PoLITECNICO DI TORINO

DIPARTIMENTO DI SCIENZE MATEMATICHE
M.Sc. in Engineering Mathematics

Final dissertation

Robust Risk Minimization
for Noisy Labels

Supervisor: Santiago Mazuelas Candidate: Filippo Buoncompagni
Co-supervisor: Giuseppe Calafiore

ACADEMIC YEAR 2019/2020

Summary

More often than not the learner has access to a corrupted dataset and still he has
to find a way to get a good predictive model out of it. This means, in case of
classification problems, to be able to design a learning algorithm whose aim is to
output from corrupted data a classification rule with small generalization error, or
risk, on new clean samples. The learning algorithm used throughout this work is
what is called Robust Risk Minimization (RRM) which consists in minimizing the
worst case risk incurred over an uncertainty set of probability distributions. The
most popular learning algorithm Empirical Risk Minimization (ERM) can be seen
as a particular case of RRM when the uncertainty set contains only the empirical
distribution. In this work we will perform RRM by considering the 0 — 1 loss, the
set of non deterministic classification rules as Hypothesis Space, and uncertainty sets
defined by linear constraints on the expected value of a function, called the feature
map. We will show that, with such approach, we can derive a classification rule by
solving a Linear Programming problem. By suitably modifying the feature map,
we will make the classifier robust against one particular type of corruption which
consists in having class conditional noise in the labels. We will see that our approach
extends the current literature since it is able to deal with non reconstructible noise,
while existing techniques cannot. Lastly, we will present some generalization bounds
for the risk of our classifier learned from datasets with noisy labels.

All the work is supported by numerical results showing that the performances of
our classifier are competitive with the performances of the current state of the art
techniques for dealing with noisy labels.

11

Acknowledgements

The research presented in this master thesis has been done at "BCAM, Basque Cen-
ter for Applied Mathematics” in Bilbao, Spain. I have been there for an internship
of four months: June, July, August and September 2019, under the supervision of
Dr. Santiago Mazuelas and his group.

(bcam)

basque center for applied mathematics

II1

Contents

List of Tables

List of Figures

1 Introduction

1.1

Framework and Problem Description

2 Noisy Labels using Linear Probabilistic Classifiers

2.1

2.2

2.3

24

Linear Probabilistic Classifier
2.1.1 From the noisy domain to the clean domain
2.1.2 Minimax problem
2.1.3 Point estimation uncertainty set
Generalization Bounds
2.2.1 Hoeffding’s inequality
2.2.2 Generalization Bounds in the clean domain .
2.2.3 Generalization bounds with noise
Heterogenous Noisy Labels
2.3.1 Semi-supervised Learning with LPC
2.3.2 Different noise levels for different groups . .
Multiclass Classification
2.4.1 Irisdataset

3 Performances on Real Datasets
3.1 Method of Unbiased Estimators
3.2 Performances on Real Datasets
3.2.1 Breast cancer dataset
3.2.2 Heart dataset
3.2.3 Germandataset
Appendices

v

VI

VII

10
14
18
18
20
22
26
26
29
31
32

34
34
35
35
36
37

40

A Generalization Bounds 41

A.0.1 Generalization bounds for finite H 41

A.0.2 Generalization bounds for infinite H 42

A.1 Empirical Risk Minimization 44

B Linear Probabilistic Classifier 46
B.1 Robust Risk Minimization 46
B.2 Polyhedral uncertainty sets. L. 46
B.3 The minimax problem, 47
B.3.1 Solving the minimax problem with Lagrange Duality 47

List of Tables

2.1
2.2
2.3
24
2.5
3.1
3.2
3.3
3.4
3.5

3.6

Accuracy oL
Accuracy
Accuracy with and without projection.
Accuracy degrades by varying q
Comparison of the performances between considering all the cor-
rupted dataset and considering only the fraction of clean labels.
Comparison between LPC and the method of Unbiased Estimator(UB).
The standard deviation is also computed.
Comparison between LPC and the method of Unbiased Estimator(UB).
The standard deviation is also computed.
Comparison between LPC and the method of Unbiased Estimator(UB).
The standard deviation is also computed.
Comparison between LPC and the method of Unbiased Estimator(UB).
The standard deviation is also computed.
Comparison between LPC and the method of Unbiased Estimator(UB).
The standard deviation is also computed.
Comparison between LPC and the method of Unbiased Estimator(UB).
The standard deviation is also computed.

VI

List of Figures

2.1
2.2
2.3
24

2.5
2.6
2.7
2.8
2.9

2.10

2.11
2.12

2.13
2.14
2.15
2.16
3.1

3.2

3.3

Dataset generated by a mixture of gaussians.
Corruption of the training set.
Accuracy versus noise
Mean accuracy versus noise with 95 per cent confidence intervals for
themean
Accuracy versus noise. Averaged 50 times.
Accuracy versus noise. Averaged 50 times.
dataset where 90% of instances (grey points) have random label. . . .
How the accuracy diminishes as we decreased the fraction of clean
data. However even when ninety percent of the dataset is randomly
labeled we have a satisfactory learning
It is better to learn from a corrupted dataset with some fraction of
clean data rather than considering only the learning from a small
fraction of clean data. L.
The two lines are the average of k =30 values.
For different corruptions of two sub groups, we see how the accuracy
changes by varying the proportion of the two sub groups. Averaged
10 times. e e e
Dataset for multiclass classification
Dataset corrupted for multiclass classification
Iris Dataset
Comparison between LPC and the method of Unbiased Estimator(UB).
The red curve is the profile of accuracy of the ERM classifier mini-
mizing the logistic loss.o
Comparison between LPC and the method of Unbiased Estimator(UB).
The red curve is the profile of accuracy of the ERM classifier mini-
mizing the logistic loss. L
Comparison between LPC and the method of Unbiased Estimator(UB).
The red curve is the profile of accuracy of the ERM classifier mini-
mizing the logistic loss. L.

VII

Chapter 1

Introduction

The recent scientific field known as machine learning consists in developing com-
putational methods to make accurate predictions from past available information
which usually consists in collected data. Nowadays, the interest of the corporate
world towards machine learning has increased enormously. In fact machine learning
techniques are a valuable support tool in making important decisions that guide the
growth process of a company. Companies posses large amount of data and they
want to find a way to extract useful information in order to improve efficiency and
reduce costs. In parallel, also among academics the interest toward a relatively new
field like machine learning has increased in recent years, and almost every day we
see the birth of new and more efficient techniques. This has led to a deep and solid
collaboration between university and industry as we have never seen before.

Each machine learning technique was born to solve a particular class of learning
problem. Some major class of learning problems are:

o Classification: we have a set of items and we want to assign a categorical value
to each of them. For categorical value we may think as a label, which can be
a color or a number, that identifies a category. An example of classification
problem is the one that faces a bank when it has to decide whether to give or
not a loan to a new client. The bank usually has an history of all the past
clients to whom it had lent money. This history may contain for every past
client some of his features like age, occupation, salary, education, etc, along
with a label that indicates if the clients has repaid the loan or not. The bank
based on the features of the new client and on past labeled data will output a
decision yes/no at the request of credit from the client.

o Regression: given a set of items we want to predict a real value for each of
them. An example of a regression problem is the one of predicting the stock
values.

o Clustering: we have a set of items and we want to group them into homogeneous
regions according to some measure of similarity.

1

1 — Introduction

While the first two major class of problems, classification and regression, are
called supervised learning problems because the learner receives a set of labeled
examples as training data and makes predictions for all unseen points, the clustering
problem is referred to unsupervised learning because the learner exclusively receives
unlabeled training data [Hastie et al. (2005)]. Sometimes it might be the case that
unlabeled data is easily accessible but labels are expensive to obtain. In this last case
the learner usually has very few labeled examples and many unlabeled examples.
The hope is that the distribution of unlabeled data accessible to the learner can help
him achieve a better performance than in a supervised setting where he has only
few labeled data. We refer to the last scenario as semi-supervised learning[Zhu &
Goldberg (2009)].

In this work we will deal mainly with supervised learning, with a brief section
regarding semi-supervised learning, and in particular with classification problems.

The problem we want to address with this work is how to deal with situations
in which the data at our disposal is affected by some noise, in particular how to
guarantee an efficient learning that is able to still make good predictions. Dealing
with corrupted dataset is more a rule than an exception. In this work we will con-
centrate on the very specific situation in which the noise in the dataset affects only
the labels. This problem in the machine learning community is known as learning
with noisy labels. Creating supervised learning algorithms that are able to learn
efficiently from data with noisy labels is a problem of great importance. [Angluin
& Laird (1988)] proved that the random classification noise, in which every label
is flipped independently with a probability p € [0,0.5), is PAC-learnable. [Kearns
(1998)] proposed the statistical query model to learn with random classification
noise. [Natarajan et al. (2013)] studied the problem of binary classification in the
presence of asymmetric random classification noise, by using Empirical risk mini-
mization with a suitably modified loss function. [Van Rooyen & Williamson (2017)]
presented a generic method for learning from a fixed, known and reconstructible
corruption in the labels that generalizes the method proposed in [Natarajan et al.
(2013)]. We will show that our method is able to deal with non reconstructible cor-
ruptions since it does not require to invert the transition matrix. [Liu & Tao (2015)]
instead, proved that any surrogate loss function can be used for classification with
noisy labels by using importance reweighting.

The machine learning technique used throughout all the work is what is called
Linear Probabilistic Classifier(LPC) which is still under development, whose details
can be found in [Mazuelas et al. (2019)] and a brief summary in Appendix B.

In all the following simulations I've used CVX, a package for specifying and solving
convex programs [Grant & Boyd (2014), Grant & Boyd (2008)].

In this first introductory chapter we present briefly what is the goal of supervised

2

1 — Introduction

learning and the most used approach to deal with, which is Empirical Risk Mini-
mization. Then we will introduce how can we model corruptions of data.

1.1 Framework and Problem Description

Suppose we have access to a set of data points {xy,...,2,} living in a space called
the feature space X, each of which is a realization of a random variable x, following
a fixed but unknown distribution p(z). Every data point also carries its own label
according to a fixed but unknown conditional distribution p(y|z). From now on,
we will call the set of data points we have access to, together with their labels,
(x1,Y1), -, (Tn, Yn), the training data. The training data is a set of i.i.d. samples
drawn from the joint distribution p(x,y) = p(y|x)p(x), that we will call p.

