
POLITECNICO DI TORINO

Dipartimento di Elettronica e Telecomunicazioni
Ingegneria Elettronica

Tesi di Laurea Magistrale

FPGA implementation of event-based
optical flow for robotic applications

Relatori
Prof. Maurizio Martina
Prof. Guido Masera
Dr. Paolo Motto Ros

Candidato
Gianluca Tortora

Anno accademico 2018-2019

Summary

The speed with which technological evolution has reached increasingly extraordinary
goals, in recent years, has now opened the doors to the possibility of develop more pre-
cise and refined devices with respect to the recent past. In this way, the research in the
Artificial Intelligences field represents a fundamental joint for both possible future impli-
cations in the industrial development and in the health world. The purpose of this work is
to build up a reconfigurable hardware solution able to interface with modern vision sen-
sors emulating the behaviour of the human retina. This final product, at the end of a close
cooperation with the Istituto Italiano di Tecnologia (iit), is significantly useful to have a
base-test for the optical flow computation. This could represent, furthermore, an impor-
tant source of informations from an AI perspective or for feasible biological involvements.

The path taken through this elaborate starts from a close analysis on neural networks,
learning systems and the different vision sensors currently in commerce. The frame-
based sensors are the oldest solution available, but present critical problems in terms
of redundancy, latency, long time intervals and so on. For that reason all the efforts in
this direction are focused on the event-based solution, suitable for human-like interfaces.
Generally, a moving object generates a variation of brightness in the reference field of a
sensor: through a sleek algorithm, which is the case-study of this thesis, it is possible to
obtain spatio-temporal informations about the movement itself. In this way, precise vi-
sual flow orientation and amplitude can be estimated. Starting from the analysis of the
reference paper, the operating algorithm was extracted and reproduced in floating-point
version in a parametrized and reconfigurable Matlab script. Subsequently, this function
was also adapted in a fixed-point version, offering solutions to some problems coming out
from the sensor. By comparing the results coming from a real dataset, kindly provided by
the iit, it was possible to make a statistic estimation of the errors in the modelling phase.
This represents the starting point for the subsequent RTL design phase of the device. All
the solutions adopted are described in detail. The reference SoC module is a Trenz Elec-
tronic TE0715-04-30-1C, which integrates a Xilinx Zynq XC7Z030-1SBG485C. At the
end, a comparison between the expected results in Matlab and the ones obtained from the
hardware simulation, as well as the informations coming from the synthesis of the device
in terms of area, power consumption and timing have been realized for different possible
configurations.

2

Contents

1 Neural networks and learning systems 5
1.1 The role of AI in the contemporary world 5
1.2 Artificial Neural Networks . 6
1.3 ANN hardware implementations . 8
1.4 Neuromorphic Vision Sensors . 11

2 State of art 17
2.1 The optical flow . 17
2.2 Event-based visual flow . 20
2.3 Performances and limitations . 22

3 Modelling the algorithm 25
3.1 Matrix computation flow . 25
3.2 Matlab description . 28
3.3 Results and comparisons . 42

4 Guidelines for the hardware design 51
4.1 General view . 51
4.2 Memory Addressing . 54
4.3 Events extinction . 60
4.4 The overflow detection . 61

5 Hardware description 63
5.1 Memory block and validation FIFO 63
5.2 Overflow detector FSM . 66
5.3 Shifter and valid generator . 69
5.4 Mult block . 71
5.5 Adjoint block . 73
5.6 Iteration block . 74
5.7 Final computation . 76

3

6 Simulation, synthesis and results 85
6.1 Single-block testbenches . 86
6.2 System simulations . 95
6.3 Synthesis outcomes . 97
6.4 Future developments . 102
6.5 Conclusion . 103

Bibliography 105

4

Chapter 1

Neural networks and learning
systems

1.1 The role of AI in the contemporary world
With the rapid development of technological processes and the research in the artificial
intelligence (AI) field, the transition to a completely new society, where human work takes
on a marginal presence, seems to be day after day closer. Automation, robotics and the
design of intelligent systems represent the driving force behind the contemporary world.
The vast majority of the reference sectors in our daily life are dominated by the presence
of AI: from economic processes, regulated and controlled by deduction algorithms, to
industrial planning, to medicine, to neurosciences such as learning [1].

It is in this last field that the greatest efforts of the academic world are focusing. The
attempt to reproduce in a partial or total way the behaviour and the actions of the human
brain is one of the main challenges of modern engineering. In this way, in fact, are defined
the so-called weak AI and the strong AI [3].

Figure 1.1. iCub (iit)

5

1 – Neural networks and learning systems

1.2 Artificial Neural Networks
Artificial neural networks (ANN) are nothing more than computational blocks described
in mathematical language [4]. Their main aim is to process informations with a function-
ing inspired by the human nervous system.

Like a biological system [2], in fact, they are composed by a series of basic processing
units variously connected among them. These units receive a set of informations from the
surrounding environment, and then return some outputs that flow into the environment
itself. The biological units are the neurons, and, due to the behavioural analogies, the
bricks of the ANN are called in the same way.

As their physical counterpart ”fire” an electrical signal (if the voltage at the input is above
a certain threshold), in the same way the digital units become active if the amount of input
signals exceeds a fixed activation threshold. The generated output spike is then transmit-
ted through communication channels, until it reaches other units to which is connected
[2][3][4].

The connection points [4] act as filters: they transform an input into an inhibitory or exci-
tatory signal, by increasing or decreasing its intensity depending on their characteristics.
Their behaviour is therefore similar to the biological synapses and, therefore, these arti-
ficial connections assume the same name.

The function that describes the response wave emitted by a certain node is given by the
sum of the products of the input signals for the respective synaptic weights, to which the
threshold value of the node itself is eliminated [3][4][5].

However, what determines the conduct of the whole system is not the local behaviour
of the single block, but how they are connected to each other. Moreover, some learning
parameters are fixed in order to associate a certain synaptic weight to each single node.
After a training phase, then, this weight will be shaped according to the preponderance
and correctness of the external stimuli [4][5].

ANN Characteristics
The characteristics [4] of a neural network can be divided into three fundamental groups:

• Flexibility: the model can be used for different purposes. The network itself, in fact,
does not need to know its around environment, but it is able to learn its characteristics
only basing on experience.

• Robustness: that is the ability to provide an adequate response even if there are
problems in the connections, or noise at the inputs.

6

1.2 – Artificial Neural Networks

• Generalisation: although training is limited, an ANN must be able to provide cor-
rect answers to input patterns never seen before, and similar to those used in training
phases.

ANN Architectures
The neural networks organization is generally made on more than one level: from the
input to the output side, with in the middle a series of intermediate (or hidden) layers,
containing a certain number of neurons.

