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Chapter 1  
 

Introduction and problem description 
 

 

1.1   Motivation 
 

Anomalies in the network traffic can arise due to faults or, especially, cyberattacks. When the 

data set is large, a graphical representation of the traffic can make it easier to read, interpret 

and understand, by translating large amounts of text-based data into a visual representation. 

This operation can be particularly important and helpful in security applications, to visualize and 

identify abnormal patterns within the network traffic, reducing the time and the effort required 

by system administrators to check and analyse, otherwise, all the traffic saved in text logs. A 

visual representation of traffic data allows to have a better overview of network activity, useful 

to both take actions in real-time and to discover compromised hosts within the network.  

A great variety of intrusion detection systems are currently employed to detect unauthorized 

access to computers or networks. Historically, intrusion detection can be classified in signature-

based and anomaly detection. While the systems in the first category work by comparing the 

traffic to test with samples of known malicious traffic, the second class relies on the concept of 

anomaly, or outlier, as deviation from the “normal” behaviour. The biggest advantage is that, 

while signature-based detection systems fail in detecting new attacks, anomaly detection 

systems can, if recognize them as anomalies. Nowadays, consequently to the growing in the 

number of attacks and their increasing power, anomaly detection is a field widely studied and 

several techniques have been investigated and proposed over the past years. These proposals 

are based on concepts coming from several different fields of study, like statistics and 

information theory. Most intrusion detection methods with visualization are anomaly-based.  

Traditional anomaly detection approaches applied to network environments work well in 

detecting outliers inside the traffic. However, generating an alert for any suspicious event 

appearing in the network traffic isn’t always the good strategy: a lot of frequent alerts always 
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related to the same event could divert the attention of the analyst from most important ones. 

Moreover, several anomaly detection techniques fail in situations in which the traffic profile is 

not very well behaved. So we want a more robust way to detect anomalies, less sensitive to 

seasonality effects that can arise in network traces. 

 

 

1.2   Goal  
 

In such context, the objective of this work is to develop a system that allows to visualize in a 

flexible way the traffic and the anomalies inside a network. While traditional anomaly detection 

systems aim to detect the appearance of any deviation, we wish to focus on the identification 

of only the most relevant ones.  

The system is composed by 6 modules. TCP network traffic is first captured and collected in flow-

based logs, differentiating the connections that fail from the successful ones. All this data is 

processed through a script to extract meaningful network features (traffic volume, number of 

unique source IP addresses and number of unique destination IP addresses), helpful to delineate 

the traffic profile, and to aggregate them in hourly time series per destination port. Since the 

amount of data is considerable, this processing step is performed exploiting a big data approach.  

The output is elaborated with Prophet, a library developed at Facebook to forecast time series 

data. From the data passed, Prophet is able to make a prediction for the future trend, compare 

it with the actual data and detect the points in which the trend changes. The output is sent and 

stored in a distributed database for time series, and successively retrieved to provide the 

interactive graphical representation of our time series through a dashboard.  

We test the performance of the system with a case study, using traces of traffic collected within 

the Politecnico di Torino network. These traces are related to failed connections in a month of 

traffic. As first, we made a general analysis of the traffic to understand some statistics about it, 

like the top ten ports in the month for destination traffic volume. In this way, we process the 

traffic to obtain the time series related to these ports. Then, anomalies in the trends are 

visualized with Prophet. In particular, we can spot anomalies under two forms: the change in 

the trend and the presence of dots falling outside the uncertainty interval for the forecast. By 
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combining these two features, we are able to detect anomalies in network traffic with Prophet. 

Once an anomaly is detected, it can be investigated to identify the threat. 

 

 

 

1.3   Thesis organization  
 

The following topics will be addressed in each chapter. 

 

Chapter 2: State of the art  

This section discusses the context in which this work is developed, the importance of the 

network dataset chosen, a description of the main categories which anomaly detection 

techniques can be classified, offering a general view of the most used and some reference to 

network traffic visualization.  

 

Chapter 3: System Design and Architecture  

This chapter discusses the proposed system architecture, focusing on explaining the single 

elements composing it and their purpose in the process. In particular, the system is composed 

by 6 modules, that will be individually explained.  

 

Chapter 4: Dataset and Case study  

This chapter describes the dataset used to test the proposed system and offers an overview on 

the results obtained, reporting as examples the cases related to four destination ports. At the 

end of this section, is also reported the investigation made upon an anomaly that has been found 

by applying the proposed system to our dataset. 
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Chapter 5: Conclusion and future work  

In this last chapter, it is done a survey of the results with conclusions and considerations, and 

mentions about possible future works. 



Chapter 2  

 

State of the art  
 

 

Nowadays Internet networks are wildly used in many different fields, among which we name: 

telecommunications, business, health, instruction, industry, agriculture, transportations and 

many others.   

This leads to a huge amount of data crossing the network and, therefore, to an increasing 

number of cyber criminals that try to exploit the vulnerabilities in software and protocols for 

their personal or financial gain. 

So, with the increase of the use of Internet, security incidents and attacks increased and became 

always more sophisticated and variate, so that it is harder to be immediately recognised.   

According to a report released by Gemalto in 2018 “944 data breaches led to 3.3 billion data 

records being compromised worldwide in the first half of 2018. Compared to the same period in 

2017, the number of lost, stolen or compromised records increased by a staggering 72 percent, 

though the total number of breaches slightly decreased over the same period, signalling an 

increase in the severity of each incident.” [1] 

 

Nowadays networks show an increasing number of connected IoT devices, that in the last years 

also had a great influence on the number of cybersecurity incidents: over recent years the 

number of smart devices connected to the network, like security cameras, baby monitors, lights, 

fans, TVs, washing machines, cars, etc…has considerably increased besides the more traditional 

devices. This has posed an enormous threat in security: these devices have shown several 

security problems, due to unpatched vulnerabilities and weak/default password, that make 

them target for cyberattacks.  

The first important IoT malware attack seen at global level goes back to October 2016, when an 

aggressive distributed denial of service attack left the major Internet platforms and services 
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unavailable in the east coast of US. This event was caused by the activity of the so called Mirai 

botnet, a self-propagating botnet malware designed to compromise IoT devices. [2] Since Mirai 

code has been published, several of variants have been developed and used up to now.  

According to a report by researchers at F-Secure Labs, 19 new threats have been found in 2018 

doubling the number of existing IoT threats. [3] 

IoT devices are especially exploited for DDoS attacks (like in the case of the Mirai botnet attack 

and variants), or also for mining cryptocurrencies, with the goal to install cryptominers to 

generate virtual currency. 

 

Finding a solution to the issues connected to IoT devices is becoming more and more stringent 

as, according to the previsions, the number of IoT devices is expected to grow to 10 billion by 

2020 and 22 billion by 2025. [4] In this scenario, adopt intrusion detection solutions is always 

more significant.  

 

 

 

2.1   Intrusion detection  
 

With the growing in number of attacks and their increasing power, it is even more important to 

adopt intrusion detection solutions, that have the aim to detect unauthorized access to a 

computer or a network. [5] 

There are two main possibilities to perform intrusion detection: signature base detection and 

anomaly detection. The two approaches can also be combined to be used together in hybrid 

detection systems.   

 

Signature-base detection is based on the recognition of the signature of an attack, that is the 

pattern of the threat: the traffic is compared with known signatures stored in a database, where 

each entry matches a certain threat.  Because of that, signature-based systems can detect just 

known threats while they fail in recognize unknow attacks. However, the advantages of such 

https://s3-eu-central-1.amazonaws.com/evermade-fsecure-assets/wp-content/uploads/2019/04/01094545/IoT-Threat-Landscape.pdf
https://www.f-secure.com/en/web/labs_global/home


 2.1   Intrusion detection 

7 
 

techniques are the presence of low false positive rate and the easy identification of the attacking 

threats. The system is however no more able to detect a malicious activity with a small variation 

from the known threat signature. So the signature database must constantly be updated. 

However, adding more and more signatures in the database increases the storage cost and the 

search cost required from the system to check all the possible matches. [6]  

 

The anomaly detection approach instead tries to detect an event by building a traffic behaviour 

baseline and looking for any deviation from it. This unexpected behaviour is identified as 

anomaly, or outlier. Anomaly detection is not applied just for network applications. In fact, 

anomaly detection can be defined as “the identification of items, events or observations which 

is significantly different from the remaining data”. [7] Therefore, it found place in multiple 

application domains: some examples are fraud detection for credit cards, identity thefts, sensor 

events, insurance or health care frauds, fault or damage detection and, as already mentioned, 

intrusion detection in cyber security. Anomalies, in a network scenario, can be either 

performance related anomalies, due for example to malfunctioning or overload, or security 

related anomalies.  

