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Abstract

The increasing need to preserve the environment by reducing the emissions of CO2

and other greenhouse gases highlighted the need work in the energy field. It em-

braces many other sectors, such as transport, building, ICT and the need for energy

management is going to become preponderant, above all with the penetration of re-

newable energy resources and with the advent of the Smart Grids. This work studies

the problem of predicting renewable energy generation focusing on solar energy. The

thesis investigates if physical data, such as the Global Solar Irradiance and its com-

ponents, allow to obtain good performances in predicting solar energy generation.

The solution of the problem has been reached by using two types of machine learn-

ing techniques, Feed-Forward and Recurrent Neural Network. With them, several

training approaches were tested and the Recurrent NN was the one which performed

better. Then, it was tested in different locations and time granularity, hourly and

half hour. In the end, Neural Networks results extremely effective in predicting re-

newable energy generation and the work can positively affect several domains, such

as pricing strategies, critical situation, emergencies during a blackout, and in energy

management and for cost reduction.



CHAPTER 0
Introduction

IPCC (Intergovernmental Panel on Climate Change) defined climate change as a

variation in either the mean state of the climate or its variability for an extended

period (decades or longer), and it may be due to whether natural internal processes

of the earth or human activities. The idea of anthropogenic changes spread out

and recently penetrated popular culture, with a growing political resonance. Indeed,

humans are increasingly influencing the climate and the earth’s temperature. The

global raising temperature is affected by the enormous amount of emission gases

produced by human activities, responsible for 64% of man-made global warming.

The most popular activities involve cutting down forests, livestock farming, burning

fossil fuel, and Figure 1 shows quantitative values of CO2 emissions due to human

activities.

Energy efficiency improvements, technological advancement, market dynamics, wor-

ries about climate change are leading during last years to a decoupling between

CO2 emissions and economic growth. They aim to carry on decarbonization or a

huge reduction of CO2 emissions. In parallel, however, technological systems are

continuously increasing their environmental impact and from one side it is due to

computational improvements which enable the release of new services; on the other

side, it is due to the exponential usage from people of these services. For instance,

the advent of Internet during the ’90s, and consequently of the Cloud Computing,

Internet Of Things (IoT), Social Media and so on, increased the access and the
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Figure 1: Source: IPCC - Climate Change 2014: Synthesis Report

usage of the Information Technology (IT) infrastructure (Figure 2), rising the envi-

ronmental damage. Cooperation between energy systems and technological systems

is requested, so as policies and strategies at global scales are needed to effectively

reduce the environmental impact. In this context, the usage of renewable resources

could allow achieving the objective, by making sustainable both technological and

energy systems, leading the digital transformation more cleanly. Renewable Energy

Sources (RES) can boast to be cleaner, sustainable several fields, with a much lesser

negative impact than fossil fuel, and above all, they are infinite [1]. By contrast, they

suffer from intrinsic characteristics. For instance, wind and solar power are infinite

energy, but their intermittent availability due to the weather dependence discourages

the use in some cases, in which the steady presence of energy is highly valuable. How-

ever, both sources are easily predictable and this capability is the one which enables

several fields in new researches investments for studying many possible applications.

With the advent of the smart grid, the concept of ”on-grid” and ”off-grid” came.

The former is considered whenever many loads take electrical energy from the elec-

trical grid, in which nowadays the energy is mainly produced by fossil fuel, even

though the RES is going to introduce in it. The latter takes into account a load

whose energy is fed employing renewable energy, which is not linked to the main

grid, such as wind or solar energy. The ”off-grid” concept is highly considered in
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Figure 2: Internet users by world region since 1990. Source: Our World in Data -
Based at the University of Oxford[0]

fields such as Green Networking, in which the ability of tools to predict RES is pre-

ponderant and very helpful in energy management. For instance, the availability of

these tools can allow implementing strategies in the allocating resource on demand

(RoD) for power saving in Green Networking context, or in general in the Smart

Cities, thinking about to the building’s energy consumption and the need of energy

management.

The prediction of energy generation is a conceptually easy task, while tools able to

do that are hard to implement for computational and modelling reasons. The in-

crement of computational hardware capacity allowed to innovate the state-of-the-art

of predicting algorithms, since they require a high computational cost. A tool for

predicting energy generation can be expressed in different forms: mathematical, sta-
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tistical, or numerical. While the first two forms are the usual one (mathematical or

statistical model, such as ARIMA or Linear Regression), the last one exploits the

information contained in data self and the Neural Networks are the best candidate

in this respect.

The objective of the thesis is to introduce Neural Networks as a tool for predicting

renewable energy generation, giving a technological boost in the energy field. It

mainly focuses on Photovoltaic energy and in predicting hourly values. To accom-

plish this hard task, several neural networks were implemented and trained through

solar irradiance data, with an hourly and half hour time granularity. They were

trained using different datasets, so as in different locations, focusing the analysis in

Turin and Buffalo to investigate the network’s ability based on different weather lo-

cations. Finally, the thesis is structured as following: Chapter 1 introduces the used

databases for achieving the objective, the data processing and the comparison with

two different databases so as different location, considering Turin and Buffalo; Chap-

ter 2 includes the theoretical part about Neural Networks, their usage in prediction

and the different considered techniques of training; Chapter 3 and 4 are the core of

the thesis, in which results, performances, and analysis are discussed and justified.

At the end, conclusions about the work and possible applications are discussed.
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CHAPTER 1
Databases and Data Processing

In this chapter will be explained which data were used for predicting global solar

irradiance, from where they were downloaded and which variables they exposed. In

addition, there will be discussed the pre-processing on the dataset and the created

variables to get better predictions.

There were used mainly two databases: PVGIS (Photovoltaic Geographical Infor-

mation System) and NSRDB (National Solar Radiation Database).

1.1 Useful definitions

In the following sections some technical terms will be used and below their definition

is reported:

❼ Solar Irradiance. It is the solar power falling into a surface per unit area and

unit time. It is expressed in W/m2;

❼ Direct Solar Irradiance. It is the fraction of the solar radiation that reaches

the ground without being attenuated by the atmosphere (W/m2);

❼ Reflected Solar Irradiance. It is the solar radiation that reaches the ground

after being reflected by the atmosphere and is considered to arrive from the

whole skydome (W/m2);
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❼ Diffuse Solar Irradiance. It is the reflected radiation from the ground surface

or nearby obstacles (W/m2).

1.2 PVGIS database

PVGIS is an online free solar photovoltaic energy database. It allows to download

simple solar irradiance, avoiding to use a PV system for energy production, detaching

the work from a particular PV system. Most of the solar irradiances contained in

PVGIS database are based on the satellite data, which are used to estimate the solar

radiation arriving at the earth surface. This calculation approach is justified by the

higher accuracy than the sensors ground measurements [7]. The used methods to

calculate the solar radiation from satellite have been described in several papers [2]

[3] which show the calculation procedure to obtain the solar radiation in a certain

region with a given spatial resolution.

Therefore, several types of data can be selected from the database, giving the chance

to choose several parameters:

❼ the location, by inserting the latitude and longitude;

❼ the solar radiation database (ERA5, SARAH, COSMO, CMSAF), whose differs

in the range of data available and algorithm;

❼ the time granularity (Daily, Hourly, Monthly);

❼ the radiation components (Reflected, Diffuse, Direct solar radiation);

❼ the range of the year.

The global solar irradiance and its components (Direct, Diffuse, Reflected) are plotted

in Figure 1.1. It depicts Turin hourly solar irradiance in several weather scenarios.

