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Abstract

This Master Thesis describes the implementation of a data-driven shape
optimization pipeline in a naval architecture application. We investigate the
use of Reduced Order Methods (ROMs) in order to improve the efficiency
and applicability of the techniques, also in an industrial setting.

The above-mentioned pipeline is applied to a realistic cruise ship in order
to reduce the total drag applied. We begin by defining the design space, gen-
erated by deforming an initial unoptimized shape in a parametric way using
Free Form Deformation (FFD). The evaluation of the performance of each
new hull is determined by simulating the flux via finite volume discretization
of a biphase (water and air) fluid. In order to improve the efficiency of the
simulation over a new shape, we use ROMs, in particular Proper Orthogonal
Decomposition with Interpolation (PODI). Finally, a genetic optimization
algorithm is used to explore the design space, using PODI for efficient eval-
uation of the flows.

Other applications of ROMs are considered apart from the efficient reso-
lution of the numerical problem, which are the approximation of dynamical
systems via Dynamic Mode Decomposition (DMD) and reduction of the di-
mensionality of the parameter space.

Keywords— finite volume method, computational fluid dynamics, re-
duced order modeling, free form deformation, shape optimization
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Introduction

In this Master Thesis we investigate the role of Reduced Order Methods
(ROMs) for the efficient resolution of a shape optimization problem applied
to naval architecture. The object of the optimization is an already built and
sailing cruise ship. The aim is to test the applicability of the algorithm and,
in case of positive results, employ it in the future for the design of new ships.

This work has been done in collaboration with Fincantieri S.p.A and
Scuola Internazionale di Studi Superiori Avanzati (SISSA), in the context of
Horizon 2020 ERC Consolidator Grants, inside the Advanced Reduced Order
Methods with Applications in Computational Fluid Dynamics (AROMA-
CFD) framework, and originated as a continuation and extension of previous
works, such as for example [1], [2] and [3].

A shape optimization problem consists of finding the optimal geometric
configuration of an object in terms of some performance to be maximized and
some constraints to be fulfilled. In particular, we design a complete shape
optimization pipeline that, given an initial guess for the shape of the hull,
returns an optimal deformation of it. We measure performance in terms of
total resistance applied to the ship, or drag, and we apply some constraints
on the possible deformations to be explored in the optimization process.

The generality in which we have defined shape optimization problems
entails a vast field of applicability, ranging from basic and applied sciences
to engineering and industrial applications. A challenging feature of this class
of problems is that, in order to tackle it, one usually needs to make use of
different tools coming from different branches of sciences and mathematics.

In fact, the basic aspects that need to be considered in resolving this class
of problems are:

1. the geometrical description of the object of interest and the implemen-
tation of a technique able to generate the different designs to be tested,
also considering the possible constraints imposed;

2. the evaluation of the performance of the newly generated shapes, that
in our case, for example, consists of solving a fluid dynamics problem
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by means of numerical simulation;

3. the exploration of the design space using an optimization algorithm,
returning as a final output the solution of our problem.

All the steps mentioned are critical and require particular caution in order
to establish which is the best methodology to use and how to implement it in
a way that is more suited for the particular problem at hand. In this work,
some possible choices are implemented and tested in order to select the most
efficient configuration.

In choosing how to perform the steps declared above, an aspect needs not
to be overlooked: the computational time required. This point is crucial in
industrial applications, where the computation of a coarse numerical solution
is often preferred to a more accurate, but more time-consuming, one.

Between the three steps mentioned above, the aspect of computational
parsimony is particularly important in the second one. This is because the
numerical simulation of an industrial fluid dynamics problem is, in most
cases, a very complex task, requiring a heavy computational load in order
to be performed. For this reason, a lot of efforts has been made both by
the Computational Fluid Dynamics (CFD) community, formulating more
sophisticated techniques to tackle the problem, and by the High Performance
Computing (HPC) community, in order to speed up the computations by
means of advanced serial and parallel programming techniques.

This is the framework in which ROMs can play an important role. Re-
duced order methods are a large and diverse class of techniques developed
from different communities of research for different kinds of applications. The
common factor between these methodologies is the purpose of reducing the
complexity of a mathematical model and its numerical approximation.

The main application of ROMs is in the context of parametric Partial
Differential Equations (PDEs). A parametric PDE is a partial differential
equation in which one or more parameters are introduced in the formulation,
making the solution of the problem parameter-dependent. In particular, the
parameter introduced in our case is related, in a way that will be more clear
in Chapter 2, to the geometrical shape of the vessel. If the resolution of
the numerical problem associated to the PDE (that will be denoted as Full
Order Model (FOM)) for a particular value of the parameter is particularly
expensive, as it is in our case, and if this solution needs to be computed for
different values of the parameter, the computational time required becomes
inadmissible, especially from an industrial point of view. Using ROMs we
can build a reduced version of the FOM (that will be denoted as Reduced
Order Model (ROM)) that returns an approximate solution in a very short
time.



Apart from the parametric PDEs application, ROMs can also be applied
to other contexts. In this work, we consider an application to dynamical
systems, using a technique called Dynamic Mode Decomposition (DMD),
and an application to the reduction of the dimensionality of the parameter
space.

The structure of this work is the following:

• Chapter 1 (Reduced Order Methods): In this chapter, we introduce
the reader to ROMs, giving some motivations and some basic ideas.
We present here the methodologies that we use in this work, that is
Proper Orthogonal Decomposition (POD), with the Proper Orthogonal
Decomposition with Interpolation (PODI) variant, and Dynamic Mode
Decomposition (DMD).

• Chapter 2 (Geometrical Shape Parametrization): In this chapter, we
present the case study. After that, we introduce Free Form Deformation
(FFD), a technique used to obtain parametrical geometrical deforma-
tions of the unoptimized shape and, finally, a possible reduction of the
parameter space that employs POD.

• Chapter 3 (Full Order Model): In this chapter, we present the FOM
for the simulation of the physical problem. We discuss here the con-
tinuous model (Navier-Stokes equations with some modifications) and
the discretization technique (Finite Volume Method).

• Chapter 4 (Numerical Results): In this chapter, we show how the dif-
ferent ingredients we have presented in the previous chapters perform.
Finally, we introduce the optimization algorithm and present the final
results obtained.

Trieste and Torino, September 2019.





Chapter 1

Reduced Order Methods:
Theory and Applications

Reduced Order Methods (ROMs) are a broad category of methods and
techniques used to reduce the complexity of a mathematical model and pos-
sibly the computational cost required to obtain its solution numerically. The
contexts in which this reduction is convenient are numerous in engineering
and basic or applied sciences. This chapter intends to give some examples of
such cases, to discuss some important issues related to ROMs and, finally, to
introduce from a mathematical point of view the methodologies used in the
following chapters.

We begin with some motivations for ROMs and some examples of ap-
plications. After that, we discuss in more detail Reduced Basis ROMs and
the technique that will be used extensively during this work, i.e. Proper Or-
thogonal Decomposition (POD), with the PODI (POD with interpolation)
variant. For this purpose, we will briefly recall the theory of Singular Value
Decomposition (SVD). Finally, we discuss Dynamic Mode Decomposition
(DMD) as a tool for reduction in the case of time-dependent problems.

1.1 Motivations and Applications of ROMs

A possible reduction of the computational complexity operated in most
Computational Fluid Dynamics (CFD) problems, in particular in the ones
related to high Reynolds numbers, is done considering an averaged version
of the Navier-Stokes equations using an approach called Reynolds-Averaged
Navier-Stokes Equations (RANS) (see Section 3.4 or [4]). Another possible
simplification considers a version of the Navier-Stokes equations in which
viscosity effects are neglected, generating the potential equations (see for
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CHAPTER 1. REDUCED ORDER METHODS: THEORY
AND APPLICATIONS

example [5]). These techniques, that are widely used and known since more
than one century, can be seen in our context as model reduction techniques,
in which some physical or mathematical simplification is adopted in order to
reduce the computational complexity of the problem at hand.

Our attention, however, is directed to a particular class of ROMs, i.e.
Reduced Basis ROMs (RB-ROMs), ore more precisely Proper Orthogonal
Decomposition ROMs (POD-ROMs). An introduction to this class of meth-
ods will be given in Section 1.2, while for a more comprehensive treatment
of RB-ROMs and in general of the topics we will discuss in this chapter, we
refer for example to [6] or [7].

The main application of ROMs we will consider in this chapter is the
efficient solution of parametric Partial Differential Equations (PDEs). A
parametric PDE is a Partial Differential Equation in which one or more pa-
rameters are introduced either to account for uncertainty or to apply some
control/optimization to the physical or geometrical setting of the problem.
The contexts in which parametric PDEs are useful are countless, going from
solid and fluid mechanics, acoustics, electromagnetism, and problems in fi-
nance. In particular, our attention is, because of the problem we are consid-
ering, directed to CFD and, consequently, to Navier-Stokes equations.

An issue of primarily importance in the numerical resolution of PDEs is
the ability to simulate with a certain accuracy the problem at hand. How-
ever, in general, a compromise between the precision of the numerical solution
and the computational efforts required is mandatory, since many problems
encountered are very complex and a precise solution of them would be pro-
hibitive. This is for example the case of CFD problems with industrial appli-
cations, like the one we are considering in this work, in which very complex
geometrical configurations and high velocities make the completely faithful
resolution of the equations impracticable.

This is particularly true in the context of parametric PDEs since usually
we want to explore the parameter space and we need to solve the PDE for
different parameter points. A reduction of the computational complexity
is therefore essential, allowing the resolution of a multi-queries paradigm
(for example, an optimization process) in a reasonable time, with obvious
implications on the interest of those methods in the industry. This is, in
fact, the framework in which ROMs will be used in this work, in which a
shape optimization process is carried out.

Other contexts in which we may need to reduce the computational effort
for the resolution of a numerical problem are the cases in which the solution
needs to be solved in real-time, even on low-resource local devices (laptop,
tablet, smartphones). This is the case, for example, of control problems over
dynamical systems ([8]), problems in environmental sciences ([9]) or problems
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1.2. REDUCED BASIS REDUCED ORDER METHODS
(RB-ROMS)

with applications in finance.
Finally, ROMs techniques are gaining importance in some fields of engi-

neering and applied sciences in which the complexity of the problem at hand
is becoming increasingly high, either because of multi-physics couplings or
multi-scale settings. We have examples of this in nuclear engineering ([10]),
for the design of the cooling systems, or in fluid-structure interaction prob-
lems ([11]).

To conclude this section, we mention that parametric PDEs is not the
only field of applicability of ROMs techniques. For example, in this work,
we will use them in the context of:

• geometrical shape parametrization, as a pre-processing tool used to
reduce the dimensionality of the parametric space used for the PDE;
for more details on this aspect, refer to Section 2.4;

• dynamical systems, as a post-processing tool used to evolve the system
generated by the PDE to the asymptotic state; for more details on this
aspect, refer to Section 1.5.

1.2 Reduced Basis Reduced Order Methods

(RB-ROMs)

All the methodologies we will consider in this work fall into the category
of Reduced Basis ROMs (RB-ROMs).

We begin with a formal definition of a system of parametric PDEs in the
form:

find u(µ) ∈ X s.t.: a(u(µ), w;µ) = F (w;µ) ∀w ∈ X, (1.1)

where µ ∈ P is the parameter and u(µ) ∈ X is the exact solution of the
problem.

We introduce the notion of the solution manifold, that is the set of all
possible solutions of our parametric problem under the variation of the pa-
rameter:

M = {u(µ), µ ∈ P}. (1.2)

The exact solution in most of the cases is not available in an analytic
manner, and it is approximated numerically. The so-called truth solution
can be obtained using different techniques, where the most popular ones are
Finite Elements (FE) and Finite Volumes (FV). In this work, we consider a
finite volume approach. For a brief description of FV, refer to Section 3.4.

We denote the truth solution to our problem with uN , whereN represents
the number of degrees of freedom associated with it. This number is related
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to the discretization methodology employed and the dimension of the com-
putational grid. A high value of N implies a high dimension of the resulting
linear system and consequently a high computational cost.

The problem associated to the truth solution can be stated as:

find uN (µ) ∈ XN s.t.: a(uN (µ), w;µ) = F (w;µ) ∀w ∈ XN , (1.3)

where XN is a finite dimensional subspace of X of dimension N . The mani-
fold is then defined by:

MN = {uN (µ) µ ∈ P}. (1.4)

The final goal of RB methods is to approximate any element of this man-
ifold using a low number of basis functions, or modes, {χi(x)}Ni=1 that form
what we call the reduced basis. These N functions are globally defined over
the computational domain and are obtained using some pre-computed truth
solutions for particular parameter values. For more details on the possible
techniques that could be employed to compute the reduced basis, we refer to
Section 1.3. In particular, the technique we will consider, named Proper Or-
thogonal Decomposition (POD), considers a hierarchical orthonormal basis
generated using energetic considerations.

The reduced solution uNN ≈ uN is composed by a suitable linear combina-
tion of these modes:

uNN (µ) =
N∑
i=1

ξi(µ)χi(x), (1.5)

and the reduced formulation of the problem (1.3) becomes:

find uNN (µ) ∈ XNN s.t.: a(uNN (µ), w;µ) = F (w;µ) ∀w ∈ XNN , (1.6)

where XNN = span({χi(x)}Ni=1).
Hence, while the degrees of freedom associated with the truth solution N

are typically high, the degrees of freedom associated with the RB approxi-
mation are only N , where N � N .

This projection-based approach in which the original equations (1.3) are
projected onto the reduced basis obtaining (1.6) will be referred in the follow-
ing as the intrusive approach (for more details see for example [12] or [13]).
We will not go more in-depth on how this projection is performed since in
this work another technique, named Proper Orthogonal Decomposition with
Interpolation (PODI), will be used in order to obtain uNN . PODI will be
described in the following section and will be referred to as the non-intrusive
approach for reasons that will be more clear in the following.
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1.3. COMPUTATION OF THE PROPER ORTHOGONAL
DECOMPOSITION (POD) REDUCED BASIS

As a last remark, we highlight the fact that, as already said, to compute
the reduced basis we need a set of what can be called, using machine learning
nomenclature, training data, that is a set of truth solutions for particular
values of the parameters computed using the high fidelity solver. This is
usually the most expensive phase in the ROM pipeline, and the applicability
of ROMs techniques is often related to the size of the sampling needed to
obtain certain performances.

