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Chapter 1

Introduction, Motivations and
Goals

1.1 Ontogeny Overview

Biology can be splitted in various sub field, among which we can find the Ontogeny
field. The Ontogeny is a developmental phase that start from the embryonic stage.
It is a complex field because want to study how from the embryo, that is a simple
biological system, cells populations change themselves in their structure and in their
functionalities. These developments involve various mechanisms: cell differentiation,
cells mobility and different types of cell signaling, signals also depending from the
spatial organizations of the cells.

All these mechanisms and their cooperation are hard to model. The model has
to take into account both the inner cell state, its position in the space in respect
to other cells, that can be of the same type or different, and which intercellular
communication can be used. All these mechanisms are the product of underlying
phenomena, that happen in the inner structure of the cells: molecular pathways and
cascades, protein expressions, gene regulations; in other words all the interactions
between proteins and genes that can change the state of the cell, defining its fate,
its ability to move and its external communication capabilities.

1.2 Net Within Net

From the above overview become clear that these systems are highly hierarchically
structured, this lead us to find a formalism that can well describe this characteristic:
the Net Within Net formalism. NWN is an extension of the Petri Net formalism.

The PN formalism is one of the mathematical modeling languages that can rep-
resent distributed systems. It’s a bipartite graph in which nodes are of two types:
Transition and Place. Place and transitions nodes are connected with directional
arcs and their directions define which are the pre-conditional and post-conditional
places for transitions. The conditions are specific for the transitions, in particular
the pre-conditions regulate the enabling of the transition and the post-conditions de-
fine the activation functions of transitions. When a Transition can be enabled then
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it can fire and this means that that the activation function can start. Conditions
regulates the exchange of elements, named Tokens, between places. The Tokens can
be of different types: integers, floats, strings, colored or they can have no type. If
they they have no type they are named Black token.

The NWN formalism extends the PN formalism with the addition of another
type of tokens: Net Token, this means that a Petri Net can be contained in a Place
as a Token and can be exchanged through the net. This implies that Nets can be
hierarchically organized and each layer can be specified at the same level of detail.
This is perfectly compliant with the requirements of modeling ontogenic processes
in biological systems.

Another particular feature of Petri Net that we want to use are Channels. A
channel is a synchronous communication mechanism between different nets. It is a
property of a Transition, in particular the channel is a link between two Transitions,
one named upper-link and the other named down-link. The down-link is the tran-
sition that belong to the net owning the channel, the upper-link is the transition
belonging to a different net and is responsible for the activation of the Channel.
So a Channel is activated when the upper-link fires, this lead to the firing of the
down-link transition. Channels are also able to exchange tokens between the two
transitions.

1.3 Issues in modeling complex biological systems

In general modeling a biological system it’s a complex activity in respect to the
modeling of a single part of the system [1]. This complexity arise mainly because
the biological sub field have studied separately, so the knowledge coming from these
various sub field is hard to put together and furthermore understand phenomena at
the boundaries of biology sub domains is not easy.

Understanding interconnections between sub fields of knowledge requires experts
in both sub fields. These efforts in modeling complex biological systems are for-
warded in the description of models, different notations, different ways to structure
entities involved. Yet those different mechanisms should be put together in one
model description. Furthermore all biological phenomena are the combination and
result of mechanisms that work at different system levels. These system in fact
are organized hierarchically, ranging from the intracellular architectures and mech-
anisms to interactions between different types of cellular populations that compose
organs.

Generally speaking, modeling complex biological systems has different purposes:

• Breaking the boundaries among different disciplines. Indeed to understand all
the mechanisms involved in the whole system is necessary to pick concepts
coming from different sub domains and look for their relations, avoiding to
have a short-sighted vision on biological mechanisms.

• To describe complex phenomena in a structured way to share knowledge among
experts that can improve their research works.



• To store knowledge in a unambiguous way, to be recognized among all the
scientific community. This knowledge need to be stored electronically to be
better

exchanged, exploited and analyzed.

• To simulate or analyze model of complex systems to understand their structure
or dynamics. This can lead to explore some mechanisms not

well understood yet new knowledge.

Modeling complex biological systems means to face with different challenges:

• Which formalism should be used to unambiguously describe all the mechanisms
involved.

• To find a way to reuse the already structured knowledge, or other models, to
integrate them to gain new insight and generate more knowledge.

1.4 Our perspective

After all these considerations it becomes clear that there are various different vari-
ables to cope with when modeling biological systems. Furthermore to simulate these
models it is necessary to translate the biological knowledge in a way understandable
by the computer. To do that the need to choose a language that can describe the
model and act as interface between the modeler and the computer. The language
should be clear, understandable by all experts involved in the model construction,
with a simple structure to not increase the complexity of a system already complex
by its nature.

This last point introduce another expert among these coming from different bio-
logical subdomains: the computer engineer or at least the computational biologist.
All the people involved should cope with different issues, but there is one element
that put in connection all of them: the language used to describe the model of the
system. The language should be used by biologists to describe the model and to
discover

research results produced by other, in other words the language can function
as the mean to exchange knowledge. On the other hand, computer experts can
contribute to the language intending it as an interface for gathering all different
pieces of information, which software tools can then elaborate on, to extract new
knowledge For these reasons the language has to cover the needs of all these figures.

The language also should give to the experts all the options to choose the better
configuration of the model. Indeed the model doesn’t depends only on the existent
knowledge about a specific phenomena. The model at the matter of fact is not a
perfect description of the real system, but it is the product of:

• the lack of knowledge in some biological mechanisms

• the choices of the modeler, that maybe want to focus on some aspects of the
systems and model other aspects in a more approximated way.



• the computational limits. Indeed the complexity of the system can go beyond
the computational power, for this reason entities and mechanisms involved
need to be downsized.





Chapter 2

State of the Art

2.1 Introduction

A great effort was made in computational biology to exchange resources about mod-
eling biological systems, various tools was born to store, exchange and run models.
Although there is no common standard, a lot of attempts to define one were made:
exist various XML (eXtensible Markup Language) based computer-readable model
definition that enable models to be exchanged between software tools. For this
purpose a community of experts from all over the world was established:

The ’COmputational Modeling in BIology’ NEtwork (COMBINE) is
an initiative to coordinate the development of the various community
standards and formats for computational models. By doing so, it is ex-
pected that the federated projects will develop a set of interoperable and
non-overlapping standards covering all aspects of modeling in biology. [1]

This initiative has identified and classified various languages born to describe and
exchange informations about biological models in specific subfield of biology and
with different objectives. In Figure 2.1 [2] all languages identified are shown.

Figure 2.1: COMBINE standards and associated standardization efforts
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The community has detected some core standards to accomplish different activ-
ities related to the modeling of biological systems. We describe them starting from
the one on the left.

2.2 Formats for DATA exchange

The BIOPAX[3] and SBOL[4] languages are focused on data, that means that these
languages annotate experimental data and literature to organize and categorize
them.

2.2.1 BIOPAX

Data about biological pathways increased in their quantity in the past years, they
have no common representation and they are spread among 300 different internet
accessible databases. All the databases have different notations. To solve the issue
of exchanging data between different DBs having incompatible notations a research
group developed the BioPAX Data Exchange format, to make pathway data sub-
stantially easier to collect, index, interpret and share. The group collaborates with
several other efforts and databases. Examples of collaborators are Chemical Markup
Language (Murray-Rust and Rzepa, 2002), SBML and CellML (Lloyd et al., 2004),
BioCYC, BIND, Reactome andWIT. Biological pathway can be described a different
level of details, for this requirement the BioPAX language provides the possibility to
represent different types like: metabolic pathways, molecular binding interactions,
hierarchical pathways, signal transduction pathways, gene regulatory networks and
genetic interactions. All these level of detail are not developed at the first moment,
indeed there are several version of the language, called levels. The first level in-
cluded only metabolic pathways, the second one added the capability to describe
molecular binding interactions and hierarchical pathways, finally the last level added
the possibility to represent signal transduction pathways, gene regulatory networks
and genetic interactions. Due to these huge changes between levels there are some
backward incompatibilities. The BioPAX language format follow the Web Ontology
Language (OWL). Now we want to describe the structure of classes that are used
in BioPAXand that are summarized in the Figure 2.2:

Figure 2.2: BioPAX structure of main classes

Classes are organized in a tree, the root of the tree is the Entity class, the root



has three children PhysicalEntity, Pathway, Gene and Interaction. From the image
we can see that in the Interaction are involved entities and that Pathway is composed
by both Interactions and Pathways. Each entity should has a precise referentation
to a DB or to a literature source. Each subclass of Entity has in turn subclasses, to
better specify the different biological cases. The interaction has as children: Control,
Conversion, GeneticInteraction, MolecularInteraction and TemplateReaction. Some
of these classes has in turn other subclasses, that are listed in the Figure ??.

Figure 2.3: BioPAX Interaction subclasses

The Control class define an interaction in which an entity control in some way an-
other entitie, that in biology could mean that the entity regulates, modifies, activates
or inhibits another one, in other words it has an influence. The class Conversion is
an interaction in which one or more entities are transformed in something else. The
TemplateInteraction instead happens when a macromolecule is polymerized from
a template macromolecule. The Physical children are: DNA, RNA, DNARegion,
RNARegion, SmallMolecule, Complex and Protein. They represent the type of en-
tities that can interact.

Some classes that are important not for the structure of data but for the spec-
ification of some characteristics that cannot be described by the use of entities’
properties are the Utility classes. These classes provide the possibility to set some
complex property like stoichiometry, molecule structure, reference in DataBases and
also cross references to be unambiguously identified among different DataBases. To
give an unambiguous identity an important class is the ControlledVocabulery that
provide the possibility to one of the various CVs, like the various biological Ontology
that can be found through the internet.

2.2.2 SBOL

In the development of Synthetic Biology projects the exchange of knowledge is very
important to boost the design process. To help the design process a common lan-
guage to describe and exchange information was needed. Exchanged information
needs to be accurate enough to allow the reproduction of such designs in different
wet labs. Synthetic Systems need a structure of annotations more complex than that



used by the most recognized formats usually exploited for natural system descrip-
tion, more simple and flat. The encoding FASTA format can describe nucleotide
sequences, but not model design. SBML is able to describe a biological process at
high level without specifying anything about nucleotide sequences. To cover these
lacks and to describe biological entities from the

engineering point of view a new format was specified. Synthetic Biology Open
Language (SBOL) introduces a standardized format for the electronic exchange of
information on the structural and functional aspects of biological designs. To ac-
complish the description of these two aspects SBOL makes use of different classes
that specify in a separate way the structure and the functionalities and put them in
relation. Figure 2.4 can visually show the relation between classes:

Figure 2.4: SBOL main structure

The module class contains all the Component Definitions that compose the mod-
ule. It is possible to specify Sequence and SequenceAnnotation, identified with the
homonym classes, for the definitions of the class Component. Component can be put
in hierarchical relations adding references to subcomponents. The Interaction class
specifies the qualitative relations between components. If a reference to a complete
model exists can be referenced through the class Model. The Model can be written
in other languages such as SBML and CellML. This is only an overview of the SBOL
model, the structure of classes is more detailed and is shown in Figure 2.5:

Figure 2.5: SBOL structure

Dotted arrows depict reference-based relations between objects: parent objects
don’t hold children objects within themselves, but rather references to them, so to
avoid redundancies. Beyond the definition of those classes SBOL also makes use of
existing Semantic Web practices and resources, such as Uniform Resource Identifiers
(URIs) and ontologies, to unambiguously identify and define genetic design elements.
This format has been designed to support the explicit and unambiguous description
of biological designs by means of a well defined data model.