Global solar irradiance is defined as the sum of Direct and Diffuse irradiance. The

reflected irradiance is usually insignificant compared to direct and diffuse (see Figure

1.1). At the end, to get the global solar irradiance the equation is the following:

Gi = Di+Bi× cos z (1.1)
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where z is the solar zenit angle at the time measurements [8]. In this context, for

Figure 1.1: Solar Irradiance of three different days in Turin, showing the evolution
of the irradiance in several situations (sunny, overcast, or rainy days)

predicting the global solar irradiance all the components were retained, in order to

exploit physical correlations between solar variables and by making the prediction

detached from any PV system, which should take into account several variables, such

as the kind of module and its own efficiency.

From the database is possible to obtain PV power production by inserting slope, PV

technology, installed peak PV power [kWp], and system loss [%]. However, the power

production from the solar radiation can be computed with the following equation:

P = Gi× sin θ × A× η (1.2)

where

❼ Gi is the global solar irradiance;

❼ θ is the angle of the PV system with respect to the horizontal plane;
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❼ A is the area of the PV system;

❼ η is the efficiency, that is the portion of energy in the form of sunlight that can

be converted via photovoltaics into electricity by the solar cell.

1.3 NSRDB database

The National Renewable Energy Laboratory (NREL) provides solar resource data

for the United States through the NSRDB (National Solar Radiation Database) [9],

and it is also expanding toward other locations [10]. For the research, the same

locations for both databases, PVGIS explained in section 1.5 and the NSRDB, were

considered to understand how machine learning techniques behave with respect to

two different datasets.

Indeed NSRDB, compared to PVGIS dataset, contains a lot of variables, which are

shown in Table 1.1. It has plenty of data since NREL uses PSM (Physical Solar

Model) which exploits many algorithms to get much more information. For instance,

PSM exploits properties from the satellite retrievals and then uses those properties

to calculate surface radiation. Then, to generate cloud properties and precipitation

water vapor and other useful features, it uses different algorithms and mathematical

model explained in [11]. For these reasons, NSRDB database has more variables

and it is richer of information. The utility of this information will be investigated

in section 3, where a selection futures is discussed to understand which variable is

more effective in predicting global irradiance values.

1.4 Comparision between PVGIS and NSRDB

databases

PVGIS and NSRDB databases are obtained using different algorithms for calculating

solar radiations. Those algorithms have a significant, so as quantitative, effect on

solar irradiance values. Figure 1.2 reports global solar irradiance for both databases,

8



Name Unit
Clearsky DHI W/m2

Clearsky DNI W/m2

Clearsky GHI W/m2

Cloud Type Unitless
Dew Point Degree C

DHI W/m2

DNI W/m2

GHI W/m2

Fill Flag Unitless
Snow Depth Meters

Solar Zenith Angle Degrees
Temperature Degree C

Pressure Millibar
Relative Humidity Percent
Precipitable Water Millimeter

Wind Direction Degrees
Wind Speed m/s

Table 1.1: All variables of NSRDB

considering as location Buffalo, NY.

For comparing them the same range of years 2005-2015 was chosen and for each

month the monthly global solar irradiation was calculated. It is evident how the

evolution of global irradiance is really different, above all in last months such as

November or December of each year. The NSRDB database has also a lower variance

(see Table 1.2) respect to the PVGIS and this difference is projected in the prediction

phase, in which results are pretty different.

Dataset CV
PVGIS 1.55
NSRDB 1.49

Table 1.2: CV: Coefficient of variation of both dataset
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Figure 1.2: Comparing NSRDB and PVGIS dataset

1.5 Data processing

After having analysed which data were available from both databases, data were

elaborated and joint in several ways in order to obtain the training and testing set

for the Neural Network learning process. The process is explained in sections 1.5.2

and 1.5.3.

1.5.1 Pre-processing

Dataset were normalized in order to reduce the high internal variance, making data

more regular. Equation 1.3 was used to normalize data:

y =
x

xmax

(1.3)

in order to have data between 0 and 1.
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1.5.2 PVGIS dataset

The dataset analyzed was the one with a hourly time granularity, as said before.

Once the location was chosen, from the PVGIS database two kinds of files were

downloaded.

The first one composed of following variables:

❼ Directed or Beam solar radiation (Bi) (W/m2);

❼ Reflected solar radiation (Ri) (W/m2);

❼ Diffuse solar radiation (Di) (W/m2);

❼ Wind speed at 10 meter (m/s);

❼ Sun elevation (deg.);

❼ Ambient temperature (➦C);

therefore, including all the radiation components. The second dataset is composed

of:

❼ Global solar radiation (Gi) (W/m2);

❼ Wind speed at 10 meter (m/s);

❼ Sun elevation (deg.);

❼ Ambient temperature (➦C);

of the same location.

The reason why the Gi was downloaded and added to the first dataset, by considering

the same range of years, is due to the high correlation between it and both direct and

diffuse variables, as seen in section 1.2. Consequently, both datasets were merged to

exploit the correlation between all variables. Figure 1.3 shows the linear correlation

between the variables of the dataset, which is consistent with what said about Gi.

It is evident how the global solar radiation is highly correlated with the related
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Figure 1.3: Correlation between variables of merged dataset

components Bi,Ri and Di so as the sun elevation As, while the wind speed at 10

meter is not. Moreover, there is a little correlation with the temperature and the

solar radiation components.

Since the lack linearity of some variables, all variables were retained to consider for

following steps, trying to exploit the capability of a neural network to understand

some non-linear dependencies, investigating the possibility to have higher accuracy

in predicting. This approach is also analysed in section 3.3.1.

To these variables, the other three were added: Day Of Year1, Hour, and Month.

Table 1.3 shows the final dataset used for training and testing phase, while Table 1.4

1It is included in a range between 1 and 365/366
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Features Description
Dit Diffuse Irradiance
Bit Direct Irradiance
Rit Reflected Irradiance

Tambt Ambient Temperature
W10t Wind Speed at 10 meter
Ast Sun Elevation
Git Global Irradiance

DayOfYear, Hour, Month Current day, hour and month at time t

Table 1.3: Training set at time t

Feature Description
Git+1 Global Irradiance at time t+ 1

Table 1.4: Value used form the the neural network to learn in predicting

the target values used for calculating the MSE (see equation 2.3 in section 2.1) and

backpropagate the error to the neural network during the training phase.

1.5.3 NSRDB dataset

Compared to PVGIS database, NSRDB database allows to obtain two datasets with

different time granularity, 30 minutes and hourly. Both types were used and the same

steps of PVGIS dataset were performed, explained in section 1.5.2. Thanks to the

shorter granularity of NSRDB data was possible to investigate how neural networks

with different behave different data granularity. In section 3 will be illustrated this

difference between predictions with different time granularity. Obviously, in this

case, with a more granular time resolution, it is expected to have better performance

in predicting.

In this chapter datasets which will be used for training and testing phase were

defined. The correlation between variables pointed out which variables can contribute

to predicting global solar irradiance due to their linear correlation. Other variables

were added, concerning the day of the year, the hour of the day, and the month. These
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variables introduce additional information, allowing improvements in the prediction

task. Moreover, the two kinds of databases expose not only a different amount of

variables but also different quantitative information, as seen in section 1.4.
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CHAPTER 2
Metrics, Neural networks and training

approaches

Neural networks are not an easy tool and in this chapter will be explained the

procedure to understand which is the most suitable number of hidden layers, and

the number of neurons for each layer in this context. Indeed, the design is the

most difficult task and a rule of thumb does not exist. Therefore, starting from a

general Neural Network overview, the chapter goes in details in explaining how the

prediction works, which are the two NNs considered and how they were differently

trained. Metrics for evaluating the used training approaches are defined.