In the case of security anomalies, anomaly detection systems can also detect new attacks, 

differently from the signature-based. However, they may sometimes lead to a high false positive 

or false negative rate. In the first case, a normal behaviour is detected as an attack since the 

normal behaviour itself changed. In the other case, a malicious event is not recognized as such 

because there is a very small variation in the trend that is not detected.  

Since network attacks are always more sophisticated and frequent, network anomaly detection 

is a widely studied field and many approaches have been proposed with the goal of maximizing 

the ability to detect the greatest number of malicious activities in the traffic and minimize the 

false positive and false negative rates.  

However, the “normal” profile for the traffic is not so trivial to be defined due to several reasons: 

boundaries among normal and bad activity, attacker trying to mime the traffic, high variability 

in the normal pattern itself, etc..and this can cause poor performance.  

Moreover, when a deviation from the legitimate traffic is detected, it has also to be categorize 

since, differently from the signature base techniques, the newly found anomaly has not been 

labelled yet. [8] 
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2.2   Traffic monitoring for anomaly detection  
 

Authors in [9] highlight how the detection of the various types of anomalies is dependent on the 

nature of the network data used.  

A survey of possible data sets suitable for network anomaly detection is done in [10], focusing 

on their format and use. As reported, network data traditionally can be captured in two main 

formats: packet-based or flow-based. In the first case, data are commonly presented in pcap 

format and include the payload, and the information depend on the transport protocol used. 

The second case deals with information about network connections. It doesn’t contain the 

payload since it aggregates packets according to the definition of flow: all packets that have the 

same source IP address, destination IP address, source port number, destination port number 

and transport protocol belong to the same flow. The packets can be aggregated in unidirectional 

or bidirectional flows. In the first case, the communication direction matters and, in the same 

connection, packets from the client to the server and from the server to the client are put in two 

different flows, while in the second case all packets in the same flow are put together, without 

caring about their direction.   

A further distinction can be made considering the recording environment. For recording 

environment is intended the kind of traffic and the considered network. The traffic in the data 

set can be real network traffic captured by a network device within a production network 

environment. The capture environment should be considered too, as the collected dataset 

behaviour may vary if they are related to a small-medium size company network or to an 

internet service provider environment. 

Once the data sets are passed as input, anomaly detection techniques can return as output an 

anomaly score or, like in most of the cases, a binary label, that simply tells if the data is 

considered anomalous or not.  

 

For anomaly detection in network connections, the normal behaviour monitored is the one 

related to some network traffic characteristics.  

For example, in volume-based detection techniques is observed the trend of the traffic volume 

in a network, looking for its significant changes. These systems work to detect some types of 
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anomalies like flooding attacks and some DoS attacks, that cause shifts in the network traffic 

load. On the contrary, attacks that don’t affect the traffic volume, or not considerably, are not 

signalled from these systems. This situation occurs for example in presence of a port scan.   

In feature-based anomaly detection, instead of considering just the traffic volume, are taken in 

consideration also other network traffic features. These features include some packets header 

fields like the source IP address, the destination IP address, the source port number, the 

destination port number, the TCP flag, the protocol number and packet size and measurements 

like for example the flow duration. These features can determine the presence of multiple 

abnormal situations: for examples, one or more IP addresses generating a great amount of 

traffic or connections can be due to worms, botnets or spoofing. While an increase in the 

number of destination IP addresses can show the presence of a port scan. In almost all the works, 

the goal is to understand the normal pattern of these network features, under normal traffic 

condition, and make a comparison with the features extracted from the traffic to test, in order 

to check if it is maintained or distorted by anomalies. [11] 

 

 

 

2.3   Network Anomaly Detection methods 

 

Another aspect of anomaly detection is the availability of supervision, that means the use of 

labels for input data. Accordingly to that, anomaly detection techniques can be classified in 

supervised, semi-supervised or unsupervised. These concepts come from machine learning, a 

branch artificial intelligence. Machine learning algorithms have ability to learn from data and, 

afterwards, make predictions based on previous data samples. [12]  

 

In supervised anomaly detection techniques, labels are available for both normal and anomalies 

classes. The algorithm is fed with these labelled data instances so that it is able to build a general 

model of each category. Then, the data instance to categorize is processed to determine to 

which pre-learned classes it belongs. A difficulty in this approach is that it is not always easy to 

have a representative label for all the anomaly categories and, since a supervised algorithm only 
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knows the categories on which it has been trained, it is not able to categorize unknown data 

instances. So automated anomaly detection systems based on this kind of algorithms require 

information related to each possible type of anomaly. Classical supervised algorithms are neural 

networks, support vector machines and decision trees. Supervised anomaly detection 

techniques are similar to signature-based approaches. The main difference is that, while in 

signature-based a signature is given to be used as reference, in supervised approach the 

classifier in the system is trained, with the hope to generalize the attack.  

 

There are several ways to define the semi-supervised approach. According to [7], semi-

supervised anomaly detection algorithms are fed with labels for only normal data, for which the 

algorithm builds the general model. Data instances to test are then processed to determine 

whether they belong to the category or not. Since semi-supervised anomaly detection 

techniques don’t require labels for the anomaly, they are more widely applicable than the 

supervised ones.  

 

The most used way to perform classifications is through an unsupervised approach, since 

unsupervised anomaly detection algorithms don’t need labelled training data set. Such 

techniques are based on two assumptions: first, it is presumed that most of the network 

connections are normal traffic and only a small percentage is abnormal. Second, the malicious 

traffic is statistically different from normal traffic. In such a way, groups of similar data instances 

that appear frequently are assumed to be normal traffic and those data groups that are 

infrequent are considered anomalous. In this way, unsupervised anomaly detection techniques 

are able to detect any types of anomaly, including those never encountered before. But, as 

already said, in this case the main difficulty is to determine what is part of “normal” behaviour.  

 

Among the mentioned categories, we here describe the most widely used. We recall: 

 

• Statistical-based anomaly detection techniques, that statistically identify traffic that 

deviates from normal traffic. The base idea is that normal data instances are generated 

with high probability from the stochastic model assumed, while anomalies with low 
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probability. Statistical techniques can be divided mainly in parametric and non-

parametric. In parametric statistic techniques, the model structure is given by 

parameters. For example, the parameters that follow the Gaussian distribution and are 

estimated through the Maximum Likelihood estimated. In non-parametric statistical-

based techniques, instead, the model is not built upon parameters, but it is derived 

directly from the data. The advantage of this approach is a fast computation. Examples 

of non-parametric models applied to network anomaly detections are histograms and 

kernel-density estimators (KDE).  [13] 

 

• Clustering-based anomaly detection techniques, whose idea is to group similar data 

instances in clusters, larger clusters often represent the normal data behaviour, while 

are considered anomalies data instances that don’t belong to any cluster or belonging 

to a smaller or less dense cluster. Clustering-based techniques are examples of 

unsupervised anomaly detection. Some examples of clustering-based approaches 

applied to anomaly detection in network traffic are K-means [14], DBScan [15] or 

nearest-neighbor [16]. 

 

 

 

2.4   Network Traffic Visualization  
 

Visualization techniques aim to graphically represent sets of data. This is particularly important 

when the data set is large, since a graphical representation can make it easier to be read, 

interpreted or understood.  

In network environments, this is particularly true. In fact, we have large-scale traffic data. All 

these data, if displayed, allow to visualize abnormal visual behaviour patterns in an easier way, 

reducing the time and the effort required by system administrators to check and analyze, 

otherwise, all the traffic saved in text logs. Therefore, a visual representation of traffic data 

allows to have a better overview of network activity, useful to both take actions in real-time and 

to later discover compromised hosts within the network.  
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The main challenge is to visualize all the information that are relevant to the particular situation. 

Since in network environments there are large amount of data, this data must be aggregated 

before to be put in visual form.  

 

The need for such visualization tools that can promptly and efficiently catch the attention on 

important events occurring in the network is at the base of several works. Some visualization 

tools for network traffic are for troubleshooting but, especially in past years, they have been 

developed to focus in particular for intrusion detection applications, to monitor, discover and 

investigate security related events.  

One example is VISUAL [17], a visual tool home-centric based on packet traces to represent hosts 

linkages in a network. Another packet-level visualization tool that has been proposed is TNV [18], 

based on a matrix to show hosts network activity over time and allows to visualize their 

interactions, port activity and, on demand, packets details. In [19] the visualization tool proposed 

captures some packets information, which are analysed and visualized. Other examples of works 

in this context are NVisionIP [20] and NFlowVis [21].  

