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ABSTRACT 
This thesis is carried out in the context of a design of an electric vehicle. The purpose of the 

thesis is to model and to simulate the longitudinal dynamic behavior of a full electric vehicle, in order 
to design the battery pack and to evaluate the vehicle’s performance and range, through the standard 

driving cycles NEDC and WLTC. 

The work is developed in the Matlab-Simulink environment, the electric vehicle is modelled as 
three different blocks that interact with each other: a vehicle block, a motor block and a battery block. 
The modelled vehicle follows the driving cycles with two different approaches, a forward approach, 
where the vehicle follows strictly the imposed speed profile, and a backward approach, where the 
model simulates the driver that tries to follow the driving cycles. The first approach is used to evaluate 
the energy consumption to complete a standard cycle, this value will be exploited in the backward 
approach to calibrate the proportional integrative controller, that simulates the driver, and to design 
and verify the battery pack. The backward approach has the objective to evaluate the vehicle range, 
performance and to gives information about battery pack parameters as temperature, current and state 
of charge (SoC). In this model the greatest efforts are spent in the modelling of the battery pack block, 
which takes in consideration a thermal model and the open circuit voltage (OCV) against depth of 
discharge (DoD) cell characteristic. In the specific, the thermal model evaluates the temperature of 
the battery pack due to the dissipating power and provide a de-rating control on the traction torque. 

The full electric vehicle used to verify the model accuracy is the Renault Zoe, because several 
technical data are available. The vehicle’s range and performance obtained through Renault Zoe 

simulation are in acceptable range of accuracy (about 5%). To conclude, the model is exploited to 
support the battery pack design and to predict the performance and the range, in the standard driving 
cycles, of the of the electric vehicle in development. 
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1 INTRODUCTION 
One of the most cause of concern about the environment, in recent years, is the global warming 

due to the greenhouses effect. To limit the global warming worsening, several agreements between 
most of the countries in the world were stipulated. 

On June 4th, 1992 the United Nation signed the United Nations Framework Convention on 
Climate Change [1], with the objective to stabilize greenhouse gas concentrations in the atmosphere 
at a level that would prevent dangerous anthropogenic interference with the climate system. In 1997 
was signed the Kyoto Protocol [2] that established legally binding obligations for developed countries 
to reduce their greenhouse gas emissions in the period 2008–2012. In 2015 the Paris Agreement [3] 
was adopted, governing emission reductions from 2020 on through commitments of countries in 
Nationally Determined Contributions, lowering the target to 1.5 °C. The Paris Agreement entered 
into force on 4 November 2016. 

For what concerns in the specific the European Union countries, reading a communication [4] 
to the to the European parliament: “Climate change is a serious concern for Europeans. The current 
changes in our planet's climate are redrawing the world and magnifying the risks for instability in all 
forms. The last two decades included 18 of the warmest years on record. The trend is clear. Immediate 
and decisive climate action is essential”. One of the actions needed to reduce the climate exchange is 
an Energy Union Strategy and finalizing a modern, advanced and cost-effective regulatory framework 
to achieve its 2030 greenhouse gas reduction targets and its clean energy transition. 

Focusing on the automotive world, the actions against the global warming are translated in a 
series of emission regulation that every car manufacturer must accomplish. From 2021, phased in 
from 2020, the EU fleet-wide average emission target for new cars will be 95 g CO2/km. This 
emission level corresponds to a fuel consumption of around 4.1 l/100 km of petrol or 3.6 l/100 km of 
diesel. [5] 

From 2019 on, the penalty will be €95 for each g/km of target exceedance. The penalties are 
quite high, FCA has already paid for an excess of pollutants. [6], Tesla and Fiat-Chrysler (FCA) 
recently reached a deal to pool their fleet together in Europe for the purpose of the latter avoiding 
emission requirement fines. It was first reported to be worth a few hundred million dollars, but FCA 
now says that it will pay Tesla up to $2 billion for the emission credits. 

The restriction in the further years will be even higher: [7],  Cars: 15% reduction from 2025 on 
and 37.5% reduction from 2030 on. Since the Electric vehicle emission is of 0 g of CO2, it is valid 
solution to the traditional, more pollutant, mobility, in order to reduce the greenhouses gasses, 
accomplishing therefore the increasingly stringent pollutant targets and to prevent car manufacturers 
to pay to high penalties. 

Due to the abovementioned reasons the electric mobility is expanding at a rapid pace. In 2018, 
the global electric car fleet exceeded 5.1 million, up 2 million from the previous year and almost 
doubling the number of new electric car sales [8]. This new trend leads the mostly of the car 
manufacturers to address the technical research to the electric powertrain, in this new context of 
development is oriented the thesis work.  
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1.1 MOTIVATION AND OBJECTIVE OF THE THESIS 
The thesis is carried out in the environment of a design of a fully electric vehicle, the purpose 

of the thesis is to model and simulate the longitudinal dynamic behavior of any electric vehicle, 
furthermore the model will be used to provide  useful information for the vehicle in development as 
the vehicle range, in the standard driving cycles, and the performance. 

However, several dynamic models are available for traditional cars, because for more than a 
century, cars are manufactured with an internal combustion engine, therefore plenty of research and 
studies about the longitudinal dynamic of the traditional vehicle are available [9], this model cannot 
be used for electric vehicles. 

The electrical vehicles differ from the traditional cars, the main changes concern the motor and 
the energy storage. They have a different kind motor, no more an internal combustion engine but an 
electric motor, the traction torque is provided in a different manner. The energy storage is composed 
by a battery pack and no more by a fuel tank. 

Hence, the longitudinal dynamic behavior of the electric vehicle will differ from the traditional 
cars, the main reasons are: a different traction delivery, the lack of need of a gearbox, due to the 
battery pack a different vehicle layout and weight distribution. 

In recent years appeared in literature some dynamic models for electric and hybrid vehicles; 
about the founded researches [10], [11], [12], is possible to say that  the former [10] is mostly focused 
on hybrid co-simulation, the research [11] is developed in specific software environment, and the last 
work [12] is aimed to the development of electric powertrain. My thesis work differs from the 
abovementioned academic works because is focused on the battery pack modelling and is developed 
in the Matlab-Simulink environment. 

1.2 THESIS STRUCTURE  
The thesis will be divided in two main chapters: the forward approach model (Chapter 2) and 

the backward approach model (Chapter 3), as suggest the chapter titles the main differences between 
them are the logic exploitation of the speed profiles, in the former, the speed profile is imposed to the 
vehicle, in the latter, instead, the model dynamic behavior takes into account a driver that tries to 
follow the selected cycle. 

The following (Chapter 4) shows the results of the model with as reference the Renault Zoe, 
while (Chapter 5) will collect the results of the study case. A user guide with the model instructions 
is present in (Chapter 6), the last (Chapter 7) is devoted to the conclusion. 
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2 FORWARD APPROACH MODEL 

2.1 INTRODUCTION 
The objectives of this model are: to realize a helpful tool kit to design a battery pack of a full 

electric vehicle and to give a preliminary evaluation of the performance and vehicle range during the 
standard cycles NEDC and WLTC. Furthermore, will be exploited to pass to the backward approach 
model information about the energy consumption necessary to complete a standard driving cycle. 

The principles of the model are based on the evaluation on the dynamic characteristics of the 
vehicle, that are translated in battery parameters needed for the achievement of chosen vehicle 
performance. 

The model has a forward approach: the speed of the vehicle, read during the driving cycles, is 
translated into power consumption. The vehicle, in this approach, follows precisely the imposed speed 
cycle. The development of the model was possible thanks to the Matlab environment. 

2.2 THE MODEL STRUCTURE 
The model is divided in two parts: a mechanical part and an electrical one. 

 

 
Figure 1: Forward approach model structure. 

 

As represented in the Figure 1 the mechanical model receives as inputs vehicle and motor 
characteristics, which combined with speed profiles and dynamics equations deliver as results vehicle 
performance and power request. 

The electrical model receives as inputs cell data and the results of the previous model. The final 
output is the battery pack design. 

In the next paragraphs will be described how each block works, every block has a correspondent 
.mat file of the Matlab model. 
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2.3 THE MECHANICAL MODEL 
This model exploits the longitudinal dynamic equations in order to evaluate vehicle 

performance, and power consumption. Will be introduced several equations, some of them will be 
exploited also in the backward approach model. 

