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Summary

The most important ingredients of evolution are variation and selection. Vari-
ation appears in nature as alteration in the nucleotide sequence of the genome
of an organism (mutation) that may happen because of error during DNA
replication or because of other type of damage (e.g. radiation) (Ref. [1]).
Micro-organisms such as bacteria are asexual and they receive an identical
copy of the parent’s genome (except if there is a replication error). They can
change their genetic material because of mutations but also in other ways,
for example by taking up exogenous DNA from the environment (Ref. [2]).
The study of the evolution of bacteria populations is of particular interest,
e.g. because bacteria can develop resistance to antibiotics (Ref. [3]), one of
the biggest threats to global health, food security, and development today
(Ref. [4]).

The models for the evolution of microbial populations presented in this
work consider the presence of one single mutant in a population of wildtype
individual. For simplicity, the size of the population is kept constant and it
is neglected the possibility of the appearance of new mutations. Individuals
compete between each other because some of them reproduce faster than
others. At a certain moment in time, no matter how large the population is,
only mutant individuals will be present (fixation) or only wildtype individuals
(extinction). We will focus on the stochastic description of the evolutionary
process.

Most of the models studied in evolutionary dynamics consider a well-mixed
population, i.e. a population in which each individual interact with any other
to the same extent. However, this is rarely the case in nature where geograph-
ical structure plays a role. For example, during an infection, microbes are
subdivided among different organs and among different hosts. Even bacteria
on a Petri dish do not all interact one with another to the same extent, but
each bacterium competes more with the individuals that are closer in terms
of spatial distance, resulting in a smaller effective population size. Individ-
uals belonging to different subpopulations may come into contact thanks to
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migration phenomena. These two factors, migrations and local competition,
contribute to maintain genetic diversity in a structured population, resulting
in a complex evolutionary dynamics.

In order to model the effect of geographical structure, in Ref. [5] individu-
als are arranged on a graph. This model considers a weighted directed graph
where one individual is placed at each node and replacement probabilities are
defined on each edge. Specifically, at each time step, an individual is cho-
sen to reproduce; its offspring replaces an individual located on one of the
nodes the progenitor is connected to, thus keeping the population size con-
stant. It has been found that some graph structures suppress selection and
some others amplify selection. Since sometimes we would like to hinder se-
lection (for example, in the evolution of antibiotic resistance) it is interesting
to understand which kind of structures causes selection to be less relevant
in the evolutionary process. Important results from this model, however,
strongly depend on details of the chosen dynamics (in particular, whether
we choose first the individual to reproduce or the individual to be replaced),
raising issues on the applicability of the model to experiments. Indeed, in
general, there are no strong constraints on the order of death and birth in
real populations.

Since this model remains rather artificial and problematic (due to the
dependence on the details of the dynamics), we study and generalize a coarse-
grained version (Ref. [6]), where a well-mixed subpopulation is placed at each
node of a graph and migration probabilities are defined on each edge. We
will show that it is possible, within this model, to reduce the dependence of
the evolutionary outcome on the dynamics.

The outline of the thesis is the following. First, in Ch. 1 we present a
classic model for well-mixed populations called the Moran model, for which
we compute the fixation probability and the fixation times and we compare
them with simulation results. In Ch. 2 we introduce a model where individ-
uals are arranged on the nodes of a graph and we present a brief review of
some theoretical results. Within this model, we investigate the dependence
on the dynamics as well as on the initial conditions using numerical simula-
tions. We focus on the star graph which is a well known amplifier of selection
in the birth-death case, and show that its property strongly depends on the
chosen dynamics, the importance of self-replacement and the initial condi-
tions. Finally, in Ch. 3 we move to the coarse-grained version of the previous
model, with subpopulations on a graph, and we study it with both analytical
calculations and numerical simulations.
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Chapter 1

The Moran model

1.1 Description of the model
The Moran model is a simple stochastic model allowing to describe the evolu-
tion of the composition of well-mixed populations. It considers a population
of fixed size N made up of two types of individuals, A and B. At each dis-
crete time step, two events take place: one individual reproduces generating
one offspring identical to itself and one individual dies. Because at each time
step there is a birth and a death event, the total population size remains
constant. The process is schematically represented in Fig. 1.1.
Remark. We consider that the same individual may be chosen for both death
and reproduction at the same time step.

Figure 1.1: Schematic of one step of the Moran process. The population is
made up of two types of individuals, type A (orange) and type B (green)
(Ref. [3]).

Denoting the number of A individuals by i = 0, 1, . . . , N , we call αi the
transition probability from i to i + 1 and βi the transition probability from
i to i − 1; thus, 1 − αi − βi is the probability to stay at i. Fig. 1.2 shows
the transition probabilities from one state to another (the probability to
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1 – The Moran model

stay in the same state is not drawn). A process of this type is called a
“birth-and-death process” (Ref. [7]) and it is a special case of Markov process
where transitions are allowed only between adjacent sites (the number of A
individuals can change by one at most).

Figure 1.2: A birth-and-
death process and its transi-
tion probabilities; the proba-
bility of staying in the same
site is not drawn.

The process can be seen as a random walk in the space of states i = 0,1, . . . , N
with absorbing boundaries 0 (all B individuals) and N (all A individuals).
Both boundaries correspond to one type of individual taking over the whole
population, which is called fixation. We are interested in knowing whether
type A will fix or not and, because the process is stochastic, this means that
we are interested in the probability for A to fix, which is known as the fixation
probability.

1.1.1 Fixation probability
Let ρi be the probability for type A to reach state N starting at i. We can
write the equation

ρi = αiρi+1 + (1 − αi − βi)ρi + βiρi−1 (1.1)

with boundary conditions ρ0 = 0 and ρN = 1. In words, the probability
for i individuals to fix is given by the sum of three terms, each of them
corresponding to three different outcomes of the first step: (i) the probability
per unit time to go from i to i+ 1 at the first step multiplied by the fixation
probability at i+ 1; (ii) the probability per unit time to stay at i multiplied
by the fixation probability at i; (iii) the probability per unit time to go from i
to i−1 multiplied by the fixation probability at i−1. Eq. 1.1 can be written
in matrix form as

ρ = Mρ (1.2)

where ρ = (ρ1, . . . , ρN) is the vector of fixation probabilities and M is the
N ×N transition matrix
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1.1 – Description of the model

M =



1 0 0 · · · 0 0 0
β1 1 − α1 − β1 α1 · · · 0 0 0
... ... ... . . . ... ... ...
0 0 0 · · · βN−1 1 − αN−1 − βN−1 αN−1
0 0 0 · · · 0 0 1


The matrix M is a right stochastic matrix, which means that its elements

are nonnegative and each row sums to unity (Ref. [7]). Eq. 1.2 shows that
ρ is an eigenvector of M with unit eigenvalue. Moreover, if we consider the
fixation probability ρ̃i for type B when starting with i individuals of type A
we notice that it also satisfies Eq. 1.1, but with boundary conditions ρ̃0 = 0
and ρ̃N = 1. Thus, ρ̃ is also an eigenvector with unit eigenvalue of M . In
addition, it is related to ρ by ρ̃ = 1 − ρ, because either A or B will finally
fix.

In order to express ρi, we follow the derivation of Ref. [8]. By introducing
yi

.= ρi − ρi−1 and γi .= βi/αi, Eq. 1.1 can be rewritten as

yi+1 = γiyi. (1.3)

Using this relation and the boundary conditions, we can write

y1 = ρ1 − ρ0 = ρ1

y2 = ρ2 − ρ1 = γ1ρ1
...

yi = ρi − ρi−1 = ρ1
i−1Ù
j=1

γj (1.4)

...

yN = ρN − ρN−1 = ρ1
N−1Ù
j=1

γj

The series {yi : i = 1, . . . , N} is a telescopic series and it sums to unity:
NØ
i=1

yi = (ρ1 − ρ0) + (ρ2 − ρ1) + · · · + (ρN − ρN−1) = ρN − ρ0 = 1; (1.5)

hence, by substituting Eq. 1.4 into Eq. 1.5 we can write

1 =
NØ
i=1

yi = ρ1
NØ
i=1

i−1Ù
j=1

γj = ρ1

1 +
N−1Ø
i=1

iÙ
j=1

γj
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1 – The Moran model

where r0
j=1 γj

.= 1. Finally, we obtain the following expression for the fixation
probability of one single individual of species A:

ρ1 = 1
1 + qN−1

i=1
ri
j=1 γj

. (1.6)

Starting from i individuals of type A, we can use the relation ρi = qi
j=1 yj

and substitute yi using Eq. 1.4 to obtain

ρi = ρ1

1 +
i−1Ø
j=1

jÙ
k=1

γk


Finally, using Eq. 1.6,

ρi =
1 + qi−1

j=1
rj
k=1 γk

1 + qN−1
j=1

rj
k=1 γk

(1.7)

From ρi we can obtain the fixation probability ρ̃N−1 of a single individual of
type B:

ρ̃N−1 = 1 − ρN−1 =
rN−1
k=1 γk

1 + qN−1
j=1

rj
k=1 γk

(1.8)

so we have that
ρ̃N−1

ρ1
=

N−1Ù
k=1

γk (1.9)

If this product is greater then 1 than ρ̃N−1 > ρ1 and a mutant B in a
population of A individuals has a higher probability to fix than a mutant
A in a population of B individuals; the other way around if the product is
smaller than 1.

1.1.2 Fixation times
Other relevant quantities are the fixation times:

• the fixation time tAi for A, defined as the average time needed for the
system to reach state N starting at state i, provided that N is ultimately
reached;

• the fixation time tBi for B, defined as the average time needed for the
system to reach state 0 starting at state i (note that N − i is the initial
number of B individuals), provided that 0 is ultimately reached;
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1.1 – Description of the model

• the unconditional fixation time, defined as the average time needed for
the system to reach either 0 or N .

