and what the problem is. 

Once errors are located and fixed, it is necessary to re-test the program to 

make sure that the fix operation has not introduced new problems. Experience 

could help the programmer to reduce the introduction of new errors in the 

debugging process. 

 

Figure 75: The Debugging Process 
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5.2.2 TEST SESSION: SOFTWARE PROFILING 
 

One of the first tests performed after the physiological debugging phase is 

the tracking of software performances. Testing the software's performance means 

monitoring the execution times of the various classes and the entire software and 

track the entire software path to control the presence of errors. 

In Python it is possible to monitor all these characteristics using its profiler. 

A profiler is a program that describes the run time performance of a code, 

providing a variety of statistics and graphs. The profiler provides also a series of 

report generation tools to allow users to rapidly examine the results of a profile 

operation. 

The Python profiler library used to profile the SAT SIM software is 

cProfile. It is a C extension with reasonable overhead that makes it suitable for 

profiling long-running programs. 

The module cProfile.run() receives in input the function to profile and 

returns as output a series of statistics that describe the function in all its 

performances. As first profile in this test session, the SAT SIM main is profiled as 

shown in Figure 76. 

 

Figure 76: cProfiler output of SAT SIM main 

The first line indicates that 10983 calls were monitored and, of those calls, 

6625 were primitive. The term primitive indicate that these calls were not induced 

via recursion. The next line Ordered by: standard name, indicates that the text 

string in the far right column was used to sort the output. The other columns 

include: 
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• ncalls: number of calls. 

• tottime: total time spent in the given function (and excluding time 

made in call to sub-functions). 

• percall: the tottime divided by ncalls. 

• cumtime: total time spent in this and all subfunctions (from 

invocation till exit). 

• percall: the cumtime divided by primitive calls. 

• filename:lineno(function): provide the respective data of each 

function. 

It is possible to find two numbers in the first column like 43/3; that means 

that the second number is the number of primitive calls and the first is the actual 

number of calls. When the function does not recurse, these two values are the 

same, and only the single number is printed. 

In the same way the interface code is profiled, and the outputs are shown in 

Figure 77. 

 

Figure 77: cProfiler output of the Interface main 

To visualize the actual calls and the connection between the classes the 

profiler provides some library to automatically generate a graph of all 

connections. The Python library used to generate graphs is pycallgraph. It is a 

library created to visual profiling tool for Python application. Its major function is 

to track the name of every function called, the time take within each function, 

number of calls and other statistics. 

In the Figure 78-79 the profiling graph of the SAT SIM main and the 

Interface main are shown (for reason of clarity and space only a part of the graph 

is reported, for the detail of the graph see the Appendix). 
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Figure 78: Call graph of the SAT SIM main 

 

From the profiling table and from the graph is possible to see that the 

execution time of the code is about 5.040 seconds and it is possible to monitor all 

the connection in the code. 



88 
 
 

As last profile, the call graph of the Interface main is shown below (for 

reason of clarity and space only a part, for example purpose, of the graph is 

reported, for the detail of the graph see the Appendix): 

 

Figure 79: Call graph of Interface main 

The graph of the Interface main is only indicative of what and which are the 

functions called in the code, the execution time depends by the operator that use 

the interface. 
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5.2.3 TEST SESSION: TM/TC NOMINAL PROFILE (TC-001) 
 

The test sessions of the SAT SIM software consist into establishing different 

test cases (Tc) in which the operator can compare the expected result with the 

actual outputs generate by the code. It is important to say that each Tc is aimed at 

verification of the requirements expressed in the section 5.1.  

The first test case execute is the generation of a telemetry nominal profile. 

This test consists into verifying if the SAT SIM thread is able to generate 

telemetry in the acceptable range (nominal range) and if it is able to packetize 

them and sent them to the GS SIM thread. In addition, the test has the purpose to 

establish if the GS SIM can recognize the packet, extract the useful data and 

convert them into an engineering language. In conclusion, if the interface is able 

to display the correct TM generated and if it is able to recognize the nominal 

profile, the test is considered as passed. 

 

Figure 80: Tc Nominal TM generation flowchart 

The first step of the test case is to generate the nominal TM profile and 

packets; in this phase the SAT SIM Thread is under test. 

The second step of the test it to receive correctly the packets, extract the 

useful parameters from them and check the correct execution after the extraction, 

in this phase the GS SIM Thread is under test. 

The last step is to test the interface. From the interface it is possible to check 

if the previous two phases are ended correctly and if the test is passed. 
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Figure 81: Tc-001 Nominal TM packets 

In this test session, as shown in Figure 81, all the packets are correctly 

generated, sent and received (the green list indicates the correct acquisition of the 

packets). The extraction of the packets parameters has happened correctly, and all 

the consistency checks return a positive result indicated by the green cells in all 

systems pages. The test is conduced on about 150 nominal packets generated to 

have a substantial number of data on which make statistical considerations. 