• Entity Relationship (ER). In contrast to the Process Description language,
which focused on description of the interactions functioning and their tempo-
ral development, this one focuses on how entities influence each other, spec-
ifying in which interaction or process they are involved. These interactions
can represent the experimental outcomes, not all the interactions involved in
the whole process. It is very useful to see the cause-effect relations between
multiple entities.

• Activity Flow (AF). This language wants to give a less detailed description
of process and entity relations, to describe biological cases for which no or
indirect knowledge is available. In this way generic interactions and effects of
perturbations can be described. Also information about entities of states is
omitted. The Figure 2.6 shows an example of these threes languages.

2.4 Formats for model exchange

Model description is one of the most sensitive tasks in the perspective of exchang-
ing models. In fact, while exchanging data or visual representations is natural to
standardization, model architectures include more and diverse complexities. For ex-
ample, they may rely on different formalisms, or include diverse references to DBs or
ontologies, and carry along information on how to handle simulations. The initiative
has detected three languages: SBML, CellML and NeuroML.

2.4.1 SBML

Simply put, System Biology MArkup Language (SBML) [6] is a machine-readable
format for representing models. It’s oriented towards describing systems where
biological entities are involved in, and modified by, processes that occur over time.
An example of this is a network of biochemical reactions. SBML’s framework is
suitable for representing models commonly found in research on a number of topics,
including cell signaling pathways, metabolic pathways, biochemical reactions, gene
regulation, and many others. SBML does not represent an attempt to define a
universal language for representing quantitative models. A common intermediate
format—a lingua franca —enabling communication of the most essential aspects of
models. Also SBML is a XML format that is composed by a set of lists:

• List of Function definitions: contains mathematical functions with an assigned
name to be then referenced throughout the rest of the model.

• List of Unit definitions: a set of named units of measure definitions to be
referenced when quantities are used in the model.

• List of Compartments: a set of containers of finite size, that are declared to
contain molecular species. They may or may not represent actual physical
structures.

• List of Species: a set of pool of molecular entities of the same kind, located in
a compartment and participating to reactions.



• List of Parameters: a pool of quantities with symbolic names, parameters can
be constants or variables. They may be global to a model or local in a single
reaction.

• List of Initial assignments: these are used to determine the initial conditions
of the model, is a mathematical expression whose values of symbols can be de-
rived from others. These expressions can be also used to set values of symbols
at the start of simulation.

• List of Rules: mathematical expressions added to the reactions-related ex-
pressions. They can define how a symbol value changes with respect to other
symbols or to define the change rate of a symbol. They can be also used
together with the reaction rate equations to determine the behaviour of the
model with respect to time. Rules constrain the model for the entire duration
of simulated time.

• List of constraints: means for detecting out-of-bounds conditions during a
dynamical simulation and optionally issuing diagnostic messages. Constraints
are defined by an arbitrary mathematical expression computing a true/false
value from model symbols. An SBML constraint applies at all instants of
simulated time; however, the set of constraints in a model should not be used
to determine the behavior of the model with respect to time.

• List of Reactions: they describe processes like transformation, transport or
binding that change the amount of some species. To describe how quickly
they take place they have an associated kinetic rate expression.

• List of Events: they describe a change in one or more symbols (species, com-
partments, parameters) that happens instantly and discontinuously after a
triggering condition is satisfied.

From these lists we can see that this standard is born to describe biochemical network
models. Other optional elements of the SBML format are the sboTerms a Annota-
tions, which are useful to make references with databases or ontologies, identifying
unambiguously biological entities. When users doesn’t use this option become diffi-
cult to extract all the entities involved because no unambiguous reference to them
is provided. In addition, often users adopt names understandable by them, this
make the whole model not useful or hard to exploit. To use SBML better devel-
opers built a set of software tools to use models, indeed the format was born as a
machine-readable language and for humans is not easily understood without software
interfaces.

2.4.2 CellML

The CellML language [7] is an open standard based on the XML markup language.
CellML originated at the Auckland Bioengineering Institute at the University of
Auckland, and its development is now led by the CellML Editorial Board.

Although CellML was originally intended for the description of biological models,
it has a broader application. CellML includes information about model structure



(how the parts of a model are organizationally related to one another), mathematics
(equations describing the underlying processes) and metadata (additional informa-
tion about the model that allows scientists to search for specific models or model
components in a database or other repositories). CellML includes mathematics
and metadata by leveraging existing languages, including MathML and Resource
Description Framework (RDF). In the future, CellML may also use other existing
languages to specify data, define simulations and render information.

The CellML project is closely affiliated with another XML-based language project
currently underway at the University of Auckland: FieldML. The two combined lan-
guages will provide a complete vocabulary for describing biological information at a
range of resolutions, from the subcellular to the organismal level.

CellML is composed of different elements we list below:

• Component: it is a functional unit, and it can correspond to a physical entity,
an event, a species or just an abstract convention. It has an attribute that
is the name. It can contain variables and mathematical functions that put
in relations variables. The variables can have three attributes: name, unit of
measure and public interface.

• Equations: the said equations can be described using MathML an XML for-
mat. Each equation can have a numerical ID to have the possibility to reference
it throughout the model.

• Grouping: the CellML compartments can be grouped together in two different
ways: encapsulation and containment.

• Containment is used to describe the physical or geometric organisation of
a model, such as biological structure. This type of grouping specifies that
components are physically nested within their parent component, for example
an ion channel may be physically embedded within a membrane.

• Encapsulation allows the modeller to hide a complex network of components
from the rest of the model and provides a single component as an interface to
the hidden network. Encapsulation effectively divides the network into layers,
where connections between the layers must only be made through the interface
components. For example, electrophysiological models often have activation
and inactivation gates encapsulated within ion channels. It is useful to use
encapsulation in this instance because gate properties are specific to individual
channels.

• Connection: two compartments can be connected through this element, that
substantially is a mapping of variables, associating a variable of one component
to a variable of the other component. Two compartments can have in common
only a connection. When a connection is enabled then a value of a variable
is transferred to the variable of the other compartment. The direction of
the value transport depends on the value of the public interface and private
interface attributes of the variable.

• Units: the quantities in the model have an associated unit of measure that
need to be declared in the unit elements. The majority of these are based on



the International System of Units (SI) although some non-SI units that are
particularly common in biological systems are also provided. Additional units
can be defined as complexes and variations of SI units.

• Reaction: CellML contains a Reaction element which is used to describe indi-
vidual reaction steps in a pathway. This includes a description of the reaction
kinetics, the reactants, products and any enzyme catalysts or inhibitors. Of-
ten in models the reaction element implementation had to be rewritten, this
breaks the modelmaking it not reusable anymore. For this reason its usage is
discouraged and maybe in the next version it will no longer exist.

• Imports: from the

latest version it is possible to reference in a model file compartments from
other files. This feature promotes reusability of models and components and
allows CellML models to be incorporated into hierarchical frameworks.

• Metadata: these are optional information that may be included, they do not
have necessarily be included to make the model valid but it is strongly recom-
mended to insert them. These information are related to the model, but they
don’t belong to the model: date, authors names, annotation about biological
roles of variables or compartments, annotations to suggest some optimization
of parameters during the simulation.

Therefore the CellML language is simple, not necessarily related to biology and
provide modularization, reusability and a strong robustness from the physical point
of view, due to the strongly required use of units of measure.

2.4.3 NeuroML

NeuroML [8] is an international, collaborative initiative to develop a language for
describing detailed models of neural systems. The NeuroML project focuses on
the development of an XML-based description language that provides a common
data format for defining and exchanging descriptions of neuronal cell and network
models. The current approach in the project uses XML schemas to define the model
specifications. Experimental neuroscience data is measured at different levels of
detail. NeuroML is able to describe the models that are created upon these data.
For each level of detail NeuroML provides a suitable abstraction level to include
them in the model. From the scheme in Figure 2.1 we can see that the models can
be easily imported in various simulators, due the machine-readable format of XML.
Then the output of simulations can be compared to experimental data and maybe
suggest new type of experiments. The cycle of these activities is shown in Figure
2.7[8]



Figure 2.7: NeuroML cycle of usage and relations with external environment

The XML is also the format used by languages described above, but the XML
elements used in those language are more simpler and generic, NeuroML instead
provides spe-

cific and complex elements, specifically related to the Neuroscience domain. This
complexity leads to the compartmentalization of NeuroML in different levels, each
one corresponding to a layer of the neural system hierarchy. NeuroML is structured
in three levels to partitionate the model description into the anatomical structure
and the various physiological mechanisms that underlie the electrical behavior of
neurons and networks and reflects the manner in which they are commonly im-
plemented in neuronal simulators. The three levels are associated with a different
description language:

Figure 2.8: NeuroML levels structure

The Figure 2.8 [8] shows these levels in a schematic way.

• Level 1 - MorphML: describe the neuronal morphology and add relevant back-



ground data (metadata about authors, provenience, citations) to the model
covering different degrees of complexity in describing structural information,
from the notion of a simple cell to the specification of its internal substructures.

• Level 2 - ChannelML: describe conductance like voltage-gated membranes,
static and plastic synaptic processes.

• Level 3 - NetworkML: specifies 3D locations of neurons, connections between
populations and external electric inputs. This compartmentalization of the
language in three layers intends to make the language modular and reusable.

This compartmentalization of the language in three layers intends to make the lan-
guage modular and reusable. The machine-readable format used for NeuroML needs
some additional tools to make the model more understandable by the users. Import
and export functions currently supported by simulators of NeuroML at the moment
work in a lossy way. This is because they don’t make use of some features of Neu-
roML, specifically for the ChannelML level. For these reasons, NeuroML should
currently be considered less as a format for creating a new cell model from scratch
and more as one format for the storage of stable models and components that are
being made available for wider usage. NeuroML was created having in mind the
priority to the description of existing models, and so it has been developed to have
a backward compatibility. For this reason some complex features of neural networks
can’t be described with current specifications of the

schema. However NeuroML has reached a state of maturity where it can be used
to specify a wide range of published single neuron and network models.