Let h : X — Y be a function from the feature space X to the label space).
The function h is called a classification rule. Moreover, let [: X x Y — R be a
loss function which measures the loss [(h, (z,y)) incurred when we classify a given
sample (x,y) with label h(x). The natural loss function used in classification is the
0 — 1 loss, defined as I(h, (z,y)) = 1[h(x) # y]. The goal of supervised learning is
to find a classification rule h that minimizes the expected loss, called the risk or
generalization error, over unseen data distributed according to p [Vapnik (1999)].
That is we want to solve

min E (b, (z.9)) (L)

Problem (1.1) can be solved in theory by writing

Jmin > pla,y)(1 = 1h(z) = y]) = (1.2)
reX yey

i 1 — Z;(p(:c, h(z)) = (1.3)

1 — max, Z;(p(x, h(z)). (1.4)

Maximizing the sum in (1.4) is the same as maximizing each term of the sum,
and so the best classification rule A is such that, Vx € X

h(x) € argmax p(z,y), (1.5)
yey

and is called the Bayes rule, while

=1 — 1.
R > max p(z,y), (1.6)

reX

is called the Bayes Risk and is the smallest possible risk we can achieve. Since
however the true distribution p is not known, solving the optimization problem

3

1 — Introduction

above in practice is not possible. In order to simplify the notation let’s indicate the
risk of a given classifier h as R(h) = E,l(h, (z,y)) and its empirical risk as

R(h) = =" 1[h(x:) # il. (1.7)

1

n

S|

(2

Usually instead of considering all the possible functions h : X — Y, we fix

a hypothesis set H and do the minimization over H. Notice that, for a fixed

h € H, the empirical risk }?(h) is a random variable since it depends on the data

(x1,%1), - - - (X, yy) which are i.i.d. samples from p. Taking the expectation of the

empirical error over all the possibles training data we get the generalization error
R(h), that is

E[R(h)] = R(h). (1.8)

It is possible to bound the difference between R(h) and R(h) in many ways with
the so called Generalization Bounds (see Appendix A). The idea of that is to find
some upper bounds for the generalization error R(h) of a given classifier h € H.

Empirical Risk Minimization (ERM) is by far the most used approach for approxi-
mating (1.1). The idea is to use the training data and it consists in minimizing the
sample average of the loss incurred at the observed samples
LS 15, (7) (19)
gg{}n 2 y \ Ly Yi)), :

which can be written in terms of the empirical distribution p, as

From a practical point of view, problem (1.9) is tractable only if the objective
function is convex, which is not the case for the 0 — 1 loss. What is usually done
is to replace the 0 — 1 loss with a convex loss function such as the logistic loss, the
Hinge loss or the quadratic loss.

Usually in supervised learning it is assumed that training samples follow the same
distribution as test samples. However this situation is rarely seen in reality. In many
real situations the datasets we have access to might have been previously corrupted
deliberately or unintentionally. Suppose, for example, that an adversary corrupted
the labels of our training dataset, and we have access to (z1,71) ... (%, J,) which
are i.i.d. samples from a distribution p = p(y|z)p(z), while (z1,y1) ... (s, yn) are
i.i.d. test samples from the clean distribution p = p(y|z)p(x). We model the above
situation by saying that originally the training data was following p, but then a
corruption occurred and now it follows p. More formally a corruption in the label
can be modeled as a linear map 7' : A(X x Y) — A(X x)), where A(X x)
is the simplex of probability distributions in RI*IMl that transforms a probability

4

1 — Introduction

distribution p into a probability distribution p [Mazuelas & Pérez (2019)]. Our
goal now is to learn a model from those corrupted samples that performs well on
new clean samples, limiting as much as possible the damage caused by the adversary.

As a starting point let’s consider the case of binary classification wherey € {—1,+1}.
Let’s define p, the probability of flipping the true label y = +1 to § = —1, and p_
the probability of flipping the true label y = —1 to §y = +1. In formulas

p+ =P(j=—1ly=+1) (1.11)
po =P(j=+1ly = —1). (1.12)

Usually p, and p_ are called the noise rates, depend on the class label, and a
very important point is that we assume to know those rates. In practice we can see
the corruption process of a data as going through every training instance-label pair
and flipping a biased coin according to the conditional probability p, and p_. In
theory in the case of binary classification the linear map 7' can be expressed as a
stochastic matrix RI¥IVXI¥IVE whose columns add up to one: T =1 ® T,,, where

L—py p-
= , 1.13
=, (113
and with the compact notation 7' =1 ® T}, we mean
T, 0 0 ... O
o 7, 0 ... 0
T=10 0 T, ... 0], (1.14)
0 0 0 ... T,

Let’s see what is the effect of the linear map 7" on a generic probability distribution
p. Notice that p is a |X||V|-dimensional vector, where |X| denotes all the possible
instances of the features

p(x17+1)
p(xla _1)
p= : e RV (1.15)
p($\X|7+1)
(x|X|7 _1)
and T is a |X||Y|x|X]||Y| dimensional matrix such that
0 Ty 0 0 p<xlay: _1) ﬁ(xlag: _1)
0 0 T, ... 0 : _ : , (1.16)
oot T (@, y = +1) P12, g = +1)
0 0 0 T, p(zx,y = —1) (22, § = —1)

5

1 — Introduction

or in a compact way

Tp = p. (1.17)

In particular we have Vi =1,...,|X]:
Pz, § = +1) = (1 = py)p(zi,y = +1) + (p-)p(ziy = —1), (1.18)
Pi,§ = —1) = (p)p(ziyy = +1) + (1 = p-)p(zi,y = —1). (1.19)

Up to now we have consider the situation in which the original dataset gets cor-
rupted homogeneously. However more complicated corruptions can happen. For
instance we could have different corruptions for different subsets of the original
dataset. That is

(xlla :1.711) e (x1n1 y glnl) lld from]51

(21, To1) - - - (T2ny, Yon,) 1.1.d. from po

(Tt Umi1) - - - (T, » Umny,) 14.d. from p,,

which is called Heterogeneous noisy labels scenario [Mazuelas & Pérez (2019)] and
will be discussed later.

Chapter 2

Noisy Labels using Linear
Probabilistic Classifiers

In this chapter we will introduce the concept of Linear Probabilistic Classifier
[Mazuelas et al. (2019)] which is a classifier derived by using Robust Risk Mini-
mization, a different approach for approximating problem (1.1). We will also see
the correction that has to be applied on a Linear Probabilistic Classifier in order to
make it robust against noisy labels, along some simulations on synthetic datasets
whose results confirm the validity of our approach. Moreover we will present a gen-
eralization bound for the risk of a LPC learned using the correction. Finally we will
briefly discuss a semi-supervised learning setting and multi classification.

2.1 Linear Probabilistic Classifier

Rather than using Empirical Risk Minimization, a different way for approximating
problem (1.1) is to implement what is called Robust Risk Minimization. Since we
don’t know p in (1.1), the idea is to derive from the training data (z1,v1), .- ., (Zn, Yn)
an uncertainty set &/ made of probability distributions, that contains the true distri-
bution p with high probability. Then we find a classification rule h that minimizes
the worst case risk incurred over the uncertainty set U of probability distributions
[Farnia & Tse (2016), Lanckriet et al. (2002)]. We can express this idea with the
following optimization problem

min max Byl (h, (z,7)). (2.1)

The Linear Probabilistic Classifier (LPC) presented in [Mazuelas et al. (2019)]
is a classifier built by solving (2.1), where the loss considered is the 0 — 1 loss, the
classification rule h is unconstrained, and the uncertainty set U is defined in terms

of inequalities that constrain the expected value of a function ® called the feature
map.

2 — Noisy Labels using Linear Probabilistic Classifiers

In the LPC framework we define the uncertainty set U as a subset in A(X x))) C
RI€IYl in the following way *
Us" = {p € AX x Y):a ZE{®(z,y)} < b}, (2.2)

where ® : X x) — R™ is a vector function, called the feature map, and a,b € R™ are
given vectors such that a < 0. In words, the uncertainty set ug’b contains probability
distributions such that the mean of ® with respect to those distributions is between
a and b. Suppose now that (x1,y1),..., (zn, ys) are i.i.d. samples from p, we would
like to solve problem (2.1) over an uncertainty set 2¢" that contains p with high
probability, but at the same time ensuring that all the probability distributions in
ng’b are close to p. This can be achieved through the vectors a and b as the following.
First of all, let’s define

T =E{®(z,y)} = ®p, (2.3)

where the equality is just the definition of the expectation of ® with respect to p.
From (2.3) we see that 7 is a convex linear combination of the columns of the matrix
® c RV e, 7 € Conv(®) C R™. Then let’s define 7, as an estimate for 7

17
=1

and by the Law of Large Numbers, we know that as n — oo,
Tn — T.

We can build the component wise confidence interval for 7 by recalling that, as
n — oo, Central Limit Theorem states

(T”)j;mj —IN(0,1), j=1...m,
o/
where 07 is the variance of ®;. So, the 1 — a/m confidence interval for 7; will be:
(Tn); £ zl,a/gm\/ajz/n.
If we put
(an)j = (Tn)j — Zlfa/gm UJZ/TL,] =1...m (25)

(bn)j = (Tn)j + Zlfa/Qm\/sz/n, j =1... m, (26)

and we use in (2.2) a = a, and b = b, we obtain an uncertainty set that contains p
with probability (1 — «a).?

IWhen we write p in text it is referred to the true distribution, while in the definition of the uncertainty set Z/{;’b,
p are all the probability distributions belonging to that uncertainty set.

2Since we have P{4;} = 1 — a/m, Vj = 1,...,m, by using the Union Bound we get P{N;A4;} > Z;n P{A;} +
1—m =1-a, where A; is the event |7; — (7n);|< 21_0/2m /0'32./71.

8

2 — Noisy Labels using Linear Probabilistic Classifiers

2.1.1 From the noisy domain to the clean domain

We have seen that uncertainty sets are defined by linear inequalities
Uy ={p e A(X xY) :a < E{®(z,y)} < b}, (2.7)

and we have also shown how to build an uncertainty set that contains the true dis-
tribution p with tunable confidence from the training data. We could in principle
repeat exact the same reasoning as if we were in a noisy domain, that is if we had
training samples with noisy labels (z1,91),... (2, ¥,) following p, instead of hav-
ing training samples (z1,y1) ... (2, y,) following p. Repeating the same reasoning
would mean to build uncertainty sets in the noisy domain, solve the optimization
problem (2.1) and, once we have the LPC, testing on a unseen dataset which is in
the clean domain. Doing that, however does not take into account any correction
for the noise. In fact, the learning algorithm would learn from a noisy dataset and
consequently performing poorly on a clean unseen one.