2.1 Metrics

Neural networks are usually evaluated through metrics which calculate the error

between the predicted and the real value. For the sake of clarity, metrics consider

the variables as follows:

- yi and ŷi are respectively the real and the predicted global solar irradiance, in

which each i-th sample is the value of global solar irradiance at time t;

- ȳ is the mean of the real values of the same time period;
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- Cij and Cii are respectively the covariance and the variance of real and predicted

value.

Below are illustrated metrics used for knowing the goodness of a neural network to

predict global solar irradiance values:

❼ Root Mean Squared Error (RMSE):

RMSE =

vuut 1

N

NX
i=1

(yi − ŷi)2 (2.1)

❼ Normalized RMSE (NRMSE):

NRMSE =

s
1
N

PN
i=1 (yi − ŷi)2

ȳ
(2.2)

❼ Mean Squared Error (MSE):

MSE =
1

N

NX
i=1

(yi − ŷi)2 (2.3)

❼ Mean Absolute Error (MAE):

MAE =
1

N

NX
i=1

|yi − ŷi| (2.4)

❼ Correlation coefficient (R):

R =
Cijp

Cii × Cjj

(2.5)
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2.2 Neural Networks

A Neural network is a set of machine learning technique used for several purposes:

classification, regression, natural language processing, and prediction. Thanks to its

characteristics it is able to catch non-linear correlation between input variables during

the training phase, respect to linear techniques. It consists of three parts: neurons,

activation functions, and bias. While in the next chapter will be analysed the effective

capability of the neural network in predicting future values, mainly global solar

irradiance, by using the metrics the mentioned in section 2.1 for evaluating it, in this

section will be shown two different architectures of neural network, stressed in several

ways. For both techniques the first step was to choose the number of input neurons,

the number of hidden layer and the neurons for each of them1. This phase took into

consideration the PVGIS dataset, considering as location Turin and as range of year

from 2005 to 2016. The dataset was split into training set and testing set. The first

one included samples from 2005 to 2015, whereas all the samples 2016 as testing set.

This approach was called Yearly training and will be explained in details in section

2.3.

2.2.1 How the prediction works

The prediction was performed in the following way: a neural network takes a training

set composed of hourly features as input (Table 1.3), concerned variables at time t,

and it is trained to predict global irradiance at time t+ 1 (Table 1.4).

Consequently, the network has all useful information about value at time t, so as the

same value that it tries to predict but at the hour before. The procedure is iterative.

At each iteration, called epoch, the network takes a bunch of entries, named batch

and arbitrary set, and it predicts global irradiance of time t+ 1 for a given number

of epochs. The number of epochs is crucial because a little value does not allow

to the network to learn enough, while a higher value from one side could let the

1For sake of clarity, some decisions, such as the number of hidden layers or the maximum number
of tested neurons were taken small due to computation limit of the Personal Computer.
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network learns more about the given training set; on the other side, it could induce

overfitting2 problem. At each iteration a loss function is used to calculate the error

between the target value (Table 1.4) and the predicted one. Equation 2.3 was the

metric used during the training step, therefore adopted as the loss function. The

loss is backpropagated so that the network can update its weights and then reducing

loss.

In this work Adam Optimizer [4] was exploited because of its simple and compu-

tationally efficient characteristics for gradient-based optimization of the stochastic

objective function. Indeed, the aim of the Adam Optimizer is to minimize the resid-

ual of the loss function

L = MSE =
1

N

NX
i=1

(yi − ŷi)2

After having completed the training phase, the model was obtained, with the right

weights and biases. Consequently, it was tested and evaluated with new data, ob-

taining the prediction. In the following sections will be discussed the approach on

designing two kinds of neural networks, a Feed-Forward neural network, and Re-

current neural network. After a first analysis they will be trained, compared and

discussed in section 3.

2.2.2 Design methods

The design of a neural network is not so easy. It is straightforward to decide the

number of neurons for the output layer since they depend on the outcome that is

looking for. By contrast, the number of neurons for the input layer and, above all,

about hidden layers is not so easy. On the one side, it is used to take the number of

neurons in the input layer as the same number of input variables, even if it is not a

rule. On the other side, it is not possible to sum up the design process for the hidden

2That is the capability of an algorithm to understand and predict the training data almost
perfectly, failing to predict a good value with an input data that the algorithm has never seen
before. Whenever it happens, it is used to say that the algorithm is not able to generalize.
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layers with a few simple rules of thumb [12].

The used method for choosing the right number of neurons in the hidden layers was

the trial and error method. Obviously, this method was time-consuming, but it gave

a clear idea of how the number of neurons affected the accuracy in both training and

testing phase. The equation 2.3 was used for evaluating the error and for choosing

the best number of neurons, that is the number of neurons in which the minimum

value of MSE is reached for the training and testing set.

2.2.3 Feed-Forward neural network

A feed-forward neural network (FNN) is a simple neural network, which means there

are no loops in the network - information is always fed forward, never fed back

(Figure 2.1).

Figure 2.1: Feed-forward neural network

It was designed as follows:

❼ Input layers. The number of neurons was the same as the number of features

in the dataset. If the number of features changed in trial and error step, the

number of neurons changed accordingly;
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❼ Output layers. Since the aim of the thesis is predict the value of produced

energy at t + 1, knowing the values at time t for each hour, the number of

neurons of the output layer is only one;

❼ Hidden layers. For the number of hidden layers, only one layer was retained

to minimize the complexity of the network and reducing the training phase,

while for choosing the number of neurons for the hidden layer several trials were

performed. From figure 2.2 is shown how with a little number of neurons the

Figure 2.2: Performance of FNN at varying the number of neurons

loss function tends to be constant, meaning that there is not any improvement

by adding other neurons. Consequently, in order to minimize the complexity

of the network, 15 neurons have been retained.

The employed activation function in predicting the produced energy was the Rectifier

Linear Unit or ReLU (Figure 2.3):

f(x) = x+ = max(0, x) (2.6)
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It has been proved that the function 2.6 allows to reduce problems in backpropagation

steps, such as the possibility to fall in the vanishing gradient issue [12].

Finally, the FNN used in prediction was composed of:

Figure 2.3: Rectifier Linear Unit

❼ 1 input layer with 10 neurons;

❼ 1 hidden layer with 15 neurons;

❼ 1 output layer with 1 neurons;

which was used for the several training approaches explained in section 2.3.

2.2.4 Recurrent neural network

A recurrent neural network (RNN) is a type of neural network used in modeling

and prediction of sequential data where the output is dependent on the input. It

has been used in applications such as image processing, sentiment analysis, language

translation, and speech recognition. RNN has two main differences respect to the

FNN:

❼ the presence of loops in the network;
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❼ an internal memory, which is able to store information about previous calcula-

tion.

Indeed, the information keeps changing dynamically an RNN. For example, the be-

havior of hidden neurons might not just be determined by the activation in previously

hidden layers, but also by the activation at earlier times. Therefore, the neuron’s ac-

tivation might be determined in part by its own activation at an earlier time. Thanks

to this capability, an RNN is particularly useful in analysing data or in processes that

change over time [12], fitting perfectly with the prediction of global solar irradiance.

RNN architecture: LSTMs and GRUs. RNN can be designed in several ways,

but the more interesting thing, and also difficult, is the choice of the internal mem-

ory architecture. Mainly there exists two architectures, with a Long short-term

memory units (LSTMs) or with a Gated recurrent units (GRUs). LSTM and

Figure 2.4: LSTMs and GRUs architecture

GRU are shown in Figure 2.4, which is a practical representation of internal ar-

chitecture of a single neuron inside the RNN. The sequence of activation functions

allows to a single neuron (also called cell) is able to store earlier information and

then taking them into account for the next activations. The LSTM has more gates

than GRU, introducing a behavior of Forget and Output, in which the cell decides

which values maintain and which it sends to the output. This behavior has higher
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computational cost, above all thinking about a big number of neurons in a hidden

layer. On the other hand, GRU has the characteristic called Update, thanks to which

decides whether to pass the previous operations or not.

