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Summary

Address Event Sensing (AES) represents a completely new way of sensing reality.

Legacy vision systems rely on sensors that capture intensity images at a constant

rate (e.g., 30 fps) leading to high latency and redundancy in terms of information

and computation. This results in wasting precious resources such as energy,

CPU, memory access, storage and waiting time for superfluous frames. AES

silicon retina instead are bio-inspired sensors that asynchronously emit spikes,

i.e., events, whenever they occur. An ON/OFF event is a positive/negative log

intensity change that is registered at a pixel whenever a brightness threshold

is crossed. Since the concept of frame is completely eliminated, this approach

allows to significantly reduce the latency between photodiode illumination change

detection and its off-chip transmission down to ≈ 15 µs. By contrast, the time it

takes to build a single frame is 33.3 ms for a video at 30 fps resolution. The impact

of temporal redundancy removal is such that the low computational requirements

make these dynamic vision sensors (also known as event cameras) well suited

for real-time feedback vision-based robotics systems. Address-event silicon

retina apply to important and trending computer vision and vision-based robotic

systems tasks such as multi-object tracking, gesture recognition, autonomous

driving and surveillance just to name but a few. To this date, the vast majority

of applications of AES are bounded to local devices. For example, the Istituto

Italiano di Tecnologia (IIT)’s iCub humanoid robot features two event cameras

as eyes to track ball movements. In this thesis, we aim at going beyond and

study the case when these events have to be transmitted to remote devices. The

potential of such paradigm change is huge and stems from industrial applications

to coordination of drone swarms. Specifically, in this work we assess whether
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today wireless networks can support event-based communications for specific

computer vision tasks such as continuous object tracking. We pay particular

attention to the challenges introduced by latency and losses for a distributed

event-based video streaming system and compared with legacy vision frame-

based systems both over 802.11ac. For the latter, a custom Java platform has been

developed to perform the frame-based streaming analysis and object tracking

through OpenCV . For the event-based analysis instead, we relied on jAER as

rendering support. jAER is an open-source Java-based framework suitable not

only for the visualization of real-time events collected through a sensor or recorded

datasets, but also for the development of real-time event-based algorithms and

applications. The results highlight that a too small buffer size is detrimental

for latency and tracking performance because more than the 50% of events are

dropped as the application threads involved are not able to keep up with events

generation and packetization. The scene complexity and speed of objects are

key features for event generation. Events are generated asynchronously and

independently one from each other, but at application level, object tracking is

performed over cluster of events because these are correlated and define the same

moving object. We show that complex scenes with high speed moving objects

generates more events and thus are more sensible to losses. If a significant loss of

events is experienced within a cluster, the accuracy performance of a continuous

object tracking algorithm is affected negatively.
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Chapter 1

Introduction

1.1 Motivation

By 2021 more than 99 million AR/VR devices will be shipped and the market

will reach more than 108 billion dollar [87, 82]. The growing interest in the

Augmented Reality (AR) and Mixed Reality (MR) is encouraging progress in the

field, leading the sector to a significant growth, it is thus possible to state that this

new way of perceiving and interacting with reality will become an essential part

of people’s daily life. In particular in MR systems merging real and virtual world

requires a deep and fast understanding of the surrounding entities in order to

allow the final user to interact with both real and virtual objects. Furthermore, in

the Industry 4.0 revolution [4, 44, 32, 65] , companies automation relies on AR not

only in the design or commissioning, but also in the manufacturing and quality

control, embracing every step of the industrial process with the main advantage

of reducing the number of errors. Autonomous Driving represents an important

scenario in which AR finds application that allows to highlight the importance of

latency requirements. An Autonomous Driving system must be able to detect the

surroundings vehicles and the vulnerable users almost in real time in order to

guarantee a safe driving experience. For example in [49], Deep Neural Networks

have been exploited together with Events camera for motion-estimation in order

to predict the vehicle’s steering angle. Since the increasing number of sensors is

affecting different fields, there is an unprecedented enormous amount of video
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1 – Introduction

and images generated in real time that must be processed as fast as possible in

order to perform some specific tasks, e.g., image tracking or object recognition.

When we talk about latency requirements, we refer at first to the interval of time

that elapses between the motion performed by the user and the proper content

to be displayed by the MR system, commonly known as motion-to-phantom

latency that according to experiments has been fixed to 20 ms in order to avoid

user sickness. Furthermore we have to consider the time required to perform the

specific Computer Vision (CV) task and the rendering time required to generate

the image. High latency may affect accuracy of object detection/recognition in the

sense that for a rapidly evolving scenario the discrepancy between the reality and

the achieved object tracking must be brought to the minimum in order to guarantee

that the object will be actually tracked in the correct position. If we consider a

feedback-system, e.g., a remote user sending a feedback command according to

data received by the sensors, the scenario becomes even more complex due to

the fact that also the time needed to trigger back this command must be taken

into account. Summarizing we are dealing with an enormous amount of data

generated in real time that involves heavy computations and we need to match

at the same time low latency constraints, high accuracy and low processor load.

According to these system requirements, offloading major computer vision tasks

to the edge datacenter represents an interesting possibility especially for mobile

devices with limited computation capacity. The edge with respect to the cloud

platform introduces a gain in terms of response latency and bandwidth constraints

[94]. Address-event camera are bio-inspired sensors that asynchronously emit

events, whenever they occur. The impact of their frame-free nature which involves

a temporal redundancy removal is so that the low computational requirements

and the fast response time make event-camera sensors well suited to map reality

evolution into data on which real time edge computing CV tasks which involve

AR/MR can be applied.
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1.2 Contribution

This thesis investigates the feasibility of a novel solution for the edge processing

of real time CV tasks which exploit data collected and directly streamed by an

event-based camera. Even if this kind of neuromorphic sensors is available and

accessible to most research groups, event-driven computer vision algorithms

have not been investigated as deep as traditional frame-based ones, thus the

lack in the field is consistent. Furthermore we have to remark that the concept

of frame has been completely eliminated, we are streaming events in real time,

i.e., the coordinate of an ON/OFF brightness change registered at a pixel. In

this scenario traditional frame-based video streaming protocols such as ABR or

DASH cannot been exploited, which lead this task to be considered as an open

research problem. The main novelty introduced by this work is the fact that

for the first time in literature one could consider as an option the streaming of

events over the network, to this date, event-based camera have always been

employed on board or in close proximity of the device performing actuation.

Since this approach has never been explored before, it is fundamental at first to

evaluate network performance. By exploiting UDP over a Java-based framework,

called jAER, I have performed a series of measurements at first in a two hosts

wired LAN then moving to 802.11ac . This preliminary analysis is fundamental

in order to understand how events are actually streamed over the network, in

this way one can determine which are the network characteristics that must

be guaranteed in order to successfully meet latency and accuracy. The metrics

have been evaluated by analyzing different datasets that have been recorded

with a real event-based camera. The considered scenarios differ for motion

speed, acceleration and surrounding in order to highlight the fact that events

are generated asynchronously with higher or lower rate according to the motion

of the surrounding reality. Event-based object tracking represents a difficult

task, since events alone may be ambiguous in the image plane. Thus, different

information must be taken into account, [42] such as the cluster size,i.e., the

number of events registered within a cluster, or the event lifetime, as proposed

by [57], which measures the time required by the moving edge that generate
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the event to traverse a distance of 1 pixel. In this way, it is possible to encode

the information on the amount of time required to continuously represent an

event. Furthermore background noise in an heavy textured environment makes

object detection a difficult challenge. Different experiments have been performed

under different scenarios in order to understand how the network behaves with

respect to the streaming of events. In this way, a failure point for the achievement

of a specific CV task can be found. By considering the results, it is possible to

define a standard approach for the design of a streaming system that exploits

edge computing capabilities.

1.3 Organization

The thesis is organized as follows:

• Chapter 2 describes how event-based camera operate and highlights the

differences with respect to legacy vision sensors. It introduces the edge

computing concept by considering the offloading of CV tasks to the edge.

• Chapter 3 illustrates Java-based jAER framework set-up and experiments

implementation. Then it consider a preliminary local analysis of different

event datasets. It illustrates the RTP frame-based platform implementation.

Finally it provides a description of the benchmark analysis performed

through VisualVM Java profiler.

• Chapter 4 analyzes the streaming of events both in wireless and non wireless

scenarios, then it presents network-related results detailing the impact of

events/packets losses and scene complexity.

• Chapter 5 presents the results in terms of throughput and CPU usage with

the ultimate objective of providing a comparison between event-based and

frame-based systems. It also consider object tracking in both scenarios.

• Chapter 6 outlines future research directions on the topic.

• Chapter 7 concludes the work.
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Chapter 2

Background and Related Work

2.1 Computer Vision

Realtime Computer Vision (CV) represents an emerging field suitable for a wide

variety of applications ranging from medicine and biometrics to automotive

and augmented reality. The main idea behind this growing field is to automate

all the tasks that can be performed by the human visual system. Relevant

information are extracted from images and a deep meaning is assigned to them.

Compared to simple images obtained through common camera sensors, the

high-level understanding of the source scene achieved by CV provides additional

information that can be used for example to send feedback and thus control a

robotic system. In Robot Vision, both a camera sensor and a CV algorithm allows

to fulfill a robotic task such as lifting an heavy weight, sorting and inspecting

of work pieces. A realtime scenario requires to complete the processing of a

single frame within 30 − 40 ms and even simple algorithms, e.g., face or smile

detection, require a lot of power resulting particularly challenging for mobile

and embedded devices [69]. The increasing interest in the field will for sure

leads computer vision-based system to become as ubiquitous as touch interfaces.