The idea is to build uncertainty sets that contain the clean probability distribution
p, from training data that follow a different distribution p. Let ® : X x Y — R™ be
the fixed feature map in the noisy domain. Then we can write, in the same way as
(B.2), the uncertainty set in the noisy domain

Uy’ = {pe AX x V) : a < Ey{d(x,7)} < b}, (2.8)
where the true expectation in the noisy domain is with respect to the true noisy dis-
tribution p which is the output of a corruption transition 7" on p, the true probability
distribution in the clean domain. That is

Eﬁ{é(x,gj)} = ®p, and Tp = p. (2.9)

If we build an uncertainty set that contains the true distribution in the noisy
domain (let’s call it p) with confidence level 1 — a, we obtain easily an uncertainty
set that contains the true distribution in the clean domain p with the same confidence
level. This is due to the fact that

®p = ®Tp = Py, (2.10)
that is, the expectations in the two different domain are the same provided that
¢ = PT. (2.11)

A confidence interval for the expectation ®p (which means finding a and b and
defining an uncertainty set that contains p with probability 1 — «) will also contain
the expectation ®p, as long as ® = ®T. We can interpret (2.11) as the correction for
the noise we were talking above, and it can also be seen as a way to move uncertainty
sets between different domains. At the end the correction is just a modification of
the fixed ® in such a way that the true expectations in both domains are preserved.

9

2 — Noisy Labels using Linear Probabilistic Classifiers

2.1.2 Minimax problem

Once we have understood the correction that has to be applied in order to learn from
noisy labels, we proceed by solving the optimization problem (2.1) to derive a robust
LPC against noise. All the details regarding how to solve problem (2.1), where the
loss considered is the 0 — 1 loss, the classification rule A is unconstrained, and the
uncertainty set U is defined as (2.8) where instead of using ® we use ® = ®T, are
in Appendix B. At the end the important thing for learning the LPC is solving the
following convex problem

maximize a’a —BTb+~y

7.0,3
subject to |[(TT®T (a — B) + 17) T |[1.00< 1, (2.12)
a >0,
B = 0.

Problem (2.12) can be reformulate as a linear optimization problem (LP) by
rewriting the constraint

I(T"® (e = B) +17) " [100< 1. (2.13)
First of all (2.13) is equal to
[(T7&T (o — B) + 17)* 1< 1,V € X, (2.14)

then in order to understand how (2.14) can be develop further, let’s study ||v™|;
where v is a n-vector. If all the elements of v are positive then ||[v™|;= X1, v;. If
instead some elements of v are negative, the sum will be only done on a subset of n
where the elements of v are positive. Then we can write

Jo*)i> > v, VS € {1,...,n}, (2.15)

=
and so, saying ||[vT|[;< 1 is equivalent to say
mngviﬁl = Zvigl, VS e {1,...,n}. (2.16)
i€S €S
It is straightforward now to see that (2.14) is equivalent to

ST (a—B)+ Sy <1, VS €Y, z € X. (2.17)

yeS

Once we have solved (2.12), meaning we have found o™, 8%, v*, we can construct the
Linear Probabilistic Classifier as

1 — ||(T) @7 (e — B) + 1) *|ly

V| ’
(2.18)

Wz, y) = (T, ®7)y(e" = B7) +7) " +

10

2 — Noisy Labels using Linear Probabilistic Classifiers

which gives the probability of classifying a given x with label y. In particular for a
given x we have an entire probability distribution hf. For example in case of binary
classification where y € {1, 2}, we have for a given x

B, 1) = (1= p) B D + ()b D) @ = B7) +7)*
L LT 8@ =) + 1) s

5 . (2.19)

B, 2) = (((p2) Bl 1) + (1= p2) Bl D)@ = B7) +7)*
L L8 = B + 197) s
2 .

(2.20)

To summarize The learning stage consists in solving the convex problem (2.12),
whereas the prediction stage consists, given an input z, in generating a y according
to hL given by (2.18).

By applying the correction, i.e., using ® = ®7T instead of ®, we should get better
results in testing on a clean dataset, than in the case where the learning algorithm
directly learns from a noisy domain. This is indeed the case as shown in the fol-
lowing simulation. Let’s consider the synthetic dataset in Figure 2.1 generated by a
mixture of four Gaussians, with weights 0.4,0.6,0.3,0.7 and covariances 0.5°I and
0.25%I. The means of the Gaussians are (1,1.5), (3,1),(1,3),(3,3.5). We split then
the dataset in two parts one for training and one for testing. Regarding the training
part, we apply an increasing symmetric noise to the labels (see how the training
data set changes due to the corruption in Figure 2.2)

_{L=p _
T, = l A _p], p=0, 0.1, 0.2, 0.3, 0.4. (2.21)

and for each noise level we learn a LPC which then will be tested on the clean test
part. The learning stage it has been done both with the correction for the noise and
without, then the performances are compared.

11

2 — Noisy Labels using Linear Probabilistic Classifiers

Figure 2.1: Dataset generated by a mixture of gaussians.

The accuracy as the noise level varies are shown in Figure 2.3 and Table 2.1. We
see that by applying the correction for the noise we get better accuracy even for
high levels of noises.

Noise | Correction yes | Correction no
0 0.930 0.930
0.1 0.920 0.885
0.2 0.925 0.805
0.3 0.905 0.765
0.4 0.865 0.760

Table 2.1: Accuracy

In order to make things more statistically significant we can consider more train-
ing data drawn from the same distribution.

For each instantiation of a training sample of size n = 10000 the accuracy is
computed for every level of noise pair (0.1,0.1),(0.2,0.2),(0.3,0.3),(0.4,0.4) on a
clean test sample of size n, = 1000. In Figure 2.4 it can be observed that by
considering £k = 50 different samples the mean of all the accuracy of the LPC is
almost the same for high levels of noise.

12

2 — Noisy Labels using Linear Probabilistic Classifiers

o & o B e B e b .
T

o & o B s b e &
T

(d) Noise level:0.4

Figure 2.2: Corruption of the training set.

13

2 — Noisy Labels using Linear Probabilistic Classifiers

Accuracy VS Noise

—&— correction yes
-0 _correction no

o
@
&
T
’
|

> N
o) N
g N
3 N
© ~
< o
08— S.o -
e
—————— 4
0.75 [— -
07 1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4
Noise

Figure 2.3: Accuracy versus noise

Accuracy VS Noise
095 T T T T T T T

o

@

&
T
1

>
g
g
H
3
8
<
0.8 —l— LPC with correction -
—l— LPC without correction
0.75— -1
07 ! ! ! ! ! I !
0.05 0.1 0.15 0.2 0.25 03 0.35 04

Noise

Figure 2.4: Mean accuracy versus noise with 95 per cent confidence intervals for the mean

2.1.3 Point estimation uncertainty set

Up to now we have seen how to derive a LPC by solving problem (2.1) using uncer-
tainty sets of type (2.2), where a and b define a confidence interval for the expecta-
tion of the function ®. In the case of a = b we have what we call Point estimation
uncertainty set which can be built by estimating a with 7, = £ 31", (2, ;)

Uy ={peAX xY): &p=7,}, (2.22)

14

2 — Noisy Labels using Linear Probabilistic Classifiers

where 7, can also be written as ®p.,> and ®p = E,;{&D(a:,)} The problem with this
construction is that the true noisy distribution p will not in general be in Uz", since

it is not true that the expectation of ® with respect to the true noisy distribution
p is equal to the sample average of ® computed on the samples. This implies that
when we move UZ to Ug the true distribution p will not be inside the uncertainty
set since

SpA£7, = ®Tp#7, = Pp#7,. (2.23)

In practice this is not a big problem, and sometimes it is even better to solve
problem (2.1) on an uncertainty set that does not contain the true distribution p
but has a worst case distribution not too far from p, rather than solving the prob-
lem on an uncertainty set that contains p but has a worst case distribution very far
from p. Since in this last case the minimizer A of the worst case risk can be very
different from the minimizer of the risk. Of course the ideal case would be to have
an uncertainty set that contains p and a worst case distribution very close to p.

However, something more subtle may happen. Suppose that there are no p €
A(X x Y) such that p = Tp € UF, i.e., the intersection between the image of
T and Ug is empty, then when we try to move the uncertainty set from the noisy
domain to the clean domain we end up with an empty uncertainty set Ug. If we
then try to solve the optimization problem*

maximize ATa +
7A i (2.24)
subject to [[(TT®TA + 19) 1|1 < 1,

we get as optimum value +o0o which means that the minimax problem (2.1) is
infeasible (see Appendix B). In order to avoid that, we need to find a way to make
the intersection between the image of 7" and U3 not empty. One possibility is to
replace U (a = 7,) with UZ, where 7 is the projection of 7, onto the convex hull of

the modified ® = ®T' [Luenberger (1997)].

n

Conv(®) = {ifb(xi,yi)p(m,yi) Y plwny) =1, p(a,y:) >0 V@}. (2.25)

i=1

The problem we want to solve is then the following convex QP which admits a

3Note that the empirical noisy distribution pe it is in Z/Ig" by construction.

41t is the same problem of (2.12) but since we have a = b we have modified it according to what explained in
Appendix B.

15

2 — Noisy Labels using Linear Probabilistic Classifiers

closed form solution
minimize |7 — 7l
subject to 1Tp =1,
™ = ®Tp,
p=0.

(2.26)

Topt

Once we found 7, and built U"" at least the distribution p such that p = T'pgy
will be in the image of T and in 2z™".
In order to find 7y, let’s write the Lagrangian

2
~Ap+ v —1Tp), (2.27)

L(p,\,v)= H‘i)Tp —F,
2

where A € R" and v € R, and impose the KKT conditions

p", A%, v*primal and dual optima <= V,L(p", \",v") =0 (2.28)
AT >0 (2.29)
P >0 (2.30)
17p* =1 (2.31)
Xip*(zi,y:) = 0, Vi. (2.32)
From (2.28) we get:
1

pt = §(¢T<I>)*1()* + U1 428077, (2.33)

n . i} AN U+ 287F,
7Topt - Z(D(xzayz)p (l’i, yz) = (I)p = (I)(‘I)T(I)) ! . (234)

2

i=1
By calling d = (* 4+ v*1 + 2®77,)/2, we obtain the following linear system

', =d. (2.35)

In the following simulation we compare the performances of a Linear Probabilis-
tic Classifier learned using point estimation uncertainty sets, first considering the
case without projection and then the case with the projection. The dataset is the
same as the one in Figure 2.1. We split the dataset in two parts one for training
and one for testing. Regarding the training part, we apply an increasing noise to
the labels, and for each noise level we learn a LPC which then will be tested on the

16

2 — Noisy Labels using Linear Probabilistic Classifiers

clean test part. In the first simulation we consider as feature map ® the following

11y =1] |
Hw—ﬂ
*wen=| Tay 2o
9021[9 = 1]
221y = 2]]

The results are shown in Table 2.2 and Figure 2.5.

0.72

Accuracy
o
3

0.68

0.66

Accuracy VS Noise

0.05

0.1 0.15 0.2 0.25 0.3
Noise

Figure 2.5: Accuracy versus noise. Averaged 50 times.