Since both architectures introduce mathematical operations which involve higher

computational cost, it was decided to take the simpler one - Gated Recurrent Units

- in order to reduce the cost and to speed up the training phase. It has been proved

that the performances of architectures mentioned above are pretty the same for sev-

eral applications [5].

Designing RNN. The design of the RNN followed the procedure explained in

section 2.2.2. The number of the input and output neurons remained the same of

the FNN, and the number of hidden layers was arbitrary chosen equal to one, because

of increasing computational cost at a higher number of the hidden layers. Therefore,

with the trial and error approach the number of neurons of the hidden layer was

chosen, testing the RNN with several numbers of neurons. Figure 2.5 shows the

Figure 2.5: Performances of the RNN at varying the number of neurons

performance of the RNN at varying the number of neurons of the hidden layer. In
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the x-axis, there is the number of neurons, while in y-axis there is the MSE for each

bunch of neurons. Also, two values of MSE are displayed, one for the train and

the other for the validation set. Curves are pretty similar and both follow the same

evolution. Initially, the error is high for both datasets and then it tends to decrease.

At the end, it is possible to notice how the distance between the two curves tends to

be larger, with a possible sign of overfitting.

From this figure, the best number of neurons for the hidden layers was set up to 11,

in which the MSE is the lowest value for each dataset (training and validation set)..

Dropout, Early stopping, and Batch Normalization. Since an RNN is more

prone to the overfitting, several techniques in literature allow to reduce it. In this

context the following three techniques were used [12]:

❼ Dropout. It is a technique which radically modifies the network. Essentially,

it consists of deleting some neurons over a mini-batch and updating weights

and biases. Then, the network is restored and other neurons are randomly

selected and deleted. The procedure continues until whether it converges or

the number of epochs is met.

❼ Early stopping. It is used to determine the minimum number of epochs for

training a neural network. At the end of each epoch, a part of the dataset is

used as a validation set with which MSE is computed. Whenever the MSE

does not improve anymore over the epoch, the training phase is earlier stopped

and so the training phase is terminated.

❼ Batch Normalization. It allows to increase the stability of the neural network

and reducing the internal covariate shift, normalizing the output of a previous

activation layer. Indeed, it subtracts at each batch its mean and dividing for its

standard deviation. The technique considers to perform the normalization for

each mini-batch, and backpropagate the gradients through the normalization

parameters. In the end, these techniques ensure a faster training step [6], useful

for speeding up the training phase of an RNN.
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At the end the final configuration of RNN was:

❼ 1 input layer with 10 neurons

❼ 1 hidden layer with 11 neurons

❼ 1 output layer with 1 neurons

2.3 Training approaches

The way in which a neural network is trained can significantly affect in reducing

errors because it can interpret information differently on the base of the way it sees

data. Consequently, changing the training approach also the amount of error changes

during the training phase. In this section, there will be explained several training

methods, in order to understand whether a method can perform better than others

or which could be the best in some scenarios.

The method used to train data were the following:

- Yearly training.

The yearly training is the simplest method used. It consists of taking a range of

years as training set and another range as testing set. For instance, the dataset

discussed in section 1.5 included years from 2005 to 2016, and the training set

is composed of years from 2005 to 2015, while it is tested with the last year,

2016. Finally, there is a single neural network for predicting hourly values, for

all months.

- Monthly training.

Differently, with the previous approach, a monthly training consisted of cre-

ating as neural networks as months are. In this case, 12 NNs were trained,

one per each month. For example, from a range of the year 2005-2015, all

the January are taken as training set; the January of 2016 is used as testing

set. In this way, the neural network specializes in predicting values in a given

month. It will be shown that for some months this approach performs better

than other methods.
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- Seasonal training.

The last approach follows the intuition of the monthly training, but instead of

considering a single month the dataset was split in 4 other datasets, one per

each season. Instead of the astronomical seasons, which are the usual ones, in

this context, the meteorological seasons were considered, since they are reck-

oned by temperature and fits better with the aim of the thesis. Meteorological

seasons are different for the northern and southern hemisphere. For the north-

ern hemisphere, spring begins on 1 March, summer on 1 June, autumn on 1

September, and winter on 1 December. For the southern hemisphere, spring

begins on 1 September, summer on 1 December, autumn on 1 March, and win-

ter on 1 June. In the end, 4 datasets were obtained and then 4 neural networks

were trained, one per each season. The training set included all the months

which belong to a season, considering the range of year from 2005 to 2015,

Then, a season of the last year (i.e. winter 2016) was considered for testing the

relative seasonal neural network.

The theory beyond the neural network is huge and here only a spot was re-

ported. The difficulties in training and then obtaining good results bring to find

new kinds of approaches. In this chapter, three new types of approaches were pro-

posed, exploiting the data characteristics such as seasonality, and similarities between

months. Also, FNN and RNN are two different types of neural network in several as-

pects such as in training and in the designing process. Indeed, RNN is more complex

than FNN, becoming time-consuming without the right hardware which can make

the difference. Moreover, FNN and RNN can perform very differently if they are fed

with a different type of structured dataset, as discussed in the next chapter.
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CHAPTER 3
Discussion of results

Once neural networks were designed (2.2.2), several approaches were tested. In

the following sections will be shown the goodness of RNN and FNN for predicting

global solar irradiance after being trained, using metrics defined in section 2.1 and

comparing errors, shapes. Initially, Turin will be considered; then, predictions will be

compared with another city with a similar latitude but different longitude, Buffalo.

3.1 FNN vs RNN

As explained in section 2.3, several training approaches were adopted to investi-

gate the capability of a neural network to learn data, information, and non-linear

correlation, feeding it in different ways. However, all methods had in common:

❼ the batch size, set at 50;

❼ the learning rate η = 0.001.

3.1.1 Yearly training

Starting with the simplest training methods, both FNN and RNN networks were

trained with Turin data, from 2005 to 2015 and tested with the last year, 2016.

Figure 3.1 and 3.2 show the MSE for training and validation set, regarding FNN and
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RNN. They show how the network learns after a few epochs. Indeed, for the Feed-

Forward the train MSE tends to be constant after 50 epochs, so as the validation

MSE, which is pretty near to the train one. Also, with few epochs, any overfitting

scenario is shown. This is true for both FNN and RNN. Moreover, the order of error is

the same for the two techniques, pointing out that the different architecture does not

affect the committed error when the networks are trained with the same sequence

of values. However, RNN is able to learn in fewer epochs (figure 3.2) than FNN.

While MSE’s FNN shows two down picks before seeing a constant value, RNN goes

immediately down and then few improvements are gained. Moreover, the validation

error is always lower than the training due to the Dropout (2.2.2) technique, since

the network continuously changes its structure during the training phase. Looking

Figure 3.1: MSE yearly training for FNN

at figures 3.3 and 3.4, the prediction of January 2016 is shown and other differences

between the two techniques can be found. For instance, the succession of days and

night is better followed by the RNN than FNN. This is undoubtedly due to the

memory in the RNN (2.2.2), which is able to catch this kind of behaviour from data.

On the contrary, shapes are pretty similar between them, the pick is nearly always

28



underestimated in both methods, except for very bad days. For these days, both

networks overestimate global solar irradiance and therefore PV energy production.