2.3.1 Vehicle data 
This file collects all the needed vehicle data necessary to compute the power needed to motion 

for each imposed speed cycle. 

The main input data are below listed.  

Vehicle data 

• vehicle mass 𝑚 
• drag coefficient 𝑐𝑥 
• transversal surface 𝑆 

Tire data 

• wheel rim diameter 𝐷 
• tire width 𝑊 
• aspect ratio AR 

Other vehicle data will be added along the thesis, every time they will be needed. 

2.3.2 Motor power map 
The motor map represents the power and torque values vs the engine speed, an example of 

electric motor map of a BMW i3  [13] is showed in Figure 2. 

 

 
Figure 2: BMW i3 motor map 
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Is clear to note that electric motor has the maximum torque already available for low value of 
engine speed, the maximum torque is held for a certain speed range and then starts to decrease due to 
the induced back electromotive forces (BEMF) [14]. 

 In the forward model the motor map is used to evaluate, at a preliminary stage, the vehicle 
performance. 

 

 

2.3.3 Speed profiles 
A series of speed profiles are used to evaluate power needed to motion for different cases. 

To evaluate the most demanding power conditions the two speed cycles, showed in the below 
picture, are considered. 

• Maximum speed cycle. 
• Maximum slope cycle: 22 % 𝑎 = 1.5 𝑚/𝑠2 [15], Data chosen from fiat standard used to 

design the first gear of ICE. 

 
Figure 3: Maximum slope and speed, speed profiles 
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Furthermore, two driving cycle are evaluated: 

• NEDC 
• WLTC 

the New European Driving Cycle (NEDC) and the Worldwide Harmonised Light Vehicle Test 
Cycle (WLTC), which will refer to the cycle for class 3 vehicle of the Worldwide Harmonised Light 
Vehicle Test Procedure (WLTP). 

The former cycle is no more used, it was substituted by the WLTC starting from the 1st 
September of 2017 [16]. These cycles are not only used for the evaluation of power request to motion 
but also for the vehicle range. 

 
Figure 4: NEDC 



17 
 

 
Figure 5: WLTC 

 

These speed cycles are exploited to evaluated, as first approximation, the vehicle range, and to 
compute the energy consumption needed to calibrate the proportional integrative controller of the 
backward approach model, that will be introduced in the next chapter. 

2.3.4 Performance & Power request 
This section illustrates and describes all the equations necessary to compute the power 

consumption and the vehicle performance. 

Power needed to motion 

The power needed to motion is evaluated thanks the following formula [17], [18]: 

 

 
𝑃𝑛 = 𝐹𝑟𝑣 + 𝑚𝑒

𝑑𝑣

𝑑𝑡
𝑣 ( 1 ) 

 

Where: 

• 𝐹𝑟  [𝑁] is the sum of all resistance forces, 
• 𝑣 [𝑚/𝑠] is the vehicle speed, 
• 𝑚𝑒 [𝑘𝑔] is the equivalent mass. 
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Figure 6: Forces acting on a vehicle.  

 

𝐹𝑟 collects all the resistance forces, that will be described below. 

Climbing force: 

 

 𝐹𝑐𝑙𝑖𝑚𝑏 = 𝑚𝑔𝑠𝑖𝑛(𝛼) ( 2 ) 

 

 

Where: 

• 𝑚 [𝑘𝑔] is the vehicle mass, 
• 𝑔 [𝑚/𝑠2] is the gravity acceleration, 
• 𝛼 represents the slope of the road. 

Aerodynamic drag resistance: 

is the component of the aerodynamic force that opposes the motion of the body along the 
direction of the vehicle speed. The aerodynamic drag is the sum of three terms: friction drag, shape 
drag and induced drag.  

The friction drag is the resultant of the tangential forces acting on the surface, its contribution 
to the total drag is on the order of 10% of the total aerodynamic drag. 

The induced drag is the component of the aerodynamic drag created by the lift generation, since 
for the road vehicles the lift is neglectable, the induced drag has no contribution on the total drag 
resistance. 
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The shape drag is the remaining drag resistance that is not friction drag neither induced drag, it 
is mainly due to the wake that is created in the rear part of the vehicle. 

 

 𝐹𝑎𝑒𝑟𝑜 =
1

2
𝜌𝑐𝑥𝑆𝑣2 ( 3 ) 

 

Where: 

• 𝜌 is the density of the air, typically has the value of 1.3 𝐾𝑔/𝑚3  
• 𝑐𝑥 represent the drag coefficient of the vehicle  
• 𝑆 is the projection of the transversal surface of the vehicle, including the wheels, respect 

the motion direction, typically values are around 2.5 𝑚2 

 

Rolling resistance: 

Is the force that is caused by the deformability of the tire and of the road. However, the road 
can be approximated as undeformable, it cannot be considered the same for the tire. 

The energy dissipation that happen during the wheels motion can be so explained: the portion 
of the tire that enter in contact with the road is compressed, when that portion of tire will exit the 
compression zone, it will spring back to its initial shape, to produce this energy some energy will be 
wasted. 

 

 
Figure 7: Tire deformation. 
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The rolling resistance is evaluated experimentally trough laboratory testing. 

 

 𝐹𝑟𝑜𝑙 = 𝑚𝑔 cos(𝛼) [𝑓0 + 𝑘𝑣2] ( 4 ) 

 

It is interesting to note that the rolling resistance coefficients are two: 𝑓0and K. As showed in 
the below diagram Figure 8: Diagram of rolling resistance., the first coefficient approximates the 
static behavior for speed below the critical one, while the second coefficient represent the quadratic 
increases of the resistance. 

 
Figure 8: Diagram of rolling resistance. 

 

 

To summarize: the abovementioned resistance forces can be ordered by their dependency on the 
speed: 

 

 𝐹𝑟 = 𝐴 + 𝐵𝑉2 ( 5 ) 

 

Where: 

 

 𝐴 = 𝑚𝑔[𝑓0 cos(𝛼) + sin(𝛼)] ( 6 ) 
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 𝐵 = 𝑚𝑔𝑘𝑐𝑜𝑠(𝛼) +
1

2
𝜌𝑐𝑥𝑆 ( 7 ) 

 

 

The second term of the eq. ( 1 ) is represented by the inertia forces multiplied by the speed, the 
inertia forces is so expressed: 

 

 𝐹𝑖𝑛 = 𝑚𝑒

𝑑𝑣

𝑑𝑡
 ( 8 ) 

 

The equivalent mass of the vehicle can be so subdivided: 

 

 𝑚𝑒 = 𝑚 +
4𝐽𝑤

𝑅𝑒
2

+
𝐽𝑚𝑖2

𝑅𝑒 2
 ( 9 ) 

 

where: 

• 𝑚 : vehicle mass 
• 𝐽𝑤 : wheel inertia 
• 𝑅𝑒 : effective wheel radius 
• 𝐽𝑚 : electric motor inertia 
• 𝑖 : transmission index between the angular motor speed and the wheel speed. 

For a pneumatic tire an effective rolling radius 𝑅𝑒 can be defined as the ratio the vehicle 𝑣 speed 
and the tire angular speed Ω: 

 

 𝑅𝑒 =
𝑣

Ω
 ( 10 ) 

 

As shown in the below Figure 9, the effective rolling is bigger than the loaded radius and smaller than 
the unloaded radius:  the  𝑅𝑙 < 𝑅𝑒 < 𝑅. 
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Figure 9: Effective rolling radius. 

 

For radial tires the effective rolling radius is usually 98% of the unloaded radius 𝑅. 

The unloaded radius can be found from the tire technical data, applying the following equation: 

 

 𝑅 = (25.4 ∗ 0.5 ∗ 𝐷 +
𝐴𝑅

100
∗ 𝑊) ( 11 ) 

 

Where: 

• D is the Rim diameter expressed in inches 
•  AR is the aspect ratio expressed in percentage 
•  W is the tire width in millimeters. 

Coning back on the eq. ( 9 ) is not considered, on the right side of the equation is possible to 
notice that the inertia terms represented are the wheel inertia 𝐽𝑤and the motor inertia 𝐽𝑚, is not present  
the transmission inertia, for two reasons: the contribution on the overall equation is quite small, 
therefore negligible and also because the data is difficult to collect. 