Strict timings and latency vision-based robotic systems need in general an high

frame rate and a considerable computational cost in order to meet deadlines and

operate almost in real-time [14, 10]. For a traditional camera sensor, the high

frame would produce an enormous amount of data so that only few instructions
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per pixel would be available at this point, exacerbating complexity and CPU load.

In some particular scenarios, which for example involve drones or autonomous

driving, it is important to exactly and continuously keep track of the environment

in order to estimate the position of a moving object [20, 21]. In this case, if

a frame-based legacy vision sensor is used, then a fast moving object within

a frame will produce motion blur that can significantly degrade quality, thus

performance. In Event-based vision sensors instead, the concept of frame is

completely eliminated, the temporal redundancy is removed and computational

requirements are lowered. All these advantages make address-event sensors well

suited for real-time feedback vision-based robotics systems. Event Camera are

supposed to fulfill computer vision tasks in highly challenging cases which are

inaccessible to legacy vision sensors that involve high speed and high dynamic

range scenarios. In standard vision sensors, reality is captured as a sequence

of snapshots leading to redundant information, computation and high latency.

Event-based camera solve the problem by exploiting a technology that works like

the human retina since only pixel changes are transmitted at the time they occur.

Table 2.1 highlights the main differences between an event-based camera and a

legacy vision sensor [91, 74].

Table 2.1: frame-based camera and event-camera comparison.

LEGACY SENSOR EVENT CAMERA
Frames Events
Redundant data Redundancy free
Resource intensive Lightweight
High power consumption Low power consumption
Motion blur No motion blur
low dynamic range high dynamic range
high latency low latency

2.1.1 Legacy Vision Sensors

As Lichtsteiner et al. state in [45], in legacy vision sensor a series of snapshots

are taken at a constant rate in order to capture reality leading to high latency

and redundancy in terms of information and computation, wasting precious
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resources such as energy, CPU, memory access, storage and time waiting for

superfluous frames. In fact, in a frame by frame working system, complex and

heavy processing operation must be applied to the received inputs. Robotic

vision-based tasks which have strict timing requirements, cannot successfully

exploit traditional video frame-based camera because of the heavy amount of

data generated and the high frame rate requirements. The human eye can process

and perceive individually from 10 to 12 images per second. If we increase the

frequency at which the frames are captured then the results is that of continuous

motion perception. In general uniform modulated light is perceived as stable from

50 to 90 Hz while hundreds of Hz would be necessary in the case of unmodulated

light [12]. High performance cameras found applications in different fields,

ranging from detection and tracking from air based platform, to high performance

scanning required by industry. According to their specifications, these high

performance camera will emit frame at a specific constant rate, see Figure 2.1. In

some particular scenarios in which latency represents a problem, e.g.robot vision

algorithms, this leads to :

1. Redundancy in terms of useful information : A frame is by far bigger with respect

to an event, furthermore for slow evolving scenario or stable background

reality, subsequent frames are quite similar. Thus, either frame redundancy

is filtered out or precious resources in terms of storage and memory access

are wasted.

2. Redundancy in terms of computation : As stated previously, subsequent frames

may be very similar. If redundancy is not filtered out, then the same

processing must be applied over the same data.

3. High Latency governed by the frame rate no matter the input data. (see 2.1.2

for further clarifications on event representation).
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(a) (b)

Figure 2.1: (a) reality is captured at constant framerate by a standard camera
(b) sequence of frames of a video.

Preliminaries on OpenCV and object tracking

Open Source Computer Vision, formally OpenCV, is a crossplatform library of

programming functions mainly aimed at real-time computer vision [69]. Gary

Bradsky started the project at Intel in 1999, and came up with the first release in

2000. It has a modular architecture thus it is composed by several modules [63]:

• Core: defines the basic data structures such as the Mat multi-dimensional

array and some other functions used by other modules.

• Imgproc: this module for image processing allows to perform linear and

not linear filtering and some other transformations like resize, histogram

evaluation and conversion between color space.

• Video: this is the module allows video processing defining object tracking

algorithms and motion estimation.

• Calib3d: this module allows to perform stereo camera calibration, object

pose estimation and 3D reconstruction.

• Features2d : includes feature detectors and descriptors that allow the detec-

tion of some objects belonging to some well defined classes like cars, faces,

balls and so on.

Tracking represents an opportunity for image recognition too. In general a tracking

algorithm exploits the knowledge of direction and speed motion of an object

according to detection performed in the previous frames. In this way a tracking
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algorithm is overall faster with respect to a detection algorithm. Whenever partial

occlusion of a moving object occurs, an object recognition algorithm will probably

fail, instead a good tracker can tolerate occlusion up to a given threshold, avoiding

performance degradation. In most instances a tracking algorithm exploits the

information contained only in the previous frame while an object recognition one

starts from scratch every time it is performed. Thus we can combine the strengths

of both approaches. Object tracking by the way, accumulate errors so that the

variance of the rectangular cluster estimator increases and the accuracy of the

continuous tracking decreases. In order to overcome the problem a detection

algorithm is occasionally run. While OpenCV tracking API was introduced in

OpenCV 3.0. 8 different trackers are available in OpenCV 3.4.1 : BOOSTING,

MIL, KCF, TLD, MEDIANFLOW, GOTURN, MOSSE and CSRT, [5, 43]. In general

when one has to perform object tracking, he needs to estimate the position of an

object within a frame, by supposing to have correctly tracked it in the previous

ones. Whenever object tracking is performed, the motion model, i.e., direction of

motion and speed of the object, is derived and can be used in order to determine

the position of the target in the next frames. Furthermore, since the object is

characterized by some features, an appearance model can be derived too. This

model can be used in order to more precisely predict the position of the target.

Most of the times in real life the appearance of an object represents a not static

component since it can suddenly change. To overcome this problem online

training of the classifier is performed. In general a score between 1 and 0 is

returned by a classifier, this score represents the probability that the rectangular

patch of an image contains or not the object. The classifier will output 0 if it is

sure that the patch does not correspond to the object while it is referred to the

background and 1 in the opposite case.

RTP : Realtime Transport Protocol notions

An RTP Client and Server Java-based platform has beed adjusted in order to

perform frame-based streaming analysis and tracking, see Section 3.3 for the

results. The Real-Time Transport Protocol (RTP) is an Internet protocol which

provides end-to-end delivery services for data with real-time characteristics,
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such as interactive audio and video [6]. Those services include payload type

identification, sequence numbering, timestamping and delivery monitoring.

Applications typically run RTP on top of UDP to make use of its multiplexing

and checksum services; both protocols are contributing parts of the transport

protocol functionality. The protocol specifies a way for programs to manage the

real-time transmission of multimedia data over either unicast or multicast network

services [75, 37]. It is located at the transport layer of the OSI model together with

UDP, Figure 2.2, but from a developer’s point of view it belongs to the application

layer since the programmer should implement it at the application level in order

to allow the encapsulation of RTP packet within UDP. RTP is tipically used in

conjunction with RTCP that allows the synchronization of multiple stream and

to monitor Quality of Service and transmission statistics. In general realtime

multimedia streaming application can tolerate losses in order to have realtime

guarantees [59]. Within this scenario losses can causes occasional glitches in the

audio or video playback that can be somehow recovered through some error

concealment algorithms [71]. TCP has been standardized for RTP but in general is

not used since it aims at providing reliability which negatively affects applications

with timing constraints because of time-consuming retransmission process. The

information contained in the RTP header, see Figure 2.2, allows the receiver to

reconstruct the data and describe the encoded format of the data. A signalling

protocol like SIP, Jingle, H.323 or RTSP it is typically used to initiate a RTP session.

In general two different RTP sessions are initiated for audio and video so that a

receiver can opportunely decide which stream to receive, thus tailoring the stream

to the bandwidth of the recipients.

(a) (b)

Figure 2.2: (a) RTP payload encapsulation (b) RTP header.
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The RTP header, 2.2, accounts for [75]:

• version (V): 2 bits that allow to identify the version of RTP used.

• padding (P): this padding bit if set, indicates that the packet contains one or

more additional padding octets at the end which are not part of the payload.

• extension (X): 1 bit that indicates whenever the header must be followed by

some header extension according to the list available in RFC 3550.

• CSRC count (CC): 4 bits that indicate the number of contributing source

(CSRC) identifiers that follows the fixed header.

• marker (M): the interpretation of the marker over 1 bit is defined by a profile.

• payload type (PT): the 7 bits of this field identify the format of the RTP payload

and determine its interpretation by the application, e.g., 26 stays for Motion

JPEG, 31 for H.261, the complete list is available at [72].

• sequence number: the SN over 16 bits is incremented by one for each RTP

data packet sent, and may be used by the receiver to detect losses.

• timestamp: the 32 bits of TS indicate the sampling instant of the first octet in

the RTP data packet.

• SSRC: the 32 bits of the random synchronization source identifier.

• CSRC: the 32 bits that identify the contributing sources for the payload

contained in this packet.