Figure 3.2: MSE yearly training for RNN

FNN RNN
Month MAE (W/m2) MSE (W/m2) MAE(W/m2) MSE(W/m2)

January 59.447 18911.647 51.693 16544.160
February 64.919 20646.501 59.725 18794.057

March 44.746 7274.466 37.509 6256.451
April 61.023 14041.393 56.892 12031.990
May 52.878 9137.077 50.169 8088.034
June 53.789 10290.037 51.461 9653.121
July 42.036 7137.668 44.772 7046.896

August 31.588 5278.970 37.480 5592.203
September 37.655 6041.242 38.153 5960.992
October 32.504 5186.052 32.958 5684.040

November 25.501 2870.602 24.862 3040.531
December 63.759 17394.810 56.867 15604.584

Table 3.1: Monthly errors with yearly training, for both RNN and FNN
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Figure 3.3: FNN prediction - January

Figure 3.4: RNN prediction - January

Table 3.1 shows values of the metrics explained in section 2.1, in which both networks

were trained with the yearly approach and tested in predicting different months. As
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expected, RNN performs better than FNN, although not so much. Indeed, looking

at these errors it would be expected even better performance from RNN, making it

more suitable. The differences between the two networks are not so evident, but as

shown in Figure above (3.3 and 3.4) only the shape of predictions has little changes.

3.1.2 Monthly training

The second approach was the monthly training. As explained in section 2.3, the

network was trained with all the same months in the training set and tested with

the same month of the testing set. January was considered, in order to compare it

with the yearly training.

First of all, the training phase was faster than the previous training, since the

amount of data were fewer. Figures 3.5 and 3.6 show the MSE for both FNN and

RNN.Overfitting can be noticed during FNN training phase since the validation MSE

rise up after few epochs - around 100 - and continuously increases, even if slowly.

This behaviour is not so evident in RNN, but at the last epochs the validation MSE

rise reaching the training error. For these reasons the training phase was stopped

around 200 epochs - early stopping 2.2.2 - since there were no improvements and the

capability of the network to predict got worse.

After networks were trained the prediction was made and the result is shown in

figures 3.7 and 3.8, which are pretty different. The FNN performed worse with some

non-zero values during the night, even if it followed better the pick in good days,

at least where the variability of the day was lower and the energy production would

be higher. This behaviour was not seen in RNN, figure 3.8, whose prediction was

the same as the previous training approach, and therefore better than FNN with

monthly training. Table 3.2 compares errors between FNN and RNN. Looking at

the table would be straightforward say that FNN performs better, except for some

cases such as the error in predicting November, in which the error is smaller than 10

W/m2, by the way, the presence of non-zero values so as the shape of the prediction

were bad as January. In the end, it can be closed that the monthly training does not
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Figure 3.5: MSE monthly training for FNN

Figure 3.6: MSE monthly training for RNN

improve the prediction significantly, while the FNN performs even worse by looking

at the shape during the night.
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Figure 3.7: FNN prediction - January

Figure 3.8: RNN prediction - January

3.1.3 Seasonal training

The third approach is the seasonal training, which would have exploited the season-

ality of some months to reduce the variance and improve the prediction in months
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FNN RNN
Month MAE MSE MAE MSE
January 55.507 19130.39 55.751 18408.4
February 64.638 20863.04 64.597 22460.75

March 34.988 5662.456 37.755 6758.585
April 56.695 12081.59 56.311 12130.96
May 47.475 7684.21 49.039 8017.887
June 46.818 8135.207 47.727 8499.504
July 36.815 6454.579 49.082 7534.211

August 33.193 5574.556 35.26 5942.328
September 34.735 5087.49 40.045 5839.31
October 29.945 4521.132 30.453 5015.937

November 31.472 3870.092 20.408 2349.664
December 62.467 17740.92 60.831 16728.53

Table 3.2: Monthly errors with monthly training, for both RNN and FNN

with similar weather. Consequently, 4 neural networks were gained, one per each

season. Figures 3.11 and 3.12 shows the MSE during the learning phase for FNN

and RNN accordingly. For both FNN and RNN, the evolution is practically the same

as the previous approaches, even though there are three main differences. First of

all, looking at the first epochs, the MSE does not go up and down during the first

epochs of the learning phase, as seen in the other training approaches. Secondly, the

overfitting is not visible, even if around 1000 epochs the validation error increases

but does not overcome the training error. Lastly, there is a different shape of the

predicted values. In fact, FNN performed very well and it can be seen in figure 3.11,

while in figure 3.12 is shown the RNN’s predictions. While the RNN did not show

any variation in predicting values with this approach, the FNN did. Looking at the

shape of the prediction, it seems that was able to follow better the evolution of global

solar irradiance. Finally, the table 3.3 shows errors for both RNN and FNN. In some

scenarios, such as October and November, the RNN is prone to perform remarkably

better than FNN, almost halving the error. Moreover, the MSE results even smaller,

a sign that the RNN learnt better.
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Figure 3.9: MSE in seasonal training for FNN

Figure 3.10: MSE in seasonal training for RNN
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Figure 3.11: FNN prediction - January

Figure 3.12: RNN prediction - January

3.1.4 The best choice

The analysis above brought significant results whenever a NN has to be chosen

for decision making, i.e in management systems. Tables 3.4 and 3.5 depicts errors
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FNN RNN
Month MAE MSE MAE MSE

January 55.823 17642.25 51.13 16840.33
February 72.745 24589.76 65.023 21296.29
March 45.652 7309.608 45.564 8241.674
April 59.704 12248.54 54.963 11618.89
May 49.817 8129.039 49.499 8246.942
June 61.089 11970.93 53.599 9672.017
July 46.951 7870.746 48.447 7437.507
August 41.083 7146.45 37.78 6429.089
September 46.215 7838.521 46.731 7880.876
October 52.335 10182.18 34.422 6338.108
November 53.582 10622.9 29.603 3933.827
December 82.653 28609.83 77.75 27471.71

Table 3.3: Monthly errors with seasonal training, for both RNN and FNN

differently, so that can be analyzed the behaviour of a given neural network with

the training approach. FNN seems performs well in some cases and the mean MAE

is pretty the same as the RNN. This result was not expected since the RNN was

the favorite because of good performance with sequential data. On the other side,

networks performed differently in predicting, with some errors during the night in

catching the pick of some days. Therefore, by looking at the error, no choice could

be taken. However, the RNN performed very well in some cases and the mean MAE,

in almost all training approaches, is lower than FNN. In some cases, the reduction

of committed error with RNN is remarkably smaller than FNN. For instance, by

taking into account Autumn and winter months, in which the energy production is

not so certain and good, the RNN gained better results. In the end, the best training

approach resulted, in mean, to be the yearly training combined with RNN, which

gave best results in the worse case of production.
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FNN

Month
Yearly training

MAE
Monthly training

MAE
Seasonal training

MAE
January 59.447 55.507 57.886
February 64.919 64.638 71.937

March 44.746 34.988 48.249
April 61.023 56.695 56.885
May 52.878 47.475 49.477
June 53.789 46.818 59.854
July 42.036 36.815 49.077

August 31.588 33.193 39.388
September 37.655 34.735 48.709
October 32.504 29.945 51.518

November 25.501 31.472 50.821
December 63.759 62.467 79.537

Mean MAE 47.487 44.562 55.278

Table 3.4: Comparison of monthly errors of FNN for each training approach

3.2 Comparing Turin vs Buffalo

Once both the best network and training approach was chosen, another city was

considered to compare the performance based on different coordinates. The city is

in the same latitude but at different longitude: Buffalo, NY. Consequently, by using

PVGIS tool and the same procedure explained in section 1.5, the new dataset was

created. The only difference was due to the range of years available, from 2005 to