 

  



Chapter 3  
 

System Design and Architecture 

 

 

In this chapter, we discuss the proposed system architecture, focusing on explaining the single 

elements composing it and their purpose in the process.  

Figure 1 shows the architecture of the built system, composed by 6 modules. The system data 

source is Internet network traffic previously collected with Tstat, a passive network traffic 

sniffer. It is processed, exploiting the Spark framework on the BigDataLab cluster, with the aim 

to extract a set of meaningful features that characterize the traffic behaviour and aggregate 

them in time series, through a pre-processing script written in Python. The output is both stored 

in OpenTSDB, a distributed database for time series, and analysed with Prophet, a library 

developed at Facebook to forecast time series data. All the time series stored in OpenTSDB are 

retrieved and visualized through Grafana, a visualization tool, to have the graphical 

representation of the trends. All pieces of the proposed system are described in detail in the 

following.  

  

      Figure 1: Architecture of the proposed system 
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3.1   Tstat 
 

As first stage in the system, the traffic is captured by Tstat.  

Tstat stands for TCP Statistic and Analysis Tool and it is a passive network traffic sniffer 

developed by the Politecnico di Torino. [22] 

As shown in figure 2, Tstat is able to intercept network traffic from/toward an internal network 

toward/from the Internet.  

 

 

     Figure 2: Tstat 

 

 

TSTAT generates different flow-level measurement collections, that are saved in log files. The 

logs partition the analyzed flows according to several selected protocols (i.e. TCP, UDP, HTTP). 

In our case, we focus on the log_tcp_nocomplete and log_tcp_complete logs, that collect the 

TCP traffic. The data in these logs are organized in rows and columns: each row represents a 

flow and each column indicates a measure.  According to the definition of flow, all the packets 

that have the same source and destination IP address and source and destination port number 

are considered for the same flow row. A TCP connection is tracked by TSTAT as soon as a SYN 

segment is observed and it is stopped when either a FIN/ACK or RST is seen or no data packet is 

observed after a default time. The log_tcp_complete stores all the connections that are correctly 

opened, while all the others end up in the log_tcp_nocomplete. This means that 

log_tcp_nocomplete logs collect traffic that is anomalous by definition, since it is traffic that 

reached a machine that was no able to respond. In such way, traffic could be considered 
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anomalous without any further analysis. However, the volume of such traffic is very high, since 

it can be caused either by situations such as mis-configured systems or by attack attempts. 

Among the attack attempts, some of them are so normal that can be ignored too. From that, 

the need to detect just the most relevant anomalies.   

Looking instead at the columns, the logs have 44 fields, as shown in figure 3.  

 

          Figure 3: Tstat logs columns fields. From [22]  

 

 

As can be seen, columns are divided according to the traffic direction: C2S, client to server, and 

S2C, server to client. [23] Among all the column fields offered by Tstat in the logs, some of them 

are particularly useful to our purpose. In particular, we exploit the fields 38 and 39, to distinguish 

the connection attempts toward our network, the fields 1 and 15, to take and count the different 

source and destination IP addresses, the column 16, to distinguish our analysis basing on the 

destination port, and the field 29, to extract the needed timestamps.  
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3.2   BigDataLab cluster 
 

In our scenario, we analyze multiple logs containing a great amount of data. This setting proves 

that Internet is a significant source of the so-called big data. This expression is used to define 

“all the data sets whose size or type is beyond the ability of traditional relational databases to 

capture, manage and process the data with low latency”. [24] The characteristics that distinguish 

the big data are volume, velocity, variety, veracity and value. Volume refers to the large 

dimension of the processed data, often not processable from traditional databases; velocity 

because data arrives with a fast rate and variety means that many different types of data are 

available. Veracity refers to the uncertainty of the data while value indicates the fact that these 

data have an intrinsic hidden value and, when properly processed to extract the information of 

interest, they can be exploited in a very useful way, so that data analytics is a very important 

and highly popular field in our days.  For example, it is at the base of decision processes in many 

business areas. [25] 

All these characteristics make these data sets arduous to be managed by traditional processing 

software. Working with big data requires in fact the ability to process large quantities of data, 

taking into account high availability and continuity of services. Thus, many big data frameworks 

have been devised for this purpose.  

In our case, in order to process the network traffic traces, we make use of the BigDataLab cluster.  

The BigDataLab cluster of Politecnico di Torino is a set of 30 servers running Hadoop.   

Hadoop is a framework employed to process large data sets in a distributed way, to scale up 

from single servers to multiple of them, commonly referred as “nodes”. Each node provides its 

computation and storage capability. [26] In BigDataCluster, the total storage available is 768 TB.  

Hadoop is made of several layers of components, needed for its correct functioning:  

 

• a distributed file system, HDFS.  

HDFS, that stands for “Hadoop Distributed File System”, is the local file system available 

in all the nodes and it manages the data storage in Hadoop cluster. It differs from 

traditional file systems for some features like a highly fault-tolerant, a high throughput 
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access to application data and the fact that it is suitable for applications with large data 

sets. It is responsible for data storage, and so as source of data, and for data replication 

across the cluster nodes. Its architecture is of master/slave type: a master server, called 

NameNode, manages the file system namespace, by performing operations over files 

and directories, and the files access from clients. In HDFS each file stored is split in one 

or more blocks that are distributed in a set of DataNodes, the slaves in the architecture. 

DataNodes are usually one per node in the cluster and are responsible for the storage 

in their node. [27] 

 

 

• a resource manager, YARN.  

YARN stands for “Yet Another Resource Negotiator” and its job is to coordinate and 

manage resources and schedule jobs. Yarn components are a ReosurceManager and a 

NodeManager agent per-machine. The ResourceManager globally supervises the 

resources in the whole system and allocates them to the running applications through 

the Scheduler and controls the acceptation of job-submissions and the restart of the 

ApplicationMaster in the container in case of failure through the ApplicationsManager. 

Each NodeManager instead controls the assigned container and, through the 

ApplicationMaster, is responsible for negotiating resources from the Scheduler, 

monitoring their usage and report it back to the Scheduler. [28] 

 

  

• a processing engine (MapReduce, Test, HBase, Storm, Giraph, Spark and others), 

according to the specific framework. It runs on the top of the Hadoop ecosystem and its 

aim is to process large volumes of data in the cluster.  

The original version of Hadoop uses as processing engine MapReduce, which is batch 

based and makes use of the hard disk along each step. The BigDataCluster, instead, 

deploys Spark as processing engine. Spark is defined as an “in-memory” processing 

approach since, unlike MapReduce, it performs a full in-memory computation. Doing so, 

the storage level is used at the begin of the process to load the data into memory and 
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at the end to store the results while all the intermediate operations are instead handled 

using the random-access memory. [29] [30] 

 

The architecture just descripted, implemented in the BigDataLab cluster environment, is shown 

in figure 4.                        

        

  

  Figure 4: Hadoop ecosystem implemented in the BigDataLab cluster  

 

 

 

3.3   Pre-processing Script  
 

The script used to process data and aggregate them in time series has been written by exploiting 

Pyspark, which is the Python framework supported by Apache Spark. The script from command 

line takes at maximum three parameters: the log with the traffic data to process, the destination 

port number and the traffic feature to be returned. In fact, taking as model the feature-based 

anomaly detection approach, we select some features of interest that could be useful to 

delineate a per port traffic characterization. These features include incoming traffic volume, the 

number of unique external client IP addresses and the number of unique internal server IP 

addresses. In the case in which the port is not specified, the computation is done for all the 

traffic. In the script, through the sc.textFile()method available in PySpark, the log passed 
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from command line is read from HDFS and it is returned as an RDD of strings, where each line is 

an element. RDD stands for Resilient Distributed Dataset and it is the basic data structure in 

Spark. It represents an immutable partitioned collection of objects that can be operated in 

parallel, to achieve speed and efficient when performing operations. [31] Since for our analysis 

we want to consider all the incoming external failed connections, the initial RDD is filtered to 

obtain a second one containing only those elements in which the server IP address is internal to 

the network. This is can be done by considering all those flows that in the log show the field 

“Server internal” set to 1. From this new RDD, a further operation is done to consider among all 

elements those in which the client IP address is external, by considering all those flows having 

in the log the field “Client internal” equal to 1. The clients are also filtered in order to consider 

only those that are not anonymized. Then, different cases are considered according to the 

number of parameters passed. In the case in which the port number is specified, the RDD is 

filtered to obtain only those elements that are flows having this port as destination port. At this 

point, according to traffic feature wanted, different computations are made. A new RDD is 

obtained, reporting for each element the timestamp in the form 'Y-M-D H:00' that indicates 

year, month, day and hour at which that flow has been seen by Tstat, and the source IP address 

or the destination IP address or simply a 1, according to the considered feature. In case of source 

and destination IP address, a distinct() operation is also made, in order to consider once 

an IP address in each hour. Then, all the elements for the same hour are counted together. So 

at the end what is obtained is a time series having an hour timestamp, the number of source IP 

addresses or destination IP addresses or flows according to the required features to compute, 

and the destination port to which the time series is related to. Similar operations are done in 

the case in which the destination port is not specified. In this case, only the filtering part to select 

the flows related to a particular port is absent and therefore all the elements in each hour are 

considered.  