They are equivalent to first passage times of a random walk and they can
be computed exactly. Their computation is presented in Appendix A and it
follows Ref. [8].

1.1.3 The role of fitness
Until now we have not specified the way in which the individual who repro-
duces and the individual who dies are chosen. To go in more details, we have
to introduce the concept of fitness of an individual which, in the context of
microbial evolution, is equivalent to the reproduction rate. In the Moran
process, the individual who dies is chosen uniformly at random, while the
individual to reproduce is chosen proportionally to its fitness.

Let’s call r the relative fitness of A with respect to B. We can now
explicitly compute the transition probabilities:

αi = ri

ri+N − iü ûú ý
prob. that an A individual reproduces

· N − i

Nü ûú ý
prob. that a B individual dies

(1.10a)

βi = N − i

ri+N − iü ûú ý
prob. that a B individual reproduces

· i

Nüûúý
prob. that an A individual dies

(1.10b)

from which it follows that γi = βi/αi = 1/r. So, by substituting in Eq. 1.7
we have

ρi =
1 + qi−1

j=1 r
−j

1 + qN−1
j=1 r−j = 1 − r−i

1 − r−N (1.11)

and for one single mutant

ρ1 = 1 − r−1

1 − r−N . (1.12)

Because we are interested in the fixation probability ρ1 of one single mutant,
in the following we will use the expression “fixation probability” specifically
for the probability for one single mutant to fix in the population (when not
otherwise specified) and we will denote it with ρ.

If A and B are neutral variants with respect to selection (namely, they
have the same fitness) then αi = βi and the process is equivalent to an
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1 – The Moran model

unbiased random walk. In this case, the fixation probability for i individuals
is

ρi = i/N (1.13)
since each individual is equivalently likely to fix. In Fig. 1.3 the theoretical
predictions for the fixation probability (Eq. 1.12) and the fixation times (see
Appendix A) of the Moran process are plotted together with simulation re-
sults. Appendix B.1 contains some details on the numerical simulations.
In the Moran process, choosing first the individual who reproduces and then
the individual who dies or the opposite is completely equivalent, since both
choices lead to the same transition probabilities αi and βi given by Eqs. 1.10.
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Figure 1.3: Fixation probability ρ and fixation times (in number of time
steps of the simulation) as functions of the relative fitness r. The numerical
results for the fixation time of a disadvantageous mutant (r < 1) are not
shown since in this case the mutant is very unlikely to fix. The error bars
correspond to 95% confidence interval. N = 100, 103 samples per data point.

We can study two asymptotic limits of Eq. 1.12 for r close to 1. Let’s
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1.1 – Description of the model

assume r = 1 + s with 0 < s ¹ 1; then Eq. 1.12 reads

ρ = 1 − (1 + s)−1

1 − (1 + s)−N

Because s ¹ 1 we can expand in Taylor series both the numerator and the
denominator:

(1 + s)−1 = 1 − s+ o(s)
(1 + s)−N = 1 −Ns+ o(Ns)

If Ns ¹ 1 we get the following approximation for the fixation probability:

ρ ≈ 1
N
. (1.14)

If instead Ns º 1:

(1 + s)−N = e−N log (1+s) = e−N(s+o(s))

so that we can approximate ρ1 as

ρ ≈ 1 − (1 − s)
exp (−Ns) ≈ s. (1.15)

In Fig. 1.4 the two asymptotic limits, Eqs. 1.14 and 1.15, and the exact
analytic expression Eq. 1.12 are shown together with the numerical results.

If we forbid the possibility for the same individual to be chosen for both
death and reproduction at the same time step then the order with which the
two events take place plays a role. The birth-death dynamics corresponds to
choosing first the individual to reproduce and then the individual who dies;
the other way round is called death-birth dynamics. In the case of birth-death
dynamics the transition probabilities are

αi = ri

(r − 1)i+N

N − i

N − 1 (1.16a)

βi = N − i

(r − 1)i+N

i

N − 1 (1.16b)

which differ from Eqs. 1.10 through theN−1 instead ofN at the denominator
of the second factor. Nevertheless, because ∀i γi = 1/r as in the standard
Moran process discussed above and because ρi only depends on {γk : k =
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1 – The Moran model
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Figure 1.4: The fixation probability ρ as function of the population size N
for the Moran process, semi-logarithmic scale. The asymptotic behaviour
ρ ≈ 1/N for Ns ¹ 1 is plotted in orange and ρ ≈ s for Ns º 1 is plotted
in green; in red the exact solution Eq. 1.12. r = 1.10, 103 samples per data
point.

1, . . . , N − 1} (see Eq. 1.11), the fixation probability is the same as in the
standard Moran process.

Conversely, in the case of death-birth dynamics the transition probabilities
are

αi = N − i

N

ri

(r − 1)i+N − 1 (1.17)

βi = i

N

N − i

(r − 1)i+N − r
(1.18)

and hence their ratio is

γi = 1
r

(r − 1)i+N − r

(r − 1)i+N − 1

which is equal to 1/r only for r = 1 or in the infinite population limit
(N → ∞). Hence, because the fixation probabilities in birth-death and
death-birth dynamics depend uniquely on the γi’s (see Eq. 1.7), they differ
in the two dynamics except in the limit N → ∞. All fixation times are
function both of the γi’s and of the transition probabilities themselves (see
Appendix A), so their value is independent of the dynamics only in the

14



1.1 – Description of the model
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Figure 1.5: Fixation probability ρ versus mutant fitness r in a Moran process
where the same individual cannot be chosen for both death and reproduction
at the same time step. N = 10, 105 samples per data point.

infinite population limit. The theoretical predictions and the results from the
simulations for the fixation probability are shown in Fig. 1.5 for both birth-
death and death-birth dynamics. Note that, as expected from Eq. 1.13, for
r = 1 the two fixation probabilities in birth-death and death-birth dynamics
are equal to 1/N .
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Chapter 2

Evolutionary dynamics on
graphs

The Moran model and the variant without self-replacement discussed above
do not take into account the structure of a population, namely, the fact
that not all interactions between individuals are equivalent, which is almost
always the case in real microbial populations.

In order to introduce structure, in Ref. [5] each individual is placed on a
node of a bi-directed graph of nodes i = 1, 2, . . . , N defined by its matrix of
weights W (positive semi-definite). The nodes i and j can be connected by
two edges: one going from i to j and the other from j to i. If wij > 0 there
is an edge from node i to j, while if wij = 0 there is no such edge.

Fig. 2.1a shows one step of birth-death dynamics on a graph: an individual
i is selected to reproduce with probability proportional to its fitness; its
offspring replaces an individual j with probability wij. As in the Moran
process, at each time step the population size is kept constant and, since
after reproduction the offspring has to replace another individual, we have
the following normalization constraint over wij:

NØ
j=1

wij = 1 (2.1)

namely, W is a right stochastic matrix.
Death-birth dynamics is shown in Fig. 2.1b: at each time step an indi-

vidual j is chosen uniformly at random to die and an individual i is chosen
to reproduce with probability proportional to the product between wij and
its fitness; the offspring of i replaces j so to keep the size of the population
constant.
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2 – Evolutionary dynamics on graphs

(a) birth-death dynamics. (b) death-birth dynamics.

Figure 2.1: Schematic of one step of the dynamics for a structured population.
Here, fi indicates the fitness of the individual at node i.

In the following we will denoted by ρm the fixation probability of the stan-
dard Moran process: ρm

.= 1−1/r
1−1/rN . Moreover, in this chapter, sentences like

“node i is replaced” or “node i becomes mutant” may be used for simplicity,
but they always refer to the individual placed at node i; they should be read
as “the individual at node i is replaced” and “the individual at node i is
replaced by a mutant individual”, respectively.

2.1 Some results for birth-death dynamics
In this section we summarize some results of evolutionary theory on graphs
in the context of birth-death dynamics presented in Ref. [5].

2.1.1 Isothermal graphs
To start with, we give a couple of definitions which will be useful in the
following: the first one introduces the concept of temperature of a node as
a measure of how often a node is replaced, the second one defines what it
means for a graph to be ρ-equivalent to the Moran process.

Definition 2.1.1. Temperature of a node
The temperature of a node j is the sum of the weights of the edges entering j:

Tj
.=

NØ
j=1

wij.

In the neutral case (when all the individuals are wildtype) the temperature
of a node is proportional to the probability with which the node is replaced:
a node is “hot” if it is often replaced and it is “cold” if it is replaced rarely.

Definition 2.1.2. ρ-equivalence to the Moran process
An evolutionary graph G is said to be ρ-equivalent to the Moran process if

18



2.1 – Some results for birth-death dynamics

the fixation probability of one mutant of fitness r is

ρ = 1 − r−1

1 − r−N ,

equal to the fixation probability ρm within the Moran process.

So, asking in what kinds of graphs a mutant has the same probability
to fix as in a well-mixed population is the same as asking what graphs are
ρ-equivalent to the Moran process, and the answer is given by the following
theorem:

Theorem 2.1.1. Isothermal Theorem
A graph G is ρ-equivalent to the Moran process if and only if G is isothermal
(all nodes have the same temperature).