2015. To be comparable the prediction between the Turin and Buffalo, the same

range of data was considered. Therefore, for both cities:

❼ the training set included data from 2005 to 2014;

❼ the testing set included data of 2015;

❼ the same name of epochs (200) and the same batch (50) were used, so as the

learning rate η = 0.001.
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RNN

Month
Yearly training

MAE
Monthly training

MAE
Seasonal training

MAE
January 51.693 55.751 51.13
February 59.725 64.597 65.023

March 37.509 37.755 45.564
April 56.892 56.311 54.963
May 50.169 49.039 49.499
June 51.461 47.727 53.599
July 44.772 49.082 48.447

August 37.480 35.26 37.78
September 38.153 40.045 46.731
October 32.958 30.453 34.422

November 24.862 20.408 29.603
December 56.867 60.831 77.75

Mean MAE 45.212 45.605 49.543

Table 3.5: Comparison of monthly errors of RNN for each training approach

Figure 3.13 shows the prediction of first 192 hours of January in Buffalo, while

Figure 3.14 shows the prediction in Turin. Figures shows several type of days, so

Figure 3.13: RNN prediction with yearly training - January, Buffalo
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Figure 3.14: RNN prediction with yearly training - January, Turin

that is possible to see the behaviour of the network in different scenario, whenever

the irradiance is high, low, constant or highly variable. Substantially, the network

behaves in the same way, during the bad days the global solar irradiance is usually

overestimated, while during good days, in which the shape of the irradiance is the

usual one, the network underestimates it. Consequently, by changing dataset and

location the behaviour of the network did not change, demonstrating no relation

between coordinates and amount of error. Maybe the chosen locations have the same

weather, therefore no difference in training and testing the network was caught.

3.3 NSRDB dataset and selection features

The NSRDB dataset illustrated in section 1.3 contained more features than the

PVGIS and in this section will be investigated if it could be a good point or flaws.

The availability of more features can bring noise in the training set, causing a raising

of error in predicting (this is also true for other scenarios in the machine learning, such

as classification, regression, NLP). Below, the approach to a selection the right type

of features in NSRDB for the predictions will be shown, looking into the performance
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of the RNN at various number and typologies of features. In fact, the interest was

in understanding which features could have contributed to reducing the MAE and

MSE, considering features shown in table 1.1, section 1.3.

3.3.1 Selection features

The selection feature process involved the creation of many datasets with different

characteristics (i.e. mean and variance). In order to be able to compare those

datasets, other metrics were used, defined in section 2.1, such as:

❼ Normalized RMSE (equation 2.2), for comparing dataset;

❼ Correlation coefficient R (equation 2.5), to understand which variable is more

effective in predicting global irradiance values.

Therefore, these metrics were added to the usual one so that a better analysis could

be done. Table 3.6 reports all the several tested combinations of variables with the

NSRDB dataset. This table has to be considered for analyzing the table 3.7, which

shows errors associated with each dataset. In this last table is highlighted the best

result obtained, which is the 6-th dataset. The main difference between the other

dataset is the presence of the Hour, indicating the high effect that this variable affects

in predicting, as expected from an RNN and from the kind of sequential data. With

the 6-th dataset, even the coefficient correlation is higher than others, except for the

9-th which has a very little improvement. These datasets differ from the Precipita-

tion Water feature, which could be indicative in a better shape of the prediction.

The NRMSE is even smaller in the 9-th than 6-th dataset. It is curious how the

Clearsky condition does not affect so much in predicting the global solar irradiance,

that is the value of DHI, GHI, DNI in clear sky condition, maybe because they are

not so informative and they are redundant combined with the normal condition DHI,

GHI, and DNI.

Others effective results were obtained with the 10-th and 11-th dataset. Two dif-

ferent combinations of variables allow to obtain little errors as much as the 9-th.
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NRMSE’11-th is smaller than the 9-th, indicating a little improvement as a combi-

nation of variables. Finally, new features did not allow to get better results as could

be expected. The dataset self improved the capability of the network to predict

the best result. This is valuable information since highlight how much the process

by which data are collected and processed affects in the predictions. This is better

analyzed in the following section.
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Dataset MAE MSE NRMSE R
1 83.896 22081.759 0.876 0.822
2 61.518 11860.277 0.642 0.908
3 58.003 10809.780 0.613 0.918
4 60.275 11163.412 0.623 0.913
5 59.903 10921.337 0.616 0.918
6 35.356 6332.660 0.469 0.952
7 58.001 10552.458 0.6055 0.919
8 58.081 10833.238 0.6135 0.917
9 35.732 6308.307 0.468 0.953
10 39.720 6804.874 0.487 0.951
11 38.761 6705.77 0.483 0.951

Table 3.7: Errors prediction for each dataset

3.3.2 NRSDB results vs PG results in predicting

To better understand if the new kind of dataset allows obtaining a better result, it

was compared with the previous one, PVGIS. Since NSRDB had a wider range of

years available and also a bigger number of features. First of all, the same features for

both dataset were selected. Then, several cases were tested and Table 3.8 illustrates

results in predicting global solar irradiance by using different training sets. The

testing set was the next year available for each dataset. Looking at first two rows,

differences between PVGIS and NSRDB can be seen. Indeed, NSRDB dataset allows

to the network learns better. NSRDB’MSE had even the half of the PVGIS error,

considering the same range of year and same type of features. This result can be

Training Set MAE MSE NRMSE R
PVGIS (2005-2015) 53.953 14231.946 0.558 0.936
NSRDB (2005-2015) 41.006 7045.559 0.481 0.948
NSRDB (1998-2016) 39.037 7119.630 0.497 0.946

Table 3.8: Prediction errors - NSRDB vs PVGIS dataset

explained by the fact that the two datasets are created using different algorithms, and
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this result is relevant in perspective of future applications and in predicting values in

real use cases. Finally, the last row shows smaller errors values than others. However,

the correlation coefficient is not so high than the training set which considers fewer

years, so as NRMSE is higher in NSRDB (1998-2016). This can be caused by the

higher variance introduced with more years available in the training set.

3.3.3 NSRDB with finer time granularity

Since NSRDB tool allowed to obtain a finer time granularity dataset, the prediction

with this kind of dataset was investigated, so that was possible to understand if more

information were helpful in predicting irradiance values.

The same range of year of PVGIS (2005-2015) was chosen, and Buffalo as location.

In this way the prediction was comparable with other time granularity, by using

the yearly training approach. From figure 3.15 is possible to see how the network

Figure 3.15: January prediction with 30 minute time granularity

performs very good respect to the others approaches, due to the bigger number of

features per hours. The network predicted the value of global solar irradiance of the
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next hour with values of the previous half hours and this is way it performed even

better, following very well the global solar irradiance’shape so as the several picks.

Here several results were discussed, starting from the comparison between the

two techniques, RNN and FNN, based on the training approach. This step defined

RNN with yearly training as the best technique. This result was obtained because

both monthly and seasonal training contained less amount of data so that the neural

network was not able to generalize the task in which it was specialized. For instance,

whenever a month has high variability during the range of the considered years for

training, the monthly training can reduce its accuracy since it has been trained

with months with very different values, with consequences in lack of the desired

specialization. The same can be said about the seasonal training. Moreover, the

location does not affect in training phase, in which the neural network performances

did not change. Finally, the NSRDB dataset can allow to boost the performance

of neural networks thanks to its available features. The selection features section

shown how some variables can improve performance more than others, making the

difference in prediction.
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CHAPTER 4
Post-processing and cluster analysis

After having obtained a tool with good predictions performance, the thesis moved

on matching data analysis with the prediction task to catch other useful information.