Connected to this last aspect, we mention here another important feature
of ROMs, that is the offline-online decomposition. By this, we mean that
the use of RB-ROMs techniques can be split, as we have already seen, in two
phases:

• an offline-phase, in which a set of high fidelity solutions are collected
and the reduced basis is computed by combining them;

• an online-phase, in which we project the problem onto the reduced
space and the solutions for new parameters are computed in an efficient
manner.

The first phase requires typically more computational time, having to rely
on the high fidelity solver, and is usually executed in high performance com-
puting clusters using parallel programming techniques. The second phase,
however, is quite inexpensive from the computational point of view and could
be done in low-end terminal or even tablet/smartphones, widening the field
of applicability of this method.

1.3 Computation of the Proper Orthogonal

Decomposition (POD) Reduced Basis

The first step of a reduced basis approach is the selection of a low dimen-
sional basis capable of expressing as good as possible the set of all possible
outcomes of our system of interest, whether it is a fluid dynamics problem,
the output of a deformation process or a dynamical system. These modes
could be then used to project the equation they were derived from and to
obtain a reduced version of it, with much lower dimensionality.

Proper Orthogonal Decomposition (POD). A possible choice for the
computation of the basis is proper orthogonal decomposition, which consists
basically of a SVD applied to a set of high fidelity solutions, which we now
describe.
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Let us begin with some notation. We will call a possible outcome of our
system y a snapshot and denote with m its dimensionality (y ∈ Rm). We will
then denote with n the number of snapshots collected in the offline phase,
and gather them in the snapshots’ matrix Y ∈ Rm×n:

Y =

 y1 y2 . . . yn

 . (1.7)

The matrix Y will, in general, have a rank d ≤ min(m,n) but, WLOG,
we will restrict ourselves to the case d = n < m.

The n < m condition is motivated by the fact that we are treating high
dimensional snapshots, in which n� m; for example, we may have values of
m of the order of the hundreds of thousands, while the number of snapshots
n will be of the order of hundreds.

The condition d = n instead is motivated by the fact that we are con-
sidering the output of a very complex system and it’s very unlikely that the
snapshots matrix will not be of full rank, i.e. that the space generated by its
columns could be approximated by a set of d < n vectors up to the epsilon
machine. However, the central part of POD is that, in some cases, a low-rank
approximation of the snapshots matrix can be generated by accepting a value
of the error higher than the epsilon machine, as we will soon show.

To proceed with notation, we call l the number of POD modes that will
be used to construct this approximation, with l < n < m.

We now recall, in the following Theorem, the singular value decomposi-
tion:

Theorem 1 (SVD) Given Y ∈ Rm×n of rank d = n < m:

• ∃σ1 ≥ σ2 ≥ ... ≥ σn > 0 (singular values);

• ∃Ψ ∈ Rm×m orthogonal with columns {ψi}mi=1 (left singular vectors);

• ∃Φ ∈ Rn×n orthogonal with columns {φi}ni=1 (right singular vectors);

with Y = ΨΣΦT and Σ =



σ1

. . .

σn


∈ Rm×n.
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1.3. COMPUTATION OF THE PROPER ORTHOGONAL
DECOMPOSITION (POD) REDUCED BASIS

The following properties hold:

1. Yφi = σiψi, i = 1, ..., n;

2. YTψi = σiφi, i = 1, ...,m;

3. ψi is an eigenvector of YYT with eigenvalue σ2
i (for i = 1, ...,m);

4. φi is an eigenvector of YTY with eigenvalue σ2
i (for i = 1, ..., n).

SVD is a very powerful tool used in a variety of applications. The third
property reported in the theorem states that to obtain the matrix Ψ one could
solve an eigenvalue problem on YYT , that we can interpret as a covariance
matrix on the snapshots. This observation suggests that in some sense, that
will shortly be more clear, the left eigenvectors are directions that maximize
the variance of the space spanned by these vectors.

To make the last assertion more precise, let us proceed with the formal
definition of the POD basis:

Theorem 2 (POD basis) Given Y ∈ Rm×n of rank d = n < m, {χi}li=1,
for l ∈ {1, .., n} is the POD basis of Y if and only if it is a solution of:

max
ψ̃1,ψ̃2,..ψ̃l

l∑
i=1

n∑
j=1

| < yj, ψ̃i >Rm |2 s.t. < ψ̃i, ψ̃i >Rm= δi,j, for 1 ≤ i, j ≤ n.

(1.8)

This can be read as: the POD basis is the one that maximizes the similar-
ity (as measured by the square of the scalar product) between the snapshots
matrix and its elements, under the constraint of orthonormality. In this
sense, when we obtain the l-rank POD basis, we have the set of dimension l
capable of optimally express the variance in the snapshots.

The link between POD and SVD is stated in the following theorem, that
can be proven using Lagrangian penalization techniques (see for example
[14]):

Theorem 3 Given Y ∈ Rm×n of rank d = n < m, its l-rank POD basis is
given by the set of the first l left singular vectors {ψi}li=1 Moreover, we have:

max
ψ̃1,ψ̃2,..ψ̃l

l∑
i=1

n∑
j=1

| < yj, ψ̃i >Rm |2 =
l∑

i=1

σ2
i . (1.9)

11



CHAPTER 1. REDUCED ORDER METHODS: THEORY
AND APPLICATIONS

What this theorem gives us are two important things: a practical way
of resolving problem (1.8) and a way to quantify the variance contained in
the l-rank POD basis. In particular, we can infer the quality of the l-rank
approximation given by the POD basis considering the following ratio:∑l

i=1 σ
2
i∑n

i=1 σ
2
i

. (1.10)

This is the equivalent of the statistical concept of R squared, which quantifies
the quality of a statistical model in terms of the fraction of explained variance
over total variance, that is what is reported in this formula.

For example, we can understand, looking at the decay of the values of σi,
how well a system could be expressed by a reduced method and what is the
value of l that is optimal to do so.

We report here two other interesting results that express the error gen-
erated by considering a truncated reconstruction of the snapshots matrix by
considering only the first l modes expressed in two different matrix norms:

||Y −ΨlΣlΦ
T
l ||22 =σ2

l+1,

||Y −ΨlΣlΦ
T
l ||F =

√√√√ m∑
i=l+1

σ2
i ,

(1.11)

where Σl ∈ Rl×l is build considering the first l singular values and Ψl ∈ Rm×l

and Φl ∈ Rn×l are built considering the first l columns of respectively Ψ and
Φ.

In (1.11), ||.||F is the Frobenius norm, computed as:

||M||F =

√√√√ n∑
i=1

m∑
j=1

M2
ij, (1.12)

and ||.||2 is the norm induced by the Euclidean norm over Rn, that can be
shown to be equal to the maximum singular value of the matrix.

Greedy generation. Another possibility for the generation of the reduced
basis is the greedy approach.

To understand the difference of this approach with respect to the standard
POD approach, we highlight how, in the latter, our strategy is composed by:

• an exploration of the solution manifold, performed computing the snap-
shots matrix;

12



1.4. PROPER ORTHOGONAL DECOMPOSITION WITH
INTERPOLATION (PODI)

• an analysis of the space explored, using SVD.

In the POD greedy approach instead, the idea is to build the base during
the exploration of the space. In particular, we begin with only one snapshot,
corresponding to the first element of the base, and then iteratively add a new
element to the base computing a new solution for a particular value of the
parameter. Doing this, we only need to solve a total of N truth solutions to
generate the N -dimensional reduced basis space.

However, to select in a proper way the new elements to be added to the
reduced basis, we must have available an estimator η(µ) that can predict the
error due to the model order reduction. Using this, the n + 1 parameter to
be added to the reduced basis space is the one that maximizes the error of
the previous reduced order model:

µn+1 = argmaxµ∈Pη(µ). (1.13)

The enrichment of the reduced basis is repeated until the maximal esti-
mated error is below a required tolerance.

The pro of using this approach is that the number of offline snapshots to
be computed is quite low and the offline phase is carried out more efficiently,
computing a new solution in the zone of the parameter space where we have
poor information. However, the reduced basis generated using this approach
is not guaranteed to be optimal, as the standard POD one was.

Another interesting characteristic of the standard POD basis as defined
in (1.8) with respect to the greedy basis is that it is a hierarchical basis,
in which the elements are ordered in terms of the energy contained (or the
variance explained). This characteristic authorizes us to truncate the basis
at any point in an optimal and simple way.

1.4 Proper Orthogonal Decomposition with

Interpolation (PODI)

PODI is an alternative to standard POD that is more used in the indus-
trial setting because of its ease of use and its flexibility.

In PODI the first phase, the generation of the reduced basis, is performed
in the same way as the standard approach. A significant difference, however,
is that while in intrusive POD we need to rely upon an open-source software
to compute the truth solutions, since in the online phase we will need to
have access to the source code in order to project the equations. In the
PODI approach, this is not necessary, and we can use commercial software
or even experimental data to train our model.

13
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AND APPLICATIONS

The reason why in PODI we have this freedom in the offline phase is that
the online phase is completely different from the standard POD one.

We recall here that the assumption of RB-ROMs is that the truth solution
of our problem uN can be approximated by the reduced solution uNN composed
by linear combination of spatial modes χi(x) multiplied by coefficients ξi(µ),
that is:

uN (µ) ≈ uNN (µ) =
N∑
i=1

ξi(µ)χi(x). (1.14)

In PODI then we define an interpolator considering as a function the
one that associates the value of the parameter µ to the modal coefficients
of the related solution {ξi(µ)}Ni=1. This multi-dimensional interpolator is
trained using the data coming from the snapshots matrix, in which both the
parameter values and the modes coefficients are known, and is then used
to infer the value of the coefficients associated with new parameters. The
values of the coefficients are then used to reconstruct the approximated truth
solution using (1.14).

This approach is entirely data-driven and is independent both on the
equations and on the physics of the problem. This has its advantages and
disadvantages. The ease of use and the complete freedom in the generation
of the snapshots, that are crucial in an industrial setting in which commercial
software are widely spread, correspond to a lower accuracy associated with
the reduced model.

An aspect we have not yet discussed is how the interpolation is carried
out. In this work, we have compared different choices of interpolation in term
of prediction error and the result of this comparison are presented in Section
4.3.

1.5 Dynamic Mode Decomposition (DMD)

Dynamic Mode Decomposition (DMD) is a data-driven ROM technique
that allows approximating the evolution of a complex dynamical system as
the combination of structures, or modes, that evolve linearly in time.

The basic idea and the main assumptions made for DMD are the same as
POD. We are given a dynamical system that at first glance exhibits complex
behavior, possibly non-linear and high dimensional, and we try to express
it as a linear superposition of modes, in a number that is typically much
smaller than the original dimension.

The workflow associated with DMD is also quite similar to the one associ-
ated with POD: we first need to collect a time series of fields that constitutes

14



1.5. DYNAMIC MODE DECOMPOSITION (DMD)

the snapshots matrix using which we can compute the POD modes (with the
corresponding singular values). The difference with POD is that the POD
modes extracted this way are then used in DMD to build a low dimensional
approximation of the linear operator that defines the evolution of the system.
We can then reconstruct the dynamics of the exact linear operator by con-
sidering an eigendecomposition of the approximated one, using the so-called
DMD modes. The DMD modes are spatial fields that often can be identified
with coherent structures in the flow and the eigenvalues associated define the
behavior of the corresponding mode, its growth/decay or its oscillations.

We now present the mathematical formulation of DMD. We begin by
expressing our dynamical system as an equally-spaced time series of data
vectors {x0,x1, . . . ,xn}, where xi ∈ Rm. The main assumption behind DMD
is that the snapshots can be generated, or approximated in the case of non-
linear dynamics, by the following linear dynamics:

xk+1 ≈ Axk, (1.15)

for a suitable finite dimensional matrix A ∈ Rm×m. This is, of course, a
hypothesis on the system and the applicability of DMD depend on it.

The aim of DMD is then to build a low-dimensional approximation of A,
using the values of xi for i = 0, ..., n, and then use it to infer the dynamics
for values of i greater than n. To do this, we proceed to arrange data into
matrices:

X =

 x0 x1 . . . xn−1

 , (1.16)

and

Y =

 x1 x2 . . . xn

 , (1.17)

where Y consists basically of a translation of X.
We now have that the condition (1.15) can be expressed as:

Y ≈ AX. (1.18)

At this point, we have that the best-fit matrix A is given by:

A = YX†, (1.19)

where † indicates the Moore-Penrose pseudo-inverse, that is the matrix that
minimizes the error:

||Y −AX||F , (1.20)
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where ||.||F is the Frobenius norm, computed as in (1.12).

While in theory it is possible to obtain A using (1.19), this is discour-
aged in practice because of its considerable dimension and the difficulties that
would arise in order to obtain it numerically. The idea is now to obtain infor-
mation on A, in particular its eigendecomposition, using a low-dimensional
approximation Ã.

To perform this, we compute the SVD of X obtaining1:

X = UΣVT , (1.21)

where U ∈ Rm×m, Σ ∈ Rm×n and V ∈ Rn×n. We assume here, as we already
did in the section regarding POD, that X is full rank n and that n < m.
For the sake of simplicity, we will denote with U, V and Σ the n-truncated
versions Un ∈ Rm×n, Vn ∈ Rn×n and Σn ∈ Rn×n, as defined in (1.11).

We then define the matrix Ã by projecting A on the first n left-singular
vectors of X, obtaining:

Ã = U
T
AU = UTYVΣ−1. (1.22)

We have thus obtained a low-rank linear operator Ã ∈ Rn×n that ap-
proximates the high-rank operator A ∈ Rm×m without the need to explicitly
computing the latter.

We now compute the eigendecomposition of Ã:

ÃW = WΛ. (1.23)

At this point it can be proven that only the first n eigenvalues of A are
non-zero. The corresponding eigenvector, contained in the matrix Φ ∈ Rm×n,
can be computed in two ways:

• by projecting the low-rank approximation W on the high dimensional
space, via:

Φ = UW, (1.24)

obtaining the so-called projected DMD modes ;

• by computing:

Φ = YVΣ−1W, (1.25)

obtaining the exact DMD modes.