The proof of this theorem is given in Ref. [9]. Notice that

1
N

NØ
j=1

Tj = 1
N

NØ
i,j=1

wij = 1
N

NØ
i=1

1 = 1, (2.2)

where we have used Eq. 2.1 in the second equivalence. Hence, if G is isother-
mal then ∀j Tj = 1 which means thatW is doubly stochastic (both rows and
columns sum to 1). On the other hand, if W is doubly stochastic then G is
isothermal. Hence, the following statements are equivalent:

1. G is ρ-equivalent to the Moran process;

2. G is isothermal;

3. W is doubly stochastic.

Some examples of isothermal graphs are shown in Fig. 2.2. Any symmet-
ric graph is isothermal since ∀j Tj = qN

j=1wij = qN
j=1wji = 1, but non-

symmetric graphs can also be isothermal, for example the cycle (Fig. 2.2b).
Fig. 2.2c shows a generic isothermal graph. The standard Moran model is
equivalent to a complete graph with equal weights and self-loops, such as
the one shown in Fig. 2.2a (self-loops are not shown), where each edge has
weight 1/N (being N the total number of nodes). All graphs which are not
isothermal have fixation probabilities different from the Moran process.
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2 – Evolutionary dynamics on graphs

(a) (b) (c)

Figure 2.2: Examples of isothermal graphs (Ref. [5]): (a) complete graph
with equal weights, equivalent to a standard Moran process (self-loops are
not shown but they are present); (b) cycle; (c) a more general example of
isothermal graph. Whenever the weights of the edges are not shown, each
edge departing a given vertex has weight 1/d, being d the outer degree of
that vertex (the outer degree is defined as the number of edges exiting the
node).

2.1.2 Suppressors and amplifiers of selection
A class of graphs which are very different from isothermal graphs in terms
of fixation probability are the one-rooted graphs. One example is the line,
shown in Fig. 2.3 and defined by

wij =
1 if j = i+ 1 and i /= N

0 otherwise

where N is the total number of nodes. The node labelled by 0 is called root.
A root is a node that has no edge leading into it. In one-rooted graphs, the

Figure 2.3: An example of one-rooted graph (Ref. [5]): the line.

mutant will fix if and only if it happens to be placed at the root, and this
happens with probability 1/N . Hence, the fixation probability is ρ = 1/N
regardless of r, which corresponds to the neutral case of the Moran process.
So, selection is completely eliminated and only the stochastic drift, due to
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2.1 – Some results for birth-death dynamics

the randomness in the choice of the individuals for reproduction and death,
counts.

In general, we can define graphs which suppress selection, even if not
completely:

Definition 2.1.3. Suppressor of selection
A graph is a suppressor of selection if ρ(r) < ρm(r) for r > 1 and ρ(r) > ρm(r)
for r < 1.

Graphs made up of an up-stream population and a down-stream one also
suppress selection (Ref. [9]). Conversely, there are graphs which amplify
selection:

Definition 2.1.4. Amplifier of selection. A graph is an amplifier of
selection if ρ(r) > ρm(r) for r > 1 and ρ(r) < ρm(r) for r < 1.

(a) (b)

Figure 2.4: Examples of
amplifiers of selection
(Ref. [5]). (a) star; (b)
superstar of parameter
k = 3. The orange and
blue colours indicate re-
spectively warm and cold
nodes.

An example of amplifier of selection is the star : a star with N nodes is
composed of a central node, the centre, and of N − 1 peripheral nodes, the
leaves. Its structure is shown in Fig 2.4a: each edge leading from the centre
to a leaf has weight 1

N−1 and each edge leading from a leaf to the centre
has weight 1, so to respect the normalization constraint (Eq. 2.1) and the
symmetry of the star, in which all the leaves are equivalent. For N large the
fixation probability of a mutant of relative fitness r is

ρ(r) = 1 − r−2

1 − r−2N . (2.3)

Therefore, a mutant of fitness r on the star has the fixation probability of a
mutant of fitness r2 in a Moran process (Eq. 1.12): an advantageous mutant
on the star is equivalent to a fitter mutant in a Moran process, while a
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disadvantageous mutant on the star is equivalent to a less fit mutant in a
Moran process. So the star is an amplifier of selection.

Another example of amplifier of selection is the superstar of parameter
k. Fig. 2.4b shows a superstar with a centre and a number of peripheral
structures (here, 5), each of them characterized by some reservoir nodes (in
blue) and k − 2 chain nodes (in orange). In the limit of a large number of
peripheral structures and of a large number number of reservoir nodes per
peripheral structure, the fixation probability for a mutant of relative fitness
r on a superstar of parameter k is

ρ(r) = 1 − r−k

1 − r−kN , (2.4)

which means that we can build arbitrarily strong amplifiers of selection with
superstars by increasing k.

2.2 The star
In this section we will study the evolutionary dynamics on the star since it
presents interesting amplifying properties while being a rather simple struc-
ture. In Fig. 2.5 the fixation probability ρ of a star is plotted versus the
mutant fitness r for both birth-death and death-birth dynamics: in the case
of birth-death dynamics, the star behaves as an amplifier of selection; con-
trarily, in the death-birth dynamics it behaves as a suppressor of selection.
Some details for the numerical simulations of this chapter can be found in
Appendix B.1.

2.2.1 Birth-death dynamics
Let’s call P the number of leaves of a star; then each edge leading from the
centre to a leaf has weight 1/P and each edge leading from a leaf to the centre
has weight 1. The smallest interesting example is the star with P = 2. In
this simple case, we compute exactly the fixation probability by numerically
finding the eigenvectors of the matrix of transition probabilities between the
different states of the system.

Contrarily to the Moran process, where each state is fully defined by the
number of mutants present in the population, for a general graph one needs
to specify the exact subset of nodes at which mutants individuals are located
in order to define a state. Because each node can hold a mutant or a wildtype
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Figure 2.5: Fixation probabil-
ity ρ vs mutant fitness r for a
star with birth-death dynamics
(blue) and death-birth dynam-
ics (red). P = 9, 104 samples
per data point.

individual (and there are P+1 nodes), the total number of states is S .= 2P+1.
Exact calculations of the fixation probability are possible also for P > 2, but
they become rapidly heavier since the number of states S grows exponentially
with P .

Let us number the states from 1 to S and let state 1 corresponds to
only wildtypes and state S to only mutants. By calling τij the transition
probability from state i to state j we can write the following equation for the
fixation probability ρi when starting at state i:

ρi =
SØ
j=1

τijρj (2.5)

or, equivalently, in matrix form

ρ = Tρ, (2.6)

where T is the S × S matrix of elements τij. As in the case of the Moran
process, both the probabilities for the wildtype to fix and for the mutant to
fix satisfy Eq. 2.5 (and hence Eq. 2.6) but with different boundary conditions:
for the mutant we have that ρ0 = 0 and ρS = 1, while for the wildtype we have
that ρ̃0 = 1 and ρ̃S = 0. Since we are interested in the fixation probability of
the mutant, we consider the elements of ρ corresponding to the initial state
with the mutant occupying the centre and to the two initial states with the
mutant occupying one of the two leaves. Because of the symmetry of the
star, the last two initial states hold the same fixation probability.

The two solutions of Eq. 2.6, with the mutant starting on the centre ρcentre

and with the mutant starting on a leaf ρleaf , are plotted in Fig. 2.6 with
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a blue and red line, respectively, in the case of birth-death dynamics, and
they are in very good agreement with the simulation results (represented by
markers). The line coloured in purple shows the linear combination of the
two solutions corresponding to a mutant placed uniformly at random on the
graph: ρunif = 1/3 ρcentre + 2/3 ρleaf . The amplifying effect of the star with
respect to the Moran process is visible even if small: indeed, ρunif > ρm for
r > 1, while ρunif < ρm for r < 1. A stronger amplification effect is expected
for stars of larger size.
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Figure 2.6: Fixation probability ρ versus mutant fitness r for a small star with
birth-death dynamics: the solutions of Eq. 2.6 are shown by solid lines and
simulation results by markers. The lines in colours correspond to the fixation
probability for the star with different initial conditions: in blue, the mutant
is placed on a leaf; in red, the mutant is placed on the centre; in purple, the
mutant is placed uniformly at random. The black dashed line corresponds to
the fixation probability in a Moran process with N = 3 individuals. P = 2,
104 samples per data point.

Fig. 2.6 shows that the fixation probability depends strongly on the initial
conditions. In particular, a mutant appearing on a leaf is favoured with
respect to a mutant having the same fitness but appearing at the centre.
The reason is that the centre is replaced more often than a leaf, i.e. it has a
higher temperature. Indeed, using Def. 2.1.1, the temperature of the centre
is Tc = P and of a leaf is Tl = 1/P .
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Realistic initial conditions

Given the importance of the initial conditions on the evolutionary outcome
(i.e. what type fixes), it is worth asking what initial conditions are more
realistic in a biological sense, namely, which probability distribution should
be chosen for the initial position of a new mutant on a general graph.

Uniform initial conditions seem sensible for mutations that arise sponta-
neously (e.g. due to exposure to radiation), but in nature mutations often
arise at division due to errors in DNA replication. In order to model this
situation, in Ref. [10] it is proposed to set a mutant on node j with the prob-
ability that an individual on node j is replaced. The replacement (death
event) arises because of a reproduction event at a neighbouring node. The
probability for node j to be replaced (death probability) when all individuals
have the same fitness is

NØ
i=1

1
N
wij = Tj

N
. (2.7)

since 1/N is the probability that individual i reproduces and wij is the proba-
bility that the progeny of i replaces j. Placing the mutant with a probability
equal to the replacement probability of a node it is called “temperature ini-
tialization”:

temp .= 1
N

(T1, . . . TN) ; (2.8)

it is normalized as shown by Eq. 2.2 and it models the appearance of muta-
tions only if upon division the mutant daughter cell is always the one which
migrates.

A more realistic assumption would be that, upon division where a mu-
tation occurs, the mutant cell and the wildtype daughter cells have equal
probabilities to stay or to migrate. Because before the mutant appears, all
the individuals are wildtype, each of them reproduces with the same proba-
bility (1/N if N is the total number of individuals) since there is no fitness
difference, so birth is uniformly distributed. At a given node, there is a
uniform probability of birth occurring and therefore of a native mutant ap-
pearing, plus there is a probability of a mutant born elsewhere to migrate
there. The latter is proportional to the temperature of the node considered,
which corresponds to the temperature initialization. Hence, the new proba-
bility distribution, that we call “mixed”, it is just a combination with equal
weights of uniform and temperature:

mixed = 1
2unif + 1

2temp, (2.9)
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where temp is given by Eq. 2.8 and unif .= 1
N (1, . . . ,1). Consequently,

ρmixed = 1
2ρ

unif + 1
2ρ

temp. (2.10)

where ρunif , ρtemp and ρmixed denote the fixation probabilities respectively for
uniform, temperature and mixed initial conditions.

