
POLITECNICO DI TORINO

Department of Mathematical Sciences

M.Sc. in Mathematical Engineering

Final Dissertation

Quantum machine learning and optimisation: approaching
real-world problems with a quantum coprocessor

Supervisor:
Paolo Brandimarte

Supervisor:
Marco Gatta

Candidate:
Luca Asproni

Academic Year 2018-2019

Acknowledgements
The five years spent at Politecnico di Torino have been life-changing. Through-
out this time the university has been setting up lots of challenges, constantly
raising the bar on the amount of effort needed to keep up. There have been
some hard times, but I can be nothing but grateful, for those let me mature
both professionally and as a person. I owe a lot to my university, because it
was able to punish negligence, reward the hard work and overall allowed me to
experience priceless satisfaction in the achievement of my goals.

This work is the result of an intense academic journey. It perfectly merges
together themes for which I have been growing interest in the past years at
university with those that I have learned to love recently, in my work experience.
I would like to thank my academic supervisor Professor Paolo Brandimarte and
my work supervisor Marco Gatta, who have given me the opportunity to pursue
this work and shared their insights throughout the writing of this dissertation.
I am grateful to Dr. Marco Magagnini, for his superb guidelines have let me
explore a number of fascinating topics. I would also like to express my sincere
gratitude to Dr. Davide Caputo, who has overseen this whole work providing
meaningful help and giving me the physical insight that I was sometimes missing.
His patience and enthusiasm have motivated me the whole time.

I am indebted to my family and parents, for they have always been beside
me, ready to celebrate the joyful moments but also proving particularly under-
standing in the hard times. I would like to thank Paolo and Federico, with
whom I shared the most intense hours at Politecnico and have always been a
friendly, encouraging presence. I am also grateful to Giulia, Vittorio and Paolo
for their constant support and irreplaceable friendship. I owe a lot to Alessan-
dro and Simone, for their invaluable presence over the last couple of years. This
five-year journey was only possible thank to the people I was surrounded by.
To them and everyone who has enriched this experience I could not be more
thankful.

Abstract
This work investigates the application of quantum computing to data science, re-
formulating machine learning and optimisation problems using a hybrid quantum-
classical formalism. The fundamentals of quantum mechanics are presented,
limiting the study to the area of concern of quantum computing, but setting a
rigorous mathematical framework. Then, an overview of current and expected
near-term devices, along with a description of the issues related to noise and
the reduced number of available qubits in modern quantum devices, motivate
the need for a hybrid approach to solve complex tasks, allowing classical and
quantum hardware to work synergistically.

One of the main aims of this work is to present how supervised and rein-
forcement learning tasks, as well as combinatorial optimisation problems, are
modeled in such a way that the computationally expensive parts of the algo-
rithms needed to solve them can be run on a Quantum Computer. Both benefits
and drawbacks are discussed: the former are related to a whole new computa-
tional paradigm, which is expected to execute classically intractable operations
and to exploit the natural speed of quantum systems to evolve towards equi-
librium; the latter mainly derive from physical and engineering limitations that
currently do not allow to efficiently control large-scale quantum systems.

Four case studies are reported and investigated in this work: an image clas-
sification task for a self-constructed dataset, using a Support Vector Machine
algorithm exploiting functions which map input data to a quantum state space;
a reinforcement learning problem, formulated as a Quadratic Unconstrained Bi-
nary Optimisation (QUBO) problem, with the objective of finding a winning
strategy for the game of Blackjack by using self-simulated data; the Number
Partitioning Problem (NPP), formulated as a QUBO, which can be considered
one of the most complex scenarios for quantum computers in terms of qubits con-
nectivity and couplers precision; finally, the limited-assets Markowitz portfolio
optimisation problem, mapped to a QUBO model, with the goal of overcom-
ing the complexity of this type of optimisation by testing a quantum-inspired
heuristics as the input size is still limited but with a potential to scale up.

Throughout this work both the approach of universal gate-model and adi-
abatic quantum computing have been investigated, but with a particular focus
given to the latter in most of the case studies. For one of the cases studied here,
the Number Partitioning Problem, a remote access to a quantum annealer was
exploited, which allowed a thorough study of the capabilities of one of the de-
vices that are able to solve the most complex problems among modern quantum
computers.

Finally, by posing a particular emphasis on the accuracy and solution quality
of the problems of interest, this study allows a comparison between quantum
and classical techniques, highlighting the differences and stressing what benefits
a quantum or hybrid quantum-classical strategy may bring to approach machine
learning and optimisation problems.

Sommario

Questo lavoro esamina l’applicazione del quantum computing alla data science,
formulando problemi di ottimizzazione e machine learning attraverso un for-
malismo ibrido quantistico-classico. Vengono presentati i concetti fondamentali
della meccanica quantistica, limitando lo studio all’area di interesse del quantum
computing ma allo stesso tempo impostando il contesto matematico in modo
rigoroso. Dopodiché, attraverso una panoramica sia dell’hardware presente ad
oggi sia di quello atteso per il futuro prossimo, e anche grazie all’esaminazione
dei problemi legati al rumore e al ridotto numero di qubit disponibili nei disposi-
tivi quantistici moderni, si motiva il bisogno di un approccio ibrido per risolvere
problemi complessi, che permetta ad hardware classico e quantistico di lavorare
sinergicamente.

Uno degli scopi principali di questo lavoro è quello di presentare delle strate-
gie per modellare problemi di ottimizzazione combinatoria e supervised e rein-
forcement learning in modo da far lavorare un Quantum Computer sulle parti
degli algoritmi computazionalmente più costose. Vengono discussi sia i benefici
sia gli svantaggi: i primi sono strettamente legati alla scelta di un modello di
computazione nuovo, dal quale ci si aspetta l’esecuzione di operazioni classica-
mente intrattabili e lo sfruttamento della velocità intrinseca dei sistemi quantis-
tici di evolvere verso uno stato di equilibrio; i secondi derivano principalmente
dalle attuali limitazioni fisiche e ingegneristiche che non permettono un controllo
efficiente di sistemi quantistici a larga scala.

Vengono esaminati quattro casi di studio: un problema di classificazione di
immagini auto-costruite attraverso un algoritmo di Support Vector Machine,
il quale sfrutta funzioni che portano i dati dallo spazio di input allo spazio
degli stati quantistici; un problema di reinforcement learning, formulato come
Quadratic Unconstrained Binary Optimisation (QUBO), con lo scopo di trovare
una strategia vincente per il gioco del Blackjack usando dati auto-simulati; il
Number Partitioning Problem (NPP), formulato come QUBO, che può essere
considerato uno degli scenari più complessi dal punto di vista della connet-
tività dei qubit e della precisione numerica dei connettori fra coppie di qubit;
infine, il problema del limited-assets Markowitz portfolio optimisation, scritto
come QUBO, al fine di implementare un’euristica quantum-inspired che possa
sormontare la complessità del problema al crescere della dimensione dell’input.

Nel corso di questo lavoro sono stati investigati sia l’approccio di com-
putazione universale gate-model, sia quello di adiabatic quantum computing,
con particolare attenzione verso quest’ultimo dato nella maggior parte dei casi
di studio. Per uno dei casi studiati, il Number Partitioning Problem, è stato
sfruttato l’accesso da remoto a un quantum annealer, che ha permesso uno stu-
dio completo delle capacità di tale macchina, in grado di risolvere tra i problemi
più complessi che i quantum computer moderni possano affrontare.

Infine, ponendo particolare enfasi all’accuratezza e qualità delle soluzioni dei
problemi presentati, questo studio propone un paragone tra tecniche classiche
e quantistiche, evidenziandone le differenze ed esaminando i benefici che una
strategia quantistica o ibrida quantistico-classica possa portare nell’approccio a

problemi di machine learning e ottimizzazione.

Contents

1 Introduction 3

2 Fundamentals of quantum computing 7
2.1 Qubits as elements of a Hilbert space 7
2.2 Operations on qubits . 9
2.3 Measurement of quantum states 10
2.4 Geometrical representation of qubits 11
2.5 Quantum gates . 13
2.6 Entanglement . 16
2.7 State evolution . 18
2.8 Information encoding . 19

2.8.1 Basis Encoding . 19
2.8.2 Amplitude Encoding . 19
2.8.3 Hamiltonian encoding . 20

2.9 Adiabatic quantum computing 20
2.10 Computation in the NISQ era . 24
2.11 How to build a quantum computer: hardware overlook 27

2.11.1 Superconducting circuits 27
2.11.2 Trapped ions and beyond-NISQ technologies 30

2.12 Conclusions . 33

3 Hybrid quantum-classical computing 35
3.1 Variational Quantum Eigensolver 37
3.2 Quantum Approximate Optimisation Algorithm 40
3.3 Conclusions . 41

4 Quantum machine learning 43
4.1 Support Vector Machine . 44
4.2 Support Vector Machines with quantum enhanced features space:

a case study on image classification 47
4.3 Reinforcement learning as a QUBO model: a case study on the

game of blackjack . 54
4.4 Conclusions . 60

5 Quantum optimisation 63
5.1 A case study on the Number Partitioning Problem 66
5.2 A case study on a Limited-Assets Markowitz Porfolio Optimisa-

tion problem . 71
5.3 Conclusions . 79

6 Conclusions 81

Chapter 1

Introduction

Quantum computing is a field at the intersection of physics, computer science
and mathematics that exploits the capabilities of a new kind of computer based
on quantum mechanics.

Quantum computers revolutionise the very foundations of how computations
are carried on by machines. While classical computers are built on the concept
of bits, i.e. logical values that can be either 0 or 1 and are implemented by
devices that exist in one of two possible states, like electrical switches that can
either be on or off, quantum computers rely on the idea of quantum bits, or
qubits, i.e. a two-state quantum-mechanical system which is simultaneously,
with certain probabilities, in both states. This leads to the need for a new
approach to computation and information processing, with the expectation that
by exploiting the properties of quantum mechanics it is possible, in very specific
tasks, to obtain remarkable speedup and boost in performance.

It is very important to stress that quantum computers are not meant to
outperform the classical ones in every task [1]. Rather, their purpose is to
solve problems that are computationally hard, like integer factorisation, for
which Peter Shor, in [2], presented one of the most famous quantum algorithms,
database search, supported by an algorithm by Lov Kumar Grover shown in [3],
simulation of quantum systems [4], and many other applications in the fields
of optimisation [5] and machine learning [6] that are being investigated in the
latest years. Hence, it is safe to say that quantum computers are not likely to
completely replace their classical counterpart, but rather, they might take on
some hard tasks in scientific computing for which the request of computational
power is very high.

Theory of algorithms that can be run on such computers has already been
developed. However, they usually require qubits to be ideal, i.e. not affected
by the intrinsic problems that arise when trying to control a quantum system
such as, for example, interactions between the system itself and the environment.
Moreover, quantum algorithms usually need a number of qubits that is very high
and unlikely to be reached by any device in the near future. For these reasons,
while from a hardware viewpoint the quest remains to scale the number of qubits

3

4 CHAPTER 1. INTRODUCTION

as much as possible and improve their reliability, from a software viewpoint
the main focus of researchers has shifted to finding how current or near-term
quantum devices can be used as co-processors, meaning that only some parts of
new or existing algorithms are processed by a quantum machine and the overall
computation is performed through the interaction between both quantum and
classical computers.

Although the latest years have seen an increase in the attention given to
quantum computing both by researchers and technology companies [7], quantum
supremacy has not been proved yet. In other words, it is yet to be found a
well-defined computational task that a quantum computer is able to solve and
is intractable by any classical processor. With the hardware that has been
developed so far, for real-world problems there is no tangible advantage in using
a quantum device over a classical one. However, this is believed to change in
the near future and, in the meantime, it is already possible to carry on research
using existing small machines, in order to have working algorithms and expertise
in the field for when more complex hardware is developed.

Even though some still do not believe that there will ever be a real quantum
advantage, the majority keeps contributing to research. The main reason why
quantum computers are believed to be able to quickly provide efficient solutions
to many scientific problems, especially for those instances in which classical
hardware does not have enough computational power, is because qubits exploit
the properties of quantum mechanics. The feature of being deterministically
neither in state 0 nor 1 until observed is called superposition, and we say that a
qubit is in a superposition of the two states, meaning that it has a probability of
collapsing either into 0 or 1. The second great feature that quantum computers
exploit is entanglement. When two or more qubits are entangled, measuring
one of them is equivalent to observing all the entangled ones. In other words,
when a qubit is measured, the state of all the others in entanglement is found
deterministically.

These features are at the core of quantum computing and, theoretically, allow
extremely fast computations. Specifically, with qubits, we expect an exponential
speedup in representing all possible states that bits can be in. For example, if
we want to represent the two classical states 0 and 1 on a quantum computer,
we only need a single qubit as all information is contained in its superposition
state. If we have a two-bits system, we have four possible states: 00, 01, 10 and
11. If we want to represent them on a quantum computer, we need two qubits,
which are allowed, as a system, to be in a superposition state of all four states
00, 01, 10, 11. In general, with N qubits we are able to represent 2N states. The
expected speedup in computations becomes clearer when we need to explore all
those states; while on a classical computer we have to actually change the state
of bits, on a quantum computer all the information related to different states is
already contained in the superposition state of qubits. In other words, N qubits
represent 2N states at the same time.

Nevertheless, this does not mean that using N qubits for computations is
equivalent to having 2N bits. Qubits live in a quantum state as long as they are
not measured: once they are observed, they collapse into one of the 2N states

5

Figure 1.1: Moore’s Law describing the number of transistors in a dense inte-
grated circuit over the years. Data provided in [8]

and act as classical bits ever since.
It is clear that, in order to use quantum hardware properly, one needs to

understand the basics of quantum-mechanical systems, how they work, what
are the main properties that can be used to fully exploit their computational
power and what are the problems and challenges in programming such systems,
which usually arise from nowadays engineering limitations.

The marvelous promises of speedup boosts and solvability of problems that
would otherwise be intractable, such as, for example, simulating complex chem-
ical properties and reactions, which are described by quantum mechanics and
are hard to simulate on a classical computer, are not the only reasons why quan-
tum computing has gained so much attention in recent years. Indeed, there are
also some concerns regarding progress in development of classical computers.
Throughout the years, engineers have managed to build smaller and smaller
transistors so that, by being able to collect more of them in a limited space, it
has been possible to reach the great computational power that we have today.
The number of transistors has been increasing following Moore’s law, which
states that such number approximately doubles every two years. The trend
over nearly the past 50 years is shown in Fig. 1.1. At this pace we have been
able to reach a transistors’ size in the order of a few nanometers. Some say that
soon we will reach a point where it will be impossible to build smaller tran-
sistors. Furthermore, as they approach atoms’ size, it is believed that classical
properties will make space to the rules of quantum mechanics.

Hence, there is plenty of reasons to investigate how quantum computers
work, what are their capabilities, how different machines can be compared be-
tween one another and how current engineering limitations affect computations.
In this work we go through a brief overview of the basics of quantum mechanics

6 CHAPTER 1. INTRODUCTION

as applied to quantum computing, the mathematical formulation of key topics
in this field and how to represent data in a quantum computer. There exist
two fairly different computational models, gate-based and adiabatic quantum
computing, which means that quantum hardware can be divided in two families
that support different kinds of computations, the fundamentals are in common.
We are going to investigate which are the differences and how these relate to
computational tasks. Next, we have a quick overview of the current stage of
progress in the development of these machines.

All of this aims at providing the knowledge needed to understand currently
existing algorithms and how to program a quantum computer. As a matter of
fact, we are going to study a few recently developed algorithms that are used
in a wide range of applications, and we will mainly focus on tasks ranging from
optimisation to machine learning.

The main scope of this work is to present how to model both simple and
complex data science problems in the quantum computing formalism. We will
focus on understanding which techniques are most suitable in different situations
and what aspects of the algorithms can be improved. Ultimately we will analyse
the performances. This is done by exploring four cases studies, either solved
using a quantum computer or a simulator, using classical and quantum hardware
in what is called a hybrid approach. We will work on image classification with
a self-constructed dataset; on reinforcement learning applied to the search for
a strategy to play the game of Blackjack; on the number partitioning problem,
which represents a complex task for current quantum computers; finally, we will
solve a limited-assets markowitz portofolio optimisation problem formulated as
quadratic unconstrained binary models.

Chapter 2

Fundamentals of quantum
computing

2.1 Qubits as elements of a Hilbert space
Quantum computers differ from their classical counterpart in that the hardware
used for computations is actually a quantum system. As such, their behaviour
is intrinsically probabilistic and the outcome of measurements of such systems
is described by probability theory. Quantum information theory studies how to
formalise the behaviour and make statements about the result of an observation
of a quantum system. We shall restrict the rigorous mathematical formulation to
finite-dimensional Hilbert spaces, which are of interest in quantum computing.

In the quantum computing framework, the smallest system is composed
by only a qubit. In order to describe it, we define its state as an element
of a Hilbert space also known as quantum state space, which is usually CN in
quantum information theory, that contains all the information needed to study
its probabilistic nature. In our one-qubit system, the Hilbert space is C2. In such
framework, we define the standard basis using quantum mechanics’ notation.

Let |ψ〉 be a column vector
(
ψ1

ψ2

)
∈ C2, which we refer to as ket, then a basis

for C2 over the field C is given by:

|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
.

The vectors |0〉 and |1〉 are associated with the two possible outcomes 0
and 1 that we can obtain if we observe our qubit, and will be referred to as
computational basis. Then, we can write:

|ψ〉 = α1|0〉+ α2|1〉, (2.1)

α1, α2 ∈ C. This formulation highlights why we say that a qubit can be in
both states 0 and 1 at the same time, as in Fig. 2.1.

7

8 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Figure 2.1: From left to right: states |0〉 and |1〉 as up and down spins (arrow)
of an electron, followed by a superposition of the two states [9]

Now let us define the set of possible events E = {e1, e2}, where event ei
refers to obtaining the i − th outcome from measuring our qubit. The result
of the measurement can be described as a random variable X that takes values
on the set {’outcome state is 0’, ’outcome state is 1’} with support on the space
S = {0, 1} and associates with each event i a probability pi that such event might
happen. When we go back to our state vector |ψ〉 and impose the normalisation
condition |||ψ〉|| = 1, we strongly relate α = (α1, α2) with p = (p1, p2). As a
matter of fact, |||ψ〉|| = 1 implies that

N=2∑
i=1

|αi|2 = 1,

or, in other words, |αi|2 represents the probability of i − th event happening.
The entries of vector α are in fact called probability amplitudes. From this
characterisation stems the superposition property.

When we consider a more complex quantum system, for example one com-
posed by two qubits, the dimension of the Hilbert space increases and, as a
consequence, we need to find a new basis. In order to do so, we shall first
introduce a compact notation for tensor product.

Let |ψ〉 =

(
ψ1

ψ2

)
and |φ〉 =

(
φ1
φ2

)
, then we have that the tensor product

of the two states is |ψ〉 ⊗ |φ〉 =

ψ1φ1
ψ1φ2
ψ2φ1
ψ2φ2

 . It is common to denote the resulting

state as |ψ〉 ⊗ |φ〉 = |ψφ〉. Bearing this in mind, it is straightforward to define
the new computational basis as the set

B = {|00〉, |01〉, |10〉, |11〉},

where |00〉 =

1
0
0
0

, |01〉 =

0
1
0
0

, |10〉 =

0
0
1
0

, |11〉 =

0
0
0
1

. Then, the vector

2.2. OPERATIONS ON QUBITS 9

notation for a general state of the two-qubit quantum system can be written as
follows:

|ψ〉 = α1|00〉+ α2|01〉+ α3|10〉+ α4|11〉,

where α = (α1, α2, α3, α4) ∈ C4.
The generalisation to N -dimensional quantum systems is quite straightfor-

ward: the Hilbert space becomes CN , its basis can be written as the set of
orthonormal vectors {|ki〉}i=1,··· ,N , k1, · · · , kN ∈ CN and the state of the sys-
tem takes the form

∑N
i=1 αi|ki〉, αi ∈ C, i = 1, · · · , N .

2.2 Operations on qubits
Besides ket, another compact form for elements of the Hilbert space is commonly
defined: the bra. A bra is the conjugate transpose of a ket:

〈ψ| = |ψ〉†.

and, in a finite-dimensional real or complex space it is a row vector.
It is then possible to write the inner product of two quantum states |ψ1〉,

|ψ2〉 as
〈ψ1|ψ2〉,

the overlap:
|〈ψ1|ψ2〉|2

and the outer product as
|ψ1〉〈ψ2|.