1we restrict ourselves to the real case
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1.5. DYNAMIC MODE DECOMPOSITION (DMD)

We now show that the exact DMD modes are indeed the eigenvectors of
A and that the corresponding eigenvalues are the same of Ã. In fact, we

have that, using the relations A = YVΣ−1UT and Ã = U
T
YVΣ−1:

AΦ = ΦΛ

AYVΣ−1W = YVΣ−1WΛ

YVΣ−1UTYVΣ−1W = YVΣ−1WΛ

YVΣ−1ÃW = YVΣ−1WΛ

ÃW = WΛ.

(1.26)

A similar procedure could also be considered for the projected modes.
Using the exact DMD modes, we can reconstruct the linear dynamics via:

Y ≈ AX

≈ ΦΛΦ†X

≈ ΦΛΦ†
[
x0 x1 . . . xn−1

]
≈ ΦΛΦ†

[
x0 Ax0 A2x0 . . . An−1x0

]
≈ ΦΛΦ†

[
x0 ΦΛΦ†x0 ΦΛΦ†ΦΛΦ†x0 . . . (ΦΛΦ†)n−1x0

]
≈ ΦΛ

[
Φ†x0 ΛΦ†x0 Λ2Φ†x0 . . . Λn−1Φ†x0

]
≈ Φ

[
Λ Λ2 . . . Λn

]
Φ†x0.

(1.27)

Finally, the state xk can be approximated as:

xk = ΦΛkΦ†x0. (1.28)

We remark that the two possible approaches to build Φ (exact or pro-
jected) are alternative and lead to slightly different DMD reconstructions.
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Chapter 2

Geometrical Shape
Parametrization

This chapter deals with geometrical shape parametrization applied to
our case study, i.e. the hull of a cruise ship. More explicitly, we want
to define a finite set of control parameters that, properly tuned, generate
different deformations of an initial undeformed hull shape. The parameters
are expressed as a vector of real-valued variables µ ∈ RN , where N is the
dimensionality of the parametrization.

We begin with some motivations and preliminary considerations on geo-
metrical shape parametrization. Then we proceed with a description of the
undeformed hull in order to fix some terminology and to define which are the
constraints we will consider. Next, we briefly present Free Form Deformation
(FFD), underlining some aspects which are relevant in our case. Finally, we
mention a possible reduction of the parameter space that uses POD.

Because of the structure we decided to give to this work, the presentation
of the specific settings used for the deformation, the results of the deformation
itself and the results of the parameter space reduction are postponed to
Section 4.1.

2.1 Motivations and Preliminary Considera-

tions

Geometrical shape parametrization consists of the definition of a math-
ematical method, and consequently a numerical algorithm, that, given a
particular value of some predefined parameters, returns a deformation of an
initial undeformed geometrical object. This tool will be used in the shape
optimization pipeline for the generation of the design space explored by the
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CHAPTER 2. GEOMETRICAL SHAPE PARAMETRIZATION

optimization algorithm.
This step is of crucial importance since the generation of both a too

small and a too big design space would imply bad performances of the entire
pipeline. In fact, while in the case of a too small design space we would lose
some possibly well performing shapes, in the case of a too big design space
we would have difficulties in its exploration during the optimization phase.

For the definition of the parametrization, we will base ourselves on differ-
ent kinds of considerations, coming both from naval architecture and mathe-
matics. While the observations behind the methodology we will use, named
Free Form Deformation, are completely general and applicable to different
areas of engineering, the particular choices we will present pertain to the
hull deformation setting. They are moreover dependent on the aim for which
the deformation is performed and the particular ship considered. We note
at this point that, if the number of points in which the undeformed ship is
discretized is Np, where this number is of the order of hundreds of thousands,
and if any of these points could be moved independently in the 3 directions,
the number of parameters, i.e. the dimensionality of the parametrization,
would be N = 3 × Np. This number is prohibitive, leading to the need for
a huge sampling and consequently of a huge computational cost1. Moreover,
only a few of the configurations generated by this parameter space would
be interesting from a practical point of view (for example, a symmetry con-
straint would halve the dimensionality of the parameter space). From this
discussion, it is clear that a key feature our parametrization must possess
is low dimensionality, and in general we must try to avoid the introduction
of parameters that either have a low influence on the shapes generated or
generate shapes that we are not interesting for us.

As a last preliminary remark, we note that in this chapter all the quanti-
ties (lengths, areas, volumes) are given on the full scale and not on the scale
used in the simulations (see Section 3.1).

2.2 Case Study: A Fincantieri Cruise Ship

The hull we are considering here is taken from an already built and work-
ing cruise ship, illustrated in Figure 2.1.

The reference system we will consider, both in this chapter and in the
followings, is the one reported in the figure: the x-axis agrees with the di-
rection in which the ship is heading, the z direction is perpendicular to the

1the size of the sampling is connected to the error the ROM is able to generate. How-
ever, in general and independently of ROM, it is clear that the bigger the parameter space
is, the higher is the computational cost that one must employ to explore it
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2.2. CASE STUDY: A FINCANTIERI CRUISE SHIP

Figure 2.1: 3D view of the undeformed hull.

sea and directed to the sky and the y-axis is directed accordingly. As for the
center, it is placed near the lower-bottom part of the ship.

An important feature of the considered hull is that the central part of the
ship is made up of a rectangular parallelepiped that connects gradually and
smoothly on the front to the bow and on the back to the stern of the ship.
We anticipate at this point that our attention will be devoted to the frontal
part of the ship and, for this reason, the deformations will take place there.

Notations and terminology. In naval architecture a boat is divided, no
matter the size, in 20 chunks, generated by 21 equally spaced cuts obtained
with planes perpendicular to the x-axis. The first cut corresponds to the
origin of the x-axis, while the last one corresponds to the point of the water-
line that is furthest from the origin of the x-axis. The intersections between
our hull and these sections are illustrated in Figure 2.2, where on the left the
first 11 sections and on the right the last 10 sections are displayed. These fig-
ures, together with analogous figures2 obtained by intersections with planes
perpendicular to y and z (Figures 2.3 and 2.4), are essential tools in naval ar-
chitecture and will be used to confront the deformed hulls to the undeformed
one.

Another representation that is very useful in visualizing a hull shape is the
plot of areas, that represents in the abscissa the x value and in the ordinate

2regarding these sections, there is no standard convention on their number and loca-
tions. We have decided to consider 6 equally spaced sections in y and 9 equally spaced in
z
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CHAPTER 2. GEOMETRICAL SHAPE PARAMETRIZATION

Figure 2.2: x-sections of the undeformed hull. Section 0 to 10 on the left, 11
to 20 on the right.

Figure 2.3: y-sections of the undeformed hull.

Figure 2.4: z-sections of the undeformed hull.
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Section

A
re

a

Figure 2.5: Plot of areas of the undeformed hull.

Length between perpendiculars (LPP) 242.000 m
X-coordinate of aft perpendicular 0.000 m

Length on waterline (LWL) 251.520 m
Length overall submerged (LOS) 260.029 m

Breadth moulded on WL (B) 36.00 m
Draught moulded on FP (TF) 8.000 m
Draught moulded on AP (TA) 8.000 m

Table 2.1: Geometrical characteristics of the undeformed hull.

the submerged area of the x-section. In Figure 2.5 we report the plot of areas
of the undeformed hull. A feature characterizing the hull that can be visual-
ized in this plot is the flex point of the curve in the frontal part of the ship.
We mention that the fluctuations that can be observed in the frontal part of
the curve, in the zone of the bulbous bow, are relative to errors generated
by the numerical integration. We have decided not to consider higher order
integration techniques, that could have returned smoother results, since this
part of the curve is not interesting for our study.

Finally, in Table 2.1, we report some geometrical quantities associated
with the boat (for a precise definition of the properties listed, see [15]).

Deformation constraints. Clearly, not all the deformations of the origi-
nal hull are desirable or feasible, and so we want to impose some constraints.
These are useful to restrict the dimension and size of the parameter space, to
help us focus on portions of the hull that are, for the study we are perform-
ing, more interesting than others, and, finally, to fulfill some construction
constraints, given by laws or by the shipowner.

A very simple constraint, as already mentioned, is that we want symmet-
ric deformations in the y direction with respect to the longitudinal plane.
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CHAPTER 2. GEOMETRICAL SHAPE PARAMETRIZATION

Figure 2.6: Indication, in red, of the part of the undeformed hull where the
deformation will take place.

Another constraint is that we want to modify only the part of the ship
below the waterline. The reason for this is that the emerged part of the
hull is designed with other targets in mind, such as customer comfort and
shipowner indications. Moreover, being the water much more dense than air,
the main part of the resistance in a ship is given by water resistance. We
also have to note that, in the simulations we computed, the upper part of the
ship is not modeled in all its details, and so it would be useless to consider
its contributions to the drag.

As already mentioned, another requirement we impose is that we only
want to modify the frontal part of the ship, going from section 10 to 20,
where section 10 is more or less the part in which the parallelepipedal part of
the ship begins to tighten to link up to the bow. Clearly, the reason why we
impose this constraint is that we do not want to modify the parallelepipedal
part of the boat, being this part fixed by previous design steps. Concerning
this, we also mention that it is essential that the modifications do not tend
to enlarge the ship on y-direction, making it larger than its size at section
10. We will see how this is ensured in Section 4.1.

In Figure 2.6 we show the part of the ship we are going to deform high-
lighted in red.

To proceed, another important constraint is the volume constraint, mean-
ing we do not want the boat to lose volume below a certain tolerance. This
tolerance, in our case, is the 1‰ of the total submerged volume. How this
last constraint is imposed is discussed in Section 4.4.2.

The last constraint we mention here is that the deformation must keep
the continuity and smoothness of the shape of the hull, not generating sharp
edges. This condition can be imposed at the level of FFD and can be proven
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formally.
Of course, there are a lot of other constraints that need to be imposed, for

example, stability constraints, but we choose not to consider further terms
to simplify the analysis. These constraints should be checked a posteriori
on the optimized hull, and in case of non-fulfillment, one should modify the
definition of the parameter space. However, we will not take into account
these in our study.

2.3 Free Form Deformation: Theory and Prop-

erties

FFD is a geometric tool, extensively employed in computer graphics, used
to deform a rigid object based on the movement of some predefined control
points. Introduced in [16], it has seen various improvements over the years.
The reader can refer for example to [17] for Extended-FFD, [18] for a more
recent review and [19] and [20] for a coupling with ROM techniques. In this
work, we used the basic formulation, which we now briefly describe.

While most of the deformation techniques directly manipulate the geo-
metrical object considered, the main idea behind FFD is to define a regular
lattice of points around the object (or part of it) and manipulate the whole
enclosed space by applying a motion to the points belonging to the lattice.

This characteristics of FFD entails some advantages:

• possibility to consider general shapes;

• possibility for the user to define the parameters explicitly;

• good performances and sensitivity even with low dimensional parametriza-
tions.

As a last significant benefit of using FFD, we mention that the compu-
tation may be divided into an offline stage, more time-consuming, and an
online stage, much cheaper, matching the need for ROM techniques.

Mathematical formulation. We begin with the definition of a differen-
tiable and invertible map ψ that goes from the physical space to a reference
space:

ψ : (x1, x2, x3)→ (s, t, p). (2.1)

Inside the physical space, we define a region D that is where the defor-
mation will take place. The map ψ is then defined so that it maps this region
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D to the unit cube:

ψ(D) = (0, 1)× (0, 1)× (0, 1) = D0. (2.2)

Inside the unit cube we define a cubic lattice of control points, with L,M
and N points respectively in x,y and z directions:

P 0
l,m,n =

 l/L
m/M
n/N

 ∈ D0, l = 0, ..., L, m = 0, ...,M, n = 0, ..., N. (2.3)

We define a motion of those points P 0
l,m,n → Pl,m,n via:

Pl,m,n = P 0
l,m,n + µl,m,n, µl,m,n ∈ R3×(L+1)×(M+1)×(N+1). (2.4)

The parametric map T that performs the deformation of the physical
space is then defined by:

T (ψ(x);µ) = ψ−1(
L∑
l=0

M∑
m=0

N∑
n=0

bL,M,N
l,m,n (ψ(x))Pl,m,n), (2.5)

where:

bL,M,N
l,m,n (s, t, p) =

(
L

l

)(
M

m

)(
N

n

)
(1− s)(L−l)sl(1− t)(M−m)tm(1− p)(N−n)pn.

(2.6)
These are tensor products of trivariate Bernstein polynomials:

bLl (s) =

(
L

l

)
(1− s)(L−l)sl, (2.7)

bMm (t) =

(
M

m

)
(1− t)(M−m)tm, (2.8)

bNn (p) =

(
N

n

)
(1− p)(N−n)pn. (2.9)

In the theory we presented, the subset D can be any set included in R3.
However, for simplicity, we restrict to the case in which D is a rectangular
parallelogram immersed in R3. In this case, the map ψ is simply composed
of a dilatation, a translation and a rotation, and the grid of control points
P 0
l,m,n is simply a grid over the parallelogram. The particular definition of

the parallelogram, of the grid and of the motions µ will be made in Section
4.1.

The parametric nature of Free Form Deformation is expressed in the
vector µl,m,n. However, the dimensionality of this is still too high for our
purpose, hence we anticipate here that not all the movements of the points
in the lattice will be independent and some constraints will be imposed.
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Properties of FFD. We now present some properties of Free Form De-
formation and some practical issues that will be used later in the description
of the deformation setting.

We begin by noting that, since Bernstein polynomials vanish on the
boundary, all the deformations take place inside the lattice.

Moreover, because of the definition of the map, the deformations inside
the domain are continuous and smooth no matter how complex the motion
of the points is.

However, since FFD could also be used to deform only part of the solid
object, in general we have no assurance that continuity and smoothness are
maintained at the boundary of the lattice. To ensure this, it can be proven
that it is enough that one or two layers of control points for respectively
continuity and smoothness are maintained fixed at the boundaries. This
point is of crucial importance for us since, as we already mentioned, the
motions we want to impose on the hull are only restricted to the submerged
frontal part.

As a last remark, we mention that FFD, because of its definition, could
be applied to both geometrical shape and computational mesh, allowing us
to generate the mesh only once on the undeformed hull and thus saving com-
putational time. However, we decided not to follow this approach because we
noticed that the deformations we imposed, to both mesh and geometry, pro-
duced non-conformities on the mesh generated, particularly on the boundary
layer.

2.4 ROM on Shape Parametrization

In this section, we discuss a possible model order reduction that could be
employed to reduce the dimensionality of the parameter space we have built
in the preceding sections.