As proof of validation it is possible to check that from the telecommand 

(TC) interface it is not useful to generate TC packets to change the parameters that 

are already correct (in the TC interface there are all green cells, so the operator 

does not change the parameters). 
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Figure 82: Tc-001 Nominal TC interface 

In conclusion, based on the tests carried out, and based on the data 

collected, it is possible to say that the Tc-001 reflects the expected results and 

verifies the relative requirements. Ultimately, the test has passed. 

5.2.4 TEST SESSION: TM/TC ERROR PROFILE (TC-002) 
 

The second test case execute is the generation of a telemetry error profile. 

This test consists into verifying that the SAT SIM thread is able to generate 

telemetry in the not acceptable range (error range) and if it is able to packetize 

them and sent them to the GS SIM thread. In addition, the test has the purpose to 

establish if the GS SIM can recognize the packet, extract the useful data and 

convert them into an engineering language. In conclusion, if the interface is able 

to display the error TM generated, send error to the operator’s mobile and if it is 

able to recognize the error profile, the test is considered as passed. 

 

 

Figure 83: Tc-002 Error TM generation flowchart 
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The last step is to test the interface. From the interface it is possible to check 

if the previous two phases are ended correctly and if the test is passed. 

 

Figure 84: Tc-002 Error TM packets 

In this test session, as shown in Figure 84, all the packets are correctly 

generated, sent and received (the green list indicates the correct acquisition of the 

packets). The extraction of the packets parameters has happened correctly, and all 

the consistency checks return a result indicated by the colors of cells in all 

systems pages. The test is conduced on about 150 nominal packets generated to 

have a substantial number of data on which make statistical considerations. 

All the alert messages and the warning messages are correctly sent to the 

operator’s mobile. From the smartphone the operator receives an alert notification 

as shown in Figure 83. This notification provides the general information about 

the type of packet and the type of message incoming to the GS SIM. 
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Figure 85: Alert Notification 

The operator can click on the notifications and see the relative details of the 

incoming message, as shown in Figure 86. 

 

Figure 86: Detail of the incoming message 
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The Python library used to connect the operator’s smartphone to the code is 

notifyRun. This library consent to connect a smartphone to a server and then 

through a line command send string as message directly to the registered 

smartphone. 

This skill provides the operator the possibility to monitor the TM packets 

incoming into the ground station even being away from the control center. It is 

important to emphasize that the operator can only monitor the situation in 

revenue, for any action the presence within the control center is necessary. 

To resolve the alert the operator must generate TC packets to correct the 

parameters through different protocols and acquire new telemetry. 

 

Figure 87: TC packets generation 

 

Figure 88: New Tm correction acquired 

During the test, the software's ability to control the correct acquisition of 

packets was also tested. After several tests, it was possible to see that if the packet 

length exceeds the length indicated by the CCSDS standards (65536 octets 

relative to the data field), the packet is automatically discarded, and an error is 

shown on the interface indicating the number of the discarded packet. 
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Figure 89: Incorrect Packet Acquisition 

In conclusion, based on the tests carried out, and based on the data collected 

it is possible to say that the Tc-002 reflects the expected results and verifies the 

relative requirements. Ultimately, the test is passed. 

5.2.5 TEST SESSION: IMAGE PROFILE (TC-003) 
 

The third test case execute is the management of the image profiles. This 

test consists into verify that the software is able to manage the images. In 

particular, the test controls that the software can take images from a dataset, 

compress them into images packets and send them to the GS SIM that extracts and 

converts the images and displays them to the operator. The test was conducted on 

about 24 images of Turin in different spectral bands [12]. In conclusion, if the 

interface is able to display the images, and their relative RGB diagram, and the 

software is able to save these images, the test is considered as passed. 

 

Figure 90:Tc-003 Image management flowchart 
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From the interface is possible to control all the phases of the test. The first 

phase is the acquisition of the image and the compression of the images. From the 

TC Viewer through the button Acquire Image is possible to require the 

compression of the images from the dataset into packets and sent them to the GS 

SIM for the extraction phase. 

 

Figure 91: Tc-003 Image compression Interface 

After the compression phase, the packets are sent to the GS SIM to be 

extracted and to display the images. 