Typically the connections can be enclosed in two big families [4][5]:

• Feedforward: in which the neurons of a level are connected to the others of a next
level. Reverse connections or connections in the same level are absolutely forbidden.

• Recurrent: they, instead, provide feedback connections, or between neurons belong-
ing to the same level.

Figure 1.2. ANN Feedforward Figure 1.3. ANN Recurrent

In general, the architecture of a neural network is, therefore, completely different from
the Von Neumann one typical of modern computers.

This has favoured the birth of neurocomputers (or neuromorphic computer): i.e. devices
that process and produce informations, basing on a operation model typical of a neural
network [6][7].

Neuromorphic computing
The idea of approaching an information processing mechanism that emulates the behav-
ior of the human brain is the basis of neurocomputers. The goal is to create a complex
structure capable of learning and adapting to ever-changing contexts: it is the challenge

7

1 – Neural networks and learning systems

that researchers around the world have taken up [6][7].

The term neuromorph was born in 1990, and it is referred to a series of high integrated
architectures with analog electronic components, capable of imitating the behavior of the
nervous system [8].
However, in recent years, they are essentially known as biologically-inspired systems.

The advantages of these structures are the processing speed, the high parallelization de-
gree - that make possible the development of real-time systems able to learn and act
instantly - and low energy consumption [7][8][9].

They are able to combine all these fundamental characteristics, thus being suitable for a
hardware development that goes beyond the architecture of the traditional computer, lim-
ited by the stringent parameters of Moore’s law [7][8].

Learning systems
As already mentioned, the building-blocks that characterize the neuromorphic systems
are the neurons, the synapses and the connection type. And it is from them that, in fact,
it is possible to build the target algorithm of the machine.

The next step is to train the device using different input patterns: they teach it how to per-
form the specific function for which itself was designed. Learning can take place either
on-chip, i.e. directly on the device, or off-chip, i.e. outside the network and then every-
thing is transferred to the structure.

In addition, the training can be either supervised or unsupervised [4][8].

In supervised learning there are input variables (X) applied to a mapping function which
maps them on the output (Y):

𝑌 = 𝑓(𝑋)

The idea is to approximate this function so well in order to have a precise prediction
mechanism also for other new input data.

In unsupervised learning, instead, there are only input data (X), without generated outputs
(Y). In this way, the idea is to model the structure of the datas itself in order to learn more
about them.

1.3 ANN hardware implementations
There are three important categories in which it is possible to divide the hardware repre-
sentations of neural networks: analog, digital and mixed systems [8][9].

8

1.3 – ANN hardware implementations

Analog systems
In the biological world, all the signals and the systems modes of operation are purely
analog. In this way, the human brain expresses its functionality binding itself to physical
characteristics such as: total asynchrony, the time-continuous representation of inputs,
but also the problems related to the significant presence of a decidedly high amount of
noise. Despite this, however, analog devices are best suited to play the role of basic-unit
in ANNs.

In general, the analog hardware systems used in this field belong to two different types:
programmable and customized [9].

As FPGAs are used as programmable devices in the digital world, also the FPAAs repre-
sent their analogue counterparts. The FPAA is a type of integrated circuit that is made up
of a certain number of analog blocks (CABs) that can be connected together in various
ways. The user can in fact program the type of connection between these different units
in order to be able to perform a certain type of function from time to time.

They can operate both in discrete time mode and in continuous time mode: in the first case
the devices have a system clock that controls switched capacitors. In the second case, in-
stead, the device behaves as an array of transistors or operational amplifiers.

Some types of FPAA, however, have been designed for special purposes related to neu-
romorphic development: these are the NeuroFPAA [10]. They have already internally
both neurons and synapses. Therefore, the programmability of the structure is essentially
aimed at a purely neuronal type of application.

Figure 1.4. FPAA

9

1 – Neural networks and learning systems

As already mentioned, the ”analog” characteristic makes these devices the main candi-
dates to imitate the cellular behaviour, but the presence of a high noise component makes
them in some ways unreliable. For this reason, there is a tendency to use these devices
under threshold, both for the problems related to SNR and low-power consumption.

Digital systems
As the analog systems, digital counterparts can also have the programmable devices or
application specifics categories [8][9].

FPGAs allow certainly to manage, design and simulate neuromorphic systems in a faster
way than the software approach. Moreover, their re-programmability allows to adopt dif-
ferent architectures from time to time with low implementation costs.

Different is the case, however, for ASICs, which are totally customized by the manu-
facturer and specific for a single application field. In this way it is possible to push the
characteristics of the system towards a low power consumption and reduced complexity.

The most well-known ASIC architectures used in the field of neural networks are the
TrueNorth and SpiNNaker chips.

Figure 1.5. TrueNorth chip Figure 1.6. SpiNNAker chip

The particularity of the TrueNorth [11] is that it is partially asynchronous. This means
that part of the activity takes place asynchronously, while a system clock that regulates
the whole. It is organized by 4096 neurosynaptic cores of 256 neurons each, inserted in a
2D grid, everything in CMOS technology. Its high scalability allows it to be suitable for
different applications.
An interesting use of this type of device is in the field of object detection and recon-
naissance. This permits to obtain a certain amount of informations, coming from the sur-
rounding environment, thanks to the use of vision sensors.

The SpiNNaker [12] is another type of neuromorphic architecture, totally customized

10

1.4 – Neuromorphic Vision Sensors

and parallel. The basic cores are connected through an interconnection scheme, config-
ured and optimized for the spike transitions.
Like TrueNorth, it has a high scalability degree, in addition it allows the user to make a
push and, from time to time, different modeling of both neurons and synapses.
Its performances are excellent, for example, for the optical flow computation which, start-
ing from event-based vision sensors, is employed by the trajectory management mecha-
nisms in robotic, or in learning-by-example applications.

Mixed Analog/Digital systems
Due to the intrinsically analog nature of the biological systems, digital neural architec-
tures are not always able in this way to correctly emulate their behavior. However, their
advantages come from the power consumption and noise immunity [13].
For this reason researchers decided to combine the characteristics of the analog and dig-
ital world, creating mixed structures that overcome the problems of both architectures.

The two main devices belonging to this family are Neurogrid and BrainScaleS.

Figure 1.7. Neurogrid Figure 1.8. BrainScaleS

The first [14] is an analog circuit, with a certain level of digital communication.It is a
neuromorphic computer that allows to develop various real-time simulations of neural
models, working almost exclusively under threshold.

The BrainScaleS [15], on the other hand, is an implementation with a certain number of
analog components, but it is mainly the digital part that composes the entire structure.

1.4 Neuromorphic Vision Sensors
In the last decades, with the concomitant technological evolution, also the devices spe-
cific for video capture have known a marked increase both in terms of performance and
image quality. Canonical camcorders operates thanks to a frame-based mechanism: the
images are acquired with a fixed frequency and, after a sequential processing, they give

11

1 – Neural networks and learning systems

life to the visual motion.