Adding self-loops

Still following Ref. [10], we can add self-loops to the star so that the same
individual can divide and replace itself; indeed, there is no reason for this
event to be forbidden. Moreover, by changing the weight of the self-loops
we are able to change the temperature of the nodes. In order to do so, we
introduce two parameters x and y (0 < x, y ≤ 1) such that 1−y is the weight
of the self-loop of the centre and 1 − x is the weight of the self-loops on each
leaf. The other weights are chosen in order to respect the symmetry of the
star and for W to be right stochastic:

W =



1 − y y/P y/P · · · y/P y/P
x 1 − x 0 · · · 0 0
x 0 1 − x · · · 0 0
... ... ... . . . ... ...
x 0 0 · · · 1 − x 0
x 0 0 · · · 0 1 − x


. (2.11)

The case x = y = 1 corresponds to the star without self-loops that we have
discusses previously. The temperature of the centre Tc and the temperature
of each leaf Tl are functions of x and y:

Tc = 1 − y + Px (2.12a)
Tl = 1 − x+ y/P (2.12b)

where we have used Def. 2.1.1.
In the top left panel of Fig. 2.7, the results of the simulations are shown

for x = y = 1 (no loops) for uniform (blue) and temperature (red) initial con-
ditions. Under uniform initial conditions, the star amplifies selection with
respect to the unstructured population (black dashed line). Temperature
initialization leads to a very different result, due to the large temperature
difference between the centre and the leaves. In this case, the selection ef-
fect is suppressed for advantageous mutants (r > 1) with respect to the
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Moran process. In the plot at the top right, the results for x = 1/P and
y = 1/P 2 show that by mitigating the temperature difference between the
centre and the leaves it is possible to obtain amplification for both initial
conditions (Ref. [10]). By choosing y = Px we get an isothermal star, such
that Tc = Tl = 1, so that uniform and temperature initialization coincide.
As shown at the bottom of Fig. 2.7 and in agreement with the isothermal
theorem (Th. 2.1.1), we then recover the fixation probability ρm of an un-
structured population.
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Figure 2.7: Fixation probability ρ versus mutant fitness r for a star with
birth-death dynamics. Top left: a star with x = y = 1; top right: x = 1/P
and y = 1/P 2; bottom: y = Px. Simulation results for uniform initial
conditions in blue and temperature initial conditions in red. In full black
line the asymptotic fixation probability for a star with a large number of
leaves (Eq. 2.3); in dashed line the fixation probability ρm of an unstructured
population of N = 10 individuals. P = 9, 103 samples per data point.
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In order to further study how the amplifying property of the star changes
depending on the temperature of the nodes, we have performed some simu-
lations using different values for x in (0,1) while keeping y fixed. In the top
row of Fig. 2.8 the results are shown in the case of uniform initial conditions:
by decreasing the value of x the temperature of the centre is decreased, while
the temperature of the leaves is increased according to Eqs. 2.12. As the
temperature difference ∆T .= Tc − Tl is reduced, the star gradually loses its
amplifying property and, as the centre becomes colder than the leaves, the
star becomes a suppressor of selection. Note that for ∆T = 0 we recover
the probability ρm of an unstructured population within the Moran model
(Eq. 1.12), as expected from the isothermal theorem (Th. 2.1.1).

The results for the temperature initialization are shown in Fig. 2.8, mid-
dle row. We see two regimes: the graph on the left shows that, for large
temperature differences, as ∆T decreases the fixation probability increases;
however, as ∆T becomes sufficiently small (graph on the right), the results
are analogous to the ones with uniform initialization (as the centre becomes
colder than the leaves the star becomes a suppressor of selection).

In the bottom row, the results for mixed initial conditions (Eq. 2.9) are
shown. The behaviour of the fixation probability is qualitatively similar to
both uniform and temperature initial conditions for ∆T close to zero (on the
right); for large ∆T the fixation probability increases as the temperature of
the centre decreases, as for temperature initialization, but the variation is
milder due to the uniform contribution to the probability.

In Fig. 2.9 we have plotted the fixation probability versus ∆T for the three
types of initial conditions. The plots are obtained by varying x in (0,1) at
fixed y and r. It can be noticed that mixed initialization gives less extreme
results with respect to uniform and temperature, e.g. for large ∆T it does not
imply very small value of fixation probability as temperature initialization
does.

In Fig. 2.10 we have plotted heatmaps of the fixation probability versus x
and y for a fixed value of r, showing that the fixation probability does not
depend only on the temperature difference ∆T , but it depends on the values
of both x and y which determine the matrix of weights W (Eq. 2.11).

28



2.2 – The star

0

0.2

0.4

0.6

ρ
Tc= 8.65, ∆T=8.5
Tc= 1.45, ∆T=0.5
Tc= 1.00, ∆T=0.0
Tc= 0.82, ∆T=-0.2
Tc= 0.64, ∆T=-0.4
ρm

0

0.2

0.4

0.6

ρ

Tc= 3.70, ∆T=3.0
Tc= 5.50, ∆T=5.0
Tc= 7.30, ∆T=7.0
Tc= 9.10, ∆T=9.0
ρm

Tc= 1.45, ∆T=0.5
Tc= 1.00, ∆T=0.0
Tc= 0.73, ∆T=-0.3
Tc= 0.64, ∆T=-0.4

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r

ρ

Tc= 4.60, ∆T=4.0
Tc= 6.40, ∆T=6.0
Tc= 8.20, ∆T=8.0
Tc= 9.10, ∆T=9.0
ρm

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
r

Tc= 2.35, ∆T=1.5
Tc= 1.00, ∆T=0.0
Tc= 0.82, ∆T=-0.2
Tc= 0.64, ∆T=-0.4

Figure 2.8: Fixation probability ρ vs mutant fitness r for a star with birth-
death dynamics: simulation results for different values of the temperature
Tc of the centre, obtained by varying x in (0,1), while y is kept fixed. Top
row: the results for uniform initial conditions; middle row: the results for
temperature initial conditions; bottom row: mixed initialization. P = 9,
y = 0.45, 103 samples per data point.
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Figure 2.9: Fixation probabil-
ity ρ versus the temperature
difference ∆T between the cen-
tre and a leaf, for a star with
birth-death dynamics. The
value of ∆T is changed by
varying x in (0,1) and keeping
y fixed, in the case of an ad-
vantageous mutant. P = 9,
r = 1.45, y = 0.45, 104 sam-
ples per data point.
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Figure 2.10: Heatmaps of the fixation probability ρ as function of x and y
for a star with birth-death dynamics. Top left: uniform initial conditions;
top right: temperature initial conditions; bottom: mixed initial conditions.
Red lines indicate the probability ρm of an unstructured population within
the Moran model (Eq. 1.12). P = 9, r = 1.45, 105 samples per data point.
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2.2.2 Death-birth dynamics

In the previous section we dealt with birth-death dynamics; let us now turn
to the alternative choice of death-birth dynamics and study the impact of
this choice on the results.
As mentioned at the beginning of this chapter, in this case it is the individual
j who dies which is chosen first, uniformly at random, and then the individual
i who reproduces is chosen proportionally to the product between wij and
its fitness. Note that there is some freedom in the choice of W , since the
probability for an individual at node i to replace another individual at node
j, given that this latter dies, is given by fiwij, where fi is the fitness of the
individual at i. So, contrarily to birth-death, it also depends on the fitness.
Hence, there is not a normalization constraint on the wij which is valid along
the whole simulation.

We can choose W to be such that wij is actually the probability for i to
replace j, given that j dies, in the neutral case (when the population is fully
wildtype). This requirement is equivalent to ask that W is left stochastic
(qN

i=1wij = 1), contrarily to birth-death where the natural choice for W is
to be right stochastic (Eq. 2.1). This choice for W is often made in the
literature (Ref. [6]), but it has no particular significance and other choices
may be justified.

We can check whether all these choices are equivalent or not by looking at
the transition probabilities of the process. Let’s introduce a variable nk at
each node such that nk = 1 if the node is mutant and nk = 0 if it is wildtype.
The probability T+

i for node i to become mutant given that it was wildtype
reads

T+
i = 1

P + 1

q
k wkink(1 + s)q
j wji(1 + snj)

(2.13)

since 1/(P +1) is the probability that the individual at i dies and the second
factor is the probability that a mutant individual reproduces and replaces
i. The only constraints that W must satisfy are the ones imposed by the
symmetry of the star: for any k, j /= 0 w0j = w0k, wj0 = wk0, wjk = 0,
being the centre labeled by 0. In order to remain general, we consider the
possibility of self-loops of weight w00 on the centre and wii independent of i
on each leaf. Hence, if i is a leaf,

T+
i = 1

P + 1
(w0in0 + wiini)(1 + s)

w0i(1 + sn0) + wii(1 + sni)
; (2.14)
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if instead i is the centre (i = 0):

T+
0 = 1

P + 1

q
k wk0nk(1 + s)q
j wj0(1 + snj)

. (2.15)

In both cases, T+
i depends on the actual weight of the edges, and an analogous

result holds for the probability T−
i for the individual at i to become wildtype

given that it was mutant, which is given by

T−
i = 1

P + 1

q
k wki(1 − nk)q
j wji(1 + snj)

. (2.16)

For a star without self-loops (w00 = wii = 0) we have

T+
i = 1

P + 1
w0in0(1 + s)
w0i(1 + sn0) =

0 if n0 = 0
1/(P + 1) if n0 = 1;

(2.17)

if i is a leaf and

T+
0 = 1

P + 1

q
k /=0wk0nk(1 + s)q
j /=0wj0(1 + snj)

= 1 + s

P + 1

q
k nkq

j(1 + snj)
(2.18)

if i is the centre, which are both independents of the actual values of the
wij (the same result holds for T−

i ). Hence, for the star without self-loops,
death-birth dynamics is well-defined, since it does not depend on the choice
of W (within the constraints imposed by the symmetry). On the contrary, if
we allow self-loops the fixation probability depends on the choice of W and
there is not an unique choice for it, making the model not well-defined.