 

Figure 92: Tc-003 Frame Extraction 

If the acquisition phase ends correctly, it is possible to display the acquired 

images and monitor the relative RGB graph. 
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Figure 93: Tc-003 Images Display 

From the Image list on the left of Figure 84, is possible to select which 

image and relative RGB graph the operator wants to display. As said in the 

section 5.2.4, if the length of the packets does not respect the recommended 

CCSDS length [10], the packet is automatically discarded, and an error is shown 

on the interface indicating the number of the discarded packet. During the test 

session, based on 24 images takes from the dataset, no error has occurred so the 

CCSDS compression expressed in the recommendations [10] is respected. 

In conclusion, based on the tests carried out, and based on the data collected 

it is possible to say that the Tc-003 reflects the expected results and verifies the 

relative requirements. Ultimately, the test is passed. 
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5.2.6 TEST SESSION: SCHEDULER TEST (TC-004) 
 

The fourth test case execute is the test of the SAT SIM Scheduler. This test 

consists into verifying that the scheduler thread is able to recognize the pre-set 

command, add them to a scheduler queue and execute them according to the 

priority number associated by the operator. In particular, the test control the 

correct acquisition of the command structures, generates the schedule correctly 

and sends them to the SAT SIM thread that executes all the scheduled commands 

follow the priority number order. 

 

Figure 94: Tc-004 Schedule test flowchart 

From the interface it is possible to control all the phases of the test. The first 

phase is the recognition of the command structure. It means that the interface 

could be able to display all the command and all the relative information about a 

specific command chosen by the operator. 

 

Figure 95: Tc-004 Recognition and display of the pre-set commands 
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As shown in Figure 95, each command window presents an unique ID, 

generated every time the operator wants to create a new schedule, for the addition 

into the scheduler queue, the name of the command, a brief description, the 

resources involved into command execution and the priority where the operator 

can set the priority number. 

Through the command windows the operator can set the priority number to 

all the commands that he wants to schedule. To establish a correct priority number 

the theory of space operations and the operator experience could help to schedule 

correctly the commands. 

 

Figure 96: Tc-004 Generation of the Schedule queue 

Through the Execute Schedule button the Schedule thread generates a queue 

sorted by priority number where the number 1 indicates the maximum priority and 

then, in sequence, the other number indicates a lower level o priority. This queue 

is sent to the SAT SIM thread that executes the command according to the priority 

number established by the operator. 

 

Figure 97: Tc-004 Schedule queue executed correctly 
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It is important to say that the operator cannot assign the same priority to 

different commands because it is not possible for the spacecraft to execute two 

different operations at the same time. For this reason, if the operator wants to 

assign the same priority to different commands, the scheduler interface provides 

him a warning message to alert the operator that this operation is incorrect, and 

the schedule is destroyed. 

 

Figure 98: Tc-004 warning message for command with same priority number 

In conclusion, based on the tests carried out, and based on the data collected 

it is possible to say that the Tc-004 reflects the expected results and verifies the 

relative requirements. Ultimately, the test is passed. 
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5.3  RESULTS 
 

All the tests performed are tracked in a table where is possible to monitor 

the type of test case (Tc) performed, the requirements the test wants to verify, the 

expected results and the result of the test (passed or failed). The Table 11 shows 

the actual result of the test sessions. 

Test Case ID 
Test Case 

Description 
Input 

Data/Requirements 
Expected 

Result 
Pass/Fail 

Tc-001 

Generation of the 
TM packet 

describing the 
nominal 

condition 

REQ-1; REQ-2; REQ-
3; REQ-10; REQ-12; 

REQ-13 

Positive end of 
the generation 

of nominal 
packets 

P 

Tc-002 

Generation of the 
TM packet 

describing the 
error condition 
and correct the 
error with TC 

packets 

REQ-1; REQ-2; REQ-
3; REQ-4; REQ-5; 
REQ-6; REQ-10; 
REQ-12; REQ-13 

Positive end of 
the generation 

of error 
packets 

P 

Tc-003 
Manage of the 
Images packets 

REQ-7; REQ-8; REQ-
9; REQ-10; REQ-11; 

REQ-13 

Positive end in 
managing 

images 
packets 

P 

Tc-004 

Test of the 
correct functions 

of the SAT SIM 
Scheduler 

REQ-17; REQ-18; 
REQ-19; REQ-20; 

REQ-21 

Positive end in 
test the 

scheduler 
operations 

P 

Tc-005 

Inspection of the 
code to verify the 

design 
requirements 

REQ-14; REQ-15; 
REQ-16 

\ P 

Tc-006 
Test of the Login 

interface 
REQ-13 

Login interface 
that works 

only with the 
correct 

credentials 
registered 

P 

Table 11: Test Cases Results 

From Table 11 it is possible to see the test cases performed in the test 

sessions. The major tests are the test from Tc-001 to Tc-004 described in detail in 

the previous sections. 