They present some good characteristics from the quality point of view, less instead con-
sidering the redundancy of information, a limited dynamic range and a high power con-
sumption.

For this reason, event-based devices have been developed in the recent years: the human
retina does not generate electrical signals each time for each single part of the captured
image, but only for the areas that exhibit a variation in terms of brightness. In the same
way, this new type of video-camera allows to generate events (like the spikes in the case
of the retina) only in correspondence of the areas which presents modifications in its con-
formation.

There are many advantages related to this sensors: besides a good image quality there is
no redundancy of information but, above all, low power consumption and fast processing.

The two main typologies belonging to this new family of cameras are:

• ATIS: Asynchronous Time-based Image Sensor [17];

• DVS: Dynamic Vision Sensor [16].

ATIS Camera
This type of sensor is totally asynchronous, and represents the first kind of bio-inspired
camera known as ”event-based”.

Figure 1.9. The ATIS structure and its behaviour

It is composed of a 340x240 pixels matrix, each of them totally autonomous, and its op-
eration mode is quite simple. Unlike other types of sensors, which measure light intensity
by translating it into voltage or current signals, this type instead measure the time taken
for the photodiode to reach a certain voltage or charge. This technique is known as PM
imaging.

12

1.4 – Neuromorphic Vision Sensors

There are two sub-pixels that compose the reference pixel: one receives a change in bright-
ness - and manages it according to its structure - then report it to the second pixel. The
other one, instead, generates a PWM waveform directly proportional to the event coming
from the first subpixel. In practice, when the brightness exceeds, in all the directions, a
certain threshold at the input of the Sense node, the cascade comparator switches its out-
put.

From the outside, afterwards, a reset signal returns the node to its original state. This
causes the device to behave like an oscillator, which generates frequency pulses directly
related to the photocurrent generated.

Figure 1.10. ATIS working principle

Some advantages of this architecture are related to a wide dynamic range that reaches 143
dB in static conditions, and 125 dB at a temporal resolution which is equivalent to 30 fps.
However, on the other hand, it can also have acquisition times that, at low intensities, can
reach up to hundreds of ms.

DVS Camera
The idea for this type of device is to achieve low latency and a good dynamic range, in a
small amount of area. The solution, conceived by the researchers of the ETH of Zurich,

13

1 – Neural networks and learning systems

was to create a logarithmic photoreception circuit, integrated in a differential configura-
tion, such as to amplify even small changes with high precision.

In this way, the photoreception circuit is able to control the pixel gain with a logarithmic
behaviour, responding rather quickly to external stimuli and brightness changes.
The advantages of this topology are mainly related to high temporal resolution (about
1 us), low maximum latency (1 ms), low power consumption (about 20 mW), and wide
operating band (120 dB).

As soon as a change in brightness is detected, a spike, which corresponds to a certain
event, is generated on the output (Figure 1.12). Several variations in the reference frame
lead, therefore, to a stream of output addressed events (EAs). This means that each of
them will be associated to a certain reference instant of time (time stamp), to its polariza-
tion (if there is an increase or a decrease of the pixel brightness) and to the coordinates
of the pixel into the grid where the event occurred.

This type of representation is commonly known as Address Event Representation (AER).
The usefulness of this device, increasingly adopted in recent years, has found expression
in tracking systems and in robotics.

The dataset on which a number of software simulations were conducted, in this paper,
comes directly from a DVS sensor.

Figure 1.11. The DVS sensor Figure 1.12. The DVS working principle

14

1.4 – Neuromorphic Vision Sensors

Figure 1.13. DVS flow

15

16

Chapter 2

State of art

2.1 The optical flow

Generally, the physiological phenomenon of the visual perception of the surrounding en-
vironment in humans arises from the structure of the retina: it, in fact, thanks to the pres-
ence of receptor cells that generate an electrical potential from external light stimuli, al-
lows the brain to recreate the structure of the visual field, drawing the information it needs.

When we talk about optical flow, we generally refer to a flow of signals born from a vari-
ation in light intensity, caused by the movement of an object in the optical field of the
observer. But this is not always the only case: in fact, also the observer can move, and
therefore can cause the generation of a flow on the image plane. Moreover, the speed of
movement in both cases is an important parameter for the correct generation of the flow.

It is important to underline that, if the entire visual spectrum is composed by a matrix of
pixels, their intensity during the movement remains constant. Therefore, each single pixel
associated to a specific point of the environment (assuming that the exposure conditions
to light are constant) will not change its light intensity during the movement. This is a
fundamental hypothesis for all the following treatments that will be made [18].

Application fields
There are wide application domains for the optical flow in the world of computerized
vision systems [18].
The increasingly sophisticated techniques in image acquisition, the constant search for
visual perfection gave birth, for example, to video compression standards such as MPEG
[20], which use motion estimation to predict intermediate frames. Even in robotics, op-
tical flow is proving useful, for example, for the development of control algorithms for
assisted driving, or for the faces and objects recognition thanks to machine-learning [21].
In the bio-analytical field, it also allows to estimate informations related to the physical

17

2 – State of art

properties of cells and tissues.

Estimation algorithms
There are various algorithms, centred on the analysis of optical flow, that have been de-
veloped in recent years and optimized according to parameters such as performances and
application field. However, they can be enclosed in four large groups: correlation-based,
gradient-based, energy-based and phase-based [18][19]:

• Correlation-based (Block-matching): in this type of algorithms, generally, each
video frame is divided into a number of pixels blocks of a certain size. The goal is
to find the best matching-block of the current frame with the previous one, in order
to minimize a certain metric. Usually a sum of absolute differences (SAD) is used,
but it is extremely heavy from a computational point of view. At the end, a flow
vector will be assigned to each block. Problems of resolution, accuracy and high
consumption are the negative aspects of this type of process.

• Gradient-based: in this case the aim is to calculate the space-time derivatives on
the acquired frame. It represents the group of algorithms most adopted in the world
of optical flow. Less computational weight and possibility of optimizations in terms
of consumption represent the advantages of this typology.

• Energy-based: they allow to estimate the optical-flow starting from the output of
tunable filters designed in the Fourier domain.

• Phase-based: with them it is possible to evaluate the speed in terms of phase be-
haviour of the band-pass filter outputs.

Modelling principles
From a mathematical point of view [18], the description of the optical flow starts from
the definition of a function:

𝐼 ∶ 𝛺 𝑥 𝑡 → 𝑅

With 𝛺 representing the spatial domain of the frame (x,y), and t corresponding to its ac-
quisition time. A basic hypothesis that is made, during the development of the model, is
that each pixel, fixed between two frames, does not change its brightness value spatially.
The same is true for a pixel moving between two frames that keeps a constant brightness
from the temporal point of view.