Given a Hermitian or self-adjoint operator, i.e. equal to its conjugate trans-
pose, which is identified by a matrix H, its expectation value in state |ψ〉 is given
by

〈ψ|H|ψ〉.

The outer product is useful for the definition of density matrices, which are
alternative representation of quantum states. Let |ψ〉 be the state of a system,
then the density matrix of such system is given by

ρ = |ψ〉〈ψ|

and we refer to |ψ〉 as a pure state. This name stems from the idea that by
only knowing |ψ〉 we can represent a system in which all its particles are in the
same physical configuration. For example, take a single-qubit system and the
pure state |ψ〉 = α1|0〉+ α2|1〉, then its density matrix is written as

|ψ〉〈ψ| =
[
|α1|2 α1α

∗
2

α∗1α2 |α2|2
]

and if |α1|2 > 0, |α2|2 > 0, with |α1|2 + |α2|2 = 1, then our system is in a
superposition state of |0〉 and |1〉. We have important information contained

10 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

in the complex coefficients α1, α2, i.e. we know phase and amplitudes of the
corresponding states |0〉 and |1〉. On the other hand, there exist mixed states,
which only give information about probabilities of finding the system in one
state or another. The density matrix of a mixed state is defined as the sum of
density matrices of pure states, weighted by probabilities:

ρmixed =

pure states∑
i=1

pi|ψi〉〈ψi|.

This is the most general formula for a density matrix. It also allows to see
that density matrices have unit trace, are positive semi-definite and Hermitian.
Specifically, the eigenvalues are pi and the eigenvectors, also called eigenstates,
are |ψi〉. Since pi’s are probabilities, they are non-negative real values and
sum up to one, from which stem the positive semi-definiteness and unit-trace
property. Then, |ψi〉〈ψi| is hermitian because it holds

(|ψi〉〈ψi|)† = 〈ψi|†|ψi〉† = |ψi〉〈ψi|,

and since density matrices are convex combinations of hermitian matrices, with
coefficients being real values, they are hermitian too.

In our single-qubit system, the density matrix of a mixed state takes the
form

ρmixed =

[
a 0
0 b

]
,

where a+ b = 1, a, b ∈ R+. The mathematical representation of the absence
of information about phase and amplitude in a mixed state is given by the
off-diagonal elements of ρmixed being equal to 0. Mixed and pure states can
be represented geometrically in a very specific form, which will be discussed
further in section 2.8, and is very important in determining whether there is
control over the quantum system or not. Problems connected with mixed states
will be presented in section 2.10.

2.3 Measurement of quantum states
Having defined density matrices, we can now focus on how to make measure-
ments of quantum systems. The quantity that can be measured, or observable,
in a physical system composed of qubits depends on what kind of hardware is
used to represent the quantum bits. For example, it can be the spin of atoms or
the polarization of light. This topic will be covered in greater detail in section
2.11.

Let |ψ〉 = α1|0〉+ α2|1〉 =

[
α1

α2

]
. In order to find the probability to measure

our qubit and find it in state 0, we simply need to project |ψ〉 onto |0〉, which
in turn means that we must construct the density matrix |0〉〈0|, compute

|0〉〈0|ψ〉 =

[
1
0

] [
1 0

] [α1

α2

]
=

[
1 0
0 0

] [
α1

α2

]
= α1|0〉

2.4. GEOMETRICAL REPRESENTATION OF QUBITS 11

and finally take the ` − 2 norm of the result, which is equal to |α1|2 since, by
construction, |0〉 has unit norm. In other words, we projected |ψ〉 onto |0〉 and
computed the length of the projection. The reason why such density matrix is
needed is that it leads to calculating 〈0|ψ〉, which is a complex scalar measure
of similarity to state |0〉.

Also, it is easy to verify that the matrix P0 =

[
1 0
0 0

]
truly identifies an

orthogonal projection operator P|0〉 : C2 → C2 onto state |0〉: C2 is a Hilbert
space and as such is endowed with a scalar product (·, ·)C2 . Then, it is immediate
to see that for any two vectors x, y ∈ C2 it holds (P0x, y) = (x, P0y). The same

can be verified for P1 =

[
0 0
0 1

]
and generalised to higher dimension.

2.4 Geometrical representation of qubits
A measurement of a qubit system is simply a projection of its state onto the
computational basis. Fortunately, there is a common representation of qubits’
states that helps understanding what happens when we make measurements or
modify a state: the Bloch sphere, shown below.

ϕ

θ

x

y

z =|0〉

|1〉

|ψ〉

The Bloch sphere is a three-dimensional representation of qubit state space,
with |ψ〉 being a general state and |0〉 and |1〉 the computational basis.

By construction, the state of a qubit is a unit norm vector in C2. Hence,
to visualise it, we should represent a four-dimensional real space. However, the
formula 2.1 that describes any general (pure) state |ψ〉 is commonly rewritten
by exploiting the constraint 〈ψ|ψ〉 = ||ψ||2 = 1 as

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (2.2)

where γ is a real number and 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. The global phase eiγ
has no observable effect and is therefore omitted from now on. As a consequence,
|ψ〉 can be represented on a unit sphere in R3, called Bloch sphere, and is defined

12 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Notation θ ϕ |ψ〉
|0〉 0 ϕ ∈ [0, 2π] |0〉
|1〉 π ϕ ∈ [0, 2π] |1〉
|+〉 π/2 0 |0〉+|1〉√

2

|−〉 π/2 π |0〉−|1〉√
2

|i〉 π/2 π/2 |0〉+i|1〉√
2

|−i〉 π/2 3π/2 |0〉−i|1〉√
2

Table 2.1: Fundamental quantum states. Recall equation 2.2, omitting the
global phase, for the relation between the two angles θ and ϕ and the formulation
used in |ψ〉

by the two angles θ and φ. This representation holds for a single qubit; for more
complex systems composed of multiple qubits, the space dimension increases and
thus there is no suitable visual depiction.

Being an internal point or lying on the surface of the sphere has a strong
physical meaning: superficial points correspond to pure states, while the internal
ones indicate mixed states. To show this, for simplicity, we shall consider the
two-dimensional case. Let ρ be a density matrix describing any single-qubit
system. Then, it can be written as

ρ =
1

2

[
1 0
0 1

]
+
ax
2

[
0 1
1 0

]
+
ay
2

[
0 −i
i 0

]
+
az
2

[
1 0
0 −1

]
,

where ~a ∈ R3 contains the coordinates of the state of the system and ai cor-
responds to its component along axis i. Eigenvalues of ρ are λ1 = 1

2

(
1 + ||~a||2

)
and λ2 = 1

2

(
1− ||~a||2

)
, but since density matrices are positive semi-definite, it

must hold that ||~a||2 ≤ 1. For pure states, the following relation must hold:

tr(ρ2) = tr(ρ)2

while, in general, it is true that tr(ρ2) ≤ tr(ρ)2. A thorough proof of this is
provided in [10]. Recalling that the trace of a density matrix is 1, we have that

tr(ρ2) =
1

2
(1 + ||~a||2) = 1⇔ ||~a||2 = 1.

In other words, the vector ~a that represents the point in R3 corresponding to
the state of our system lies on the surface of the unit ball if and only if such
state is pure, otherwise it represents a mixed state and is an interior point of
the sphere.

Among pure states, it is possible to spot some fundamental ones that come
in handy in many quantum computing algorithms. Table 2.1 summarizes them.
Exception made for |0〉 and |1〉, they are all superposition states with equal

2.5. QUANTUM GATES 13

Gate Matrix form Starting state Result

X
[
0 1
1 0

]
|0〉 |1〉

Y
[
0 −i
i 0

]
|0〉 i|1〉

Z
[
1 0
0 −1

]
|1〉 −|1〉

Rφ

[
1 0
0 eiφ

]
|1〉 eiφ|1〉

H 1√
2

[
1 1
1 −1

]
|0〉 1√

2
(|0〉+ |1〉)

CNOT

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |10〉 |11〉

Table 2.2: Common quantum gates and the result of their operation performed
on some states chosen for example purposes. The choice of the starting state
is motivated by the effect of each gate. Here are taken into account states that
change when the presented gates are applied. Such statement is not true for
every couple state-gate. For example, applying Z gate to |0〉 would still yield
state |0〉 and is not worth showing here

probability of being in 0 or 1. It is common to prepare qubits in one of such states
at the beginning of an algorithm so that it starts from an unbiased scenario,
where bias here refers to the probability of collapsing in one of the two states
being higher than its complementary. How to change the state of a qubit will
be discussed in further detail in the next section.

2.5 Quantum gates
In order to control qubits’ state, similarly to how it works with classical com-
puters, we need gates. The operation that a gate performs on a qubit can be
visualised as a rotation on the Bloch sphere of a vector |ψ〉 representing the
qubit’s state. We assume from now on that the starting state on which a gate
is applied is |0〉.

Table 2.2 summarizes fundamental gates that are commonly used. Gates X,
Y and Z are often denoted as σx, σy and σz and in their matrix representation
are called Pauli matrices. They operate rotations around, respectively, axes x,
y and z. X gate is also known as bit-flip gate, as it turns |0〉 into |1〉 and |1〉
into |0〉. Z gate and Rφ gates operate shifts on qubit’s phase, hence leaving
unchanged its probability of collapsing into 0 or 1. The former is also called

14 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Figure 2.2: Elements of a quantum circuit. For single-qubit gates G, symbols
in circuits are the same as the gate name shown in table 2.2. The other single-
qubit operation is the measurement, whose symbol is shown here. Bottom panel
shows a simple circuit of two qubits; a general gate G is applied to the first one
and then a CNOT entangles qubits. The order of application of gates goes from
left to right, as shown on top by the time direction.

phase-flip gate and can be reconstructed through the latter.
One of the most important gates is H: the Hadamard gate. If performed on a

qubit in a state that is in the computational basis {|0〉, |1〉}, it puts the qubit in
a superposition state with equal probabilities, respectively |+〉 or |−〉. If applied
again, i.e. computing H|+〉 or H|−〉, the result will be again, respectively, |0〉
or |1〉.

Finally, the CNOT gate, or CONTROLLED-NOT gate, is one of the most
common tool to entangle qubits. In the example shown in table 2.2, given a
system in state |10〉, applying the CNOT gate changes its state to |11〉, i.e. the
controlled qubit, if it is in |0〉 and the other one is in |1〉, is flipped to |1〉. In other
words, the whole system does not behave as an ensemble of independent qubits,
but instead the state of its components are strongly correlated one with another
and the behaviour of one qubit is deterministically determined by the other one.
More details on entanglement are presented in section 2.6. Fig 2.2 is a graphical
representation of the elements that compose circuits. They are typically drawn
as a collection of single solid lines, one per each qubit, on which are orderly
applied gates. At the end of computation, a measurement is performed and
therefore qubits collapse and turn into classical bits. An example of a basic
circuit is shown in bottom panel of Fig. 2.2, implementing a general gate G and
a CNOT gate in order to build an entangled two-qubit system. Usually all qubits
are initialised in state |0〉. Quantum computer must be able to easily prepare
qubits in an initial state, before starting any computation. More on the basic
principles on which quantum machines are built will be covered in 2.10. Another
common approach, depending on the circumstances, is to apply a Hadamard

2.5. QUANTUM GATES 15

gate before other computations, so that qubits are put in a superposition state
of equal probabilities.

Mathematically, gates are represented by matrix that are applied to quantum
states in vector notation. Nevertheless, not all matrices are eligible to represent
gates, but some conditions must be met. Specifically, they must be unitary
matrices. Let U be a complex-valued matrix, then it is unitary if it holds

U†U = I.

Such matrices preserve the intrinsic reversibility of quantum mechanics, which
means that modifying twice a quantum state according to the information con-
tained in U will result in the initial state again. In quantum computing, the
alteration of a state consists of applying a unitary that, by construction and in
order to maintain the properties of quantum systems, is a reversible operation.

Furthermore, unitary matrices preserve norms. In quantum computing, the
Hilbert space in which qubits states live is CN , therefore the inner product of
such space induces the usual Euclidean norm. We exploit it to show that unitary
operators preserve norms:

||U |ψ〉||2 = 〈ψ|U†U |ψ〉 = 〈ψ|ψ〉 = |||ψ〉||2,

where |ψ〉 ∈ CN . As a consequence of this property, applying gates to qubits
does not change probability amplitudes, which is fundamental because it is
through ordered set of gates, or circuits, that we are able to build and run most
quantum algorithms, resembling how computations are carried on on classical
computers, and do not need to care whether the application of gates affect the
probability of an outcome.

The gates studied in this section are the main building blocks of most quan-
tum algorithms. However, the questions of what kind of computations they allow
and whether we need more gates to perform all possible algorithms arise. The
former question was answered in [11], in which it is shown that any operation on
qubits in order to change its state can be decomposed into a combination of a
finite number of gates. The collection of such gates is called universal gate set,
where universality refers to the possibility of performing any arbitrary operation.

Further studies show that the universal gate set is not unique. As a matter
of fact, it has been proved that we do not need rotation gates around all axis
to be able to perform any single-qubit operation, as first researches in the field
pointed out. Instead, it is possible to decompose any arbitrary unitary using
only the following gates [12]:

H =
1√
2

[
1 1
1 −1

]
, Rπ/4

[
1 0
0 eiπ/4

]
, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,
where the first two gates are single-qubit operations, while the last one is a
two-qubit unitary.

16 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

One of the main problems related to reducing the number of gates in the
universal set is that, in order to approximate a complex unitary, we need to
apply many times the fundamental gates and therefore create longer circuits.
This creates many issues on current hardware: the application of each gate
nowadays is carried successfully only up to a certain precision, or fidelity, and it
leads to new sources of noise, forcing the system to interact with the environment
and, as a consequence, gradually lose quantum properties. Engineers’ challenge
is to improve the system quality, which means, overall, to build hardware that
approaches as much as possible the behaviour of a closed-system. More details
on these issues are described in section 2.10.

Finally, a machine that exploits the action of gates over qubits in order to
control their state and perform computation is called, for the reasons described
in this section, universal or gate-model quantum computer. On the other hand,
there exist machines that work in a very different way: they exploit quantum
properties but do not control the state of their qubits at each step of the com-
putation. This approach is called Adiabatic quantum computing and will be
discussed in greater detail in section 2.9.

2.6 Entanglement

One of the main differences between classical and quantum systems is entangle-
ment. It has been shown that such property is necessary to provide remarkable
speedup in some quantum algorithms [13].

Let |ψ〉, |φ〉 be two quantum states in the space spanned by the computa-
tional basis {|0〉, |1〉}. As described in section 2.1, we can write

|ψφ〉 = α1|00〉+ α2|01〉+ α3|10〉+ α4|11〉,

with α1, α2, α3, α4 ∈ C4. In such scenario, the state |ψφ〉 is simply given by the
product of |ψ〉 and |φ〉, therefore the two are unentangled. Entangled states can
not be written as a linear combination of {|00〉, |01〉, |10〉, |11〉}. For example,
the well known Bell states form an orthonormal basis for the space of all states
given by the entanglement of two qubits:

|00〉+ |11〉√
2

,
|00〉 − |11〉√

2
,
|01〉+ |10〉√

2
,
|01〉 − |10〉√

2
.

Suppose any of the Bell states, for example the first one, can be written as
the product of |ψ〉 = α1|0〉 + α2|1〉 with |φ〉 = α3|0〉 + α4|1〉. Then we would
have

|00〉+ |11〉√
2

= α1α3|00〉+ α1α4|01〉+ α2α3|10〉+ α2α4|11〉,

which has no solution.
Entangled states show very interesting properties that stand out more clearly

when measuring them.

2.6. ENTANGLEMENT 17

Take for example the first Bell state |ψ〉 = |00〉+|11〉√
2

. Suppose we want to
make a measurement on one of the two qubits that compose the system and then
investigate what happens to the second one. By convention, the measurement
is performed on the right-most qubit. This means that, in order to measure it
onto state |0〉, we need to apply to |ψ〉 a projection matrix of this form:

1⊗ |0〉〈0| =
[
1 0
0 1

]
⊗
[
1 0
0 0

]
=

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 ,
from which stems clearly that the first qubit is left unobserved since we apply

the identity matrix to it, while the second one is measured on state |0〉. Then
we get

(1⊗ |0〉〈0|)|ψ〉 =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

1√
2

0
0
1√
2

 =
1√
2
|00〉.

From this we can compute the probability of the system being in state 00,
which is || 1√

2
|00〉||2 = 1

2 . But most importantly, at this point we have made
a measurement on our system, therefore the right-most qubit now has to be
treated as a classical bit as it collapsed onto a classical state. Likewise, since the
two qubits were entangled, also the left-most qubit has collapsed onto a classical
state. This can be seen by making another measurement on the resulting state
1√
2
|00〉. If we measure the left-most qubit onto state |1〉, we get

(|1〉〈1| ⊗ 1)
1√
2
|00〉 =

1√
2

([
0 0
0 1

]
⊗
[
1 0
0 1

])
1
0
0
0

=

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

1√
2

0
0
0

 = ~0.

The probability of the left-most qubit collapsing onto state 1 in such scenario
is equal to 0. Hence, when the first qubit collapses onto the classical state 0, so
does the second one, deterministically.

Computations thus far confirm what intuition might say when taking a closer
look at the Bell state we chose. |ψ〉 = |00〉+|11〉√

2
is actually describing a super-

position state of |00〉 and |11〉, each with equal probability 1
2 . It follows that

when one of the two qubits is in classical state 0, the other one collapses onto
0 as well. Likewise, if one is in state 1, then so is the other one. This kind of
reasoning can be made for other Bell states too and, in principle, even for more
complex systems, even though intuition can’t help as much when the number
of qubits grow.

18 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

2.7 State evolution

The evolution over time of a quantum mechanical system is described by the
Schrödinger equation

i~
∂

∂t
|ψ〉 = H|ψ〉, (2.3)

where ~ is the Planck constant, |ψ〉 is the state of the system and H is the
Hamiltonian operator. The Hamiltonian is a hermitian operator that carries in-
formation about the energy of the system and its formulation changes depending
on the situation.

The study of Hamiltonians, their eigenvalues and eigenvectors, also called
eigenstates, plays a central role in quantum computing. The smallest eigenvalue
is called ground state energy and the corresponding eigenstate is the state in
which the system reaches the lowest value of energy. Any other state for which
the corresponding eigenvalue is greater is called excited state. Adiabatic quan-
tum computing relies on the study of Hamiltonians, the investigation of how
to encode objective functions of optimisation problems as the Hamiltonian of a
quantum system and how to reach the ground state energy, which corresponds
to the minimum in the optimisation problem. More on this will be covered in
section 2.9.

Nevertheless, the study of Hamiltonians is a key topic in some algorithms
designed for gate-model quantum computers, too. It is possible to prove [14]
that, given an eigenstate |ψ0(0)〉 at time t = 0 of a Hamiltonian H, its evolution
over time can be written in terms of the eigenvalue E0 of H:

e−iH0t/~|ψ0(0)〉 = e−iE0t/~|ψ0(0)〉,

yielding the solution of the Schrödinger equation as a superposition of the eigen-
states of H:

|ψ(t)〉 =
∑
j

cje
−iEjt/~|ψj(0)〉,

where the time evolution operator e−iEjt/~ is unitary and hence preserves the
`− 2 norm of the state.

This is a fundamental result in the quantum computing field as it allows
to study the evolution of a quantum system through the operator U(H, t) =
e−iHt/~, which is unitary and, as discussed in section 2.5, can be reproduced as
a combination of fundamental gates.

Algorithms developed in recent years strongly use the knowledge about
Hamiltonians that derive from specific problems in order to build circuits that
approximate the behaviour of quantum systems in the energy landscape de-
scribed by such Hamiltonians. This practice is useful in many fields, from quan-
tum systems simulation to machine learning. A more detailed description of
some of these algorithms is presented in chapter 3.

2.8. INFORMATION ENCODING 19

2.8 Information encoding
In order to understand how to use quantum computers to solve complex prob-
lems, especially those arising from optimisation and machine learning fields, we
need a way to map real-world data into qubits. A number of techniques have
been developed, allowing us to represent any kind of data in a quantum com-
puter. Thorough descriptions of many of them are presented in [15]. Here we
cover the most common, and probably most straightforward, ones.