In the present work, we will use a left stochastic matrix of weights, con-
sistently with Ref. [6], so that W is defined as

W
.=



1 − y x x · · · x x
y/P 1 − x 0 · · · 0 0
y/P 0 1 − x · · · 0 0
... ... ... . . . ... ...

y/P 0 0 · · · 1 − x 0
y/P 0 0 · · · 0 1 − x


(2.19)

namely, as the transpose of the matrix used in birth-death dynamics. This
expression for W arises from the requirement that W is left stochastic and
from the symmetries of the star graph.
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The numerical and analytical results (obtained along the same lines of
Sec. 2.2) for a small star with P = 2 leaves are shown in the left panel of
Fig. 2.11: in contrast with birth-death, under uniform initialization the star
is a suppressor of selection. Moreover, here, a mutant located at the centre
is more likely to fix than one located at a leaf, while the opposite result was
obtained for birth-death dynamics (Fig. 2.6).
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Figure 2.11: Fixation probability ρ versus mutant fitness r for a small star
with death-birth dynamics: the solutions of Eq. 2.6 are shown by solid lines
and simulation results by markers. The lines in colours correspond to the
fixation probability for the star with different initial conditions: in blue,
the mutant is placed on a leaf; in red, the mutant is placed on the centre;
in purple, the mutant is placed uniformly at random. The black dashed
line corresponds to the fixation probability in a Moran process with N = 3
individuals. P = 2, 104 samples per data point.

In partial analogy with what has been done for birth-death, we could
define a new temperature in the death-birth framework as

Ti
.=
P+1Ø
j=1

wij (2.20)

such that the reproduction probability of node i in a fully wildtype population
is Ti/(P +1). For the same values of x and y the temperature of each node in
the death-birth framework is the same as the one defined in the birth-death
framework (Eqs. 2.12), hence the centre is again “hotter” than the leaves,
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and the star is isothermal if and only if y = Px. But here, if a node is “hot”,
it means that an individual placed on it replaces others (i.e. reproduces)
with higher probability than an individual placed on a “cold” node (at least
in the neutral situation where all individuals are wildtype), resulting into a
higher probability to fix, which explain why ρcentre leads to higher fixation
probability than ρleaf for r = 1 as shown in Fig. 2.11. Conversely, in birth-
death dynamics we recall that a “hot” node is often replaced. In general,
with death-birth dynamics and without assuming that all individuals are
wildtype, the reproduction probability of individual i is

1
P + 1

P+1Ø
j=1

fiwijqN
k=1 fkwkj

where fj is the relative fitness of individual at node j, so it depends on all
fitnesses in the population.
As for birth-death dynamics, we have plotted the numerical results for the
fixation probability versus the fitness for different temperatures of the nodes,
by keeping y fixed and varying x. The results are shown in Fig. 2.12, where
the mixed initial conditions are defined as for birth-death (Eq. 2.9). In the
case of uniform initial conditions, as the temperature of the centre decreases,
the star changes from suppressor to amplifier of selection, contrarily to what
happens for birth-death dynamics (see Fig. 2.8, top row). In the case of tem-
perature initial conditions, for ∆T very large the fixation probability is large
for both r > 1 and r < 1 with respect to a well-mixed population, hence also
disadvantageous mutants have a high probability to fix; as ∆T decreases the
fixation probability decreases; for small ∆T we recover results similar to the
ones for uniform initialization. We notice that for an isothermal star we do
not recover the fixation probability of an unstructured population, in con-
trast with birth-death dynamics for which the isothermal theorem (Th. 2.1.1)
holds. Moreover, the behaviour of the fixation probability with respect to
∆T is strongly different from the birth-death case, as can be seen by com-
paring Fig. 2.9 and Fig. 2.13 where the fixation probability is plotted versus
∆T .
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Figure 2.12: Fixation probability ρ vs mutant fitness r for a star with death-
birth dynamics: simulation results for different values of the temperature
Tc of the centre, obtained by varying x in (0,1), while y is kept fixed. Top
row: the results for uniform initial conditions; middle row: the results for
temperature initial conditions; bottom row: mixed initialization. P = 9,
y = 0.45, 103 samples per data point.
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Figure 2.13: Fixation probabil-
ity ρ versus the temperature dif-
ference ∆T between the centre
and a leaf, for a star with death-
birth dynamics. The value of
∆T is changed by varying x in
(0,1) and keeping y fixed, in
the case of an advantageous mu-
tant. P = 9, r = 1.45, y = 0.45,
104 samples per data point.
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Chapter 3

Coarse-graining the model
of populations on graphs

A different model (Ref. [6]) with respect to the one presented in the pre-
vious chapter takes into account the fact that often in nature populations
are divided into relatively well-mixed communities exchanging individuals
via migration events. In this kind of model, there are M subpopulations,
which we are called “islands”, each island being labeled with a number from
1 to M . The total number of individuals on island i is denoted by Ni and
the total number of mutant individuals on the same island is denoted by
ni. Each island occupies the node of a bi-directed graph with weights mij.
Hence, this model can be viewed as a coarse-grained version of the previous
one, with subpopulations on graphs instead of single individuals on graphs.
As before, anytime a death event occurs, a reproduction event also occurs
or viceversa (depending on the details of the dynamics), and the newborn
individual migrates to replace the individual who dies. Hence, the size of
each subpopulation Ni is kept constant.

In birth-death dynamics (also called “invasion process” in Ref. [6]), an indi-
vidual is chosen for reproduction among all the individuals of the population
according to its fitness. Assuming that it belongs to island i, its offspring
migrates to island k with probability mik, where it replaces an individual
chosen uniformly at random among the Nk individuals there.

In death-birth dynamics (also called “voter model” in Ref. [6]), an individ-
ual is chosen uniformly at random in the entire population to die; assuming
that it belongs to island k, with probability mik a migration event occurs
from island i to k. Another option is that the migration event from i to
k occurs with probability proportional to the product between mik and the
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3 – Coarse-graining the model of populations on graphs

total fitness Ni + sni of island i. The first choice considers fitness to be
relevant only within each island, while the second one takes into account
fitness across the islands. We will mainly focus on the second one since, for
Ni = 1 ∀i, it allows to recover the model we have described in Ch. 2. Finally,
the reproducing individual on island i is chosen according to its fitness within
the island. Some details for the numerical simulations of this chapter can be
found in Appendix B.2.

In discrete time, we will call T+
i (n) the transition probability from ni to

ni + 1 and T−
i (n) the transition probability from ni to ni − 1, which both

depend on the complete state of the system n = (n1, n2, . . . , nM). We will
also introduce a continuous time description (Ref. [6]) where we will call
W+
i (n) the transition rate from ni to ni + 1 and W−

i (n) the transition rate
from ni to ni − 1. In the following we will briefly summarize the derivation
of the fixation probability as presented in Ref. [6] for a mutant individual of
relative fitness r = 1 + s.

3.1 Fixed points of the probability generat-
ing function equation

Let P (n, t) be the probability to observe the system in state n at time t.
Moreover, let the vector a±

i n be the vector with components nk for all k /= i
and ni ± 1. The master equation reads

∂P

∂t
(n, t) =

MØ
i=1

P (a−
i n, t)W+

i (a−
i n) + P (a+

i n, t)W−
i (a+

i n) (3.1)

−
MØ
i=1

P (n, t)
è
W+
i (n) +W−

i (n)
é

3.1.1 Birth-death dynamics
Consider now the birth-death case. The transition probability T+

i (n) is given
by

T+
i (n) = Ni − ni

Niü ûú ý
(2)

MØ
k=1

mki
nk(1 + s)q

j Nj + s
q
j njü ûú ý

(1)

(3.2)

where (1) is the probability for a mutant to reproduce on island k and to
migrate to i, which is then summed over all the islands k, and (2) is the
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3.1 – Fixed points of the probability generating function equation

probability that, given that a death event occurs on island i (because an
individual in i is being replaced), a wildtype individual dies. Analogously:

T−
i (n) = ni

Ni

MØ
k=1

mki
Nk − nkq

j Nj + s
q
j nj

. (3.3)

To describe the process in continuous time, in the framework of Eq. 3.1,
we can consider a total event rate (reproduction rate) µÍ proportional to the
total fitness of the population, i.e. µÍ = µ

1q
j Nj + s

q
j nj

2
where µ stands

for the division rate of one wildtype individual. This yields:

W+
i (n) = µÍNi − ni

Ni

MØ
k=1

mki
nk(1 + s)q

j Nj + s
q
j nj

(3.4a)

W−
i (n) = µÍ ni

Ni

MØ
k=1

mki
Nk − nkq

j Nj + s
q
j nj

(3.4b)

which allows to eliminate the nonlinearity due to the term s
q
j nj at the

denominator of Eqs. 3.2 and 3.3 so that, finally, we get

W+
i (n) = µ(1 + s)Ni − ni

Ni

MØ
k=1

mkink (3.5a)

W−
i (n) = µ

ni
Ni

MØ
k=1

mki(Nk − nk) (3.5b)

Recall that in birth-death dynamics the mki satisfy the normalization con-
straint