2.4.4 LEMS

At some point, while using NeuroML to describe neuronal models, the need arose to
have new means to describe synapses. From this started the project of creating a new
language, flexible enough to describe the synapses, was born. In fact, descriptions
of various types of synapses range from highly detailed biochemical models to much
more abstract ones. To provide this flexibility developers thinked up for LEMS[9]:
a Low Entropy Model Specification. LEMS wants to be a compact, minimally
redundant, human-readable, human-writable, declarative way of expressing models
of biological systems. It differs from other systems such as CellML or SBML in its
requirement to be human-writable and in the inclusion of basic physical concepts
such as dimensionality and physical nesting as parts of the language. The main goal
is to enable model developers to write declarative models in LEMS in much the same
way as software developers write software applications in computer languages such as
C, Java or Python. Modules written in LEMS are based on user-defined types called
ComponentType that contain parameter declarations, reference declarations and
specifications of what children an instance of a type can have. Typically they also
a Dynamics specification which can contain build-time and run-time declarations.
Build-time declarations apply when a simulation is set up, for example to connect
cells. Run-time declarations specify the state variables, equations and events that
are involved. There are also Run, Show and Record Dynamics for creating type
definitions that define simulations and what should be recorded or dis- played from
them. The models contain Components which are instances of ComponentType,



they have the same relation of objects and classes used in Java. There is also the
concept of inheritance. A ComponentType is able to extend another one, adding
parameter to the parent. A type can contain elements for specifying the following
aspects of the structure and parameters of a model component:

• Parameter: dimensional quantities that remain fixed within a model

• Child: a required single sub-component of a given type

• Children: variable number of sub-components of the given type

• ComponentRef: a reference to a top-level component definition.

• Link: a reference to a component definition relative to the referrer

• Attachments: for build-time connections

• EventPort: for run-time discrete event communication

• Exposure: quantities that can be accessed from other components

• Requirement: quantities that must be accessible to the component for it to
make sense

• DerivedParameter: like parameters, but derived from some other quantity in
the model

The EventPort and Attachments declarations don’t have any corresponding elements
in their model component specification. They only affect how the component can
be used when a model is instantiated. EventPorts specify that a model can send or
receive events, and should match up with declarations in its Dynamics specification.
An ”Attachments” declaration specifies that a run-time instance can have dynami-
cally generated attachments as, for example, when a new synapse run-time instance
is added to a cell for each incoming connection. The Low Entropy concept included
in the name represent the vision around this language. It’s a loose analogy with the
physical concept. The model that came out from the description of the description
of a domain expert is concise, the components are highly structure and are used
physical quantities. When the model then is converted to be run in a computer the
hierarchy and the architecture is deconstructed, quantities are divided in units and
in dimensionless quantities, domain specific mechanisms are translated into differ-
ential equations or others math formalisms. That means that the entropy, during
this process of transformation of the domain specific model into a runnable one,
increases significantly. The models only in the executable form are them with the
highest entropy. The aim of LEMS is to mantain a low entropy in the description
of the model, not only to be have a format better readable, but also to be able to
translate it in different formats at high entropy. The contrary, transform in high
entropy description in a low entropy one, is not always possible.



2.5 Format for simulation analysis exchange: SED-

ML

Reproducibility of results is a basic requirement for all scientific endeavors. This is
not only true for experiments in the wet lab, but also for simulations of computa-
tional biology models. The Minimum Information About a Simulation Experiment
(MIASE) is a reporting guideline describing the minimal set of information that
must be provided to make the description of a simulation experiment available to
others. SED-ML [10] encodes the description of simulation experiments in XML,
in an exchangeable, reusable manner. SED-ML covers the description of the most
frequent type of simulation experiments in the area, namely time course simulations.
SED-ML documents specify:

• which models to use in an experiment,

• modifications to apply on the models before using them,

• which simulation procedures to run on each model,

• what analysis results to output,

• and how the results should be presented.

These descriptions are independent of the underlying model implementation. SED-
ML is a software-independent format for encoding the description of simulation
experiments; it is not specific to particular simulation tools.

2.6 COMBINE perspective

This analysis of languages used in system biology made clear that none of the lan-
guages have the characteristics to model ontogenetic processes. A first reason is
the lack of spatiality and mobility descriptions. Except for CellML that can de-
scribe spatiality relying on FieldML, and NeuroML that can describe the spatiality
in the neurological field, the other languages don’t give this support. Another in-
trinsic characteristic of the ontogenetic processes is the hierarchical arrangement of
involved components and their differents types of communication, others features
that the existing language are not able to completely handle. This is a common
thought among the scientific community, in fact also the COMBINE community,
that is a network formed by the communities developing standards and formats to
share computational models, agreed on the need of a new language that permits to
build and exchange models of multicellular environments.

For this purpose they created a group to develop MulticellularML and they
discuss about it in this forum [11]. According to them, the language must have
features so to support the description of: e:

• movement

• binding

• growth



• birth

• death

In addition to these, from the analysis of models for ontogenetic processes, the need
emerges to suitably describe:

• differentiation

• position

• signal communication

The contributors to the COMBINE community also state use cases that the language
should be compliant with:

• Intestinal crypt

• immune synapse

• gap junction

• cell sorting

• monolayer and MCS growth

• apical construction

• invasion

Also, they pose questions about the language design:

• Which is the heterogeneity level of cells to support?

• Is possible to extract from the model the list of the molecules involved within?
(SBML limit)Does the definition Multicellular model refer to biological tissues,
or rather to entire organs?

• Does the definition Multicellular model refer to biological tissues, or rather to
entire organs?

• Does the model cover non-compartimental examples such as 3D spatial con-
tinuous models?

• Should the Ontology be optional or not? If yes then the model is easy to build,
if not then models are more reusable and understandable by others

• Are Place elements included in a model? Sometimes it can be hard to manage
them, for example center-based agent models have locations and volumes but
not morphology.



These questions helped us to design our idea and our project, we take them as
inspiration to build a tool that is compliant to the needs of the community. We will
present our approach to these issues in the following chapters. Some of contributors
thinks that use cases are not only a scope but also a starting point to build the
language together with the computational models on which the simulations are based
on. Someone instead disagrees, because if the language should become a standard
it has to be independent from any computational model and not strictly tied to
any use case. Some of the contributors thinks that the language should contain a
hierarchy like this: general and geometric information global variables (a function of
time) local variables (a function of time and space). They point out MorpheusML,
as an example to follow, that can be generalized to cover the MulticellularML goals.
The property of Morpheus MDL are:

• Encapsulation: some details of simulations can be attached within the descrip-
tion of the model , the initial conditions are also included. Encapsulating all
these informations in one file makes the process of archiving and restoring the
model simulation much simpler.

• Architecture: it is two-tied, on one hand there is the XML describing the
model, on the other hand symbolic links put in relation component and process,
in this way the modularization property is increased.

• Elements:

– Space and Time : spatio-temporal aspects

– CellPopulations : initial conditions and simulation state

– Analysis : configuration of data output and visualization

– Description : title and annotations about model

– CellTypes : behaviour, dynamics and intracellular dynamics of cells

– CPM : parameters of cell-potts models

– PDE : reaction-diffusion models

XML represents this information in a hierarchical tree-like structure that reflects
the structure of the modeled biological system. Model components can be linked
using symbolic identifiers. Symbolic identifiers and references establish interactions

and feedbacks between (sub)models to represent the network-like complexity
in biological processes. MorpheusML has the advantage of including to include
time and space specifications, but it is also built to make simulations with specific
mathematical formalisms, with a specific spatiality and geometry that is the cellular
potts architecture. Also, MorpheusML focus on a specific subdomain of biology that
is that one of the cellular populations dynamics.

2.7 Comparison between languages

All these languages are the consequence of the need to make the computational
models more Reproducible, Accessible, Portable, and Transparent (RAPT). The



RAPT properties pose the intrinsic requirement that these languages need to be
simulator-independent.

All these languages used to describe models can be classified in two approaches:
domain-specific and general.

• DOMAIN-SPECIFIC:

– SBML: The SBML born to describe Biological Systems, but at the matter
of fact it is used to describe biochemical models, this means that also this
language is specialized in a biological subdomain. Indeed also its syntax
is too specific for this subdomain cause the main species involved in the
model are Reactants and Products. Furthermore is too tied to the use
of mathematical formalisms, such as differential equations. SBML make
use of SBO (System Biology Ontology): a set of controlled, relational vo-
cabularies of terms commonly used in Systems Biology, and in particular
in computational modelling. It consists of seven orthogonal vocabular-
ies defining: reaction participants roles (e.g. ”substrate”), quantitative
parameters (e.g. ”Michaelis constant”), classification of mathematical ex-
pressions describing the system (e.g. ”mass action rate law”), modelling
framework used (e.g. ”logical framework”), the nature of the entity (e.g.
”macromolecule”), the type of interaction (e.g. ”process”), as well as
a branch to define the different types of metadata that may be present
within a model

– NeuroML: is well structured, reusable, but it is also the most subdomain
specific language between all the others. The domain specificity char-
acteristic of this language lead to structural changes every time a new
concept need to be described. That’s happened when the LEMS project
started. LEMS want to be a human readable and low entropy language.
But it is also necessary to consider it was born for supporting the Neu-
roML language, and this shaped its structure. Besides that, LEMS is
too generic to be considered as a domain-specific language: the user can
specify model elements freely, without necessary references to biological
concepts or structures. In NeuroML the data and logic required to fully
describe and execute the model is spread across the model scripts, the
documentation of the model description language and the simulation en-
gine. This hampers the exchange of models between software tools and
their transformation into human readable formats, limiting the RAPT of
models defined in such formats.

• GENERAL.

– CellML: want to be a tool to create general models, not only related to
a specific domain. This approach give the possibility to describe a wide
range of systems, and also give considerable flexibility for implement-
ing new mechanisms as they are discovered, without the need to alter
the inner structure of the language. but it also loose the possibility to
unequivocally identifying domain specific features, this lead to a harder
reusability of models. This general language tool lead also to multiple
ways to describe a unique solution, that means an inconsistency in the
identification of biological entities and processes.



All these languages are based on the XML standard, this aspect makes models
exchangeable by softwares but not understandable by human without a tool that
work as interface. Moreover they are all oriented to mathematical models, often
based on Ordinary Differential Equations.

From this analysis emerge the need to have a language that is domain specific
for different subdomains of the biology, without be too general. Obviously it is
hard to include all the biological subdomain in the syntax of a language, because
this leads to an exponential growth of the language lexic, that make it harder to
learn. This new language need to be enough general to give the chance to add
concepts without making structural changes, but it also should has a strict bond
to the specific ontologies, to give unambiguous identities to the models and their
components. In other words it is necessary to find a trade-off between these two
approaches, stating a new semi-general approach. This semi-general approach gives
also the opportunity to set hierarchical architectures to models. The other important
aspect of this approach is how the reusability that can be increased. Reusability
can be allowed through: a modularization of models description and the attachment
of informations about simulation, like the initial conditions of the models. The
modularization of the description of models decrease also the redundancy, because
references to other modules can be made. From the analysis come out that the
concepts that all languages have in common is the presence of entities, processes,
communications or relations between entities or between entities-processes and for
all these concept a spatial specification is needed. We have compared only the
languages used to describe the model itself, the other languages including collateral
informations need to be added not in the language structure but they need to be
easily linked and wrapped in the language.