The transmission index (or ratio) is calculated as follow: 

 

 𝑖 =
𝑛𝑚𝑎𝑥𝜋𝑅

30 𝑣𝑚𝑎𝑥
 ( 12 ) 

 

Where: 

• n is the motor angular speed expressed in rpm. 
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2.3.4.1 Efficiencies 
For sake of simplicity and for the lack of data, the efficiencies are considered constant and the 

values have been chosen, searching in literature [19], for their reasonability. 

 

• Transmission                          𝜂𝑡 

• Electric motor + inverter       𝜂𝑚 

• Battery                                    𝜂𝑏 

 

2.3.4.2 Power at battery level (Power request) 
 

 
Figure 10: Drivetrain layout. 

Multiplying the eq ( 1 ) for the efficiencies is possible to obtain the power at the battery level 
for each instant of the speed profiles [20]: 

 

 𝑃𝑏 = 𝜂𝑡𝜂𝑚𝜂𝑏𝑃𝑛 ( 13 ) 

 

2.3.4.3 Acceleration (Performance) 
The power available to accelerate the vehicle is derived from the following equation [21] [17]: 

 

 𝑃𝑎 − 𝑃𝑛 =
𝑑𝑇

𝑑𝑡
 ( 14 ) 

 

• 𝑃𝑎is the available Power at the wheels, it is derived from the motor power map: 

 

 𝑃𝑎(𝑛) = 𝜂𝑚𝜂𝑡𝑃𝑚(𝑛) ( 15 ) 

 

The motor power depends on the motor angular speed 𝑛, as is it possible to see in Figure 44. 
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• 𝑃𝑛is the power needed to motion, described in eq ( 1 ) 

 

• The right term of eq. ( 14 ) represent the instantaneous variation of the kinetic energy in the 
time. 

The kinetic energy is so expressed: 

 

 𝑇 =
1

2
𝑚𝑒𝑣2 

( 16 ) 

 

Substituting eq. ( 16 )in the eq. ( 14 ) is possible to extract the maximum available acceleration: 

 

 𝑎𝑚𝑎𝑥 =
𝑃𝑎 − 𝑃𝑛

𝑚𝑒𝑉
 

( 17 ) 

 
Figure 11: Power needed to motion and power available. 

From the eq.( 17 ), if the acceleration is expressed as 𝑑𝑉

𝑑𝑡
 ,is possible to derive the time needed 

to accelerate between to velocity: 
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 𝑡𝑉1→𝑉2
= ∫

𝑚𝑒 𝑉

𝑃𝑎 − 𝑃𝑛
𝑑𝑉

𝑉2

𝑉1

= ∫
1

𝑎max 
 𝑑𝑉

𝑉2

𝑉1

 
( 18 ) 

 

In the below figure is plotted the inverse of acceleration against the speed, the area below the 
curve represent the time needed to reach the wanted speed, with the maximum acceleration available. 

 
Figure 12: Inverse of acceleration 

2.3.5 Energy consumption 
The last output of the mechanical model in the energy consumption of the vehicle needed to 

complete the driving cycles, [22], the energy is calculated integrating the power needed to motion at 
the battery level, see the eq ( 13 ). 

Hence: 

 

 𝐸 = ∫ 𝑃𝑏𝑑𝑡
𝑡𝑓

0

 ( 19 ) 
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2.4 THE ELECTRICAL MODEL 
The aim of this model is to design a battery pack suitable for the studied electric vehicle. 

The design is achieved exploiting the power and energy values that will be retrieved from the 
previous model, these values will be merged with the selected cell data, the final output is the battery 
pack design. 

2.4.1 Cell 
In order to design the battery pack is necessary to select the type of cell that will be used. 

The cell type used for the electrical vehicle battery pack market is the lithium ion one, because 
guarantee the best performance in terms of power and energy density. [23] 

[24] Rechargeable lithium batteries come in a variety of configurations, physical sizes, and 
capacity ratings. There are three basic configurations within the industry for lithium chemistry. 

 
Figure 13: Cell types. 

The Li-Poly cell called also pouch cell, has several advantages respect more traditional Li-ion 
cells: 

• Safer. 
• Light weight, great power density. 
• Better low-temperature performance. 
• Excellent cycle life. 

Although the Li-poly cells seems to be better respect the traditional Li-ion cells, the car 
manufacturer’s choice for electric vehicles spread among the cylindrical and pouch cells: 

[25] Tesla uses cylindrical cells, Chevrolet Bolt battery pack is composed of prismatic cells, 
[26] the Kia Soul’s is made of pouch cells. 

The cell parameters used for the case studies are from the company: [27]. 
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The input data are reported below. 

 

Table 1: Kokam pouch cell data. 

Nominal voltage 3.7 V 

Capacity 53 Ah 

𝑐 − 𝑟𝑎𝑡𝑒𝑛𝑜𝑚 5  

𝑐 − 𝑟𝑎𝑡𝑒𝑝𝑒𝑎𝑘 8  

Weight 1080 g 

Internal resistance 0.009 Ohm 

 

 
Figure 14: Kokam pouch cell. 
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2.4.2 Battery pack 
The result of the model will be the composition of the battery pack: number of cells in series 

and in parallel, the energy storage and its weight. 

2.4.2.1 Cells in series 
The computation of the number of cells in series is dependent on the voltage of the electrical 

motor, for what regards the Renault Zoe the maximum voltage is of 400 V, see Table 2, therefore the 
nominal one is estimated of about 355 V. The formula to compute the total number of cells in series 
is: 

 

 𝑛° 𝑠𝑒𝑟𝑖𝑒𝑠 =
𝑉𝑏𝑎𝑡

𝑉𝑐𝑒𝑙𝑙
 ( 20 ) 

 

2.4.2.2 Cells in parallel 
To find the number of cells in parallel are used two different criteria: 

• Current criterion 
• Energy criterion 

The total number of cells in parallel will be the maximum value between these criteria 

Current Criterion 

This approach is aimed to guarantee that the discharge current of the battery guarantees the 
desired power. 

Knowing that the electric power can be written as 𝑃 = 𝑉𝐼, is possible to rewrite the equation in 
order to find the current, necessary to maintain that level of power necessary to accomplish the studied 
driving cycle: 

 𝐼 =
𝑃𝑏

𝑉𝑏𝑎𝑡
 ( 21 ) 

 

Since a cell cannot discharge instantaneously an unlimited amount of current, there is a cell 
parameter that specifies how much amount of current can be discharged, this parameter is called c-
rate [28]. 

The c-rate is a measure of the rate at which a battery is discharged relative to its maximum 
capacity. A 1C rate means that the discharge current will discharge the entire battery in 1 hour. 

To increase the rate of discharge of a battery is possible to dispose cells in parallel, in such a 
way the current is distributed among the cell in parallel. 

The number of cells in parallel, thanks to this criterion, will be: 

 𝑛𝐶 =
𝐼

𝑐 − 𝑟𝑎𝑡𝑒 𝐶𝑐𝑒𝑙𝑙 
 ( 22 ) 
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Where: 

•  𝐶𝑐𝑒𝑙𝑙 [𝐴ℎ]  is the cell capacity  

From the Table 1 is possible to see that there are two different type of c-rates, one is the peak 
c-rate and the other one is the nominal c-rate. The former value is used when the power delivered by 
the vehicle is under the highest transient condition: the maximum acceleration, while the latter value 
of c-rate is expressed by nominal condition such as a vehicle with a constant speed. 

Therefore, for the peak c-rate value is used in the eq. ( 21 ), the maximum power achieved 
during the maximum acceleration. While for the c-rate nom is used the power measured during the 
cycle with the maximum speed. 

The current values derived from the eq. ( 21 ), will be inserted in the eq. ( 22 ) allowing so to 
find the minimum number of cells in parallel necessary to guarantee the power delivered by the 
battery to the vehicle. 

The energy criterion 

This criterion differs from the previous ones, here the parameter to calculate the number of cells in 
parallel is the energy necessary to accomplish a driving cycle. 