MØ
i=1

mki = 1. (3.6)

Following Ref. [6], let us now derive an equation for the probability gen-
erating function (PGF) starting from Eq. 3.1. The PGF is defined as

φ(z, t) .=
Ø
n
P (n, t)zn (3.7)

where zn .= zn1
1 z

n2
2 · · · znM

M for short. By multiplying Eq. 3.1 by zn and by
summing over n we obtain the following equation:

∂φ

∂t
(z, t) =

MØ
i=1

(zi − 1)éznW+
i (n)ê +

A 1
zi

− 1
B

éznW−
i (n)ê (3.8)
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3 – Coarse-graining the model of populations on graphs

where é·ê indicates a mean over n with probability P (n, t). For simplicity,
in the following we consider Ni = N ∀i. By substituting Eqs. 3.5 and by
taking into account Eq. 3.6, we finally obtain the following partial differential
equation for the PGF:

c
∂φ

∂t
=
Ø
i

(zi − 1)
Ø
k

mki [Nzk∂k −Nc∂i − (zi − c)∂izk∂k]φ (3.9)

where c .= 1/(1 + s) and ∂i
.= ∂

∂zi
. In order to obtain such a relatively

simple equation it is fundamental to get rid of the nonlinearity due to the
denominator of the transition probabilities in Eqs. 3.4, as we have done by
introducing an event rate µÍ. Note that this point is overlooked in Ref. [6].
The stationary solution of Eq. 3.9 can be expressed as

φs(z) = π0 + πf (z1z2 . . . zM)N (3.10)

where π0 and πf stand respectively for the probability for the mutant to get
extinct (loss probability) and for the fixation probability. Indeed, from the
definition of PGF (Eq. 3.7),

π0 = φs(0) = P (0, t)

πf =
MÙ
i=1

1
N !∂

N
k φ = P (N, t)

where N .= (N, . . . , N); accordingly, π0 + πf = 1 since φ(1, t) = 1 (see
Eq. 3.7). The probability distribution corresponding to φs is Ps(n) = π0δn,0+
πfδn,N, which justifies the ansatz in Eq. 3.10.
Eq. 3.9 always admits the fixed point (1,1, . . . ,1) corresponding to the nor-
malization of the probability: φ(1, t) = q

n P (n, t) = 1. Suppose now that
there exists another fixed point ζ

.= (ζ1, . . . , ζM), such that at any time t

∂φ

∂t
(ζ, t) = 0

than we could deduce that

π0 + πf (ζ1ζ2 . . . ζM)N = φ(ζ, t = 0)

and so, using the fact that π0 = 1 − πf ,

πf = 1 − φ(ζ, t = 0)
1 − (ζ1ζ2 . . . ζM)N . (3.11)
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3.1 – Fixed points of the probability generating function equation

In the case where the mutant appears uniformly at random on one of the
islands, the initial condition is

P (n, t = 0) = 1
M

MØ
i=1

δn,ei

where ei is a vector of all zeros except for a one at position i, so

φ(z, t = 0) = 1
M

MØ
i=1

zi (3.12)

and Eq. 3.11 reads

πf = 1 − 1
M

qM
i=1 ζi

1 − (ζ1ζ2 . . . ζM)N . (3.13)

Hence, the calculation of the fixation probability reduces to the problem of
finding (if it exists) a non-trivial fixed point of Eq. 3.9.
Note that Eq. 3.13 evaluated at zm

.= (c, c, . . . , c) yields

πf = 1 − c

1 − cMN
, (3.14)

which is the fixation probability of a well-mixed population of MN individ-
uals within the Moran process (Eq. 1.12). The PGF equation at zm reads

c
∂φ

∂t
(zm, t) = Nc(c− 1)

 MØ
k=1

(1 − Tk)∂k
φ : (3.15)

hence, zm is indeed a fixed point if and only if ∀k Tk = 1. This corresponds
to the isothermal theorem (Th. 2.1.1).

The star without self-loops

For a star without loops and birth-death dynamics, where we label with 0
the centre and with k = 1, . . . , P the P leaves, we have

mk0 = 1 for k > 0
m0k = 1/P for k > 0
mkj = 0 for any k, j > 0
mkk = 0 for any k.
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3 – Coarse-graining the model of populations on graphs

Moreover, because of the symmetry of the graph, the fixed point of Eq. 3.9
has the form ζ = (ζ0, ζ1, ζ1, . . . , ζ1). By substituting into Eq. 3.9 we find

ζ0 = c(P + c)
Pc+ 1

ζ1 = c2

ζ0

We have compared the resulting theoretical prediction for the fixation prob-
ability (from Eq. 3.13) with the simulation results for islands of size one
performed as in Ch. 2; they are shown in Fig. 3.1. We find a very good agree-
ment between the analytical prediction and the simulation results. Note that
simulations are made in the discrete time framework (see above).

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

r

ρ

simulation
theory

Figure 3.1: Fixation probabil-
ity ρ versus mutant fitness r for
a star without loops and birth-
death dynamics. Simulations of
the model described in Ch. 2
for islands of size one. P = 9,
Ni = 1 ∀i, 103 samples per data
point.

3.1.2 Death-birth dynamics
In death-birth dynamics, the transition probability T+

i (n) is

T+
i (n) = Ni − niq

j Njü ûú ý
(1)

MØ
k=1

mÍ
kiü ûú ý

(2)

nk(1 + s)
Nk + snkü ûú ý

(3)

(3.16)

where (1) is the probability for a wildtype individual to die on island i, while
(2) is the probability that, given that a death event occurs on island i, a
migration event occurs from island k to i. It takes into account the total
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3.1 – Fixed points of the probability generating function equation

fitness of island k:
mÍ
ki
.= mki(Nk + snk)q

jmji(Nj + snj)
(3.17)

with the convention that qM
k=1mki = 1. Finally, (3) is the probability that,

given that a reproduction event happens in island k, it is a mutant who
reproduces. Similarly,

T−
i (n) = niq

j Nj

MØ
k=1

mÍ
ki

Nk − nk
Nk + snk

. (3.18)

Recall that if mÍ
ki = mki is also possible and it corresponds to a model in

which fitness is important in determining selection only within the individuals
of the same island.

To describe the process in continuous time, we introduce a total event rate
(total death rate), which is proportional to the total population size (µ being
the death rate of an individual):

µÍ .= µ
MØ
i=1

Ni. (3.19)

We have

W+
i (n) = µÍT+

i (n) = µ(Ni − ni)
q
kmkink(1 + s)q
jmji(Nj + snj)

W−
i (n) = µÍT−

i (n) = µni

q
kmki(Nk − nk)q
jmji(Nj + snj)

where we have used the expressions of µÍ and mÍ
ki given respectively by

Eqs. 3.19 and 3.17. As before, for simplicity, let us now consider the case of
islands of the same size Ni = N ∀i. Then, the previous equations read

W+
i (n) = µ(N − ni)

q
kmkink(1 + s)
N + s

q
jmjinj

(3.20a)

W−
i (n) = µni

q
kmki(N − nk)

N + s
q
jmjinj

. (3.20b)

where we have used qjmji = 1. In contrast with the birth-death case, here
there is no way to get rid of the term s

q
jmjinj at the denominator by

introducing a suitable event rate. But if s is sufficiently small for that term
to be negligible, we obtain the same transition rates as for birth-death in the
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3 – Coarse-graining the model of populations on graphs

case of islands of the same size (see Eq. 3.5). Note that this equivalence does
not hold for islands of different size. However, because the normalization of
the mki is different from the one of birth-death, even in this approximation
we get a slightly different PGF equation:

c
∂φ

∂t
=
Ø
i

(zi − 1)
NØ

k

mkizk∂k −Nc∂i − (zi − c)∂i
Ø
k

mkizk∂k

φ. (3.21)

As for birth-death dynamics, finding a non-trivial fixed point of the PGF
equation allows to compute the fixation probability through Eq. 3.13, in the
approximation for small s. Note that if s is not small, then it is impossible
to write a simple equation on the PGF. This point was not discussed in the
earlier literature (Ref. [6]).

The star without self-loops

As for birth-death dynamics, we can compute the fixed points of Eq. 3.21 in
the case of a star without loops, for which we have

mk0 = 1/P for k > 0
m0k = 1 for k > 0
mkj = 0 for any k, j > 0
mkk = 0 for any k.

The fixed points we find are

ζ0 = c(Pc+ 1)
P + c

ζ1 = c2

ζ0

These fixed points are exact, but Eq. 3.21 is only valid in the approximation
of small s. The comparison between this approximated solution and the
simulation results for a star with islands of size one is shown in Fig. 3.2 in
the top row.

For the simulations the model presented in Ch. 2 has been used. We see
that as s = r − 1 increases in absolute value the error due to the approxi-
mation also increases, consistently with our analytical understanding. In the
bottom row, on the left, simulation results are shown for Ni = 10 ∀i, obtain
within the model presented in this chapter and where fitness matters across
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3.1 – Fixed points of the probability generating function equation
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Figure 3.2: Fixation probability ρ versus mutant fitness r for a star without
self-loops and death-birth dynamics (P = 9). Top row: Ni = 1 ∀i (105

samples per data point, simulations within the model of Ch. 2). Bottom:
Ni = 10 ∀i (104 samples per data point), on the left, fitness matters across
the islands, according to Eq. 3.17; on the right, fitness matters only within
each island, i.e. mÍ

ki = mki.

the islands (see Eq. 3.17). We see that the approximation is much better in
this case. On the right, the same results are shown for mÍ

ki = mki implying
that fitness matters only within each island, and the theoretical predictions
are then less accurate especially for advantageous mutants (an explanation
is given at the end of this section). As in birth-death case, simulations are
made in the discrete time framework (see above).