MPEG-4 part 14

MPEG-4 part 14 or MP4 is a digital multimedia container format used in general

to store video and audio but also subtitles and static images. This format is used

also for streaming video over the internet. The MP4 compression is lossless, thus

audio and video quality of the actual data is not decreased. Its formal designation

is ISO/IEC 14496 and was finalized in October 1998 and became an international

standard the year after [55]. The aim behind the MP4 development was that of
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defining an audio and video format that allows to consume low bandwidth. It

is a multimedia container thus it does not have a standard method for coding

video or audio data. The video files using MP4 are compressed using H.264 or

MPEG-4 compression techniques [64]. MP4 provides less loss of quality and

higher degree of compression, it can be simply decomposed into constituent

objects and it support a wide range of hardware. The popularity gained by MP4s

was mainly due to the Apple’s iPod. Users at the beginning could download

video from Google Video to their personal iPods by using MP4, furthermore

Sony PSP made MP4 a popular video format too. MP4 is more popular than

Apple’s Quicktime format (.mov) because it uses less space and can be played

using shareware or freeware softwares such as VLC [54]. As source video for

the RTP Client and Server streaming platform, Section 3.3, an MP4 video as been

obtained through ffmpeg [18], starting from jpg images. The first source video

has been obtained from the the VOT2015 Dataset [90] while the second from the

jpeg images of the event-camera dataset provided by the ETH of Zurich [36], see

Figure 2.3 and Figure 2.4.

(a) (b) (c)

Figure 2.3: three subsequent .jpeg frames of the butterfly dataset of VOT2015.

(a) (b) (c)

Figure 2.4: three subsequent .png frames of the shapes dataset of the ETH of
Zurich.
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In particular the butterfly sequence, Figure 2.3, contains 151 .jpeg frames, collected

at 30 fps, of size 640×480 pixels. In this simple scenario the background is uniform

and static and the main motion is due to the flying butterfly and to flowers moved

by the wind. For the sake of simplicity, this scenario has been considered in order

to perform object tracking. The shapes rotation sequence, Figure 2.4, contains

instead 1356 .png frames of size 240 × 180 pixels. This dataset has been registered

at increasing speed by moving a camera in front six simple shapes represented on

a wall.

2.1.2 Event Cameras

Address-event silicon retina are bio-inspired sensors that asynchronously emit

spikes, i.e., events, whenever they occur, Figure 2.5. An ON/OFF event is a

positive/negative log intensity change that is registered at a pixel whenever a

certain threshold is crossed. An event encodes time, location and sign of the

brightness change. The threshold or more specifically the contrast sensitivity is

generally set to the 10 − 15 % and it is possible to relax it in order to limit the

event rate as needed. For lower values of the contrast threshold, less events will

be generated, for higher values of the contrast threshold instead, the number of

generated events increases. As stated in [28], an event-based camera is made by

asynchronous pixels that are sensitive to changes in their logarithmic photocurrent

L � log(I). An event ek is generated at time tk, whenever the brightness change

registered at a pixel crosses the contrast threshold ±C with respect to the previous

registered event:

∆L(xk, tk) � L(xk, tk) − L(xk, tk − ∆tk) = pkC, (2.1)

where δtk represents the time elapsed since last captured event at the same pixel

position, and pk ∈ {−1, 1} represents the brightness change polarity. If the time

interval between two consecutive events at the same pixel location is small, we

can approximate the brightness change according to Taylor expansion as follows:

∆L(xk, tk) ≈
δL
δt

(xk, tk)∆tk. (2.2)
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According to previous considerations, events provide information about the

temporal derivative of brightness:

δL
δt

(xk, tk) ≈
pkC
∆tk

. (2.3)

Temporal redundancy is naturally filtered out since events are generated by

moving edges only, furthermore the delay is significantly reduced since it is not

necessary to wait for the entire frame to be processed. The advantage is particularly

significant whenever one deals with static scenarios. In these cases most of the

time the pixel values are unchanged but still must be processed. It is furthermore

important to remark that asynchrony means that it is possible to work at a pixel

response time precision which is obviously faster with respect to the traditional

quantization frame rate. The frame-based to event-base revolution guarantees

extraordinary advantages of whom different sectors would not do without, it

embraces important and trending computer vision and vision-based robotic

systems tasks such as multi-object tracking, gesture recognition, autonomous

driving and surveillance just to name but a few, as showed by the Robotic Goalie

developed in [14] and the pole balancing arm proposed in [10].

(a) (b) (c)

Figure 2.5: (a) DVS128 (b) events rendering through jAER (c) asyncronous ON(red)/
OFF(green) events generation.

Event Representation

Referring to [45], in Figure 2.6(a) the chip format of a 128 × 128 pixel array 4M2P

DVS is presented. A pixel produces address events whenever it registers a log

intensity change greater than a certain threshold T since the last registered event.
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The event at a pixel position will be transmitted as an address in the form of 7 bits

for the x row, 7 bits for the y column plus 1 bit for the ON/OFF polarity change, for

a total of 15 bits. To the 15 bits describing the event, are added a synchronization

bit, rarely used, and a timestamp of 14 bits computed by a counter within the

USB-AE converter, for a total of 4 bytes. Figure 2.7 of [24], clarifies the common

events structure and the DVS to Host system set up exploited for computer vision

based robotic tasks [14, 10]. The pixels are subjected to an adjustable refractory

period which prevent them from generating another event within this interval. In

this way a small group of pixels will not be allowed to take the entire full capacity.

Then events are queued to be transmitted off-chip and losslessly serviced by an

arbiter.

We can state that for a smoothly variation of the temporal contrast the event

rate can be expressed as follows [45] :

Event Rate(t) ≈
TCON(t)

θ
=

1
θ

d
dt

ln(I), (2.4)

where θ is the temporal contrast threshold that depends on the settings of

the comparator and TCON(t) is the temporal contrast which depends on the

photocurrent as:

TCON(t) =
1

I(t)
dI(t)

dt
=

d(ln(I(t)))
dt

. (2.5)

The surrounding reality is obviously the source that feeds the sensor, more or less

faster according to the considered scenario. This means that a scene taken by a

camera mounted on a flying drone, for example, will produce more events / s,

with respect to a static scene in which only few brightness changes are recorded.

For instance one can think at a surveillance event camera mounted at a fixed

point, in which the only brightness change is given by the sporadic wind causing

the movements of leafs. If we introduce a T f rame time parameter referring to

frame-based system and an analogue Treality [67], we can distinguish between two

peculiar scenarios:

1. Treality > T f rame: reality is slow evolving compared to frame rate, thus heavy

processing is repeated over quite similar/redundant inputs.
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2. Treality < T f rame: reality is fast evolving compared to frame rate, motion blur

might be managed and furthermore it might be difficult to perform some

image processing tasks.

In an ideal system, the perfect solution would be that of adjusting the time

parameters so that Treality ∼T f rame, in this way redundancy and computing resources

can be properly managed. Instead in event-based systems, pixels produce spikes

with microsecond delay according to intensity changes, we can thus talk about

pseudo-simultaneity referring to the fact that the time parameters naturally match

Treality. The AE sensor will translate the brightness change into an ON/OFF event

as previously explained. In Figure 2.6(b) from [58], the output of a rotating disc

stimulus produced by both a standard camera and a Dynamic Vision Sensor, is

presented.

(a) (b)

Figure 2.6: (a) 128x128 pixel array of a 4M2P DVS (b) Rotating disc stimulus
output comparison between legacy vision sensors and DVS.

Event processing on no redundant information is performed in software within a

micro controller or in FPGA and must be fast enough in order to meet real-time

constraints. For example, for an average event rate of 200 kHz, each event must

be processed in no more than 5 us, and just to give practical perception, this time

interval is sufficient to balance a pencil on its tip. In [14], the average event rate

is of 20 keps, and measurements show that 60 us are required to run the code

for processing buffers of 128 events. This last number comes from the fact that

events are stored as 4 bytes within the FIFO, and that the used USB 2.0 bulk

transfer allows to transfer 512 bytes for high-speed endpoints, thus 512/4 results

in a packet of 128 events.

23



2 – Background and Related Work

(a) (b)

Figure 2.7: (a) event sent through USB (b) DVS and HOST PC setup. Courtesy
of [24].

Event based Computer Vision algorithms

Events directly produced by Dynamic Vision sensors cannot be processed to

standard well known CV algorithms since a greyscale intensity image will not

be produced in this case. Events are asynchronous and independent, so it is

difficult to derive a general and complete understanding about the motion that

characterizes the scene. The per se ambiguity that is associated with single events

require to consider a set of particular past events as appropriate candidate to fulfill

the event-based CV algorithm. The idea behind most of these algorithms is that of

defining a particular set of past events in order to derive meaningful information

to render the image so to apply the specific CV task. According to [57], there are

two main standard approach used to define the set of past events used in order

to render an image. The first approach consider a standard time interval over

which events are accumulated, the problem arises for slow motion scene in which

a larger time interval would be required in order to accumulate a satisfactory

amount events, affecting latency. The second approach instead considers a fixed

number of events, in this case the problem arises for heavily textured images

that require an higher number of past events to be considered. Furthermore if

two objects in the scene move at different speed neither a fixed time interval or

number of events will represent a satisfactory strategy. In [56, 81] a new approach,

based on the event lifetime concept, is proposed to overthrow these problems.

The stand-alone ambiguous event will be associated to a finite temporal duration
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useful to represent the event over time. The aim is that of understanding for

how much time the gradient that causes the events will remain at a certain pixel

position. For each event, Mueggler et Al. compute the current velocity in terms

of apparent motion in the image plane. This information is necessary in order to

estimate the time that the moving edge requires to traverse 1 pixel. This approach

overcomes the two main limitations previously exposed and permits to render

sharp gradient images, i.e., edge like images, at any point in time. The mapping

of event to lifetime allows to represent and show the event for its lifetime interval

only, see Figure 2.8. This approach allows either to generate an edge like image at

any time or to define a cluster for continuous objects tracking.