Noise | Accuracy
0 0.7107
0.1 0.7176
0.2 0.7151
0.3 0.7137
0.4 0.7151

Table 2.2: Accuracy

0.35

04

(2.36)

In this first case with the considered ® we don’t have any problem of feasibility
of the primal optimization problem and there is no need in projecting. However
the performances with this simple ®, even though the LPC seems to be robust to
noise, are not very impressive. With a more complicated ® than the one considered
before, which takes in account also higher order polynomial terms such the second
and third order, we get the results in Table 2.3.

We notice that when the primal problem is infeasible the accuracy of the learned
LPC is around 0.5, that is the LPC is a random classifier. If we do the projection
then the performances increase substantially (Figure 2.6).

17

2 — Noisy Labels using Linear Probabilistic Classifiers

Accuracy VS Noise
1 T T T T T T

—e— Projection YES
—e— Projection NO

095 — -1

09— -

Accuracy
o
o
o
T
1

14
@
T
|

0.75 -1

0.7 -

0.05 0.1 0.15 0.2 0.25 03 0.35 0.4
Noise

Figure 2.6: Accuracy versus noise. Averaged 50 times.

Noise | Projection no | Projection yes
0 0.9667 0.9670
0.1 0.8118 0.9241
0.2 0.7742 0.8737
0.3 0.7606 0.8512
0.4 0.6516 0.7864

Table 2.3: Accuracy with and without projection

2.2 Generalization Bounds

When dealing with noise we would like to derive some generalization bounds, i.e.,
some learning guarantees of our algorithm in terms of the noise levels p, and p_.
What we want to quantify is how much a fixed noise level prevent us from a satis-
factory learning.

2.2.1 Hoeffding’s inequality

Before we go into generalization bounds let’s introduce another way to build uncer-
tainty sets ug”’ which uses Hoeffding’s inequality [Wainwright (2019)]. Let z,...,x,
a sequence of independent bounded random variables with z; € [l;, w;], called T =

% * . z; the sample mean, Hoeffding’s inequality says

P{\x—E[xHS t} > 1—26Xp{ (%)} (2.37)

18

2 — Noisy Labels using Linear Probabilistic Classifiers

that is, for every n the probability that the sample mean stays near its expectation
less than a certain amount ¢ is bounded below. The important point is that Ho-
effding’s inequality holds for every n, and we don’t need to assume that n goes to
infinity as when we use the Central Limit Theorem. As before let’s call

T =E,{®(z,y)} = ®p, (2.38)
the true expectation, and
1 n
To =~ ®(zi,y). (2.39)
iz
its estimator. If we apply Hoeffding’s inequality for every component j = 1,...,m
we get
—2nt?
P (Tn>j — (T)j S tj Z 1-— Qexp oy J D) > (240)
im1 (I — uy)
where
[= max(®(z;, yi)); (2.41)
uj = min(®(z;, y:));- (2.42)

Let’s call the event inside the probability in (2.40) A; and ¢; = [; — u;. Thus we get

P{A;} >1— Qexp{<_2c7;t?>}, (2.43)

J

We would like to set this probability to be greater or equal to 1 — a/m, with «
usually small

1—a/m-1—2€xp{(2nt2>} (2.44)

log + logm log + logm
G\ — 5 < 2®jllec\| — 5 ——
(2.45)

P{L, A} 2 Y P{A} +1-m>1-a (2.46)

J=1

2
log +logm =

Using the union bound we have

where the second inequality follows from the fact that we have put P{A;} > 1—a/m.

At the end, by putting a = 7, —t and b = 7, + ¢t where ¢ given by (2.45) we
build an uncertainty set ng’b that contains p with probability 1 — «. To conclude,
with probability 1 — a we also have

log% + logm
|70 = 7|2 < ||c||2\/7. (2.47)

19

2 — Noisy Labels using Linear Probabilistic Classifiers

2.2.2 Generalization Bounds in the clean domain

Before deriving the generalization bounds in the noisy domain, it is useful to look
at the case without noise. Let’s start by recalling that the minimax problem

min max E,l(h, (z,y)), 5 48
hEA(X7y)p€u§b pl(h; (2, 9)) ()

can be interpreted in learning theory not only as an optimization problem but also
as a learning algorithm. The output of the learning algorithm will be a LPC hg,
the minimizer of the worst case risk, that hopefully will have a small risk or gener-
alization error R(hg), defined as the expected loss of hg over the true distribution
p, which is also the distribution of new samples

R(hs) = Eyl(hs, (z,y)). (2.49)

The risk tells us how good is the specific classifier generated by the learning
algorithm (B.4), but since we don’t have access to p we cannot evaluate directly
R(hg). For this reason in general we are interested in finding an upper bound for
R(hg) with high probability. A first very simple upper bound for R(hg) is the worst
case risk Rf{‘;b of hg given directly by solving (B.4). In fact, if the true distribution
p is in ug’b with confidence 1 — «, we have with probability 1 — « that

R(hg) < R%". (2.50)

Before looking at another bound, we introduce the smallest possible worst case
risk g for a fixed feature map ® as

Ry = herAn(an,y) pIenu?i E,l(h, (z,y)), (2.51)
where 7 is the expectation of the feature map ® with respect to the true distribution
p. In this way p is in Ug by construction. In order to see why Rj is the smallest
possible worst case risk, note that given an arbitrarily ug’b that contains p with
probability 1 — « it will then contains g with the same probability level. This
implies

R}, < R:". (2.52)

Fixing a,b and ®, we can actually bound the difference between the worst case
risk ngb and the smallest possible one of ®, RE. We know that®

Ry =1—aTa* + 073" —~*, (2.53)

5see Appendix B.

20

2 — Noisy Labels using Linear Probabilistic Classifiers

where o*,3* and v* is solution of

maximize afa —BTb+~y

7.0, 3
subject to [[(®7 (e — B) +17)"[1,0< 1, (2.54)
a = 0,
B =0,
and
Ry =1—71\ — 4%, (2.55)

where A* and ~* is solution of

maximize ATT 4+~
7A (2.56)
subject to [|(@TA + 17) |1 < 1.

It is easy to see that a solution of problem (2.56) is a feasible point for problem
(2.54) by writing A* = (A*)" — (=A*)". Then we can write

R <1 —aT (W) + b7 (=X*)F — 4%, (2.57)

because Rf};b is the optimal value of problem (2.54). Adding and subtracting 77 *
in the right end side, we get

R < R+ (AT (r—a)+ (=A)T(b—1). (2.58)

Depending now, on how we choose a and b we get different bounds. For exam-
ple if we follow the construction using Hoeffding’s inequality we have

1 log(2 1 log(2
a:Tn—C\/ og 1 + log(/a)7 b:Tn-i-C\/ ogm + log(2/a) (2.59)

2n 2n '
By substituting in (2.58) we have

logm + log(2/a)CT
2n

and using result (2.47) and Cauchy-Schwarz inequality we get a bound for the dif-
ference between the worst case risk and the smallest possible one.

R < Ry + (1 — 1) "\ + \/ (AT + (=11, (2.60)

a . . logm + log(2/c
RiP < Ry 2l 2 EC/0) (261
From this it follows that we can build a bound on R(hg) as
a . - . logm + log(2/c .
Rih) < (RSY — Bg) + By < 20l 2Em - LBCI0) (o

21

2 — Noisy Labels using Linear Probabilistic Classifiers

2.2.3 Generalization bounds with noise

In presence of noisy labels it is possible to construct an upper bound for the risk
R(hg) where the risk is computed with respect to the clean distribution p and hg is
built with a solution of (2.12) as in (2.18).

First of all let’s fix a feature map ® : X x) — R™, with |Y|= 2, such that

i(x,1) - Dy(2,2) =0, Ve e X, Yi=1,...,m. (2.63)

That is we are considering feature maps that take points (z,y) € X x Y into or-

thogonal® vectors in R™ if the labels are different. Given n points (z1,41), .. ., (n, Un)
consider the row i of the matrix ® € R™*??

&, = [®i(21,1), i(21,2), ..., Dilwn, 1), i, 2)] € R, (2.64)

and imagine to build two subvectors <i>11 and i)f € R", i.e, grouping ®; according to
the label. Then it is true that

~ ~1 =2
[[@i]] oo = max(|[®; [|oo, | P |oo)- (2.65)

Notice that once we fix a ® and a T' we can write ® = ®T where ®; = &, 7.7
Having in mind that, it is possible to write the infinite norm of the i-th row of ® in
terms of the noise rates p, and p_ as

~ ~1 ~2 ~1 =2
194l 00= [|1®:T]|oc= max([|(1 = p)®; + (p4)®;]|oc, [(p-)®; + (1= p_)®}]|oc)

(2.66)
~1 ~2 =1 =2
= max[max((1 = p)[®; oo (9:)1|®; [0), max((p-)[|®; [locs (1 = p-)[[®; oo |
(2.67)
~1 ~2 =1 =2
= max|(1 = p) |8 [loo, (P loor (P)IB; loor (1=)|]loo] - (2.68)
Then if (1 — p+)||<i>j||oo> (1-— ,0_)||‘i>z2||c,O we can have
=1 ~2 ~
o (@i oe> 19700 —Pilloc= (1 = p1) | Dl
=1 ~ 2 ~1 ~
o 18, lloo< [®; o0 —1®illoo= (1 = p)[1®; lloc< (1=)] ®il -
. =1 ~2
S0 if (1= pi)[[®; [loe> (1= p-) | ®; oo we get
1@:]l00< (1 = p1)[| P o (2.69)

SNotice that they are more than orthogonal since the product of each component is zero.

"Fixing a matrix T means fixing the noise levels. For different T' we get different ®.

22

2 — Noisy Labels using Linear Probabilistic Classifiers

otherwise _

[@illoo< (1= p)[[®i]oc- (2.70)
At the end we have the following relationship between ||®;]|o and ||®;||s

19400 < max [(1 = ps), (1= po)] | Billoc, (2.71)

or . .

- —p —p
[®illoo < max [e I (2.72)
P+ = p- L= PP

Recalling now the bound of (2.62) in the clean domain, we have in the presence
of noise the analogous bound

it [logm Hlog/a)
R(hs) < 2|A HQHcW ESY 4 R, (273)

where ® = ®T and A* solution of problem (2.24). Now notice that due to (2.72)
we can write

~ 1-— 1—p_
& < 2010 2max [5 P)| (2.74)
L=py=p- 1=py—p-

from which follows

1—ps 1—p_
L—py—p-"1=ps—p-

I]l< 2/m max | | max||®;|- (2.75)

At the end we can upper bound R(hg) with a bound that depends on the noise rates
that quantify how much the noise prevent us from learning.