 

 𝑛𝐸 =
𝐸𝑐𝑦𝑐𝑙𝑒

𝑉𝑐𝑒𝑙𝑙𝐶𝑐𝑒𝑙𝑙
 ( 23 ) 

 

The objective is to guarantee that the cell capacity is enough to allows the completion of a 
determined number of driving cycle i.e. a certain vehicle range. 

To conclude, the maximum number of cells in parallel will be the highest value that comes from 
the current and energy criteria: 

 

 𝑛° 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = max (𝑛𝐶 , 𝑛𝐸) ( 24 ) 

 

2.4.2.3 Battery pack weight 
The net weight is computed multiplying the cell weight for the total amount of cells. 

The total gross weight considers the complete module with the coolant plates. The evaluation 
was estimated thanks to internal data of the company FLAG and data found on the website: [29]: 

• Flag prismatic cell battery pack (30 kWh per 326 kg) 
• Flag pouch battery pack (40 kWh per 380 kg) 
• Tesla model S battery pack (85 kWh per 540 kg) 

A weighted average of the above data leads to the following experimental formula: 

 𝑊𝑡𝑜𝑡 = 𝑊𝑐𝑒𝑙𝑙 + 35% 𝑊𝑐𝑒𝑙𝑙 ( 25 ) 

 



30 
 

2.5 FURTHER CONSIDERATIONS 

2.5.1 Vehicle range 
Knowing the battery energy and the energy needed to finish the driving cycles is possible to 

evaluate the vehicle range [22] : 

 

 𝑅𝑎𝑛𝑔𝑒[𝑘𝑚] =
𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝐸𝑐𝑦𝑐𝑙𝑒
 𝑙𝑒𝑛𝑔𝑡ℎ𝑐𝑦𝑐𝑙𝑒 ( 26 ) 

 

Where the cycle length is of: 

• 11 km for NEDC 
• 23.25 km for WLTC 

 

2.5.2 Motor design 
In this model the power map of the motor was assumed as an input parameter. If the motor will 

be managed as an output of the system is possible to change the model layout as showed below: 

 
Figure 15: 2nd kinematic model structure 

From the comparison between figure 1 and figure 11, is clear to note that the motor map is no 
more an input of the system but is now an output, while the performance became an input. 

The logic behind the motor map design is to increase the peak power in order to achieve fixed 
acceleration performance. 
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3 BACKWARD APPROACH MODEL 

3.1 INTRODUCTION 
In this chapter will be described the longitudinal dynamic model that has been realized, 

differently from the previous chapter, the dynamic approach to the speed cycle is of backward type, 
this means that the vehicle does not follow strictly the cycle speed profile, instead, through a 
proportional integrative controller, the vehicle tries to fill the gap between the reference speed and 
the actual one. 

Since with the backward approach is simulated the driver, thanks to the proportional integrative 
controller, it describes more accurately the dynamic behavior of the vehicle. 

Moreover, this backward approach is equipped with a thermal model which enables to read the 
battery pack temperature and eventually to cut off the current supply. 

The results of the model are of dynamic type:  vehicle performance and the vehicle range with 
two different driving cycles, and of battery control type: current amplitude, state of charge and battery 
pack temperature. 

3.2 THE MODEL OVERVIEW 
 The model is implemented in the Simulink-Matlab environment. While the Matlab software 

collects the input data as vehicle mass, drag coefficient, motor map, and others, the Simulink 
extension is exploited to subdivide the vehicle in functional blocks: a vehicle block, a motor block 
and a battery block, furthermore, as shown in the next Figure 16, a controller simulates a driver that 
tries to follow the chosen speed cycle, that is illustrated on the right side of the scheme.  
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Figure 16: Backward approach model scheme. 

 

Deepening the interactions between blocks follows that the first input of the system is the 
reference cycle that is compared with the vehicle actual cycle, after the proportional controller block, 
the speed comparison is translated into a torque request. The battery and the motor blocks interact 
each other through a power request from motor to battery and a power delivered vice versa. The motor 
and the vehicle block are linked by the torque delivered by the motor. To conclude the torque is 
converted into vehicle speed in the vehicle block. 

The complete Simulink scheme of the model is visible in the next Figure 17, in the scheme is 
represented an example with a WLTC cycle engaged as reference speed cycle. Is possible to notice 
the range output of 23,25 𝑘𝑚 and the SoC level that is lowered, after one cycle, with a value of 
91,55 %. 
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Figure 17: Backward approach model in Simulink. 
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3.3 VEHICLE BLOCK 
The vehicle block input is the torque value coming from the motor block, the outputs are the 

actual vehicle speed and the distance travelled. 

 

 
Figure 18: Vehicle block from outside. 

 

The inside structure is showed in the below picture, the first section is dedicated to the wheel 
representation, the second one collects the dynamic equations that rules the motion, a third block is 
employed to evaluate the travelled distance. 

 

 
Figure 19: Vehicle block from inside 
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3.3.1 Wheel model 
This block converts the torque into a traction force needed to move the vehicle, the wheel model 

is composed of a traction part that can be limited, if the torque input is too high, by the tire slip 
coefficient. 

 

 
Figure 20: Wheel block. 

 

The equation used are the following [17]: 

 

 𝐹𝑡1
=

𝑇𝑤

𝑅𝑒
  ( 27 ) 

 

The numerator represents the torque at the wheel, that is so evaluated: 

 

 𝑇𝑤 = 𝜂𝑡  𝑖 𝑇  ( 28 ) 

  

Where: 

• 𝜂𝑡 is the transmission efficiency 
• 𝑖 is the transmission ratio 
• 𝑇 is the motor torque 
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The traction force, transmitted on the ground by the traction wheels, is limited by the weight on 
the traction axis times the slip coefficient of the tire, the equation that define this traction limitation 
is:  

 

 𝐹𝑡2
= 𝜇𝑥𝐹𝑧 ( 29 ) 

Where: 

• 𝜇𝑥 is the tire slip coefficient, its value is chosen as constant and is about:  0,80-1,00. 
• 𝐹𝑧 is the vertical force on the driving axis, it depends on the car weight distribution on the 

traction wheels and on the load shift due to the inertia force. In this model are not considered 
the contributions of the drag and rolling resistance forces because are not relevant for the 
accuracy of the model. 
 

 𝐹𝑡 = min(𝐹𝑡1
, 𝐹𝑡2

) ( 30 ) 

 

3.3.2 Dynamic model 
This section describes the dynamic equation that rules the vehicle motion and weight 

distribution on the traction wheels. It receives as input the traction force that will subtract for the 
resistant forces that are computed in the dedicated block. While the vehicle speed is the output of the 
whole vehicle block, the vertical force will be exploited to the traction force evaluation of the previous 
wheel model block. 

 

 
Figure 21: Dynamic block. 
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The acceleration of the vehicle is evaluated thanks to the 2nd Newton’ Law, indeed, is possible 
to write: 

 

 𝐹𝑡 − 𝐹𝑟 = 𝑚𝑒𝑎  ( 31 ) 

 

Where: 

• 𝐹𝑡 is the traction force and comes from eq ( 30 ),  
• 𝐹𝑟 is the resistant force and is calculated in eq. ( 5 ), 
• 𝑚𝑒 is the equivalent mass and is expressed in eq. ( 9 ). 

Rewriting the abovementioned equation, is possible to obtain the vehicle acceleration: 

 

 𝑎 =
𝐹𝑡 − 𝐹𝑟

𝑚𝑒
 ( 32 ) 

 

The vehicle speed, expressed in [m/s], is obtained integrating the acceleration r:  

 

 𝑣 = ∫ 𝑎 𝑑𝑡
𝑡𝑓

𝑡0

+ 𝑣0 ( 33 ) 

 

The last output of the dynamic model is the vertical forces acting on the traction wheels. This 
output will be employed in the previous block, see eq. ( 29 ). 

 

There are three different vehicle configurations: 

• front traction drive (FWD) 
• rear traction drive (FWD) 
• all wheel drive (AWD) 

The model allows to choose among these three different drive layouts. 
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Figure 22: Vertical force block. 

 

If the vehicle has a rear traction configuration, the load shift will be added to the vertical forces, 
if the configuration is of front traction type, will be instead subtracted, if the vehicle has all-wheel 
drive the maximum amount of traction is a function of just the slip coefficient and the vehicle mass. 