 

The time series returned as output is saved in a csv file. Data is organized in the form timestamp, 

values, port number as tag, according to the format wanted by OpenTSDB as input. 
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3.4   Prophet 
 

In our system, we want also to be able to visualize anomalies inside the traffic. As discussed in 

chapter 2, several anomaly detection solutions have been proposed over the years. In this case, 

we choose to make use of the forecasting tool Prophet [32], that is specifically designed to 

output analyses and predictions on time series. The techniques such tool uses fall in statistical-

based category, since they are based on a nonparametric regression method called additive 

model.  

Prophet is an open source software released from a team at Facebook, available in Python and 

R, and developed to make automated time series forecasts. Since it deals with time series 

predictions, it well suits our scenario. [33] 

Prophet tries to overcome some difficulties met in producing reliable forecasts due to 

seasonable effects, changes in trend and data set with outliers, aiming to create high quality 

forecasts. In fact, like shown in [33], other forecasting tools, like ARIMA, snaive, TBATS, fail in 

captured any seasonality or longer-term seasonality and can’t model properly yearly seasonality. 

Prophet, instead, is thought for data set with hourly, daily or weekly observations, showing 

holidays effect, having several outliers and with trends that are non-liner growth curves.  

 

The fitting phase allows Prophet to understand the data model, in order to make then a 

prediction for the future trend. This is done by employing a curve fitting regression model 

instead of a traditional time series one, since it gives some advantages like more modelling 

flexibility, an easier way to fit the model and a better way to handle missing data and outliers.  

The model is a decomposable time series one, similar to a Generalized Additive Model. There 

are three main components that are trend, seasonality and holidays, and the model is obtained 

as: 

 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + ∈𝑡 
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where g(t) is the trend function, modelling non-periodic changes in the trend of the time series 

(i.e. growth over time), s(t) is the seasonal component representing periodic changes (i.e. daily, 

weekly, yearly seasonality) and h(t), that gives the holidays effect, to model all the events 

occurring every year in a different day or set of days, while ∈𝑡 is an error term to represent all 

the other changes. y(t) is the time series data observed at time t. In this way, new components 

can be easily placed when required, for example when a new source of seasonality is identified. 

The classic Generalized Additive Model, on which it is based, is “a class of regression models 

with potentially non-linear smoothers applied to the regressor”. In Prophet, the time is used as 

regressor. 

For the trend g(t), Prophet provides two possible trend models: a saturating growth model and 

a piecewise linear model. The first trend model is used in non-linear growth with saturation 

situations. The second trend model, instead, is for cases in which the growth rate is constant or 

there is no saturating growth. 

Instead, the seasonal component s(t) models periodic changes due to weekly or yearly 

seasonality using Fourier series. 

This model in Prophet is realized in Stan [34], a programming language for statistical 

interference. 

 

Beside the capability to handle the common features of time series, another important 

advantage of Prophet is that it allows the analyst to adjust parameters. Prophet automatically 

detects changes in the time series trends by selecting the changepoints and let the trend to 

adapt to them appropriately. Changepoints are abrupt changes in trajectories. The changepoints 

detection depends on the parameter δ, that controls the rate adjustment in the equation for 

the trend model function g(t), with 𝛿𝑗 = Laplace(0, τ). The changepoints control the flexibility 

of the trend, that, according to them, can be overfit or underfit. By default, the parameter that 

controls the strength of the sparse prior, τ, is set to 0.05, but its value can be increased, to make 

the trend more flexible, or decreased, to make it less flexible, according to the scenario. By 

default, Prophet detects 25 changepoints uniformly placed in the first 80% of the time series. 

Also these settings can be changed to better adapt the different scenarios. [35] 
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Along with the forecasts, Prophet returns also the uncertainty intervals, returning upper and 

lower values for the predictions.  This is done by extending forward the generative model, which 

is given by the number of changepoints S over a history of T points, each with a rate change 

given by  𝛿𝑗 = Laplace(0, τ), to simulate possible future trends which are then used to compute 

uncertainty intervals.  Prophet estimates the uncertainty intervals using Monte Carlo simulation. 

The uncertainty interval is controlled by two parameters: the number of samples used to 

estimate the uncertainty interval and the interval width. Prophet allows also to change these 

two parameters, to better suit the different scenarios.  

 

As seen, Prophet is a tool developed to forecast time series data, especially useful for business 

applications. However, some of its features are particularly suitable for our purpose in detecting 

anomalies inside network data. In particular, we can exploit its ability to detect changes in the 

trends and to signal the presence of dots that don’t match the trend that is has predicted. 

Therefore, by applying Prophet to our case, we can interpret the appearance of changepoints in 

the trend and dots falling outside the uncertainty interval as anomalies in the traffic feature 

under observation. Looking to the changepoints, we can detect the “relevant anomalies” by 

looking at those changepoints appearing in more than one plot related to the same port.  About 

the dots, Prophet finds and visualizes them. They can fit the prediction made by Prophet or not. 

According to their variation from the predicted values, we can evaluate them as anomalies.  

 

In conclusion, Prophet looked to well suit for our scenario and purpose. Other forecasting tools, 

in fact, fail in captured any seasonality or longer-term seasonality and can’t model properly 

yearly seasonality. As first, has been supposed to apply also some traditional anomaly detection 

approaches like the box plot [41] and the Kolmogorov-Smirnov test [42]. However, by reading 

about, what has been thought is that, in our scenario, in this way the deviations could be well 

detected just in some cases, while for those in which the trend looks very regular, due to the 

day-night effect, or very noisy, the box plot and Kolmogorov-Smirnov test could fail in visualize 

anomalies. Also, we want that not all the anomalies are signalled, but just the more relevant 

among the all set. Therefore, also traditional anomaly detection approaches, such as the box-

plot and the Kolmogorov-Smirnov test, don’t suit well for our particular scenario. 
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3.5   OpenTSDB and Grafana 
 

The last part of the process has the aim to visualize the time series data so far obtained. In order 

to store the processed data and create plots, we make use, respectively, of OpenTSDB and 

Grafana. 

 

OpenTSDB [36] is a distributed and scalable database particularly thought for time series data, 

on purpose to store this kind of data generated by endpoints and make them accessible and 

graphable. In time series data are reported at regular intervals of time and the dataset has two 

dimensions: the time, the independent variable, and the value, as dependent variable. The base 

working point of OpenTSDB is based on TSD, Time Series Daemon, that allows the interaction 

with the open source database HBase, therefore users never have to access it directly. HBase is 

the Hadoop database, distributed and scalable. It is useful when a random and real time 

read/write access to Big Data is needed. [37] Each TSD is independent from the others and the 

number of them used depends on the load to handle. Several options let the user to 

communicate with the TSD: a simple Telnet-style protocol, an HTTP API or a built-in GUI. Then, 

all communications take place on the same port. This OpenTSDB architecture is shown in figure 

5. The use of OpenTSDB in our scenario is due to the fact that we have a lot of data to deal with: 

we have a value for each hour, for each feature and for a total of 65.536 ports. By considering a 

year, this means a lot of data. 

The two base operations are writing and reading. 

The writing step allows to send time series data into OpenTSDB through the TSD. Then, 

OpenTSDB formats the data and stores it in HBase. Time series data points in OpenTSDB are 

stored in a format that consists in a UNIX timestamp, a metric name and a tag, to distinguish 

similar data points produced by different sources or related entities.  

In the reading step the users access the system to retrieve the required time series data. To 

achieve this task, OpenTSDB provides either a built-in user interface for selecting one or more 

metrics and tags to generate a plot as an image or an HTTP API to connect OpenTSDB with 

external systems such as monitoring frameworks, dashboards, statistics packages or automation 

tools. [38]  
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        Figure 5: OpenTSDB architecture. From [38]  

 

 

In our case, we use Grafana as external dashboard system connected to OpenTSDB, so that the 

time series data retrieved from the database are shown in an interactive form.  

Grafana is an open source visualization tool, that can be employed to run on top of a variety of 

different data store systems. Grafana was developed for time series analytics and monitoring.  