2.8.1 Basis Encoding
The most obvious technique to encode data in a quantum computer is to replace
a bit b ∈ {0, 1} with a qubit |b〉. In n−qubit systems an n−dimensional bit
string b1 · · · bn takes the form |b1 · · · bn〉. This technique has both advantages
and disadvantages.

The greatest advantage consists in the ease of preparing qubits’ state, which
means that before any computation starts it is not hard to manipulate qubits
in such a way that their state is either |0〉 or |1〉. Real values can be easily
represented by expanding them in binary encoding, saving one qubit to keep
information about the sign of such values.

Even though this technique is rather straightforward and easy to implement
in principle, it requires an incredibly large amount of qubits, in the order of the
number of bits in classical computers. Current hardware only provides a limited
amount of qubits, which makes it nearly impossible to solve large problems using
such a technique. Moreover, basis encoding is best suited for input data that
are already binary by nature.

2.8.2 Amplitude Encoding
In order to overcome problems related to the number of currently available
qubits, a common approach consists of encoding data into amplitudes. Let
~x ∈ R2, then it is possible to represent this vector with only one qubit as:

|x〉 = x1|0〉+ x2|1〉,

where x1, x2 are the two components of vector ~x and make up the amplitudes
of qubit |x〉. This technique is called amplitude encoding.

The advantage with respect to other encoding rules is that, in order to
represent an n−dimensional vector, we need only log2(n) qubits. This approach
is valid for any n ∈ N and does not strictly require it to be a value such that
log2(n) is still an integer. As a matter of fact, one way to generalise this is
presented in [15]: let ~x ∈ R3, then it is always possible to use a padding technique
in order to augment its dimensionality up to an arbitrary value. In our case, we
would transform ~x into a vector of the form (x1, x2, x3, 0) that can be encoded
in a two-qubit system as follows:

|q1〉 = x1|0〉+ x2|1〉

20 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

|q2〉 = x3|0〉+ 0|1〉.

This way we are able to represent any kind of data, at the cost of paying
particular attention to the amplitude of state |1〉 of |q2〉: we must remember
that it is an auxiliary value that should not influence computations.

Even though amplitude encoding seems appealing, it does pose some complex
challenges. The main problem that arises when using this kind of encoding
is that state preparation is not trivial. Indeed, custom routines have to be
investigated in order to adjust qubits state such that their amplitude is exactly
equal to the value of data that needs to be encoded. Furthermore, it may be
required to apply a high number of gates in order to reach the desired state,
which not only can be hard to find, but also introduce noise in the system.

2.8.3 Hamiltonian encoding

A completely different approach from the ones presented previously consists of
encoding data in the Hamiltonian of a quantum system. The rationale is that
this way we do not have to modify amplitudes of qubits in order to match our
input, but rather we need to be able to find a way to represent data in the form
of a Hamiltonian matrix.

In gate-model quantum computing, the procedure of solving a problem con-
sists of approximating the Hamiltonian with a series of unitaries that can be
implemented as gates. In general, this is not a trivial task and needs careful
study of gates fidelity and approximation error.

On the other hand, for some problems especially in optimisation and machine
learning fields, there exist straightforward mapping to well-know Hamiltonians.
These are the cases for which an adiabatic computing approach is most suitable
as hardware is built in such a way that qubits naturally follow the evolution over
time described by 2.3 with the information contained in a specific Hamiltonian.

2.9 Adiabatic quantum computing

In this section we are going to study in greater details an approach to quantum
computing that is very different from the gate-model one: adiabatic quantum
computing.

While universal gate-model quantum computers focus on controlling a sys-
tem of qubits in every step of its state’s evolution, applying gates that operate
unitary transformations and reproduce, in principle, any kind of state evolu-
tion, adiabatic quantum computers’ goal is to encode specific Hamiltonians and
let qubits naturally end up in the lowest energy state, following Schrödinger
equation 2.3.

In Fig. 2.3 is shown a sketch of an energy landscape drawn as a function of
the configuration of the system. The function that describes the energy of the
system is its Hamiltonian. In order to use adiabatic quantum computers, also
called quantum annealers, to solve optimisation problems, the objective function

2.9. ADIABATIC QUANTUM COMPUTING 21

Figure 2.3: Sketch of an energy landscape described by a Hamiltonian and the
comparison between quantum annealing, which exploits the quantum tunneling
property (blue), and simulated annealing, which works via thermal jumps (red)
to escape local minima.

is mapped to a Hamiltonian, hence the minimisation of the latter implies that
also the former is minimised.

In order to find the configuration that minimises the system’s Hamiltonian,
qubits undergo a process called quantum annealing, which motivates the choice
of the name for this kind of computers. Quantum annealing works in a very
similar way to its classical counterpart Simulated annealing: qubits start in an
initial configuration to which is associated a certain value of energy (value of
the optimisation problem’s objective function); then, throughout the annealing,
the system tends to go in lower-energy states (i.e. minimises the objective); the
goodness of the system’s configuration is determined by energy (in the classical
approach the search of solution is dependent on a temperature parameter);
finally, the system reaches a state that minimises, at least locally, its energy
(converges to a local or even optimal minimum).

The main difference between the two approaches is a property of quantum
systems, called tunneling, to jump on different energy levels without having to
climb uphills in the Hamiltonian, as shown in blue in Fig. 2.3. On the other
hand, simulated annealing is forced to accept, with a probability that depends on
temperature, solutions that are worse with respect to the current one, otherwise
it would not be able to escape local minima. This is also called thermal jump
and is shown in red in Fig. 2.3.

Since quantum annealing is a process that strongly relies on properties of
physical systems that naturally try to reach the ground state configuration, and
as a consequence does not provide a full control over the system, it has been
possible to build hardware that provide an incredibly higher number of qubits,
if compared to gate-model computers.

However, the strong limitation of quantum annealers, as already briefly men-

22 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

tioned, is that they are not universal computers, meaning that they cannot per-
form any operation as their counterpart do. In mathematical terms, this means
that quantum annealers support only a single type of Hamiltonian, given by the
Ising model. Let σi denote the spin of i− th qubit in an n−qubit system, then
the Ising Hamiltonian takes the form:

HIsing =

n∑
i=1

hiσi +

n∑
i=1

n∑
j=i+1

Ji,jσiσj , (2.4)

where, of course σi ∈ {−1, 1} ∀i = 1, · · · , n and hi and Ji,j are coefficients
called biases and couplers.

The strict limitations of being able to solve only a subset of optimisation
problems, and not constantly controlling qubits’ state, have been the cause of
many arguments on whether quantum annealers were in fact quantum comput-
ers. Nevertheless, constant progress in their development has recently lead to
quite well performing machines. Researchers and technology companies now use
them to investigate their capability in a number of large-scale tasks [16, 5].

Such a success in latest years is due to the fact that the range of real-world
problems that quantum annealers can solve is quite wide. As a matter of fact, it
is trivial to show that it is possible to transform the task of minimising HIsing

into minimising a quadratic function.
Consider the following change of variables for any i = 1, · · · , n:

xi =
σi + 1

2
.

Then {
xi = 0 if σi = −1

xi = 1 if σi = +1
.

Exploiting this formulation and the relation xi = x2i ∀i = 1, · · · , n, it follows
that

min
σ
HIsing ⇐⇒ min

x
xTQx, (2.5)

where σ is a vector of all spin variables, x contains all the binary ones and
Q is a matrix whose diagonal entries depend on biases hi, while the off-diagonal
ones depend on couplers Ji,j .

Hence, quantum annealers appear to be a suitable choice for solving Quadratic
Unconstrained Binary Optimisation (QUBO) problems. Moreover, with a La-
grangian formulation of constrained models it is possible to extend the range
of tasks for which annealers apply to quadratic constrained problems. More on
this will be covered on case studies in chapter 5.

In order to obtain remarkable performances from the use of quantum anneal-
ers, a lot of study both from a hardware and a software point of view must be
done. Before showing why, we shall explain some more details about quantum
annealing.

2.9. ADIABATIC QUANTUM COMPUTING 23

Figure 2.4: Representation of energy levels of Ising Hamiltonian drawn as a
function of annealing time. Bottom curve indicates how the lowest energy con-
figuration varies throughout the annealing. Curves in higher parts of the picture
represent energy levels of excited states. It is also shown the point of minimum
distance (gap) between ground state and the first excited state. Image from [17]

Fig. 2.4 shows the evolution over time of energy levels associated with an
Ising Hamiltonian. The configuration of a system that is subject to such Hamil-
tonian can be in either the ground state or excited state. Throughout a process
that modifies the energy landscape, a system can jump on different levels be-
cause of many reasons like vibrations caused by external noise, therefore it is
possible that, from the ground state, our system goes into an excited state,
which no longer minimises the Hamiltonian.

Quantum annealing is a process that modifies the Hamiltonian of a qubits’
system. A simple example of this is shown in Fig. 2.5 As a consequence, along
with the introduction of such modifications, energy levels higher than the one
corresponding to the ground state emerge and get closer and closer to the ground
state energy, up to a point of minimum distance, called minimum gap. Then,
once this critical point is passed, as shown in Fig. 2.4, energy levels drift apart.

The reason why quantum annealing modifies the energy landscape is related
to how qubits’ state must be prepared in an quantum annealer. First of all,
we must define a simple Hamiltonian for which the ground state is known.
Typically it is given by all qubits being in a superposition state. Then, starting
from the lowest energy state, we must gradually introduce the Hamiltonian
term that derives from our own specific QUBO problem, so that eventually the
Hamiltonian of the system will be described only by the problem Hamiltonian
and the initial one will be negligible. During this process, however, new energy
levels are introduced and with them the probability of jumping out of the ground
state. In other words, we can describe the overall Hamiltonian of the system as

H(t) = HInitial(t) +HProblem(t),

where HInitial(0) � HProblem(0) and HInitial(T) � HProblem(T), being

24 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Figure 2.5: Picture illustrating the stages of quantum annealing. The ground
state of the starting energy landscape is well known and typically consists of
a superposition state (a), then a problem Hamiltonian is applied gradually (b)
until it completely takes over the initial one (c), modifying the landscape and
hence the state that minimises the energy. Image courtesy of D-Wave [17]

T the final instant of time of the whole process. If the annealing is too fast,
meaning that the problem Hamiltonian takes over the initial one very quickly,
the system is more likely to jump from the ground state to an excited one.

Fig. 2.6 is a qualitative sketch of the energy as the problem Hamiltonian is
introduced. Moreover, it shows a comparison between a simple annealing and
one that, at some point, has been paused and then restored. This is a feature
that some annealers provide and it has been empirically proved that doing so
can improve performances [18, 19]. The reason behind this, as presented in [18]
is that, with a pause, qubits are allowed to enlarge the solution space and hence
less likely end up in local minima.

In order to truly obtain improvement in performances, we also need to choose
carefully the instant of time in which pausing the annealing [18]. If this occurs
much before the minimum gap point or far past it, there would be no effect on
the probability of staying in the ground state. However, if it is performed right
before the minimum gap point, qubits will likely stay in the lowest energy state
and end up in the global minimum.

Fig. 2.6 is also an example of the application of a technique called Reverse
Annealing. It consists of stopping an annealing process and starting a new one,
where the initial configuration is given by the final one of the previous process.
This approach is very common in classical algorithms and reverse annealing is
its quantum version.

Fig. 2.6 also provides the order of magnitude of annealing time. Even
though it is a qualitative representation of the annealing process, a whole cycle
performed by an annealer is usually in the order of dozens of microseconds,
which is what makes them an interesting heuristics worth investigating.

2.10 Computation in the NISQ era

Quantum computing theory has been investigated for decades, but only in recent
years quantum hardware has been developed. This creates a gap between theory
and practice.

2.10. COMPUTATION IN THE NISQ ERA 25

Figure 2.6: Change in energy during the annealing process as the problem
Hamiltonian takes over the initial one (respectively, orange and blue). Moreover,
the same evolution is qualitatively drawn by allowing for an annealing pause
(respectively, red and green). Image taken as part of the work in [19]

In the past, a lot of work carried on by researchers focused on building
algorithms that would be able to run on somewhat ideal quantum computers.
This means that the basic assumptions comprised qubits being unaffected by
any source of noise, i.e. they were supposed to compose a closed quantum
system, and also available in a huge number. It is very hard at this point in
time to tell whether such computers will ever exist. What is certain is that they
are neither available now nor in the near future.

Some might say that the development of quantum computers, at this stage, is
comparable to that of classical computers in 1950′s. Current machines have low
number of qubits, engineers struggle at isolating their systems and improvements
on gates fidelity is in constant progress.

Nevertheless, current quantum computers form an interesting playground for
what might be able to come next. Even if we do not reach the hardware complex-
ity required by most well-known algorithms, the ones that promise polynomial
or even exponential speedup with respect to classical approaches, it is believed
that the day will come when noisy, small quantum computers will be able to
accomplish some tasks so well that classical computers will be outperformed on
them.

In this section we are going to investigate what are the main challenges that
affect today’s computers development. We are going to focus on the mathe-
matical formulation of some problems and their implications on data science
applications.

Quantum annealers aside, we might say that this is an era in which com-
puters provide fairly few and noisy qubits. J. Preskill defined it as ’Noisy
Intermediate-Scale Quantum’ era for the first time in [20], and soon this term
caught on. It mainly refers to universal quantum computers and essentially

26 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

sums up modern engineering challenges. "Intermediate-scale" points out that
the number of qubits available in a NISQ computer is at least equal to 50.

In the NISQ era, some fundamental principles lead the construction of quan-
tum computers: DiVincenzo’s criteria, thoroughly described in [21]. Essentially,
in order to build a proper - according to DiVincenzo - quantum computer, we
must be able to:

• Build a scalable system with well characterised qubits,

• Easily initialise the qubits’ state to a simple state, like |000...0〉,

• Allow for the decoherence time to be long enough, in particular longer
than gates operation time,

• Identify and implement a universal gate set,

• Measure qubits in an easy way.

In order to get a grasp of the idea behind quantum computers’ development,
the above points are quite self-explaining. A key topic is decoherence time and
is worth describing in greater detail.

Recall that given a state |ψ〉, an equivalent representation is the density
matrix ρ = |ψ〉〈ψ|. In general, we have

|ψ〉〈ψ| =
[
a b
c d

]
.

Off-diagonal entries b and c are called coherences. When b, c > 0, ρ describes
a pure state.

Modern quantum systems do not behave as closed systems. Instead, they
still interact with the environment and therefore are affected by external sources
of noise. This means that as time goes by and the interactions intensify, the
pure quantum state decoheres and transforms into a mixed state. This means
that the density matrix eventually takes the form

ρ =

[
a 0
0 d

]
.

As we have seen in section 2.2, a mixed state no longer carries information
about phase and amplitude. Hence it is not possible to control such state
and modify probability amplitudes arbitrarily. Instead, its behaviour follows
classical probabilistic theory.

Decoherence is a real curse for quantum computing: once the system’s co-
herences vanish from its density matrix, we are no longer able to make compu-
tations. It follows that all operations must be performed before the decoherence
time.

2.11. HOW TO BUILD A QUANTUM COMPUTER: HARDWARE OVERLOOK27

Moreover, a great issue regarding the control of a system is one that gate-
model computers have to face: energy relaxation. If qubits are given enough
time, and they are in an excited state, they will eventually end up in the ground
state, hence losing information on previous states. This time must be long
enough so that gates application is feasible and computations are not spoiled.

Furthermore, external noise can corrupt qubits state. When this happens,
such qubits are no longer reliable and therefore cannot be used for computations.
In order to overcome this problem, a number of techniques have been proposed.
One of the first has been presented by Shor in [22], paving the way for future
works, some of which have been comprehensively summarised in [23], that focus
on the idea of using multiple qubits in order to correct any single-qubit error.
The intuition that motivates this approach is that information carried by one
qubit that is affected by noise can be stored in other qubits through suitable cir-
cuits. This way, even if a state gets corrupted, its information is not completely
lost. Thorough explanation of how error correction is performed is beyond the
scope of this work.

However, it is fundamental that, in order to perform the operations that are
being studied in quantum computing theory, more qubits are needed. From this
stems the difference between logical and physical qubits. In one word, these two
kinds of qubit are different in that the latter are noisy, while the former are
not. Ongoing research focuses on improving quality of qubits and isolation of
the systems, with the goal of exploiting less and less physical qubits to compose
a logical one.

2.11 How to build a quantum computer: hard-
ware overlook

In this section we investigate how quantum computers are built and compare the
different technologies that are being developed. It is important to stress that we
are not going into great details as it is beyond the scope of this work. However,
a brief overlook is worth studying in order to better understand where we are
now, what are the most important factors to take into account when studying
quantum computing hardware and what we can do with current machines, what
are their limitations and which ones are more promising.

2.11.1 Superconducting circuits
The greatest challenges in the development of better quantum computers con-
sist of keeping a system isolated and improving the quality and time of gates’
application.

One strategy of implementing qubits is by using superconducting circuits.
They are made of superconducting loops connected by Josephson junctions, i.e.
devices made up of two superconducting electrodes separated by a barrier, that
can be tuned by applying a magnetic field in order to create a superposition state
of up and down spins. Fig. 2.7 shows one way in which they are interconnected

28 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Figure 2.7: Layer of superconducting qubits, courtesy of D-Wave Systems Inc.
Blue points indicate couplers that let interactions between qubits and arrows
represent up or down spin. Further details can be found in [24]

in order to form a lattice. Such choice is due to the fact that two-state (spins)
systems naturally encode the two levels 0 and 1 of a qubit.

These are also called transmon qubits and, in order to control them, they
must be put in a state where temperature is close to absolute zero. Fig. 2.8
shows the structure of an IBM quantum computer: it contains a refrigerator
that reaches lower and lower temperatures as layers go from top to bottom,
where the chip containing superconducting circuits is placed.

Qubits are physically implemented in 2D lattices. As a consequence, connec-
tivity between them becomes a central topic in the study of quantum systems.
Being disposed in a 2 dimensional layer, it is not possible to connect each qubit
with all others. This means that, for example, especially in gate-model comput-
ing we cannot entangle any pair of qubits directly. In general, if we have some
complex task that can be described by a graph in which nodes are qubits, we
may be unable to embed such graph into the architecture of computers. This
is very often the case because qubits connectivity in modern hardware is too
trivial to be able to represent complex graph that usually arise from real-world
problems. Fig. 2.9 shows the architecture of two IBM machines that are acces-
sible online via cloud. It also includes information on each qubit about rates of
corruption of quantum states due to the application of gates.

D-Wave Systems computers are very similar on the outside to Fig. 2.8, but
in fact rely on different circuit architectures. Fig. 2.10 shows how a D-Wave
machine looks like on the outside: a cube that contains the isolated and refrig-
erated computer, which can be programmed with the least (so far) interactions
with the environment.

D-Wave’s quantum annealers are built upon a Chimera architecture, whose

2.11. HOW TO BUILD A QUANTUM COMPUTER: HARDWARE OVERLOOK29

Figure 2.8: IBM’s quantum computer. Refrigerator that cools down qubits,
with the actual chip containing superconducting loops at the very bottom of
the machine

subset is shown in Fig. 2.11. The number of qubits is incredibly higher than
those present in gate-model machines. Latest D-Wave computers provide more
than 2000 qubits, all disposed in the Chimera architecture. As already men-
tioned, this is possible because quantum annealers do not aim at constantly
controlling qubits’ state, but rather build up the energy landscape and let them
end up naturally in the ground state. This allows for a use of a much greater
amount of qubits and the possibility to scale up even more. Ongoing researches
work on structures featuring more than 5000 qubits [25] and supporting a graph
architecture called Pegasus, presented in [26].

With the topology allowed by quantum annealers, it is possible to embed
much more complex graphs with respect to those that can be studied with gate-
model computers. Even though they are able to solve only quadratic uncon-
strained optimisation problems, their topology makes them much more suitable
for such tasks, at least at the moment, than universal machines.

Quantum annealing attempts to close the gap between research and industry,
for which gate-model computers are still struggling because of the restricted
amount of qubits that they provide.

30 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Figure 2.9: Top panel shows ibmq_melbourne featuring 14 qubits, while the
bottom one is ibmq_ourense providing 5 qubits. Both pictures reveal informa-
tion about connectivity of qubits supported by the corresponding machine and
about rates of corruption of quantum states due to application of gates. U3 is
a compact notation for a rotation of a qubit configuration of both angles θ and
ϕ, according to notation in section 2.4

Figure 2.10: D-Wave’s 2000Q quantum computer in an environment that can
be programmed from the outside

2.11.2 Trapped ions and beyond-NISQ technologies

While superconducting qubits are physical realisation of classical hardware that
is brought to exhibit quantum properties, there are some other ways to build
qubits that actually use particles.