This reduction is based on a Proper Orthogonal Decomposition applied
to the deformed hulls, which have been obtained using FFD, giving us the
principal modes of deformation, ordered from the most to the less ”ener-
getic”3. Considering then only a small number of these modes, we can define
a new parametric map using a technique known in literature as the basis
shape approach (see [18]).

In a basis shape approach, a new deformed hull R is obtained starting

3the energy of the modes in this setting is related to how much they contribute in
generating the deformed shapes
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from the undeformed hull r via:

R = r +
Nr∑
i=1

viUi, (2.10)

where Nr is the new number of parameters used, Ui, for i = 1 . . . Nr are the
first Nr deformation modes extracted from the POD and vi are randomly
generated coefficients.

From a practical point of view, the following steps are performed:

• Generation of Ns deformed hulls using FFD under uniform random
variation of the parameters;

• Assembly of a snapshots matrix S of dimensions 2Np × Ns, in which
Np is the number of points in which the hull is discretized. The snap-
shots’ matrix contains in the first Np rows the x-displacements of the
points for the different hulls (deformed configuration - undeformed con-
figuration) and in the Np rows that follow the y-displacements. z-
displacements are not considered since in the FFD setting we will con-
sider in Section 4.1, no point will be moved in this direction;

• SVD decomposition on snapshots matrix S = UΣVT :

– Σ contains the singular values, ordered from the highest to the
lowest;

– U contains the modes ordered from the one corresponding to the
highest singular value to the one corresponding to the lowest.

• Projection of the snapshots over the modes Sred = UTS and deter-
mination of the ranges of variation of the coefficient vi for the linear
combinations.

The results obtained using this methodology will be discussed in Section
4.1.3.
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Chapter 3

Full Order Model Formulation

We now discuss the Full Order Model (FOM), which generates what we
call the high fidelity solution.

We begin by pointing out that the purpose of this work is neither the
validation of a physical model built to describe a real-life phenomenon nor a
discussion of the discretization techniques that could be employed to simulate
it numerically. In fact, our interest is mainly a study of the applicability of
ROMs to an industrial setting. Nonetheless, it is clear that a robust and
reliable FOM is essential for the generation of any meaningful result. With
this in mind, we will limit ourselves to a brief presentation of the choices
made, both for the physical model and the discretization techniques, with
few remarks on critical aspects.

We begin by introducing the main hypothesis behind the full order model
and presenting some definitions that will be useful in discussing the results.
After that, we present the continuous model employed to represent the prob-
lem at hand, i.e. Volume Of Fluid (VOF), and the discretization technique
used to numerically simulate the PDEs, i.e. Finite Volume Method (FVM).

As for the preceding chapter, the results of the FOM will be illustrated
later in Section 4.2.

3.1 Main Features and Assumptions of the

Full Order Model (FOM)

The simulations we are running pertain to an early stage in the design
of a cruise ship. The purpose of this phase is the design of the hull shape,
aiming to minimize the drag and disregarding:

• the detailed design of the superior part of the ship, which is especially
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important for customer’s comfort;

• the possible movements (pitch and draw) of the ship in response to the
forces applied to it;

• the structural response of the boat to the mechanical stresses suffered;

• the coupling between the motion of the ship and the propeller;

• possible rough sea conditions.

In particular, because of these assumptions, we simulate the flow around
the hull with a river-like approach, where the boat is fixed in space and the
fluid is flowing around it with constant inlet velocity in the x direction1.

Another hypothesis we are considering is the symmetry of the flow with
respect to the plane that cuts the boat in half longitudinally; this assumption
allows us to simulate only half of the fields by applying appropriate symmetry
boundary conditions and thus halving the computational time.

As will be specified more precisely in the following sections, the model
employed for the flow around the boat is that of an incompressible biphase
flow, composed of water and air. An interesting remark we mention here
is that the reason why a proper modellation of air and water interaction is
needed is not that we do not want to miss air contribution to the total resis-
tance, being this contribution much lower with respect to water resistance,
but that we need to properly model the wave formation. To understand
the need for a modellation of waves, we present an interesting example. A
very famous paradox in fluid dynamics is D’Alambert Paradox. D’Alambert
proved that, if a body is immersed in a flow modeled as incompressible, in-
viscid, potential and with constant velocity, it experiences zero drag force.
If instead we consider a modification of the standard setting of the paradox,
with a multiphase (for example air and water) flow with the same hypoth-
esis made above and a body immersed in it (imagine for example a sphere
moving with the surface of water passing through its center) it can be proven
that the sphere is indeed subject to a drag. This is so because the sphere is
moving the surface of the water and, to produce this motion, uses a part of
its kinetic energy.

Ship resistance. The total force exerted by the flow on the ship, computed
taking the integral of the surface stresses, can be decomposed in different
ways.

1for a description of the reference system, see Section 2.2
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In the first place, we can decompose the total force with respect to the
global reference system, obtaining three components. In our case, only the
x component, which we call resistance or drag, is relevant since:

• the y component is zero because of the symmetry hypothesis;

• the z component is irrelevant since we are not considering ship move-
ments such as pitch and draw.

More precisely we are considering what is often referred to as calm water
resistance, since the inflow is completely unperturbed (we are not considering
rough sea).

Ship resistance can be then decomposed in two terms depending on the
component of the surface stress that is integrated, generating pressure term
(normal to the surface) and friction (or viscous) term (tangential to the
surface).

Transient behavior. In the simulations we are considering, the drag is
characterized by a transient behavior. In fact, we will observe oscillations
around a mean value that eventually converge to a steady state in which
the resistance is constant over time. While in theory one could directly run
the simulation until the oscillations dissipate and the resistance reaches the
steady state, this would take a very long time, resulting in a prohibitive
computational cost. A much faster approach relies instead on DMD, as
introduced in Section 1.5, allowing us to derive the asymptotic dynamics
using a few seconds of simulation. More details on the use of DMD in our
test case are given in Section 4.3.3.

For the sake of completeness, we remark that the steady-asymptotic be-
havior of drag implies neither the steadiness of the physical flow (in fact we
are disregarding the fluctuating part of the flow using a RANS turbulence
model), nor the steadiness of the mean flow (we are only considering the
effect of the flow on ship resistance).

Similarity laws and Froude number. Similarity laws are a tool used to
relate quantities (in our case ship resistance) obtained from a scaled model
to the full scale phenomenon.

The scaled model is determined by defining a fixed length of the scaled
boat, related to the complexity of the problem we are willing to solve, and
by computing the scaled velocity from the full scale velocity by imposing the
equality of an adimensional quantity, called Froude number. Froude number
is defined as Fr = u√

gL
, where g is the gravity acceleration, and u and L
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are a characteristic flow velocity and a linear dimension of the problem, and
represents the ratio between flow inertia and the gravitational field. This
number is used in naval architecture since the dynamics of vessels that have
the same Froude number (like our scaled and full-size model) can be easily
compared as they produce a similar wake.

These laws have been originally formulated in order to conduct experi-
mental tests on scaled hulls. However, they can also be used in CFD, allowing
us to run a simulation not on the full scale model but on a scaled hull, in
our case with a 1:25 ratio. While in an experimental setting these laws had
the purpose of being able to test a hull without the need to build the real
ship, in CFD the purpose of scaling is to reduce the number of cells needed.
This is motivated by the fact that the problem at the model scale possesses a
Reynolds number that is lower than the one at the full scale (for a definition
of the Reynolds number see Section 3.2).

3.2 Navier-Stokes Equations

In this section, we introduce the analytical model apt to describe the
behavior of an incompressible viscous Newtonian fluid, i.e. Navier-Stokes
equations. We will consider, in this section and the following, two modifi-
cations of the basic formulation that will allow us to consider, respectively,
turbulent flows (with the RANS model) and multiphase flows (with the VOF
model).

The basic model reads:{
∂u
∂t

+ (u · ∇)u+ 1
ρ
∇p−∇ · ν∇u = 0,

∇ · u = 0,
(3.1)

where u, p, ρ and ν denote respectively fluid velocity, pressure, density and
kinematic viscosity.

The first equation in (3.1))expresses the momentum balance in the in-
finitesimal volume and is essentially a reformulation of Newton’st 2nd law
of dynamics expressing the Eulerian fluid’s acceleration (∂u

∂t
) as a result of

convection ((u · ∇)u), a gradient of pressure (1
ρ
∇p) and diffusion (∇ · ν∇u).

The second equation instead expresses the mass conservation, emerging as
solenoidality of the velocity field because of the incompressibility hypothesis.

Turbulence handling. The Navier-Stokes equations, as formulated in
(3.1), are inoperative from a numerical point of view whenever the flow con-
sidered exhibit high velocities and complex geometrical features. The phe-
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nomenon behind this is called turbulence and is one of the most ambitious
and interesting open problems of applied mathematics.

A precise definition of turbulence is not available at the moment, and its
characterization is usually made in terms of a dimensionless quantity called
Reynolds Number, defined as:

Re =
uL

ν
, (3.2)

where ν is the kinematic viscosity of the fluid and u and L are a characteristic
flow velocity and a linear dimension of the problem (for more details see [4]).

Reynolds number quantifies the relative importance of the convection
term (in the numerator) with respect to the diffusive term (in the denomi-
nator) for the flow considered. A high value of the Reynolds number corre-
sponds to a convection dominated turbulent flow, characterized by:

• highly irregular movement of the particles in the flow, making a statis-
tical rather than deterministic treatment necessary;

• presence of chaotic changes in the flow fields, where small initial devi-
ations result in enormous final deviations;

• presence of a strong three-dimensional vortex generation mechanism;

• enhanced mixing of the flow, resulting in a dissipative process, partic-
ularly important at the small scales.

Because of the importance of simulating high Reynolds flows, that are
ubiquitous in industrial applications, and the impossibility to treat them us-
ing (3.1), because of the problems we mentioned, several models have been
formulated over the years. The approach we considered in our work, named
Reynolds-Averaged Navier-Stokes (RANS), despite being one of the earliest
and simplest models available, is still (with a number of tweaks and improve-
ments) the most used in an industrial setting.

The basic idea of a RANS model is decomposing the velocity field u(x, t)
expressing it by a sum of mean and fluctuating part:

u(x, t) = ū(x, t) + ũ(x, t). (3.3)

Inserting this decomposition (and an analogous one made for pressure)
inside the original N-S equations (3.1), we obtain:{

∂ū
∂t

+ (ū · ∇)ū+ 1
ρ
∇p̄−∇ · ν∇ū−∇ · (ũ⊗ ũ) = 0

∇ · ū = 0.
(3.4)
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The additional term appearing in the first equation is expressed as a
divergence of the tensor ũ⊗ ũ, known in the literature as Reynolds stresses
tensor R. This term expresses the additional diffusivity in the flow generated
by the turbulent behavior, and needs to be modeled as a function of the mean
velocity field ū in order to close the equations. The particular model chosen
in this work will be declared in Section 4.2.

3.3 Volume Of Fluid (VOF)

Volume of fluid is a free-surface modeling technique that allows to describe
a multiphase fluid composed of two incompressible, isothermal immiscible
fluids (water and air, in our case). For a more in-depth discussion on VOF,
we refer to [21].

This method is based on a phase-fraction technique: a new scalar variable,
denoted by α, is added to N-S equations, representing the fraction of water
contained in the infinitesimal volume (or in the finite volume, when we will
discretize the equations). This variable belongs to the interval [0, 1], where
α = 1 represents a point in which water is present, α = 0 a point in which
air is present and α ∈ (0, 1) represents interface points. By its nature, α is
a discontinuous variable, and so the discretization method must ensure that
the interface is captured a small number of cells.

We now report the equations that define the VOF method:
∂(ρu)
∂t

+∇ · (ρu⊗ u) +∇p− ρg −∇ · ν∇u−∇ ·R− fσ = 0,

∇ · u = 0,
∂α
∂t

+∇ · (uα) = 0,

(3.5)

where the density ρ and the kinematic viscosity ν are defined using an alge-
braic formula expressing them as a convex combination of the corresponding
water and air properties:

ρ = αρW + (1− α)ρA, (3.6)

ν = ανW + (1− α)νA. (3.7)

The first two equations in (3.5) represent the classical continuity and
momentum balance equations for an incompressible fluid. We make here
some remarks:

• the inertial and the convective terms have not been expanded as in
(3.1) since ρ, in this case, is not a constant;
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• a gravitational contribution is included, appearing as an external vol-
ume force field ρg;

• a new term is present in the momentum equation, namely fσ, that
models surface tension as an external surface force. This term needs
further modeling to become usable; however, since we decided to neglect
it, we will not proceed with the discussion.

The third equation in the system (3.5) is a new equation required to
close the system after the addition of the variable α. In fact, this equation
is simply a transport equation for the fraction of fluid in which only the
convective term is considered.

As already mentioned, the main difficulty in using a VOF approach is the
possible smearing of the free-surface, caused by excessive diffusion introduced
in the discretization of the transport equation. For this reason, a multitude
of schemes has been tested over the years in order to obtain a sharp, yet
stable, solution. Another possibility to tackle this problem is using a finer
grid in the regions where the variable α is presumed to be discontinuous; in
Section 4.2.2 we will present the strategy we have used in order to achieve
this. Another approach relies on an alternative formulation on the VOF
method, resulting in an additional term in the transport equation for the
fraction of fluid, which will be presented in the next section.

Before passing to a description of the discretization technique we have
employed, we mention that we have voluntarily omitted the specification of
the initial and boundary conditions for the problem (3.5) because we will
declare them after the definition of the computational domain in Section 4.2.

3.4 Discretization of the Equations - Finite

Volume Method (FVM)

In this section, we briefly present the discretization technique used to
numerically approximate the equations presented in the preceding section,
which is Finite Volume Method (FVM). Being a complete discussion of FVM
far beyond the scope of this section, we refer to classical texts such as [22] or
[23].

FVM, like Finite Element Method (FEM) and Finite Difference Method
(FDM), is a method used to translate a system of PDE into a system of
algebraic equations. The solution of such system provides the value of the
solution of the problem considered at discrete positions in the computational
domain.
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The first step in a finite volume discretization is the generation of a com-
putational mesh over the domain of interest. The mesh is made up of a tes-
sellation of non-overlapping polyhedra, with complete freedom on the type
of polyhedra and their size. The quality of the mesh employed is crucial in
order to obtain a good approximation of the fields, and its generation is an
issue of primarily importance, especially in industrial problems because of
complex geometrical features. We will return to this aspect in Section 4.2.2
when we will discuss the procedure employed to generate the mesh.