Chapter 3

How To Build a Language

3.1 Aspects to consider when setting requirements

In the process of language creation the mantra should be “Keep it simple, less
is more”. Only the necessary concepts of the domain need to be included, and
generalization for future improvement should be avoided because the language could
become too complex. Few elements for the language is the right choice, this reduces
the learning curve. These good practices help to avoid redundancy of concepts in the
language, which might be confusing for users when they make use of the language.

The language will be adopted by end-users, then it is necessary to implement
their own notation, but to make the language understandable by more people than
end-users it is better to choose a descriptive notation, and when this is not possible
it is good practice to give the chance to add comments. To avoid confusion and re-
duce the learning curve choose a syntax that make a great differentiations between
different terms and concepts. To avoid redundancy, to make the language under-
standable at a glance and to increase compactness it is better to make it modular.
Furthermore it is better to have the same style among modules. If some elements of
the language are complex and not very easy to use, or there is some implicit feature,
it is better to provide good practices and usage conventions.

The syntax used by the end-user should reflect his way of thinking but at the
same time needs to be compliant with the abstract syntax tree (AST), to make
the translation from the language to the underneath architecture of the compiler
easier. A way to improve this aspect is the modularization of the language and the
introduction of interfaces.

The purpose is to use this language to describe a precise task, for this reason it
is necessary to identify some primary tasks and to ry to find a language that can
describe all of them. Finding out the right tasks is not enough, they need to be
explained by the end-users to import their own lexicon and way of thinking to the
language syntax. If they prefer to explain their domain with drawings maybe it is
better to create a visual language in contrast to a textual one. To build the new
DSL other languages definitions, type systems and features can be exploited.

34



3.1.1 Conceptual Level

In this section we want to address the questions: how will the language be used?
Which work process has it to support?

To give an answer to these questions it is important to find the tasks users will
need to accomplish. One of the more frequent error made by developers, when
they are designing a language, is their will to cover every detail in the user way of
expression. This can lead to a useless enrichment of the language. Other than to
be useless, it can be also an issue in the usage of the language and in the learning
phase. Indeed users most of time change their way of express themselves to be able
to use the language.

We said that is better to follow the approach “less is more”; so the language
should be:

• Easy to learn

• Easy to build

• Able to receive more tool support

• Be able to be analyzed more easily

To avoid to make this error it is important not to try to cover all possible usages
from the beginning. When designing a language we should think about the usage
of this language. Often we think that the major activity within which the language
is involved is its writing, but actually people most of time read the language, to
check their own work or to discover something when reading works of someone
else. In our case the activity of reading models occurs very often, indeed models
of biological systems are built with the aim to exchange them with all the research
community. So the language design has to take into account these two activities at
the aim to facilitate both. Models need to be exchanged also to be extended and
modified, for this reason changing the model description needs to be easy and not too
invasive for the whole model. The language structure should allow for modification
and extension of models without changing all the description but only the pieces of
interest. Our language wants to describe models that will be then simulated, for this
reason the language has to support this activity. A well organized documentation
is very important to promote the usage of the language by many people.

3.1.2 Human Level

In this section we should cope with this question: Which are the users willing to use
it?

Building the language is only a part of the work, the other part consists in
trying to find a connection with the users. Indeed, who cares we built the perfect
language, if nobody is going to use it? Often people are not open to new tools, and
this happens basically for two reasons: resistance to change and the effort needed
for learning to use them. To overcome these problems an efficient communication of
our project is necessary, to specify which actual issues the language overcomes and



how easy it is to learn its usage. To achieve these objectives it is also important
to connect with users, talk with them trying to understand what make their life
difficult. To positively achieve this connection it is better to find someone that want
to make a change trying

to use something better. We should communicate and connect with users without
presenting us as the best experts in their domain in their domain, but rather as
explorer of domains to make it understandable by machines.

3.1.3 Technical Level

Which are the technologies involved?
The technologies involved in the use of the language are various. A compiler

is needed to translate the language in other languages or in the bytecode. An
Integrated Development Environment is useful to work with plugins, test, debug
and to easily write the code. A specialized editor can help in writing the code, with
suggestions about syntax errors. To write a compiler is necessary build the Abstract
Syntax Tree, in other words the code get divided in the fundamental pieces and then
structured in a tree architecture. To build the AST are needed the Lexer and the
Parser. The Lexer should be able to recognize the syntax of the the language and
split the code in tokens corresponding to syntax elements. The Parser has to work
with the tokens produced by the Lexer, it has to define the grammar to build the
AST. Then the AST is used to generate the code in other languages or the bytecode,
as said before. To develop all these tools there are various options:

• JetBrains MPS: a tool that help to build different families of languages, using
different notations (textual, graphical, tabular). It overcomes the development
of Lexer and Parser and help you to directly build the AST. One of the best
advantage of this tool is the fact that help you to build a customized editor
for your language, in a very easy way.

• XTETX: a tool to build a single text language, similar to MPS because is not
like the others parser generator but can also build a class model for the AST
and a customized editor to be used inside eclipse, a browser or any any editor
that supports the Language Server Protocol.

• Custom approach: You have to write the Lexer and the Parser on your own
and generate the code you desire. This is a more flexible approach, that give
you a total control, in contrast is more costly than use the others two precedent
options.

3.2 Our requirements

Strategies to build the language. The design has to answer these questions:

• Which are the users will use it? Our purpose is to build a language that can
be used by biologists without or with few knowledge about computer science.
To accomplish our purpose we need to create a language that is as much as
possible near to the current biologist way of speak .



• How will be used? Which work process has to support? The major aim of
the language is to be able to describe models of ontogenetic processes inside
biological system. So the most important requirements of the language are:
capability to describe different layers of hierarchical systems, capability to
describe the spatiality and geometry of the system needed to support the
developmental and motility processes.

• Which are the technologies involved? Models need to be described not only for
an explicative and an expositive purpose of biological process. The aim of these
models is to explore systems to bring out new knowledge or to bring out some
new perspectives and ideas in laboratory experiments. In other word they
can be a guide to explore the biology field. To accomplish these purposes the
models need to be simulated. The language should describe a model intended
to be simulated, the languages should interfaces with a software simulator.
In our case the simulator is based on a specific Petri Net formalism, for this
reason the language has to be able to describe and manage the elements of
this formalism.

3.3 Lexical research

Building a new language requires an analysis on the language domain and on the
ways people belonging to this domain use it. In the biology domain and specifically
in the bioinformatic domain a standardized way to communicate is represented by
ontologies that try to define a strict way to share knowledge in a context that is too
various and full of ambiguities by its nature.

The strength of a Domain Specific Language is the closeness to the user way
of thinking. This motivation leads us to base the syntax on the existing ontologies
such as the GeneOntology or the Cell Behaviour Ontology. From these ontologies
we wanted to take the more frequent terms and the more frequent relation between
terms. This research brought us to the construction of a syntax closer to the core
of the language used in the biology field. In this way we can give to the biologist
a tool that speak his own language, and we avoid the skepticism that arise when
people should use a new tool, last but not least can also help shorten the learning
curve.

For this reason our purpose is to analyze words correlations in ontologies to use
these correlations as foundation of our language. To better analyze these correla-
tions a network of co-occurrences of words is built, the network is the graphical
visualization of the co-occurrences matrix that contains the values of co-occurrences
of words, these values are represented by thedges in the network, meanwhile each
vertex represent a word and its size is proportional to the occurrences of the single
word.

In general the correlation between words depends on various parameters if we are
in a complete text because there is a correlation also between periods and paragraphs
and so distance between words has to be taken in account. Ontologies can be
thought as a set of sentences not correlated, for this reason co-occurrences between
words should be computed only in the sentence context. In this case the statistical



significance depends no more in the distance between words (in fact sentences are
little unlike the periods of an article) but in the length of the sentences.

The problem in find a threshold of significance building a network of co-occurrences
is an open issue, some studies have used random permutations of the abundance
matrix to compute a null distribution of similarity scores, and then selected as a
threshold the similarity value corresponding to a conventional p-value choice of 0.01
or 0.05. Other studies have used arbitrarily chosen thresholds. Sometime custom
strategies are implemented as is explained in [12] : they use a repeated element-wise
random permutation of the noise-added abundance matrix to first compute a null
distribution of similarity scores. They then compute the size of the largest compo-
nent—the largest set of nodes for which any pair is connected by some sequence of
edges—in the induced network for a wide range of threshold values.

In [13] the authors explain that to decide if a value of co-occurrence is valid or
not we can compute the p-value of the probability distribution that better represent
this case. In the general case the number of co-occurrences of two words follows
the hypergeometric distribution, but this is a too crude approximation, because the
difference in sentences length is not taken in account. The expected value for the
co-occurrences that take in account the length is:
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The so-computed relatedness is used to graphically display the relations among
words, building up clusters around concepts. The graph was built using Gephy, that
taking the score of relatedness of words compute clusters between entities involved.
In such graph, vertices are words, their sizes are proportional to the frequency of
words, arcs are relations between words, arc thickness is equivalent to the relation
strength, and the colors represents the concept clusters.

This evaluation of words and relations from ontologies is the means through
which we select the building blocks of language, in particular the syntax and part
of the semantic.

To compute the relatedness of words and have a textual representation of the
words scores representing:

• Node degree: the sum of connections of a node.

• Strength of node: the node degree is weighted with the connections weights

• Betweennes centrality: the number of shortest paths between pairs of vertices
that pass through a given vertex

we used the Python library NetworkX that create a network, based on the co-
occurrences matrix,in which every node is a word and every arc is the relation
between words. We’ve computed these scores only for the Gene Ontology and in
the 3.3 Figure we show the results for the Cellular Component, a Gene Ontology
branch.



Figure 3.1: Network computed from a GeneOntology branch: Molecular function

Figure 3.2: Zoom on the precedent image

This ontologies analysis leads us to build a syntax very constrained to some con-
cepts and with a very large vocabulary. On the overall, two main sources guided
us in designing the language: Cell Behaviour Ontology instructed the syntax struc-
ture, while Gene Ontology provided the concept organization to embed in it. The
structure of the language devises:

• METADATA about model: date, author, name of the model

• MAIN part:

– Environment, which is the most external component of the model de-



Figure 3.3: Example of data analysis computed using NetworkX

scription, and has as properties a name, a type (chosen from a pool of
specific environment defined by the language) and spatial information
about shape and dimensions. This component includes entities and pro-
cesses.

– Entity, which is one subcomponent of the Environment, that can have
a list of entities that compose the structural aspect of the system. The
Entity has a name, that identifies it unequivocally among other entities,
and a type chosen among those proposed by the language. For each
type of entity it is necessary to give some specification, also these are
specified by the language. All types of entities have in common the spatial
properties: shape, dimension and position related to the environment.

– Process, is the other subcomponent of the environment and it describes
the behavioural aspect of the biological system. The processes can de-
scribe a single functionality of an Entity or a relation between entities.
As the other component of the language also processes have a name (to
be unambiguously identified within the system), a type to be chosen from
those provided by the language and for each type give the necessary spec-
ifications.