Unfortunately, however, as previously discussed, this last hypothesis is not true, because
the sensor is affected by noise, moreover it is not easy at all to find fixed lighting condi-
tions.

18

2.1 – The optical flow

In any case, this type of assumption is expressed through the brightness constancy con-
straint equation (BCCE):

𝑑𝐼
𝑑𝑡

(𝑥(𝑡), 𝑡) = 0 (2.1)

This means that the brightness of a certain pixel, in spatial and temporal terms, belonging
to a real context, in fixed or moving condition, is to be considered constant:

𝐼(𝑥 + 𝑤(𝑥), 𝑡 + 1) − 𝐼(𝑥, 𝑡) = 0 (2.2)

Assuming to work with small pixel shifts, it is then possible to develop the expression
into Taylor’s series:

∂𝐼
∂𝑥1

(𝑥)𝑢(𝑥) + ∂𝐼
∂𝑥2

(𝑥)𝑣(𝑥) + ∂𝐼
∂𝑡

(𝑥) (2.3)

With:

𝑤(𝑥) = (𝑢(𝑥), 𝑣(𝑥))𝑇

𝑤(𝑥) = (𝑥1, 𝑥2)𝑇

In this way the function can be rewritten as:

∇𝐼(𝑥) ⋅ 𝑤(𝑥) + 𝐼𝑡(𝑥) = 0 (2.4)

Knowing that the spatial gradient is:

∇⋅ = (
∂

∂𝑥1
,

∂
∂𝑥2

) (2.5)

And 𝐼𝑡 corresponds to the brightness partial derivative with respect to the time.

Unfortunately this is a sub-determined system, as it presents only one solution to a two-
dimensional problem. This implies that the definition of another type of equation will be
necessary to obtain the two components of the optical flux vector 𝑤(𝑥).

Therefore the imposition of the BCCE alone is not enough. This problem is known as the
aperture problem [18]: it consists in supposing that the movement of linear structures is
ambiguous by nature. It can happen, in fact, that some local structures can be extracted
from two completely different frames, which represent two different images, and they can
coincide. For this reason, it is essential to take into account the context from which the
frame is extracted.
To this scope, in fact, a priori information on w(t) is introduced. This allows to give shape
to a spatio-temporal coherence thanks to the imposition of local and global costraints.

19

2 – State of art

2.2 Event-based visual flow
An interesting alternative technique for visual-flow calculation was proposed by researchers
Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi
[22]. The aim is to experiment a new methodology in order to obtain dense visual flow
from a series of information coming from an event-based asynchronous sensor.

The usefulness of this new approach and all its possible advantages, such as accuracy and
low computational weight, make it an ideal candidate to interface, in robotic field, new
type of sensors with iCub, the android developed by the Istituto Italiano di Tecnologia (iit).

The goal, from now, will be to describe the functioning of the algorithm under examina-
tion to obtain a complete hardware design, necessary for direct tests with an event sensor.

What the researchers have used, as experimental working base in this type of algorithm,
is a dataset from a DVS sensor, AER type, with a 128x128 pixel retina. This involves,
on the output of the sensor, the generation of an asynchronous signal flow produced in
correspondence to a variation of brightness of each pixel inside the matrix. Each of them
is independent from the others, and that allows to signal a brightness lowering or increase
of the pixel itself.

As already described in paragraph 1.4, this type of sensor has a very low latency and an
accuracy, in the temporal domain, of about 1 𝜇s.

Mathematical description On the sensor output, the event-flow generated by a moving
object is defined as function of spatial and temporal coordinates. If 𝑒(𝑝, 𝑡) = (𝑝, 𝑡)𝑇 is a
generic event, p represents its position in spatial coordinates, and thus 𝑝 = (𝑥, 𝑦)𝑇.
It is possible to describe a function 𝛴𝑒 that associates to each space position its related
instant of time, that is the time when the event was generated. Consequently:

𝛴𝑒 ∶ N2 → 𝑅 (2.6)

𝑝 ↦ 𝛴𝑒(𝑝) = 𝑡

Graphically, it assumes the conformation as in Figure 2.1.
Time is an increasing variable, and the function just described is monotonously increas-
ing. Its partial derivatives will be, as a consequence:

𝛴𝑒𝑥
=

∂𝛴𝑒
∂𝑥

(2.7)

𝛴𝑒𝑦
=

∂𝛴𝑒
∂𝑦

20

2.2 – Event-based visual flow

Figure 2.1. Surface of active events for optical flow computation

From which, assuming to have small spatial variations, it is easy to derive:

𝛴𝑒(𝑝 + 𝛥𝑝) = 𝛴𝑒(𝑝) + ∇𝛴𝑇
𝑒 𝛥𝑝 + 𝑜(‖𝛥𝑝‖) (2.8)

With:
∇𝛴𝑒 =(

∂𝛴𝑒
∂𝑥

,
∂𝛴𝑒
∂𝑦)

𝑇
(2.9)

The partial derivatives of 𝛴𝑒 depend exclusively on x or y. But also, due to its monotonously
growing behaviour, its derivatives will never be null in any point.
This allows to adopt the theorem of the inverse function, in a point 𝑝 = (𝑥, 𝑦)𝑇 from which
it is possible to derive:

∂𝛴𝑒
∂𝑥

(𝑥, 𝑦0) =
𝑑𝛴𝑒|𝑦0

𝑑𝑥
(𝑥) = 1

𝑣𝑥(𝑥, 𝑦0)
(2.10)

∂𝛴𝑒
∂𝑦

(𝑥0, 𝑦) =
𝑑𝛴𝑒|𝑥0

𝑑𝑦
(𝑦) = 1

𝑣𝑦(𝑥0, 𝑦)

The gradient can therefore be written as:

∇𝛴𝑒 =(
1
𝑣𝑥

,
1
𝑣𝑦

)
𝑇

(2.11)

The reverse components of this vector are nothing more than the components of the ve-
locity vector along x and y, estimated at the point 𝑝 = (𝑥, 𝑦)𝑇.

In Figure 2.3 are shown the optical flow results, obtained from some experimental tests
making rotate a disk(Figure 2.2) with a bar drawn on it from the centre to the outer cir-
cumference.

21

2 – State of art

Figure 2.2. The rotating disk Figure 2.3. Optical flow estimation

This type of function is, however, very susceptible to noise, because the partial deriva-
tives are estimated on time, for each individual event. To avoid this type of problem it is
assumed that the local speed is constant. This hypothesis is satisfied for a small number
of grouped events, i.e. assuming that the function ∑e is locally planar.

The algorithm in its complexity is described in Figure 2.4.