For instance, it was useful to understand whether the prediction performs well during

the first hours of the day, sunrise, or in the last hours, sunset. Moreover, some days

seem to be similar to the amount of global solar irradiance and about the sequence

of bad days and good days.

In order to extrapolate this information a clustering algorithm was used, in particular

K-means, so that groups of days were created and analysed on the base of weather

similarities and daily pattern similarities.

4.1 K-means

K-means belongs to the category of unsupervised learning, approach in which an

algorithm is able to learn or group data on the basis of common characteristics.

K-means is a partitional clustering method which aims to divide data space into

k clusters. From a set of N observations (x1,x2, ...,xk, ...,xN) in which xk ∈ Rd,

K-means constructs K ≤ N disjoint subsets minimizing the within-cluster sum of

square, defined as:

WSS =
NX
k=1

(xk − x̄C)2 (4.1)
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where x̄C is the centroid of the cluster C ∈ K, that is the mean value of samples in

the C-th cluster, while xk is k-th observation of the C-th cluster.

The algorithm works on the base of the following steps:

1) from a set of observation, it picks k random data points and defines them as

centroids, which means that the centroid x̄C is initially randomly selected;

2) it calculates the distance between data points and every centroid with the

equation 4.1. Then, k clusters are defined by considering all data which are

closest to a centroid;

3) grouping data in clusters leads to the definition of new centroids. This time

the centroid is computed calculating the mean of all samples in the cluster.

Step 2 and 3 are continuously repeated until the centroids stop moving, which means

the K-means algorithm is converged.

In the following sections will be analysed several approaches for clustering PVGIS

dataset, to investigate whether clusters with the same type of day were possible to

obtain, such as sunny, cloudy, or rainy day.

This could be useful for understanding if a day is classified as high or low production

so as high or low weather variability. In addition, the used method for choosing the

k clusters and the dimension of datasets is discussed.

4.2 Clustering Analysis

4.2.1 Choice of K clusters

To perform the clustering with K-means, a number of clusters k had to be chosen.

The choice is the most difficult part, and the decision is the key factor of the algo-

rithm. The number of clusters could be defined in several ways: empirically or based

on the context and from the type of information which is looking for. In this context,

both approaches were adopted.

The algorithm takes as input PVGIS dataset for Turin, with the range of the year
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2005-2014, processed in two different ways, so that was possible to investigate more

aspects of data:

❼ the first dataset took into account variables in Table 1.3 except for Day Of Year,

Hour, and day. The mean over 24 hours was calculated, therefore, xk ∈ R7

consists in a vector (1× 7). At the end, the dataset was composed of (n× 7),

with n = 3651 considering the range of the year 2005-2014. Therefore, the

objective was to extrapolate k clusters in which each cluster corresponds to a

kind of day, on the basis of the weather. k = 4 was considered.

❼ the second one instead was used to study several patterns in a day. Therefore,

xk ∈ R24 consists in a vector (1 × 24), since each entry has all the 24 hours

of global solar irradiance. At end the dataset was composed of (n× 24), with

n = 3651 as before. The desired result was to obtain k clusters in which

each of them contained day with the same pattern production. To understand

which number of clusters could have been suitable, the empirical method was

performed.

The appropriate number of k clusters can be discovered in several ways and there is

not a definitive approach. The one used in this context is called Elbow Method. The

method consists of calculating and plotting the total WSS at varying the number of

clusters. The total WSS, equation 4.2, sums up the WSS of each k cluster, giving a

quantitative value of how much data are spread out.

WSSTotal =
KX
c=1

NX
k=1

(xk − x̄C)2 (4.2)

Figure 4.1 depicts the total WSS for a growing number of clusters. From k = 1

to k = 300 was considered. Total WSS decreases, asymptotically to the x-axis, at

increasing the number of clusters. Indeed, the minimum value of WSS is reached

when k = N , obviously. The elbow method advises taking a value in which the

derivative is higher, indicating an abrupt change. Figure 4.2 shows values in which
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the total WSS start to be more or less steady. In the end, k = 4, 5, 6, 7, and 8 were

tested to examine if different results could have been obtained.

Figure 4.1: Total WSS for a growing number of clusters

4.2.2 Weather recognition

As explained before, two datasets were generated. Here will be illustrated the analysis

on the first type, to exploit K-means to group day with the same weather. Since

PVGIS dataset has hourly data, the mean of each variable was computed to get

a representative value of the day. Consequently, the xk observation consisted in a

vector of mean values, in which xk ∈ R7, and 7 was number of the retained features.

Since the available dataset contained hourly data from 2005 to 2014, many analysis

could be performed, for instance, a matching between seasonality and clusters so that

was possible to catch similar days, Indeed, some clusters appear only in a season and

not in the others. Figures 4.4 and 4.3 show months with a low energy production,

winter and autumn. Each figure shows all month’s days depicted with a different

colour, based on the cluster which belongs to.
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Figure 4.2: Zoom in the elbow curve for choosing k

First of all, there is a clear difference between some clusters on the basis of the

global solar irradiance value. The blue cluster depicts a day in which the production

is small and the day is highly variable, In addition, this cluster is always present

in autumn and winter. On the contrary, the green cluster is not always present.

Looking at the y-axis, and it is evident how this cluster contains days with a higher

global solar irradiance value, so as a more normal behaviour than others day. This

cluster is not always in all months, such as November, December and January, which

are the colder months. This is a piece of helpful information if it is matched with the

prediction of global solar irradiance illustrated above and several strategies could be

established in energy management. Then, the other two clusters are in the middle.
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(a) January 2014

(b) February 2014

Figure 4.3: Month with lower energy production: January and February

The cyan cluster could indicate a higher global solar irradiance and little weather

variation during the day; the red cluster could group those days in which there is a
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(a) November 2014

(b) December 2014

Figure 4.4: Month with lower energy production: November and December

high global solar irradiance but not as much the green cluster.
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(a) May 2014

(b) June 2014

Figure 4.5: Month with medium and high energy production: May and June

Carrying on the analysis, Figures 4.5 and 4.6 show spring and summer months.

The presence of the blue cluster is less frequent, indicating that few days have small
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(a) July 2014

(b) August 2014

Figure 4.6: Month with medium and high energy production: July and August

global irradiance value and also few of them have a big daily variability. The green

cluster is the one more frequent.
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Summing up, K-means gives useful information about days by taking into account

the values of global solar irradiance and the variability of the day. To understand

if this information was useful to analyze the goodness of the prediction, a matching

between prediction and clusters was performed. In order to do so, three other metrics

were introduced: the error in raising, in descent, and the mean daily error defined

as following:

❼ raising MAE: taking a single day, the metric calculated the difference be-

tween the real and the predicted value considering all the samples between the

sunrise and the midday. In order to define the range of values to consider for

each sunrise and midday, since both processes have a seasonal dependency, the

elevation of the sun was the proxy, instead of using the hours;

❼ descent MAE: it takes into account values between the midday and the sun-

set, defining the range as the previous metrics. Besides, it does not consider the

same hour of the midday, but just the hour after it, in order to avoid counting

the same sample;

❼ daily MAE: it considers all the sample in 24 hours and calculated the MAE

between the real and predicted values.

These errors were grouped for each cluster and each month to study the correlation

between clusters and months as following: each type of error was calculated for a

single day, averaged in each month, and then grouped for the associated cluster.