• HIERARCHY of the system:

Each entity can define its internal architecture, becoming an environment it-
self. So, for every entity the same specification already describe above in the
Environment section are needed.



Also the processes can by specified at an higher level of detail, pointing out
the subprocesses that can make arise the global process. The subprocesses are
specified like the parent processes.

Due to this complex structure, and for the large vocabulary included in the
language, the need to build an editor arises. To guide the user in the use of the
language for describing his model the editor makes use of suggestions and tips to
better describe each concept included in the language.

Figure 3.4: Example of editor suggestions

We shown our prototype tool to some professors teaching at the University of
Turin, in the department of biology. The aspects they appreciated the most were the
easy to use editor and the underlying formalism. Indeed the simple structure of the
language, enriched by the editor suggestions, reduces the effort to learn tool usage.
Despite the large vocabulary implemented in the language, the users didn’t feel any
effort in using the language. Indeed the Editor, in addition to suggestions during the
set of specifications for entities and processes, guides the user in structuring correctly
the model parts, to make the right references and to not forget any fundamental
information. The quantity of effort in learning a new tool usage is one of the
bigger impediments in the tool diffusion among potential users, for this reason is
fundamental to build all the tools that help users when adopt your language.

Despite the good feedback received from users, we decided to make a structural
change from the first version of the language. This decision was taken observing
that the complexity of this language and its huge vocabulary make clear that this
solution is not easily scalable. Each time a new concept needs to be included a
modification to the syntax of the language is performed, moreover the language
compiler makes a great effort translating the concept in the relative implementation.
Furthermore if a more experienced user wants to be able to go in deep in the domain
concepts implementations and to change the model of components at the lower level
of abstraction, she can’t. We want to give to expert users the possibility to manage
the underlying formalism, that is, by the way, based on Petri Nets. For these reasons
we decided to change the structure of the language to make it simpler, lighter and



usable by a wider target of users. This means that the layer has to cover different
layers of usage, from the biologists use mode, to the computational biologist mode.
Some of the new language requirements change in respect to the first version:

• Which are the users will use it? Our purpose is to build a language that can
be flexible enough to be used by biologists without or with scarce knowledge
about computer science, but also by experts in computational biology. To
accomplish our purpose we need to create a language that can range from low
level implementation of models, very tied to the underlying formalism, to high
level implementations, more tied to biological definitions of elements.

• How will be used? Which work process has to support? In this new version we
decided to have two different type of users, the biologist and the computational
biologist. The first one works only on the model description. The second one
has to work both in the model description and in the implementation of lower
level functional blocks, to create libraries and to give to biologists tools to
work on their process.

• Which are the technologies involved? The answer is still the same described
before.

In the next chapter, further analyses about our languages and how it changed from
its first version are provided.



Chapter 4

Development of the Language

4.1 Introduction

In this section we present further analysis that had guide us to the full description
of our language.

In the 2 Chapter we analyzed which are the weaknesses of existing languages with
respect to the ontogenetic field and we stated the need of a semi-general language.
In other words a language that has as basic concepts and structures the elements
that are in common between the biology subdomains. At the same time it has to be
able to define unambiguously other concepts and structures from the biology that
the user want to introduce in his model. The fundamental characteristics that we
need to introduce are the spatiality properties and the motility processes. The other
big issue of existing languages is their not-human readability, all of them are based
on XML syntax and to be more understandable they need a graphical interface,
especially for biologist users

In the 3 Chapter is described how to structure a language and our analysis on
the specific domain that we want to cover with our language. From these analysis
are arised some needs like the ability of the language to cover a lot of domain
concepts, without have a huge vocabulary and a complex syntax. The structure
need to be simple and easy to understand, the notation need to be descriptive and
unambiguous, this to cover a large target of users.

As suggested in the 3 Chapter is better to use some other languages concepts and
structures if they can fit our specific domain. The language that we have to develop
has the main purpose of describing model of complex systems, for this reason we
decide to get inspired by the experience gained in an other field in the description of
complex systems like the VHSIC (very high-speed computer chip) Hardware systems
are. In that field the experts make use of the Gajski-Kuhn Y-chart to guide the
design phase of the systems. We get inspiration from this diagram to be guided in
the specification of language features. We choose to follow this diagram because we
have found various points in common, that we analyze in the section 4.3

43



Figure 4.1: Gajski-Kuhn Y-chart

4.2 Gajski-Kuhn Y-chart

The Gajski-Kuhn chart (or Y diagram, Figure ??) [14] depicts the different perspec-
tives in VLSI hardware design. Very-large-scale integration (VLSI) is the process of
creating an integrated circuit (IC) by combining hundreds of thousands of transistors
or devices into a single chip. VLSI began in the 1970s when complex

semiconductor and communication technologies were being developed. The mi-
croprocessor is a VLSI device. Before the introduction of VLSI technology most
ICs had a limited set of functions they could perform. An electronic circuit might
consist of a CPU, ROM, RAM and other glue logic. VLSI lets IC designers add
all of these into one chip. A good practice in any system level HW+SW design is
to separate/isolate the “application/usage model” from “architecture” and “imple-
mentation” details and find the right mapping between them. This is what the chart
summarizes.

The Gajski-Kuhn Y-chart is a model which captures the considerations in de-
signing semiconductor devices. The three domains of the Gajski-Kuhn Y-chart are
on radial axes. Each of the domains can be divided into levels of abstraction, using
concentric rings. At the top level (outer ring), we consider the architecture of the
chip; at the lower levels (inner rings), we successively refine the design into finer de-
tailed implementation. The three domains correspond to three different perspectives
described below:

• Behavior. This domain describes the temporal and functional behavior of a
system.

• Structure. A system is assembled from subsystems. Here the different subsys-
tems and their interconnection to each other is contemplated for each level of
abstraction.

• Physical. This domain takes care of the geometric properties of the system
and its subsystems. So there is information about the size, the shape and the
physical placement. Here are the restrictions about what can be implemented
e. g. in respect of the length of connections.”



With these three domains the most important properties of a system can be
well specified. The domain axes intersect with the circles that show the abstraction
levels. The physical and structural domains specify different layout and components
respectively that are explicit and don’t need more explanations. The behavioural
domain describe different level of abstraction of the system functionalities that need
some clarification, below we explain in more detail the characteristics of the five
circles from highest to lowest level (outer to inner circles):

• Architectural. A system’s requirements and its basic concepts for meeting the
requirements are specified here.

• Algorithmic. The “how” aspect of a solution is refined. Functional descriptions
about how the different subsystems interact, etc. are included.

• Functional block or register-transfer. Detailed descriptions of what is going
on, from what register over which line to where a data is transferred, is the
contents of this level.

• Logic. The single logic cell is in the focus here, but not limited to AND, OR
gates, also Flip-Flops and the interconnections are specified.

• Circuit. This is the actual hardware level. The transistor with its electric
characteristics is used to describe the system. Information from this level
printed on silicon results in the chip.

4.3 BiSDL Y-Chart

We have seen that the Gajski-Kuhn chart guides the design in every VLSI detail.
We want to build a similar chart to help us in the design of the language. The
main difference is that the Gajski-Kuhn chart wants to depicts the real system in
every part, instead when we talk about system biology models we are not describing
in every detail the real system, but in general approximations and omissions are
done, this is mainly due for the lack of informations about real biological systems.
The common features that we found in these two different domains are the three
perspective of the Y-chart, that are the same perspective that we need to take in
account when design a model of a biological system. Also the different levels of detail
described by the chart are present in our case. Ideed using a similar approach, the
three domains can be partially adapted:

• Structure domain is the key point of system biology, relations and commu-
nications between subsystems are crucial to the whole system evolution

• Spatiality domain it’s a key point in the ontogeny field, shape, orientation
and physical position are fundamental in developmental processes

• Behaviour domain can describe specific processes of the system.





We say that also the usage of the language foolow in some way the Y chart archi-
tecture. Indded the expert user can manage at very low level (petri net formalism)
the description of the model. Instead the non-expert user can use only bio-domain
specific modules, contained in libraries, to describe its model.

In the next paragraph we analyze the chart more in detail:

• Behavioural domain: the language must be able to describe the behaviour
of the model, this means the processes and functionalities that will be runned
during the simulation. Seeing these at different level of detail we can iden-
tify: System, it means the functionalities performed from the system as a
whole. Macro Biological Functions are simple processes from which arise the
system functionalities. Base functions: generic functions like producer/con-
sumer, change of state implemented by basic network motifs. They do not
have a domain specific meaning. Rules: basic rules of transitions, that can
activate or enable them.

• Structural domain: The model is composed by various entities and modules,
and the language should describe them. Also in this case various levels of
detail are shown in the chart. biological subsystem: differents entities that
when connected compose the whole system. network motifs: implemented
in the petri-net formalism compose the high modules are described by the
composition of and stored in frameworks. building blocks: network motifs
describing structures without any biological reference, basic petri net elements
like places, transitions, arcs.

• Spatiality domain: The language should make explicit the spatiality prop-
erties of entities involved in the system. Biological district: macro spatial
uniform departments of the model are identified 3D spatial grid: give to the
entities of the systems a location in space Basic net motifs connect the grid
positions to give directions and express quantitatively their relative distances.
Place, transitions, arcs, annotations are used to connote characteristics.

4.4 VHDL

As the Y chart is inspired by the Gajski-Kuhn Y chart the language is inspired by
the VHDL.

VHDL (VHSIC Hardware Description Language) [15] it’s a language to describe
the hardware, used in the ICT (Information and Communication Technologies) field.
The design phase of hardware development exploit the Gajski-Kuhn Y chart shown
above.

VHDL allows the designer to work at various levels of abstraction. Many of the
levels are shown pictorially in the Gajski/Kuhn chart. Although VHDL does not
support system description from the physical/geometry perspective, many design
tools can take behavioral or structural VHDL and generate chip layouts. It is
used to document, describe, design, simulate and synthesize. The fundamental
unit of VHDL is the Design Entity: which describes components as a black boxes,
identifying only the interfaces to the external environment. The Design Entity



can represent components at different levels of the system hierarchy: a logic gate,
an integrated circuit, a PCB o an entire system. Then a Design Entity can be
associated with different internal architectures, which can follow three approaches.
In the body architecture are specified: behaviour, interconnections, input-output
relations, components in terms of defined entities. The three approaches are:

• Dataflow: it is based on logic expression that describe the architecture. The
possible expressions are: signal assignment, instances of components, blocks
declarations, procedures to be used and processes. It can also contain timing
informations, that should be respected during simulations.

• Structural: it is made of components interconnected between each others,
specifying a system hierarchy. The components included must be present in
some reference library. Components declaration can be wrapped in a ”pack-
age”. If more than one implementation of a component exists it is necessary
to specify which one is used. There’s a PORT MAP section that can specify:
a signal, a costeat, the open state or an entity’s gate. In general components
are connected by the signals.