Figure 2.8: On the left events (crosses) are accumulated over a fixed time interval,
on the right events are associated to their lifetime thus at time t* only active events
are rendered, courtesy of [56].

When the lifetime of an event is computed, Mueggler et al in [56] augment the

standard event with its lifetime τ and velocity vx, vy as follows:

< x, y, t, p >7→< x, y, t, p, τ, vx, vy >, (2.6)

where the lifetime computed in funcion of p = (x, y)T is defined as:

τ(p) =
√

vx
−2 + vy

−2, (2.7)

and the velocities are computed starting from the first partial derivatives of

S(p) = (x, y,
∑

e(x, y)T) where the last term in the vector represent the sum of active

events at a certain time t:
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5

∑
e

(p) = (
∂
∑

e

∂x
(p),

∂
∑

e

∂y
(p))T. (2.8)

The sum of active events is a monotonic increasing function and thus has no zero

gradient for every possible p, which is related to velocities as follows:

5

∑
e

(p) = ((v−1
x (p)), ((vy)−1(p)))T. (2.9)

2.2 Edge Computing

2.2.1 Preliminaries

The fifth generation (5G) mobile networks rely on software-defined networking

(SDN) and network function virtualization (NFV) to support next generation

services. Radio access and core functions are virtualized and executed in edge

data centers according to the Multi-Access Edge Computing (MEC) principle.

MEC is a key enabler for 5G mobile networks and was standardized by the

European Telecommunications Standards Institute (ETSI) [31]. Formerly known

as Mobile Edge Computing, MEC aims at providing computing service closer

to the end user1 by bringing applications and services at close distance to the

end-user [80]. Thus, it finds applicability in scenarios where locality and low-

latency are essential [77]. As its definition suggests, MEC is not tied to a single

radio technology, but embraces both cellular and other radio access technologies

such as WiFi. MEC is agnostic to the evolution of the mobile network itself, and

can be deployed in LTE, 4G or 5G networks. The edge, also known as MEC host,

is a data center or nano data center deployed close to the base stations inside

an operator-owned infrastructure. The edge provides computing functionalities

and can aggregate virtualized core and radio network functions of the mobile

network. Such principle originates from the concept of cloudlets (CLs) [77] and

enables resource-constrained mobile devices to prolong battery lifetime [22] while

enhancing and augment performance of the mobile applications [48]. To this date,

1In the rest of the thesis, we will use the words user, subscriber, and citizen interchangeably
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the research of edge computing has mainly focused on resource management

and allocation by trading power consumption and communication delays [16,

93] while seminal works have mainly focused on the definition of architectural

design principles [76, 53]. Emulation platforms for research in the area have only

started to appear recently [2] and little attention has been paid to the problem of

resource deployment. While in small networks the problem of cloudlet placement

is not relevant because latency of user-to-cloudlet communications is negligible, it

assumes a remarkable role in metropolitan areas, where a large number of users

needs low-latency resources for many different applications, such as augmented

reality or mobile gaming. Resource deployment is particularly interestingly and

challenging in the context of smart cities and to the best of our knowledge only

a vision paper has worked in the area by assessing the feasibility of leveraging

three different infrastructures, i.e., cellular base stations, routers and street lamps

and analyze the potential city coverage if only a subset of these elements is

upgraded to furnish cloudlet capabilities [29]. This study is a important step

forward to solve the problems of coverage, cloudlet selection and user-to-cloudlet

assignment. However, it fails to fully capture the mobility dynamics of a city.

Characterize the traffic dynamics with respect to different mobile services is

crucial in order to dimension and manage the mobile network. In particular,

investigating temporal behaviors and spatial patterns of citizens according to

usage of different mobile services assumes a paramount importance. Recent

studies unveil a consistent influence of urbanization level in the average traffic

volume per-user by highlighting that different mobile services typically present

different temporal behaviors but spatial patterns result uniform [50]. In this

context, understanding the influence of citizens’ spatial distribution and mobility

on the consumption of mobile services is a promising direction to properly

dimension and manage computational resources of mobile network.

2.2.2 Edge Computing for Computer Vision

Running computer vision algorithms on images or video collected by mobile

devices represent a new class of latency-sensitive applications that expect to

benefit from the edge cloud computing [94]. State-of-the-art AR/MR systems can
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almost correctly perceive the 3D geometry of the surrondings but they have not the

same ability in terms of object detection and classification, however Convolutional

Neural Networks (CNN) can be exploited to overcome these issues, but offloading

computation to the edge represents a valid support since it is difficult to run

large CNNs on mobile devices with low computational capacity [46]. In [30] it is

presented a feature tracker that exploits both frame images collected by a legacy

vision sensor and events collected by an Event camera. Their method extracts

features on frames that by nature are not motion dependent and then they use

events in order to track their features leveraging the low latency that caracterize

these novel sensors. It may not be possible to associate the asynchronous events

to frames on a mobile device with limited resources in terms of power, bandwidth,

computation and heat dissipation, because of the heavy impact produced by

the processing required for every frame, thus offloading computation to the

edge would represent a valid possibility even if strict timings constraints must

be carefully met both in terms of end to end system latency and in accuracy

of detection or tracking. Figure 2.9 presents a latency diagram for a proposed

event-based system that offloads CV tasks to the edge datacenter in order to send

a feedback to the final user. DVS are able to detect a brightness change in the

source scene with ≈ 1 µ s time resolution and to trasmit the event off chip in less

than ≈ 15 µ s time. Events are then organized in packets and offloaded to the

edge that will perform computing for the specific CV task, e.g. image tracking [52,

95, 26, 27]. As soon as the edge DC has performed its computations, it can send a

feedback to the AR/MR device that will render the resulting image for the final

user. Offloading CV tasks to the Edge represents a challenge for the on going

research because of the strict latency requirements. More research attention has

been given to mobile devices that locally perform CV task, but since the trend

is changing and AR/MR devices are rapidly gaining attention it is necessary to

consider the end to end latency requirements in these challenging cases. [61]

and [70] both consider object detection offloading to the edge. The systems both

require more than 400 ms offloading latency, which is not suitable for the correct

rendering of objects in MR systems. In [46] a frame based system that reduces

the offloading detection latency achieving high detection accuracy finishing the
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rendering too within 20 ms is proposed. The advantage would be of course higher

if an event-camera would be considered since reality would not be captured at a

constant frame rate but through asynchronous redundant free events.

Figure 2.9: Event based system that offloads CV tasks to the edge.
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Chapter 3

Measurements Framework

The chapter is organized as follows:

• Section 3.1 offers an overview of jAER, the open-source framework support-

ing event sensors that has been used for evaluations in the testbed proposed.

It illustrates at first the GUI functioning and then, the communication socket

set up for experiment implementation.

• Section 3.2 provides a preliminary analysis of some event camera datasets

in terms of event rate considering different kind of motion.

• Section 3.3 presents the RTP Client-Server platform that has been used for

evaluation of frame-based system.

• Section 3.4 illustrates CPU profiling techniques and describe the VisualVM

profiling tool used.

3.1 The jAER Framework

3.1.1 Overview on jAER

The Java-based framework, jAER, consists of around 300 classes and allows

both real time and offline processing of events generated by an event sensor.

An Address Event (AE) sensor can be plugged in through a USB interface, and
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jAERViewer, see Figure 3.1, can be used in order to view, log, playback and process

the events coming from the device [23, 84, 13]. The considered datasets have been

obtained through DVS sensors that asynchronously collect and timestamp events

with 1 us precision. Events are thus transmitted in a packet with variable size

through USB to a host running jAER. Whenever a packet is received by jAER, a set

of desired ordered filters is applied in order to modify and filter events as needed,

see Figure 3.2. Event rendering can be performed according to a fixed time slice or

number of events, visual annotations like cluster mass or identifier can be added

to the output. In Figure 3.1, events collected by a flying drone within a office are

rendered through the jAERViewer [11]. The jAERViewer is characterized by an

infobar, Figure 3.3, on the top, a display that allows to render the image from data

and a data slider, see the bottom part of Figure 3.4. From the left to the right the

infobar contains:

• Time slice: time interval covered by the frame that has been rendered.

• Absolute time: before the screen refresh, it represents the timestamp of the

last event packet to be completely processed.

• Raw events: total number of events used to render the current frame.

• Filtered events: the filter or the set of filters applied, allow to eliminate some

events, this field represents the total number of events after filtering.

• Event rate: represents the number of events generated per second where eps

stands for event per second.

• The play rate: multiplication factor that allows to speed up the playback of a

video with respect to the original one.

• The actual frame rate and the desired frame rate: the actual frame rate is the frame

rate that is achieved by the viewer, that thus takes into account effective

computational load and delay. The desired frame rate is the aimed one. In

Figure 3.3, the desired frame rate has been set to 60 fps but only 29 fps are

achieved due to the computational load.
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• The delay after a frame is rendered: it gives an idea on the processor load since

it defines the amount of time the process is idle before the main loop begins.

• FS - Full (Colour) Scale: it is a contrast control for the display, the higher the

value of the FS, the higher the contrast.