[39]  

The Query Editor in Grafana allows to query the metrics contained in the Data Source, in our 

case OpenTSDB, by building one or more SQL queries for the time series stored in the database.   

The basic visualization building block is the Panel. Each Panel provides a Query Editor, to allow 

to extract the proper data to be visualized. One or more Panels can then be placed in the 

Dashboard.  

Since we have extracted three network features for each destination port, we have three 

panels arranged in the dashboard. For each graph, Grafana provides also some metrices: the 

maximum value registered in the time interval under observation, the average value computed 

over the time interval, the current value and the total sum of all the values in the time interval.  

The Dashboard allows to explore data in real time and in an interactive way, for example by 

zooming a certain period of interest we can have a more detailed visualization. 
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Figure 6 shows a shot taken from the last step in our system: the final visualization made with 

Grafana of the traffic features related to a chosen destination port, in this case port 3389. The 

red plot is related to the number of flows, the yellow one to the number of sources IP 

addresses and the green one to the number of destination IP addresses. The destination port 

can be changed by selecting the chosen one from the drop-down arrow in the top left.  On the 

top right instead can be selected the period of interest. In this figure, the data is referred to 

the month of June 2019.  

 

 

 

                                                        Figure 6 - Grafana Dashboard in the system 



Chapter 4  
 

Dataset and Case study  

 

 

We illustrate the performance of the proposed system with a case study. We describe at first 

the dataset used to test the system and then we offer an overview on the results obtained, 

reporting as examples the cases related to four destination ports. It is also reported the 

investigation made upon an anomaly that has been found by applying the proposed system to 

our dataset. 

 

 

4.1   Dataset 
 

To test the performance of the proposed system, we use traces of traffic collected within the 

Politecnico di Torino network. These traces are related to a month of traffic previously collected. 

We start considering the log_tcp_nocomplete logs and we take the traffic related to March 

2018. Log_tcp_nocomplete logs collect all the traffic produced by failed connections: they can 

be due either to errors in the connections or to malicious activities.  

As first, we made a general analysis of the traffic to understand some statistics about it, like the 

top ten destination ports in the month for traffic volume. To this purpose, the traffic in the logs 

is filtered by considering all the incoming attempts of connection from external IP addresses, 

the clients, toward internal IP addresses, the servers. The client IP address in each flow is also 

only considered in the case in which it is not encrypted. Next, the so previous obtained flows are 

grouped by destination port and divided by the total number of flows, so that the percentage of 

connections that are directed toward each port is obtained. All the values are ranked in 

decreasing percentage values and the first ten in the month are considered.  
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Figure 7: Top-10 ports per traffic volume, March 2018 

 

 

Figure 7 shows the histogram so obtained, considering the top 10 destination ports ranked per 

traffic volume percentage in the month of March 2018, in Politecnico di Torino network.  

 

Ports, and services running on them, have vulnerabilities. Very likely all of them can be targets 

of attacks, since none of them is totally out of the risk. However, some ports are more targets 

than others related on the type of services running on the port, the service version, its correct 

configuration, if there is a password required for the services and if they are strong enough.  An 

example of that is Telnet service running on port 23. Telnet is an unsecure remote connection 

since it is in clear, so that is has been substitute with SSH. The use of default or weak passwords 

for it, makes this service vulnerable to brute force attacks. The well-known ports assigned for 

services can be aim of attacks since they are potentially open, waiting for incoming requests of 

connections. So, scan ports attacks are widespread and commonly made in order to verify an 

active port on the target hosts and, consecutively, exploit a known vulnerability of the service.  
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In our case, the histogram shows that the port 8545 has been the one with the most amount of 

traffic toward, with 3.21% of connection attempts. Port 8545 is the standard port for the JSON 

RPC (Remote Procedure Calls) interface, in Ethereum. The second target port is 22, where the 

SSH service runs on. Port 8080 is the default port used by proxy servers for client connections. 

Port 8291 is used for the WinBox service in MikroTik RouterOS based devices.  Port 3389 is in 

use mainly for Windows Remote Desktop and Remote Assistance connections, but also by 

Windows terminal Server. Port 2323 is an alternative for port 23 Telnet service, particularly it is 

used for Telnet IoT. Port 5555 is an unofficial port used by several services, for example it is the 

default port for Softether VPN, HP Data Protector, SAP and others.  Port 81 is an alternative port 

for HTTP service, which use by default port 80. Port 9000 is another unofficial port, used by 

multiple different web servers. Finally, port 5900 is officially registered for RFB protocol and it is 

also used for VNC for RFB protocol. [40] 

Surprisingly, ports 23 and 80 don’t appear in the histogram. This is due to the firewall 

configurations in our network, that limit the traffic toward these at-risk ports.  

Particular cases are also the ports 53, for the DNS service, and 443, for HTTPS. In fact, without 

limiting the clients to be external, we can see a greater percentage of traffic towards these two 

ports. These because these two ports offer services to clients in internal Politecnico di Torino 

networks.  

 

Next, similarly, the previous analysis has been repeated considering the daily top ten ports for 

traffic percentage, instead of considering their sum over all the month. The time series so 

obtained is shown in figure 8 and it gives a first idea of the ports traffic behaviour and displays, 

in some cases, the presence of peaks that could be thought to be caused by an anomalous 

activity and, therefore, further investigated. For example, what can be noticed is the fluctuating 

traffic volume trend for port 8080 and the appearance, at the end of the month, of a high volume 

of traffic toward a destination port not seen so far. The traffic in this case is considerable, since 

it doubles the one toward the top 3 ports in the same period and in the previous days. Also, it 

can be spotted an increasing in the traffic volume toward port 3389 at the end of the month.  
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                             Figure 8: Traffic percentage of the top 10 ports per day per traffic volume 

 

 

Another possible representation is obtained by considering just the ports’ rank positions day by 

day. This rank is reported in figure 10. We can see that the top 3 positions are almost occupied 

by the same ports, with the exception of the last days, when the port 8291 appears in first 

position, as also already observed before.    

 

 

          Figure 9: Rank of the top 10 ports per day per traffic volume 
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4.2   Traffic Visualization 
 

So far, we have visualized the daily traffic volume per destination port. The same 

log_tcp_nocomplete logs for the traffic in the month of March 2018 are now analysed through 

our proposed system, described before. In this case, data are aggregated for hours, offering a 

more detailed representation. As parameters from command line are passed the logs with the 

data to process, the port and the feature of interest to extract. Looking at the histogram, we 

have a rank of the ports toward which the percentage of traffic is the most in the month. Using 

this histogram as reference, we submit the script to be processed by the cluster, considering 

successively these ports to get their trends regarding the different features.  

The time series output is stored in OpenTSDB and then retrieving to be represented with 

Grafana. In this way, we get the traffic visual representation that we wanted.  

We report the plots obtained in this way and related to four among the ten ports previously 

mentioned: port 8291,3389, 2323 and 81. We choice these four ports because they show all 

different trends in the plots. In this way, we can test the efficiency of our anomaly detection 

approach in different situations. 

First, we can look at the plots to make some general observations. Figure 10 shows the plots 

related to the representation of the number of internal destination IP addresses for the 

destination ports above mentioned, taken from the Grafana dashboard in our proposed system. 

We can spot the presence of port scans targeting the entire network when, as shown in the 

plots, peaks are present. In particular, we can notice that the peaks in every plot are 

approximated at a maximum value that goes from 34200 to 34800. This range is due to the fact 

that a different number of internal IP addresses could have replied to the port scan toward the 

different destination ports and, in this case, the relative flow is stored in the log_tcp_complete 

log instead in the one that we are currently analysing. We can also notice that different trends 

are shown by the different destination ports. 

These port scans, and in general any malicious activity, can be the work of a loner IP address or 

of a botnet.  An idea of the situation can be given looking at the number of external source IP 

addresses in correspondence of the scanned IP addresses peaks. Figure 11 displays the time 

series obtained with our proposed system related to the number of source IP addresses, always 

considering the same destination ports above mentioned. Also here, according to the specific 

destination port under observation, different behaviours arise. 
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Figure 10: Number of destination IP addresses per hour in the month of March 2018 for destination 
ports 3389 (top left), 8291 (top right), 2323 (bottom left) and 81 (bottom right)  

 

 

 

 

 

Figure 11: Number of source IP addresses per hour in the month of March 2018 for destination ports 
3389 (top left), 8291 (top right), 2323 (bottom left) and 81 (bottom right)  
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Figure 12: Number of flows per hour in the month of March 2018 for destination ports 3389 (top left), 
8291 (top right), 2323 (bottom left) and 81 (bottom right) 

 

 

Lastly, in figure 12 is represented the time series related to our third extracted network feature: 

the number of flows toward our usual four destination ports. Also in this case, different trends 

are shown according to the destination port at which we are looking.  