R(hg) <

. 1— 1—p_ logm + log(2/c .
4[| A |/m max | Pr_ &]maxncpiuoo\/ s 82/) | pr
l—py—p- 1=pr—p-7 i 2n
(2.76)

From bound (2.76) interesting conclusions can be drawn. First of all, notice that the
influence of noise enters only in the first term of right end side of the inequality be-

cause of the expression: max lflpzpjp_, 171,)?:,;_} (Figures 2.7(a), 2.7(b) and 2.7(c)).

As p, and p_ approach 0.5 the bound increases very fast giving no guarantees for

8This second expression is obtained, instead of fixing & in the noisy domain, by fixing ® in clean domain. In this
way in order to get the ® we have to invert the matrix T'.

23

2 — Noisy Labels using Linear Probabilistic Classifiers

learning. In this case the bound doesn’t decrease with the number of training sam-
ples n. On the other hand for noise levels’ values far from 0.5, if n is very high
the first term of right end side of the inequality is almost zero and we would have
R(hs) < R}, making the noise negligible. Lastly from (2.76) and Figure 2.7(c) we
can also say that learning with symmetric noise levels (p. = p_ = k/2) is easier
than learning from situations of class conditional noise levels in which the all noise
affects just one class (py = k and p_ = 0). In other words, from a learning point of
view it is better to equally split a total amount of noise into the classes than having
a clean class and the other receiving all the amount of noise.

24

2 — Noisy Labels using Linear Probabilistic Classifiers

(tho)-21ho)
T

ho)
T

(a) Plot of the function

17‘;. This is the case of symmetric
noise.

1-2

120
100
80—
60

40

20 0

0.4
I A P Y

(b) As p+ = p— go to 0.5 the function increases very fast
making the bound less tight.

3.5

(c) If we consider noise levels up to 0.4 we get a better
insight. By fixing the sum of the noise levels, that is p4 +

p— = k we get a bound which is tighter for symmetric noise
levels (p+ = k/2,p— = k/2) than for noise levels (p4+ =
0,p— = k).

Figure 2.7

25

2 — Noisy Labels using Linear Probabilistic Classifiers

2.3 Heterogenous Noisy Labels

Up to now we have considered cases in which we have applied a random noise to all
the original dataset. However more complicated situations can happen. For example
we could have in the training set groups of samples following different distributions

(x11,711) - - - (X1, Y1p,) 1.1.d. from py

(1'21, Z]21) e (x2n2, g2n2) lld fI'Ol’Il]52

(Tm1, Um1) - - - (Tmn, s Y,) 1.1.d. from p,,,

2.3.1 Semi-supervised Learning with LPC

Consider the case where the noise in the labels is applied only to a fraction of the
training dataset

(x11,%11) - - - (T1ny, Y1n,) 1.1.d. from p

(21, Y21) - - - (Tany, Yon,) 11.d. from p,

where p is the true distribution and p = T'p, with 7" =1 ® T},. In the case of

05 0.5
Ty = [0.5 0‘51’ (2.77)

we are in a situation where for a group of samples the label is uninformative since
the labelling is random. We can think at an unbiased coin that labels those samples.
This situation is equivalent to semi-supervised learning where some training samples
are unlabeled [Zhu & Goldberg (2009)]. Let ¢ be the fraction of clean data in the
training set, we want to see how the performances of the LPC degrades as we
decrease the value of q. That is, we are interested in seeing if we can still have
a satisfactory learning even when most of the training dataset has been labeled
randomly. For instance, consider the dataset in Figure 2.8 of size n = 10000 where
90% of instances (grey dots) have with an equal probability of being in class 1 or in
class 2. If we learn from that dataset we would have an accuracy of 0.923, as shown
in Figure 2.9 and Table 2.4.

q | Accuracy
0.1 0.923
0.2 0.931
0.3 0.939
0.5 0.946
0.7 0.948
0.9 0.950

Table 2.4: Accuracy degrades by varying q

26

2 — Noisy Labels using Linear Probabilistic Classifiers

05 1 1 1 1 1 1 1 1 1 1 1
-0.5 0 0.5 1 1.5 2 25 3 35 4 45

Figure 2.8: dataset where 90% of instances (grey points) have random label.

q VS Accuracy
o T T T T T

08— -

06 -

04 —

02 -

01 1 1 1 1 1
0.95 0.945 0.94 0.935 0.93 0.925 0.92
Accuracy

Figure 2.9: How the accuracy diminishes as we decreased the fraction of clean data. However even when
ninety percent of the dataset is randomly labeled we have a satisfactory learning

The goal of semi-supervised learning is to train a classifier h from both the labeled
and unlabeled data, such that it is better than the supervised classifier trained on
the labeled data alone. If we eliminate the noisy labels and consider only the correct
labeled data we see in Figure 2.10 and Table 2.5 that the performance are worst
than in the case when we consider the all corrupted dataset suggesting that, even if
some labels are uninformative, the associated instances provide useful information
regarding the distributions.

27

2 — Noisy Labels using Linear Probabilistic Classifiers

q VS Accuracy
T

—&— Considering noisy labels|
~o-_without noisy Iabels

Accuracy

Figure 2.10: It is better to learn from a corrupted dataset with some fraction of clean data rather than
considering only the learning from a small fraction of clean data.

q | Accuracy considering noisy labels | Accuracy eliminating noisy labels
0.1 0.923 0.844
0.2 0.931 0.878
0.3 0.939 0.923
0.5 0.946 0.931
0.7 0.948 0.935
0.9 0.950 0.937

Table 2.5: Comparison of the performances between considering all the corrupted dataset and considering
only the fraction of clean labels.

A very simple algorithm for semi-supervised learning is called Self-learning, because
the learning process uses its own predictions to teach itself. In particular, it consists
in training a model on labeled data and then use it for predicting the unlabeled
data. By doing this, we end up with a full labeled training dataset from which we
can learn. In Figure 2.11 is shown the comparison between Self-learning and our
approach that learns directly from noisy labels. Notice that when ¢ = 0.1, meaning
that 90% of the dataset is unlabeled, Self-learning method performs poorly because
it is only learning from 10% of all the observations and predicting the 90% part of
unlabeled data. At the end we get a dataset with 90% of it being self-learned. It is
interesting that, for low value of ¢, seems better to have pure random noisy labels
and know how to correct for the noise, rather than trying to label the unlabeled
part with a classifier learned from only few labels. For high value of ¢ instead, we
get what we expect: the predictions of self-learning are much more reliable since the
labeled part is much bigger.

28

2 — Noisy Labels using Linear Probabilistic Classifiers

0.9

08—

04|

03

0.2~

0.82
Accuracy

Figure 2.11: The two lines are the average of £ = 30 values.

2.3.2 Different noise levels for different groups

Above we have applied to two sub groups of the dataset corruptions given by

10 0.5 0.5
Ty = lo 11 Ly = l0.5 0.5] ' (2.78)

In particular we have applied T; to a fraction ¢ of the original dataset. Now we show
what would happen if we use different T}, than the ones in (2.78). Let’s call p; and
p2 the noise levels for the two different groups®. Figure 2.12 shows, for different pairs
p1, P2, how the accuracy changes as varying ¢, where ¢ in this case is the fraction
of data with less noise applied. In particular we have considered the following noise
pairs (0,0.5),(0.1,0.4), (0.2,0.3), (0.1,0.5), (0.2,0.5), (0.3,0.5), (0,0.4), (0,0.3), (0,0.2).

In Figures 2.13(a) and 2.13(b) it is shown more clearly what happens for values of
q near 0.9 and 0.1.

9We are in the case where in each group we have symmetric noise. That is p = p— = p; within each group 1.
So for example in (2.78) we have p1 = 0 and p2 = 0.5.

29

2 — Noisy Labels using Linear Probabilistic Classifiers

Figure 2.12: For different corruptions of two sub groups,

proportion of the two sub groups. Averaged 10 times.

H 1
0.945

0935

093

0.925

(b) For values

Figure 2.13
30

075

of g near 0.1.

0.65

varying the

2 — Noisy Labels using Linear Probabilistic Classifiers

2.4 Multiclass Classification

Now let’s extend the case of binary classification to the case of multiclass clas-
sification. Consider the synthetic dataset in Figure 2.14, and suppose that points
belonging to the purple class can independently go to the blue class with probability
1/3, go to the red class with probability 1/3 or stay in the purple class with proba-
bility 1/3. At the same time points belonging to the blue or red class will remain in
their class with probability 2/3 and will go to the purple class with probability 1/3.
That is to the dataset in Figure 2.14 we inject a random noise corresponding to

2/3 0 1/3
T,=|0 2/3 1/3], (2.79)
1/3 1/3 1/3

which produce the dataset in Figure 2.15.

45 T T T T T T T T T T
35| 4
3 Ha o.. ° o o -
° UND ° [
[] T L[]
25| '.’ .‘%’o :. . .'\: y s‘.’o oo ¢ -
.? £ Yy ‘g .” °
2F 2 ROR N IR R : .
° Se .0 ° °® o ¢ ° ¢ .‘3‘: ;o‘:..‘ .’. °
15 o ° 0o © 8 ® N 3 i
..:. .:o:o:: 2% .. o ‘o }O.:oo... °
T e ‘e ’i L o.88, ,“..d. ° .:" 8 '00:'0 o -
. o &8 ..‘n.‘ o _® LY ‘..o‘ L) °
05| . .00 0‘\.. 4 e ™ 3 “ ®ae ° S _
o.. PR ° ®
of 4
°
05 1 1 1 1 1 1 1 1 1 1 1

Figure 2.14: Dataset for multiclass classification

If we train a LPC on the clean dataset we get an accuracy of 0.89, whereas learn-
ing from the noisy dataset with the correction for the noise leads to an accuracy of
0.74 which is remarkably high considering the level of noise we have injected. If we
had not applied the correction we would have an accuracy of 0.61.

The above example is interesting since the matrix 7, in (2.79) has determinant
equal to zero, i.e., is not ¢nvertible. When this happens, in literature we say that
T is not reconstructible. While existing techniques in [Van Rooyen & Williamson
(2017) and Natarajan et al. (2013)] deal only with reconstructible noise our approach
is able to treat both.

31

2 — Noisy Labels using Linear Probabilistic Classifiers

-0.5 0 0.5 1 15 2 25 3 35 4 45
Figure 2.15: Dataset corrupted for multiclass classification

2.4.1 Iris dataset

Let’s see on a real dataset corrupted with some noise how LPC behaves. In particular
we consider the well known Iris dataset made of 4 features and 150 instances each
of which has a label y € {1,2,3}. The dataset is shown in Figure 2.16 where we
have plotted only the first two features Sepal length and Sepal width.