Once a suitable tessellation is given, the system of PDEs is written in in-
tegral form over each cell. The degrees of freedom of the resulting discretized
system of algebraic equations are defined as the averages of the fields over
the finite volumes, and their is indicated by N .

We now discuss FVM in the context of classical Navier-Stokes equations,
as reported in (3.1), considering the discretization of the terms appearing in
the momentum and continuity equation. After that, we will consider how
the terms and equations added in the VOF method can be treated.

Momentum equation. The momentum balance equation is written for
the ith finite volume Vi as:∫

Vi

∂

∂t
u dV +

∫
Vi

(u · ∇)u dV −
∫
Vi

∇ · ν∇u dV +

∫
Vi

∇p dV = 0. (3.8)

The gradient of pressure term can be expressed using the Gauss’ theorem
as: ∫

Vi

∇p dV =

∫
Si

p dS ≈
∑
f

Sfpf , (3.9)

where Si = ∂Vi is the boundary of the finite volume. The approximation of
the surface integral is built by taking the sum over the faces f of the control
volume of the area vector of each face Sf times the value of the pressure at
the center of the faces pf .

The convective term can be discretized as follows:∫
Vi

(u · ∇)u dV =

∫
Si

(uf · dS)uf ≈
∑
f

(uf · Sf )uf =
∑
f

Ffuf , (3.10)

where uf is the velocity vector evaluated at the center of each face of the
finite volume and Ff = Sf · uf is the mass flux through each face.

We note here that the values of pf and uf , pressure and velocity at the
center of each face of the finite volume, must be obtained from the cell center
values using suitable interpolation schemes. Possible alternatives are central,
upwind, second order upwind differencing schemes.
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The diffusive term is discretized as:∫
Vi

∇ · ν∇u dV =

∫
Si

ν∇u · dS ≈
∑
f

ν(∇u)f · Sf , (3.11)

where (∇u)f is the gradient of u computed in the finite volume faces.
In the case of orthogonal meshes, in which the face dividing two cells is

orthogonal with respect to the distance connecting the two cell centers, the
term (∇u)f · Sf could be computed via:

(∇u)f · Sf = |Sf |
uN − uP
|d|

, (3.12)

in which the face f divides cell P from the cell N and d is the distance vector
connecting the two cell centers.

Pressure equation. The mass balance equation, in the case of incom-
pressible flows, boils down to the condition of divergence zero of the velocity
field ∇ · u = 0.

The standard for a Finite Volume discretization procedure is instead to
work on a modified version of this equation, called the Poisson equation
for pressure, obtained taking the divergence of the momentum equation and
using the divergence-free constraint mentioned above. This equation reads:

∆p = −∇ · (u · ∇)u. (3.13)

Together with this equation, we define suitable boundary conditions for
p, with:

∇p · n = 0, (3.14)

imposed in all the boundaries except the outlet, and:

p = 0, (3.15)

imposed in the outlet.
The benefit of working with this equation instead of the original ∇·u = 0

is that the pressure appears explicitly in the former, allowing us a more direct
coupling between this equation and the momentum equation.

Pressure-velocity coupling. The pressure-velocity coupling in Navier-
Stokes equations is indeed an issue of primarily importance, and a consid-
erable number of approaches have been formulated over the years, together
with tweaks and modifications such as under-relaxation and other stabiliza-
tion techniques. However, most of the techniques to treat this coupling fall
into two categories:
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• coupled algorithms, in which both equations are discretized and are
solved at the same time, assembled in a single linear system and solved
only once;

• segregated algorithms, in which the two equations are resolved once
at a time, evaluating the coupling terms contained in them using the
currently available solution, typically corresponding to the previous
time-step.

A segregated solver is basically made up of successive substitutions, with
no theoretical guarantee of convergence of the solution. However, the smaller
size of the matrices involved makes a segregated approach in general more
accessible from the point of view of computational time with respect to a
coupled approach. This is why most of the modern solvers for incompressible
flows, like the one we are using, implement segregate approaches.

As an example, we report the steps that compose the SIMPLE (Semi-
Implicit Algorithm for Pressure-Linked Equations) algorithm, one of the ear-
liest segregated pressure-velocity coupling algorithm formulated:

1. guess the pressure field;

2. solve the momentum equation using the available pressure (momentum
predictor step);

3. calculate the new pressure based on the available velocity field (pressure
correction step);

4. repeat 2. and 3. to convergence.

Many assumptions need to be made in order to reach a stable solution
using this algorithm and, for this reason, a series of tweaks (such as under-
relaxation) and corrections (such as repeated pressure correction in the PISO
algorithm) has been formulated over the years.

Discretization of VOF terms. We interrupt at this point the discussion
of the finite volume discretization of the Navier-Stokes equations and we
briefly discuss how to deal with the additional terms contained in the VOF
equations (3.5).

The treatment we will discuss is based on the implementation of the
multiphase solver contained in OpenFOAM, the CFD software we used to
perform the simulations. As a bibliography reference we cite the OpenFOAM
user guide [24] and a more specific manual regarding the multiphase solver
interFoam [25].
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As already mentioned, one of the critical issues encountered using the
VOF model is obtaining a sharp resolution of the free surface. One possibility
to tackle this problem, implemented inside the interFoam solver, relies on an
alternative two-fluid formulation of the conventional VOF equation. In this
model, an additional term, called the compression term, is introduced in the
transport equation for α, originated from modeling the velocity in terms of
a weighted average of water and air velocity. This term, while vanishing in
the continuum formulation, has a non-zero contribution in the discretized
equations, allowing for a sharp interface resolution.

More specifically, the model makes use of a two-fluid Eulerian model for
the two-phase flow, solving separately the phase fraction equation for each
individual phase, with:

∂α

∂t
+∇ · (uWα) = 0, (3.16)

for water, and:
∂(1− α)

∂t
+∇ · (uA(1− α)) = 0, (3.17)

for air.
In these equations, uW and uA indicate the velocity for the two phases,

water and air, and an additional equation is introduced expressing the veloc-
ity of the effective fluid as a weighted average of the two:

u = αuW + (1− α)uA. (3.18)

Equation (3.16) can be reformulated introducing the compression velocity,
defined as the relative velocity of the two phases ur = uW − uA:

∂α

∂t
+∇ · (uα) +∇ · (urα(1− α)) = 0. (3.19)

In this equation the last term, denominated compression term, is non-
vanishing only in the interface region, where α 6= 0 and α 6= 1, and is respon-
sible for an artificial compression of the free surface, generating a sharper
one.

As already mentioned, in the continuum setting we have:

∇ · (urα(1− α)) = 0, (3.20)

everywhere in the domain since the function α takes only the values of 1 (for
water) or 0 (for air), with a discontinuous behavior at the interface. In a finite
volume setting, however, the discontinuity is resolved in a certain number of
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cells, and in those cells the contribution (3.20) becomes non-zero. An issue
that needs to be discussed at this point is how the value of the compression
velocity ur can be modeled in those cells. Different options are possible,
and we refer to [25] for a detailed description of the method implemented in
interFoam, that is based on the gradient of the fraction of fluid ∇α.
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Chapter 4

Numerical Experiments:
Definitions and Results

In this chapter we collect, for each distinct phase that composes our op-
timization pipeline, the specific description of the numerical experiment’s
setting, the results obtained running the experiments and, finally, some con-
siderations on the results.

The phases will be presented in distinct sections in this order:

• Geometrical Shape Parametrization;

• Full Order Model;

• Reduced Order Model;

• Optimization.

4.1 Geometrical Shape Parametrization

In this section, we present the choices made for the setting of the free
form deformation. After that, we show the results obtained and make some
considerations. Finally, we present and comment on the results obtained
from the parameters space reduction described in Section 2.4.

4.1.1 Description of the FFD Setting

In this section, we use the notation and remarks presented in Section 2.3.
In particular, we are going to define a domain D, a grid of points P 0

l,m,n and
a tensor of points’ motions µl,m,n that satisfy the constraints imposed.
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CHAPTER 4. NUMERICAL EXPERIMENTS: DEFINITIONS
AND RESULTS

Figure 4.1: x-normal view of the set D (in cyan) and the lattice of points
P 0
l,m,n (in blue) over the undeformed hull.

The set D is illustrated in Figures 4.1 and 4.2, together with the grid
of undeformed points P 0

l,m,n.We see there that the lattice is positioned, in
x direction, on sections 10, 12, 14, 16, 18, 20 and 221. As for z direction,
we can see that a layer of points is positioned on the waterline (indicated in
dark blue in Figure 4.2) with two more layers above it, and another layer is
positioned on the bottom of the ship, with one more layer under it. As for
y direction, we have a grid of points on the longitudinal symmetry plane of
the boat, one tangent to the parallelepipedal side and one more layer outside
the latter. The numbers of points for the x, y and z sides are respectively 7,
11 and 7, for a total of 539 points.

Concerning µl,m,n, as anticipated, only part of the points in the lattice
are displaced and, in general, the displacements are not independent.

More specifically, the layers corresponding to sections 10, 12, 20 and 22
remain fixed, together with the two upper and lower layers, the two far
left and the two far-right layers and, finally, the layer over the longitudinal
symmetry plane. Except for this last one, that is kept fixed to maintain
symmetry, the other layers are kept fixed in order to achieve the continuity
and smoothness of the deformations, required especially in the x direction
where the deformation must link in a smooth way to the rest of the boat, as
prescribed by the constraints.

As for the moving layers, we have that:

• the layer corresponding to section 14 moves (except for the points kept
fixed) simultaneously in x direction, generating 1 parameter;

• the layer corresponding to section 16 moves (except for the points kept
fixed) simultaneously in x direction, generating 1 parameter;

1section 22 is a fictitious section, not used in naval architecture
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Figure 4.2: y-normal view of the set D (in cyan) and the lattice of points
P 0
l,m,n (in blue) over the undeformed hull.

• the layer corresponding to section 18 moves (except for the points kept
fixed) simultaneously in x direction, generating 1 parameter, and the 3
different levels corresponding to different z-quotas move simultaneously
in y direction, generating additional 3 parameters.

The total number of parameters is then 6, where the first 3 correspond
to the x-movements of sections 14, 16 and 18 and the last 3 correspond to
y-movements of the different z-quotas of section 18.

As for the maximum extension of the points’ movements, corresponding
to the domain of definition of the parameters, we express it as a fraction of
the size of the FFD lattice. That is, if for example a parameter connected
to an x-movement of the lattice has value β and the total length of the
FFD-lattice in the x direction is B, the corresponding points move in the x
direction of a quantity β ×B.

Using this definition, the ranges of the 6 parameters are:

• x-movements of section 14: [−0.08, 0.08];

• x-movements of section 16: [−0.08, 0.08];

• x-movements of section 18: [−0.06, 0.06];
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• y-movements of quota 1 of section 18: [−0.08, 0.08];

• y-movements of quota 2 of section 18: [−0.08, 0.08];

• y-movements of quota 3 of section 18: [−0.08, 0.08].

The choices made are, as already mentioned, arbitrary and generated by
a procedure of trial and error. An initial guess of the definition and range
of the parameters needs to be checked and validated by considering if the
output given by the FFD meets the prescribed constraints and objectives.

The reason why sections 14 and 16 do not move in the y direction is that
we do not want the boat to enlarge in this direction and reach a breadth that
is larger than the breadth of the parallelepipedal part. The rationale behind
the movements of sections 14 16 and 18 in the x direction is instead to vary
the plot of areas (Figure 2.5) maintaining the basic shape of the sections,
that varies only in section 18 where we impose y movements.

4.1.2 Results and Considerations

Before presenting the results, we remark that the implementation of FFD
we used is based on PyGEM, an open-source Python library (see [26]).

We report, in Figures 4.3 and 4.4, some deformations obtained using FFD
with the setting described in the preceding section. In particular in Figure
4.3 we show, for each different deformation, the x, y and z sections, in blue
for the undeformed hull and in red for the deformed one, together with the
lattice points and their motions. In Figure 4.4 instead, we represent the plot
of areas, in blue for the undeformed hull and in red for the deformed one.
Each deformation is specified in terms of the parameter that generated it,
indicated in the corresponding caption.

We can see that the new hulls generated satisfy the constraints imposed,
being continuous and smooth and not enlarging on y direction over the par-
allelepipedal part. We can also see that, as requested, the plot of areas varies
in the new shapes, where particularly interesting are the changes in the flex
point of the curve.

4.1.3 ROM on Shape Parametrization: Results

In this section, we present the results obtained from the parameters space
reduction described in Section 2.4.

We begin by reporting, in Table 4.1, the first 10 singular values {σi}10
i=1,

ordered from the highest to the lowest, obtained from the SVD decomposition
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(a) [0.08, 0.08,−0.06, 0.08,−0.08, 0.08]

(b) [−0.08,−0.08,−0.06,−0.08,−0.08,−0.08]

(c) [0.08, 0.08, 0.06, 0.08, 0.08, 0.08]

(d) [0.0540, 0.0461,−0.0296,−0.0943, 0.0667,−0.0387]

Figure 4.3: View of the x (right), y (upper left) and z (lower left) sections for
the FFD deformation obtained with the value of the parameter indicated in the
corresponding caption; in blue the undeformed hull, in red the deformed hull, in
blue points the FFD lattice and in red arrows the corresponding motions of the
points.

45



CHAPTER 4. NUMERICAL EXPERIMENTS: DEFINITIONS
AND RESULTS

(a) [0.08, 0.08,−0.06, 0.08,−0.08, 0.08] (b) [−0.08,−0.08,−0.06,−0.08,−0.08,−0.08]

(c) [0.08, 0.08, 0.06, 0.08, 0.08, 0.08] (d) [0.0540, 0.0461,−0.0296,−0.0943, 0.0667,−0.0387]

Figure 4.4: View of the plot of areas for the FFD deformation obtained with
the value of the parameter indicated in the corresponding caption; in blue
the undeformed hull and in red the deformed hull.
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σi
3.570× 103

1.481× 103

4.286× 102

2.705× 102

9.707× 101

2.312× 101

1.202× 10−3

1.201× 10−3

1.200× 10−3

1.199× 10−3

Table 4.1: Values of the first 10 singular values, ordered from the highest to
the lowest, from the POD applied to the FFD deformed shapes.

applied to the snapshots matrix, together with a plot representing the values
of σi

σ0
on a log10 scale in Figure 4.5.