The data slider of Figure 3.4 is only present when playback logged data. It informs

the user on the playback position and it allows to increase or decrease the speed

of the playback, to start or pause the recording. Different graphics option are

available under the jAER framework. In Figure 3.1, ON events are represented

in Green while OFF events are represented in red. However, different colors

and display methods can be selected. For example, one can choose to represent

events, considering the time dimension as well, thus according to their time

generation. Newer events will be represented in dark grey and older events will

be represented in clear grey. The filter panel is presented in the left of part of

Figure 3.2. The filters available in jAER allow to perform different operations, e.g.,

extracting feature, tracking objects and showing information. They can be selected

from the top menu of the jAERViewer by clicking the filter button. Whenever

a set of events is received by jAER, a set of desired ordered filters is applied in

order to modify and filter events as needed. In the set of experiments performed,

three main filters have been considered:

• Info filter: this filter shows statistical information about the considered data

stream, e.g., absolute time and date of the recording, the event rate of ON

and OFF events.

• Background activity filter: this filter allows to remove background uncorrelated

events, [1].

• Rectangular Cluster Tracker: this filter allows to perform object tracking by

specifying different parameters like the number and the mass of the events

within a cluster.

In the right panel of Figure 3.2, the User-Friendly-Control panel is presented. This

interface allows to enable or disable the capture of frames and events, to adjust

32



3 – Measurements Framework

the event threshold and the balance between positive and negative events, as well

as the pixel refractory period.

Figure 3.1: jAERViewer rendering events collected through a drone within an
office.
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Figure 3.2: filter panel on the left and adjustable parameters on the right.

Figure 3.3: jAERViewer information bar.

Figure 3.4: jAERViewer dataslider.

3.1.2 Socket

A socket is an endpoint that allows to send and receive data within a node in a

network. There exist two main types of Internet socket:

• Datagram socket: By using UDP, it provides a connectionless point for sending

and receiving data. Packets sent over a Datagram socket are individually

routed and delivered. In this case, there are not guarantees in terms of order

and reliability, packets sent from an host to another may be delivered not

in order and may not arrive at destination at all. Datagram Sockets is the

Java mechanism for providing network communication via UDP instead of

TCP [40].
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• Stream socket: By using TCP, it provides a connection oriented point for

sending and receiving data. The communication provided by a Stream

socket is reliable and sequenced and with out-of-band capabilities. If

delivery is impossible, the sender receives an error indicator.

Whenever live video streaming is considered, User Data Protocol, UDP, is recom-

mended over Transport Control Protocol, TCP. In fact if TCP favors reliability,

UDP instead favors reduced latency. The latter protocol does not wait for packet

retransmission and acknowledgement. What matters for UDP, is not the frame

loss, but the on-time delivery of the content. So, it results in the complete

syncronization with live streaming [85].

The experiments have been performed over 802.11ac , the considered scenario

is represented in Figure 3.5. The jAER framework allows to stream events from

a Server, i.e., Dell Latitude E6430, to a Client, i.e., Dell Latitude E7440, using

UDP. The jAER framework has been installed over both network nodes. For the

experiment a WLAN with IP 192.168.1.0 and subnet 255.255.255.0 has

been set. Static IP addresses have been assigned to the Server, i.e., 192.168.1.9

and the Client node, i.e., 192.168.1.10. The Access Point is a NETGEAR

Nighthawk X10 R9000 with 192.168.1.1 over the 5 GHz band.

Figure 3.5: mmWave laboratory: The Server node, i.e., 192.168.1.9 streams
event to the Client node, i,e., 192.168.1.10 through the AP, i.e., 192.168.1.1
over 802.11ac.
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The UDP socket can be opened through the jAER File/Remote menu by selecting

the Enable unicast datagram (UDP) output button for the Server,see Figure 3.6,

and alongside the Open unicast (UDP) remote AE input for the Client. In order

to set up the socket one needs to indicate, besides the IP address of the other

node involved in the communication, the port over which the streaming will

take place and the size of the buffer at Server and Client side, which according

to results presented in Section4.2, has showed critical performance. By enabling

the sequence number in the AEUnicastDialog, it is possible to keep track of the

packet sent and this is useful for a number of purposes, including counting the

number of losses. The address and timestamp couple can be represented over

2 Bytes or 4 Bytes (the latter as been used in the experiments). In the analysis

performed the first int32 of each AE is the address, and the second is the

timestamp. Alternatively, it is possible to have the first int32 as the timestamp,

and the second as the address. As can be seen in Figure 3.6, different experimental

protocols can be selected to perform the streaming, by the way standard UDP has

been used in order to obtain results more general as possible.

Figure 3.6: Socket opened at the Server side towards the Client.

3.2 Dataset Analysis

In first instance, some of the event camera datasets for high speed robotics

provided by [86] have been analyzed, see Figure 3.7 and Table 3.1. For each
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considered dataset, the text file events.txt which contains one event per row in the

form of timestamp, x , y, polarity, has been logged at first through jAER and then

processed through Matlab. The Cumulative Distribution Function for various

datasets is presented in Figures 3.9 - 3.13. The computation has been performed

locally on a Dell Latitude E6430 with an Intel i7 − 3720QM processor at 2.60 GHz,

16 GB RAM and Linux Ubuntu 18.04 LTS, with the aim of understanding scene

dynamicity and evolution in time. The streaming has been performed locally

over the same host opening a socket through two instances of the jAERViewer,

see Section 3.1.2. with a buffer size of 63000 Bytes both at transmitter and receiver

side. The amount of motion in a scene, so the amount of events generated along

time by an event-camera, depends on the considered scenario. The number of

asynchronous events that are triggered by an event-camera is related to the scene

complexity and to the speed of the moving objects.

(a) (b) (c)

Figure 3.7: (a) events.txt file containing one event per row (b) Ground truth (c)
jAER viewer events output: ON events in green and OFF events in red.

Table 3.1: Analysed datasets.

DATASET MOTION SPEED CDF
1 Rotation increasing Fig.3.8
2 Translation increasing Fig.3.9
3 6-DOF increasing Fig. 3.10
4 Rotation increasing Fig.3.11
5 Translationn increasing Fig.3.12
6 6-DOF increasing Fig.3.13

Datasets have been generated with a DAVIS240C [19] for different kind of motion

over 60 s. A higher number of events is generated as time increases because of
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the increasing speed, according to the event camera which is a motion detector

by nature. The slope , thus the event rate, increases with increasing time since an

higher number of events must be considered. In the different analyzed datasets

various kind of motions are considered, i.e., rotation, translation and 6 Degree

Of Freedom (DOF). In the rotation, translation and 6-DOF motion of the simple

shapes dataset, Figure 3.8, 3.9 and 3.10, one can notice that most of the events are

generated after 20 s or 15 s according to the increasing speed of the event camera

moved by the operator in order to register the source video. Furthermore the

60 % of events is generated after 30 s , half of the total recording time. In the last 3

datasets, Figure 3.11, 3.12 and 3.13, the event-camera at the beginning has been

moved at a lower speed with respect to the previous cases. In the first 20 s, less

than the 20 % of the total events are generated.
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Figure 3.8: Simple shapes on wall rota-

tion.
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Figure 3.9: Simple shapes on wall trans-

lation.
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Figure 3.10: Simple shapes on wall

6− DOF.
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Figure 3.11: Poster Rotation.
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Figure 3.12: Poster 6-DOF.
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Figure 3.13: Poster translation.

3.3 RTP frame-based streaming video system

In order to understand the event-based streaming behavior with respect to the

frame-based one, a custom frame-based Java framework has been developed

starting from the code available at [60]. As Integrated Development Environment

(IDE), Netbeans 8.2 has been used. Netbeans allows the use of a set of modular

software components called modules in order to develop applications [62]. The

streaming video Server and Client communicate using RTSP and send data using

RTP, see Section 3.3. As in the event-based case, a datagram socket is created in

order to send and receive UDP packets. In this case, the Client requests data to the

Server, indicating the path to the desired video,i.e., the mp4 butterfly video created

starting from .jpeg images, see Figure 2.3. Since an analysis also in terms of object

tracking needs to be performed, the RTP Client has been opportunely modified.

First of all a BlockingQueue has been created in order to decouple the process of

receiving frames from the socket and the process of performing object tracking.

As soon as the video is received by the RTP Client, it is decomposed to image

frames. Image processing is performed on these extracted frames, separately.

A BlockingQueue is a trade safe Java queue. It allows to perform flow control

by blocking the queue if it is full or empty. Thus a thread cannot enqueues a

new element if the queue is full and complementary cannot extract data from an

empty queue [38, 39]. In order to avoid contention, two concurrent data structure

can be used: an AtomicInteger and a Condition. The AtomicInteger allows to

check the length of the queue, when the queue is in the contention-free state a

signal notifies the waiting thread by modifying the Condition. A producer and
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a consumer thread have been developed, see Figure 3.14. The first thread is in

charge of transferring data from the UDP socket to the BlockingQueue, the latter

from the BlockingQueue to the GUI for rendering. In Figure 5.3, is represented

the GUI at the Client side. The url field indicates the IP address of the Server, then

the Port field represents the port number over which the communication takes

place and the File field indicates the file that must be requested to the Server.

Figure 3.14: Consumer-Producer data flow at the Client side.

3.4 Benchmark analysis

In computer programming, profiling is the dynamic analysis of a program

behavior. It is performed in order to determine the part the target application

that are executed most frequently or where most of the time is spent [33]. These

portion of the code can be source code-level functions, e.g., subroutines and

methods, basic blocks of code or even machine instructions [17]. By analyzing

the performance of the target application it is possible to improve those sections

of code that perform poorfly and may act as a bottleneck. The optimization

of the CPU usage introduces several advantages. For example a faster user

experience can be provided and device battery life can be preserved. In particular,

through Java profiling, various JVM level parameters, like method or thread

execution, object creation and garbage collection can be monitored. There exist

two fundamental approach in Java profiling: “sampling” and “instrumentation”.