45 T T T T T T T
° @ setosa
@ versicolor
© virginica
°
°
- o -
°
° ° ° °
° o0
o o e °

35 e oo ° —
£ o ° e oo ° ° oo
H o0 ° °
T ° LN) ° ° e o LR) °
3 ° o0 ° L) °

3 o e e oo o L) e e e o e oo oo oo -

° o0 eo0 o0 v e ° °
e o o ® & o 0 0 L] L] []
° ° ° ° ()
° oo ° °
25 . . o0 o °) —
° °
° o ° °
° o
2 1 & 1 1 1 1 1 1

4 4.5 5 55 6 6.5 7 7.5 8
Sepal length

Figure 2.16: Iris Dataset

We have performed a 10-fold cross validation for each of the following cases: we
first have considered the case without noise, then the case with noise given by (2.79)

32

2 — Noisy Labels using Linear Probabilistic Classifiers

taking in account the correction for it, and lastly the case with noise without any
correction. The results are respectively 0.70, 0.60 and 0.46 and confirm that by
applying the correction we increase the accuracy of our classifier.

33

Chapter 3

Performances on Real Datasets

In this final chapter we compare on real dataset our proposed approach against noisy
labels using Linear Probabilistic Classifiers, with the approach of [Natarajan et al.
(2013)] that uses the method of Unbiased Estimators, and we will show that our
approach is competitive.

3.1 Method of Unbiased Estimators

The method of unbiased estimator presented in [Natarajan et al. (2013)] for binary
classification is another approach to deal with noisy labels. Suppose we are in the
same setting we have considered so far: the learning algorithm sees samples with la-
bels that have been independently changed with probability that is class dependent.
So the learner has access to samples drawn from p which is a noisy version of the
true distribution p. Given a loss function I(h,y),!? instead of doing empirical risk
minimization with I(h,y), the method consists of minimizing the empirical risk of
a modified version of the loss I(h,y), which we indicate as I(h,y). [Natarajan et al.
(2013)] construct I(h,y) using the noise rates p;; and p_; in such a way that ((h,y)
is an unbiased estimator of {(h,y). That is

Ey[l(h, §)] = U(h,y), (3.1)
explicitly
Uy +1) = (1 = py)i(h, +1) + (py0)i(h, 1), (3.2)

[(h, =1) = (p-1)l(h, +1) + (1 = p-1)l(h, = 1),

1 =TI, T = [1 P P] (3.4)
P-1 IL—=pa

10We omit the dependence on x in order to simplify the notation.

34

3 — Performances on Real Datasets

and solving for | we get

7 L T=py —pp
t=H, R=1"= det(T) [—p-1 1— P+1] (3:5)
lN(h, y) - (1 - p—y)l(h’ y) _ pyl(h, _y)) (36)

L= pi1—pa

[Natarajan et al. (2013)] then proposes to minimize the empirical risk of the
modified loss function in (3.6). From (3.5) is also clear why this method only works
for reconstructible noise, i.e., for invertible 7. In the following we will compare
our performances on some real dataset with the ones of the method presented in
[Natarajan et al. (2013)] in which the loss considered is the linear Logistic loss

I(h,y) = log(1 + exp(~yhw)), (3.7)
with hy, € H = {hy : hy = vz, 2 € X}.

3.2 Performances on Real Datasets

We now conduct experiments on real data to illustrate the performance of our pro-
posed approach and compare it with the one of [Natarajan et al. (2013)].

The real datasets considered are UCI benchmarks dataset provided by Gunnar
Ratsch: http://theoval.cmp.uea.ac.uk/matlab. Each dataset is randomly split 10
times in train and test and then the labels of the training set flipped according to
the given noise rates p;; and p_; . The mean accuracies on the 10 test sets are
computed.

3.2.1 Breast cancer dataset

We start by considering the first dataset which is the Breast cancer dataset made of
9 features and 263 rows. The train and set sizes are 186 and 77 respectively. We first
start by considering symmetric noise (which is class independent) with four pairs of
noise levels (0.1,0.1),(0.2,0.2),(0.3,0.3),(0.4,0.4). Results are shown in Figure 3.1
and Table 3.1. We see that for this dataset the LPC approach is the one which is
more robust to noise.

Let’s then have a look at the case of a class conditional random noise. For instance
let’s consider as noise levels the pairs (p4, p—) = (0.3,0.1), (0.1,0.3), (0.4,0.2), (0.2,0.4).
Results are shown in Table 3.2.

35

3 — Performances on Real Datasets

Accuracy VS Noise
0.72 T T T T T T T

Accuracy
o
o
~
T

—=—UB
0.56 —=— Logistic -
1 1 1 1 1 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Noise

Figure 3.1: Comparison between LPC and the method of Unbiased Estimator(UB). The red curve is the
profile of accuracy of the ERM classifier minimizing the logistic loss.

p LPC UB Logistic

0 | 0.7039£0.0366 | 0.6840+£0.0397 | 0.6840+0.0397
0.1 | 0.7000£0.0499 | 0.6690+0.0688 | 0.665040.0695
0.2 | 0.7130£0.0343 | 0.6650+0.0648 | 0.6400+0.0722
0.3 | 0.6779£0.0708 | 0.6450+0.0648 | 0.6050+0.1104
0.4 | 0.64814+0.1101 | 0.6200%0.1006 | 0.5450+0.1101

Table 3.1: Comparison between LPC and the method of Unbiased Estimator(UB). The standard deviation

is also computed.

(ps,p=) LPC UB Logistic

(0.3,0.1) | 0.70264+0.0315 | 0.6710+0.0721 | 0.6888+0.0659
(0.1,0.3) | 0.70264+0.0359 | 0.6590+0.0782 | 0.57224+0.1001
(0.4,0.2) | 0.68964+0.0549 | 0.6429+0.0835 | 0.6552+0.0800
(0.2,0.4) | 0.6818+0.0619 | 0.6449+0.0829 | 0.5268+0.1064

Table 3.2: Comparison between LPC and the method of Unbiased Estimator(UB). The standard deviation
is also computed.

3.2.2 Heart dataset

We then consider the Heart dataset made of 13 features and 270 rows. The train and
set sizes are 170 and 100 respectively. We first start by considering symmetric noise
with four pairs of noise levels (0.1,0.1),(0.2,0.2),(0.3,0.3), (0.4,0.4). Results are
shown in Figure 3.3 and Table 3.3. We see that for this dataset the LPC approach
is worst than UB but still is more robust to noise with respect the Logistic.

Let’s then have a look at the case of a class conditional random noise. For instance
let’s consider as noise levels the pairs (p4, p—) = (0.3,0.1), (0.1, 0.3), (0.4, 0.2), (0.2,0.4).
Results are shown in Table 3.4.

36

3 — Performances on Real Datasets

Accuracy vs Noise

Accuracy
o
=
T
1

0.65 [~ -

—=—UB

—=— Logistic

LPC
| | | | | |

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Noise

Figure 3.2: Comparison between LPC and the method of Unbiased Estimator(UB). The red curve is the
profile of accuracy of the ERM classifier minimizing the logistic loss.

p LPC UB Logistic

0 | 0.7640£0.0445 | 0.8060+£0.0337 | 0.8060+0.0337
0.1 | 0.7520£0.0426 | 0.7790+£0.0443 | 0.7660+0.0517
0.2 | 0.7480£0.0379 | 0.7640+0.0626 | 0.718040.0893
0.3 | 0.7170£0.0773 | 0.7410+£0.0689 | 0.6380+0.0692
0.4 | 0.6250£0.0562 | 0.7150+0.0896 | 0.5850+0.0971

Table 3.3: Comparison between LPC and the method of Unbiased Estimator(UB). The standard deviation

is also computed.

(ps,p=) LPC UB Logistic

(0.3,0.1) | 0.73904+0.0484 | 0.7700+0.0759 | 0.7248+0.0849
(0.1,0.3) | 0.76204+0.0402 | 0.7770+0.0640 | 0.695940.0907
(0.4,0.2) | 0.69104+0.0576 | 0.7417+0.0892 | 0.6584+0.1095
(0.2,0.4) | 0.70104+0.0482 | 0.7424+0.0850 | 0.6315+0.1096

Table 3.4: Comparison between LPC and the method of Unbiased Estimator(UB). The standard deviation
is also computed.

3.2.3 German dataset

Lastly let’s consider the German dataset made of 20 features and 1000 rows. The
train and set sizes are 700 and 300 respectively. We first start by considering sym-
metric noise with four pairs of noise levels (0.1,0.1),(0.2,0.2),(0.3,0.3),(0.4,0.4).
Results are shown in Figure 3.3 and Table 3.5. We see that for this dataset the LPC
approach is better than UB for high level of noise.

Let’s then have a look at the case of a class conditional random noise. For instance
let’s consider as noise levels the pairs (p4, p—) = (0.3,0.1), (0.1, 0.3), (0.4, 0.2), (0.2,0.4).
Results are shown in Table 3.6.

37

3 — Performances on Real Datasets

Accuracy VS Noise

Accuracy
o
@
=
T

—=—uB
—=— Logistic

LPC

0.56
0

0.1 0.15

0.2
Noise

0.25

0.3

0.35

0.4

Figure 3.3: Comparison between LPC and the method of Unbiased Estimator(UB). The red curve is the
profile of accuracy of the ERM classifier minimizing the logistic loss.

p

LPC

UB

Logistic

0
0.1
0.2
0.3
0.4

0.6940+0.0275
0.6950+0.0287
0.6983+0.0190
0.6797£0.0285
0.6563+0.0392

0.7007+£0.0289
0.7010+0.0349
0.6800+0.0366
0.6690+0.0570
0.6573+0.0459

0.7007+£0.0289
0.6787+£0.0370
0.6213+0.0508
0.6013-+£0.0697
0.5613+0.0450

Table 3.5: Comparison between LPC and the method of Unbiased Estimator(UB). The standard deviation

is also computed.

Pt P—)

LPC

UB

Logistic

(

(0.3,0.1)
(0.1,0.3)
(0.4,0.2)
(0.2,0.4)

0.6987+0.0241
0.6923+0.0254
0.6787+0.0264
0.6910+0.0196

0.6880+£0.0377
0.6937+£0.0419
0.6867+0.0415
0.6790+£0.0301

0.6877+£0.0368
0.6047+0.0645
0.6673£0.0525
0.5170+£0.0443

Table 3.6: Comparison between LPC and the method of Unbiased Estimator(UB). The standard deviation

is also computed.