From these results, we can see that the SVD can detect the 6 parameters
used in the FFD phase. In fact, after the 6th singular value, we notice a
steep descent, implying that to describe the whole set of Ns snapshots no
more than 6 modes are useful and, for example, the 6th mode contributes to
the displacement 2 orders of magnitude less than the first one. (to understand
the reason for this, see for example equation (1.11)).

To gather some insights on the deformation modes extracted in the pre-
vious step, we report:

• in Figure 4.6 the x-displacements of modes 1, 2 and 3;

• in Figure 4.7 the y-displacements of modes 4, 5 and 6.

We decided not to report the y-displacements of modes 1, 2 and 3 and the
x-displacements of modes 4, 5 and 6 because they are negligible with respect
to the values we reported. In fact, this can be interpreted by asserting
that the first three modes correspond to x-displacements while the last three
correspond to y-displacements. Moreover, we can see that, in general, the
first modes correspond to larger displacements than the following ones (note
that the scales of the plots are not the same).

This analysis suggests the possibility of a reduction of the parameters
space dimensionality. This reduction could be performed using a small num-
ber of modes as basis functions in a basis shape approach, as described in
Section 2.4. The model generated with this methodology has a parameters
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Figure 4.5: Values of σi
σ0

on a log10 scale for the first 10 singular values,
ordered from the highest to the lowest, from the POD applied to the FFD
deformed shapes.

space dimensionality equal to the number of modes used, that we indicate
here by Nr, and will be hence denoted as the Nr-dimensional model, in con-
trast to the original FFD model.

To test the ability of an Nr-dimensional model to reproduce the results of
the FFD model, we consider some shapes generated by the latter and visu-
alize, considering the frontal x-sections, the differences obtained considering
only the first 3, 4, 5 and 6 modes (i.e. Nr = 3, 4, 5, 6). To perform this, we
project the newly generated FFD shapes onto the modes and consider only
the deformation obtained by truncating at the desired level. The results are
illustrated in Figure 4.8 where the FFD deformation is illustrated in red and
the 3, 4, 5 and 6 truncated deformations are illustrated in blue respectively
on the upper left, upper right, lower left and lower right.

We can see that, while the first 3 modes are in general not enough to
capture the deformation precisely and the total of the 6 modes are too much
and generate a deformation that is indistinguishable from the original one,
the first 4 modes (corresponding to the upper right image) are a good com-
promise between accuracy and simplicity.

Because of this, we choose a value of Nr of 4. We avoid showing a set of
deformed shapes computed using the 4-dimensional model, as done for the
FFD model, since the differences obtained are not noticeable to the naked
eye, as we have just shown.

In the following sections, the two models (FFD and 4-dimensional) are
tested alongside to understand which of the two is preferable over the other
and for which reasons.
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(a) mode #1

(b) mode #2

(c) mode #3

Figure 4.6: x-displacements of the first 3 modes of the POD applied to
the FFD geometric deformation; the y-displacements are negligible and not
reported.
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(a) mode #4

(b) mode #5

(c) mode #6

Figure 4.7: y-displacements of modes 4, 5 and 6 of the POD applied to
the FFD geometric deformation; the x-displacements are negligible and not
reported.
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(a) µ = [−0.0019,−0.0651,−0.0493,−0.0205,−0.0602,−0.0553]

(b) µ = [0.0154, 0.0700, 0.0182,−0.0369,−0.0571,−0.0708]

Figure 4.8: In red the deformation with FFD (with the value of the parameters
indicated in the corresponding caption) and in blue deformation with basis shape
approach considering the first 3,4,5 and 6 POD modes respectively on the upper
left, upper right, lower left and lower right.
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4.2 Full Order Model

In this section, we specify more precisely the FOM in terms of the partic-
ular schemes employed for the discretization and resolution of the equations
presented in Chapter 3. After that, we describe the computational domain
in which the problem is solved and the characteristics and generation proce-
dure of the computational mesh. Then, we declare the boundary and initial
conditions imposed and, finally, we present the results obtained from the
simulation.

We remark at this point that, as motivated in Section 3.1, we have run
the simulations on a scaled 1:25 setting. Because of this, the numerical values
of the initial and boundary conditions, the computational domain and the
computational mesh are presented on this scale. We also note that all the
geometrical quantities characterizing the undeformed hull reported in Table
2.1 must be reported on this scale for comparison.

4.2.1 Description of the FOM setting

OpenFOAM. As already mentioned, the FOM is implemented using Open-
FOAM. OpenFOAM (Open Field Operation And Manipulation) is an open-
source C++ toolbox used for the discretization and resolution of systems
of Partial Differential Equations based on a Finite Volume approach. It is
used in the context of continuum mechanics, especially in computational
fluid dynamics, and contains a series of utilities and tools useful to define
and customize user-specific solvers for different kinds of problems, together
with pre-built solvers for the most common cases. We avoid discussing the
technical functioning of OpenFOAM and refer the user to [22] or [24] for this.

In our problem, we used the interFoam solver, a pre-built solver imple-
menting the VOF method. Most of the settings given to the solver are taken
from the standard example contained in OpenFOAM, named DTCHull, re-
solving our problem with changes in the geometry and computational mesh.
Because of this, we only mention some choices regarding time and space
discretization and the transport and turbulence models employed.

Time/space discretization. As for the temporal discretization, we use
a 1st order implicit Euler scheme. The integration in time is carried out
going from time 0 to 40 seconds, with an initial time-step of 0.001 seconds
and adjustable time-stepping in terms of the maximum Courant number. In
particular, we impose the following conditions:

• max(Co) < 5;
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• max(Coα) < 3;

where Co = u∆t
∆x

is the Courant number and Coα is an analogous quantity
derived from the transport equation for α.

The time-scheme we use is implicit and thus unconditionally stable, hence
we do not have theoretical restrictions on the Courant number as for the
CFL condition (see [22]). However, the restriction in the Courant number is
imposed in order to obtain a sufficiently accurate solution.

The adjustable time-stepping is then defined as to keep the maximum
Courant numbers around the value prescribed above, with a maximum time-
step allowed of 0.01.

As for the spatial discretization schemes, we only mention that for the
convective term (u · ∇)u, one of the main bottlenecks in the discretization
of convection dominated problem like ours, we have used a linear upwind
scheme.

Transport and turbulence models. The numerical values of the trans-
port properties of water and air are:

• ρW = 1.09× 10−6m2

s
;

• ρA = 1.09× 10−5m2

s
;

• νW = 998.8 kg
m3 ;

• νA = 1 kg
m3 .

As for the treatment of turbulence, we have used a RANS k-ω SST model,
with wall functions for the resolution of the boundary layer.

4.2.2 Computational Domain and Mesh

Computational domain. The computational domain, illustrated in Fig-
ure 4.9, is a three-dimensional rectangular parallelepiped with the following
geometrical extensions2:

• x-axis: [-39, 24];

• y-axis: [-29, 0];

• z-axis: [-24, 6].

2for a description of the reference system, see Section 2.2
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(a) (b)

Figure 4.9: Computational domain for the full order model, x-section (left)
and y section (right); in red the undeformed hull.

Computational mesh. The meshing tool used to generate the computa-
tional mesh is provided inside the OpenFOAM framework. More specifically,
OpenFOAM contains a set of utilities useful for generating, modifying and
checking the computational mesh. The ones we mention are:

• SurfaceFeatures: extract complex features of the geometry to be meshed;

• BlockMesh: generates a structured hexahedral mesh;

• topoSet: selects points and cells;

• refineMesh: refines selected cells;

• snappyHexMesh: generates the mesh around the object of interest.

The first step to be performed in order to generate the computational
mesh is the extraction of surface features using surfaceFeatures tool. The
surface features are portions of the geometry that needs some refinements in
order to be captured in the correct way. They are specified by indicating some
conditions on the angles generated by the various elements of the CAD file.
In Figure 4.10, we can see the features that are identified for our particular
hull.

After this preliminary step, we can begin with the construction of the
mesh using blockMesh utility. This tool allows us to generate a structured
mesh made of hexahedrons that is more and more refined, in z direction, as
it approaches the waterline. The blocks generated are more extended in x
and y direction and will be then refined in these directions in the next step.
This choice has been made in order to capture the discontinuity of alpha at
the waterline in a sharp way.
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(a) (b)

Figure 4.10: Geometrical features captured by the SurfaceFeatures tool over
the undeformed hull.

Figure 4.11: Output of the refinement phase over the undeformed hull.

The following step is the refinement of the mesh generated by blockMesh
in the x and y direction in the zone in which the boat will be placed. This
refinement phase is made up of 6 consecutive steps in which the cells to be
refined are selected using topoSet and are refined using refineMesh. The
result of the first two phases is shown in Figure 4.11 (together with the boat,
still not meshed, for a reference).

After this, we run snappyHexMesh. This utility performs a series of
steps. The first one consists of another refinement phase in which the cells
that intersect the features obtained by surfaceFeatures are refined3. After
these refinements, the actual geometry is imported, and all the cells that
are internal to the geometry are removed from the mesh, generating what is
called the castellated mesh (Figure 4.12). The next phase is the snapping

3one can also indicate other zones to be refined, either indicating a region like in topoSet
or selecting all the cells that intersect a certain part of the surface
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Figure 4.12: Castellated mesh over the
undeformed hull.

Figure 4.13: Snapped mesh over the
undeformed hull.

Figure 4.14: Final mesh over the undeformed hull, view from section 17 (left)
and 10 (right).

phase in which the points of the cells that intersect the surface are moved so
that the mesh follows the exact geometry of the surface (Figure 4.13). The
last phase consists of the boundary layer cells addition (Figure 4.14).

4.2.3 Initial and boundary conditions.

We report here the boundary and initial conditions we have imposed on
the system (3.5).

Before proceeding, we remark that, in the following calculations, we will
need to consider the value of the kinematic viscosity ν of the fluid. In our
case, however, we are considering a multiphase fluid and, in general, the
value of ν will depend on the point in which it is calculated. For the sake of
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simplicity, we will consider as a reference the value associated to the water
phase.

As for the boundary conditions, we have imposed the following:

• in the inlet of the domain:

– constant velocity (Dirichlet BC);

– fixed flux condition on the pressure (deducted of the hydrostatic
componend) p−ρgh, where the value to be imposed is determined
by checking that the flux generated is compliant with the condition
on the velocity;

– discontinuous fixed profile for α, where below the level of the un-
perturbed waterline the value is 1 (water) and above is 0 (air);

– fixed values for the turbulent variables ω, k and νT ;

• in the outlet of the domain:

– constant average velocity;

– zero gradient condition on the pressure p − ρgh (homogeneous
Neumann BC);

– variable height flow rate condition to α, where we indicate a lower
bound (equal to 0) and an upper bound (equal to 1) and:

∗ if α is greater than the upper bound, we apply a fixed value
condition, with a uniform level of the upper bound;

∗ if α is inside the range, we apply a zero-gradient condition;

∗ if α is lower than the lower bound, we apply a fixed value
condition, with a uniform level of the lower bound;

– zero gradient condition for ω, k and νT ;

• in the bottom and in the two sides of the domain, symmetry condi-
tions for all the variables;

• in the upper plane of the domain, denoted as atmosphere:

– pressure inlet outlet velocity condition for the velocity, imposing
a zero gradient on the outlet and a fixed value in the inlet;

– total pressure of 0 for the pressure p− ρgh;

– α equal to 0 (air);

– zero gradient condition for ω, k and νT ;

57



CHAPTER 4. NUMERICAL EXPERIMENTS: DEFINITIONS
AND RESULTS

• finally, in the hull:

– fixed value of 0 for the velocity (non-slip condition);

– fixed flux condition on the pressure p− ρgh ;

– zero gradient condition on α;

– for the turbulent variables ω, k and νT , conditions depending on
the wall functions.

The initial conditions imposed are defined as to be compliant with the
inlet. In particular, we have a discontinuous profile for the variable α, fixed
values for the velocity and the turbulent variables, and p− ρgh equal to 0.

While most of the conditions declared here are quite standard for a ship
resistance simulation, particularly interesting is the choice we have made of
imposing an initial non-zero velocity on the whole domain. In fact, this
choice results in an initial non-realistic strong force applied to the vessel that
dissipates in few seconds, returning the real physical force. Alternatives to
avoid this are possible, like for example the imposition of an initial velocity
equal to 0. This would remove the non-physical behavior encountered in the
first seconds of our simulations but would result in longer times needed to
reach the steady state. Another interesting possibility is to solve a potential
problem and to use the results obtained (for velocity and pressure) as initial
conditions.

We now specify the numerical values we have assigned to the velocity and
turbulent variables at the inlet.

The inlet velocity imposed is v = −2.26336m
s

, obtained from a full scale
velocity of 22 knots (corresponding to approximately 11.3178m

s
). Considering

this velocity, the length between perpendiculars (LPP ) of the undeformed
hull, equals to 9.68m and the kinematic turbulence of the water, equal to
1.09 × 10−6m2

s
, the Reynolds number generated is around 2 × 107. This

number is considerably lower than the Reynolds number generated by the
model at the real scale, that is around 2.6×109 (v = 11.3178m

s
, LPP = 242m,

ν = 1.09 × 10−6m2

s
), as we have anticipated in Section 3.1 . We also report

the Froude numbers calculated for the scaled model and for the full-scale
model (equal for hypothesis), which is 0.232.

As for the boundary conditions in the inflow for the turbulent variables
νT , ω and k, they are computed starting from the freestream velocity v =
−2.26336m

s
, the turbulence intensity, which we imposed to 1%, and the eddy

viscosity ratio νT/ν, imposed to 10. The values of the turbulent variables
associated with these conditions are thus:

• νT = 1.09× 10−5m2

s
;
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Figure 4.15

• ω = 70.49721
s
;

• k = 7.6841× 10−4m2

s2
.

4.2.4 Results and Considerations

We report in this section some plots and figures obtained by simulating
the FOM over the undeformed hull.

The simulations have been run in parallel on 40 processors by dividing
the domain in equally sized chunks. The computational time required by the
runs is around half an hour for the generation of the computational mesh
(operated serially) and around 8 hours for the simulation.