The first periodically takes statistical data, the other performs integration into the
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code by setting an entry and an exit point.

Profiling by sampling

Sampling is an unintrusive profiling approach. In this case, no runtime modifi-

cation of the target application occurs and the latter can run near to full speed.

This approach is less numerical accurate since data are derived by a statistical

approximation. Furthermore, since it is performed less often its overhead is

negligible. The execution stack of the target application is probed at regular

interval by the profiler through OS interrupts. In particular, at regular time slices,

the OS interrupts the CPU, performing context switches. At this point, the profiler

will take a sample, by recording the execution point. In this way, only fraction of

the entire execution path are captured. Samples are then associated to the routine

and source code to which they belong and a statistical measurement is performed

in order to determine the frequency of critical parts within the run of the target

application.

Profiling by instrumentation

With respect to the previous approach, this kind of profiler is intrusive. Custom

byte code is added to the target application in order to record methods or threads

execution as well as object creation. Probing has the advantage of providing

greater flexibility at the expense of slowing down performance. Two main

techniques can be considered. The first involves adding custom byte code to

the source code, however this approach can create several confict problems.

Furthermore, custom byte code can be added at best at the start of a procedure

in source, missing important portions of execution time. The second approach,

which works at runtime, is called binary profiling. Byte code is added to the

executable code of the target once it is loaded in memory [25].

VisualVM profiling tool

VisualVM is a visual tool integrating commandline JDK tools and lightweight

profiling capabilities that has been designed for both development and production
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time use [88, 89]. This tool as been used, see Section 3.4, in order to profile the

performance of both event-based and frame-based scenarios,i.e., jAER and RTP

Client/Server system. This open source and actively developed tool, allows to:

• Display local and remote Java processes: in the Applications left panel, there is

a list of active local or remote Java applications.

• Display process configuration and environment: basic information such as PID

or main class, JDK home or JVM for each involved process, are presented.

• Monitor process performance and memory: the dashboard shows CPU and heap

usage, as well as number of loaded classes and threads.

• Visualize process threads: a timeline allows to display all active, running and

waiting threads within the target application.

• Profile performance and memory usage: both sampling and instrumentation

profilers can be used for performance analysis and memory management.

As mentioned before, both a statistical and instrumental profiler are available

within VisualVM. In the first case, this tool takes a stack snapshot at regular

intervals, recording the execution point. Finally, a statistical approximation is

performed. In the second case instead, profiling custom code is injected within

each method thus recompiling is required. By the way this kind of profiler has

not been used since its implementation performs poorly.
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Chapter 4

Analysis of Event-based Systems

This section presents the results when looking specifically to event-based systems.

The next chapter will provide a comparative evaluation of event-based and

frame-based systems. Several network experiments have been performed in order

to evaluate the system behavior. As introduced in Section 3.1.2, the experiments

have been performed at first over a LAN and then over 802.11ac. Events have

been streamed, through a jAER socket, from a Server host, i.e., Dell Latitude

E6430 running Ubuntu 18.04, to a Client, i.e., Dell Latitude E7440 with an Intel

i7 − 4600U processor at 2.1 GHz, 8 GB RAM and Linux Ubuntu 16.02. The jAER

framework has been installed over both network nodes. For the experiment a

WLAN with IP 192.168.1.0 and subnet 255.255.255.0 has been set. Static

IP addresses have been assigned to the Server, i.e., 192.168.1.9 and the Client

node, i.e., 192.168.1.10. The Access Point is a NETGEAR Nighthawk X10

R9000 with 192.168.1.1 over the 5 GHz band, the IP address configuration has

been maintained for the non-Wireless case too.

4.1 Scene complexity

Scene complexity and motion speed are determinant factors in the process that

characterize the events formation. In the Wireless scenario, both for the Butterfly

and Shapes dataset, Figure 2.3 and 2.4 respectively, the Cumulative Distribution

Function of the UDP payload size for two very different buffer size values, i.e.,
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6000 Bytes and 63000 Bytes, has been evaluated. Figure 4.2 and 4.3 show the

results. The maximum number of events max(e) for a UDP datagram over the

jAER socket is given by:

max(e) =
sizeof(buffer) −

sizeof(integer)
8

sizeof(event)
(4.1)

where the size of the buffer can be set through the socket panel, see Figure 3.6,

the size of an integer is bound to 4 Bytes and that of an event to 8 Bytes. Thus,

by increasing or decreasing the buffer size it is possible to increase or decrease

the number of events fitting a UDP datagram, as well as the total number of

packets sent. The Butterfly dataset is less complex with respect to the Shape one.

In fact, the main motion in this case is given by the flying butterfly and by the

flowers moved by the wind. In the other case instead, all the six simple shapes,

represented over the wall, contribute in the process of generating events. A very

different number of events is generated within the two considered datasets,i.e.,

225876 events and 140992269 events, for the Butterfly and the Shapes dataset

respectively. For a relatively small buffer size of 6000 Bytes, see Figure 4.2, the

sample datasets have more or less the same behavior, with an average UDP

payload size of around 2700 Bytes. For a larger buffer size the difference between

the two source scenes becomes more evident, see Figure 4.3. In fact, it has been

found that the average UDP payload size for the Butterfly dataset is 5400 Bytes,

while for the Shape one this value grows up to 62900 Bytes. The reason behind

this different behavior must be sought within the events generation process. In

the Shape dataset, it is produced a number of events which is 624 times more than

in the Butterfly dataset one. In the first dataset, an enormous amount of events

is continuously generated, thus the available buffer size is filled up to its limit

and delivered to the consumer thread that will send it over the UDP socket, see

Figure 4.1. In the other case, instead, a smaller number of events is generated

and the generation of events is not as continuous as the previous one. Thus, in

order to do not affect latency the buffer is not filled up to its limit but smaller UDP

datagrams are created and send. Figure 4.4 for both datasets, shows the total

number of packets sent as a function of the buffer size. The same configuration of

the WLAN as before, has been kept in this case too, with events streamed from the

44



4 – Analysis of Event-based Systems

Server to the Client host. As the buffer size increases, fewer and bigger packets

are sent.

Figure 4.1: Streaming of events over jAER UDP socket.

A significant slope variation can be appreciated for low value of buffer size.

In particular, in the Butterfly dataset, see bottom subplot of Figure 4.4, the total

number of packets sent ranges from a maximum of 918 to a minimum of 260, for a

buffer size that varies from 500 Bytes to 63000 Bytes. For the Shape dataset, upper

subplot of Figure 4.4, the slope behavior is the same as the previous one, but the

total number of packets sent is higher, according to the scene. In the latter case

the total number of packets sent ranges from a maximum of 491084 to a minimum

of 19460 whenever the buffer size ranges from 500 Bytes to 63000 Bytes.

4.2 The impact of packet losses

This subsection presents the results in terms of losses, both for packets and

events, when data are streamed from the Server to the Client. Experiments were

performed both in a Wireless and not-Wireless scenario, considering 802.11ac and

Ethernet LAN. The usual IP configuration of the network nodes has been kept for

this analysis, see Section 3.3.
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Figure 4.2: CDF of UDP payload for a buffersize of 6000 Bytes.
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Figure 4.3: CDF of UDP payload for a buffersize of 63000 Bytes.
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Figure 4.4: Number of packets sent for increasing buffer size.

4.2.1 Wireless Channels

The choice of the buffer size at the jAER application layer becomes crucial whenever

packets are streamed over the network. Results show that a too small buffer

size is detrimental for system performance since losses become predominant.

A UDP datagram is filled with events by a producer thread and stored in the

buffer, the datagram is then read by a consumer and send over the UDP socket.

Events are generated with microsecond resolution, in pseudo-simultaneity with

intensity changes arised in the reality. As previously explained, scene complexity

and motion speed are determinant factors in the process that characterizes the

events formation. For small values of the buffer size the application is not able

to drain the bulky stream of events, the buffer overflows dropping packets and
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events. Looking at Figure 4.7 and 4.6, three main interesting observations can be

highlighted. First of all, for higher value of the buffer size, i.e., from 4000 Bytes, an

important difference can be noticed between the Butterfly and the Shapes dataset.

In the latter, the amount of losses in terms of events and packets is more or less the

same. In the Butterfly dataset instead, the two considered percentages are quite

different. The reason behind this behavior is the different datasets complexity.

As opposed to the Butterfly dataset, in the Shapes one, a continuous stream of

events is generated and the UDP datagram packet is filled with events up to

the maximum, see equation 4.1, thus in this scenario, whenever a packet is lost,

the packet contains on average the maximum number of events. The second

interesting result is that the optimal buffer size is not always associated to the

maximum one. In fact, if zero losses are registered for a buffer size of 63000 Bytes

in the Butterfly dataset case, the same consideration cannot be performed in the

other case. According to the experiments performed, for the Shapes dataset, it

has been found that the optimal buffer value is 6000 Bytes. In this case it has been

registered an average packet loss of 17.53 % and an average event loss of 16.78 %.