• Behavioural: it describes algorithms that implement behaviour, indeed it is
described following the same way as classic sequential languages (C, Fortran,
Pascal, ecc..) . Instructions are executed within a process that is seen as a
unique concurrent instruction. This is useful to simulate circuit parts without
go down into detail.

Description can have also a mixed approach, this means that more than one archi-
tecture types can be specified for a component.

4.5 Biological Systems Description Language BiSDL

4.5.1 Nets Within Nets

Before looking in detail at the language that we have developed, is better to explain
well the NWN. formalism that we have introduced in the ?? chapter.

To describe the NWN formalism is necessary first introduce some aspects of the
PN formalism [16]. This mathematical modeling language make use of a bipartite,
directed and weighted graph in which vertex are divided into Place and Transition.
Simply put Places are conditions and Transitions are events that use and manage
conditions. A Petri Net can have an initial marking, it means that each place or
only some of them has an associated integer value, this value represent the quantity
of Tokens owned by a Place. The presence of Tokens in a Place can have different
meanings, they can simply mean the True value of conditions, or maybe they can
identify some resources quantity. Transitions are associated to two functions: the
Enabling function and the Firing. The Enabling function is equivalent to the check of
the pre-conditions, the firing function is the activation of post-conditions. Enabling
and Firing depend also on the weight of the arc that define the number of tokens
involved in the condition. In the Figure 4.3[16] we show the formal definition of a
Petri Net:



Figure 4.3: Formal definition of a Petri Net

The graph arcs connect places to transitions, so we can have Input or Output
places. These three entities can have different interpretations depending from the
application domain or from the functionalities that need to be described. Some of
them are listed in the Figure 4.4[16].

Figure 4.4: Different Interpretations of Petri Net objects

If a transition doesn’t have input places than it is called a source transition, this
means that it lacks of pre-conditions, so it is always enabled. Instead a transition
without output places is named sink transition, it is clear that it will consume tokens
without produce anything. In the Figure 4.5[16] we provide an example of a simple
Petri Net representing a chemical reaction.

Figure 4.5: Chemical reaction implementation

Petri Nets can model different basic concepts, useful in different fields of knowl-
edge: finite-state machines, parallel activities, dataflow computation, communica-
tion protocols, Synchronization Control, producers-consumers paradigm.

After this overview about PN. formalism we can introduce some concepts about
the NWN [17] formalism. We said that the Tokens of a Petri Net are simply de-
scribed with an integer denoting the presence of a precise quantity of unidentified
resources. Actually there are different type of tokens, they can be Integer, Float,
Double, String, Colors. But if there is the need to represent some complex resources
or entities with tokens then is necessary a more complex type for tokens. The nat-
ural consequence of this requirement is the use of Petri Net as tokens, this increase
the expression of models without increase the complexity of the formalism. In the
Figure 4.6[17]



Figure 4.6: General example of NWN

This extension of the formalism naturally describe systems with hierarchical
architectures, giving the possibility to describe each layer of the system at the same
level of detail. Examples of the implementation of this formalism can be found in
[18] and [19]. This new formalism require an inter-layer communication mechanism,
one solution is the concept of Channel. Channel is a synchronous communication
mechanisms that is able to fire two transitions, belonging to different nets, at the
same time. It can also exchange tokens between the two nets. The transitions
involved in this mechanisms have different roles. One is called uplink and the other
is named downlink. The uplink is responsible for the activation of the channel.

4.5.2 VHDL common features

As VHDL intends to describe all the aspects of Digital Systems models, and its
design follows the relative Gajski-Kuhn Y chart, the BiSDL as well intends to be
able to describe all the aspects of the three domains described in the Biological Y
chart. VHDL inspired us because it has some features compliant with the description
of models of biological systems, like:

• Modularity

• Differentiation between structural architecture and behavioural architecture

• The concept of entity: the module seen as a black box.

Modularity is important because we are dealing with systems that are composed
by subsystems, in other words they are modular by their nature. Modularity give
also another advantage that is reusability of subcomponents of the system without
structural modification, but also give the possibility to do easily modifications on
some system parts without affecting the whole system.

For each module different aspects need to be described: the submodules that
compose it, the processes in which these submodules are involved, the spatiality
relation between them and the setup of the module at the start of simulation. The
structure of the first version of the language is mainteined in this way.

Another important aspect of the module description are the arguments that
enable the usability of the module as a black box, in other words without knowledge
about its internal functioning and implementation. These arguments can be seen
as the interfaces or setup parameter of the module, because they permit to connect
the module to other modules and to set some internal parameters. To be connected



the modules they need to share some submodule or to use a special entity that is
the channel, a synchronous mechanism of communication.

The modules to be unambiguously identified as a biological entities need a ref-
erence to some recognized source of knowledge. This feature is useful not only to
overcome the limitations of general languages but also to make the language able
to include new modules belonging to different biology subdomains. Indeed when a
new entity or process need to be included is required only the implementation with
low level elements of formalism and the biological reference to be attached.

The modules with this biological meaning can be then stored in libraries, to be
then reused mostly by non-expert user, in this way we obtain the first version of the
language, in which only biological elements could be used. The internal structure
architecture of modules can use both petri net formalism elements and also other
modules. This satisfy the requirement of a hierarchical architecture

Each module is described following the same template that we illustrate below.
The template cover both the usage types:

• non-expert user mode

• expert user mode

They use the language in different ways, we specify these aspects later.

4.5.3 BiSDL: main concepts and structure

This is the core section of the whole work, because we are going to explain the
language.

All the modules that compose the model of the biological system are described
using the same syntax and template, exploiting each time different features, accord-
ing to the level of abstraction of the module implied. The structure of modules
is similar to the one used for the first version of the language discussed in the ??
chapter.

Summarizing each module can have:

• Set of parameters that are used as interfaces when it is exploited as a black
box.

• Set of entities that compose the internal structure.

• Set of processes in which are involved the entities.

• Biological reference.

Entities and processes are mainly of two types: these belonging to the biological
domain and these belonging to the Petri Net formalism. The first type modules
are much more complex and they are contained in some library. These modules are
implemented using entities and processes typical of the Petri Net formalism and in
addition they have biological references. The syntax of each module is similar: name
and parameters, both change according to the implementation choices. The second



type of entities and processes are the basic element of NWN formalism: Places,
Channels and Transitions. The syntax is fixed in the language.

In the follow paragraphs we explain in detail the template (Figure 4.7) used for
modules implementation and the language syntax.

Figure 4.7: BiSDL Template. The main structure of the language and its main
keywords and constructs

• PACKAGE declarations followed by the name of a domain specific library
must be included when some library modules need to be used. Each library
correspond to a PACKAGE declaration. Libraries can be organized in trees,
so if we want to use a sublibrary, all the parent in the library tree should be
declared, separated by a dot. This is a crucial feature because the domain
specific entities belong only to libraries. They cover the two outer circles of
the biological Y diagram, that are the ones used by the non-expert user. The
organization of libraries in a tree can reflect the organization of the biological
knowledge, in this way the user is helped in the search of the right modules.

• ONTOLOGY declarations followed by the ontology/database/paper name must
be included for each module with biological meaning. Sometimes including
this reference means to add complexity to elements of the model that have
very simple implementation, but this is necessary to give domain robustness
to the libraries. Pose the reference to ontologies as a requirement overcome
the limitations of other languages analyzed in the background, without this



requirement users can not include the domain specific reference this lead to a
model not reusable or reusable with difficulties.

• The MODULE keyword starts the module implementation, that end with the
END keyword. Module has a name that need to be unique inside the package
at which it belongs. Then the arguments, described above, has to be declared.
Modules with same name can coexist in the same library only if they have
different arguments. The arguments are then used inside the module body.

• BIOLOGICAL REFERENCE identify the portion of code that include the
ontology definition that matches the module identity. The identity has to
refer to sone of the ontology declared in the ONTOLOGY section, the id
within the ontology needs to be specified with the follow syntax:

ontology name.id

• ENTITIES start one of the most important code section, because here are
listed all the submodules that compose our module. They can be of different
types:

– PLACE: Petri Net basic element

– CHANNEL: this is a special component that put in connection two tran-
sition, making able two different nets to synchrounously connect. They
have a particular syntax that is:

: name channel ()

– ENTITY: here can be initialized names for modules implemented in one
of the libraries declared above with the PACKAGE inscription. For the
elements of type ENTITY in this section is necessary only to declare the
name, the specific module used to implement them need to be declared
in the next INIT section.

When one of the subcomponent is needed in a quantity bigger than one we
need to use a vector, various entities of the same type grouped together. To
declare a vector this notation is used:

name place * N
where N is the numerosity of such group.

• The INIT section aims to set some properties of entities:

– for ENTITY components need to be declared the implementation module
picked from some library declared above, setting the required parameters.
Sometimes is necessary to access some internal structure of the implemen-
tation to better connect modules, each place used in the module structure
can be accessed using this syntax:
name entity.name place
Information about places that can be accessed need to be specified in the
module documentation.



– for PLACE components should be set a name, the initial marking tokens
and the ontology id. When setting the initial marking of places some
specifications should be made: the type of token, the value and the quan-
tity if there is more than one token of same type and value. If there
is more than one token but with different type or value they should be
listed, separated by a comma. The token type can be int, float, double,
string, black token or can be a module defined from the user or a mod-
ule belonging to some library included with PACKAGE keyword. The
operations that can be performed on tokens change according to their
type. For the numerical types all the basic operations are allowed (sum,
difference, division, multiplication). For the string type is allowed the
concatenation, performed using the symbol ’+’. The syntax to assign
tokens to a place is:

name place .token( token type * N )
Where N is the amount of the token.

The assignment is always an operation of adding tokens to the pool of
place tokens. In the PROCESS section description we explain in detail
how menage tokens to be moved and deleted.

– for both type of subcomponents the location in the grid needs to be
specified when needed a specific location in space. declare the state of
submodules at the start of simulation, this means that for ENTITY type
entities need to be declared the implementation used, for PLACE entities
need to be set the initial marking if there’s one. CHANNEL entities
are not included in this section because they are used as arguments for
ENTITY implementations or for PROCESSES implementations. The
syntax to assign tokens to a place is:

– when managing a group of components is required to access each element
of the group using its index:

name component.index
Where index is the value of the index

If there is the necessity to access each entity of a vector to make the same
operation on them the foreach construct is used

foreach( name component)
{
operation on name componenti
}

for operation we intend one of the initialization operations mentioned
before.

if the operation on the group entities is different for some or for all, then
the for ccle need to be used, making a check inside the body on the index
of the subcomponent of the group:



for( i=0 ; i less equal group size ; i++)
{
operation on name component.i
}

Where i can be freely chosen.

– Some characteristics of PLACES and ENTITIES can be accessed or set
as attributes: name, token, unit of measure, ontology id and last but not
least the coordinates within the 3D grid. For ENTITY components in
general these attributes are setted as parameters of the module declara-
tion.