The result is shown in Figure 4.7, in which in x-axis there is the month, while in

the y-axis the Mean MAE. Bar plots 4.7a and 4.7b show the committed error from

the best choice 3.1.4 and features in table 1.3 were used as input. Thanks to this

data representation is interesting to see how months do not belong to all clusters,

for instance January and February miss the green cluster - the one target as the

cluster in which high global solar irradiance values are present. Also, November

and December do not have all clusters. About the order of error, the blue cluster

has a lower MAE than others, in both types of errors, raising and descending. On
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(a) Mean Descent MAE (b) Mean Raising MAE

(c) Mean Daily MAE

Figure 4.7: Mean monthly MAE, divided for raising, descent and daily

the contrary, the network is prone to make more mistakes in the red and the green

cluster.
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4.2.3 Pattern recognition

After having processed data for weather recognition, it was interesting to investigate

if K-means could have allowed giving some helpful information about the daily global

solar irradiance pattern. In order to do that, the PVGIS dataset was changed. The

xk ∈ R24, that is each entry contained 24 values corresponding to the global solar

irradiance at time t.

As said before, Elbow method suggested to compute the K-means algorithm with

k = 4, 5, 6, 7, 8. Helpful result was obtained by looking to the clustering with k = 7,

while for k = 4 results were similar to the previous approach. In fact, with a small

value of k the same information of the previous approach was obtained.

Figures 4.8 and 4.9 depict the clustering with the new dataset and k = 4. Essen-

tially, clusters are the same to the previous approach, therefore no more information

could have been retrieved.

With a slightly higher number of clustering other characteristics were encoun-

tered. Analyzing k = 7 the order of global solar irradiance is not the only one which

affects in the clustering process, but also the shape of the day, thanks to which is

possible to create clusters with similar patterns. For instance, Figure 4.12 shows

two types of days with a similar pattern. They are two different days taken from

April 2016 (Figure 4.13a) and they can be classified as a day in which the evolution

of global solar irradiance has high variability during the raising 4.13b and it is con-

stant during the sunset. On the other hand, days shown in Figure 4.12b have high

variability during the sunset. Another pattern can be seen during December days,

aquamarine clusters groups days with the same shape (Figure 4.13).

K-means algorithm was the perfect algorithm for analyazing data on the basis

of the thesis object. It gave helpful information about the type of day and also it

allowed to introduce new metrics for evaluating the prediction, such as the committed

error in raising and in descent These turn out very useful in context in which the

prediction accuracy in a particular time of the day is crucial. In addition, the weather

recognition improve the decision process in strategy management.
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Another valuable information is regard the amount of k cluster which should be

considered, since the higher is the number of cluster and slower is the total WSS. By

contrast, a high number of clusters results intractable and the elbow method allows

to proceed in the right, choosing a useful amount of clusters. Pattern recognition

brings still other details about the daily global irradiance pattern. The knowledge of

similarities between days can be considered for knowing in advance which could be

the performance of a given neural network in some months, as seen in Figure 4.7.
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(a) January 2014

(b) February 2014

Figure 4.8: Month with lower energy production: January and February - Pattern
recognition - k = 4
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(a) November 2014

(b) December 2014

Figure 4.9: Month with lower energy production: November and December - Pattern
recognition - k = 4
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(a) January 2016

(b) December 2016

Figure 4.10: Month with lower energy production: January and December - Pattern
recognition - k = 7
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(a) April 2016

(b) August 2016

Figure 4.11: Month with lower energy production: April and August - Pattern recog-
nition - k = 7

63



(a)

(b)

(c) April 2016

Figure 4.12: Comparison of two types of days with similar pattern in April
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(a) December 2016

(b)

Figure 4.13: Comparison of two types of days with similar pattern in December
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CHAPTER 5
Conclusions

The aim of the thesis wanted to give a new tool in a novel context, useful in several

domains and mainly placed in energy management. The prediction of the renewable

resources, by using machine learning technique, is a tool which can help the decision

process in many contexts and use cases, and in order to do so, this tool should be

affordable and reliable. The neural network techniques were considered and studied

in different ways, by trying to understand if their properties would have been helpful

in energy prediction. Indeed, a lot of difficulties were encountered, mainly due to

their high dependency in the design, training process and, consequently, by the kind

of fed data. Many tries of designing and training process were analysed for under-

standing how the neural networks behaved, such as the yearly, monthly, and seasonal

approaches. The monthly approach was the one whose expected results were better

than others. The comparison of all approaches depicted the yearly approach as the

best one with lower errors and less prone to overfitting data. In fact, it is able to

better generalise data, and it can be seen looking at the MSE error at increasing

epochs.

Then, two types of neural networks were stressed in many ways, FNN and RNN.

Literature shows that RNN performs better than FNN in time series analysis and in

the prediction context. In this case, the differences between the networks are not so

remarkable. In addition, FNN was able to perform even better than RNN.

Summing up, the analysis of these two techniques of machine learning brought new
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aspects in energy prediction. The committed error from the NNs is higher than

expected, and high dependency on the type of dataset was noticed. This is highly

indicative about the kind of data should be used for obtaining good values of predic-

tions, how they should be elaborated before data pre-processing and then training

a network. The considered PVGIS and NSRDB tools give a good type of data, and

many differences between them were analyzed from a different point of view: number

of features, the type of features used for the neural network training, and the time

granularity. With NSRDB data the neural network performed much better than

data coming from PVGIS. The algorithm used for generating the dataset makes the

difference and the network demonstrated very sensibly to it. Finally, the clustering

analysis was used to extrapolate information and the obtained results were valuable

and the comparison between the prediction and the real clustered day, which gave

a sensible knowledge, remarking the difference between good and bad days, so as

grouping type of day on the basis of the seasons. Indeed, the approach was a key

point in the analysis, giving a lot of exploitable information in the decision making

process in several domains (i.e. energy management).

In conclusion, the thesis is an introduction to this huge field in energy renewable

prediction, in which a lot of work is required so as many improvements. Neural net-

works are a good tool and maybe exploiting some others techniques in deep learning

could enhance the capability to learn and to predict global solar irradiance, with

lower errors. This kind of tool can be applied in many fields of energy. For example,

it can be used for energy management and cost reduction. Indeed, Neural Network

allows to know which will be the amount of available energy in the next hour, and

this information is helpful for deciding or managing the energy consumption in that

hour. This can be translated in different ways on the base of context: for people in

a residential building with a PV systems means to change their habits, accordingly

with the amount of predicted available energy; for industries, the cost reduction can

be very high, first of all, if they use renewable energy, and secondly the awareness

of how much energy their PV systems produce can drastically change their financial

statements. Indeed, the energy pricing strategy can be another context in which the

application can be helpful. In this respect, the possibility to predict the availability
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and the amount of energy allows to the industries to plan the quantity of energy

they should buy from suppliers.

The tool results extremely useful for planning and managing the future available

energy. Moreover, in this sense, it turns out extremely useful in critical situations or

emergencies, just think of cities in which recurring black-out happens due to over-

load, weather condition, law restrictions for reducing the environmental impact of

the power grid, and so on. The knowledge of the amount of energy in the next future

can prevent critical situations, limiting the impact on both people and industries.

All these applications differ in requirements. Even though the presented Neural Net-

work performs very well, some aspects can negatively affect on the base of context.

For example, some applications require a smaller error during the day, other one

needs more precision in predicting pick values, and so on. For these reasons, the

tool needs to be improved in several aspects, starting from a higher computational

capability and exploiting GPUs, which speed up the training phase and resulting

faster 5 or 6 times than a CPU. It allows to study if increasing the number of hidden

layers, the number of neurons, and so the number of parameters inside the Neural

Network can distinctly improve performances. In parallel, the needs of more data,

well structured or even previously classified in some way is preponderant in Deep

Learning context.

At the end, machine learning techniques result extremely useful in these contexts,

bringing to the next level many fields and laying the groundwork to sustainable

thinking.
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