There were not particular interference in the Wireless scenario considered, and

experiments have been repeated several times. The main reason behind this

behavior, is probably the fact that,both at transmitter and receiving side, a buffer

size of 6000 Bytes offers the possibility to the writing and reading thread, to

efficiently drain the stream of events from the buffer. Finally, ad mentioned above,

small values of the buffer size are detrimental for the system performance. In

the Butterfly dataset, it has been registered an average packet loss of 46.29 %

and an average event loss of 86.7 % for a buffer size of 500 Bytes. In the Shapes

dataset instead, slightly higher values have been registered, with an average

packet loss of 91.5209 % and an average event loss of 86.7 % for the same buffer

size. The reason behind this behavior are several. Probably some of the events

are lost at the source side due to buffer overflow, others at the receiving side

because the reading thread is not able to rapidly extract events from the received

packet. Packets correctly delivered to the application contains few events. For

the Butterfly dataset, if a buffer size of 1000 Bytes is used, then a 74.51 % and a

47.16 % of events and packets losses has been registered. This means that only
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the 25.49 % of the total transmitted events is used in order to render the various

frames at the Client node. In particular, in this case, this means that over a total

of 225876 events, 57570 events are used. For the butterfly dataset, that has been

used in order to perform object tracking, see Section 5.2, this number results still

sufficient to perform object tracking but can negatively affect the performance of

an object recognition algorithm loosing accuracy.

Figure 4.5: Butterfly dataset Wireless scenario.
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Figure 4.6: Shapes dataset Wireless scenario.

4.2.2 Non-Wireless Channels

The experiment has been repeated for the Butterfly dataset in the wired case too,

with network nodes belonging to a LAN. The same considerations made for the

Wireless case hold in this case too. For buffer size values greater than 4000 Bytes

neither losses in terms of events or packets occur. For smaller values of the buffer

size instead, a significant loss of events is registered,i.e., 75.80 % for a buffer set to

500 Bytes. The considerations made before are even more evident in this case. In

fact, if 75.80 %, 52.8693 % and 12.15 % is the amount of event losses registered

for 500 Bytes, 1000 Bytes and 2000 Bytes respectively, negligible packet losses are

observed in these cases. This means that all packet received contain very few

events with respect to the total available in the source dataset.
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Figure 4.7: Butterfly dataset Non-Wireless scenario.
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Chapter 5

Comparison of Event-based and

Frame-based Systems

5.1 Throughput analysis

In this section the throughput for both the frame-based and event-based streaming

has been evaluated when streaming the Butterfly dataset from the Server to the

Client node. The RTP Client-Server Java custom platform, see Section 3.1, and

the jAER framework, see Section 3.3, have been used to set up the UDP socket in

the two cases. Results have been obtained by processing the Wireshark capture

through tshark. TShark is a network protocol analyzer that allows to capture

packet data from a live network. Alternatively, it allows to read packets from a

previously saved capture file [83]. The average throughput achieved is 6 Mbps

in the frame-based case, and 4 Mbps in the event-based one. The aim of this

section is not that of comparing the performance of the two systems in terms of

maximum throughput, since this comparison would not be fair. In fact while

in the event-based case just ON and OFF events are sent , in the frame-based

approach one has to take into account the 3 colour components. The idea is instead

that of comparing the different throughput behavior. In the frame-based case the

throughput has a regular and constant behavior, see Figure 5.1. In the event-based

case instead, the throughput has an ON/OFF behavior ranging from 2 Mbps to

5 Mbps, see Figure 5.2. The throughput thus, changes dynamically within the
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60 s of the video streaming. The latter result is congruent with the nature of the

system. Events are asynchronously generated whenever a log intensity change is

registered at a pixel. While frames are generated and sent at a constant rate, the

asynchrony of the events generation translates into throughput fluctuations.

Figure 5.1: Frame-based streaming throughput

Figure 5.2: Event-based streaming throughput
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5.2 Continuous object tracking

Augmented Reality is one core enabling technology of Industry 4.0. The aim

behind this technology is that of improving user experience and productiveness,

by completely change the way of working. Object tracking, as well as object

recognition, will be fundamental actors within this Industry revolution, enabling

the possibility of performing innovative tasks. These applications range from

offering support in the design and production process to remote and automated

assistance. Continuous object tracking has been performed both for the event-

based and the frame-based case, with the aim of tracking the butterfly. For the

sake of simplicity, this dataset has been chosen since suitable for object tracking.

In fact, the background is static and uniform, while motion is given by the flying

butterfly, i.e., the target, and the petals of the flowers.

5.2.1 Frame-based object tracking

The OpenCV Java-based algorithm available at [78] has been adapted to the

frame-based case. As mentioned before, see Section 3.3, a consumer thread is

in charge of transferring packet from the BlockingQueue to the GUI in order to

perform object motion tracking. A basic algorithm, not optimized for the case

has been used, since the aim is that of adding computation over the end point

and to perform CPU profiling.The algorithm works by substraction. It compare

two subsequent images and determine the pixel position at which there exists

a significant intensity change, if the set of pixel is contiguous then an object

has moved within the scene. Several object tracking method are available in

literature, i.e., Mean shift [51], Kalman Filter [66], KLT tracker [7]. In particular

the algorithm performs contour based object tracking. This method can be used

both for image and video tracking. When an object is detected, its contour are

extracted [3]. Contours are used in order to estimate the centroid position, with

centroids representing the target object,see Figure 5.3. The algorithm goes through

the following step:

1. Native library are loaded:

System.load("/java/opencv4/libopencv_java410.dylib");
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OpenCV library must be integrated in Netbeans IDE.

2. Video frames are extracted from the BlockingQueue:

poll = jpegBlockingQueue.take();

as mentioned before, a consumer thread is in charge of extracting frame

from the BlockingQueue and to perform image processing.

3. Conversion of the Mat structure into a Buffered image:

Mat2bufferedImage(Mat image);.

the Java class Mat represents an n-dimensional dense numerical single-

channel or multi-channel array. It can be used to store several data like

real and complex vectors or matrices, grayscale or color images [9]. The

BufferedImage subclass instead, describes an image with an accessible image

data buffer [8].

4. Conversion of the image from RGB to grayscale:

Imgproc.cvtColor(frame, outerBox, Imgproc.COLOR_BGR2GRAY);

there exist more than 150 color-space conversion methods in OpenCV. How-

ever, two are the most widely used,i.e., from BGR to Gray scale and from

BGR to HSV.

5. Successive image substraction:

Core.subtract(outerBox, tempon_frame, diff_frame);

the Core class allows to perform matrix substraction operations.

6. Image binarization and adaptive threshold:

Imgproc.adaptiveThreshold(diff_frame, diff_frame, 255,

Imgproc.ADAPTIVE_THRESH_MEAN_C,Imgproc.THRESH_BINARY_INV,

5, 2);

where the threshold value is the mean of the neighbourhood area.

7. Detection of homogeneous object:

array = detection_contours(diff_frame);

detection of homogeneous objects is performed in order to determine the

center of mass of each of them, by using the contour approach. Contours

are detected for pixel values superior to an adjustable threshold.
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Figure 5.3: Frame-based object tracking

5.2.2 Event-based object tracking

In the event-based case, see Figure 5.4, in order to perform tracking, available

jAER filters properly tuned have been used. In particular two Java class filters

have been used:

• BackgrondActivityFilter.java .

• RectangularClusterTracker.java.

The first filter has been used in order to remove background uncorrelated events.
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Events that pass the filter are the ones that are supported by another event in the

past. Thus a correlation time,i.e., dt can be set. In this case only events that are

correlated with a past event at the same location in within a 10 ms interval are

allowed to be rendered. The RectangularClusterTracker has been exploited in

order to perform object tracking. Several options are available for this filter. The

number of clusters that aims at performing tracking has been set to one since only

one moving target is considered and is is represented by the flying butterfly. The

accuracy performance of the filter are not optimal since it has been designed for

tracking a rectangular or square object. Nevertheless, as mentioned before the

aim of this work is not that of optimizing the performance of a continuous object

tracking algorithm. Instead, the objective is that of adding computation over the

Client node in order to perform CPU and Java thread profiling, see Section 5.3.

Figure 5.4: Event-based object tracking

In order to eliminate noisy events, the cluster lifetime parameter has been adjusted.
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This parameter defines a cluster lasting time in µs. For the considered dataset,

the cluster lasting time has been set to 10 µs . By decreasing this parameter the

cluster life time is decreased. The cluster disappears if there are not sufficient

incoming data to update its position. The size of the cluster has been modified

according to the target dimension. This value represents the maximum distance

from the cluster center to the event. The value, set to 0.06, is expressed as a fraction

of maximum size of chip array. Since a DAVIS240C chip is used, a 240 × 180

array must be considered. The cluster has a size of 0, 06 × 240 = 14 pixels. From

Figure 5.4 one can notice that the mass of events is also associated to the yellow

cluster, i.e., 1175. This value represents the number of events belonging to the

cluster and can be used also to set a threshold. In this case only clusters with a

mass greater then the defined threshold will be visible.

5.3 Benchmark profiling

VisualVm tool, see Section 3.4, has been used in order to analyse the performance

in terms of CPU usage at Server and Client node for both the event-based and

frame-based Java streaming platforms. Furthermore, both Server nodes extract

data,i.e., events and frames in the two different cases, from a database. Whenever

the VisualVM Java profiling is started for both the event-based and frame-based

applications, 5 main threads, [35] can be observed:

• Attach Listener: this thread is started when the first attach request occurs.

• Signal Dispatcher: when the OS raises a signal to the JVM, this thread will

pass the signal to the appropriate handler.

• Finalizer: this thread calls the finalizer methods.

• Reference Handler: this thread has high priority, it enqueues pending

References. The GC creates a simple linked list of references which need

to be processed and this thread quickly adds them to a proper queue and

notifies ReferenceQueue listeners.
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• DestroyJavaVM: this thread unloads the Java VM on program exit. Most of

the time is in waiting state.