 

 
Figure 23: Front wheel vehicle load shift layout 
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From the Figure 23, is possible to derive the load shift on the traction axis: 

Front wheel drive (FWD): 

 

 𝐹𝑧 = 𝑚 (𝑔
𝑏

𝑙
−

𝑑𝑣

𝑑𝑡

ℎ𝑔

𝑙
 ) ( 34 ) 

 

Rear wheel drive (RWD): 

 

 𝐹𝑧 = 𝑚 (𝑔
𝑎

𝑙
+

𝑑𝑣

𝑑𝑡

ℎ𝑔

𝑙
 ) ( 35 ) 

 

All wheel drive (AWD): 

 

 𝐹𝑧 = 𝑚𝑔  ( 36 ) 

 

 

3.3.3 Range 
This block is aimed to compute the vehicle range, the distance is computed integrating the speed 

over the time, the result is converted from meter to kilometers dividing it by 1000. 

 

 𝑑 =
1

1000
∫ 𝑣 𝑑𝑡

𝑡𝑓

𝑡0

 ( 37 ) 

 

The range block will be exploited for the evaluation of the vehicle range for the driving cycles: 
WLTC and NEDC. 
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3.4 SPEED COMPARISON 
In the previous chapter were described how the torque coming from the electric motor was 

converted in vehicle speed, thanks to the driveline block. 

The actual vehicle speed will be compared with the refence vehicle speed instant per instant, in 
the below Figure 24, is showed the actual speed and the reference one of a WLTP cycle. 

 

 
Figure 24: WLTC actual speed vs reference speed. 

 

The differences between the two speed profiles, highlighted in the next Figure 25, will be 
analyzed by a proportional integrative controller that will produce as gain torque value. 
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Figure 25: WLTC speed comparison. 

 

The proportional integrative controller simulates a driver behavior and has the objective to 
follow the reference speed profile.  

The Proportional and Integrative values have been chosen experimentally, paying attention that 
the torque and engine speed values of the motor map will be in acceptable range, and that energy 
consumption is compatible with the energy evaluated during the forward model. 

 

3.5 MOTOR BLOCK 
This block represents the electric motor and the controller that manages the battery 

saturations.  

 

 
Figure 26: Motor block. 



42 
 

 

It receives as inputs from the vehicle block the actual speed, from the PI controller the torque 
request, from the battery the battery power and the depth of discharge, it returns to battery the electric 
power and sends to the vehicle block the torque. 

 

 
Figure 27: Motor block from inside. 

 

3.5.1 Motor Map 
The block includes two look-up tables, one table represents the torque curve of the motor, while 

the second one constitutes the efficiency map of the motor and the inverter, coupled together. 

 

 
Figure 28: Motor map. 
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The first input of the system is the actual vehicle speed that will be converted in engine speed, 
through: 

 

 𝑛 [𝑟𝑝𝑚] =
30 𝑖

3.6 𝜋 𝑅𝑒
𝑣 [𝑘𝑚/ℎ] ( 38 ) 

 

For each engine speed the correspondent maximum torque value will be gather from the motor 
map, already introduced in the Figure 44. 

This torque value is compared with the gain value retrieved from the PI controller. The 
minimum value among them will be the Torque output value. 

This torque value with the engine speed will be needed for the efficiency motor+inverter map. 

 

The efficiency maps of the motor and inverter are joined together for sake of simplicity, the 
values were gathered from internal sources and were changed in order to fit the torque and engine 
speed range of the considered motor.  

An example of motor efficiency map is showed below. 

 
Figure 29: Motor efficiency map. 
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 Is it clear to note that, contrary to an internal combustion engine, the efficiency range is 
extended also for negative values of the torque.  

 The negative values are due to the regenerative braking system of electric vehicles, the 
regenerative braking exploit the double function of the electric motor: deliver the traction acting as 
motor, absorbing the shaft rotation, acting as generator. During braking will be therefore possible to 
convert part of the braking energy and stock it in the battery pack. 

Differently from the internal combustion engines, the efficiencies values of the motor are quite 
higher, with an average value of 90 % for a wide range for rpm and torque. 

The efficiency map is represented in the model as a look up table, that for input values of torque 
and engine speed return an efficiency value. 

In parallel with this operation, the torque is multiplied by the engine speed, obtaining so the 
mechanical power: 

 𝑃 = 𝑇𝜔 ( 39 ) 

 

Where 𝜔 is the engine speed expressed in [rad/s]. 

At this stage the objective is to derive the electrical power needed by the motor to compensate 
the efficiency loss of the motor.  

The electric power calculation is so realized: 

 

 𝑃𝑒𝑙 = {

𝜂𝑃𝑚  , 𝑃𝑚 < 0
𝑃𝑚

𝜂
, 𝑃𝑚 ≥ 0

 

 

( 40 ) 

 

From the above system is possible to see that the electric power will increase respect the 
mechanical one when the vehicle is in traction condition, indeed is request more power to the battery 
respect the mechanical one. On the other hand, the electrical power will, instead, decrease during 
regenerative condition, limiting so the amount of energy that will recharge the battery. 

In summary, in this block the inputs are the actual vehicle speed and the torque request, the 
output of the system will be the torque values, chosen as minimum between the torque request and 
the motor map value, and the electric power, that will be the input of the battery block. 

3.5.2 Controller 
In this block is conducted a control to limit the torque output if two condition are reached, one 

coming from the thermal model and one depending on the battery charge. 
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Figure 30: Controller. 

 

 

Thermal saturation: 

If in the battery block there is a current saturation due to an overheating of the cells, the battery 
power, as consequence, will be saturated and so its value will be lower respect the electric power.  

A lower power coming from the battery, respect the expected one, leads to a reduction of torque 
output to the wheels. 

The algorithm which consider the power reduction is the following: 

 

 𝛼 = {

1 , 𝑃𝑒𝑙 − 𝑃𝑏𝑎𝑡 = 0
𝑃𝑏𝑎𝑡

𝑃𝑒𝑙
, 𝑃𝑒𝑙 − 𝑃𝑏𝑎𝑡 > 0

 

 

( 41 ) 

 

Where, the coefficient 𝛼, which is limited for value 0 < 𝛼 < 1, is exploited to calculate the 
saturated value of torque: 

 

 𝑇𝑏𝑎𝑡 = 𝛼𝑇 ( 42 ) 

 

The previous passage is consistence, since: 
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𝑃𝑏𝑎𝑡

𝑃𝑒𝑙
= 𝛼 =

𝜔𝑇𝑏𝑎𝑡

𝜔𝑇
=

𝑇𝑏𝑎𝑡

𝑇
 ( 43 ) 

 

Where the engine speed 𝜔 have the same value, so can be cancelled out 

Discharge saturation: 

This section takes in analysis the current saturation due the current discharge of the battery 
pack. The parameter that represent the cell state of charge is called Depth of Discharge (DoD), and is 
expressed in percentage points, 0% means that the cell is fully charged, while 100% means that the 
cell is completely discharged.  

When the battery Depth of Discharge reach the value of 100% the current saturation is reached, 
and therefore no more batter power is available. The result is that the motor will stop to provide torque 
to the wheels and the vehicle. Hence, the vehicle will quickly stop. 

To conclude, the torque value available to the vehicle block will be the one coming from the 
motor map, unless there is a saturation coming from the controller. 
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3.6 BATTERY BLOCK 
The aim of this model block is to represent the electric vehicle’s battery pack. 

 

 
Figure 31: Battery block from outside. 

 

The only input of the system is the electric power computed in the motor block, see eq. ( 40 ),  
which represents the power absorbed by the motor to guarantee the mechanical power request to 
motion. 

The outputs of the model are the battery power, which differs from the electric power in the 
cases of current or thermal saturation, the depth of discharge (DoD) and the state of charge (SoC), 
while the former shows the amount of discharge of the battery, the latter indicates the level of charge. 

 

 
Figure 32: Battery block from inside. 
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Figure 33: Vertical view of battery block. 
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As shown in the Figure 32 and Figure 33, is clear to note that the battery model is composed of 
several blocks, the first one derives the current from the electrical power input, then a saturation block 
allows to set limits on the positive current and the negative one (regenerative current), afterwards a 
thermal model evaluates the battery block temperature and eventually saturates the current, to 
conclude a cell model schematizes the battery cells configuration and evaluates its charge level.  