38

Conclusions

With this work we have presented a new approach for learning with noisy labels
which is competitive with the current state of the art techniques. In particular we
have shown how to build a robust classifier against noise by modifying the feature
map, and a derivation of a generalization bound that quantifies how much is hard
learning with a fixed pair of noise rates. We have also considered the heterogeneous
noise case, in which different parts of the dataset get corrupted with different noise
rates, and showed that semi-supervised setting is a particular case of this scenario
when we have totally random labels for some portion of the dataset. Lastly, the
presented approach updates the literature of learning with noisy labels, since it is
able to deal with non reconstructible noise while current techniques cannot. Future
work could consist in trying to kernelize the learning algorithm in order eliminate
the dependence on the feature map.

39

Appendices

40

Appendix A

(Generalization Bounds

Here we present some generalization bounds in the case when the hypothesis set H
is finite or infinite. For the interested reader more details can be found in [Mohri et
al. (2018)].

A.0.1 Generalization bounds for finite H

Let’s start by fixing a classification rule h € H, then, for any 6 > 0, the following
inequality holds with probability at least 1 — ¢

. log(2
R(h) < R(h) + igj). (A1)
However this inequality is only true when h is fixed, and not for a hg which is a
random variable derived from a random sample S. In fact in this case also R(hg) is
a random variable and of course is not true that the expectation of ﬁf(hg) is equal to
R(hg). Having notice that we need a bound that is true for all h € H simultaneously.
We have the following result that says that for any ¢ > 0, with probability at least
1 — 6, the following inequality holds for every h € ‘H

N] log 2
R(h) < R(h) + \/Og’fHQ'ZOgé. (A.2)

Bound in (A.2) present a trade-off between the empirical error and size of H.
By enlarging the size of the set H we typically reduce the empirical error but we
increase the second term of (A.2) which is called the complexity term and it is a
function of |H| and n.

It is also possible to decompose the generalization error R(h) for a classification
rule h € H in the following way

R(h) = (R(h) — R(R")) + (R(R*) — R*) + R", (A.3)
where R* is the Bayes Risk and h* = arginfR(h) the best-in-class classifier. Let’s

heH
give names to every term. The first difference in the right end side is called the

41

A — Generalization Bounds

estimation error and measures the difference between the risk of the given classifier
h and the smallest risk obtainable considering the set H which is achieved at h*. It is
a sort of measure of quality of the given classifier h with respect to the best possible
one in H. The second difference of (A.3) is called the approximation error and it is
a property of the hypothesis set H measuring how far is the best possible risk within
the class H from the best possible risk considering all the possibles h : X — Y which
is the Bayes Risk.

A.0.2 Generalization bounds for infinite H

Bound (A.2) in the case when H is infinite is not useful in practice, and we need
a different way to build informative bounds for the generalization error R(h). In
this setting we can derive different bounds for R(h) depending on which complexity
term we may want to use. Essentially there are two classes of bounds when we deal
with infinite H: the ones defined in term of the Rademacher complexity and the
ones defined by the notion of VC-dimension. let’s start by looking at the first class
of bounds by introducing the Rademacher complexity:.

Rademacher complexity bounds

In order to simplify the notation let’s associate to each h a function g that maps
(z,y) € X x Y to l(h(x),y) with [fixed. For example, if H is the family of functions
taking values in {—1,+1}, then G is the family of loss functions associated to H
for the 0 — 1 loss. In this way the generalization error will be R(g) = E[g]. Let’s
define the empirical Rademacher complexity of a class of functions G with respect
to a sample S of size n as

5 1 & 0gs
Rs(G) =Es|sup — > o;9(xi,y;)| = Es|su , A4
s(G) gegn; 7 y)] Leg - 1 (A.4)
where o = (01, ...,0,)" are called Rademacher variables and are independent uni-

form random variable taking values in {—1,+1}, and gg is the restriction of the
function g to the given sample S. Notice that the empirical Rademacher complexity
is sample dependent, it depends on the particular sample that has been drawing
from the unknown distribution p. If we want a sample independent quantity we can
take the expectation over all the possible samples of size n that are drawn according
to p, that is

RH(G) =]ESNP [ﬁS(G)] (A~5)

The quantity R,(G) is called the Rademacher complexity of G and it is define
as the expectation of the empirical Rademacher complexity over all samples of size
n from p. Having introduced these two notions of complexity we can write two
generalization bounds based on Rademacher complexity. We have that, for any

42

A — Generalization Bounds

0 > 0, with probability at least 1 — 0 these two bounds holds for all g € G

1 & log 5

Elg(z,y)] < =) g(zi,yi) + 2Ra(G) + (A.6)
iz 2n
1 A log 2

Elg(z,y)] < o > 9w yi) + 2Rs(G) + 3 on (A7)

i=1
In the case of binary classification and using as loss function the 0 — 1 loss we can
relate the Empirical Rademahcer complexities of G and H in the following way
1
T2
where Sy = (x1,...,2,). Now we can state the Rademacher complexity bounds in
term of the Rademacher complexity of H rather than in term of the one of G

Rs(G) = 5Rsy (M), (A.8)

R(h) < R(h) + Ru(H) + k;gn : (A.9)
R(h) < R(h) + Rs(H) + 3 log § (A.10)

2n

An interesting observation is that the bound (A.10) is data-dependent since it
is present the empirical Rademacher complexity. However computing the empir-
ical Rademacher complexity might be so hard as an Empirical risk minimization
problem.

VC-dimension bounds

These type of bounds make use of a different notion of complexity which is easier
to compute than the Rademacher complexity. The price to pay will be that these
new bounds are less tight than those with the Rademacher complexity. Let’s start
by defining the Growth function 113 for a hypothesis set H as

My(n) = max

{(h(z1), ... h(zn)) : h € H), (A.11)

which is the maximum number of distinct labelling of n points using the functions in
H. The notion of the Growth function is purely combinatorial and does not depend
on the distribution of the data. It can be shown that we can use the Growth function
T3 to upper bound the Rademacher complexity as the following
2logIT
Ro(H) < | o8 n(n) (A.12)

n

and so we can build the bound

log L
2log % (n) n \/ 0g 5 (A13)

n on

R(h) < R(h) + \/

43

A — Generalization Bounds

The computation of the Growth function II; however might not be so easy to do.
In fact given n points and quantify in how many possible ways those points can be
classified by some functions h € H it is not obvious at all. For this reason usually
is preferred to use rather than the Growth function a closely related quantity that
is instead a scalar easier to deal with: the so called VC-dimension. Let H be a
hypothesis set of functions on X that takes values in {—1,+1} (Binary classification
case). Given a set of n points S = {x1,...,z,} we say that S is shattered by H if
all the possible 2" binary labellings of the points can be realized with the functions
in H. Then the VC-dimension is defined as the cardinality of largest set of points
that can be shattered by H. Formally it is defined in terms of the growth function
as

VCdim(H) = max{n : [Iy(n) = 2"}. (A.14)

If an arbitrarily large set of points in X can be shattered by H we say that VCdim(H) =
oo. Using Sauer’s lemma we can upper bound the Growth function Il3(n) with an
expression that contains the VC-dimension of . Let VCdim(H) = d and for all
n € N the following inequality holds

() < z (”) < (1) (A.15)

which gives the following bound based on the VC-dimension, where H is a hypothesis
set with VC-dimension equal to d. Then, for any 6 > 0, the following holds with
probability 1 — ¢ for all h € ‘H

. 2d log & log 1
R(h) < R(h) + \/Ogd + \/Ogﬁ. (A.16)

n 2n

A.1 Empirical Risk Minimization

Empirical Risk Minimization (ERM) is by far the most used approach for approxi-
mating (1.1). The idea is to use the training data and it consists in minimizing the
sample average of the loss incurred at the observed samples:

1 n

> Uh, (i, 91), (A.17)

min—
heH N, ©
=1

which more formally can be written in terms of the empirical distribution p, as:

mink, [(h, (z,y)). (A.18)

heH

Suppose that hg is a classifier obtained by solving the empirical minimization
problem which by definition means R(hg) < R(h), Vh € H. Then we can bound

44

A — Generalization Bounds

the estimation error of hg in terms of the generalization bound (A.2)

R(hs) — R(h*) = R(hs) — R(hs) + R(hs) — R(h") (A.19)
< R(hs) — R(hs) + R(h*) — R(h") (A.20)
< 2sup|R(h) — R(h)|. (A.21)

heH

Now the right end side of (A.21) can be bounded by (A.2). The theoretical problem
of Empirical Risk Minimization is that it minimizes]%(h) disregarding the complex-
ity term in (A.2). From a practical point of view instead, problem (A.17) is tractable
only if the objective function is convex, which is not the case for the 0—1 loss. What
is usually done is to replace the 0 — 1 loss with a convex loss function such as the
logistic loss, the Hinge loss or the quadratic loss.

45

Appendix B

Linear Probabilistic Classifier

In this appendix more details of LPC are presented. In particular it is justified where
(2.12) comes from and why a LPC is constructed as (2.18). More details regarding
LPC can be found in [Mazuelas et al. (2019)], while details regarding Lagrange
Duality in [Boyd & Vandenberghe (2004)] and [Calafiore & El Ghaoui (2014)].

B.1 Robust Risk Minimization

Robust Risk Minimization is another way to approximate (1.1). Since we don’t know
pin (1.1), we would like to derive from the training data (xy,y1) ... (2p,yn) an un-
certainty set & made of probability distributions, that contains the true distribution
p with high probability.

The optimization problem we want to solve is:

I,fgﬁf;?pr“hv (x,y)). (B.1)

The idea is to find a classification rule A that minimizes the worst case expected
loss incurred over the uncertainty set U of probability distributions.

The Linear Probabilistic Classifier (LPC) is a classifier built using RRM. LPC
is derived by solving problem (B.1) where the loss considered is the 0 — 1 loss, the
classification rule h is unconstrained, and the uncertainty set U is defined in terms
of inequalities that constrain the expected value of a function called feature map.

B.2 Polyhedral uncertainty sets

In the minimax problem (B.1), the maz part is done over an uncertainty set U
whose elements are probability distributions. In the LPC framework we define the
uncertainty set in the following way:

U = {pe A(X xY):a <E{®(z,y)} < b}, (B.2)

46

B — Linear Probabilistic Classifier

where @ : X x Y — R™ is a function, called the feature map, and a,b € R™ are
given vectors such that a < b. In words, the uncertainty set ug*” contains probability
distributions such that the mean of ® with respect to those distributions is between
a and b. Note, that uncertainty sets like (B.2) are subset A(X x Y) C RI*IM,
Suppose now that (z1,y1), ..., (Zn, yn) are i.i.d. samples from p, i.e., (X,Y) ~ p; we
would like to solve problem (B.1) over an uncertainty set L{g’b that contains p with
high probability.