Some, like IonQ, have based their technology on the use of ions. Specifically,
they trap ions, which are the actual qubits, in a system that works at environ-
mental temperature. This allows to overcome the problem of bringing the whole

2.11. HOW TO BUILD A QUANTUM COMPUTER: HARDWARE OVERLOOK31

Figure 2.11: Illustrative example of a Chimera graph, as presented by D-Wave
in [27]. Each unit cell is a bipartite graph where each node is connected with
another unit cell

Figure 2.12: Picture from [28] representing a the control of ions through laser
beams and b two examples of arbitrary topology that trapped ions can support

machine near absolute 0 temperature, which is very costly and fairly difficult
to implement. Moreover, such trapped ions systems are believed to be able to
scale up easily.

These computers allow qubits to be embedded on a topology of arbitrary
complexity, up to that of a complete graph. Fig. 2.12 shows a couple of examples
for the fully-connected and nearest-neighbour-connected cases.

It has been possible to host up to 160 trapped ions, but better control of

32 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

operations over qubits must be investigated. Latest news show that there have
been experimented simple operations on 79 qubits and more complex quantum
algorithms on 11 qubits [29]. Nevertheless, one of the most important achieve-
ments reached with this technology has been the ability to successfully simulate
a water molecule [30]. This result paves the way for further improvements to-
wards simulation of quantum systems, which can be of critical help in a number
of fields, such as chemistry and health sciences.

Besides superconducting qubits and trapped ions, new technologies are being
developed and if successfully realised, they immediately go beyond the NISQ
era. One of these is composed by topological qubits.

In this framework qubits are realised on top of the concept of Majorana
fermions. They are both particle and their own antiparticle, but their study goes
beyond the scope of this work and will thus not be presented here any further.
Topological qubits are implemented through electrons and holes, which recall
the nature of Majorana fermions. Specifically, this kind of quantum computing
exploits the phenomenon of electrons being able to be delocalised at the ends
of superconductors.

Delocalisation can be recreated in laboratories and allow electrons to avoid
any interaction with the environment. On one hand this seems appealing, as
we would overcome any problem related to noise and create logical qubits right
away without the need for error correction, but on the other hand this property
prevents topological qubits from being controlled deterministically in a success-
ful way. This is a great challenge that, if overcome, will allow the development
of already-beyond NISQ era quantum computers.

Finally, another very promising technology consists of photonic quantum
computing. As the name suggests, the units of computations are photons.

Photonic quantum computing can be useful for representing both binary and
continuous variables. The latter approach is based on the notion of qumodes in-
stead of qubits. In other words, thanks to photons and all the knowledge about
quantum optics, it is possible to encode information in such a way that mea-
surements of qumodes yield real values. In such framework, gates are no longer
in the form described so far, because they now need to operate on completely
different units, but their investigation is beyond the scope of this work.

Regardless of whether photons are used to encode binary or continuous in-
formation, which mathematically translates to measuring different observables,
like polarisation or position, their advantages consist of being naturally resis-
tant to environmental noise and unaffected by problems related to heat, as it
happens for superconducting circuits. A disadvantage is that they are not as
easy to manipulate.

Some researchers have been developing photonic quantum computing led by
the idea that it would be most suitable for machine learning tasks, given its
continuous nature. There have been a number of studies around this possibility,
most of them published in [31].

Not only photonic quantum computing paves the way for interesting future
works, but it can also be approached via a Python 3 framework, developed by
Xanadu, that makes it easier to program such computers. In its white paper

2.12. CONCLUSIONS 33

[32], in which are presented approaches valid both for qubits and qumodes, is
also shown a way to merge quantum with classical computations in order to be
able to perform a backpropagation algorithm on neural networks composed of
both classical and quantum nodes.

Although this technology has been tailor-made for machine learning tasks,
and therefore seems appealing for the scope of this work, it has not been inves-
tigated thoroughly. The reason is that it is not mature yet, meaning that no
working quantum hardware can be accessed, therefore no experiments can be
conducted and only theoretical results can be studied.

2.12 Conclusions
In this chapter we have set the mathematical framework of quantum computing,
exploring the main properties of qubits and showing what operations can be
applied on them. In the context of gate-model computing, we have shown the
main gates that allow to change their states and entangle them, in order to
arbitrarily alter their probabilities of collapsing into one or the other classical
state.

Some strategies to encode classical data into qubits were analysed, building
the bridge from practical problems to quantum computation. One of these
techniques, the Hamiltonian encoding, was shown to be closely related to the
second well-known computational model: adiabatic quantum computing. We
have thus examined it, highlighting the differences from the gate-model approach
and showing what class of problems can be solved in such a framework.

Finally, an overview of the progress of current hardware was presented. We
have gone through the different technologies that allow to build quantum com-
puters, their advantages and disadvantages and introduced the NISQ era con-
cept, which summarises current engineering issues that still limit the scale and
power of quantum computers.

In the next chapter we will examine some well-known algorithms that are
useful in tackling optimisation and machine learning tasks. We will see how
gate-model computers can be used to analyse data in a hybrid framework, where
quantum and classical processors work synergistically. The techniques that we
will study are at the core of data science and simulation problems solving, as
they are both widely used and the concepts on which they are built inspire most
other modern algorithms.

34 CHAPTER 2. FUNDAMENTALS OF QUANTUM COMPUTING

Chapter 3

Hybrid quantum-classical
computing

Throughout the years a number of algorithms have been developed in anticipa-
tion of the realisation of quantum computers that would be suitable to execute
them on large scale. These machines are called fault-tolerant, indicating that
they do not suffer from noise and all other issues explained in section 2.10.

At the time being no such device exists. In the meantime lots of researches
have been carried on with the goal of obtaining a quantum advantage already
at this early stage. This led to working within a hybrid environment, in which
CPU’s and QPU’s, Quantum Processing Units, are able to make computation
synergistically. Fig. 3.1 shows a sketch of this paradigm.

The key idea behind hybrid approaches consists of revising already existing
algorithms or creating new ones in such a way that quantum hardware is ex-
ploited for very specific tasks which are computationally heavy and might be
executed more quickly on a QPU. In such framework, we do not expect as much
speedup as promised in the algorithms working in fault-tolerant computers.

In this and the following chapters we will focus on optimisation and learning
tasks. In such situations we are given a loss function that is variable in a number
of parameters and we need to find the best configuration of these variables such
that the loss, or cost, function is minimised. Maximisation problems easily
translate to minimisation ones by changing the sign of the loss function.

A schematic representation of a hybrid approach in these specific fields is
given in Fig. 3.2, which shows the general framework in which the loss function
is dependent on the results of quantum computation and they do not necessarily
coincide, although this is frequent in many applications. A common technique
consists of running iterative algorithms in which each iteration may be compu-
tationally heavy or can somehow be improved. This way, qubits’ state can be
encoded in some way dependent on the iteration’s parameters, a quantum rou-
tine is executed and the final state measured. Measurements are then used to
update parameters according to some rule, which for example can be a gradient

35

36 CHAPTER 3. HYBRID QUANTUM-CLASSICAL COMPUTING

Figure 3.1: Illustrative picture of a hybrid paradigm. Classical data is being
processed by classical computers, encoded in a QPU and measurements are
stored back in CPU’s. Then the evaluation of results from quantum devices are
commonly used to update instructions given to the QPU

Figure 3.2: Hybrid workflow for learning tasks. A quantum device executes
some task dependent on parameters θ; results are sent to a CPU that evaluates
a function f ; classical computer implements a routine to update parameters
based on the new value of a loss function L evaluated at f . The cycle usually
goes on until the loss function converges to some desired value

descent heuristics [33], and keep on with the iterations until a minimum of the
loss function is reached. Given the heuristic nature of this approach, conver-
gence to a global minimum is typically not guaranteed and some work must be
carried on in order to escape local optima.

The way in which classical computers interact with QPU’s changes from
one quantum device to another. With gate-model computers, CPU’s either are
used to prepare circuits parameters in a way that is dependent on input data
and iteration that is being processed, or start computation and directly use
results from the quantum machine for some other operations. When interacting
with annealers, instead, classical computers are mainly used to prepare the

3.1. VARIATIONAL QUANTUM EIGENSOLVER 37

Hamiltonian matrix and to find some suitable way to embed complex models
into the available connectivity structure provided by the quantum machine.

In the following sections we are going to cover some well-known algorithms
that can be used to solve optimisation and machine learning tasks. We will
assume to work with a universal gate-model quantum computer, but will also
ultimately present how hybrid computations can be performed using an an-
nealer. Moreover, we suppose the quantum system to work within the context
of the Ising model. It supports at most pairwise interactions between qubits, as
given by the quadratic term in 2.4, but the following algorithms can be gener-
alised to Hamiltonians with any order of interactions, at the cost of introducing
non-trivial complexity in the computations.

The algorithms that we are going to investigate share a common ground
with other hybrid routines and therefore build the fundations needed to under-
stand how a general quantum-classical approach can be used to solve real-world
tasks, and to build quantum-assisted solvers for optimisation, classification or
regression problems.

3.1 Variational Quantum Eigensolver
A very common approach to hybrid quantum-classical computations consists of
implementing circuits that are dependent on some parameters ~θ. Qubits are
typically initialised to |0〉 and their state is modified by a number of entangle-
ment and rotation gates. The angles used in the latter are given as a function
of variables ~θ. When angles coincide with the values of the parameters, rotation
gates take the form R~θ and parameters are supplied by a CPU as input to the
QPU, as schematically shown in Fig. 3.3.

In an optimisation framework, let L(~x) be the objective function of a binary
minimisation problem. We aim at solving

min
~x∈{0,1}n

L(~x). (3.1)

In order to work with quantum devices, we need to map L to an appropriate
Hamiltonian, namely the Ising Hamiltonian 2.4. Recall that a mapping from
binary variables to those taking values in {−1,+1} is given by

xi =
1− σi

2
,

where xi ∈ {0, 1} and σi ∈ {−1,+1} ∀i = 1, · · · , n.
Having the Hamiltonian HIsing we can start computations on the QPU. We

assume qubits are initialised to state |0〉, as is common in quantum computing
frameworks with no loss of generality, and the set of parameters ~θ are assigned
some real values.

Then, we build an ansatz, i.e. a well-defined collection of ordered gates acting
on qubits with both rotation operators and entangling ones. The circuit repre-
sentation is provided in Fig. 3.3. To do so, it is common to identify a unitary

38 CHAPTER 3. HYBRID QUANTUM-CLASSICAL COMPUTING

Figure 3.3: Ansatz in a general form in a hybrid computation framework. The
highlighted part is a circuit that repeatedly applies a set Ux(θ) of gates to qubits,
which can rotate them by angles θ and entangle them. The value of such angles,
in general, may depend on some data x as usual in learning tasks. Measures are
computed at the end of the ansatz, passed on to a CPU and used to compute
some objective function, and finally the results of current iteration are used to
update circuit parameters θ

U composed by single-qubit rotations and entangling gates, indexed by param-
eters ~θ, and repeat it multiple times. Usually, each unitary starts by applying a
Hadamard gate on each qubit in order to immediately switch to superposition
states. Stacking multiple U layers leads to an overall circuit U . It is important
to stress that this is a common approach, but no golden standard for an ansatz
that works efficiently for any problem is available. Intuition helps identifying
some choices that are more likely to lead to bad performances, like stacking an
incredibly high number of gates and hence exceeding qubits decoherence time,
but in general the quality of ansatz is problem-dependent.

Having constructed the circuit U , we exploit the QPU to build the state

|ψ(~θ)〉 = U(~θ)|0〉

Then we measure the expected value of HIsing in state |ψ(~θ)〉, i.e.

〈HIsing〉|ψ(~θ)〉 = 〈ψ(~θ)|H|ψ(~θ)〉, (3.2)

by sampling the outcome of the circuit multiple times.
From quantum mechanics theory, specifically from the variational theorem,

we know that 〈HIsing〉|ψ(~θ)〉 ≥ Egs, where Egs is the energy associated with the

ground state of HIsing, and the equality holds if and only if |ψ(~θ)〉 is the ground
state. Therefore, encoding L as a Hamiltonian implies that the procedure for
minimising the latter also minimises the objective function, and viceversa. The

3.1. VARIATIONAL QUANTUM EIGENSOLVER 39

goal is then to find the ground state of an Ising Hamiltonian so that it can be
used to recover information on the minimum of the initial objective function L.

Having evaluated the expected value of the Hamiltonian, we switch to the
CPU and use some classical heuristics to find a new set of parameters based
on the value of the previous ones and on the measurements obtained with the
quantum device, aiming at minimising L. We iterate until convergence to a,
in general, suboptimal set of parameters ~θ∗, which we can use to retrieve the
solution of the initial problem by measuring |ψ(~θ∗)〉. The outcome will be a
bitstring representing the solution of 3.1. This routine is called Variational
Quantum Eigensolver (VQE).

An important remark is that the original problem must be formulated in
terms of binary variables. This is strictly related to the nature of the quan-
tum device that we are exploiting. Qubits are two-level systems and therefore
the results of their measurements will be either 0 or 1. This mathematically
translates to projecting a state using the Z Pauli operator

σz =

[
1 0
0 −1

]
,

i.e. we project the state onto Z axis of the representation given by the Bloch
sphere. This can be explained by writing the frequency of obtaining state 0 as

f0 =< ψ(~θ)|0〉〈0|ψ(~θ) >

and equivalently for state 1:

f1 =< ψ(~θ)|1〉〈1|ψ(~θ) >

from which follows:

f0 − f1 = 〈ψ(~θ)|σz|ψ(~θ)〉.

Hence, we are restricted to operating with Hamiltonians that describe two-
level systems, or, in other words, we can only encode binary variables.

Regarding the classical optimiser that is in charge of updating parameters ~θ,
a common choice is the Simultaneous Perturbation Stochastic Approximation
(SPSA) method. The key idea is that ~θ is updated following the rule

~θn+1 = ~θn − cnĝn(~θn),

which is the general relation used for updating parameters in an iterative
algorithm. ~θn+1 is the value in current iteration, n indicates the number of
iteration, cn ∈ R is a scalar usually called learning rate in machine learning ap-
plications and ĝn is an approximation of the gradient of the objective function
that is computed by using finite differences. A thorough description of this al-
gorithm is provided in [34]. The great advantage consists of being able to merge
it with quantum computations, as ĝ reduces to only a couple of evaluations of
slight modifications of 3.2.

40 CHAPTER 3. HYBRID QUANTUM-CLASSICAL COMPUTING

Finally, the Variational Quantum Eigensolver algorithm can be used to find
the lowest eigenvalue of the Hamiltonian matrix. As seen in section 2.7, the value
of the ground state energy Egs of HIsing corresponds to the lowest eigenvalue of
such operator. This in turn means that when we find the optimal configuration
~θ∗, we can compute the expected value 〈H〉|ψ(~θ∗)〉 and thus obtain the eigenvalue
of interest. However, it must be noted that VQE does not necessarily find a
global solution, which may happen if the matrix associated withHIsing is defined
by a non-convex operator. The result can be the eigenvalue corresponding to
an excited state.

3.2 Quantum Approximate Optimisation Algo-
rithm

Another hybrid algorithm following the approach shown in Fig. 3.3, which uses
a CPU to iteratively update parameters to feed to a quantum device, is the
Quantum Approximate Optimisation Algorithm (QAOA)[35].

Its name stems from the idea of letting the system follow an adiabatic path-
way, starting from a simple initial Hamiltonian and ending up in a problem
Hamiltonian, much like the quantum annealing procedure. The difference from
the latter is that QAOA works for gate-model computers, meaning that the
adiabatic pathway is approximated by a set of unitaries.

Similarly to VQE, the starting point of this algorithm consists of encod-
ing the loss function, expressed in terms of binary variables, into the problem
Hamiltonian HP and preparing an initial Hamiltonian HI for which the ground
state is known.

Then, our goal is to approximate the system’s Hamiltonian, whose evolution
over time can be written as:

H(t) = (1− t)HI + tHP ,

so that at time t = 0, HI alone defines the energy landscape of the system,
while at t = 1, HP takes over the other term.

Recall that the time evolution operator of a quantum system with Hamilo-
nian H is given by the unitary

U(H, t) = e−iH(t)/~,

therefore the state at any time t reads

|ψ(t)〉 = U(H(t))|0〉.

Let us consider the Suzuki-Trotter approximation of such unitary with M
discretisation points of δt-long time intervals:

U(H(t)) ≈
M∏
m=1

e−i[δt(1−mδt)HI+δt(mδt)HP]

3.3. CONCLUSIONS 41

we can exploit this formulation to rewrite the adiabatic pathway that we
want our system to follow as

U(H(t)) ≈ U(HP , γM)U(HI , βM) ∗ · · · ∗ U(HP , γ0)U(HI , β0),

where γi, βi ∈ R+ ∀i = 0, · · · ,M are parameters to be optimised that repre-
sent for how long the evolution under each Hamiltonian is applied to the system,
and U(HP , γi) = e−iHP γi , U(HI , βi) = e−iHIβi .

In principle, the higher is M the better is the approximation, however NISQ
devices must take into account decoherence times, which poses the non-trivial
question of what is the optimal M .

QAOA algorithm hence exploits the Suzuki-Trotter expansion of the time
evolution operator of a general Hamiltonian H, which describes a two-level
system, in order to approximate with a finite number of unitaries, each imple-
mented by the QPU as a collection of gates, the behaviour of the system under
a specific energy landscape dictated by a minimisation or learning problem.

The paradigm adopted in QAOA is the same as VQE: parameters ~γ, ~β are
initialised, fed to the QPU which implements the approximation strategy de-
scribed above and computes

〈~γ, ~β|H|~γ, ~β〉

by repeatedly sampling, then a classical optimiser updates the parameters. This
whole process is iterated until convergence to some, in general, local minimum.

3.3 Conclusions

Hybrid quantum-classical techniques are at the core of modern computational
models involving quantum computing. In this chapter we presented how CPU’s
and gate-based QPU’s are commonly used together to solve optimisation and
learning tasks.

First, we have analysed the Variational Quantum Eigensolver, a powerful
algorithm that relies on circuits whose gates learn how to modify the state of
qubits in such a way that a loss function is minimised. Variational circuits are
widely used in a number of applications, but still suffer from a limited knowledge
on which ansatz might prove more efficient.

Then, we have presented the Quantum Approximate Optimisation Algo-
rithm, which is similar to the previous technique in that it requires to learn
certain parameters of the gates, but the choice of ansatz does not represent
an issue anymore. QAOA is a clever way of simulating, in principle, two-level
Hamiltonians of any degree, but strongly suffers from current engineering limi-
tations.

In the next chapter we will dive into quantum machine learning. We will
present strategies to solve machine learning problems using the formalisms of
both quantum computational models, the gate-based one and adiabatic com-
puting. In order to do so, we briefly recall how the Support Vector Machine
algorithm works and apply it in a quantum-enhanced way to a self-constructed

42 CHAPTER 3. HYBRID QUANTUM-CLASSICAL COMPUTING

case study on image classification. Then, we will investigate a quantum-inspired
strategy, with the formalism of adiabatic computing, for solving a reinforcement
learning problem: finding a winning strategy for the game of Blackjack. In this
case too the dataset is self-constructed and a comparison with state-of-the-art
classical algorithms will be presented.

Chapter 4

Quantum machine learning

Recent availability of quantum computers has intensified researches on which
benefits they might bring to a number of fields. They are expected to provide
speedup in some computationally hard tasks and to solve problems that are
intractable for classical computers, such as reproducing the physics of a complex
quantum system. Since they rely on physical systems that obey the rules of
quantum mechanics, they pave the way to a number of strategies for solving
complex problems that would otherwise be impossible to explore with classical
hardware.

Machine learning is a field that strongly depends on hard computations.
Either if one seeks to find patterns or wants to make inference and better un-
derstand the behaviour of some data, in order to obtain meaningful results, very
complex computations must be done.

Quantum machine learning merges these two disciplines. The core idea is to
solve typical problems that arise when we need to make an algorithm learn from
data, and rely on a QPU as co-processor to help with computations. It is clear
that such approach is intrisically hybrid, also because state of the art quantum
processors are incapable of solving alone the large-scale challenges posed by
machine learning.