 

Looking at these plots we can see as, in some cases, a suspicious situation is easier to be deduced 

due to the appearing of peaks. For example, in the plots for port 8291. In such cases, using some 

traditional anomaly detection approaches like the box plot [41] and the Kolmogorov-Smirnov 

test [42], the deviations over the trends for this port are well detected. However, looking to the 

other ports in our scenario, we can notice that some trends look very regular, due to the day-

night effect. Therefore, as first, the box plot and Kolmogorov-Smirnov test could fail in visualize 

anomalies in these cases. Second, we want that not all the anomalies are signalled, but just the 

more relevant among the all set. Therefore, the box-plot and the Kolmogorov-Smirnov test don’t 

suit well for our particular scenario. 
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4.3   Anomaly Visualization with Prophet 
 

As already previously discussed, ports feature trend can been very different according to the 

specific port under observation: in some cases the presence of peaks in the time series is evident 

while in others less due to the noise. As mentioned in the previous chapter, Prophet well fits all 

these cases. Since it works very well with time series that have strong seasonal effects, it is 

particularly suitable for our application case since we have ports that show an apparently regular 

behaviour related to the day-night and week-weekend effects, in which could be not easy to 

visualize outliers.  

In Prophet, like in other forecasting tools, the starting point is samples of data, then the model 

is fit on theses samples and this obtained model is used to make forecasts. Since Prophet is 

available in Python, we use a second script written in Python to perform this step.                                                   

The input for the script is a csv file containing the time series obtained as output from the 

processing step. Starting from the time series in the csv file, in the script creates as first a ds and 

y data frame, since the input to Prophet must always be a data frame with these two columns. 

Ds stands for “datestamp”, therefore this column contains the time labels, while the y column 

hosts the numeric measurements we want to forecast. Then the data frame is passed to the 

Prophet fit() method, that allows to create the model for the trend. In order to obtain 

forecasts of our time series, we have to provide Prophet with a ds column containing the dates 

for which we want the predictions. This is done with the make_future_dataframe() 

method, that allows to create the time interval for the prediction.  

In Prophet, is important to consider the frequency of our time series. Since we are working with 

data related to hours, we specify as parameters “periods” equals to 24 and and “freq” H, in order 

to obtain the right frequency of timestamps. In this way, the make_future_dataframe methods 

generates 24 hourly timestamps.  

 

      future_dates = m.make_future_dataframe(periods=24, freq='H')  

   

Then, predictions are made passing the dataframe with the created timestamps to the 

predict() method.  The method returns the predicted value, called yhat.  Together with the 
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forecast yhat, other measurements are returned, like the trend. Among all these returned 

measurements, along with yhat, we take for our purpose, yhat_lower and yhat_upper, which 

together define the uncertainty intervals of the forecasts.   

   

We report some examples of those forecasts made with Prophet for the time series related to 

the network features previously considered and for the same destination ports above examined: 

8291, 3389, 2323 and 81. The blue lines indicate the forecasted values, the light blue area the 

uncertainty interval and the dots the actual values. The red dashed lines represent the 

changepoints, the points in which the trend changes, while the red line underlines the trend.  

 

Looking at the graphs made with Prophet, we can spot anomalies under two forms: the change 

in the trend and the presence of dots falling outside the uncertainty interval.  For what concerns 

the changepoints, Prophet allows to set their number. In the following plots, we left the default 

value, which is 25. This means that a maximum of 25 changepoints could be detected. Looking 

to the changepoints, we can detect the relevant anomalies. For “relevant anomalies” we mean 

those changepoints appearing in more than one plot related to the same port.  About the dots, 

Prophet finds and visualizes them. The presence of dots outside the interval means traffic 

samples, always related to an hour, that don’t suit the trend forecasted by Prophet.  

 

As first, figure 13 shows the three plots related to the three network features obtained by 

applying Prophet to the time series having destination port 8291. As we can see, in all the three 

plots we have almost the same changepoints and four in particular appear in all of them.  

As shown, the prediction made by Prophet doesn’t follow exactly the actual samples trend, 

which is almost always constant, but they fall all inside the uncertainty interval. However, when 

the actual samples suddenly change their trend at the end of March, this deviation is detected 

in the plots.  Looking instead at the dots, they almost always fall in the uncertainty interval. The 

relevant case in which this doesn’t happen occurs in the plot for the destination number, in 

which around the 17 March a sample deviates from the others. 
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                                     (a) 

                            (b)                        

                                                                                                   (c)  

Figure 13: Prophet port 8291: number of flows (a), number of source IP addresses (b) and number of 
destination IP addresses (c) 
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         (a) 

                                                               (b) 

                    (c)                                                                             

Figure 14: Prophet port 3389: number of flows (a), number of source IP addresses (b) and number of 
destination IP addresses (c) 
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In figure 14, we show the same plots obtained with Prophet forecasts but having as destination 

port 3389. In this case, can be noticed a certain regularity in the behaviour, due to day-night 

effect, which is well captured by the forecasts made by Prophet. In the plot related to the 

number of flows, a certain number of dots fall outside the interval. Moreover, towards the end, 

a change in the trend is detected. This change is also detected in the plot representing the 

number of source address toward this port. In this plot, a greater number of changes in the trend 

is also detected. However, with respect the previous plot, the dots are almost always in the 

interval. In the number of destinations plot, the anomalies detected are more due to dots 

outside the interval. The trend, instead, almost doesn’t change.  

  

                           (a) 

                                                                                                             (b) 
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                        (c)  

Figure 15: Prophet port 2323: number of flows (a), number of source IP addresses (b) and number of 
destination IP addresses (c) 

 

The same plots related to destination port 2323 are shown in figure 15. This port also shows a 

kind of regular behaviour in the plots related to the number of destinations and the number of 

flows. The plot representing the number of sources addresses instead is more irregular and 

shows a lot of changes in its trend, with a certain number of dots outside the interval in 

correspondence of two of these changepoints. The other two plots instead have a trend almost 

constant, and a lot of dots falling outside the interval. In particular, in the plot for the number 

of destinations, dots are almost aligned on the same value, as previously discussed. The 

changepoints in these two plots are almost the same, while only one is appearing in all the three 

plots.  

 

As last, in figure 16 we report the three plots related to the port 81. By looking at the first plot, 

a lot of little changes in the trend are detected and a certain number of dots outside the interval 

is spotted. By looking instead at the second plot, some changepoints are reported. However, the 

trend, represented by the red line, almost never changes. So in this visualization, a greater 

attention can be given to the dots rather than the changepoints. In the last plot, like in the first 

one, a certain number of changepoints and dots outside the interval are visualized. 
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                       (a) 

                                        (b)  

                       (c)  

Figure 16: Prophet port 81: number of flows (a), number of source IP addresses (b) and number of 
destination IP addresses (c) 



 4.3   Anomaly Visualization with Prophet 

40 
 

The changepoints appearing in the plots are automatically detected by Prophet when a change 

in the trend occurs. The number of changepoints, in all those cases, was by default set to be at 

maximum equal to 25. Prophet however lets to change this number. By reducing the number of 

changepoints, Prophet shows a smaller number of them and so the most important are 

reported.  

For example, we try to change it to 10. The comparison among these two cases is shown in 

figure17: in figure 17(a) we report the default case, so far used, while in figure 17(b) we can see 

how the changepoints changes when we modify the parameter that controls their number. In 

particular, we can see that the number of changepoints in this way is decreased.  

So, by decreasing the number of changepoints, we can control the number of anomalies to be 

signalled, letting Prophet to report us only the most relevant changes in the trend. 

                                                                                       (a)                                                      

                                                                                                 (b) 

 

                     Figure 17: Default number of changepoints (a) and by decreasing their number to 10 (b) 
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Like the changepoints, also the interval of uncertainty width can be modified, by increasing or 

decreasing it.  

As already said in the previous chapter, Prophet estimates the uncertainty intervals using Monte 

Carlo simulation. The width of this interval is controlled by the percentage of the samples 

generated by the Monte Carlo simulation used to cover the uncertainty interval.  

 

                                                                                        (a) 

                                                                                          (b) 

                                

                              Figure 18: Default interval width (a) and by increasing it (b) 

 

 

By default, Prophet set the width equal to the 80% of the generated samples. We try to change 

it, through the interval_width parameter, to set it equal to 95%. In this way, we obtain a 
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greater uncertainly interval. The plots in figure 18 report these two cases: in figure 18(a) the 

case with the default interval width values while in figure 18(b) the case obtained when we 

increase it. As can be seen, by increasing the interval width, we allow a greater number of dots 

to fall inside such interval, so that a smaller number of samples are identified as anomalies. 