In order to better understand the results shown in Fig. 3.2, we have com-
puted the error made on the transition rates, due to the small-s approxima-
tion at the denominator (Eqs. 3.20), in the two cases (selection within and
among the islands) in the simple cases where a loss or a fixation event occur.
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3 – Coarse-graining the model of populations on graphs

The transition rates in the approximation for small s are denoted by W̃+
i

and W̃−
i .

In a loss event, we consider ni = 0 ∀i /= l and nl = 1, where l /= 0 hence l
is a leaf-index (this is the most probable configuration with a single mutant
individual for a star with multiple leaves). In the case of selection across the
islands, according to Eqs. 3.20 we have

W+
i = µN

mli(1 + s)
N + smli

(3.22)

W−
l = µ

q
kmklN

N
= µ (3.23)

where we have used q
kmki = 1 (we do not consider W+

l and W−
i since

they vanish) and that mll = 0 since we consider a star without self-loops.
Independently of s, W−

l = µ, so no error is made on its value when focusing
on the small s regime and neglecting the terms in s at the denominator.
Contrarily,

W̃+
i = µN

mli(1 + s)
N

and the relative error is ---W̃+
i −W+

i

---
W+
i

= mli
s

N
. (3.24)

In the case of selection within the islands, the transition rates read:

W+
i = µ(Ni − ni)

MØ
k=1

mki
nk(1 + s)
Nk + snk

(3.25a)

W−
i = µni

MØ
k=1

mki
Nk − nk
Nk + snk

(3.25b)

and, in the case of a star without self-loops, for a loss event Eqs. 3.25 yield

W+
i = µN

mli(1 + s)
N + s

W−
l = µ

q
kmklN

N
= µ.

Again, no error is made on the value of W−
l by making the small-s approx-

imation, since it does not depend on s, while the relative error on W+
i is---W̃+

i −W+
i

---
W+
i

= s

N
. (3.26)

46



3.1 – Fixed points of the probability generating function equation

Analogously, we can compute the error in the case of a fixation event, where
ni = N ∀i /= l and nl = N − 1. In this case, we find that W+

i is affected by
the same relative error s in both cases, while the error on W−

i in the case of
selection across the islands is

---W̃−
i −W−

i

---
W−
i

= s
3

1 − mli

N

4

while in the case of selection within the islands

---W̃−
i −W−

i

---
W−
i

= s

A
1 − 1

N

B
.

Sincemli ≤ 1, in a loss event the error made with respect to the simulations
with selection across the islands is smaller (or equal to) the error made with
respect to the case in which selection matters only within the islands. The
opposite holds for a fixation event. However, loss events are much more likely
than fixation events (even for a very fit mutant, the fixation probability is
not higher than 0.2, see Fig. 3.2). Loss events often happen because a single
mutant individual is present in the population and it is replaced by a wildtype
individual before having the possibility to reproduce. The most probable
configuration (under uniform initialization) is that the mutant is placed on
a leaf. In this case, since mli = 1/P , the relative error made in a loss event
with respect to the simulations with selection across the islands is a factor P
smaller than the one made with respect to the simulations with selection only
within the island. This is in agreement with the results shown in Fig. 3.3,
where the fixation probability is plotted versus the island size N in the case
of selection across the islands (left) and in the case of selection only within
the islands (right): the error on the fixation probability due to the small-s
approximation in the first case is about half of the error in the second case.

Notice that the predominance of loss events over fixation events can ex-
plain also why we observe that the approximation becomes better if N in-
creases, as shown in Fig. 3.3, and why it worsens for larger values of s,
especially in the case where fitness matters only within the islands, shown in
Fig. 3.2, bottom row, right panel. Indeed, in a loss event the relative error
(Eqs. 3.24 and 3.26) is inversely proportional to N and directly proportional
to s.
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Figure 3.3: Fixation probability ρ versus island size N for a star without
self-loops and death-birth dynamics. On the left, fitness matters across the
islands, according to Eq. 3.17; on the right, fitness matters only within each
island, i.e. mÍ

ki = mki. P = 9, 105 samples per data point.

3.2 Quasi-fixed points of the probability gen-
erating function equation

For the star with self-loops Eq. 3.9 for birth-death and Eq. 3.21 for death-
birth have no fixed points except for the trivial one. But in both equations,
all terms entering in the sum have a coefficient proportional to N or to Nc
(where c = 1/r) except for the terms that contain a second derivative. In
the regime where both N and Nc are large, we may thus consider the terms
with the second derivative negligible compared to the others. If this is the
case, the fixed points satisfy the following system of algebraic equations

Ø
i

mki (ζi − 1) = cTk (1 − 1/ζk) (3.27)

for birth-death and
Ø
i

mki (ζi − 1) = c (1 − 1/ζk) (3.28)

for death-birth, which can be solved numerically. Note that the two equations
are identical if Tk = 1 ∀k (the temperature being given by Eq. 2.1.1 for birth-
death and Eq. 2.20 for death-birth), hence for an isothermal star. In this case,
Eqs. 3.27 and 3.28 admits ζi = c ∀i as nontrivial solution, corresponding to

48



3.2 – Quasi-fixed points of the probability generating function equation

the fixation probability of a well-mixed population within the Moran process
(see Eq. 3.14).

In Fig. 3.4 we can see the results for birth-death on the top row and
for death-birth on the bottom row for a star with self-loops of parameters
x = 0.1 and y = 0.1 (Eqs. 2.11 and 2.19), forN = 1 on the left and forN = 10
on the right. For both dynamics the approximation is better if the size of
the subpopulations is larger and the approximation is worse for death-birth
dynamics than for birth-death. Indeed, the theoretical results for birth-death
dynamics are affected only by the approximation for the quasi-fixed points
(consisting in neglecting the second derivatives in Eqs. 3.9 and 3.21, valid for
large N), while the theoretical results for death-birth dynamics are affected
also by the approximation on the transition rates (small-s approximation in
Eqs. 3.20).

Note that x = y = 0.1 implies that a reproducing individual has proba-
bility 0.9 to replace an individual in the same subpopulation and probability
0.1 to migrate. This situation of “strong” self-loops or rare migrations is
biologically relevant, since in real structured populations the migration rate
is in general low compared to the reproduction rate. We notice that in this
case the difference between birth-death and death-birth is reduced with re-
spect to the star without self-loops, as it is shown in Fig. 3.5. On the left,
the fixation probability for the two dynamics is plotted versus r in the case
of a star without self-loops; on the right the same is done for a star with
“strong” loops (x = y = 0.1). This is in agreement with the fact that by
adding “strong” self-loops of the same weight on the centre and on the leaves,
we have reduced the temperature difference between the nodes. Indeed, by
using Eqs. 2.12, we obtain

∆T .= Tc − Tl = (P + 1)
3
x− y

P

4
and for x = y = ε

∆T = (P + 1)
A

1 − 1
P

B
ε.

Hence, the stronger are the self-loops (i.e. the smaller is ε) the closer the
star is to isothermality and we know that, for an isothermal star, Eqs. 3.27
and 3.28 together with Eq. 3.13 predicts the same fixation probability in-
dependently of the dynamics (which is equal to the fixation probability of a
well-mixed population within the Moran process, see above). Indeed, Fig. 3.5
shows that for x = y = 0.1 the fixation probability of a star is not far from
the one for the Moran process (black dashed line).
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Figure 3.4: Fixation probability ρ versus mutant fitness r for a star with self-
loops. Top row: birth-death dynamics; bottom row: death-birth dynamics.
Left: N = 1; right: N = 10. P = 9, x = 0.1, y = 0.1, 104 samples per data
point.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

r

ρ

birth-death
death-birth
ρm

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

r
Figure 3.5: Fixation probability ρ versus mutant fitness r for a star without
self-loops (left) and with self-loops of parameters x = y = 0.1 (right). P = 9,
N = 10, 104 samples per data point.
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Conclusions

The Moran process is a model for the evolution of a well-mixed population
for which it is possible to compute analytically the fixation probability and
the fixation times (Fig. 1.3). In this case birth-death and death-birth dy-
namics are completely equivalent since the transition probabilities are the
same independently of the dynamics (Eqs. 1.10). However, if we remove the
possibility for an individual to replace itself, the fixation probability (and the
fixation times) depends on the choice of the dynamics, and the two dynamics
are equivalent only in the limit of an infinite population size. This type of
model has some limits: the fact that the population size is kept constant is
far from reality and population structure is completely neglected.

A model like the one proposed in Ref. [5] introduces a structure in the
population by considering each individual to be placed on a node of a graph
and edge weights specify replacement probabilities. However, the population
size is still fixed and, in general, the choice of the dynamics strongly affects the
fixation probability (Fig. 2.5). Moreover, the initial conditions used for the
placement of the mutant also impact the evolutionary outcome (Fig. 2.7) as
it was observed in Ref. [10], where uniform and temperature initial conditions
were considered. We generalized these results and proposed as realistic initial
conditions a linear combination of the two, which takes into account mutation
arising at division and the possibility for the mutant individual to stay in
the same node or to migrate to a neighbouring node.

By adding self-loops, we allow individuals to replace themselves and the
amplifying property of the star changes according to the weight of the self-
loops. While in birth-death dynamics the choice of the normalization for the
edge weights wij is natural and corresponds to the requirement for W to be
right stochastic (Eq. 2.11), in death-birth dynamics the choice is not unique
and, in the case of a star with self-loops, leads to different results for the
fixation probability.