Since we are now in the NISQ era, quantum computers are still noisy and
provide a fairly low number of qubits, consequently an actual speedup or boost
in performance is not guaranteed. As already mentioned, quantum supremacy
is yet to be proved and it follows that the role of modern research in quantum
machine learning is to investigate the capabilities of hybrid approaches, often
rewriting already existing algorithms which are referred to as quantum-enhanced
or quantum-assisted.

As of today, a fairly low number of companies own a quantum computer.
Even less are able to build one. However, some of them provide cloud access to
their machines so that it is possible to carry on researches reporting experimental
results. In this chapter we are going to apply quantum subroutines for solving
machine learning tasks. Experiments have been conducted through cloud access
to IBM’s gate-model simulators and exploiting the D-Wave’s tool QBSolv, a

43

44 CHAPTER 4. QUANTUM MACHINE LEARNING

Figure 4.1: Sketch of d = 2 dimensional data coloured by label. Dotted lines
represent general separating hyperplanes, while solid line shows a possible result
of SVM

classical decomposing solver that finds the minimum of large QUBO problems
by splitting them into subinstances, which might then be embedded into the
quantum annealers’ structure, and solving them via classical heuristics, as we
will do in this chapter, or by running the QPU’s. There are a number of obstacles
that do not make it possible to obtain speedup with today’s machines, whether
they are gate-based or annealers, namely the time required to gain access to
a quantum machine and, for the latter, to decompose the original problem
in order to match QPU’s architecture. This work focuses on evaluating the
accuracy of the proposed methods rather than computational time, highlighting
both benefits and possible improvements of a hybrid approach.

All experiments have been carried on by exploiting Python 3 frameworks
provided by the quantum computing companies themselves. Indeed, they offer
facilities to ease programming their machines by providing both low-level lan-
guages or libraries that allow to directly control quantum gates and high-level
interfaces that contain built-in algorithms such as VQE (see section 3.1), QAOA
(see section 3.2) and others.

4.1 Support Vector Machine

Before we dive into the investigation of quantum-assisted algorithms, we shall
briefly describe the classical implementation of one of the most famous classi-
fication algorithms that are widely used at the moment: the Support Vector
Machine (SVM).

Let {(~xi, yi)}ni=1 be a set of n d−dimensional samples ~xi ∈ Rd which are

4.1. SUPPORT VECTOR MACHINE 45

associated with a known label yi. It is called Training set. In a general learning
task, such label can either be a real value, an integer or a binary value. From
now on we will assume yi ∈ {−1,+1} ∀i = 1, · · · , n, meaning that the problem
we consider is a binary classification one.

The support vector machine algorithm consists of finding a hyperplane that
separates the d−dimensional space in two subspaces, so that all samples with
label yi = −1 belong to one subspace and those with yi = +1 belong to the
other one.

As we can see in a simplified example on Fig. 4.1, we could, in principle,
find an infinite number of hyperplanes that achieve our goal. Support Vec-
tor Machines ask for an additional requirement: the distance of data from the
hyperplane must be maximised. This is a reasonable condition: it helps main-
taining a certain level of accuracy when the algorithm is applied to new data for
which no label is given, also called test data. This is clear if we assume to find
a general hyperplane that separates well our training data. When we want to
classify a new sample, there is a probability that we assign it the wrong label.
Intuitively, such probability is lower when the hyperplane that has been found
previously is the one furthest away from the data, as the result of its classifi-
cation takes better into account the variability of data, whilst a badly chosen
hyperplane might classify wrongly a data point that belongs to a certain class
but is far away from the training samples in the same class. For this reason,
SVM maximises the margin of the separating hyperplane, i.e. its distance from
data points.

We recall that when we substitute the coordinates of a point into the equation
of a hyperplane, the result will be 0 if such point lies on the plane, it will always
have positive sign if it is on one side of the plane (i.e. one of the two subspaces)
and negative sign if it lies on the other side. With this we are able to write the
optimisation problem for finding the SVM hyperplane:

max
~w,b

1

||w||2
s.t. yi [〈w, xi〉+ b] ≥ 1 ∀i = 1, · · · , n,

(4.1)

where the equation of the hyperplane is given by h(x) = 〈~w, ~x〉 + b with
~w ∈ Rd, b ∈ R and 〈·, ·〉 denotes the euclidean inner product. The constraint
indicates that we require all data points (xi, yi), ∀i = 1, · · · , n to be classified
correctly. If this condition is met, we say that our data is linearly separable.
However, this is hardly the case in complex datasets; a simple example of non-
linearly separable data is provided in Fig. 4.2.

Moreover, there might be other cases in which data is almost linearly sep-
arable, meaning that only it is possible to find a separating hyperplane which
incorrectly classifies only a few points. In this situation it would be convenient
to allow the algorithm to make some mistakes, so that we could get an overall
good solution even if not perfect.

In order to overcome these two issues, we shall reformulate the maximi-
sation problem in such a way that the inner product in the constraint takes

46 CHAPTER 4. QUANTUM MACHINE LEARNING

Figure 4.2: Qualitative illustration of 2−dimensional randomly generated data,
coloured by class label, that cannot be separated correctly by a hyperplane.

as arguments every pair of data points, and the rationale behind this is that
we can then substitute it with some more complex function solving the non-
linearly-separability problem and at the same time allow for some misclassifi-
cations. Hence, we switch to the Lagrangian form of the problem, exploiting
the Karush-Kuhn-Tucker conditions (KKT) for optimality. This leads to the
following problem:

max
~α

− 1

2

∑
i,j

αiαjyiyj〈xi, xj〉+
∑
i

αi

s.t.
∑
i

αiyi = 0

αi ∈ [0, C] ∀i = 1, · · · , n

(4.2)

where ~α is the vector of Lagrange multipliers, by KKT conditions we have
~w =

∑
i αiyi~xi, which is substituted in the problem above to yield the double

sum, and C is the multiplier related to slacks variables that represent how much
error we allow and vanish in the final formulation.

By tuning the parameter C, which is usually done via some validation tech-
niques such as Cross Validation [36], we overcome the second problematic sce-
nario described before, allowing for the search of a hyperplane that is able
to classify data with an overall good accuracy, even though samples are not
linearly separable. On the other hand, with this formulation we are able to
replace the inner product 〈xi, xj〉 with a non-linear function K(xi, xj), called
kernel. Specifically, if K satisfies certain conditions [37], we are able to compute
an inner product 〈φ(xi), φ(xj)〉 in some space that has a dimension higher than

4.2. SUPPORT VECTOR MACHINES WITH QUANTUM ENHANCED FEATURES SPACE: A CASE STUDY ON IMAGE CLASSIFICATION47

Figure 4.3: Data from Fig. 4.2 mapped onto a higher dimensional space (third
coordinate is given by the sum of the first two squared). Here data become
linearly separable, motivating the search for a hyperplane in the dimensionality-
augmented space.

d, using only information given by 〈xi, xj〉 and without the need to know the
analytic form of φ. This means that we map our input data into a more complex
space, called feature space, through a non-linear function φ, then we compute
the inner product in such space not suffering from the burden of making com-
putations in a high dimensional space, because all we need to know is 〈xi, xj〉.
The rationale behind this approach is that if data are not linearly separable in
the original space, it may become so in the feature space, as we can see in Fig.
4.3; in such space we find a hyperplane which defines a decision boundary, i.e.
the set of points that separate the space in two subspaces. When it is projected
back into the original space, it is no longer linear. The sketch of a boundary
that could be given by this approach is shown in Fig. 4.4. This procedure is
called Kernel Method.

4.2 Support Vector Machines with quantum en-
hanced features space: a case study on image
classification

In this section we are going to apply a quantum-assisted SVM algorithm in
order to classify a dataset of images.

As covered in section 4.1, it is possible to build a classifier that linearly
separates some training data {(~xi, yi)}ni=1, where ~xi ∈ Rd, in some space with
dimension higher than d so that the decision boundary projected back on Rd
is no longer linear. This is achieved by selecting a suitable kernel K: different
choices of K yield different decision boundaries. At the state of the art, no
kernel is universally regarded as the best one to adopt, instead its choice strongly

48 CHAPTER 4. QUANTUM MACHINE LEARNING

Figure 4.4: Data from Fig. 4.2 with the boundary defined by a linear separator
in the space shown in Fig. 4.3 and projected onto original space

depends on the dataset under study [38].
The idea behind a quantum-enhanced SVM, as proposed in [39], is to use a

gate-model quantum computer to map input data into the higher dimensional
space that is given by the quantum state space. A great difference from the
classical kernel method [38] is that now the map is known and well-defined.

Before we dive into the experiment, we shall briefly recall a well-known
procedure to reduce the dimensionality of data: Principal Component Analysis
(PCA). We will use it as part of the preprocessing phase in order to cut down
to a small enough data matrix so that it can match the architecture of IBM’s
quantum simulator.

Given a collection of observations {~xi}ni=1, with ~xi ∈ Rd ∀i = 1, · · · , n, the
goal is to find a new set of features that explain enough information about
the data, i.e. are able to faithfully reproduce their variance. PCA consists
of finding a number k ≤ min{n, d} of mutually orthogonal directions, called
principal components, in Rd that maximise the variance in our data. Since each
direction is able to explain, in general, less variability than the whole original
space, the number k must be sought by taking into account the trade-off between
variance explained and the complexity of the resulting space Rk; PCA reads
as follows: first, we look for a direction that maximises the variance of data
contained in the matrix X ∈ Rnxd by solving:

max
~w
||X ~w||2 = max

~w
~wTXTX ~w,

where ~w is usually asked to have unit norm for computational purposes; then, we
calculate a second principal component by solving the same problem as before,
where the space is now orthogonal to the first direction found and thus takes

4.2. QUANTUM-ENHANCED SVM FOR IMAGE CLASSIFICATION 49

Figure 4.5: Example of application of PCA on 2−dimensional sample data. The
first principal component maximises variability in the data; the second one does
the same with the additional constraint of being orthogonal to the first one.

the form:
Xnew = X −X ~w~wT .

A visual example of this process for 2−dimensional data is given in Fig. 4.5. In
general, we can calculate the k−th component by updating the space with the
following:

Xk = X −
k−1∑
j=1

X ~wj ~w
T
j .

In conclusion, Principal Component Analysis is an algorithm that finds the
basis of a space of dimension k ≤ minn, d, which composes the new set of
features that maximise the variance in the data, meaning that they carry as
much information contained in the orginal data as possible. Clearly, when k =
minn, d we have the same space as before, but it is expressed in terms of new
features.

Dimensionality reduction will be a very important step in our experiment.
Having recalled the basic ideas, we are now able to proceed with our analysis.
Let us, then, consider a dataset composed by self-constructed and self-labeled
images, shown in Fig. 4.6. We have 24 grey-scale images with resolution 20x30,
i.e. {(~xi, yi)}24i=1 where ~xi ∈ ([0, 255] ∩ N)

20x30 and yi ∈ {−1, 1} ∀i = 1, · · · , 24,
where the label indicates whether an image represents a happy or sad smile.
Since the goal of this experiment was to investigate what kind of decision bound-
ary would result from the mapping of input data to a quantum state space, and
the relative performance, and since these images do not differ in a remarkable
way one from another, there was no need to produce a bigger dataset. Moreover,

50 CHAPTER 4. QUANTUM MACHINE LEARNING

Figure 4.6: Self-constructed and self-labeled dataset of 20x30 images either
belonging to class ’happy’ or ’sad’

knowing that the algorithm would be tested on the IBM quantum simulator,
which classically reproduces the connectivity and structure of real quantum de-
vices and provided up to 5 qubits when this experiment was conducted, a much
higher resolution would have prevented a meaningful embedding into the ar-
chitecture. Further explanations will be provided when we discuss the relation
between input data dimensionality and number of qubits.

The first step consists of generating the data matrix X ∈ ([0, 255] ∩ N)
24x600,

where each row represents an image and each column represents a pixel. Then,
we split the dataset in training and test set. The former is composed by 70%
of the total number of images, chosen at random, while the remaining ones
make up the latter. We consider standardised data, meaning that we make each
feature (pixel) have zero mean and unit variance.

After a few simple preprocessing steps, we perform PCA on X in order to
reduce its dimensionality. Having operated a standardisation on data allows
PCA to weight the importance of each feature correctly, i.e. not being affected
by the range of values that they take. Unfortunately, we are forced to work with
a number of features as limited as 2, otherwise we cannot feed our data to the
simulator.

Having extracted the first 2 principal components, we can analyse the amount
of variance explained by each of them. As we can see from panel (a) in Fig.
4.7, neither of them contributes in a very significant way to reproducing the
variability of the original data. However, this comes as no surprise given the
nature of our dataset: images expressed through 600 pixels are difficult to be

4.2. QUANTUM-ENHANCED SVM FOR IMAGE CLASSIFICATION 51

Figure 4.7: a. Variance explained by each principal component shown as a bar
graph. Cumulative variance shown by line chart. b-c. plot of data projected
onto the first and second principal components, colored by class, respectively of
training and test set, where label happy is represented in blue and sad in red

thoroughly represented via only a couple of combinations of the features. As a
result, we do not expect to correctly classify all samples in the test set.

Then, before diving into the classification part of the computation, we rescale
the two new features given by the principal components to the range [−1, 1].
This is motivated by the fact that SVM strongly relies on computing distances,
hence similarly to PCA, in general, we want to avoid giving more importance
to some features with respect to others, namely the ones that take values in a
wider range. In Fig. 4.7, panels (b-c), are shown the projected data into the
plane spanned by the two principal components, coloured by class. We can see
clearly that such dataset is not linearly separable, hence a kernel trick should
come in handy.

At this point, we have all is necessary to begin with an SVM algorithm.
We ponder over two similar ways of implementing a hybrid quantum-classical
classifier, as proposed in [39].

The first one consists of preparing a set of qubits to state |0〉, applying a
circuit whose gates act in a way that is dependent on the value of data points
~xi, then we build a second circuit parametrised by a vector ~θ that has to be
optimised and finally we make multiple measurements to obtain the probabilities
of each sample belonging to the two classes. We iterate this process and use

52 CHAPTER 4. QUANTUM MACHINE LEARNING

Figure 4.8: General form of a variational circuit. Qubits are initialised at state
|0〉; a unitary UP applies rotation and entangling gates by quantities that depend
on input data x; a set of gates parametrised by optimisation variables θ modifies
the previous states; finally, a measurement on the resulting configuration is
applied in order to obtain a label y

some classical optimiser, such as the SPSA discussed in 3.1, to update the value
of vector ~θ until we reach convergence. This approach resembles the Variational
Quantum Eigensolver in that we use a variational circuit, i.e. a set of gates
indexed by parameters to be optimised, but it also includes a state-preparation
part to stress the dependence on input data. A visual representation is given
by Fig. 4.8.

In this experiment we build a quantum-enhanced Support Vector Machine
following a different approach, even though somewhat similar to the previous
one. The reason why the latter was not picked is that it was computationally
much heavier. This is unlikely to happen on real quantum hardware, however,
we had access to a simulator and therefore could not afford to make too hard
operations. The second approach is more balanced in terms of computations
performed by CPU and QPU, thus the simulator had to reproduce a less complex
dynamics of the quantum system.

The core idea is to exploit the formulation of the SVM optimisation prob-
lem in Lagrangian form 4.2. The kernel function computes the scalar product
of input data in a higher dimensional space; we are going to map our data
into a quantum state space via very specific functions and then compute the
squared modulus of the scalar product, also called overlap. Then, after having
constructed the matrix of pairwise overlaps, we use it as a new kernel function
to feed to a CPU and solve the optimisation problem classically. The algorithm
with all necessary steps is provided in Algorithm 1.

Choosing a quantum-enhanced kernel reduces to selecting a set of gates that
apply transformations to states in a data-dependent way. This is not trivial
and a lot of investigation can still be done in order to understand which are
proper circuits. A common idea is to choose some non-linear function of the
input data, namely our dimensionality-reduced images ~xi ∈ R2, ∀i = 1, · · · , 24,
to obtain suitable values for angles as output. Then, we should feed these values
to rotation gates and stack different layers, including entanling gates, in order

4.2. QUANTUM-ENHANCED SVM FOR IMAGE CLASSIFICATION 53

Algorithm 1 Quantum-enhanced features space: SVM learning phase
Input: Unlabeled training samples {~xi}ni=1. Number of measurement repeti-
tions R.

Require: Depending on the circuit, number of qubits may derive from their
relation with number of features
Initialise all qubits to state |0〉
Choose a circuit Uφ(~x) of input-dependent gates
for all pairs (~xi, ~xj) do

for r in 1...R do
Compute |φ(~xi)〉 = Uφ(~xi)|0〉
Compute |φ(~xj)〉 = Uφ(~xj)|0〉
Compute or = |〈φ(~xi)|φ(~xj)〉|2

end for
Store K(~xi, ~xj) = 1

R

∑R
r=1 or

end for
Output: Kernel matrix K ∈ Rnxn

to obtain a data-dependent circuit.
Which should be the non-linear maps and what gates, and in which order,

compose the circuit is still an open issue [39]. In this work we rely on the choices
proposed in [39]; such circuit seems reasonable as it is considered to be hard to
classically simulate for bigger systems, which should be the driving idea if one
wants to ultimately gain a quantum advantage with respect to usual kernels, but
when operating on a number of qubits as small as ours, a quantum simulator is
able to support the computations.

The circuit of interest was already shown in Fig.3.3, where the unitary is
given by Z-phase and entangling gates, yielding the following:

Uφ(~x)|ψ〉 = CNOTRφ1,2(~x)CNOT (Rφ1(~x) ⊗Rφ2(~x))|ψ〉,

where |ψ〉 is a general state, i.e. |++〉 before applying the unitary for the
first time and (H ⊗H)Uφ(~x)|++〉 for the second time, φk(~x) = xk, k = 1, 2 and
φ1,2(~x) = (π−x1)(π−x2). Clearly the number of qubits is strictly related to the
dimension of input data, the choice of the function φ and hence to the circuit. In
this framework, to compute the overlap of two quantum-enhanced data points,
for each of them, we need as many qubits as their dimension. Finally, we choose
a number R = 1024 of measurements to estimate the expected value of the
overlap.

Once the learning is finished, the testing phase comes natural by considering
the formulation of the SVM classifier:

f̂(~xtest) = sign

(∑
i

αiyiK(~xi, ~xtest) + b

)
,

where b is the bias term to be estimated separately. All terms are known, except

54 CHAPTER 4. QUANTUM MACHINE LEARNING

Figure 4.9: Samples and predicted decision boundaries coloured by class. Panel
a. reports results on training set, while panel b. on test set. In both cases, data
are plotted on the plane spanned by the two principal components and labels
happy are drawn in blue, while sad in red

for K(~xi, ~xtest), which we can compute by mapping ~xtest to the quantum state
space using the same circuit as before.

Following this approach, we have found remarkable results. Fig. 4.9 shows
samples and decision boundaries of both training and test set, projected into
the plane spanned by the two principal components. As we can see, the result
is a non-trivial decision boundary, which confirms that a quantum-enhanced
kernel is capable of modeling some high level of complexity in the data. For
obvious reasons we do not report accuracy performance of classical algorithms
on this dataset: the data have been oversimplified to be fitted on the quan-
tum simulator, hence it is easy to find a classical routine that outperforms our
quantum-enhanced SVM. We can see that our classifier makes a couple of mis-
takes out of 8 test samples, yielding an accuracy of 75% correctly classified data.
However, this result can be investigated further, especially for what concerns the
circuits that implement the map to the quantum state space; moreover, it antic-
ipates that with more qubits we will be able to analyse larger and maybe more
complex datasets, opening the possibility to increase classification performances
for data that require highly non-linear kernels.

4.3 Reinforcement learning as a QUBO model: a
case study on the game of blackjack

In this section we investigate a way to formulate a reinforcement learning (RL)
task as a QUBOmodel, which is the formalism supported by quantum annealers,
as the use of such devices has recently been drawing attention to RL applications
[40]. Testing the performance of modern annealers is not the scope of this
investigation, hence we will solve our problem using classical heuristics provided
with the QBSolv tool; however, this work examines a way to construct the
QUBO model for RL tasks which can then be fed to a real quantum processor.

4.3. QUBO MODEL FOR LEARNING A BLACKJACK STRATEGY 55

Figure 4.10: Reinforcement learning routine: a player performs an action in
a specific environment; the consequences are rewards, or penalties, which the
player takes into account for pondering the next action; the process iterates
until the player optimises their policy so that rewards are maximised

In this framework an agent, or player, as shown in Fig. 4.10, is set in
an environment and takes actions following a policy; then, agents iteratively
update their behaviour by analysing the response of the environment so that
some criterion is met, such as the maximisation of a profit or minimisation of a
loss. Typically the environment is simulated multiple times so that the player
is forced to face as many different situations as possible and hence learn how to
react to a wide range of circumstances.