 

Therefore, the number of changepoints and the width of the uncertainty interval allow us to 

control the number of appearing anomalies in the plots, according to how many of them we 

want to visualize in our system. 

 

 

 

4.4   The case of IoT attacks on port 8291  
 

As already said, a difficulty in anomaly-based detection, differently from the signature-based 

approach, is to identify the kind of anomaly when it arises.  

So as last step, the event that led to the alarm can be investigated to better understand if it is a 

false positive or a real threat and, in this case, study it in deeper to identify it. In order to perform 

this analysis, we make also use of the log_tcp_complete log.  

As example, we report the case of the port 8291. The port 8291 is used for the WinBox service 

in MikroTik RouterOS based devices. As we can see from the graph describing the traffic trend 

over this port, it is always very low and, consequently, the enormous amount of traffic toward 

it exploded starting from the 24 March could only generates an alarm. But a significantly 

increase in the traffic addressed to this port, beginning from the 24 March (around 25 March 

00:00, Beijing time), has been also observed worldwide. The attack was made by the Hajime 

based botnet, a variant of the Mirai one. As already mentioned, the Mirai botnet [2] was the first 

malware targeting IoT devices seen at global level. In the first phase, the devices already 

compromised scan pseudo-random IP addresses looking for open 23 and 2323 ports. Once 

discovered, they perform a brute force attack to discover the devices’ login credentials, by trying 

a combination of default usernames and passwords commonly used for IoT devices. If this 
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operation succeeds, the information about the device, such as its operating system, are 

investigated so that the device is forced to download and run the specific malware version. At 

this point, the compromised device has joined the botnet, so it starts scanning in turn the 

network looking for targets and waits for commands from the control and command server, 

which controls and coordinates the botnet. Since Mirai code has been published, several of 

variants have been developed and used over the years, targeting different ports to exploit 

existing vulnerabilities. One of these cases is the Hajime based botnet, which targeted, in this 

case, the port 8291. As in the Mirai botnet, there is a first port scan phase to determine whether 

the port of interested is open over the target device and to exploit next its known vulnerabilities 

to infect and spread. The known Mikrotik vulnerabilities exploited by the botnet are HTTP and 

SMB. The figure 19, taken from a report related to this attack from [43], shows all the steps of 

the attack. As we can see, the first part of the attack is a SYN scan toward the port 8291, made 

to determine if the target is a MikroTik device, on which the port 8291 is open. If an IP address 

replies to the sent SYN with a SYN ACK segment, the client further scans looking for an open port 

among the common web ports 80, 81, 82, 8080, 8081, 8082, 8089, 8181 and 8880 on that device. 

If the IP address replies also this time, a connection is opened, and, through an HTTP request, 

the worm checks the device version to send the proper exploit carrying the shellcode. At this 

point, Hajime is downloaded and executed, and the device joins the botnet. [44] 

 

 

Figure 19: Attack pattern. From [43]    
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We want to see if this attack pattern is also found in our traffic traces.   

At first glance, from the previous plots related to this port, reported in figure 10, 11 and 12, we 

can see just an evident anomaly trend. In all the three plots in figure 13, a change in the trend is 

detected with Prophet around the March 24. 

These deviations, in this particular time period, could be linked to the port scan phase activity 

toward port 8291 made worldwide by the Hajime botnet attack: what we can derive from these 

plots is that there is a huge number of flows, made by a great number of different source IP 

addresses and against all the IP addresses in our network that, of course, look to be caused from 

a port scan activity, but it could be related to any malicious one.  

So, from these graphs we can see just the aggressive port scan activity, without any other proof.  

For this reason, in order to further search signs of this attack, a source IP address is selected 

among the set of the all that generate the traffic against the port under investigation in a day 

falling in the supposed attack interval of time. At the end, the chosen IP address is 222.88.37.66 

since it is an IP address appearing both in the log_tcp_nocomplete and log_tcp_complete logs. 

This means that one or more internal IP addresses in the network replies to it. As first, the data 

in the log_tcp_nocomplete are processed so that, in the selected day, are returned all the 

connection attempts toward the port 8291 made by the source IP address 222.88.37.66 against 

the IP addresses in our network. The output displays an activity from this IP address from 2:10 

a.m. until 5.25 a.m. for a total of about 34.840 SYN sent. A picture of this output is reported in 

figure 20(a), where the first field indicates the date, the second the source IP address, the third 

the destination IP address and the last the target port. This clearly shows the port scan phase 

made by the IP address 222.88.37.66. Next, the same processing procedure is applied to the 

log_tcp_complete. The output is shown in figure 20(b) and, from it, we can see the 8 internal IP 

addresses that replied to the SYN segment sent.  

So at this point, the next step is to check whether this IP address makes other activity. Looking 

at the botnet attack model, we expect it will start a port scan against the common web ports. 

Therefore, similarly to what was done before, we process the data in the log_tcp_nocomplete 

belonging to the 29 March, filtering for our source IP address and destination port so that it is 

one among 80, 81, 82, 8080, 8081, 8082, 8089, 8181 and 8880. We found a port scan made by 

the IP address 222.88.37.66 toward these ports and, as expected, differently from before it 

doesn’t target all the network but just the 8 IP addresses previously found, checking one port 
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per hour. What is obtained is exactly reported in figure 20(c): starting from 6 a.m. the IP address 

checks for port 81, starting from 7 a.m. for port 8080, starting from 8 a.m. for port 8081 and so 

on for the next 2 hours for, respectively, port 82 and 8082. Since this data are taken from the 

log_tcp_nocomplete, it contains just the IP address that have been contacted with a SYN but 

that didn’t reply to it. In fact, some IP addresses are missing with respect the ones found before. 

So, as before, we apply the same processing procedure but to the log_tcp_complete, looking for 

the successful connections made by the usual source IP address toward the same common web 

ports. What is obtained is shown in figure 20(d) and we can notice that there are the “missing” 

address from the previous picture, that, since replied to the scan, have been stored by Tstat in 

the other log.  

 

Figure 20: Portion of port scan toward port 8291 (a), internal IP addresses which replied to the scan (b), 
port scan toward common web ports (c) and internal IP addresses which replied to it (d) 
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So, by extracting the proper network features, aggregating them in time series per hours, 

applying Prophet to our time series data and representing them in a visual way, we are able to 

detect anomalies inside our network traffic. In the example case just reported, which takes in 

consideration the network traffic toward the destination port 8291 in the month of March 2018, 

we are able to detect the appearance of anomalies, due to a botnet activity, by looking at the 

changes in the trend in our time series plots.  

                                  

 



Chapter 5 

 

Conclusions and future work 

 

 

Concluding remarks and future work 
 

In this work we have presented a system to provide a possible solution to visualize network 

traffic and the most relevant anomalies inside it. It is mainly based on a graphical representation 

of the meaningful features that define the network traffic and a forecast component for the 

actual anomaly detection step, made with Prophet. The detection step is in particular based on 

the visualization of anomalies under two forms: the changes in the trend and the presence of 

samples falling outside the uncertainty interval of the forecasted trend. The use of Prophet well 

suits for our scenario, since the traffic profile toward some ports follow a certain seasonality 

trend, due to day-night and week-weekend effects, and Prophet is particularly thought to 

operate with time series data showing seasonality effects. The full process has been tested for 

a month of traffic and considering just the top ten ports in the month, according to their traffic 

volume. Future works can be focus on testing the traffic collected over a wider interval of time 

and verifying a bigger number of ports. Of course, due to the learning approach at the base of 

Prophet, by running it over data related to a wider interval of time, the precision for the forecast 

will be more accurate. Also, the analysis made with Prophet is currently not integrated with 

OpenTSDB and Grafana and it will be do in the future. For example, from Prophet it will be 

possible to get as output a time series with a field for the timestamp, a field to report the 

presence or not of an anomaly in that hour (1 anomaly, 0 otherwise) and the tag for the 

destination port. In this way, the timeseries can be stored in OpenTSDB and then used to mark 

the presence of anomalies directly on the graphs in the Grafana dashboard. As last observation, 

the script to process data traffic is made to extract three traffic features: traffic volume, number 

of source IP addresses and number of destination IP addresses. The system can be improved by 

adding other features to be extracted. This can be done easily, by adding the needed lines of 
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code to the script. A drawback in this system is that, in some cases, changepoints reported are 

due to small changes in the trend that could be not of interest, but they are signalled anyway. 