Starting from each new incoming event, a three-dimensional space-time window centred
on the event itself is taken into consideration.
The idea is to fit the plane that best contains the events inside the window. In this way it is
possible to find, through various cycles, the parameters of the plane such that the equation
(2.12) is satisfied:

𝛱𝑇
⎛
⎜
⎜
⎝

𝑝
𝑡
1

⎞
⎟
⎟
⎠

= 0 (2.12)

The 𝑡ℎ1 value is set to 10−5, and corresponds to the accuracy searched from the estimation.
𝑡ℎ2, instead, is equal to 0.05 and comes directly from the experimental results.
However, a maximum of two algorithm iterations are required to converge the results.

2.3 Performances and limitations
The advantages of the proposed model, compared to the current frame-based processing
techniques, are that, first, it considerably reduces computation times and costs (15 % less,
compared to traditional calculation methods), but also a much lower expense in terms of
power consumption is achieved. This algorithm is extremely versatile for the use in dif-
ferent fields, as well as the optical flow estimation [22].

22

2.3 – Performances and limitations

Figure 2.4. Optical Flow Algorithm

One of the factors that limit the accuracy of the flow calculation is due to the presence of
non-idealities in the sensor. The higher the speed of movement, the more difficult it is for
the bio-inspired retina to receive and produce signals correctly. In addition, the number of
events, in these cases, almost never corresponds to the number of pixels that theoretically
should be activated at the motion of the object.

The number of them is in fact less than expected. It follows that also the fitting of the
flow is inevitably affected by errors. In order to limit this problem, the use of the device
in good lighting conditions can be a recommended solution.

23

24

Chapter 3

Modelling the algorithm

3.1 Matrix computation flow
In order to obtain the output differentials of the algorithm, it is necessary to create a flow
of algebraic-mathematical operations that will be used as basis for the software, first, and
then hardware implementation [23].

As already known, each event coming from the vision sensor (in this case it is supposed
to work on DVS) is associated with a triplet of informations: two spatial and one tem-
poral. The first one (x,y) represents the coordinates of the pixel where an event has been
recorded, the other one instead is the time stamp, that is the instant when it has happened.

The algorithm aims to extract a space-time window surrounding the new event, which is
its centre, and from it make an estimation of the inverse of the velocity vector components
associated to it.

Assuming to work, i.e., in a neighbourhood represented by a 3x3 window, the A matrix
is defined as:

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥0 𝑦0 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1
𝑥4 𝑦4 1
𝑥5 𝑦5 1
𝑥6 𝑦6 1
𝑥7 𝑦7 1
𝑥8 𝑦8 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.1)

It includes, in its first two columns, the couple of the event coordinates. The first column
of the 3x3 window is put in correspondence of the A rows 0 to 2, the second in the rows 3

25

3 – Modelling the algorithm

to 5, and the third from 6 to 8. The third column of A, instead, represents an indicator of
the validity of an event. If there is an event and it is not null, then in the same row there
will be a 1, otherwise a 0.

By defining, in the same way, the Y vector of time-stamps:

𝑌 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑡0
𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7
𝑡8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.2)

The first three lines of Y belong to the first column of the 3x3 window, the second three
lines of Y represent the second column of the window, and the third three lines the third
column.

As already explained in paragraph 2.2, the purpose of the algorithm is to model locally
the structure of the plane that best fits the course of events contained inside the the space-
time neighbourhood.

The equation of a plane is given by:

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡 + 𝑑 = 0 (3.3)

With a, b, c and d which are the coefficients of the plane itself, and that provide its orien-
tation and angle.

Normalizing with respect to c, the 3.3 becomes:

𝑎𝑥 + 𝑏𝑦 + 𝑑 = −𝑡 (3.4)

Its vectorial form is:
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑥0 𝑦0 1
𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1
𝑥4 𝑦4 1
𝑥5 𝑦5 1
𝑥6 𝑦6 1
𝑥7 𝑦7 1
𝑥8 𝑦8 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑎
𝑏
𝑑

⎞
⎟
⎟
⎠

= −

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑡0
𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7
𝑡8

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.5)

26

3.1 – Matrix computation flow

By multiplying now both sides for 𝐴𝑇, the 3.6 is retrieved:

𝐴𝑇𝐴
⎛
⎜
⎜
⎝

𝑎
𝑏
𝑑

⎞
⎟
⎟
⎠

= 𝐴𝑇𝑌 (3.6)

That is, writing all the components:

⎛
⎜
⎜
⎝

𝛴𝑥𝑖𝑥𝑖 𝛴𝑥𝑖𝑦𝑖 𝛴𝑥𝑖
𝛴𝑦𝑖𝑥𝑖 𝛴𝑦𝑖𝑦𝑖 𝛴𝑦𝑖
𝛴𝑥𝑖 𝛴𝑦𝑖 𝑁

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

𝑎
𝑏
𝑑

⎞
⎟
⎟
⎠

= −
⎛
⎜
⎜
⎝

𝛴𝑥𝑖𝑡𝑖
𝛴𝑦𝑖𝑡𝑖
𝛴𝑡𝑖

⎞
⎟
⎟
⎠

(3.7)

Applying to the 3.7 the matrix inversion formulas, it is possible to obtain the plane coef-
ficients:

⎛
⎜
⎜
⎝

𝑎
𝑏
𝑑

⎞
⎟
⎟
⎠

= (𝐴𝑇𝐴)−1(𝐴𝑇𝑌) (3.8)

The first step is now to understand how the inverse matrix can be computed, given the
product of A and its transposed 𝐴𝑇. Generally, the rule is:

(𝐴𝑇𝐴)−1 = 1
𝑑𝑒𝑡(𝐴𝑇𝐴)

𝑎𝑑𝑗(𝐴𝑇𝐴) (3.9)

With 𝑎𝑑𝑗(𝐴𝑇𝐴) that is:

𝑎𝑑𝑗(𝐴𝑇𝐴) =
⎛
⎜
⎜
⎝

𝑎𝑑𝑗11 𝑎𝑑𝑗12 𝑎𝑑𝑗13
𝑎𝑑𝑗21 𝑎𝑑𝑗22 𝑎𝑑𝑗23
𝑎𝑑𝑗31 𝑎𝑑𝑗32 𝑎𝑑𝑗33

⎞
⎟
⎟
⎠

(3.10)

Each element is developed as follows:

𝑎𝑑𝑗11 = 𝑁𝛴𝑦2
𝑖 − 𝛴𝑦𝑖𝛴𝑦𝑖

𝑎𝑑𝑗12 = 𝛴𝑥𝑖𝛴𝑦𝑖 − 𝑁𝛴𝑥𝑖𝑦𝑖

𝑎𝑑𝑗13 = 𝛴𝑥𝑖𝑦𝑖𝛴𝑦𝑖 − 𝛴𝑥𝑖𝛴𝑦2
𝑖

𝑎𝑑𝑗22 = 𝑁𝛴𝑥2
𝑖 − 𝛴𝑥𝑖𝛴𝑥𝑖

𝑎𝑑𝑗23 = 𝛴𝑥𝑖𝑦𝑖𝛴𝑥𝑖 − 𝛴𝑥2
𝑖 𝛴𝑦𝑖

(3.11)