Since the early study of reinforcement learning, some have tried - and suc-
ceeded - to teach machines how to play a variety of games, ranging from chess to
complex videogames [41]. Remarkable results in the gaming industry indicate
that it is possible to tackle much complex problems also in other non-ludic fields,
because games might provide a number of different situations that is comparable
to that of some real-world problems.

In this work we focus on teaching an agent to play a variant of the game of
blackjack. In order to do so, we need to introduce a bit of notation:

The game simulations have been performed by following the rules presented
in Algorithm 2. Changing them does not influence the performance analysis of
the QBSolv in charge of optimising the policy of the player, which is the focus
of this experiment. As a matter of fact, a different choice of rules simply leads
to a different assignment of rewards.

• The index of current match simulation is m;

• The number of total simulations is M ;

• Each match is composed by a sequence of Tm plays, variable depending
on the match;

56 CHAPTER 4. QUANTUM MACHINE LEARNING

Algorithm 2 Blackjack games simulation: learning phase
Input: Player’s initial policy; Dealer’s policy; Number of matches M

for m in 1...M do
Draw two cards for each player
while the sum of cards of all participants does not exceed 21 & at least

one of them chooses ’Hit’ do
Player chooses an action at according to their policy: pick uniformly at

random between ’Hit’ and ’Stick’
Dealer chooses an action at according to their policy: hit if sum is smaller

than 17, otherwise stick
Store player’s pair (state, action)
Compare sums of cards and check if match is finished

end while
Set reward Rm for each pair equal to: 1 the sum of player is greater than

that of the dealer; −1 in the opposite scenario; 0 in a tie
Similarly, set reward Rm for each couple of the (state,action) pairs occurred

in the current match
end for

Output: Average rewards associated with each (state,action) pair R(stateaction)

and each couple of (state,action) pairs R(state,action)1,(state,action)2

• The state of the player at each time t = 1, · · · , Tm is st;

• The set of all possible states is S;

• The action taken by the player at time t = 1, · · · , Tm is at;

• The set of all possible actions is A;

• A reward Rm is given after each match;

• The set of all possible rewards is R.

We assume the action space to be A = {Hit, Stick} and the state space
S = {2, 3, 4, 5, 6, ..., 21}, i.e. all possible sums of cards that players can have
throughout the game, assuming that ace, for simplicity, counts as 1 and there
are enough decks to keep the distribution of cards uniform during the whole
match. Then, for the learning phase we establish an environment in which
the dealer one player are sitting at the game table, the former following a pre-
defined policy and the latter always choosing a random action. We simulate
M = 100000 matches.

The overall workflow of this experiment, besides the validation task, is shown
in Fig. 4.11. The next step after preparing reward data, in order to find the
optimal policy, we need to formulate our task as a quadratic problem with
binary variables. Moreover, since quantum annealers are able to work with
Ising Hamiltonians, we must find a formulation of our problem that does not

4.3. QUBO MODEL FOR LEARNING A BLACKJACK STRATEGY 57

Figure 4.11: Workflow of the analysis, from data preparation to problem solu-
tion, before validation. Steps include simulating the matches, assigning rewards,
formulating the problem as a QUBO model, feed it to the solver and retrieving
the solution

allow for external constraints, i.e. we must transform it into a QUBO model
(see ref. 2.9); to do so we rewrite the objective function of our problem by
accounting for possible constraints.

Thanks to the relation seen in 2.9 between Ising Hamiltonians and quadratic
functions of the form ~xTQ~x, ~x being the vector of binary variables, what we
need to provide to the QBSolv or a quantum annealer is simply the matrix Q.
In this work we exploit a high level Python’s library provided by D-Wave that
allows us to use a solver called QBSolv, which decomposes large problems into
smaller instances as is needed when working with real quantum devices, and
solves them with classical heuristics. The reason why we do not connect to the
actual quantum device is that our problem is not large enough to motivate a
thorough investigation of the QPU. As a consequence, the computational time
required to obtain a solution in this context does not provide any information
on the speed of quantum hardware, and is not reported in the following.

Going back to our task, we need to build a matrix Q that contains informa-
tion on the rewards given by each pair (state, action), so that our player learns
which action is optimal in as many situations as possible. Since we must rely
on binary variables, we encode them as follows:

xi =

{
0 if i-th pair (state, action)i is not performed
1 if i-th pair (state, action)i is performed

.

The entries of the QUBO matrix reflect the importance of performing a cer-

58 CHAPTER 4. QUANTUM MACHINE LEARNING

tain action given the current sum of cards (diagonal), as well as the interaction
between couples of (state,action) (off-diagonal), i.e. what reward, on average,
can be obtained by ending up in the two states and performing the correspond-
ing two actions in the same match. In principle, with this approach we could
explore only a subset of said pairs, however, setting the number of simulations
as high as 100000 we avoid this situation. As a consequence, a first formulation
for the Q matrix is of the following form:

Q1 =

R(s,a)1 R(s,a)1,(s,a)2 R(s,a)1,(s,a)3 ... R(s,a)1,(s,a)p

0 R(s,a)2 R(s,a)2,(s,a)3 ... R(s,a)2,(s,a)p

0 0 R(s,a)3 ... R(s,a)3,(s,a)p

...
0 0 0 ... R(s,a)p

 (4.3)

where (s, a) stands for (state,action), p is the total number of pairwise com-
binations of (state,action) and the lower-triangular part, since it is clear from
this formulation that Q is symmetric, is set to 0 because it brings no additional
information with respect to the upper-triangular one.

Because we are forced to use binary variables, we need to include in the model
an additional term: in each state the player must perform only one of the two
actions. This is a constraint that would not otherwise be taken into account
in Q1, therefore solving the problem in such case would yield an ambiguous
solution where, for example, we could have

x∗(state1,action1)
= x∗(state1,action2)

= 1

or
x∗(state1,action1)

= x∗(state1,action2)
= 0,

where the apex indicates that x∗ is a solution to the problem. As a consequence
we could have cases in which our algorithm suggests, for the same sum of cards,
both hitting and sticking or neither of them.

We solve this problem by introducing the constraint

x(statei,’Hit’) + x(statei,’Stick’) = 1 ∀i = 1, · · · , N, (4.4)

where N is the total number of (state,action) pairs. In order to include it in
our model, we need to map it to the quadratic form(

x(statei,’Hit’) + x(statei,’Stick’) − 1
)2

=

= x2(statei,’Hit’) + x2(statei,’Stick’) + 1+

+2x(statei,’Hit’)x(statei,’Stick’) − 2x(statei,’Hit’) − 2x(statei,’Stick’).

Ignoring the constant, which would yield no effect in the optimisation, we
summarise the contribute of this constraint for statei with the matrix of coeffi-
cients [

1− 2 2
0 1− 2

]
=

[
−1 2
0 −1

]
. (4.5)

4.3. QUBO MODEL FOR LEARNING A BLACKJACK STRATEGY 59

Figure 4.12: Percentages of wins or ties over total number of games M = 10000
given by QBSolv and state-of-the-art Q-Learning algorithm

Now we are able to write a square matrix Q2 containing the contributions
of constraint 4.4 for all states i = 1, · · · , N , each of which takes the form of 4.5.

The final formulation of the QUBO matrix is thus given by

Q = −Q1 + λQ2,

whereQ1 has negative sign, indicating that we want tomaximise the rewards,
and λ ∈ R is a tunable coefficient related to the constraint. Specifically, setting
low values for λ results in giving low importance to the constraint, and thus
increasing the probability of finding an infeasible solution; on the other hand,
too high values for λ prevent classical heuristics and quantum annealing from
finding the optimal solution and instead settle for a local minimum.

To solve the problem it is simply needed to feed the QUBO matrix Q to
QBSolv, which uses a Tabu Search heuristics to find a solution. In order to
evaluate the performance, we set up a framework in which a dealer and two
different players sit at the game table: the first one follows the same policy as
before; one of the two players acts accordingly to a pre-defined arbitrary set of
rules, i.e., in this work, always hit until game is finished; the last player is our
intelligent agent which chooses their action based on QBSolv’s solution.

We simulate M = 10000 games similarly to how is described in Algorithm
2 and record the number of times our agent wins or ties. Before presenting
our results, we use a classical approach to solve the same problem, so that a

60 CHAPTER 4. QUANTUM MACHINE LEARNING

comparison between the two agents - the one taught by QBSolv and the other
following a policy dictated by a classical algorithm - can be made.

OpenAI provides the Python’s toolkit Gym [42] to develop reinforcement
learning algorithms. We exploit this to build a state-of-the-art Q-learning strat-
egy for learning to play blackjack as explained in Algorithm 2. Q-learning is
a technique that consists of initialising a set of rewards, called Q-table, associ-
ated with (state,action) pairs; as the simulations are performed, such table is
updated following the rule

Qm((state, action)i) = Qm−1((state, action)i)

+η
(
R(s,a)i + γQ∗((state, action)i+1)−Qm−1((state, action)i)

)
,

where m indicates the number of simulation, η is a learning rate, γ is a discount
rate and Q∗((state, action)i+1) = maxa∈AQ

m−1((statei, a)). Refer to [43] for
further investigation on rates, choices of Q-table initialisation and more on Q-
learning.

Having trained the second agent with a classical approach, we are able to
make a comparison on performances. We let each trained player alone in a series
of games versus the dealer and a dummy player who always hits. Fig. 4.12 shows
the percentage of wins and ties achieved by each intelligent agent. They do not
perform much differently one from another: even though there is no clear sign
of a quantum advantage, this result opens up the possibility of QUBO model
being a good formulation of the problem, hence makes it worth investigating this
approach further for more complex problems when proper quantum computers
become available.

4.4 Conclusions
The application of quantum computing to machine learning tasks is still an
open point in ongoing research. With the quantum version of Support Vector
Machines we have investigated what benefits gate-model computers may bring
to binary classification problems, presenting a case study on a self-constructed
and self-labeled dataset of images. We have seen that the limited number of
available qubits in modern devices poses a great restriction to the dimensionality
of input data, but at the same time we observed that mapping input features
to a quantum state space, and thus building a quantum-enhanced kernel, is
a technique capable of yielding very complex decision boundaries. Finally, we
stressed that the choice for an ansatz and the map to quantum states is central in
the study of the classifier’s performances, and it is not clear yet which strategies
work best and under what circumstances.

In the second part of this chapter we posed a reinforcement learning problem:
finding a strategy to win at blackjack. We simulated the games and reformulated
our task as a QUBOmodel, which was then solved via the D-Wave’s classical tool
QBSolv. We found that a solution given by a quantum-inspired formulation of
the problem yielded performances very similar to the state-of-the-art Q-learning
technique.

4.4. CONCLUSIONS 61

In the next chapter we will focus on the application of quantum computing to
optimisation tasks. We will analyse two case studies: the Number Partitioning
Problem, which will allow a thorough investigation of the capabilities of modern
quantum annealers, and the Limited-Assets Markowitz Portfolio Optimisation
problem, a common task in the finance field for which we provide a QUBO
formulation and the relative performance analysis.

62 CHAPTER 4. QUANTUM MACHINE LEARNING

Chapter 5

Quantum optimisation

One of the main fields of application for quantum computing is optimisation.
A number of heuristics and meta-heuristics have been developed to solve large-
scale problems, but when complexity increases there is no known algorithm able
to always outperform the others. The choice of an optimisation strategy strongly
depends on the nature of the problem at hand and on the parameters related
to such strategy. Typically, we cannot rely on exact methods, which are able to
find the global minimum of a problem; instead, we usually exploit algorithms
that are likely to output a suboptimal solution. This is due to the fact that,
when the problem size increases along with its complexity, it is impossible to
explore the whole solution space or run algorithms that ensure a global optimum
in a reasonable amount of time; exact methods require tons of operations and
the number scales too quickly as the problem complexity increases.

Quantum computing offers alternative heuristics which sometimes may lead
to solutions of the same level of suboptimality as those yielded by classical algo-
rithms, but with an expected speedup, or even better solutions. The reason is
that quantum optimisation comes with brand new algorithms which, by exploit-
ing the properties of quantum-mechanical systems, offer approaches to complex
problems that would be hardly implementable on classical computers.

Of course, as for all considerations about quantum computing in the NISQ
era, it is not sure yet that quantum computers will be able to outperform clas-
sical ones; however, results obtained with noisy QPU’s seem promising and it is
worth investigating the capabilities of quantum-related heuristics.

In order to understand where quantum computing fits and what tasks it is
interesting to test it on, we shall briefly summarise the classes of optimisation
problems, qualitatively represented in Fig. 5.1. They are divided by of compu-
tational complexity; even though both a space (in memory) and time analysis
is usually conducted, we hereby focus only on the latter as most of the times it
is the prevailing issue.

Time computational complexity refers to the number of operations that an
algorithm requires as a function of the problem, sometimes called input, size.
The simplest optimisation models fall in the category of P , which stands for

63

64 CHAPTER 5. QUANTUM OPTIMISATION

Figure 5.1: Venn’s diagram of optimisation problems classes of complexity

polynomial time. Problems of this class can be solved in the worst case scenario
by an algorithm that require a number of operations which is polynomial in the
input size. For example, if we wanted to find the highest value in an array of n
integers, we could read each element and finally output the result: this approach
requires n operations; similarly, for nxn matrices, this method would require n2
computations. The time complexity is thus polynomial in the input size.

A wider range of problems is NP : for these ones, if we know the answer, or
solution, to a problem, there exists an algorithm that verifies it in polynomial
time. The question of whether P = NP is still an open issue; the definition
of computational complexity is relative to the existence of proper algorithms,
thus if it will be possible to prove that there always exists a way to check in
polynomial time an answer to NP problems, the relation P = NP will hold.

A subset of NP problems are NP − complete: this is a class of questions
for which, natively, it might not be possible to check an answer in polynomial
time; however, they can be reduced to problems for which this statement holds
true.

Harder problems are those represented as NP −Hard, for which we know
that it is neither possible to check an answer in polynomial time nor reduce
them to NP models. Take for example purposes the Max-Cut problem: it
essentially consists of finding two subsets S1, S2 of a bigger set S such that the
total conflicts, i.e. penalties relative to each element belonging to the same set
as others, between S1 and S2 is minimal. The NP−complete formulation of this
would be the question of whether there exist two such subsets; the NP − hard

65

version would be the quest of actually finding S1 and S2.

Finally, BQP stands for bounded-error quantum polynomial time: it is the
set of decision problems, i.e. those that can be phrased as a yes/no question, that
can be solved by an algorithm running on an error-corrected quantum computer
which is able to solve the problem with high probability, usually considered as
at least 2/3.

In quantum computing research, a lot of attention has been drawn to BQP
problems for obvious reasons. However, in order to solve complex problems
and provide proper alternative to current classical heuristics, and keeping in
mind that we are still in the NISQ era, a lot of studies, as well as this work,
have been focusing on solving NP − hard problems via a hybrid quantum-
classical approach. The quest is thus to check the performance and scalability
of current hybrid algorithms and quantum hardware, so that even problems
whose complexity scales quicker than polynomially, for example exponentially,
in the input size can, or will, be tackled efficiently.

A number of techniques can be developed to use the quantum computing
formalism for solving optimisation problems. Gate-based computers usually re-
quire to find problem-specific formulations and ansatz, which brings the benefit
of universality of computations, meaning that in principle they can be used to
solve any kind of task, but also have the downside of requiring complex in-
vestigations. Moreover, the number of qubits provided by modern QPU’s are
so low that no large-scale problem can be solved through universal quantum
computers.

Quantum annealers offer a much higher number of qubits than their quantum
counterpart. This comes at the cost of not being able to control them slavishly,
which also makes annealers more suitable at optimisation tasks. Indeed, they
can be used for supervised learning problems, as we have studied in section 4.3,
and other fields, but the choice of problems typical of operations research seems
more natural. Section 2.9 introduced the limitation of quantum annealers to
be able to solve only Quadratic (Unconstrained) Binary Optimisation (QUBO)
problems and section 4.3 showed an example of constrained model which, with
the suitable reformulation consisting in including constraints in the objective
function, was solved with a quantum annealing approach. This workaround
allows to enlarge the set of problems that can be tackled by annealers, which
then covers a wide range of optimisation tasks.

In this chapter we are going to investigate how complex real-world models
can be formulated as QUBO and what are the capabilities of real quantum de-
vices provided by D-Wave. We are going to study a well-known optimisation
problem, the Number Partitioning Problem, and motivate this choice by ex-
plaining why it pushes annealers to the limit of their capabilities; then, we will
analyse the QUBO formalism for a financial application in portfolio optimisa-
tion and compare the results with classical exact methods for small instances of
the problem.

66 CHAPTER 5. QUANTUM OPTIMISATION

5.1 A case study on the Number Partitioning
Problem

We have seen in section 2.10 that D-Wave’s annealers support a structure known
as Chimera graph (ref. Fig. 2.11); logical qubits are encoded as groups of phys-
ical qubits, which are represented as nodes of the graph, and as a consequence
put up with the same connectivity. In terms of optimisation models, variables
are represented as logical qubits, hence they must satisfy connectivity limita-
tions given by the Chimera graph. In order to solve large-scale problems that do
not naturally fit the annealer’s structure, a problem decomposition into smaller
instances is needed, as well as a routine to merge partial solutions together.

In this section we discuss which techniques can be used to overcome these
issues, investigate the accuracy and the capability of the D-Wave 2000Q quan-
tum annealer to solve problems with a significantly large input. To perform
this study, we use one well-known NP-Hard model: the number partitioning
problem (NPP) [44]. Thanks to the simplicity of this problem, it is easy to
generate artificial instances of any size for which the optimal solution is known.
Consequently, the measurement of the quality of the solution provided by the
quantum annealer, along with the classical implementation of the tabu-search
algorithm for a problem decomposition, will be possible even for large datasets.
The results of this case study have been published in [19]. For this work, we
acknowledge the support of the Universities Space Research Association, Quan-
tum AI Lab Research Opportunity Program. Also, we thank Davide Venturelli
for fruitful discussions.

The number partitioning problem (NPP) is defined as the task of discrimi-
nating if a given set S of positive integer numbers can be divided (partitioned)
into two subsets S1 and S2 where the total sum of the elements in S1 equals the
total sum of the elements in S2. Although the NPP is an NP-complete problem,
the optimisation version is considered NP-Hard and can be formulated in the
following way: given a list of N positive integers {a1, a2, ..., aN}, the solution
consists in finding a subset A ⊂ {a1, a2, ..., aN} such that the difference:

D(A) =

∣∣∣∣∑
i∈A

ai −
∑
i 6∈A

ai

∣∣∣∣, (5.1)

is minimised. Throughout this work, we will refer to this difference as the
delta between the two subsets A and S \ A. This problem is of both practical
and theoretical importance: possible real applications span from multiprocessor
pipeline scheduling [45], where balancing and partitioning different resources can
be crucial, to cryptography [46] and all those problems requiring load balancing
for I/O capacities, e.g. during databases processing [47].

Given a physical system composed of qubits, it is possible to define its Hamil-
tonian and initialise it in such a way that the lowest-energy state corresponds
to all qubits being in a superposition state of 0 and 1. Then, as the annealing
proceeds, the problem Hamiltonian deriving from the problem’s specifications
is introduced, as described in section 2.9. We recall that D-Wave’s quantum

5.1. A CASE STUDY ON THE NUMBER PARTITIONING PROBLEM 67

0 200 400 600 800

0

1

2

3

4

5

6

Input size

0

0

1

R
e
s
id

u
a

ls

T
im

e
 (

s
e
c
s
)

Figure 5.2: Execution time of tabu-search for increasing input size. Classical
partitioning of a set with the classical embedded tabu-search as backend. The
red line is the exponential fitting t = Aex/B where B=340 a.u. and x is the size
of the input. Blue points represent measured data. The blue line in the bottom
part is the deviation of the experimental point from the value of the fitting

annealer is able to solve problems expressed in the form of an Ising glass, with
a Hamiltonian written in the form 2.4.