– The coordinates are related to the grid shown in the Y chart, that is
necessary to bring out the biological properties related to the spatiality.
The grid is always present, when the user doesn’t provide coordinates
then default coordinates are assigned to entities.

– There is one other attribute not mentioned before, the reason is that this
attribute is more related to the simulation then to the model itself. This
attribute can be set only for entities of type ENTITY and it is the relative
speed with which they will be simulated. The speed can be a fraction
or a multiplicator of the time unit which will be chosen by the highest
module of the systems, so theminimum time cycle of the simulation is
equal to the time cycle of the faster module. The speed assigned by the
high level module affects in particular the delay of transitions of lower
modules.

• The PROCESSES section include all the relations between entities or the
functions of single entities. The relations can represent spatial relations that
participate in implementing the spatiality of the model, or functional relations
intended as those processes implementing the behaviour of the model. For this
section the language provides some basic relations between entities. These low
level functions belong to the second inner circle of the Y chart and can be de-
scribed only through one construct with floating parameters.

process( keyword:entities declaration,..{function of transition}, de-
lay(N))

This construct represent a transition, that is one of the minimal element to
describe the functional behaviour of the system. To specify the transition
function is necessary first to identify the entities involved and the directions
of the arcs that connect them to transitions.
The entities with the same direction of arcs are listed in entities declaration,
the keyword instead specify the arcs directions.
keyword can be: BI, IN, OUT that represent respectively bidirectional, in-

coming and outgoing arcs.
The incoming arcs are these responsible for consuming tokens, the outgoing
arcs are responsible for producing tokens, the bidirectional arcs perform a



check on the tokens presence. Without specifications in the transition func-
tion: random tokens will be consumed or checked and black tokens will be
produced. Th arcs will no have any effect only if for their places there is a
customized operations specified in the transition function.

entities declaration is the list of entities involved and has a precise syntax
to be declared:

{ entity name[arcs number],...,entity name[arcs number] }

The process construct has as last attribute the delay(N), this define the
amount N of time that elapses from the enabling to the activation of the
transition. The N value is a fraction of the time unit, as explained for the
attribute relative time of the entities described above, in the INIT section.

Transitions, according to the PN formalism, have both enabling and activation
functions, which can be specified in the declaration of these basic functions in
the { function of transition } parameter.
The function of transition has the main purpose to manage tokens between
places. We know from the PN formalism that transitions have two types of
functions: enabling and the firing.

– Enabling: If to enable the transition is required only the token presence
in the pre-condition places no specification need to be made, instead if
some customized checking need to be performed we have to use the IF
construct.

{ if( customized condition ) }

The customized condition mostly involve the checking of token values, to
access them the follow syntax can be used:
place a.token.value(value specification) It search for the presence
of a token with the value specified
place a.token.type(type specification) It search for the presence of
a token with the type specified

All these type of checking operations can be put together using the
Boolean operands: and/or having respectively these syntax AND and
OR.

– Firing If there is the customized enabling function the Firing function is
put inside the IF construct body. otherwise is the only function of tran-
sition. All the operations performed by this function are listed separated
by ;. Besides the basic operations on token values (addition, difference,
division, multiplication, concatenation) and on post-conditional places
token assignment, other type of operation can be:
place a.token=place b.token exchange of random token between two
place



place a.token=place b.token.value(value specification) exchange
of a specific token between two places.

place a.token=place b.token.type(type specification) exchange of
a specific token between two places

place b.token++ adding a black token to the pool.

place b.token- - deleting a random token

place b.token.value(value specification)++ adding a token with spec-
ified value to the pool. Can be done also specifying the type

place b.token.type(type specification)- - deleting a token with spec-
ified type to the pool. Can be done also specifying the value
To repeat the same operation more then one time, it needs to be put
inside a for loop.
A special firing function of the transition is the channel, that is an as-

sociation with another transition. The channel has two main properties:
the direction of activation and the direction of the token exchange. To
set the direction of the activation we have to specify which is the the
the transition that can start the communication (named upperlink) and
which is the transition that receive the communication in a synchronous
way (named downlink). The downlink is the module that declare the
channel in the ENTITIES section, the upperlink access the channel with
this syntax:
module downlink:channel()
In the process construct we can specify through the function declaration
which tokens are exchanged within the channel and which are the input
and output places. the syntax is the follow:
when( module downlink:channel(tk)) { tk = place IN.token }
or
when( module downlink:channel(tk)) { place OUT.token = tk }

If no specification about value or type of tokens is made then random
tokens will be exchanged through the channel.

The process construct described above is a simple construct, defined in the Y
chat as basic building block, more complex relations are the modules included
in libraries announced with the PACKAGE inscription and corresponding in
the Y chart to the two outer circles.
Their syntax is simply the name followed by the specifications of arguments
that differ from one to another and are documented in the library. Typically
the arguments of these relations are entities to be put in relation between each
other and functions performed by such relation. All these functions involve
manipulation of tokens, these operations differs from the type of tokens in-
volved. Indeed in base of their type differ type of checks and operations can
be done.



As anticipated, when introducing the template, the language can be used by
different types of users. The non-expert user can rely on modules belonging to
domain specific libraries, in this way their have the possibility to deal only with
modules with a biological meaning. This usage can be associated to the two more
external circles of the Y chart. The expert user instead can use all the language
basic tools to build his own modules or to customize the existing ones. Therefore
these users can explore all levels of detail of the Y chart.

4.6 Use case: C. Elegans

Figure 4.8: Scheme of C. elegans vulval development [21]

The Figure 4.8 describe the C. elegans vulval development [20] that is one of
the most studied use case of animal organogenesis. It has achieved this importance
because is a relatively simple system to analyze. What underlies the development of
this system is the complex integration of various intercellular signaling, signal trans-
duction, and transcriptional mechanisms . This organ is the connection between the
hermaphrodite uterus and the outside of the nematode. The most important actor
of this system is the anchor cell that is a single cell of the somatic gonad. It has
the role of organize and coordinate the development of the vulva from the epidermal
precursors and also the physical connection of the epidermis with the uterus.

The anchor cell to accomplish this goal create biomolecular gradients by releasing
signaling molecules that diffuse outwardly. These gradients are critical for cellular
identity and cell relocation. The gradient produced by cell influences cellular fate
by their temporal and spatial characteristics. In this case the cells affected by this



mechanisms are six differentiating cells that can be differentated in three different
types of fates: 1 generates vulE and vulF mature vulval cells, 2 generates vulA,
vulB1, vulB2, vulC and vulD cells, 3 generates non-specialized epidermis.

These differentiating cells are disposed in a horizontal way and the anchor cell
stay up them in th middle of the length of the space occupied by the si cells. down
these cells is located the hypoderm, a population of epidermal cells distributed along
the length of the six differentiating cells. The signal received by these cells from the
anchor cell differs according to distance of each cell from the anchor cell. The nearest
cell has a juxtacrine interaction with the anchor cell, the two cells that are on the
left and on the right of the nearest one, have a paracrine interaction with the anchor
cell. All of the six cells have and interaction with the hypoderm, and also a bilateral
interaction with the nearest differentiating cells that are on the left and on the right.

All these signals affect the inner biochemical processes of the differentiating cells.
The signals sended from the anchor cell and the hypoderm are catched by the EGF
(LIN-3) receptor that is involved in the regulative pathway of the MPK-1 protein.
The bilateral signaling is mediated by the LIN-12 (Notch). EGF promotes the 1
fate while LIN-12 promotes the 2 fate. Both EGF and Notch prevent cells from
get the 3 fate. These two are also antagonist: EGF downregulate the Notch-like
receptor LIN-12, while the LIN-12 signaling induces negative regulators of EGF-
receptor signaling such as MAP kinase phosphatase LIP-1 and the tyrosine kinase
ARK-1.

4.7 C. Elegans vulva development model - Anal-

ysis

To describe the model with our language is useful to use the Y chart: to be sure to
cover all levels of detail, without leaving out any aspect of the model. To read the
chart in a systematic way, following a top-down approach in the description of the
model, we follow the arrows. The model has a hierarchical architecture composed
by two layer, for each one the description is helped by the chart use. The first
layer named system net describe the system at higher level of detail, the second
layer describe more in detail the developmental cells, while the anchor cell and the
hypoderm are not described in detail but they are seen as black boxes.

Starting from the first layer, looking at the behavioural domain, we can iden-
tify the differentiation of cells as the major process, considering the system at the
higher level of detail. The structural domain wants to identify the major subsys-
tems that in this case can be identified in the anchor cell, six differentiating cells
and the hypoderm. These three entities at the same time identify three different
biological districts in the spatial domain. At the same level in the second layer the
System behaviour is covered by the living cell functions. The biological subsystems
are genes, receptors, proteins and pathway proteins, from the spatiality point of
view there’s not a specific organization of biological districts. This means that the
biological districts are not considered in this system, because the focus is only on
the proteins interactions, that have not a precise location within the cell. Going



in deep with the level of detail we identify the different types of signalling as the
macro biological functions, referring to the behaviour domain of the first layer. The
network motifs that describe the structure are those describing the various types of
cells and the channels through which signals can pass. The biological districts are
mapped into a 3D grid that cover 13 placements: 1 for the anchor cell, 6 for each
developing cell and 6 for the hypoderm that is distributed along the width occupied
by developing cells. Dealing about the second layer the macro biological functions
in this system are the reception of external signals and the functionalities within
pathways: transcription, activation and degradation of proteins. In this case the
network motifs present are those of pathways components. This model lacks also a
3D grid for the same reasons of the lack of biological districts. At the third circle,
talking about the System Net, we can found the base functions of petri nets used
to implement Macro biological functions previously named, in particular: signals
are implemented through read/write cross layer functions for the lateral signalling,
and with a write cross-layer for direct signalling of anchor cell and hypoderm. The
petri nets that build the structure cells are simple places, they differ only for the
tokens they contain. Relative positions and directions are expressed by the network
architecture, positions of places in the grid and the tokens flow. At the low level in
the System Net case are not present significative rules in transitions. The structure
is specified by tokens: for the anchor cell is only an integer, for the hypoderm is a
black token, instead for differentiating cells is a more complex token specified un-
der the PN formalism. Annotations specify directions of lateral signalling and the
type of anchor signals, that depend on nearness of developing cells to the anchor
cell. Speaking about the net token: the general basic functions used in transcription
and degradation are respectively these of continuous production of tokens and of
deletion of tokens with the help of a counter. The building blocks are those for
activation of proteins. There are not net motifs for the spatiality explicit. The rules
are present in the degradation and in the transcription to implement biological con-
ditions. Black tokens are used to represent quantity of resources (genes, miRNAs,
proteins). Annotations make a distinctions between signals received from left or
right cells.

With this analysis the model has been fragmented to be better described in detail
and furthermore to better write a modular code in our language.

We can starting describing the implementation of the first layer of the model.