Further blocks are needed to evaluate the energy consumption of the battery and to convert the 
depth of discharge in the state of charge. 

3.6.1 Current 
The first block that appear is the current one, here the electric power will be divided for the 

current battery voltage, coming from the Cell model, obtaining so the actual current.  Analogously to 
the eq. ( 21 ): 

 

 𝐼 =
𝑃𝑒𝑙

𝑉𝑏𝑎𝑡
 ( 44 ) 

 

3.6.2 Saturation 
The saturation is exploited to limit overcurrent that can leads to a battery overheat and even to 

cells damage. The saturation limits positive value of current (ex: 300A) during traction request, and 
the negative value: (ex 100 A) in braking condition. 

3.6.3 Thermal model 
In this section will be illustrated the block scheme, the thermal model equations applied, and 

the de-rating control adopted. 

 

 
Figure 34: Thermal model. 

 

The first operation is to derive from the current the dissipated power, see eq. ( 45 ), then is the 
turn of the thermal model of 2nd order, which computes the variation of temperature, afterwards is 
evaluated the battery pack temperature adding the coolant one to the temperature variation, finally a 
thermal control through a de-rating strategy is applied. 
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Modelling 

[30] The optimal operating temperatures for a lithium ion battery range is from 20 ° C to 30 ° 
C, however, temperatures between -40 ° C and 60 ° C are also allowed. The greater is the cell's 
working temperature, the higher will be the aging rate. If the temperature becomes excessively high 
(over 80-100 ° C) the active materials inside of the cell may become thermally unstable. On the other 
hand, at low temperatures, the resistance to lithium ion transport is very high, limiting so 
electrochemical reactions and therefore the power that can be delivered.  

Temperature control is therefore a crucial factor both for performance and battery life. The most 
widespread thermal model for batteries [31], [30] is the electric circuit model (ECM). 

The thermal model developed is showed in the below picture [32], on the left there is 
represented as power supply the dissipated power, in the upper part are schematized two thermal 
impedances constituted by: 

• 𝑅𝑡ℎ Thermal resistance 
• 𝐶𝑡ℎThermal capacitance 

On the right the ambient temperature stands for the coolant temperature, this one will be added 
to the incremental temperature between the two thermal impedances, obtaining so the final battery 
pack temperature. 

 

 

 
Figure 35: Thermal model of 2nd order. 
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From the Joule’s effect, is known that the dissipated power is: 

 

 𝑃𝑑𝑖𝑠 = 𝐼𝑅𝑒𝑞
2  ( 45 ) 

 

Where the resistance 𝑅𝑒𝑞 is equivalent resistance so derived: 

 

 𝑅𝑒𝑞 =
𝑛𝑠

∑
1
𝑅𝑖

𝑛𝑝
1

 
( 46 ) 

 

Where: 

• 𝑛𝑠 is the number of resistances in series. 
• 𝑛𝑠 is the number of resistances in parallel. 
• 𝑅 is the resistance value 

Once the equivalent resistance is known, multiplying it fir the square of the instant current, the 
instant dissipated power is computed, as shown in eq. ( 45 ). 

At this stage is necessary to introduce the thermal resistance and capacitance values, which are 
chosen from simulation data. 

 

The analytical scheme of the 2nd order system is the following: 

 

 Δ𝑇 = 𝑃𝑑𝑖𝑠 (
1

1
𝑅𝑐ℎ1

+ 𝐶𝑐ℎ1
𝑑𝑃𝑑𝑖𝑠

𝑑𝑡

+
1

1
𝑅𝑐ℎ2

+ 𝐶𝑐ℎ2
𝑑𝑃𝑑𝑖𝑠

𝑑𝑡

) ( 47 ) 

 

 

To solve the system, is introduced the Laplace transform. 

Writing the variables in this manner: 

• Δ𝑇(𝑡) = 𝑌(s) 
• 𝑃𝑑𝑖𝑠(𝑡) = 𝑋(𝑠) 

Where 𝑠 represents the Laplace variable, the Transfer Function will be: 𝐺(𝑠) = 𝑌(𝑠)/𝑋(𝑠). 
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Figure 36: Transfer function. 

 

The Transfer function in the Laplace domain is so written: 

 

 𝐺(𝑠) =
𝑅1

1 + 𝜏1𝑠
+

𝑅2

1 + 𝜏2𝑠
 ( 48 ) 

 

Where: 

• 𝑅1 = 𝑅𝑐ℎ1  gain of the 1st branch 
• 𝑅2 = 𝑅𝑐ℎ2  gain of the 2nd branch 
• 𝜏1 = 𝑅𝑐ℎ1𝐶𝑐ℎ1  transient of the 1st branch 
• 𝜏2 = 𝑅𝑐ℎ2𝐶𝑐ℎ2  transient of the 2nd branch 

The final shape of the transfer function will be: 

 

 𝐺(𝑠) =
𝑎𝑠 + 𝑏

𝑐𝑠2 + 𝑑𝑠 + 1
 ( 49 ) 

 

Where: 

• 𝑎 = 𝑅1𝜏2 + 𝑅2𝜏1 
• 𝑏 = 𝑅1 + 𝑅2 
• 𝑐 = 𝜏1𝜏2 
• 𝑑 = 𝜏1 + 𝜏2 

Exploiting the inverse Laplace transform: 

 

𝑔(𝑡) = 𝐿−1(𝐺(𝑠)) 
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 Where: 

 𝑔(𝑡) = Δ𝑇 

the final function is converted in time domain, therefore: 

 

 𝑇 = 𝑇𝑎𝑚𝑏 + Δ𝑇 ( 50 ) 

   

 
Figure 37: Temperature vs time for different values of current. 

 

De-rating control 

To avoid exposing the battery cells at critical temperatures, a saturation control is needed, the 
working principle is to saturate the current flowing through the cells, reducing so the dissipating 
power for the highest temperature lowering the temperature, while at low temperature is necessary to 
interrupt the current to flow avoiding an excess of energy waste due to a high electrochemical 
resistance. 
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The control is enabled thanks to a look-up table, see next Figure 38, that for each value of 
temperatures return a coefficient value that goes from 0 to 1. The current will be multiplied by the 
coefficient value; therefore, it will be lower than the incoming current if the temperature is lower than 
10 °C or higher than 50°C, otherwise it would not vary.  

 
Figure 38: Thermal battery saturation's coefficient. 

 

To summarize and conclude this section, this model receives as input the current and returns 
the battery pack temperature and the de-rated current. 

 

3.6.4 Battery pack model 
This model has in charge to represent the cells layout and their characteristics, which is 

described by the open circuit voltage curve vs depth of discharge, see Figure 41. 

 
Figure 39: Cell model. 
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The input is the current coming from the thermal model, while the outputs are the battery 
voltage, the saturated current, and the battery depth of discharge. 

DOD model 

The first step of this model is to evaluates the depth of discharge, the calculation is based on 
the following equation: 

 

 𝐷𝑜𝐷 [%] = 𝐷𝑜𝐷0 +
100

3600𝐶
∫ 𝑖𝑑𝑡 ( 51 ) 

 

Where: 

• 𝐷𝑜𝐷0 [%] is the depth of discharge of the battery at time 0 
• 𝑖 [𝐴] is the current 
• 𝐶 [𝐴ℎ] is the battery capacity, so evaluated: 

 

 𝐶 = 𝑛𝑝𝐶 ( 52 ) 

 

Where: 

• 𝑛𝑝 is the number of cells in parallel 
• 𝐶 [𝐴ℎ] is the cell capacity 

The DoD value will be used in the next block to derive the open circuit voltage of the cells; 
furthermore, the current will be saturated when the DoD reach the value of 100 %. 

Battery pack 

In this section will be discussed the development of the battery pack model. 
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Figure 40: Battery pack block. 

The first input is the value of the depth of discharge, it enters in the look-up table with the cell 
open circuit voltage (OCV) vs DoD values. 

OCV vs DoD characteristic 

Every battery has a voltage values that has a maximum peak when it is fully charged and slowly 
decreases till its minimum value when it is completely discharged. 

The voltage value is called Open Circuit Voltage OCV, every cell is described by a discharging 
curve characteristic.  