Therefore, we should need a way to specify when the change in the trend is enough significant 

to be signalled or not.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 A.1 

49 
 

Appendix  

 

A.1  
 

#!/usr/bin/python 

from pyspark import SparkConf, SparkContext 

from datetime import datetime 

import sys 

import operator 

from operator import add 

from datetime import time, date, datetime, timedelta 

import datetime 

 

 

in_path = sys.argv[1] 

port = sys.argv[2] 

 

 

def server_interni_func(x): 

 val = 0 

 try: 

  val = int(x.split(" ")[38]) 

 except: 

  pass 

 if val==1: 

  return True 

 else: 

  return False    
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def client_esterni_func(x): 

 val = 0 

 try: 

  val = int(x.split(" ")[37]) 

 except: 

  pass 

 if val==1: 

  return False 

 else: 

  return True   

  

 

def client_crypt_func(x): 

 val = 0 

 try: 

  val = int(x.split(" ")[39]) 

 except: 

  pass 

 if val==1: 

  return False 

 else: 

  return True    

   

 

def client_ip_func(x): 

 ip_c = x.split(" ")[0] 

 strDate = x.split(" ")[28] 

 convertedTime = datetime.datetime.fromtimestamp(float(strDate)/1000.) 

 formatTime = convertedTime.strftime('%Y-%m-%d %H:00') 

 return (formatTime, ip_c)  

  

 

 

def server_ip_func(x): 

 ip_s = x.split(" ")[14] 

 strDate = x.split(" ")[28] 

 convertedTime = datetime.datetime.fromtimestamp(float(strDate)/1000.) 
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 formatTime = convertedTime.strftime('%Y-%m-%d %H:00') 

 return (formatTime, ip_s) 

  

   

def port_func(x): 

 val = 0 

 try: 

  val = x.split(" ")[15] 

 except: 

  pass  

 if val==port: 

  return True 

 else: 

  return False    

 

  

def tempo_val(x): 

 strDate = x.split(" ")[28] 

 convertedTime = datetime.datetime.fromtimestamp(float(strDate)/1000.) 

 formatTime = convertedTime.strftime('%Y-%m-%d %H:00') 

 val = 1 

 return (formatTime, val) 

    

 

def replace_func(x): 

 date = x[0] 

 val = 1 

 return (date, val) 

 

def date_func(x): 

 strDate = x.split(" ")[28] 

 convertedTime = datetime.datetime.fromtimestamp(float(strDate)/1000.) 

 date = convertedTime.strftime('%Y-%m-%d %H:00') 

 return (date) 
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def main(): 

 

 #create a configuration object  

 conf = (SparkConf() 

             .setAppName("Log processing") 

             .set("spark.dynamicAllocation.enabled", "false") 

             .set("spark.task.maxFailures", 128) 

             .set("spark.yarn.max.executor.failures", 128) 

             .set("spark.executor.cores", "8") 

             .set("spark.executor.memory", "7G") 

             .set("spark.executor.instances", "50") 

             .set("spark.network.timeout", "300")) 

     

                #create a Spark context object 

 sc = SparkContext(conf = conf) 

  

 log_tcp = sc.textFile(in_path + "/log_tcp_nocomplete.gz") 

      

 description = log_tcp.first() 

 log_tcp_nodescription = log_tcp.filter(lambda x: x != description) 

  

 #internal servers 

server_interni_RDD = log_tcp_nodescription.filter(lambda x: 

server_interni_func(x)) 

  

  

      #external clients 

server_interni_client_esterni_RDD = server_interni_RDD.filter(lambda x: 

client_esterni_func(x)) 

  

 #clients no anonymized 

client_noan_RDD = server_interni_client_esterni_RDD.filter(lambda x: 

client_crypt_func(x)) 

  

 if len(sys.argv)==4: 

  feature = sys.argv[3] 
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  date_RDD = client_noan_RDD.map(lambda x: date_func(x)) 

  uniq_date_RDD = date_RDD.distinct().collect() 

   

  lista_data = sorted(uniq_date_RDD, reverse = False) 

  filtered_RDD1 = client_noan_RDD.filter(lambda x: port_func(x)) 

  if feature=='flows_numb': 

   time_RDD = filtered_RDD1.map(lambda x: tempo_val(x)) 

   time_flow_RDD = time_RDD.reduceByKey(add) 

   lista_flussi = time_flow_RDD.collect() 

   for d in lista_data: 

    for (k,v) in lista_flussi:  

     if (d==k): 

print("%s" %d + ","  + "%s" %v + "," + 

"%s" %port) 

      break  

    if (d!=k): 

print("%s" %d + ","  + "0" + "," + "%s" 

%port) 

  

  elif feature=='src_ip': 

time_RDD = filtered_RDD1.map(lambda x: 

client_ip_func(x)).distinct()  

   replace_IP_RDD = time_RDD.map(lambda x: replace_func(x))  

   final_RDD = replace_IP_RDD.reduceByKey(add) 

   lista_flussi = final_RDD.collect()  

    

   for d in lista_data: 

    for (k,v) in lista_flussi:  

     if (d==k): 

print("%s" %d + ","  + "%s" %v + "," + 

"%s" %port) 

      break  

    if (d!=k): 

print("%s" %d + ","  + "0" + "," + "%s" 

%port) 

  

  elif feature=='dst_ip': 

time_RDD = filtered_RDD1.map(lambda x: 

server_ip_func(x)).distinct()  
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   replace_IP_RDD = time_RDD.map(lambda x: replace_func(x))  

   final_RDD = replace_IP_RDD.reduceByKey(add) 

   lista_flussi = final_RDD.collect() 

   for d in lista_data: 

    for (k,v) in lista_flussi:  

     if (d==k): 

print("%s" %d + ","  + "%s" %v + "," + 

"%s" %port) 

      break  

    if (d!=k): 

print("%s" %d + ","  + "0" + "," + "%s" 

%port) 

  else: 

   exit() 

  

 elif len(sys.argv)==3: 

  feature = sys.argv[2] 

  if feature=='flows_numb': 

   time_RDD = client_noan_RDD.map(lambda x: tempo_val(x)) 

   time_flow_RDD = time_RDD.reduceByKey(add) 

lista_flussi = time_flow_RDD.sortBy(lambda x: x[0], 

True).collect()  

   for (k,v) in lista_flussi:  

    print("%s" %k + ","  + "%s" %v) 

  

  elif feature=='src_ip': 

time_RDD = client_noan_RDD.map(lambda x: 

client_ip_func(x)).distinct()  

   replace_IP_RDD = time_RDD.map(lambda x: replace_func(x))  

   final_RDD = replace_IP_RDD.reduceByKey(add) 

lista_flussi = final_RDD.sortBy(lambda x: x[0], 

True).collect() 

   for (k,v) in lista_flussi:  

    print("%s" %k + ","  + "%s" %v) 

  

  elif feature=='dst_ip': 

time_RDD = client_noan_RDD.map(lambda x: 

server_ip_func(x)).distinct()  

   replace_IP_RDD = time_RDD.map(lambda x: replace_func(x))  
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   final_RDD = replace_IP_RDD.reduceByKey(add) 

lista_flussi = final_RDD.sortBy(lambda x: x[0], 

True).collect() 

   for (k,v) in lista_flussi:  

    print("%s" %k + ","  + "%s" %v) 

  else: 

   exit()  

 else: 

  exit() 

   

main()  
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A.2  

 

import datetime 

import os 

import pandas as pd 

import matplotlib 

matplotlib.use('Agg') 

import matplotlib.pyplot as plt 

import matplotlib.dates as mdates 

import numpy as np 

import sys  

import random 

matplotlib.style.use('ggplot') 

import matplotlib.pylab as pl 

 

from fbprophet import Prophet 

from fbprophet.plot import add_changepoints_to_plot  

 

 

#input path 

path_br_timestamp = sys.argv[1]  

headers = ['ds', 'y', 'port'] 

df = pd.read_csv(path_br_timestamp, names=headers) 

df.drop("port", axis=1, inplace=True) 

 

df = df.sort_values(by="ds", ascending=True) 
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#costruttore  

#classic 

m = Prophet() 

 

#to change the number of changepoints 

#m = Prophet(n_changepoints=10) 

 

#change the trend flexibility (changepoints) 

#m = Prophet(changepoint_prior_scale=0.003) 

 

#to change the interval 

#m = Prophet(interval_width=0.97) 

 

#fit  

m.fit(df) 

 

#dates on which we wish to make the prediction 

future_dates = m.make_future_dataframe(periods=24, freq='H') 

 

 

#the actual prediction made by Prophet  

forecast = m.predict(future_dates) 

 

a = add_changepoints_to_plot(fig.gca(), m, forecast) 
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