A complete formulation of the NPP as Ising spin glass has been provided in
Ref. [48]. The Hamiltonian for this type of problem can be defined by assuming
an increase in the energy when the total of amplitudes associated with positive
spin states is different from that of amplitudes with negative spins. According
to this formulation, it is possible to use the following relation:

H =

(∑
i∈N

aiSi

)2

(5.2)

with Si = ±1 the spin values indicating the subset to which the i-th element
belongs and ai the element of the set A. It follows that if the ground state has
H > 0 there is no exact solution of the specific problem and the ground state is
the one minimising the mismatch between the two subsets.

In order to formulate the problem as a QUBO model, we first have to convert
our Si = ±1 into binary variables of the form qi ∈ {0, 1} (see relation 2.5). Now,
the original Ising problem can be mapped into the QUBO form:

min
∑
i,j

Qijxixj (5.3)

where x represents a binary variable and Q is the so-called QUBO matrix con-
taining the weights of qubits (hi in Eq.2.4) in the diagonal and the couplers

68 CHAPTER 5. QUANTUM OPTIMISATION

coefficients (cij in Eq.2.4) in the (i, j) elements. Similarly to what we discussed
in section 4.3, this matrix will be symmetric (cicj = cjci).

Having the QUBO matrix, it is possible to submit it to the QPU and retrieve
a solution of the optimisation problem. However, the connectivity between
qubits required by the NPP is that of a complete graph, which is yet to be
supported by any modern quantum annealer that provides a fairly high number
of qubits. To overcome this and similar problems, the D-Wave device operates
a minor-embedding of the problem onto its Chimera architecture. Specifically,
one can either run the built-in tabu-search heuristics provided by the D-Wave
Hybrid tool to optimally decompose the problem into subproblems, as we do
in this work, or choose a custom minor-embedding strategy. The subproblems
will then be mapped onto the Chimera graph, for which the QPU will start the
quantum annealing.

In Fig. 5.2 the time required to solve the NPP on classical hardware by using
the D-Wave Qbsolv is reported as a function of the input set size. The elab-
oration time increases exponentially while a structured procedure is applied in
order to find the minimum: a number of subproblems are generated, handled
and finally merged into a global solution of the NPP. The exponential increase in
the execution time confirms the NP-Hardness of the problem when approached
with classical hardware and formulations. When the problem is submitted to
the QPU, the execution time changes and paves the way for a wide range of
investigations of the D-Wave Hybrid tool. Moreover, this peculiar model allows
us to study what happens in one of the worst case scenarios from the perspec-
tive of the qubits connectivity: a fully connected graph, where the number of
couplers and weights precision play a central role [49, 5].

In order to investigate the capabilities of the D-Wave hybrid tool, we solve
multiple NPP examples of increasing size. For each fixed problem size we use 10
different datasets and collect statistics of the results. For experimental purposes,
we choose the data in such a way that the ground state of the corresponding
Ising models is H = 0, i.e. there is a single partition of the set of numbers.

For our studies, we first construct the QUBO matrix for each problem, and
then we define the tabu-search heuristics as the algorithm that splits the original
problem into the subproblems, preparing them to be embedded on the Chimera
graph.

Fig. 5.3a shows the QUBO matrix defining the connectivity of qubits re-
quired by the specific NPP instance and with regular patterns related to the
number amplitudes in the dataset. With the problem being formulated as an
Ising model, all variables are coupled in pairs, resulting in a dense (upper-
triangular) QUBO matrix. Such connectivity is the most complex to handle
and can thus be an issue for current quantum hardwares, making it interesting
to investigate the quantum annealer performance.

The distribution of partition deltas for each different problem size is sum-
marised in Fig. 5.3b. We produced 10 different datasets to be partitioned for
every problem size and we computed the value of delta for all these instances.
For each problem size we have built a boxplot of deltas coming from the solution
of the NPP.

5.1. A CASE STUDY ON THE NUMBER PARTITIONING PROBLEM 69

Figure 5.3: QUBO matrix and delta distributions over multiple datasets. a.
QUBO matrix of one instance of data with problem size equal to 100. The
entries are scaled and the intensity of colors is used as a means to summarize
the main characteristics of the plot: the diagonal is made up of negative values,
the lower triangular part is 0 and the upper one has no null entries. b. Boxplots
of deltas for different input problem sizes computed over 10 datasets for each
size with dots representing the values of the delta in each instance. These values
were saturated to 50, therefore such numerical value is to be interpreted as the
result of a bad solution. c-d. Kernel density estimation of the distribution of
input data for problems with, respectively, 200 and 500 variables, showing the
data from all 10 instances in each plot

The combination of quantum annealing with the classical minor-embedding
heuristics is able to find the optimal solution in most cases. This is achieved
especially when the problem is very small (and, as a consequence, computa-
tionally easy) or when its size is significantly higher. In fact, for our smallest
problem and for those with input size greater than 450 binary variables, we are
able to optimally solve the 10 different NPP instances. On the other hand, for
middle-sized problems, not all distributions of data allow qubits to reach the
ground state. As a result, we obtain the optimal solutions only for a subset of
the given problems.

Figs. 5.3c-d report the density distribution of each of the 10 datasets used
for 2 different problem sizes (200 and 500 variables). As explained above, the

70 CHAPTER 5. QUANTUM OPTIMISATION

Figure 5.4: Annealing cycle and boxplots of deltas with pause. Boxplots of
deltas found over multiple runs of the annealing with the same pause starting
point, same value of persistent current but different pause duration times. The
dots represent the values of (eventually saturated) deltas for every run. a shows
boxplots for one of the problems with 300 variables yielding a very bad solution,
while b shows the same for one of the problem with 200 variables

quality of the results on the bigger model exceeds the one on intermediate sizes.
Comparing both density distributions we can conclude that this behavior is
fundamentally related to the fact that a shift of the distribution curve to lower
values leads to a dataset containing more solution degeneracy for lower energy
states and consequently simpler to solve even when the problem is bigger.

An effective method to enhance the exploration of the solution space is the
direct manipulation of the annealing schedule, as we have anticipated in section
2.9. This distinctive technique can be used to improve the quality of the solution
in the cases described before in which we could not reach the ground state.
Indeed, in contrast to what we did with the first approach, where the annealing
has been used without interfering with the spontaneous process, we exploit now
the capability of the D-Wave solver API to manipulate directly the scheduling
of the cycle. To accomplish this, we define the time instant at which the cycle

5.2. A CASE STUDY ON A LIMITED-ASSETS MARKOWITZ PORFOLIO OPTIMISATION PROBLEM71

has to be stopped and resumed, as well as the value of the persistent current
powering the adiabatic relaxation. This procedure is the annealing pause (see
section 2.9).

Fig. 5.4 shows the results of the analysis on two problems, one of size 200
and the other of size 300, for which the uncontrolled annealing performed worst.
For each problem we have paused the annealing after 10 µs, let the system rest
for 10, 40, 60, 100 and 120 µs respectively halfway through the flow of current
and finally let the annealing end. This whole process was repeated 5 times for
each problem.

The best energy configuration in terms of distance from the ground state for
the two problems analysed here were not achieved with the same parameters
settings. In fact, every instance requires different values of the pause starting
point, duration and persistent current. Nevertheless, all of our choices greatly
improved the results previously obtained with the uncontrolled annealing, even
though not all of them led to the optimal solution. We were able to record
considerable results multiple times, proving that the introduction of the pause
can increase the accuracy of the annealing.

This improvement in the quality of the results is due to the effect of the pause
on the search region of the solution space: by pausing the flow of the persistent
current, and hence the annealing, we are able to widen the exploitation of the
energy landscape and, as a consequence, the probability of finding the global
minimum, as discussed in section 2.9.

In conclusion, we have investigated the behaviour of the quantum annealer
on a level of complexity which is potentially that of real-life problems. One
interesting result was found: a discontinuous accuracy with the problem size.
While high-quality results were found at small problems, there is a counter-
intuitive behaviour as the problem dimension increases: a dip in the accuracy
for medium-sized problems and a recovery as size increases. This effect was
explained by the value distribution within the dataset: lower values in the input
allow higher accuracy of the result, even when the size of the problem is rising.

The medium-sized problems were studied in more detail by applying pauses
during the annealing cycle, allowing the system to explore the solution space
with a modified equilibrium. Our results prove that with the correct parameters
tuning it is possible to improve dramatically the accuracy of the solution, obtain-
ing optimal results in cases that had proven to be troublesome in a non-altered
context.

5.2 A case study on a Limited-Assets Markowitz
Porfolio Optimisation problem

In this section we present a case study on how to implement a common optimisa-
tion problem deriving from the financial field in a hybrid computing framework:
the Markowitz Mean-Variance Portfolio Optimisation problem with limited as-
sets, or cardinality constrained. We are going to use the QBSolv solver by D-

72 CHAPTER 5. QUANTUM OPTIMISATION

Wave in order to simulate the problem decomposition and quantum annealing
as if it was run on the QPU; computational time will not be recorded, whilst a
thorough study of the solution quality will be performed. This will be done by
solving the same problem via a CPLEX exact solver and therefore knowing the
global minimum for two instances of the problem. In order to do so, we restrict
our cases to feature a relatively small amount of variables (in the order of 1∗103

and 1.2 ∗ 103) and highlight which are the upsides and downsides of a quantum
annealing heuristics with respect to an exact method.

The Markowitz Mean-Variance Portfolio optimisation problem is the task of
finding the amount of investment to assign to each of n available assets, knowing
their means µ and covariances Σ, in order to minimise the total variability of
such investment while assuring a threshold level of return. As the name points
out, the model’s variability is expressed as the total variance of investments;
this need not be necessarily the case, as alternative problems feature different
measures of risk. Namely, we need to solve the following:

min
~x

~xTΣ~x =

n∑
i=1

n∑
j=1

σi,jxixj

s.t.
n∑
i=1

µixi = ρ

n∑
i=1

xi = 1

xi ≥ 0 ∀i = 1, · · · , n

(5.4)

where index i indicates the asset, xi is the fraction of investment on the
corresponding asset, Σ is the variance-covariance matrix of the assets and ρ is
the threshold return that we ask to cover. From this formulation stems that the
maximum value for ρ is equal to the biggest mean return of the assets, which is
obtained when investing the whole available amount in the corresponding asset,
hence setting up a higher ρ would inevitably result in an empty solution space
for problem 5.4.

From the objective function and the first constraint in 5.4, we can see that
the choice for ρ and the analysis of solution quality must be performed by
taking into account an important trade-off: asking for high values of ρ ensure
bigger overall returns, but will likely increase the amount of variance (risk);
adopting a conservative policy and minimising risks result in low returns. A
common approach to mean-variance portfolio optimisation consists of analysing
a number of results for different values of ρ, so that one can find the value that
best satisfies the mean-variance trade-off. In this work we focus on formulating
the problem in a QUBO model and compare solutions using some benchmarks,
hence we simplify the analysis by fixing a single value for ρ.

The limited-assets markowitz (LAM) problem consists of increasing the com-
plexity of 5.4 by setting some bounds both on the number of assets chosen
amongst all the available and on the amount of investment on each asset. Specif-

5.2. LAM PORTFOLIO OPTIMISATION 73

ically, if an asset i is taken, then the amount xi invested on it must lie in some
pre-defined interval; moreover, the number of chosen assets cannot exceed some
bound K < n. The LAM problem reads:

min
~x

~xTΣ~x =

n∑
i=1

n∑
j=1

σi,jxixj

s.t.
n∑
i=1

µixi = ρ

n∑
i=1

xi = 1

xi ≤Miyi ∀i = 1, · · · , n
n∑
i=1

yi ≤ K

yi ∈ {0, 1} ∀i = 1, · · · , n
xi ∈ {0} ∪ [li, ui] ∀i = 1, · · · , n

(5.5)

where Mi’s are the so-called big-M’s, which can easily be quantified as val-
ues greater than or equal to 1, since clearly li > 0 and ui ≤ 1; K is the
maximum number of assets to invest on; yi ∀i = 1, · · · , n are supplementary
binary variables that take value 1 if the corresponding xi is strictly positive, so
that counting the assets chosen by a solution boils down to summing over all
such binary variables.

This problem has drawn attention to research because of its much greater
complexity with respect to the simple mean-variance problem 5.4. As a matter of
fact, the LAM model falls into the category of NP-hard problems [50], especially
because of the constraint on the cardinality of assets chosen. This limitation
poses some great challenges to real-world applications, thus motivating the need
for some efficient heuristics able to scale up with the problem size.

For this experiment we partly follow the approach of [51] and take two open
datasets, available in Beasley’s OR Library [52], of anonymised assets for which
returns and pairwise correlations are provided. The first dataset consists of 31
assets, while the second one is made up of 85. From a classical optimisation point
of view, it is possible to formulate 5.5 as a Mixed Integer Quadratic Program
with as many variables as twice the number of assets [50], therefore with these
data exact methods are still able to quickly solve the problem. However, in
order to formulate it as a QUBO, the number of variables increases further,
making these instances an interesting playground to test quantum annealing.

The first step to construct our QUBO matrix consists of formulating 5.5
via binary variables. In order to do so, we discretise the set {0} ∪ [li, ui]: the
more discretisation points we set, the more faithful our formulation will be to the
original problem and thus the closer our solution will be to the global minimum.
As a consequence, we merge the cardinality constraints into one that requires
only the number of variables for which it is chosen a discretisation point greater

74 CHAPTER 5. QUANTUM OPTIMISATION

than 0 to be at most equal to K. Then, we must add the additional condition
of choosing exactly one discretisation value for each variable.

In this set-up we also need to reformulate the objective function and the two
remaining constraints so that they account for the discretisation. Specifically,
for every time we consider variable xi for the i − th asset in the continuous
variable model, we now have to consider a relation of the form xi → dmz

m
i

where zmi is the binary variable associated to the m− th discretisation point for
asset i and dm is the value of discretisation.

We introduced a slight simplification of the model by allowing for the thresh-
old return constraint to consider the overall return feasible if it is least equal to
4/5− th of the actual value of ρ chosen; this way we ease the search for a solu-
tion whose feasibility criteria are close to the ones in the original problem, hence
reducing the drawback of using a discretisation technique. We expect to find
solutions that do hardly satisfy the equality constraint with a threshold equal
to ρ; instead, since they aim at minimising the overall variance, and because of
the trade-off discussed previously between variance and return, they will likely
find the minimum feasible value of expected return.

Finally, before including all constraints into the objective function, we turn
the cardinality inequality constraint into an equality one by adding slack vari-
ables. Following model 5.5, only one slack ζ is needed, however, it should be
an integer variable ranging from 0 to K, where ζ = 0 indicates that we are
taking an amount of assets exactly equal to K, while ζ = K means that we are
investing on no asset. The latter situation should never be verified as it would
mean that our solution does not satisfy the constraint about a threshold level
of return, nevertheless we consider K a proper upper bound. The reformulation
as an equality constraint cannot be avoided: in order to be consistent with the
QUBO formulation, we must have only quadratic terms in the objective func-
tion, meaning that when we include constraints in it, if not already quadratic,
they must be squared, which may lead the annealing to find a good - but infea-
sible - solution that takes more than K assets. Furthermore, by squaring linear
terms, we contribute to the off-diagonal entries of the QUBO matrix, hence
exploit the correlation and connectivity, i.e. entanglement, between qubits.

In order to include ζ in our model, we need to discretise it, too. In this case
the discretisation is trivial and it boils down to adding K + 1 binary variables,
each one related to one of the integers from 0 to K.

With a little change of notation, the final model takes the following form:

5.2. LAM PORTFOLIO OPTIMISATION 75

Figure 5.5: Data for first instance of the LAM model. The mean return of 31
assets is shown in panel (a). The covariance matrix in linear and logarithmic
scale is shown, respectively, in panels (b-c): assets are not much correlated one
with another, as (b) highlights; however, covariances are not exactly equal to 0,
as shown in (c) by the log scale

min
M∑
m=1

n∑
i=1

n∑
j=1

σi,jdi,mxi,mdj,mxj,m

s.t.
M∑
m=1

n∑
i=1

µidi,mxi,m = ρ

M∑
m=1

n∑
i=1

di,mxi,m = 1

M∑
m=1

xi,m = 1 ∀i = 1, · · · , n

M∑
m=2

xi,m +

K∑
k=0

kyk = K

K∑
k=0

yk = 1

xi,m = {0, 1} ∀i = 1, · · · , n ∀m = 1, · · · ,M
yk ∈ {0, 1} ∀k = 0, · · · ,K

(5.6)

76 CHAPTER 5. QUANTUM OPTIMISATION

Figure 5.6: Distribution of investments by QBSolv solver (panel a) and CPLEX
(panel b) for the first instance of the problem

where di,m ∈ {0} ∪ [li, ui] with di,1 = 0 ∀i = 1, · · · , n, xi,m denotes the
binary variable related to asset i and discretisation point m and yk is related to
the slack variable for the k − th integer.

We shall analyse the two instances of the problem separately. The first one
comprises 31 assets whose means ~µ are shown in Fig. 5.5 (a). We compute the
covariance matrix with the well-known relation

Cov(X,Y) = corrX,Y · σX · σY ,

where X,Y are assets and σX , σY their standard deviation provided in [52]
along with their correlation corrX,Y , and show it in Fig. 5.5 (b-c).

We choose the values ρ = max ~µ, li = min
m=1,··· ,M

dm and ui = max
m=1,··· ,M

dm

∀i = 1, · · · , n, where di,m = dm ∀i = 1, · · · , n ∀m = 1, · · · ,M . We set the
number of discretisation pointsM in such a way that the total number of binary
variables are ∼ 1000 +K with K = 10, which is one of the common choices for
this kind of problem [51]. In this instance, such discretisation approximates the
interval [0, 1] with steps of length ∼ 0.03.

We use the QBSolv tool to solve the problem. After a tuning analysis of
the coefficients associated to each constraint in the QUBO matrix, we obtain
results shown in Fig. 5.6(a). Out of n = 31 assets, with cardinality thresholds
set on K = 10, we select 8. The best solution we find through QBSolv yields

5.2. LAM PORTFOLIO OPTIMISATION 77

Figure 5.7: Data for the second instance of the LAM model, showing both mean
returns of 85 assets (panel a) and their covariance matrix, in linear (panel b)
and logarithmic scale (panel c). The main difference in means from the first
instance is that now some assets are not fruitful (negative mean). White dots
in (c) represent highlight negative covariances. Once again assets are quite
uncorrelated

a total amount of investment equal to approximately 1.03, which violates the
equality constraint that requires the total wealth invested to be at most 1, i.e.
100%. This is due to the choice of parameters we tuned: in order to find a
solution that solves best our problem in terms of risk minimisation, we allow
for a little exceed in the investment. Clearly this solution is infeasible, but a
simple reschedule allows us to make it feasible and, at the same time, obtain a
result that is very close to the global minimum. As a matter of fact, we show
in Fig. 5.6(b) the output of CPLEX exact methods. We summarise numerical
results in table 5.1.

We shall now analyse the second instance of the problem, made up of 85
assets, with means ~µ shown in Fig. 5.7 (a) and covariance matrix, which is
computed as the previous one, in Fig. 5.7 (b-c).

We follow the same reasoning as before to set the values for ρ, di,m ∀i =
1, · · · , n ∀m = 1, · · · ,M andK. On the other hand, since the number of assets is

78 CHAPTER 5. QUANTUM OPTIMISATION

Solver ρ Total variance Return Sum invested # Assets
QBSolv 0.0108 0.0240 0.0087 1.0322 8
CPLEX 0.0108 0.0233 0.0087 0.9999 6

Table 5.1: Table of numerical results by QBSolv and CPLEX for the first in-
stance of the problem

Solver ρ Total variance Return Sum invested # Assets
QBSolv 0.0098 0.0099 0.0078 1.0769 8
CPLEX 0.0098 0.0091 0.0078 0.9999 9

Table 5.2: Table of numerical results by QBSolv and CPLEX for the second
instance of the problem

almost three times the previous one but we cannot afford to have too large scale
problem mapped to the QPU simulator, we choose the number of discretisation
points M by increasing the total amount of variables to only ∼ 1200 +K. As a
result, the discretisation step’s length is ∼ 0.07.

We run again the QBSolv solver and show the results in Fig. 5.8(a). Simi-
larly to the former case, we tune parameters in such a way that our solution is
close to the global minimum in terms of variance minimisation. However, the
concept of closeness becomes more and more hard to achieve as the length of
discretisation steps increase. As for the previous scenario, a little workaround
can make QUBO’s solution feasible, at the cost of increasing the total variance.
In Fig. 5.8(b) we show results obtained by CPLEX. We summarise numerical
results in table 5.2.