We begin by reporting, in Figure 4.15, the plot of the drag, decomposed
in the two contributes of pressure and viscosity, over the 40 seconds of the
simulation, together with the value of the adaptative time-step. The values
of resistance reported are equal to two times the values obtained in the
simulations because of the symmetry assumption.

From the plot 4.15a, we can observe a very high value of drag in the first
seconds of simulations, especially in the pressure component. This is due to
the impulsive initial conditions imposed on the velocity field, as anticipated
in Section 3.3. However, as anticipated there, just a few seconds of simulation
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Figure 4.16: Value of the fraction of water α in the front of the ship; blue
corresponds to air, red to water and gray to interface points.

are sufficient in order to arrive to a fluctuating state in which the pressure
component oscillates around a mean value and, eventually, converges to it.
The final time of the simulation, however, is too short to observe this con-
vergence and we rely on DMD in order to obtain it. A discussion on the
application of DMD to our test case is postponed to Section 4.3.3.

We now report some figures that show the value of the fraction of water
α in order to describe the behavior of the ship in terms of wave generation.
In Figure 4.16 and 4.17 we report the value of α on the front and on the
back of the ship and in Figure 4.18 we report the value of α on a z-normal
plane placed on the waterline. All the figures correspond to the final time of
integration (40 seconds), and we have that a value of α of 0, corresponding to
air, is represented in blue, a value of 1, corresponding to water, is represented
in red, while the intermediate values, corresponding to interface points, are
represented in gray.

Finally, we show in Figure 4.19 the value of the pressure p subtracted
of the hydrostatic component ρgh on the front of the ship. In this figure,
red values correspond to overpressure, observed in particular in the frontal
part of the bow, and blue values correspond to pressure loss, associated with
increases in the velocity of the flux and observed in the lateral part of the
bow.
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Figure 4.17: Value of the fraction of water α in the back of the ship; blue
corresponds to air, red to water and gray to interface points.

Figure 4.18: Value of the fraction of water α in the z-normal plane placed
on the waterline; blue corresponds to air, red to water and gray to interface
points.
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Figure 4.19: Value of the pressure p subtracted of the hydrostatic component
ρgh on the front of the ship.

4.3 Reduced Order Model

In this section, we present some possible variations for the reduced order
model and compare them against the full order model in order to establish
the best setting. This optimal ROM will be then used in the optimization
process in the next section.

We begin by defining how the ROM is applied to our test case. After
that, we present the terms in which the comparison is made, and we explicit
the differences between the different ROMs. Next, we present the results of
the tests, making some considerations. Finally, we give some details on the
use of DMD in our test case.

All of the possibilities described below have been tested both on the FFD
and the 4-parameters models presented in Section 4.1.

4.3.1 Description of the ROM Setting

In Chapter 1, we presented reduced order methods in a general setting.
In our case, however, we decided not to apply the decomposition uNN =∑N

i=1 ξiχi(x) to the whole solution field (pressure and velocity), as would be
needed in the case an intrusive approach is used. Instead, we considered as
a snapshot the field of total resistance computed over the hull at the steady
state, defined as:

R = τxρ− pnx, (4.1)
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where τx is the x component of the total (viscous+turbulent) tangential
stresses, ρ is the density of the fluid (computed as in (3.7)), p is pressure
and nx is the x component of the normal to the surface.

A technical remark must be made at this point since, because of the fact
that each deformed hull correspond to a different computational mesh, we
have that each snapshot have a slightly different dimensionality4 N . The
approach we used to tackle this problem is to project the field of total resis-
tance of each solution to the deformed hull shape, expressed as a CAD file,
and consider this projection as a snapshot. In fact, all the CAD files, despite
being different because of the application of FFD, have the same number of
nodes.

To test the effectiveness of a ROM, we decided to run 100 high fidelity
simulations (for both the FFD and the 4-parameters models, for a total of
200 simulations) and to use them to both train and test the models. In
particular, of the 100 total simulations, 80 are used as training set, forming
the snapshots matrix over which the SVD is performed, and the remaining
20 are used as a test set. This separation between train and test set is
performed randomly and repeated 15 times, considering the final average as
the performance of the corresponding method.

The quantity used to evaluate the performance of a reduced order model
is the relative L2 error between the ROM and the FOM of the field of total
resistance computed over the hull, calculated as:(∫

A
(uN − uNN )2dA∫

A
uN2
N dA

) 1
2

. (4.2)

The variations in the ROM setting that generate the different models we
will test are relative to:

• the number of modes used N ;

• the interpolation scheme used in the PODI to compute the modal co-
efficients {ξi(µ)}Ni=1.

As for the number of modes used, we have that, if the snapshots matrix
contains a total of Ns snapshots, and if the dimensionality of the snapshots is
N > Ns, applying a POD we extract a total of Ns modes {χi(x)}Ns

i=1. We can
then choose a number N ≤ Ns of modes and express the reduced solution
as:

uNN =
N∑
i=1

ξiχi(x). (4.3)

4note thatN in this case is unrelated to the linear system coming from the discretization
of the differential equations, and only represents the dimensionality of the snapshots
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The reason why we may want not to use all the modes to express our
reduced solution is that, despite losing some accuracy disregarding the part
of energy contained in the truncated modes {χi(x)}Ns

i=N+1, we may gain accu-
racy reducing the error related to the interpolation process. In fact, it is well
known in numerical analysis that the interpolation error is strongly related
to the dimensionality of the space in which the interpolation takes place.
Our aim is then in general to reach a good tradeoff between the two errors
introduced by the truncation of the modes and by the interpolation, consid-
ering the different models generated for different values of N and selecting
the best one in terms of relative error.

Regarding the interpolation scheme, we considered three different possi-
bilities:

• linear interpolation;

• interpolation with Radial Basis Functions (RBF);

• interpolation with Gaussian Processes (GP);

We remark that, for the last two methods, we are not considering an in-
terpolation problem but rather a data approximation problem, using, for ex-
ample, maximum distance techniques (for RBF) or regression techniques (for
GP). However, we continue to refer to the term interpolation in reference to
the acronym PODI (Proper Orthogonal Decomposition with Interpolation).

We now proceed to briefly describe the interpolation techniques just men-
tioned. Our aim is neither to present the implementation details, nor to
discuss the general theory behind these techniques, but instead to give some
insights. As for the practical implementation, for the linear interpolation
and the RBF interpolation we relied on the implementations contained in
the Python package scipy (see [27]), while for the Gaussian process interpo-
lation we used the Python package GPy (see [28]).

Linear interpolation. The linear interpolation is conducted in a two-stage
approach, in which initially a triangulation is built on the input data using
Delaunay techniques, and the inference of the value of a new point xj is made
by applying linear barycentric interpolation on the triangles.

The main downside of using this approach is that only points belonging
to the convex hull of the input data can be inferred. Because of this, it is
necessary that at least all the vertices of the parametric space are contained
in the training set, that in the case of an N dimensional parallelepipedal
parameter space implies that the training set must be at least composed of
2N elements.
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RBF interpolation. In radial basis function interpolation, the interpolant
is built as a weighted sum of Radial Basis Functions (RBFs).

A RBF is a function φ whose value depends only on the distance of the
point from the origin of the axes, that is φ(x) = ||x||, or from some other
point y, that is φ(x) = ||x − y||. The distance in our case is expressed as
Euclidean distance.

To perform the intepolation we must first define the shape of the RBF to
be used. In our case we used a multiquadric function:

φ(x) =

√
||x− y||2

ε
+ 1, (4.4)

where the centers y, radius r and ε needs to be defined for each basis function.
The RBF interpolant is then constructed by obtaining the values of the

coefficients that multiply each basis function in the final weighted sum. These
values can be determined using different kinds of techniques, from the im-
position of the interpolation condition to more sophisticated techniques that
involve, for example, maximum distance criteria.

In particular, inside the class implemented in Scipy, there is the possibility
to indicate a parameter, named smoothness, that, as the name suggests,
quantifies the smoothness of the final approximation obtained. A value of
smoothness equal to 0 corresponds to plain interpolation, generating a highly
oscillating approximation, and higher values of the smoothness parameter
correspond to smoother and smoother approximations.

GP interpolation. GP interpolation, or better GP regression, is an ap-
proximation technique in which the data to be interpolated is modeled by
a Gaussian process. The interpolant is built, similarly to the RBF case, as
a weighted sum of basis functions (we used RBF functions also for the GP
case) and the method gives the best linear unbiased prediction of the data
to be predicted.

We avoid going into the details of the method since we would need to
introduce many statistical concepts. We refer to [29] for an in-depth presen-
tation of this class of techniques.

4.3.2 Results and Considerations

Before presenting the results, we remark that the implementation we have
used for the PODI is based on EZyRB, an open-source Python library for
data-driven model order reduction (see [30]).

We report here, for both the 4-parameters in Figure 4.20 and the FFD
model in Figure 4.21, two plots representing the average relative L2 error
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Figure 4.20: Average relative L2 error between the FOM and the ROM as
a function of the number of modes (left) and the number of snapshots used
(right). Shapes generated using the FFD model.

(4.2) as a function of the number of modes (on the left) and the number of
snapshots used (on the right). In the former, we have used the total number
of snapshots available to train the model (i.e. 80) and varied the truncation
parameter N , from 1 to 80, and the interpolation scheme, considering the
linear, the GP and the RBF with four different smoothness parameters(=
0, 0.01, 0.1, 0.5). In the plot on the right instead we considered the different
models generated by considering only Ns snapshots, with Ns going from 10
to 80, with GP and RBF interpolation schemes5 and with N = 10.

A first interesting result to be noted is that the 4-parameters model does
not perform better than the FFD model. This was not expected a priori
since a reduction of the dimensionality of the parameters space should have
benefic effects on the performances of the ROM model. However, this result
can be explained by the fact that, in transforming the parameters space, we
are not in any sense simplifying or reducing the complexity of the design
space generated, being the shapes obtained from the 4-parameters model
quite identical to the ones generated by the FFD model. In this sense,
an improvement of the ROM model could be obtained only by effectively
reducing the design space, considering more simple deformations or more
strict constraints and, consequently, obtaining a possibly worst optimum
from the optimization process.

To proceed, from figures 4.20a and 4.21a we can see that, as expected, the

5we have not considered the linear scheme since, as already mentioned, it requires at
least all the vertices of the domain to be included in the snapshots matrix
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Figure 4.21: Average relative L2 error between the FOM and the ROM as
a function of the number of modes (left) and the number of snapshots used
(right). Shapes generated using the 4-parameters model.

error tends to be large for low values of N , because of the truncation error,
and for high values of N , because of the interpolation error, the optimal
value for the truncation being around 20. To interpret this result, we show,
in Figure 4.22, a plot representing the singular values obtained from the
SVD decomposition of the snapshots matrix, ordered from the highest to the
lowest and expressed as a ratio σi

σ1
in a log10 scale. Considering this plot and

equation (1.11), we can see that the modes after the 20th contribute to the
reduced solution around two orders of magnitude less with respect to the
first one.

Regarding the error as a function of the number of snapshots used, dis-
played in figures 4.20b and 4.21b, we can see that it posseses a decreasing
monotone behavior. While, as expected, the optimal number of snapshots to
be used is 80, an interesting information we get from these plots is that using
a number of snapshots considerably lower, even halved, the error obtained is
almost the same. This is very interesting from the point of view of industrial
applications and is only possible when considering non-linear interpolation
schemes.

To continue with the analysis, we can see from figures 4.20a and 4.21a that
the best performances are returned by the GP and RBF (with smoothness
0.1) interpolation schemes, with a small difference between these two.

Based on these considerations, we now define the optimal ROM setting
we will use in the optimization process:

• model for the generation of the deformed shapes: FFD 6-parameters
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Figure 4.22: Values of σi
σ0

on a log10 scale for the first 40 singular values,
ordered from the highest to the lowest, from the POD applied to the 6-
dimensional parametric problem.

model;

• interpolation scheme: GP interpolation;

• Ns: 100;

• N : 20.

To quantify the profit in computational time, we have that while, as
mentioned in Section 4.2, the FOM requires around 9 hours to run, the
online-phase of the ROM model defined above is almost real-time, requiring
less than one second. Obviously, we need to consider the time required
to perform the SVD (around 1 minute) and, most importantly, the time
required in the offline phase for the computation of the snapshots, where in
our case 100 CFD solutions need to be computed. However, this number is
way lower than the number of CFD simulations that should be calculated in
an optimization process, this number being around 3000. We also mention
here that the time required by the deformation process (via FFD), by the
dynamic mode decomposition and by the optimization process is negligible
with respect to the time required by the computation of the offline phase of
POD.

Finally, we show in Figure 4.23 the total resistance over the bulbous bow,
computed for a new value of the parameters, for the FOM (on the left) and
the ROM (on the right).
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Figure 4.23: Value of total resistance over the bulbous bow for the FOM (on
the left) and for the ROM (on the right).

4.3.3 Dynamic Mode Decomposition: Setting and Re-
sults

In this section, we present some considerations on the use of Dynamic
Mode Decomposition in our test case, as introduced in Section 1.5, and dis-
cuss the results obtained. Before proceeding, we remark that the imple-
mentation we have used for the DMD is based on PyDMD, an open-source
Python library (see [31]).

We can consider two possible choices for the use of DMD:

• apply DMD to the solution fields (velocity and pressure) defined over
the whole computational domain, obtain the asymptotic solution and
calculate from this the associated total resistance over the hull;

• calculate the total resistance field over the hull for each time-step and
apply DMD to it, obtaining the asymptotic total resistance

Since we are not interested in the solution fields but only on resistance
and since the total resistance field is much smaller than the solution fields,
resulting in a much faster DMD, we decided to opt for the second approach.

More precisely for the time series {x0, ...,xn} we considered the total
resistance field calculated from second 20 to 40 every 0.5 seconds.
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Figure 4.24: First 5 DMD eigenvalues.

Using this, we can assemble matrix X and Y and compute the DMD
modes (we considered the projected modes). In Figure 4.24 we show the first
5 eigenvalues obtained by DMD in the complex plane.

In order to obtain the asymptotic state of our system, the standard ap-
proach consists of reconstructing its dynamics using the exact or projected
DMD modes, as presented in Section 1.5. In this work, however, we decided
to test an alternative approach, that consists of considering the dynamics
described by only the first DMD mode. This is justified by the fact that, as
shown in Figure 4.24, the first DMD mode has imaginary part 0 and thus
represents a non-oscillating dynamics. Because of this, we assumed that the
system obtained by the reconstruction process performed considering only
the first mode represents the asymptotic behavior of our system and that
the other modes made up the oscillations we can observe in the simulated
resistance.