The Tc-005 is an inspection test to verify the design requirements like the 

implementation of the CCSDS standards. The test consists in inspecting the lines 
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of code and verifying that the software meets the design requirements expressed 

in Table 10. At the end of the inspection the requirements are verified and the Tc-

005 is considered as passed. 

The last test case, Tc-006 is a test to verify the initial interface of login. The 

idea of the SAT SIM software is to have a Python library that the operator can use 

on any computer that can handle the Python language. The operator can then use 

this library through his credentials and access the software and use the incoming 

telemetry data. 

The test consists in verifying the correct registration of the operator and the 

correct access to the software with the registered credentials. 

 

Figure 99: Tc-006 Register Interface 

 

Figure 100: Tc-006 Registration Success 

After the registration the operator can access whit his credentials to the SAT 

SIM software. 
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Figure 101: Tc-006 Login Interface 

 

Figure 102: Tc-006 Login Success 

In conclusion, based on the tests carried out, and based on the data collected 

it is possible to say that the Tc-006 reflects the expected results and verifies the 

relative requirements. Ultimately, the test has passed. 
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6. CONCLUSIONS 
 

The completion of the project led to some reflections about the work that 

has been done. 

Standards and recommendations are fundamental guidelines when a project 

is in its design phase. However, these references may require a very long study 

due to their complexity and the numerous volumes dedicated to a specific area. 

Therefore, the present work required, at beginning, a phase of organization 

research and study of the necessary references that led to the selection of the 

different macro-areas necessary to achieve the objectives of this thesis. 

The aim of the present work is to provide to student and non-professional 

operators a software to manage, control and study space packets and protocols 

following the CCSDS standards. This thesis also has the purpose to provide a 

control software for the C3 project in which the students can support CubeSats 

operations and manage the entire ground station. 

The first chapters of the thesis describe the context in which the software is 

collocated. From the space operations world, in which the SAT SIM software 

propose itself to train future spacecraft operators via CubeSat operations to 

achieve an important method to increase the effectiveness of future operations 

with already trained experts, to the C3 project, in which the SAT SIM software 

will be the core of the control centre. 

The third chapter describes the standards used to support the generation of 

the code. Mainly the CCSDS recommendation are used to the construction of the 

TM, TC, IMG PKTs and for the operations scheduler philosophy. 

The fourth chapter provides a complete overview of the SAT SIM library 

architecture and describes all the main functions of the software with particular 

focus on the data flow from a thread to another. 

Last chapter is focused on all the test session performed to validate the 

software and verify all its specifications and requirements. As said in the results 

section 5.3, all the tests are passed, and the software is verified and validated. 

It is important to say that even if the software is validated and verified, it 

requires some future works to be completely integrate in the C3 control centre. 
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Some future steps identified for the next upgrade of the SAT SIM library 

are: 

• Integration of the software on different hardware. The first step 

identified for the future is the test of communication between two 

hardware. This test will need the implementation of the SAT SIM 

thread and GS thread on different boards so to test the generation of 

packets from the SAT SIM board, sending and extracting of the 

packets from GS board. 

• Automatization of specific procedures. This point will require the 

study of automatic algorithms in order to automatize the command 

and schedule procedures. 

• Implementation of different missions and CubeSat architecture. In 

this step will be upgrade the software to support multiple CubeSat 

missions and operations in order to create a substantial database with 

mission information and CubeSat architecture structures able to 

support the software and the entire ground station. 

• Integration of the SAT SIM software in the full control centre of C3 

in order to integrate also the RF software and the Tracking software. 

In conclusion, this work of thesis hopes to provide a useful starting point to 

support the future implementations of the control centre software to support the 

C3 project and the future CubeSat operations. 
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APPENDIX 
 

The profiling graph of the code is generated by a Python library called 

pycallgraph. Pycallgraph is a Python module that creates call graph visualizations 

for Python. It uses a debugging Python function called sys.set_trace() which 

makes a callback every time the code enters or leaves a function. This consents to 

Python to track the name of every function called, as well as which function 

called which, the time taken within each function, number of calls, etc. 

In the figures below the profiling of the SAT SIM code and the Interface is 

shown. The description of the profiling sessions is described in the section 5.2.2. 

 

Figure 103: SAT SIM Call Graph (1) 
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Figure 104: SAT SIM Call Graph (2) 
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Figure 105. SAT SIM Call Graph (3) 
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Figure 106: Interface Call Graph (1) 
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Figure 107: Interface Call Graph (2) 
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Figure 108: Interface Call Graph (3) 
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Figure 109: Interface Call Graph (4) 
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Figure 110: Interface Call Graph (5) 
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Figure 111: Interface Call Graph (6) 

 