B.3 The minimax problem

Let’s see now how to solve the minimax problem

AR y) 1A%, E,l(h, (z,9)), (B.3)

where ug”’ is built as explained in section B.2. Another difference with respect
to (B.1) is that here we don’t restrict the classification rule h to belong to some
hypothesis space H, and we allow for classification rules that randomly classify each
feature vector . That is, h : X — A(Y) and A(X,) is the set of these probabilistic
transformations. It is useful to think the function h as a function from X x Y to R,
or equivalently as a row vector ™ of dimension 1 x |X||Y|, where for every z the
subvector hY, of dimension 1 x |Y|, is a probability distribution, i.e., L > 0 and
h::]l = 1. In this way a classification rule h obtained will classify a feature vector x
with label y with probability h(z,y).

B.3.1 Solving the minimax problem with Lagrange Duality

In order to solve problem (B.3) first notice that since A(X,Y) and Us” are closed
and convex sets [Griinwald et al. (2004)] we have the following equality!!

i E,l(h = in_E,l(h . B.4
heAT.Y) pergit plth .0 petfy? hEA(X.Y) ph (2:9) B

We will use the notation I(h,p) for E,l(h, (z,y)). If we now concentrate on the
maximin problem, the inner min part is very easy to solve. First, the loss function
[is the 0 — 1 loss and the loss incurred at a (x,y) pair is just the probability of
classifying it wrongly

l(h, (,y)) =1 = h(z,y). (B.5)

1 The equality should be meant as an equality of the values of the problems at the optimum. It is not an equality
between problems.

47

B — Linear Probabilistic Classifier

Then we can write explicitly the min part as

min x,y)(1 — h(z, B.6
w0 ze%gyp(y)(1 = h(z,y)) (B.6)
= min 1-p'h B.7
wein 1-p (B.7)
=1- Th B.8
herg(%?,y)p ()
=1—plloc- (B.9)

At the end the maxmin problem in (B.4) reduces'? to
1 — min [|p[ec,1- (B.10)

peUy’

Let’s explicitly write the constraint p € Mg’b, and concentrate on the min part

min%)mize P/l +1T ()

subject to pTl =1, (B.11)
a=<®dp <b.

We use the the function
0, ifp=0

. (B.12)
oo, otherwise

I'"(p) = {
in order to express the constraint p = 0. In this way we avoid to introduce too many
Lagrangian multipliers when writing the dual problem of (B.10). In fact, notice that
p is a very high dimensional vector (|X'||Y|x1).

Let’s write the Lagrangian function associated to the problem (B.11)

L(p a,B,7) = ploi+I*(p) +a’(a—Pp)+ BT (®p —b) + (1 — pTl()]é |
13

and the associated dual function g(a, 8,7) = inf, L(p, o, B,7). The dual function
g(a, B,7) can be explicitly written as

g(e. 8,7) = aa— BTb + v+ inf (|pllwatI*(p) + PT(27(8 ~ @) — 17)).

(B.14)
Notice that
inf (||pllocs+1*(p) + " (27(8 — @) — 1)) (B.15)
= = 5up (= (IPllca 1" (p)) + P7 (@7 (e = B) + 17)) (B.16)
= ~["(®T(a =)+ 1), (B.17)

12In this case it is corrected to say that the maximin problem is the same problem B.10

48

B — Linear Probabilistic Classifier

where f* is the conjugate function of f(p) = ||p|lcci+IT(p). Now we can write the
Dual optimization problem as

maximize afa — BTb+vy — (@ (a—B) + 17)
'Y»a?/g
subject to a = 0, (B.18)
B = 0.

Problem (B.18) is the dual problem of (B.11), we can rewrite the dual in its
ultimate form by notice that

. 0, if[[(@T(a—B)+ 1) 1<1
oo, otherwise
and so the final form of the dual problem is
maximize ofa — BTb+ v
70,8

subject to [[(@7(a — B) + 17) [1< 1, (B.20)
a >0,
B = 0.

Slater’s condition holds since in problem (B.11) the constraints are affine. This
means that there is zero duality gap between (B.11) and (B.20), that is strong
duality holds. Let p* a primal optimal point and (a*, 8*,7*) be a dual optimal
point, strong duality then implies that

1*looa+I T (p*) = a® a* —bT B* ++4* = infﬁ(p, o*, 8%, "), (B.21)

where the first equality is due to strong duality and the second one is just the defini-
tion of the dual function. We also notice that p* is a minimizer'® of L(p, a*, 8*,v*)
by the fact that

inf L(p, &, B, 77) < L(p*,a", B7,7") < |2 || con+IT(p"), (B.22)

where the first inequality follows since the infimum of the Lagrangian over p is less
than or equal to its value at p = p*, and the second inequality follows from the
fact that o™ = 0, 8* = 0, a — ®p* < 0 and & p* —b < 0. We see then, by com-
paring (B.21) and (B.22) that all the inequalities hold in reality with equality. The
important point is that a solution of (B.11) is also a solution of inf,, L(p, a*, B*,7*).

Now let’s define the following uncertainty set

U={p: X xY—=>R:p=0|plhe<l}, (B.23)

13p* is simply a minimizer, £L(p, a*, 8*,~v*)can also have others.

49

B — Linear Probabilistic Classifier

which allows to write
inf [pllocs + 17 (p) + o™ (a — ®p) + B (®p—b) +7°(1—p"1) (B24)

3814

inf |ploc. + & (a — 2p) + B (&P~ b) +77(1 — p'1), (B.25)
p

where (B.24) is just
inf L(p, a”, 57, 7").
Then from (B.21), (B.22) and (B.25) we get!®
L= min [plloc; =1+ max—||pllos — a™(a - @p) - B (2p —b) —7°(1 - p"1)
p ’ p

P

(B.26)

= in_I(h,p) — ¥ (a — ®p) — BT (®p —b) —v*(1 —p"1
max win (b p) — o'~ Bp) — f(Bp —b) —7"(1 - pT1)

(B.27)
— in I(h,p), B.28
2 0l 107) o
= mj I(h, p). B.29
heA(X.Y) rgff (h.p) ()
Recalling (B.4) we have

A y) B, I(h,p) = pein Igggl(h,p)- (B.30)

It can be shown that the right end side admits a solution of this type
h* = ®T(a* — %) + 17, (B.31)

and we want to show that this solution is also a solution of the left end side of
(B.30). We have that

min maxih, :maXZNh*, > max [(h*,p) > min max I[(h,p), (B.32
heA(X,Y) peu (5.p) pel (p>_peu;§”’(p>_heA(X,y)peM§)’b(Ph)

but due to (B.30) inequalities in (B.32) are equalities, and h* is a solution of

min max [(h,p).
heA(X,Y) peyi? (h.)

14(B.24) and (B.25) are the same problems. So a solution of (B.11) is also a solution for (B.25).
Ywhere I(h, p) = I(h,p) — &*T (a — ®@p) — B*T(@p - b) — (1 —p"1).

50

B — Linear Probabilistic Classifier

It is important to appreciate that a classification rule satisfying (B.31) can be
obtained by solving the dual problem (B.20) and enforcing that hfl = 1. That is,
V(z,y) € X x Y

1— (@5 (e = B) + 1) " s
Y

We refer to (B.33) as the Linear Probabilistic Classifier. The learning stage
consists in solving the convex problem (B.20), whereas the prediction stage consists,
given an input x, in generating a y according to h, given by (B.33).

Wt (z,y) = (®(z,y)" (@" = B) +7)" + (B.33)

51

Bibliography

Angluin, D., & Laird, P. (1988). Learning from noisy examples. Machine Learning, 2(4), 343-370.
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge university press.
Calafiore, G. C., & El Ghaoui, L. (2014). Optimization models. Cambridge university press.

Farnia, F., & Tse, D. (2016). A minimax approach to supervised learning. In Advances in neural
information processing systems (pp. 4240-4248).

Grant, M., & Boyd, S. (2008). Graph implementations for nonsmooth convex programs. In
V. Blondel, S. Boyd, & H. Kimura (Eds.), Recent advances in learning and control (pp. 95-110).
Springer-Verlag Limited. (http://stanford.edu/~boyd/graph_dcp.html)

Grant, M., & Boyd, S. (2014, March). CVX: Matlab software for disciplined convex programming,
version 2.1. http://cvxr.com/cvx.

Griunwald, P. D., Dawid, A. P., et al. (2004). Game theory, maximum entropy, minimum discrep-
ancy and robust bayesian decision theory. the Annals of Statistics, 32(4), 1367-1433.

Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning:
data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85.

Kearns, M. (1998). Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6), 983-1006.

Lanckriet, G. R., Ghaoui, L. E., Bhattacharyya, C., & Jordan, M. I. (2002). A robust minimax
approach to classification. Journal of Machine Learning Research, 3(Dec), 555-582.

Liu, T., & Tao, D. (2015). Classification with noisy labels by importance reweighting. IEFE
Transactions on pattern analysis and machine intelligence, 38(3), 447-461.

Luenberger, D. G. (1997). Optimization by vector space methods. John Wiley & Sons.

Mazuelas, S., & Pérez, A. (2019). General supervision via probabilistic transformations. arXiv
preprint arXiv:1901.08552.

Mazuelas, S., Zanoni, A., & Perez, A. (2019). Supervised classification via minimax probabilistic
transformations. arXiv preprint arXiv:1902.00693.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning. MIT
press.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., & Tewari, A. (2013). Learning with noisy labels.
In Advances in neural information processing systems (pp. 1196-1204).

52

http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx

BIBLIOGRAPHY

Van Rooyen, B., & Williamson, R. C. (2017). A theory of learning with corrupted labels. Journal
of Machine Learning Research, 18, 228-1.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on neural
networks, 10(5), 988-999.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint (Vol. 48).
Cambridge University Press.

Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures
on artificial intelligence and machine learning, 3(1), 1-130.

53

	List of Tables
	List of Figures
	Introduction
	Framework and Problem Description

	Noisy Labels using Linear Probabilistic Classifiers
	Linear Probabilistic Classifier
	From the noisy domain to the clean domain
	Minimax problem
	Point estimation uncertainty set

	Generalization Bounds
	Hoeffding's inequality
	Generalization Bounds in the clean domain
	Generalization bounds with noise

	Heterogenous Noisy Labels
	Semi-supervised Learning with LPC
	Different noise levels for different groups

	Multiclass Classification
	Iris dataset

	Performances on Real Datasets
	Method of Unbiased Estimators
	Performances on Real Datasets
	Breast cancer dataset
	Heart dataset
	German dataset

	Appendices
	Generalization Bounds
	Generalization bounds for finite H
	Generalization bounds for infinite H

	Empirical Risk Minimization

	Linear Probabilistic Classifier
	Robust Risk Minimization
	Polyhedral uncertainty sets
	The minimax problem
	Solving the minimax problem with Lagrange Duality