With respect to the RTP Server, the one running jAER creates UDP packets

starting from events and renders events within the jAERViewer too. Whenever

events are streamed from the Server node running jAER, the profiler report

registers an average CPU usage of the 7 % , see Figure 5.5. This value is higher with

respect to the frame-based case for which results show an average CPU usage of

the 1.3 %, see Figure 5.6. According to the profiler results, there are two classes that

use the 100 % of the CPU time. The first is the AEViewer.Viewloop class which

involves the method for packet rendering, i.e., Viewloop.renderPacket(),

and the second is the AEUnicastOutput(). The latter involves a consumer

running thread,i.e., Consumer.run() that is in charge of sending AE packets.

Figure 5.5: CPU usage for Server running jAER.

The RTP frame-based Server node shows a CPU usage really low, i.e., 1.3 %.

As mentioned before, its implementation is based on a simple main thread

and is relatively simple with respect to the jAER Server. According to the

profiler results, the main thread use the 100 % of the CPU time. It involves a

getnextframe() that loads data from the device in order to build the RTP

packet, i.e., RTP.packet().The RTP Server simple implementation sends a .jpeg

image per UDP packet, with an average RTP payload size of 33193 Bytes.
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Figure 5.6: CPU usage for Server running RTPserver.

Whenever the Client node is considered the CPU usage is more or less the same

in both cases. Results show an average CPU usage of 8.9 % for the Client node

running jAER, see Figure 5.7 and a value of 10 % for the RTP Client, see Figure 5.8.

It is important to highlight the fact that while the jAER framework accounts for a

total of 300 classes, the RTP simple Client implemented instead, accounts for only

3 classes, i.e., Main(), Producer() and Consumer(). In particular, even if

there is a strong difference in terms of complexity between the two considered

applications, results show more or less the same behavior in terms of CPU usage.

While the RTP Client node shows a constant CPU usage bounded to an average

value of 10 %, the jAER one presents a particular fluctuating behavior. The main

reason behind this behavior must be sougth in the different nature of the two

involved systems. For the RTP Client, besides the key threads introduced at the

beginning of this section, most of the CPU time is assigned to the Producer()

that takes data from the socket and puts them in the BlockingQueue, and to the

Consumer() thread that takes data from the BlockingQueue for rendering. In this

case one frame is received more or less every 33 µs. For the jAER Client, events

are received asynchronuosly whenever they are generated. This asynchrony

translates into an alternate use of the CPU. As for the jAER Server node, most of

the CPU time is used by the AEViewer.Viewloop in order to render events and

by the AEUnicastInput() to perform packets processing and events extraction.

In this case packet filtering for object tracking and background noise removal,

i.e., Filter.Packet() takes approximately the 25.3% of the CPU time. In the

frame-based system instead, image processing is performed by OpenCV that

estimates how different is the actual frame with respect to the previous one.

In general, an OpenCv algorithm for Single Input Multiple Data (SIMD), uses

60



5 – Comparison of Event-based and Frame-based Systems

buffers of the Graphic card to parallelize the computation. These parts are not

implemented in Java, but instead, in native C ++. The Java Native Interface (JNI)

is then in charge to recall the C ++ native code. The native code is not executed

on the Java Virtual Machine but directly from the OS. In this way VisualVM is not

able to understand how many resources are used whenever a Java method calls a

native function, thus another kind of profiler should be used.

Figure 5.7: CPU usage for Client running jAER.

Figure 5.8: CPU usage for Client running RTPclient.
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Chapter 6

Discussion and Future Research

Directions

6.1 Edge Computing

In the past, more research attention has been given to mobile devices that locally

perform CV tasks. This trend is changing. Nowadays, offloading major computer

vision tasks to the edge datacenter represents an interesting possibility especially

for mobile devices with limited computation capacity. As Augmented Reality

(AR) and Mixed Reality (MR) systems keep increasing, supporting the revolution

of the Industry 4.0, the offloading of computer vision tasks to the edge is gaining

more and more popularity. By the way, the strict latency requirements of AR

and MR applications represents a challenge for the on going research that aims

at offloading CV tasks to the edge. For example, [61] and [70] consider object

detection offloading to the edge. By the way, in their work, more than 400 ms

offloading latency are required. This value is not suitable for the correct rendering

of objects in MR systems. Several other approaches have been proposed in

literature. In [94] they propose a latency-aware platform based on Apache storm.

The proposed platform is able to support real-time responses with a per frame

rendering latency of 32 ms. The system, proposed in [46] instead, enables high

accuracy object detection for AR and MR systems at 60 fps, by introducing low

latency offloading techniques. In [73], recurrent neural networks are used in
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order to reconstruct a video from single events over which off-the-shelf computer

vision algorithms can be applied. It is undeniable that event-cameras because of

their lightweight nature and of their pseudosimultaneity property with respect to

reality changes, will find more and more space between video sensors whenever

strict latency network requirements are fixed, e.g., Tactile Internet, section 6.2.

Offloading the event stream computation to the edge datacenter will represent

an interesting possibility whenever the network infrastructure will be able to

support low latency communication delays.

6.2 Tactile Internet

Tactile internet, also know as the Internet of skills, comes with the promise of

democratizing the access to skills and expertise for everyone, everytime and

everywhere on Earth [34]. To concretize such vision, nowadays communication

technologies require a strong push to enforce real-time perception of remote

physical interactions of all five senses. Touch and kinesthetic movements pose

particular challenges and require ultra-low latency to assure real-time remote

control. Application domains of tactile internet stem from automotive, industry,

health, teleoperations, to entertainment, gaming and virtual reality.

For tactile internet, the fifth generation (5G) mobile networks enforced ultra

reliable and low latency communications (URLLC) [79]. The Third Generation

Partnership Project (3GPP) has defined a target user plane latency of 0.5 ms for both

uplink and downlink transmissions, and a reliability requirement of 99.999% to

transmit a 32 Byte packet. Several solutions have been proposed so far, including

a new waveform numerology (symbol length and subcarrier spacing), frame

structure and reduction of transmit-time-interval (TTI), link adaptation strategies,

semi-persistent scheduling, and grant-free access for uplink [41]. Besides network

specific components, processing is becoming the bottleneck with the tight 1 ms

round-trip latency-budget. In a sensor-to-actuator control loop, 0.65 ms are

spent by the sensor, wireless and wired communication leaving only .35 ms for

processing of data in a local multi-access edge computing (MEC) environment [92].

In Virtual/Augmented reality applications (AR/VR), tasks like object detection
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and recognition over one video frame can last more than 1 s if performed over

mobile devices with TensorFlow Lite and convolutional neural networks [47].

Through intelligent decisions of which frames should be offloaded over the MEC

servers and parallel processing [94], it is possible to meet AR/VR latencies of

100 ms. Frame skipping and preemption, i.e., interrupting the transmission of

one frame in favor of another with more significant content, are other techniques

used to reduce the amount of information to be transmitted and processed and

achieve average glass-to-glass latencies of 21.2 ms, which are clearly above the

tactile Internet latency budget of 1 ms.

Recently a new vision paradigm has emerged. Event-based cameras work

radically different from traditional frame-based cameras because they measure

brightness changes at a per-pixel granularity (i.e., events) rather than intensity

measurements (i.e., frames) [68]. The high temporal resolution and low latency

(events are transmitted once detected, atµs resolution much lower than the camera

exposure time), and the high dynamic range (> 120 dB - high quality frame-based

cameras achieve 60 dB) have made them the candidate instrument for robotic

applications where real-time interaction is crucial, e.g., drone racing [15]. Other

applications involve object tracking, recognition, gesture control, monitoring and

surveillance [28]. To this date, event-based camera have always been employed

on board or in close proximity of the device performing actuation while streaming

events remotely remains an unexplored area.
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Chapter 7

Conclusions

7.1 Summary of the Work

This thesis investigates the feasibility of a novel solution for the streaming of an

event-based camera sensor data to a remote host. In fact, to this date, event-based

camera have always been employed on board or in close proximity of the device

performing actuation. This preliminary analysis is fundamental in order to

understand how events are actually streamed over the network, in this way one

can determine which are the network characteristics that must be guaranteed in

order to successfully meet latency and accuracy.

This work proposes a measurement-based analysis of the streaming of event

camera output, i.e., events, over 802.11ac, and it presents network-related results

detailing the impact of events/packets losses and scene complexity.

The analysis has been performed through a Java-based framework, called jAER.

This framework allows the visualization of real-time or recorded event-based data

and the rapid development of real-time event-based algorithms and applications.

Different datasets have been considered in order to perform a measurement

evaluation able to take into account different kind of motion and speed as well as

different textured scenes. Using jAER to perform extensive analysis, I investigated

the issues related to the application framework. The results highlight that a too

small buffer size is detrimental for latency and tracking performance because

more than the 50% of events are dropped as the application threads involved are
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not able to keep up with events generation and packetization. I have implemented

an RTP Java-based platform in order to compare the event and frame behavior

within the network, considering in both cases continuous object tracking as CV

task performed by the remote host.

Results show a fluctuating behavior both in the throughput and in the CPU

usage. This behavior can be exploited to perform resources prediction allocation

so to improve the performance of the wireless network.

The future development of event-based camera is strongly related to the

growing opportunities in the emerging topics of neuromorphic perception and

control. The pseudosimultaneity characteristic of these kind of sensors made

them well suited for strict latency scenarios which involves autonomous driving

and storm of drones coordination.
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