In conclusion, we have run a quantum annealing simulator for two instances
of increasing size of the limited-assets Markowitz portfolio optimisation prob-
lem. Even though the clear drawback of this approach lies in the necessity of
implementing some sort of discretisation, which eventually leads to a dramatic
increase in the number of variables, we were able to bound such number and still
obtain a suboptimal solution quite close to the global minimum. Accessing the
QPU might be a first step towards overcoming this issue, but the most impactful
change would be given by increasing the number of qubits in the annealer and
improving their connectivity.

We found interesting results in terms of solution quality related to scalability:
while large-scale instances are intractable by exact methods, quantum anneal-
ing seems to be a heuristics that scales more efficiently and able to find good
suboptimal, if not optimal, solutions. A thorough investigation is worth car-
rying on with larger and better-performing QPU’s for more complex instances:
the approach seen in this experiment might be a valid alternative to existing
classical algorithms. Moreover, from a computational time viewpoint, even if
quantum annealing might not find the global minimum, it could yield solutions
of quality comparable to those given by classical algorithms more quickly. As
a matter of fact, the fewer decomposition operations are required in a hybrid
computing framework, the faster is the overall annealing.

5.3. CONCLUSIONS 79

Figure 5.8: Distribution of investments by QBSolv solver (panel a) and CPLEX
(panel b) for the second instance of the problem

5.3 Conclusions

In this chapter we examined the performances of a QUBO formulations of two
NP-Hard problems. For the first one, the Number Partitioning Problem, we
have accessed one of D-Wave’s quantum annealers via cloud and thoroughly
evaluated its capabilities. We have generated a number of instances for which
the optimal solution was known, with growing input size in order to approach
the complexity of real-world problems and obtained remarkable counterintuitive

80 CHAPTER 5. QUANTUM OPTIMISATION

results: for small and large scale instances we were able to find the global
minimum with a high level of accuracy, while for middle-sized problems the
annealer was not able to yield high quality solutions as often. In such cases,
stopping the annealing cycle proved to be an effective strategy that allowed to
ultimately reach the global minimum. The connectivity required by the NPP
problem is the most complex to manage for quantum computers and thus allowed
a detailed investigation of modern annealers’ capabilities. This kind of study,
under the described circumstances, was not performed before and the results
that we obtained were published in [19].

In the second part of the chapter we proposed a QUBO formulation of the
limited-assets Markowitz Portfolio optimisation problem. We analysed the per-
formances on two small instances so that a comparison with classical exact
methods was possible. On one hand, we found high quality solutions that did
not differ much from global optima; on the other hand, the need for a discretisa-
tion of continuous variables lead to a significant increase of their number. This
prevented us from adopting a thick grid and ultimately led to a slight decrease in
solution quality. However, since the results obtained with the QUBO approach
proved to depend on the choice of the discretisation grid, we can conclude that
with progress in hardware development it might be possible to tackle larger-
scale problems that, currently, pose great challenges to classical optimisation
techniques.

Chapter 6

Conclusions

In the first part of this work we introduced the mathematical framework of quan-
tum computing. We started describing what a qubit is and which properties
make it more powerful than classical bits, motivating the search for a quantum
speedup in scientific tasks such as molecule simulations, machine learning and
optimisation. We therefore presented what a superposition state is and its re-
lation with the probabilities of collapsing into one of the deterministic states;
we discussed, from a mathematical point of view, the act of observing, i.e.
measuring, a quantum-mechanical system composed by qubits; we studied the
entanglement property, one of the key characteristics that can make quantum
hardware much faster than their classical counterpart, and how measuring part
of an entangled system inevitably leads the other to deterministically collapse on
a certain state. Then, we presented quantum states of qubits as elements of the
Bloch sphere, which is a geometrical representation at the basis of understand-
ing how the first wide class of quantum hardware works: universal gate-model
computers. Qubits state are rotated over the Bloch sphere, hence change their
phase and amplitudes, via the application of gates, which are mathematically
represented by unitary matrices. We described a few basic gates that are com-
monly used to reproduce any possible rotation on the sphere, hence allow to
cover the whole space of (pure) quantum states.

Furthermore, we discussed some common ways to encode classical data in
qubits states, highlighting the upsides and downsides of each method, both in
term of the complexity required to find the proper sequence of gates and from
the viewpoint of number of qubits needed for each approach.

We briefly studied the dynamics of quantum systems and introduced the
concept of Hamiltonian operator. This is a central topic especially for, but not
restricted to, the second class of quantum computers: quantum annealers or
adiabatic quantum computers. Their alternative approach does not allow to
have control over the qubits state at any time instant throughout the compu-
tation; rather, they set up the energy landscape of the quantum system and let
it naturally reach ground state. We have seen that quantum annealers support
a specific Hamiltonian function, the Ising Hamiltonian, and how from this fol-

81

82 CHAPTER 6. CONCLUSIONS

lows that such computers, from an operations research viewpoint, are only able
to solve quadratic unconstrained binary problems, preventing them from being
universal computers.

To conclude the introduction, we discussed what modern obstacles are in
quantum computing and which advancements may lead to competitive perfor-
mance. We presented the concept of NISQ era, the limitations due to reduced
number of qubits and the problem of noise, caused by interactions between the
quantum system composing the hardware and environment, leading to short
decoherence times. Finally, we investigated which are current technologies em-
ployed to build a system that obeys the rules of quantum mechanics, spanning
from superconducting circuits cooled down at very low temperature, to real
particles such as atoms and photons.

The scope of this work was to present a number of techniques to formulate
data science problems using the quantum computing formalism, understand the
limitations of current and near-term devices as well as the benefits that already
emerge from quantum computation and finally analyse performances. This was
done in the second part of the work, in which we first briefly described some well-
known hybrid algorithms that are being currently used and then investigated
four different important case studies, two in the field of machine learning and
two optimisation tasks. The need for hybrid quantum-classical computation is
strictly related to being in the NISQ era, in which current quantum hardware
is not capable of solving large-scale complex tasks alone because of noise and
the reduced number of qubits.

The first algorithm that we discussed, the Variational Quantum Eigensolver,
is a technique that can be used both for optimisation and supervised learning
tasks. It is based on the idea of parametrising a quantum circuit in such a
way that an optimal set of gates is found according to some rule, such as the
minimisation of a loss function. Similarly, the second routine, the Quantum
Approximate Optimisation Algorithm, simulates the Hamiltonian of a system
by applying a set of gates, each for a certain amount of time that has to be
optimised according to some rule. Not only these two techniques represent the
perfect synergy between quantum and classical hardware in solving complex
tasks, but they also build the foundations for understanding common approaches
to hybrid computing, such as those investigated through the data science case
studies.

The first experiment that we conducted focused on the implementation of
a Support Vector Machine algorithm for image classification, with a quantum-
enhanced features space. The goal was to study the effect of a new kind of
kernel, one that maps input data onto a quantum state space, on the decision
boundaries of the Support Vector Machine classifier. In order to perform such
analysis, we built and labeled a dataset composed by both sad and happy smiles,
with a very limited number of pixels. The reason behind this choice was that we
had access to a gate-model hardware simulator to test our algorithm, but it only
provided a few qubits; moreover, in order to implement a quantum-enhanced
kernel, we had to represent each feature of our dataset with a qubit. After
applying the Principal Component Analysis dimensionality reduction technique

83

and a circuit describing the state evolution of qubits considered hard to simulate
classically, we computed our kernel in the quantum state space and fed that
information to a classical computer in charge of finding the parameters of our
classifier. Such choice for the circuit was relevant to understand what might be
the effect of new, classically intractable kernels; at the same time, working in
a small-scale scenario has let us make all computations with a classical device.
The results we obtained were interesting: no clear quantum advantage was
shown, mostly because of all the restriction required to work with gate-model
quantum hardware, as well as no incredibly high quality performances; however,
the decision boundary obtained was very complex, paving the way for further
investigation on different datasets and circuits ansatz in order to understand
whether a quantum approach might be the key to correctly classify extremely
complex datasets, where classical kernels may fail.

The second case study focused on modeling a reinforcement learning problem
in a QUBO formalism, so that it could be solved with a quantum annealer. We
simulated multiple times the game of Blackjack in a situation where an agent
plays alone against the dealer. Both follow a very specific policy: the latter
never sticks below 17, while the player always chooses a random action between
hit and stick, in every situation. This allowed us to collect enough data on each
stage of the game and record the corresponding reward, meaning if the player
lost the game, won or there was a tie. Having constructed our dataset, we were
able to formulate and solve the (quadratic) problem of finding what action to
take in any stage of the game in order to maximise the expected reward. Writing
such problem in the QUBO formalism has let us feed it to a quantum annealing
simulator and retrieve results. We tested the newly-learned policy in a situation
where our intelligent agent had to face another player and the dealer together;
we did the same with an agent trained through the state of the art Q-learning
algorithm in order to be able to compare performances. Even though there was
no interest in recording the computational time on a simulator, we did register a
measure of quality for the classical and quantum-inspired solutions: they scored
a win or tie approximately the same number of times.

The third case study focused on investigating the capabilities of a real quan-
tum annealer on one of the hardest problems from a qubits connectivity view-
point: the Number Partitioning Problem. We presented the task and stressed
how it was able to pose great challenges to quantum annealers because of its
full-connectivity requirement. As we have seen, quantum annealers only support
a very specific architecture which cannot be that of a complete graph, hence a
minor-embedding strategy had to be performed in order to solve such problem.
We have studied how the annealing process works and highlighted the intrinsic
hybridity of working with a NISQ device, which forced us to consider a model
decomposition when the input size grew. We built a number of instances in such
a way that the optimal solution would be always known, so that a comparison
of the quality of quantum annealing solution with the global minimum could be
performed. We obtained interesting results: for small and large size instances we
were able to find high quality results, while for the middle-sized ones we recorded
a dip in the accuracy. In order to overcome this, we investigated further the

84 CHAPTER 6. CONCLUSIONS

techniques to control the annealing. We experimentally confirmed that pausing
the annealing cycle, letting it rest and resuming it later, when done properly,
may lead to an increase in performance with respect to the non-altered context.
Given the complexity of the Number Partitioning Problem in terms of qubits
connectivity and the difficulty deriving from large input sizes, we were able to
the test quantum annealing heuristics and the adiabatic quantum computer on
problems that modeled complexity of real-world applications. For these reasons
we published our results in [19].

The last case study consisted of the application of quantum annealing to
a financial task: the limited-assets markowitz portfolio optimisation problem.
The goal was to model such complex task in a QUBO formalism. The main
issue we encountered was the discretisation of continuous variables: since quan-
tum annealers only work with binary variables, we had to find a suitable model
that would take into account the trade-off between setting a thick discretisa-
tion, hence approximating well original variables, and bounding the number of
variables in the QUBO model, which increase with the number of discretisa-
tion points. This and the fact that a lot of constraints had to be formulated
as quadratic terms and inserted in the formula for the objective function, with
the consequent complexity of tuning the corresponding parameters, caused the
solution found by the annealer simulator to exceed the constraint of investing
an amount for a total equal to 100%. However, with a thorough investigation of
how to tune the parameters related to constraints, better solutions might have
been found. Nevertheless, we tested the QUBO formulation in two small-sized
instances of the problem and obtained results similar to those yielded by exact
methods. As a consequence, we were able to consider quantum annealing as a
valid alternative heuristics to classical methods, given its robustness to input
size scaling and the quality of solutions that it is able to find.

To conclude, the case studies analysed in this work showed some techniques
to model complex data science tasks using a quantum and hybrid quantum-
classical formalism. They highlighted limitations of current and near-term quan-
tum devices especially due to the reduced number of available qubits. However,
they also stressed the importance of continuing research in this field: by im-
proving the quality of quantum hardware we are able to solve more and more
complex tasks from a wide range of fields, and by exploring all new opportuni-
ties opened up by the use of a brand new kind of hardware obeying the rules of
quantum mechanics, we can approach scientific tasks in a different way, which
can yield an increase in performance both in terms of problem solutions quality
and of speed in computations.

Bibliography

[1] Cristian S Calude and Elena Calude. The road to quantum computational
supremacy. arXiv preprint arXiv:1712.01356, 2017.

[2] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–332,
1999.

[3] Lov K Grover. Quantum computers can search arbitrarily large databases
by a single query. Physical review letters, 79(23):4709, 1997.

[4] Bruce M Boghosian and Washington Taylor IV. Simulating quantum me-
chanics on a quantum computer. Physica D: Nonlinear Phenomena, 120(1-
2):30–42, 1998.

[5] Davide Venturelli, Salvatore Mandrà, Sergey Knysh, Bryan O’Gorman, Ru-
pak Biswas, and Vadim Smelyanskiy. Quantum optimization of fully con-
nected spin glasses. Phys. Rev. X, 5:031040, Sep 2015.

[6] Peter Wittek. Quantum Machine Learning: What Quantum Computing
Means to Data Mining. 08 2014.

[7] Max Riedel, Matyas Kovacs, Peter Zoller, JÃŒrgen Mlynek, and Tom-
maso Calarco. Europe’s quantum flagship initiative. Quantum Science and
Technology, 4(2):020501, feb 2019.

[8] Our World in Data. Moore’s law: Transistors per microprocessor, 2019.
Available at https://ourworldindata.org/search?q=Moore.

[9] IFS Labs BAS DE VOS. A quantum leap in computing
power, 2019. Available at https://blog.ifsworld.com/2019/01/
a-quantum-leap-in-computing-power/.

[10] Karl Blum. Density matrix theory and applications, volume 64. Springer
Science & Business Media, 2012.

[11] Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo,
Norman Margolus, Peter Shor, Tycho Sleator, John A Smolin, and Harald
Weinfurter. Elementary gates for quantum computation. Physical review
A, 52(5):3457, 1995.

85

86 BIBLIOGRAPHY

[12] Michael A Nielsen and Isaac L Chuang. Quantum computation and quan-
tum information. Phys. Today, 54:60–2, 2001.

[13] Richard Jozsa and Noah Linden. On the role of entanglement in quantum-
computational speed-up. Proceedings of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences, 459(2036):2011–2032,
2003.

[14] Peter Wittek. Quantum machine learning: what quantum computing means
to data mining. Academic Press, 2014.

[15] Maria Schuld and Francesco Petruccione. Supervised Learning with Quan-
tum Computers, volume 17. Springer, 2018.

[16] Tobias Stollenwerk, Bryan O’Gorman, Davide Venturelli, Salvatore Man-
drà, Olga Rodionova, Hokkwan Ng, Banavar Sridhar, Eleanor Gilbert Ri-
effel, and Rupak Biswas. Quantum annealing applied to de-conflicting op-
timal trajectories for air traffic management. IEEE transactions on intel-
ligent transportation systems, 2019.

[17] D-Wave Systems Inc. Introduction to quantum annealing, 2019. Available
at https://docs.dwavesys.com/docs/latest/c_gs_2.html.

[18] Daniele Ottaviani and Alfonso Amendola. Low rank non-negative matrix
factorization with d-wave 2000q. arXiv preprint arXiv:1808.08721, 2018.

[19] Luca Asproni, Davide Caputo, Blanca Silva, Giovanni Fazzi, and Marco
Magagnini. Accuracy and minor embedding in subqubo decomposition with
fully connected large problems: a case study about the number partitioning
problem. arXiv preprint arXiv:1907.01892, 2019.

[20] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[21] David P DiVincenzo. The physical implementation of quantum computa-
tion. Fortschritte der Physik: Progress of Physics, 48(9-11):771–783, 2000.

[22] Peter W. Shor. Scheme for reducing decoherence in quantum computer
memory. Phys. Rev. A, 52:R2493–R2496, Oct 1995.

[23] Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error cor-
rection for beginners. Reports on Progress in Physics, 76(7):076001, 2013.

[24] D-Wave Systems Inc. Introduction to the d-wave
quantum hardware, 2019. Available at https://www.
dwavesys.com/tutorials/background-reading-series/
introduction-d-wave-quantum-hardware.

BIBLIOGRAPHY 87

[25] D-Wave Systems Inc. D-wave previews next-
generation quantum computing platform, 2019. Avail-
able at https://www.dwavesys.com/press-releases/
d-wave-previews-next-generation-quantum-computing-platform.

[26] Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. Next-
generation topology of d-wave quantum processors. Technical report, Tech-
nical report, 2019.

[27] D-Wave Systems Inc. D-wave qpu architecture: Chimera, 2019. Available
at https://docs.dwavesys.com/docs/latest/c_gs_4.html.

[28] Dmitri Maslov, Yunseong Nam, and Jungsang Kim. An outlook for quan-
tum computing. Proceedings of the IEEE, 107:5–10, 01 2019.

[29] Philip Ball. Ion-based commercial quantum computer is
a first, 2019. Available at https://physicsworld.com/a/
ion-based-commercial-quantum-computer-is-a-first/.

[30] Yunseong Nam, Jwo-Sy Chen, Neal C Pisenti, Kenneth Wright, Conor
Delaney, Dmitri Maslov, Kenneth R Brown, Stewart Allen, Jason M Amini,
Joel Apisdorf, et al. Ground-state energy estimation of the water molecule
on a trapped ion quantum computer. arXiv preprint arXiv:1902.10171,
2019.

[31] Xanadu. Research, 2019. Available at https://www.xanadu.ai/
research/.

[32] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, and Nathan
Killoran. Pennylane: Automatic differentiation of hybrid quantum-classical
computations. arXiv preprint arXiv:1811.04968, 2018.

[33] Augustin Cauchy. Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[34] James C Spall. An overview of the simultaneous perturbation method for
efficient optimization. Johns Hopkins apl technical digest, 19(4):482–492,
1998.

[35] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approx-
imate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

[36] Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. Encyclo-
pedia of database systems, pages 532–538, 2009.

[37] James Mercer. Xvi. functions of positive and negative type, and their
connection the theory of integral equations. Philosophical transactions of
the royal society of London. Series A, containing papers of a mathematical
or physical character, 209(441-458):415–446, 1909.

88 BIBLIOGRAPHY

[38] Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel
methods in machine learning. The annals of statistics, pages 1171–1220,
2008.

[39] Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow,
Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learn-
ing with quantum-enhanced feature spaces. Nature, 567(7747):209, 2019.

[40] Florian Neukart, David Von Dollen, Christian Seidel, and Gabriele Com-
postella. Quantum-enhanced reinforcement learning for finite-episode
games with discrete state spaces. Frontiers in Physics, 5:71, 2018.

[41] The AlphaStar team. Alphastar: Mastering the real-time strategy game
starcraft ii, 2019. Available at https://deepmind.com/blog/article/
alphastar-mastering-real-time-strategy-game-starcraft-ii.

[42] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[43] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3):279–292, May 1992.

[44] Stephan Mertens. The easiest hard problem: Number partitioning. Com-
putational Complexity and Statistical Physics, 125(2):125–139, 2006.

[45] A. H. G. Rinnooy Kan and A. van Vliet. Probabilistic analysis of packing
and partitioning algorithms (e. g. coffman, jr. and george s. lueker). SIAM
Review, 35(1):153–154, 1993.

[46] Carlo Harpes, Gerhard G. Kramer, and James L. Massey. A generalization
of linear cryptanalysis and the applicability of matsui’s piling-up lemma.
In Louis C. Guillou and Jean-Jacques Quisquater, editors, Advances in
Cryptology — EUROCRYPT ’95, pages 24–38, Berlin, Heidelberg, 1995.
Springer Berlin Heidelberg.

[47] Mark Lewis, Gary Kochenberger, and Bahram Alidaee. A new modeling
and solution approach for the set-partitioning problem. Comput. Oper.
Res., 35(3):807–813, March 2008.

[48] Andrew Lucas. Ising formulations of many np problems. Frontiers in
Physics, 2:5, 2014.

[49] Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush,
Vadim Smelyanskiy, John Martinis, and Hartmut Neven. What is the
computational value of finite-range tunneling? Phys. Rev. X, 6:031015,
Aug 2016.

[50] Daniel Bienstock. Computational study of a family of mixed-integer
quadratic programming problems. Mathematical programming, 74(2):121–
140, 1996.

BIBLIOGRAPHY 89

[51] F Cesarone, A Scozzari, and F Tardella. Efficient algorithms for mean-
variance portfolio optimization with hard real-world constraints. Giornale
dell’Istituto Italiano degli Attuari, 72:37–56, 2009.

[52] John E Beasley. Or-library: distributing test problems by electronic mail.
Journal of the operational research society, 41(11):1069–1072, 1990.