The cell taken in exam has the following open circuit voltage behavior: 

 

 
Figure 41: OCV vs DoD.   
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Is it clear to note that when the cell is fully charged has a voltage of 4.2 V, then steeply decreases 
to 4.0 V for a depth of discharge of about 5 %, then in a range of 5 % to 95 % the OCV has a linear 
characteristic that will bring the voltage from 4.0 V to 3.4 V. Finally, the OCV drops to 2.7 V for 
DoD that are approaching the 100 % value. 

The second output is the current, together with the open circuit voltage value and the cell 
internal resistance, creates the electric circuit model of the cell, schematized below: 

 

 
Figure 42: Electric circuit model of the cell. 

The internal resistance is gathered from the technical data and is considered as a constant, since 
the cell configuration can of parallel type the internal resistance 𝑅0 is so computed: 

 

 𝑅0 =
𝑅

𝑛𝑝
 ( 53 ) 

 

Where: 

• 𝑅 is the internal resistance of the cell, 
• 𝑛𝑝 is the number of cells in parallel. 

Therefore, the cell in parallel voltage, can be so derived: 
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 𝑉𝑐𝑒𝑙𝑙 = 𝑂𝐶𝑉 − 𝑅0𝐼 ( 54 ) 

 

To conclude, the battery pack voltage is evaluated, multiplying the cell in parallel voltage times 
the total number of cells in series: 

 

 𝑉𝑏𝑎𝑡 = 𝑛𝑠𝑉𝑐𝑒𝑙𝑙 
( 55 ) 

 

3.6.5 Outputs 
The ending part of this model is composed of the system outputs, the first output is the depth 

of discharge computed by the battery pack model. The second output is the battery power, calculated 
starting from the battery pack outputs: saturation current and battery voltage, exploiting the electric 
power definition: 

 

 𝑃𝑏𝑎𝑡  [𝑊] = 𝑉𝑏𝑎𝑡𝐼𝑠𝑎𝑡 ( 56 ) 

 

The battery power is needed also to compute the battery energy consumption, thanks to the 
following formula: 

 

 𝐸 [𝑘𝑊ℎ] =
1

3.6 ∗ 10−6
∫ 𝑃𝑏𝑎𝑡𝑑𝑡 ( 57 ) 

 

The energy value is useful to evaluate the effectiveness of the regenerative braking, it is 
reachable simply evaluating the difference, in terms of energy consumption, of one driving cycle with 
and without the limit on the negative current. 

To conclude, the last output is the state of charge, that is complementary to the depth of 
discharge parameter: 
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 𝑆𝑜𝐶 [%] = 100 − 𝐷𝑜𝐷 ( 58 ) 

 

While the depth of discharge starts from 0% when the battery is fully charged and reach the 
value of 100% when is fully discharged, the state of charge does the opposite, it signals 0% for an 
empty battery and 100% for a fully charged one.  
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4 MODEL VALIDATION  
To support and validate the thesis work has been chosen an electric vehicle with known 

technical data and performance, the vehicle chosen is the Renault Zoe. 

 

 

 
Figure 43: Renault Zoe. 

 

Most of the information needed to develop the model were available in the next table, some of 
them has been retrieved from different sources: 

Engine map efficiencies: from internal data of a similar motor 

The motor inertia: from a similar motor [33] 

Wheel Inertia: from an appendix of the book: [17]. 

Rolling resistance coefficients: Class C pneumatic reference. 

Transmission efficiency: from similar drivetrain [33] 

Cell data: Kokam pouch cell, see Table 1, with the cell capacity changed to fit the battery 
available energy, see Table 3 



62 
 

Table 2: Renault Zoe technical data. 
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As visible in the Table 2, for the Renault Zoe are available several technical data, the used are 
listed below. 

Vehicle data 

• Vehicle mass 
• Aerodynamics 
• Mass distribution F/R 

Powertrain data 

• Motor characteristics: 
o Max power 
o Rpm range with max power 
o Max torque 
o Rpm range with max torque 

Wheel data 

• Tire dimensions 

Battery data 

• Technology 
• Number of cells 
• Available energy 

 

The data, instead, exploited to validate the model are: 

Performance 

• 0-50 km/h (s) 
• 0-80 km/h (s) 
• 0-100 km/h (s) 

Range 

• NEDC range 

Battery 

• Available energy 
• Weight 

 

In the next paragraph will be illustrated the results of the model starting with the forward 
approach model, to conclude with the backward approach one. 
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Motor  

 Derived from abovementioned technical data: 

 

 
Figure 44: Zoe motor electric power Torque map 

Cell input: 

 

Table 3: Kokam pouch cell modified data. 

Nominal voltage 3.7 V 

Capacity 34.5 Ah 

𝑐 − 𝑟𝑎𝑡𝑒𝑛𝑜𝑚 5  

𝑐 − 𝑟𝑎𝑡𝑒𝑝𝑒𝑎𝑘 8  

Weight 1080 g 

Internal resistance 0.009 Ohm 
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4.1 FORWARD APPROACH MODEL RESULTS 
Performance 

• 0-50 km/h: 3,72 s 
• 0-80 km/h: 8,28 s 
• 0-100 km/h: 13,48 s 

Battery 

• n° series = 96 
• n° parallel = 2 
• Battery energy = 25,9 kWh 
• Available battery energy = 22 kWh (85%) 
• Weight = 207 kg 
• Pack weight = 280 kg 

Range 

• NEDC: 205 km 
• WLTP: 167 km 

 

The main result of the forward model is the battery pack model, below is showed a table with 
the model results one the left side and the Zoe technical data on the right side. 

 

Table 4: Battery results comparison. 

Parameters Model results Zoe battery pack data variation 

n° cells 192 192 0% 

n° cells in parallel 2 - - 

n° cells in series 96 - - 

Total energy [kWh] 24.5 - - 

Available energy [kWh] 22 22 0% 

Battery pack weight [kg] 280 290 -3.5% 

 

The table clearly shows as the battery pack results can be assumed affordable in predicting or 
verifying the battery pack design. 
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4.2 BACKWARD MODEL RESULTS 
 

Performance 

Table 5: Performance comparison. 

speed / 
mux 0,8 0,85 0,9 0,95 1 Zoe 𝚫 

0-50 4,4 4,25 4,1 3,95 3,8 4 -6.25% 

0-80 8,7 8,5 8,3 8,2 8 8,6 -1% 

0-100 13,1 13 12,8 12,65 12,55 13,5 -3.7% 

0-135 26,9 26,8 26,6 26,5 26,35 - - 

 

 
Figure 45: Renault Zoe evaluated performance. 
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As showed in the above Table 5, and Figure 45: Renault Zoe evaluated performance., the 
performance curve are obtained for several values of the static coefficient of friction 𝜇𝑥, the results 
are quiet accurate, especially for 𝜇𝑥 = 0.85.  

In the specific the most accurate value, independently from the chose friction coefficient is the 
time to reach 0-80 km/h. 

Range 

Table 6: Range comparison 

Cycle Range [km] Zoe range [km]  

NEDC 217,4 210-240 

WLTC 175,6 - 
 

The range results are validated by the data provided about NEDC range, as visible in the above 
table, there are two values for the NEDC range, one is achieved with an electric motor of first 
generation, the other one with a new generation motor. Since the efficiency motor of both the electric 
motor are not retrievable, an in-house map was used, therefore a higher accuracy is not possible to 
achieve with the available information. 
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5 CASE STUDY 
After the thesis work validation, the longitudinal dynamic model is exploited to predict the 

performance and the range behavior of an electric vehicle in development. Moreover, some battery 
parameters as current, state of charge and temperature are plotted, since are useful to calibrate the 
battery management system of the vehicle in development. 

The electric vehicle considered belongs to the b segment with rear wheel drive, the main 
technical data are listed below. 