4.7.1 System net implementation (performed by non-expert
user)

There are three main entities: anchor cell, differentiating cells and hypoderm. These
entities are involved in communication processes, in other words in the exchange of
signals. So, the following model (4.11) describe at high level the whole system of
the first layer:

So in the ENTITIES section we have to put the entities listed above. Than in
the INIT section is specified the implementation chosen: the simple cell module that
take as arguments the name of the cell, the type of token and the ontology reference.
The complexity of the cell increase if the token used is a complex one, indeed anchor



Figure 4.9: Use Case Model architecture.

Figure 4.10: System low level detail view.

cell and hypoderm have a simple token, an int that identify only the existence of
the cell, instead differentiating cells have another module as token. This last token
with its complexity represent the second layer of the system hierarchy, that we eill
see in detail in the next paragraphs. We set another entities is parameter, that is
very important: the location within the grid, to give them a spatial notation.

In the PROCESSSES section we list all the intercellular-communication mecha-
nisms. The anchor cell and the hypoderm communicate with differentiating cell with
the same hierarchical signalling, the difference between them is the use of different
channels belonging to the tokens of the differentiating cells. The differentiating cells
communicate with each other through the bilateral module that exploit the DSL
channels, this type of implementation represent the lateral signalling.

Now, for those that are confident with Petri Net modeling, we can go in a more
deep explanation of the modules implementations used in the System Net. Indeed
the use of these modules increase the transparency for the final user, and it ensure
the biological identification of entities through the ONTOLOGY reference.

This choice also improves modularity and reusability. For example when a more
detailed implementation of “cell” modules is needed another module can be included,
changing only the initialization of cells.







Figure 4.16

In the Figure4.16 is shown the implementation of the bilateral communication
contained in the Figure 4.14 library. This implementation is a little bit complex,
because it has to represent a two-side synchronous communication between two
cells, that is performed through the channels. The first two processes are equal
to the second two processes, because they perform the same action for each cell.
One process is responsible of the lecture of a value from a cell through the channel.
The other process is responsible to take this value and writing it into the other cell
exploiting its channel. The a and b Places are necessary to store the value between
the write and read actions.
The last two implementations of cellular communications can be used only with

Entities that are initialized using the simple cell implementation, because in both
cellular mechanisms is accessed a specific Place named ”cell”.

4.7.4 Net token implementation (performed by non-expert
user)

The initialization of dev cell places (in the system net) use as a token a net describing
the second layer of the model, the internal structure of the developing cells.

Figure 4.17: Second layer, at a low level of detail.

The Figure 4.18 is the implemetation of the second layer of the system, it repre-
sents the internal structures of the differentiating cells. We can see that the entities
involved in this subsystem are: the cascade mapkinase, the lin 12 biochemical path-
way and various protein both in the active state and the inactive state. The other
main entities are all the channels that make the cell able to communicate to the
external environment, in this case the external environment is the first layer of the
system. All the proteins are defined using the implementation of the module sim-
ple protein, that take into account the name, the ontology reference and a defined
quantity of the black token, because there is the need to only set an amount of
resources. The pathways have instead a more customized module implementation.



Figure 4.18: Implementation of the second layer, at a low level of detail.

The processes that are performed by this system are:

• transcriptions, degradations and activations of proteins, all processes that in-
volve these protein that participate to the pathways.

• all the interactions that exploit channels to communicate to the external en-
vironment.

4.7.5 Interactions implementations (performed by expert
user and included in Signalling Library)

The following modules implement the processes of the module 4.16:

Figure 4.19: Library containing signal processes for the second layer.

The implementations in Figures 4.20, 4.21, 4.22, represent all the interactions
with the external environment, in particular they describe the path of the EGF
(lin3) that is received from the anchor cell and from the hypoderm to increment







• the transcription of lin 12, that take into account the lin 12 protein and the
ontology reference of the gene involved in the transcription

• the activations of lin 12 performed by the different DSL proteins, and the
activation that happens when a certain threshold the amount of lin 12 in the
inactive state is reached.

• the degradations of some proteins: lin 12, lin 12 active and DSL.

• the binding of DSL proteins to channels to implement the receiving of bilateral
signals.

Figure 4.26

4.7.7 Gene-Protein and Protein-Protein implementations (per-
formed by expert user and included in PathwaysReg-
ulations Library)

In the next Figure 4.28 is described the implementation of the transicription module
used b the pathways modules. It involve two entities: the protein to be transcribed
and the gene that is the responsible of the transcription. The process itself is



Figure 4.27: Library containing GENE-PROTEIN interactions.

implemented though a transition that is connected with a bidirectional arc to the
gene and with an output arc to the protein. That means that as long as the gene is
present the transcription can be performed and a protein is produces.

Figure 4.28

The Figure 4.29 shows the implementation of the degradation modules used
before. This transition take as input a protein that after the delay disappear as
result of degradation.

Figure 4.29

The activation process that involves two different proteins to activate one of them
is shown in Figure 4.30. the transition is attached to pproteins through bidirectional
arcs, an input arc and an output arc. This means that to be enabled is necessary
the presence of a certain amount of the protein to activate and a certain amount of
the activator, when transition fires an inactive protein is consumed and an active
protein is produced.

Figure 4.30

The Figure 4.31 is the implementation of the mechanism with which the cell send
the lateral signalling to adjacents cells. The proteins involved are mpk 1 active,
lin 12 active and DSL. The channels are attached to the DSL protein to perform
the exit points related to the adjacents cells, in order to send the lateral signals.



The transcription of DSL is mediated by the mpk 1 and in order to be performed
a certain amount of mpk 1 is specified, and also the produced amount of DSL is
specified. The degradation of the active lin 12 is regulated by the DSl protein, the
amounts of both type of proteins that is consumed is specified in the arguments of
the module.

Figure 4.31

The 4.32 Figure shows the mechanism of transcription in which the expression of
the gene involved is regulated by another protein. In addition to the transcription
mechanism, already saw before, there is a transition that is enabled if a certain
amount of the regulator exists and then fires consuming a protein and preventing
the transition, responsible of transcription, to fire. In this case there is a competition
between two transitions.

Figure 4.32

The 4.33 Figure shows the same above process, but involving two regulators and
not only one. The difference in this case is also that the amount of proteins is
represented by an int value and not by the quantity of tokens. This difference is
the consequence of the fact that the regulators involved are mpk 1 and lin 12 both
actives, they have an int value because they are subject to numerical analysis from
users.

The 4.34 Figure also shows a transcription process, it differs from others because
the transcription itself is mediated by an other protein. The transition that represent



Figure 4.33

the transcription involved, in addition to the gene and the protein there is a protein
mediator. The transition can be enabled only if the gene is present and if there is
a certain amount of the mediator, when the transition fires a certain amount of the
protein is produced.

Figure 4.34

In 4.35 Figure we find the degradation process regulated by another protein. The
transiion take as input a certain amount of both proteins involved and when fires
the proteins degrade.

Figure 4.35

The next two figures 4.36 and 4.37 describe the implementation of the binding of
proteins to become signals receptors. Both the implementations have in common the
transiton that bind the channel to the protein. The second one has in addition the
transition that modulate the amount of signal received from the receptor. In other
word the second implementation is able to change the throughput of the signal.



Figure 4.36

Figure 4.37

The next 4.38 figure is the implementation complementary of the last two, it
performs the binding of a channel to a receptor to make it able to receive the signal.
The transition links the channel to the receptor.

Figure 4.38

The Figure 4.39 shows the implementation of a gene, that is similar to those of
simple cell and simple protein. It associate to a place the name and the ontology
ID of the gene. The token is a single black token, it means that the gene is active.

Figure 4.39

All these implementations written in the BiSDL language need to be compiled
and than simulated. We are working on a Petri Net simulator written in Python and
based on a library named Snakes. For this reason the first compiler of the BiSDL
language will generate Python code, to be compliant with our simulator. In this way
we complete the circular pipeline (Figure 4.40) that from the model arrive to the
simulation results that can be used to modify the model or to build other models
enriched by the knowledge acquired from simulations.



Figure 4.40: Circular pipeline of Biological system model simulation



Chapter 5

Conclusion

The BiSDL differs consistently from from state-of-the-art descriptive languages for
biological models, both because it covers a biological subdomain, that of ontogenetic
processes, which other solutions don’t consider, and because it responds suitably
to the need, posed by COMBINE community, of a new language able to model
multicellular use cases. In addition to that, BiSDL design is intended to overcome
most weaknesses of existent languages and to group their strengths, allowing to
handle the criticalities from both the technical and the user interaction sides:

• Human readability
Other languages are all based on the XML syntax, meaning a tool is always
necessary to better understand the structure of the model. We choose another
approach: provide a much more human-readable language to accommodate the
user putting much effort on development of software to machine readability.

• Spatiality and Motility
Thanks to the implementation of an underlying 3D spatial grid upon which
different network motifs can describe geometry and mobility of entities involved
in the model, providing an explicit representation of spatiality, the language
naturally describes these aspects.

• Hierarchical architecture
To reflect the natural architecture of Biological Systems, BiSDL has a hierar-
chical architecture. This also increase the modularity of the language and its
understandability.

• Modularity Thanks to the use of modules within modules and to the or-
ganization of them in a structured library, the modularity is a predominant
characteristic. This is useful for the reusability of models that need few changes
in modules to be easily customized and modified.

• Ontology references
We adopt a strict policy in the use of references to biological knowledge bases.
In fact we think that is one of the most important requirement for exchange-
ability of models between different researchers and modelers. This is because
if someone describe a model with his own notation, not referencing to an ontol-
ogy recognized by all, other people will be not able to understand the model,
this make the model not acceptable by the community.
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• Easier extensibility Modularity along with Ontology references make the
language easily extensible. Indeed to add a new biological concept is only
necessary to build a new module and attaching to it the right ontological
reference.

• Extend the users target Using modules as black-boxes, along with the
human-readability of the language, allows biologists to perform the model-
ing activity. Indeed have always been computational biologists in charge of
modeling biological systems.

BiSDL provides tools to improve the model description under many aspects,
both for experimental and computational biologists working on ontogenetic pro-
cesses, maintaining a systems biology perspective. To reduce the learning curve of
the users, to give an easy way to exploit the use of libraries and to easily reference
different ontologies, in the next future we want to develop a custom editor,as we did
for the first implementation of the language. Furthermore we are developing parser
of the language to be able to generate Python code for the very model specifica-
tions described, that will be used by a Petri Net simulator that is currently under
development as well within our research group.

BiSDL is only the first stage of a long pipeline, as we said at the end of the ??
chapter. With the strengths of BiSDL new models can be described, more com-
plex models than the existing ones. To help users in writing more complex and
complete models we we’ll provide a rich library and an Editor able to suggest and
guide the more inexpert user. These models can be than compiled and simulated
with our simulator. The simulator will provide a graphical user interface to help
the user change parameters of simulation in an easy way. The parameters can be
input perturbations, modulation of the temporal behavior and setting of stochastic
variables. The simulation results can be used to infer new knowledge, to better un-
derstand the model fails, modifying it, and to guide biologists in new experiments.
This whole pipeline can become in the future the preliminary virtual wet-lab that
is fundamental to speed-up researchers works.
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