The matrix product (𝐴𝑇𝐴)−1𝐴𝑇𝑌 returns:

𝑎𝑑𝑒𝑡 = 𝑎𝑑𝑗11𝛴𝑥𝑖𝑡𝑖 + 𝑎𝑑𝑗12𝛴𝑦𝑖𝑡𝑖 + 𝑎𝑑𝑗13𝛴𝑡𝑖

𝑏𝑑𝑒𝑡 = 𝑎𝑑𝑗12𝛴𝑥𝑖𝑡𝑖 + 𝑎𝑑𝑗22𝛴𝑦𝑖𝑡𝑖 + 𝑎𝑑𝑗23𝛴𝑡𝑖

𝑑𝑒𝑡 = 𝑎𝑑𝑗11𝛴𝑥2
𝑖 + 𝑎𝑑𝑗12𝛴𝑥𝑖𝑦𝑖 + 𝑎𝑑𝑗13𝛴𝑥𝑖

(3.12)

27

3 – Modelling the algorithm

From which, if both 𝑎𝑑𝑒𝑡 and 𝑏𝑑𝑒𝑡 are divided for the determinant det, the values of the
coefficients a e b are available.

Now, to have a convergence of the results is necessary to iterate at most twice. The idea is
therefore, once obtained the coefficients of the plan, to impose the passage of the events
in the plan itself, and to verify if the obtained result is or not inferior to a certain threshold
limit.

𝑎(𝑥 − 𝑥𝑐) + 𝑏(𝑦 − 𝑦𝑐) + (𝑡 − 𝑡𝑐) < 𝑡ℎ𝑟 (3.13)

If this inequality is verified, then the event is kept valid inside the space-time window,
otherwise it is considered as outlier and deleted.

This process is done on all elements of the matrix and, once completed, the entire algo-
rithm is repeated from the beginning. At the end of the iteration, remains to calculate the
inverse components of the speed.

First of all, speed and angle are calculated:

𝑠𝑝 = 1
√𝑎2 + 𝑏2

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑎
𝑏)

(3.14)

Starting from them the values of the differentials are:

𝑑𝑡
𝑑𝑥

= 𝑠𝑝 × 𝑐𝑜𝑠(𝜃)

𝑑𝑡
𝑑𝑦

= 𝑠𝑝 × 𝑠𝑖𝑛(𝜃)
(3.15)

3.2 Matlab description
The goal is to have a totally flexible and parametrizable structure in the software mod-
elling, able to emulate the algorithm just explained. In this way, then, it will be possible to
adapt the proposed architecture for all types of data, coming from different vision sensors.

The adopted dataset for the experimental tests in exam is produced by the Italian Institute
of Technology [par. 2.2]. It is the result of simulations carried out from two 128x128 pixel
DVS sensors mounted on iCub. What was done by the robot is a rotary movement of the
head in front of a table with some objects above it.

The set of events is grouped, row by row, in a data package that covers six fields expressed
in columns:

28

3.2 – Matlab description

• Channel: i.e. which channel the event comes from (0: left, 1: right);

• Time stamp: in clock count;

• Polarity: (ON/OFF);

• Y coordinates;

• X coordinates;

• N.A.

The first task of the Matlab list is to separate the components according to the eye from
which the events come, in order to avoid mixing data between different sensors.
The second step is to differentiate events with ON polarity, i.e. that have had a positive
brightness variation, from those with OFF polarity.

Four different lists of events, separated and organized by camera and polarity are the re-
sults of this operation. Starting from now, the parameters used to calculate the visual flow
are then defined.

Summarizing and classifying them:

• dxsx: allows to select the camera of interest. It is 0 for the right eye, and 1 for the
left;

• pol: discriminates the polarity. Its value can be 0 for ON, and 1 for OFF;

• dT_in : selects the width of the time window (in s);

• Rf: represents the number of lines that make up the visual matrix of the sensor
(corresponds to the size Y);

• Cf: represents the number of columns that make up the visual matrix of the sensor
(corresponds to the X dimension);

• R: represents the number of rows of the spatio-temporal window;

• C: represents the number of columns of the spatio-temporal window

• min_events: is the minimum number of events for which the space-time window is
considered valid;

• n_iter: allows a choice between none, one or two iterations of the algorithm;

• thr_in: is the threshold selected to satisfy the iteration inequality, for the elimination
of outliers;

29

3 – Modelling the algorithm

• n_shift (valid only for the fixed-point version): is the number of bits with which
an initial and final right-shift is made, in order to control and manage the overflow
problem of the time stamp counter.

An initial dialogue screen allows the configuration of all system variables. However, it is
after the conversion of dT_in from seconds to number of clock cycles that the operation
of the algorithm starts.

The conversion is done by dividing the reference time value by 80*10-9: a 100 MHz
system clock, and a ”fictitious” clock of 12.5 MHz to update the internal register of the
sensor (the one related to time stamps) are considered.

Graphically, the software algorithm performs the following operations:

Figure 3.1. Operations in the algorithm

A problem to be taken into account is linked to the extraction of space-time windows that
overcome the size of the visual matrix. Let’s suppose, as in Figure 3.2, to receive an event
at the pixel coordinates (1,1) (in green) and to take a 3x3 local matrix (in orange).
However, in the local matrix around the pixel just extracted, the events belonging to the
first row and the first column do not exist. This is because it goes beyond the detection
spectrum of the vision sensor.

In this case, in fact, the neighbourhood will be not a 3x3 but a 2x2 one, which takes only
the existing elements boundary to the reference pixel. The dimensions are not sufficient
with respect to those required and, for this reason, the space-time window is not processed
by the software.

The wrap-around problem
As previously described, the presence of a 24-bit counter inside the DVS allows to record
the time when the event occurs. The value of the register is in fact frozen and packaged
with its additional informations, according to the handshake of the device. However, it
remains to be understood how its reset can be solved and managed in purely mathematical
terms, when all the 224 possible combinations have been counted.
An overflow in fact, occurs. This condition is verified when an event at the instant of time
t+1 has a time stamp lower than an event recorded in the previous t time. This leads to
computational problems that risk to compromise the possible output results of the device.

30

3.2 – Matlab description

Figure 3.2. Local window that exceeds visual dimensions

To solve this error, a technique that allows to obtain, even in case of multiple overflows,
the real distance between two values of the counter is adopted.

Figure 3.3. Multiple Overflows in a counter

Starting from zero, the first value (start) is recorded at a certain instant of time. In the
meantime, the register count grows until it reaches the FFFF value. Here, it resets and
starts again from scratch, growing again. And so, for three more cycles, until the value is
recorded again instantly (stop).