Vehicle data 

• Curb mass: 𝑚 = 1380 𝑘𝑔 
• Mass distribution F/R: 45/55 % 
• Aerodynamic coefficient: 𝑆𝐶𝑥 = 0.732 𝑚2 
• Wheelbase: 𝑙 = 2580 𝑚𝑚 
• Height of the center of mass ℎ𝑔 = 450 𝑚𝑚 

Powertrain data 

• Motor inertia: 𝐽𝑚 = 0.06 𝑘𝑔𝑚2 
• Transmission ratio: 𝑖 = 9.59 
• Transmission efficiency: 0.97 

 

 
Figure 46: CS Motor map. 
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Tire data 

• 155/70 R19 
• Wheel inertia: 𝐽𝑤 = 0.6 𝑘𝑔𝑚2 
• Static friction coefficient: 𝑓0 = 0.0084 
• Dynamic friction coefficient: 𝑘 = 6.5 10−6𝑠2/𝑚2 

Battery data 

• Cell: see Table 1 
• Battery pack: 

 

Table 7: CS Battery pack configuration. 

n° cells 216 

n° cells in parallel 2 

n° cells in series 108 

Total nominal voltage 400 V 

Total energy  42.4 kWh 

5.1 PERFORMANCE AND RANGE RESULTS: 
The expected performance and the vehicle range with the standard driving cycle NEDC and WLTC 
are summarized in the below table and shower graphically in the following pictures.  

 

Performance 

0-40 km/h 3.0 s 

0-80 km/h 6.5 s 

0-100 km/h 9.4 s 

0-160 km/h 31.0 s 

Range 

NEDC 338.1 km 

WLTC 272.0 km 
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Performance 

 
Figure 47: CS Performance. 

 

In the next pages are illustrated the vehicle range for NEDC and WLTC cycles, is worth to note that 
the motor torque is stopped when a value of 15% of state of charge is reached, this limit is imposed 
to preserve the battery capacity during its lifecycle.  
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5.1.1 NEDC range 

 
Figure 48: CS NEDC range. 
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Figure 49: CS NEDC range and SoC. 
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5.1.2 WLTC range 

 
Figure 50: CS WLTC range. 
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Figure 51: CS WLTC range and SoC. 
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5.2 BATTERY PARAMETERS 
In this section will be showed a specific speed cycle with severe acceleration so that the current 

behavior either in traction and in regenerative braking is showed. 

 
Figure 52: CS reference cycle. 

 
Figure 53: CS SoC and Current for Repeated reference cycle 
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5.3 REGENERATIVE BRAKING 
The aim of this paragraph is to show how to change some parameters directly on Simulink, in 

the specific will be illustrated how to set the limit on the negative current, in order to regulate the 
amount of regenerative braking. 

Opening the saturation block inside the battery block, see Figure 31: Battery block from 
outside., will be displayed the following window: 

 

 
Figure 54: Simulink - Regenerative braking. 

In the upper picture is showed an example of 1 NEDC cycle ran, with a regenerative current 
limit set to -150 A and a consequent energy consumption of 1.169 kWh. 

If the negative current limit is set to 0 A, the energy consumption will raise to 1.51 kWh, as 
shown in the below figure: 

 

 
Figure 55: Simulink - No regenerative braking. 
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This simulation is interesting because shows how much energy can be saved thanks to the 
regenerative braking, in the next table will be collected the difference in terms of energy consumption 
of using or not a regenerative braking. 

 

Table 8: Energy comparison. 

Cycle Reg. Braking  No Reg. Braking Variation 

NEDC [Wh] 1169  1510  +29 % 

WLTC [Wh] 3094 3882  +25 % 

 

5.3.1 Total range comparison 
In this section is compared the total vehicle range with the driving cycles with the regenerative 

braking and without it. 

NEDC 

 
Figure 56 :CS NEDC range with and without regenerative braking. 
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WLTC 

 
Figure 57: CS WLTC range with and without regenerative braking. 

 

In the below table are summarized the range values of both the standard cycles, highlighting 
the regenerative braking impact and the range. 

 

Table 9: Range comparison. 

Cycle Reg. Braking (-150 A) No Reg. Braking Variation 

NEDC [km] 338.1 263 +28.5 % 

WLTC [km] 272 215.3 +26.3% 

 

The results show that the regenerative braking allows an extension of range of more than 25 % 
respect the case with no regenerative braking, that is an interesting value, knowing that the range is 
represents one of the weakest points of the electric mobility. 



80 
 

5.4 THERMAL BATTERY MANAGEMENT 
The model is equipped with a thermal management control, in the below picture is illustrated 

how the intervention of the de-rating control, during a performance cycle, prevent the battery pack to 
reach temperature above 60°C. 

 

 
Figure 58: CS temperature and speed. 
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6 USER GUIDE 
In this last chapter will be showed how to use the backward approach model to retrieve the 

desired outputs. 

The user guide is divided in two paragraphs, the first one concerns the input insertion using the 
Matlab model, while the second one is about the result visualization developed on Simulink. 

6.1 MATLAB 
The editor page of the model is exploited to insert the main vehicle and tire inputs and to 

initializes the other pages containing functions with different inputs, grouped by their common 
properties.   

All the most important Matlab files will be showed and explained below. 

6.1.1 Run 
This page is the editor one, used to initialize all the input of the model. 

 

 
Figure 59: Matlab - Run. 

 

In addition to the editor functions, this page loads the workspace with the following input data: 

• Vehicle mass 
• Drag coefficient 
• Transversal surface 
• Tire width 
• Tire aspect ratio 
• Wheel diameter 
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6.1.2 Vehicle 
This Matlab function collects data and computes preliminary calculus needed for the vehicle 

block in Simulink model, see paragraph 3.3.  

 

 
Figure 60: Matlab - Vehicle. 
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6.1.3 Motor 
Here, two motor maps are loaded, the first map collects the torque vs speed plot data, whereas 

the second one refers to the efficiency of the electric motor. These maps will be used in the Simulink 
Motor block, see 3.5. 

 

 
Figure 61: Matlab - Motor. 

  



84 
 

6.1.4 Battery 
In this section is dedicated to upload the cell characteristics as the state of charge vs depth of 

discharge curve, internal resistance, and to evaluate battery pack parameters as total number of cells 
in series and in parallel. These data will be needed in the Battery Simulink block, see paragraphs 3.6.2 
and 3.6.4. 

 

 
Figure 62: Matlab - Battery. 
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6.1.5 Thermal model 
This last section concerns the thermal battery parameters necessary to evaluate the battery pack 

warming. These parameters are the thermal resistance and capacitance, the Simulink block that refers 
to the abovementioned data is the thermal model, see 3.6.3, that is inside the battery block. 

 

 
Figure 63: Matlab - Thermal model. 

 

6.1.6 Workbench 
Once the editor has been run, all the necessary data are automatically uploaded in the 

workbench; hence, is possible to open the Simulink file. 
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6.2 SIMULINK 
The Simulink model allows to choose among different reference cycle and to retrieve desired 

output as: 

• Vehicle speed 
• Vehicle range 
• State of Charge 
• Current 
• Power  
• Torque 
• Motor speed 
• Energy consumption 
• Others 

Moreover, is possible to set some parameters directly from the Simulink interface, following 
pictures will shows how to use the Simulink tool. 

 

 
Figure 64: Simulink - Overview. 
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6.2.1 Speed cycles 
Referring to the Figure 64: Simulink - Overview., on the right side is showed a multiport switch 

that can select the desired cycle: 

• Performance (high gain) 
• NEDC 
• WLTC 
• Test (see Figure 52: CS reference cycle.) 

The selection is done typing the reference cycle number in the above block called button, the 
time for witch the cycle will be run has to be imposed on the simulation stop time display. 

 

 
Figure 65: Simulink - Multiport switch. 
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7 CONCLUSION 
The thesis work gives a software tool capable to simulates the longitudinal dynamic behavior, 

with either a forward and backward approaches, of an electric vehicle and to show the main results 
as vehicle performance and range. 

The model subdivides the electric vehicle systems in its main components: vehicle, motor and 
battery, this division allows a clear vision of the relationships between each main component. The 
model is also equipped with the standard driving cycles needed to define the vehicle range. 

A particular attention is dedicated to the battery system, which is the main core of the electric 
vehicle. The battery block includes the Li-ion cells characteristics and a thermal model of 2nd order, 
which is justified by the cells’ sensitivity to high temperatures, that can compromise the battery 

performance and durability. 

The model is available to include more specific information, when available, for instance is 
possible to substitute the constant internal cell resistance with a look up table, containing the 
resistance variation due to different operating battery pack temperature.  

To conclude, the work done can be exploited to evaluate and predict the performance and range 
for any full electric vehicles, with an accuracy proportional with the amount of available technical 
data. 
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