4.4 Optimization

In this section, we present the choices we have made for the optimiza-
tion algorithm used to explore the design space. In particular, after a brief
introduction to the general class of algorithm we have used, namely genetic
algorithms (GA), we present the setting we have used for our test case. Fi-
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nally, we show the results of the optimization process.
In exploring the parameter space, we will make extensive use of the tools

we have discussed previously in this work. In particular, for every new value
of the parameter, we need to compute the new deformed hull, using FFD,
and we need to compute the value of the resistance around the new deformed
hull using PODI. Finally, the optimized hull will be validated using the FOM.

4.4.1 Genetic Algorithms

As already mentioned, the family of algorithms we decided to use for
the optimization process are called Genetic Algorithms (GA). The main idea
behind these methodologies is the application of natural selection principles
in which, starting from an initial random population, we breed new genera-
tions using mating and mutation mechanisms, selecting at each step the best
individuals.

Going a bit deeper into the details of GAs, we begin by defining what is an
individual, that in our case is represented by a vector of parameters6 ν ∈ RN ,
where N is the dimensionality of the parameters space. The first generation
G0 is then composed of n0 individuals generated varying the parameters
randomly in their ranges (as defined in Section 4.1).

Then we use a set of rules to breed new generations and to select the
best individuals inside each generation. In particular, we need to define the
following functions:

• evaluate: a function that takes an individual and returns the value of
the objective function;

• mate: a function that takes two or more individuals and returns one
or more new individuals that are generated mixing in some way the
characteristics of the parents;

• mutate: a function that takes an individual and returns a new individ-
ual that is a random mutation of the first one;

• select : a function that takes a collection of individuals, usually a genera-
tion Gi, and returns the subset of the best individuals in the population
based on the previously defined function evaluate.

The specific way a GA uses these functions depends on the particular
algorithm considered. In our case, we used an algorithm named ”µ + λ”,
that can be summarized as follows:

6in this section, to indicate a value of the parameters, we will use the greek letter ν in
substitution to µ
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1. Initialize G0 = {ν0
j }

µ
j=0;

2. for i = 0, 1, ..., nmax :

(a) Starting fromGi, generate a collection of λ new individualsGi+ 1
2

=

{νi+
1
2

j }λj=0 using mate and mutate. In particular, each new indi-

vidual ν
i+ 1

2
j is generated by mating (of random individuals in Gi)

with probability CXPB and by mutation (of a random individual
in Gi) with probability MUTPB;

(b) Evaluate the objectives functions of Gi+ 1
2

using evaluate;

(c) generate Gi+1 by selecting the best µ individuals in Gi+ 1
2

⋃
Gi

using select ;

3. return as output of the algorithm the final generation Gnmax .

In general, we have no guarantee that the algorithm just described will
reach the optimum we are looking for. In fact, it is not even assured that
different run of the GA give the same final result, as one would expect in
theory, because of the random nature of GA contained in the generation of
the initial population and in the mating and mutation functions. This could
in fact be considered as a way of certifying the reliability of the optimization
process: if, starting from different initial populations and considering differ-
ent mating and mutations, we arrive, more or less, to the same optimum, we
can say with a certain confidence that this is indeed the optimum we were
searching for.

Another aspect must be considered to assert the optimality of our solu-
tion: the error introduced by the ROM. It is possible in fact that an optimum
detected by the ROM is not an optimum when considering the FOM. It is
also possible in fact that an optimum detected by the FOM is not an opti-
mum when considering the continuum formulation or when considering the
real physical phenomenon. We will not consider however these last two steps
since, as we already specified in the initial remarks of Chapter 3, the aim of
our work is not a study of modeling or discretization techniques, and we will
only confront our results using the FOM.

4.4.2 Description of the Optimization Setting

We now list the explicit form of the functions and parameters that specify
the optimization run. Apart from evaluate, that is the objective function of
the optimization (or some modification of it, as we will see in our case) and
is thus fixed, the choice of the other functions is entirely arbitrary.
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The functions are defined as:

• evaluate: returns the value of the total resistance over the considered
hull plus a penalization for volume loss. The penalization is imposed in
a sharp manner, in which if a hull loses volume over the 1‰, a very big
penalization is imposed (of numerous order of magnitude bigger than
the resistance value), removing the hull from the possibility of being
chosen in the select phase;

• mate: one point crossover, in which taken two individuals [νA1 , ν
A
2 , ..., ν

A
N ]

and [νB1 , ν
B
2 , ..., ν

B
N ] and a random value i between 1 and N, the new

individual is formed by the first i parameters of A and the last N−i pa-
rameters of B, i.e. for example for i = 3 we have [νA1 , ν

A
2 , ν

A
3 , ν

B
4 , ..., ν

B
N ];

• mutate gaussian mutations, in which each parameter of the considered
hull is mutated by a Gaussian of standard deviation σ = 0.1×(upper
bound of the considered parameter) with independent probability;

• select : select the best µ individuals in terms of the output of evaluate.

As for the other parameters characterizing the genetic algorithm, the
values of MUTPB and CXPB we imposed are respectively 0.2 and 0.8, the
values of λ and µ are 200 and 30, the value of σ is 0.1, the probability of
mutation for each parameter is 0.3, and the total number of generations is
nmax = 15.

Other choices are possible for the imposition of the volume constraint. For
example, we could penalize an illegal hull with a small value, proportional
to the volume loss, thus allowing for a less sharp distinction between illegal
and legal hulls. Another possibility is multi-objective optimization, in which
the select function considers optimal hulls in terms of minor resistance and
maximum volume, with different weights on the two contributions.

4.4.3 Results and Considerations

Before discussing the results, we remark that to implement the algorithm
presented above, we use DEAP, an open-source Python library for evolution-
ary optimization (see [32]).

The optimization algorithm for the computation of total resistance em-
ploys the optimal ROM setting found in Section 4.3.

Because of the considerations made previously regarding the random na-
ture of GA, we have decided to run the optimization algorithm 15 times.
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Figure 4.25: First 15 optimization runs.

The final generation of each different run, and in particular the best individ-
ual found in this set, is then considered as the output of the optimization
process.

We report in Figure 4.25 two graphs: the first one, on the left, representing
a boxplot of the values of the 6 parameters, and the second one, on the right,
representing hulls as points in a plane where in the y-axis is reported the
value of the resistance of the deformed hull and in the x-axis is reported its
volume, both calculated as a percentage of the undeformed hull. In both the
plots we represent the entire final generation (composed of 30 hulls) of all
the 15 runs of the optimization (represented with different symbols/colors in
the second graph).

From Figure 4.25a we can see how the algorithm converges for almost all
parameters (except the 4th and to a lesser extent the 2nd). This convergence
can also be seen in 4.25b where we can also see that, as expected, the opti-
mized hulls tend to lose volume to the maximum allowed by the constraint
(that is 1‰) and tend to reduce the resistance of a considerable amount
(around 6%).

At this point we proceed to test some of the optimized hulls obtained in
the previous phase against the FOM. In particular, we consider the best hull
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run # ROM FOM
1 272.076 291.328
2 272.010 281.610
3 273.394 290.195
4 272.278 288.863
5 272.460 288.581
6 271.746 n.a.
7 271.652 283.204
8 273.086 289.926

run # ROM FOM
9 272.364 284.880
10 271.904 290.954
11 273.664 287.503
12 272.468 287.412
13 271.868 292.869
14 273.418 288.013
15 272.424 285.435

Table 4.2: Value of the total resistance computed (via the FOM or via the
ROM) for the optimal hull of each of the 15 optimization runs (non-available
data are related to simulations that did not converge).

(in terms of total resistance) of each run of the optimization, obtaining a
total of 15 new hulls to be tested. The values of the resistance obtained, for
the ROM and for the FOM, for these 15 hulls are reported in Table 4.2.

For a comparison of these values, we mention that the total resistance
computed over the undeformed hull (via the FOM) is equal to 291.308.

We can see that, even though the ROM tends to underestimate the value
of the resistance considerably, the optimal hulls are, in most cases, an im-
provement of the undeformed hull.

The next step is now to add the new solutions computed to the snapshots
matrix and to build a new ROM, performing the same steps as above. This
addition has the effect of improving the information the ROM has available
in the zone where we have localized the minimum in the previous step. This
will in turn enhance the ability of the ROM to predict the value of resistance
for new parameters in this zone of the parameter space.

The ROM obtained in this way is then used to run 15 new optimizations
as before, obtaining Figure 4.26.

From these figures, we can see that the optimization returns more or less
the same optimum values. A first difference with the previous optimization
run can be noted in the fact that the resistances returned by the ROM are in
this case slightly higher. This is connected to the fact that the reduced order
model is improved by the addition of the new snapshots, as we had expected.
Another difference can be noted in Figure 4.26a where the dispersion of the
2nd and 4th variables has decreased compared to the previous run.

This last observation, and the fact that the optimum returned by both
the optimization runs are essentially the same, gives us the confidence to
take this as the result of our optimization pipeline. The final step consists
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Figure 4.26: Second 15 optimization runs (with the addition of the previous
15 optima).
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run # ROM FOM
1 276.870 283.978
2 276.600 283.754
3 276.848 288.963
4 276.472 n.a.
5 276.574 286.259
6 277.254 282.343
7 276.382 286.859
8 276.434 292.972

run # ROM FOM
9 277.294 286.304
10 277.474 284.329
11 276.388 285.248
12 276.372 284.564
13 276.462 289.081
14 276.552 286.810
15 276.342 282.436

Table 4.3: Value of the total resistance computed (via the FOM or via the
ROM) for the optimal hull of each of the 15 optimization runs (with the addi-
tion of the previous 15 optima) (non-available data are related to simulations
that did not converge).

then to test the new 15 optimal hulls using the full order model to certify
the results, obtaining Table 4.3.

As a conclusion of this section, we report the output of our pipeline, which
is the best hull, evaluated in terms of FOM total resistance, between all the
ones returned by the optimization algorithm. This optimal configuration
corresponds to the run # 2 of Table 4.2, with values of the parameters equal
to: [0.7957, 0.1242− 0.5874, 0.7220,−0.7943− 0.7946]. The improvement on
total resistance for this value of the parameters, measured on the FOM, is
around 3.3%.

To visualize the result, we report in Figure 4.28 the plot of areas and
in Figure 4.27 the x, y and z sections corresponding to this value of the
parameters.
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Figure 4.27: View of the x (right), y (upper left) and z (lower left) sections
for the optimal hull shape; in blue the undeformed hull, in red the deformed
hull.

Figure 4.28: View of the plot of areas for the optimal hull shape; in blue the
undeformed hull and in red the deformed hull.
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Chapter 5

Conclusion and Perspectives

In this Master Thesis we have designed a data-driven modular shape opti-
mization pipeline that can obtain a significant improvement on the efficiency
of the hull of a cruise ship in a time that is reasonable also in an industrial
context.

Going into more details, we have seen that the use of free form deforma-
tion to obtain deformations of an initial unoptimized hull is a good option,
because of its flexibility of use and the positive results obtained. In defin-
ing the setting of FFD, one must assure the compliance with the constraint
and aims of the deformation and, most importantly, establish the complexity
and extension of the design space generated. In fact, we have seen that a
reduction of the complexity of the problem using POD at this stage is not
possible. As for the perspectives, one could consider more general defor-
mation settings, enlarging the design space and thus possibly obtaining a
better optimum. However, this possible improvement would lead to an in-
creasing of the complexity of the problem and, hence, of the computational
time associated.

As for the FOM model, we could consider possible enhancements both
from the point of view of the discretization, considering a more refined grid
or more precise schemes, and from the point of view of the model, removing
one or some of the hypothesis exposed in Section 3.1.

From the point of view of reduced order models, we can conclude that
they are of great use both in the context of reduction of the dynamical
system associated to the FOM (via DMD), and, especially, in the reduction
of the parametric problem (via PODI). The error associated with the latter
in fact, even if not negligible (around 5%), enables us to run an optimization
algorithm that gives us a reliable optimum, where the reliability has been
tested on the FOM. A significant improvement that should be tested is the
implementation of intrusive POD. In fact, despite losing some flexibility on
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the generation of the snapshots matrix, a crucial aspect from an industrial
point of view, we expect that the error associated with an intrusive approach
could be noticeably minor with little increase of the computational time.

As for the optimization algorithm, genetic algorithms seem to behave well
in this case study and are able to return solutions that are, with a certain
confidence, quite near to the real optimum. Different alternatives could be
tested, like for example a coupled approach ”GA + gradient descent” in order
to obtain a more precise determination of the optimum solution.

We want to emphasize two interesting features of the pipeline we designed,
especially from the industrial point of view, that are its modularity and its
data-driven nature. In fact, one or more ingredients between the ones we
described (geometrical deformation, FOM, optimization phase) could be re-
placed in order to meet the requirements needed for the particular application
at hand. Moreover, the flexibility given by the data-driven approach allows
us to consider various possibilities for the generation of the FOM snapshots,
also considering commercial CFD software or experimental data.

The presented pipeline can be further extended in an easy manner, thanks
to the already mentioned modularity, in order to use more advanced and so-
phisticated algorithms to approximate the solution manifold. Machine learn-
ing techniques, that we partially explored in this thesis by using the gaussian
process regression, can be an option to maintain the equation-free nature of
our approach and at same time increase the accuracy of the approximated
output of interest. Moreover, thanks to the huge computational reduction,
we can adopt this pipeline to create a digital twin of complex system , allow-
ing the generation of virtual model that replicate in real-time the behaviour
of the original system.

Finally, to quantify the results we have obtained, we recall that the im-
provement over the initial hull we have obtained is around 3.3% on the total
resistance, with a total loss of submerged volume of around the 1‰, as re-
quested. The computational time required by our pipeline is around five
weeks of CPU time, corresponding to the computation of 100 high fidelity
solutions of 8 hours each (the time required by the other phases is negligi-
ble). As a comparison, the use of the FOM for the execution of one run of
the optimization process (in contrast to the 30 runs we have considered for
the ROM) would require around 140 weeks. We also remark that, as we have
seen in Figure 4.20b, we could decrease considerably the computational time
required by the pipeline by generating fewer snapshots in the offline phase,
obtaining an error that is still comparable to the one we achieved.
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