31

3 – Modelling the algorithm

Looking at the Figure 3.3, then, it is possible to get the expression:

𝛥𝑇 = (2𝑁𝑀) + (𝑠𝑡𝑜𝑝 − 𝑠𝑡𝑎𝑟𝑡)

Where M is the number of overflows occurred between the two instants under examina-
tion, and N is the number of bits of the counter.

This is a general model however, seen the departure hypothesis, it is not necessary the use
of M values of higher than 1. This because the temporal window, considered according
to the same specs of the scientific paper explained in the paragraph 2.2, is at the most of
1 ms.
The supposition that between two events has occurred more than one overflow may be
interpreted as a wider time-window than the desired one. This is because, in the worst
case hypothesis, an event-rate of 1evt/80 ns is considered.

It is important now to understand how this technique can be implemented in software,
first, and then in hardware.

There are two models designed in Matlab: floating-point and fixed-point. They represent
the same algorithm, but one based on mobile arithmetic, and the other in fixed arithmetic
in order to act as a simulation tool before the implementation at RTL level. The solution
of the wraparound problem has been realized in two different ways for both.

Floating-point model
For each element of the dataset appropriately differentiated by eye and polarity, the first
three columns are considered:

• Time-stamp

• X

• Y

The first step of the algorithm is to compare each Ts of the last event with the value of
the previous one. If it is greater, then no overflow has taken place, vice versa yes. In this
last case, a quantity equal to 224 is subtracted to all the previous elements saved in the
visual matrix (if there has already been one), and will be added instead to the new and
the following one.

In example, let’s suppose to have two versions of the dataset, with and without overflow
[Tab. 3.1].

32

3.2 – Matlab description

𝑡 No overflow Overflow
1 16760784 16760784
2 16776334 16776334
3 16776979 16776979
4 16829919 52703
5 16831704 54488

Table 3.1. No overflow data vs Overflow data

An overflow occurs instantly at t = 4. It turns out, in fact, that the value of the counter is
lower than the other of the previous instant.

The differences between the elements at a certain time and the relative antecedents are:

𝑡 𝛥𝑛𝑜𝑣𝑓 𝛥𝑜𝑣𝑓
1 0 0

2-1 15500 15500
3-2 645 645
4-3 52940 -16724276
5-4 1785 1785

Table 3.2. No overflow vs Overflow differences

As can be seen, the 𝛥 remains the same, however, the problem arises precisely at the wrap.

Supposing that this overflow is the first in the incoming set of events, the behaviour of the
device will be:

𝑡 Dataset Managed 𝛥𝑜𝑣𝑓
1 16760784 16760784 0
2 16776334 16776334 15500
3 16776979 16776979 645

4 (+224) 52703 16829919 52940
5 (+224) 54488 16831704 1785

Table 3.3. Ideal data vs Managed data (first overflow)

In the first column there are the values coming from the dataset, as they have been recorded
by the vision sensor.

33

3 – Modelling the algorithm

At t = 4 the wrap occurs, and the value of the current Ts is obviously lower than the one in
the previous instant of time. From this moment, a quantity equal to 224 is added to all the
following values (including the current one) of the events. This mechanism is described
in the second column.

The algorithm continues its analysis on the arriving events and, at t = n, a second overflow
occurs:

𝑡 Dataset Saved Managed
𝑛 − 3 (−224) 33554053 33554053 16776837
𝑛 − 2 (−224) 33554274 33554274 16777058
𝑛 − 1 (−224) 33554427 33554427 16777211

𝑛 (+224) 33554531 99 16777315
𝑛 + 1 (+224) 33554789 357 16777573

Table 3.4. Ideal data vs Managed data (second overflow)

The first column (Dataset) shows the real value of the time stamps without any overflow.
In the second column (Saved), instead, the data actually saved in the matrix are shown.
As soon as the overflow is detected, a quantity equal to 224 is subtracted from the values
already saved (previous to the instant 4 when it happened), and from this moment the
same quantity is then added to the incoming time stamps. This is described in the third
column.

It is interesting to notice how the 𝛥 calculated for the real values of the Ts and those
managed by the control mechanism described above are the same:

𝑡 𝛥𝐷𝑎𝑡𝑎𝑠𝑒𝑡 𝛥𝑀𝑎𝑛𝑎𝑔𝑒𝑑
1 0 0

2-1 221 221
3-2 153 153
4-3 104 104
5-4 258 258

Table 3.5. Ideal differences vs Managed differences

Fixed-point model
For the fixed-point model, too, the same mechanism analysed in the previous paragraph
has been reproduced.

The idea is the same, however, working on a limited number of bits requires to look for a
solution that allows to keep unaltered the parallelism of the data. A simple way can be to

34

3.2 – Matlab description

use an extra bit of control that allows to manage the overflow problem.

Let’s assume, for example, to work on 2-bit data. A counter follows the cycle indicated:

Control bit Sequence Value
0 00 0
0 00 1
0 10 2
0 11 3
1 00 4
1 01 5
1 10 6
1 11 7

Table 3.6. Two bits counter with control bit

However, it is not possible to add one more guard bit for any new overflow that occurs.
Mainly because it is not possible to predict a priori the number of resets that the counter
will face, and secondly because it would require an unacceptable increase in the complex-
ity of the architecture.

From specs, moreover, the problem is to maintain an amplitude of 24 bits in the field re-
lated to the Ts.

Referring then to the second principle of the equations equivalence, according to which if
both the members are multiplied or divided by the same quantity the equality is satisfied,
it is possible to find a strategy to manage the problem.

Assuming in fact to have two instants 𝑡𝑛 and 𝑡𝑛−1, and that the difference between them is
equal to a quantity p, then:

𝑡𝑛−1 − 𝑡𝑛 = 𝑝

By dividing the two sides for the same q quantity:

𝑡𝑛−1 − 𝑡𝑛
𝑞

=
𝑝
𝑞

And then, multiplying everything again by q, the original equation will be recovered.

Therefore, using the two tools described above:

• Control bits

35

3 – Modelling the algorithm

• Second principle of equality

The management of the wrap-around in fixed-point arithmetic is trivial.

The presence of a control bit is necessary to calculate the difference between two time
values, even when an overflow occurs. The next step is to make a right-shift of the Ts
of a certain amount (by using the control-bit as MSB), to keep unchanged the 24-bit
parallelism. At the end of the algorithm, finally, a left-shift of the same amount allows to
reach the expected result.