We have studied a coarse-grained version of the model of populations
on graphs (Ref. [6]), which considers a well-mixed subpopulation (island)
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at each node of a graph and where edge weights specify the probability to
migrate in another subpopulation. In the case of a star without self-loops
and birth-death dynamics it is possible to compute analytically the fixation
probability (Ref. [6]) and for population of size one we recover the same
results of the previous model (Fig. 3.1). However, for death-birth dynamics
an approximation on the transition rates is necessary, and it only holds for
small fitness differences (Fig. 3.2). In this case we can consider two different
versions of death-birth dynamics: one for which selection (based on fitness)
acts across the islands, and the other for which selection acts only within
each island. Only the first one gives back the model with one individual per
node in the case of islands of size one (Fig. 3.2, top row). The analytical
formula for the fixation probability is a better approximation for the first
version of death-birth dynamics with respect to the second (Fig. 3.2, bottom
row) and for both the error decreases as the size of the islands increases (in
the range that we have considered for the fitness of the mutant).

Adding self-loops to this model is particularly relevant, since it allows in-
dividuals to stay in the same subpopulations after division. In this case,
it is possible to derive an analytical expression for the star only in the ap-
proximation of large island size (Fig. 3.4). A biologically relevant case is
the one that considers self-loops of large weight, so that migration events
become rare, and reproducing individuals mostly replace other individuals of
the same subpopulation. The result is that the dependence of the fixation
probability on the choice of the dynamics reduces significantly (Fig. 3.5).

The coarse-grained version of the model proposed by Ref. [5] seems more
realistic, since it reduces the artifacts due to the choice of the dynamics,
but it still imposes a strong constraint on the size of the population. In the
future it would be interesting to improve the model with subpopulations, by
relaxing the constraint on the size of the population by allowing stochastic
fluctuations around a mean value, and to implement a Gillespie algorithm in
order to sample the stochastic trajectory.
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Appendix A

Fixation times

Beyond the fixation probability, there are other quantities of interests in the
evolutionary process: the fixation times. We recall here the three different
fixation times in the case of a population of size N composed by two different
types of individuals, A and B.

1. The unconditional fixation time ti is the average time needed for the
system to reach one of the two absorbing states i = 0 or i = N ;

2. the conditional fixation time tAi is the average time needed for i individ-
uals of species A to fix (i = N);

3. the conditional fixation time tBi is the average time needed for N − i
individuals of species B to fix (i = 0).

In the following we detail the calculations of these quantities, following
Ref. [8].

Unconditional fixation time
We can write an equation for ti in the same way as for the fixation probability
(Eq. 1.1):

ti = 1 + βiti−1 + (1 − αi − βi)ti + αiti+1 (A.1)

with boundary conditions t0 = tN = 0. In the same spirit of the derivation of
the fixation probability we define a new variable zi .= ti−ti−1 so that Eq. A.1
reads

zj+1 = γjzj − 1/αj (A.2)
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with the usual definition γj
.= βj/αj. So we have the following iterative

scheme

z1 = t1 − t0 = t1

z2 = t2 − t1 = γ1t1 − 1/α1

z3 = t3 − t2 = γ2γ1t1 − γ1/α1 − 1/α2
...

zk = zk − zk−1 = t1
k−1Ù
j=1

γj −
k−1Ø
j=1

α−1
j

k−1Ù
m=j+1

γm (A.3)

...

zN = zN − zN−1 = t1
N−1Ù
j=1

γj −
N−1Ø
j=1

α−1
j

N−1Ù
m=j+1

γm

and because of the telescopic nature of the series we have qN
k=i+1 zk = −ti.

In the case i = 1 and using Eq. A.3 we get

t1 = −t1
N−1Ø
k=1

kÙ
j=1

γj +
N−1Ø
k=1

kØ
j=1

1
αj

kÙ
m=j+1

γm

so that, by rearranging the terms and by using Eq. 1.6 for ρ1, we get the
following expression for t1

t1 = ρ1
N−1Ø
k=1

kØ
j=1

α−1
j

kÙ
m=j+1

γj. (A.4)

The average unconditional fixation time in the case of i individuals of species
A is finally given by

ti = −t1
N−1Ø
k=i

kÙ
j=1

γj +
N−1Ø
k=i

kØ
j=1

α−1
j

kÙ
m=j+1

γm. (A.5)

Conditional fixation times
We can compute both tAi and tBi using a similar method. We start from the
equation

ρit
A
i = ρi−1βi

1
1 + tAi−1

2
+ ρi (1 − αi − βi)

1
1 + tAi

2
+ ρi+1αi

1
1 + tAi+1

2
(A.6)
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where ρi is the probability of fixation of i individuals of type A. Eq. A.6 is
similar to Eq. A.1, except that here we have to multiply by the probability
that the fixation of species A occurs since tAi is a conditional fixation time. If
we define θAi

.= ρit
A
i for brevity and wi .= θAi − θAi−1 we get an equation with

the same structure of Eq. A.2:

wi+1 = γiwi − ρi
αi

and using the same iteration approach as before we obtain

wk = θAi − θAk−1 = θA1

k−1Ù
j=1

γj −
k−1Ø
j=1

ρj
αj

k−1Ù
m=j+1

γm

and as boundary conditions we have θA0 = 0 because ρ0 = 0 and θAN = 0
because tAN = 0. Furthermore, we have that qN

k=i+1wk = −θAi and for i = 1
we get

tA1 =
N−1Ø
k=1

kØ
j=1

ρj
αj

kÙ
m=j+1

γj (A.7)

and finally for any i we have

tAi = −tA1
ρ1

ρi

N−1Ø
k=i

kÙ
j=1

γj + 1
ρi

N−1Ø
k=i

kØ
j=1

ρj
αj

kÙ
m=j+1

γm. (A.8)

Using similar calculations we can compute the fixation time tBN−1 of a single
B mutant, for which we get

tBN−1 =
N−1Ø
k=1

kØ
j=1

ρ̃N−j

βN−j

kÙ
m=j+1

1
γN−m

(A.9)

where ρ̃j .= 1−ρj. As before, we can also compute the fixation time for N− i
individuals of species B, which reads

tBi = −tBN−1
ρ̃N−1

ρ̃i

N−1Ø
k=N−i

kÙ
m=1

1
γN−m

+
N−1Ø
k=N−i

kØ
j=1

ρ̃N−j

ρ̃i

1
βN−m

kÙ
m=j+1

1
γN−m

. (A.10)
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Appendix B

Numerical simulations

In the following we will use monospaced font to refer both to the code variable
and its value.

B.1 One individual per node
For the simulations of Ch. 2, first we define a two-dimensional vector W of
dimensions N × N, where N is an integer variable storing the total population
size. For the Moran process W is such that W[i][j] = 1/N. For the star with
N = P + 1 leaves and x, y parameters, W is defined according to Eq. 2.11 for
birth-death dynamics and according to Eq. 2.19 for death-birth dynamics.

For each sample, we define a binary vector v of length N, which keeps track
of the type of the individual at each node: a wildtype is encoded by 0 and
a mutant by 1. The vector is initialized by all zeros and a single one. The
index of this latter is drawn according to the chosen distribution (uniform,
temperature or mixed) between 0 and N−1. An integer variable m, storing the
sum of the elements in v, keeps track of the number of mutants. The fitness
of the mutant is stored in r and the number of time steps t is initialized with
0.

At each time step, two integers between 0 and N − 1 are drawn: the
index i of the individual chosen for reproduction and the index j of the
individual chosen for death. In birth-death dynamics i is drawn first, with
a probability distribution proportional to the fitness, then j is drawn with
probability W[i][j]. In death-birth dynamics j is drawn first, with probability
1/N, and then i is drawn with probability proportional to r W[i][j] if v[i] = 1
and W[i][j] if v[i] = 0. Next, v, m and t are updated. The process ends when
m = N or m = 0. A Boolean variable encoding the outcome of the process (the
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mutant fixes or not) is saved together with the number t of time steps.
The fixation probability is computed as the ratio between the times the

mutant has fixed and the total number of simulated random trajectories.
The mean fixation times are also computed with an error bar corresponding
to the 95% confidence interval.

B.2 Subpopulations on a graph
A similar code has been used for the simulations of Ch. 3 concerning the
coarse-grained version of the model, with some differences. In this case, the
number of leaves of the star is P, and a constant vector N of length P+1 stores
the total number of individuals on each island. Another vector n of length
P + 1 stores the number of mutants on each island. This latter is initialized
with all zeros and a single one; the index of the element 1 is drawn uniformly
at random between 0 and P. The two-dimensional vector representing the
matrix of weights is defined as before and it has dimensions (P + 1) × (P + 1).

The mutant fitness is 1 + s and t is the number of time steps, initialized
by 0. At each time step, the type of the individual who reproduces and of the
individuals who dies are stored in two Boolean variables, tb and td, which
take value 1 for mutant and 0 for wildtype. The total number of individuals
is Ntot and the total number of mutants is ntot, and they are equal to the
sum of the elements in N and n respectively.

At each time step of birth-death dynamics, the index k of the island where
a reproduction event occurs is drawn with probability proportional to the
fitness of the island N[k] + s n[k]. Then, within the island, the value of tb
is chosen with probability proportional to the fitness (n[k](1 + s) for the
mutant and N[k] − n[k] for the wildtype). The index i of the island where
death occurs is chosen with probability proportional to W[k][i] and the value
of td is drawn with probability proportional to N[i] − n[i] for the wildtype
and n[i] for the mutant.

At each time step of death-birth dynamics, the index i where a death
event occurs is chosen uniformly at random between 0 and P. The value of
td is chosen with probability proportional to N[i] − n[i] for the wildtype and
n[i] for the mutant. Then, in the case in which fitness matters across the
islands, the index k of the island where reproduction occurs is chosen with
probability proportional to W[k][i](N[k] + s n[k]); else, k is chosen according
to W[k][i]. The value of tb is chosen with probability proportional to the
fitness (n[k](1 + s) for the mutant and N[k] − n[k] for the wildtype).
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At the end of each time step, n, ntot and t are updated. The process
ends when ntot = Ntot or ntot = 0. The outcome of the process together
with the number of time steps are stored. Finally, as before, the fixation
probability and the mean fixation times are computed over all the simulated
trajectories.
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