Figure 3.4. Working principle of the control-bit

Repeating, from a numerical point of view, the same series of processes already seen in
the previous paragraph, it is possible to have the theoretical values as:

𝑡 No overflow No overflow (binary)
1 16760784 111111111011111111010000
2 16776334 111111111111110010001110
3 16776979 111111111111111100010011
4 16829919 1000000001100110111011111
5 16831704 1000000001101010011011000

Table 3.7. No overflow integer vs No overflow binary (first ovf)

The real values are:

𝑡 Overflow Overflow (binary)
1 16760784 111111111011111111010000
2 16776334 111111111111110010001110
3 16776979 111111111111111100010011
4 52703 000000001100110111011111
5 54488 000000001101010011011000

Table 3.8. Overflow integer vs Overflow binary (first ovf)

As can be seen from the binary representation, it is evident that the presence of an extra
bit able to indicate the presence of the overflow is fundamental.

36

3.2 – Matlab description

The control mechanism of the guard bit is quite simple: as soon as the algorithm starts,
taking the first data from the dataset, Ctrl_bit is set to 0. When the first overflow occurs,
Ctrl_bit is put equal to 1 for all subsequent events, including the current one.

𝑡 Overflow 𝐶𝑡𝑟𝑙_𝑏𝑖𝑡 Overflow (binary)
1 16760784 0 111111111011111111010000
2 16776334 0 111111111111110010001110
3 16776979 0 111111111111111100010011
4 52703 1 000000001100110111011111
5 54488 1 000000001101010011011000

Table 3.9. Overflow integer vs Managed binary (first ovf)

Since the number of bits is limited, assuming to perform a shift of one position to right,
and then dividing the values by two, results that:

𝑡 Overflow Right-shift overflow (binary)
1 8380392 011111111101111111101000
2 8388167 011111111111111001000111
3 8388489 011111111111111110001001
4 8414959 100000000110011011101111
5 8415852 100000000110101001101100

Table 3.10. Overflow integer vs Right-shift overflow (first ovf)

Comparing the differences between current and previous instants:

𝑡 𝛥𝑛𝑜𝑣𝑓 𝛥𝑜𝑣𝑓 + 𝑟𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑓 𝑡
1 0 0

2-1 15500 77755
3-2 645 322
4-3 52940 26470
5-4 1785 893

Table 3.11. Ideal differences vs Right-shift differences (first ovf)

It is evident, as expected, that the time distances are halved.

By proceeding with the execution, at a certain time t = n a second overflow occurs: in
this case, the control bits previously saved as 1 are reset (all the Ctrl_bit inside the matrix
become equal to 0), while those from the same moment on are set to 1.

37

3 – Modelling the algorithm

The expected data are:

𝑡 No overflow No overflow (binary)
n-3 33554053 1111111111111111010000101
n-2 33554274 1111111111111111101100010
n-1 33554427 1111111111111111111111011
n 33554531 10000000000000000001100011

n+1 33554789 10000000000000000101100101

Table 3.12. No overflow integer vs No overflow binary (second ovf)

The orginal data are:

𝑡 Overflow 𝐶𝑡𝑟𝑙_𝑏𝑖𝑡 Overflow (binary)
n-3 16776837 0 111111111111111010000101
n-2 16777058 0 111111111111111101100010
n-1 16777211 0 111111111111111111111011
n 16777315 1 000000000000000001100011

n+1 16777573 1 000000000000000101100101

Table 3.13. Overflow integer vs Managed binary (second ovf)

By right-shifting the new values the new values are:

𝑡 Overflow Right-shift overflow (binary)
1 8388418 011111111111111101000010
2 8388529 011111111111111110110001
3 8388605 011111111111111111111101
4 8388657 100000000000000000110001
5 8388786 100000000000000010110010

Table 3.14. Overflow integer vs Right-shift overflow (second ovf)

The differences between current and previous events are now shown in [Tab. 3.15].

Also in this case, as expected, the 𝛥 obtained from the wraparound management are halved
(unless an approximation error) with respect to those expected: this, as already pointed
out several times, is directly related to the right-shift carried out.

And for this reason the number of shifts parameter has been introduced in the user inter-
face. Thanks to this, the wrap management process allows to: add a control bit as MSB

38

3.2 – Matlab description

𝑡 𝛥𝑛𝑜𝑣𝑓 𝛥𝑜𝑣𝑓 + 𝑟𝑖𝑔ℎ𝑡𝑠ℎ𝑖𝑓 𝑡
1 0 0

2-1 221 111
3-2 153 76
4-3 104 52
5-4 258 129

Table 3.15. Ideal differences vs Right-shift differences (second ovf)

of the Ts and, only afterwards, make a right-shift of the desired number of bits.

At the end of the computation, the result has to be shifted to the right by the same amount
and not, as expected, to the left. This is because, at the end of the square root calculation,
the data is inverted.

This implies that, given a generic value x as input, if a n-positions right-shift is done, a
division by a n-power of two is performed:

𝑥 → 𝑥
2𝑛

The reverse value of it twill be:

1
𝑥

→ 2𝑛 1
𝑥

This means that the result will be 2n times higher than the expected. To normalize and
get the correct outcome, a shift again to the right of n positions has to be done:

2𝑛

1
𝑥
2𝑛 → 1

𝑥

Data parallelism and algorithm development
The first thing that is verified inside the visual matrix is the validity of all events: if any
of them has a time distance, with respect to the last Ts arrived, greater than the interval
defined by dT_in (i.e. the event is expired), then it will be deleted. This means that a 0
will be inserted in its place.

Once the data has been allocated to the matrix and verified its validity, the space-time
window is extracted. In the worst case it will be 15x15.

The next step is the processing phase in the Mult.m unit. In this function are defined:

39

3 – Modelling the algorithm

• Vector X: on 4 bits, because in the worst case (15x15) the coordinates of the ele-
ments from 0 to 14 are expressed;

• Vector Y: on 4 bits, the same considerations for X are valid for it;

• Ts: on 24 bits.

For both X and Y, all coordinates corresponding to zero Ts values are deleted. This is due
to the presence of a null time-stamp, that indicates the absence of an event in that pixel.

Now the computation of the product 𝐴𝑇𝐴 has to be performed, as expressed in paragraph
3.1. For this reason, the following vectors are defined for all the elements of the matrix:

• X: on 4 bit;

• Y: on 4 bit;

• T: on 24 bit;

• X2: on 8 bit;

• Y2: on 8 bit;

• XY: on 8 bit;

• XT: on 28 bit

• YT: on 28 bit;

• N: on 8 bit, it represents the number of valid events in the local matrix;

Subsequently, each element of the above vectors is added in order to retrieve the terms of
the product matrix. To obtain the number of bits necessary to prevent any overflow in the
sum, the following formula is applied:

𝑏𝑖𝑡_𝑎𝑑𝑑𝑒𝑟 = 𝑛 + log 𝑘

With n = number of input bits, k = number of sums and log is the base-2 logarithm.

Therefore, knowing that in the worst case k = 15*15 = 225, for each element will be
derived:

• SX: on 12 bit;

• SY: on 12 bit;

• ST: on 32 bit;

40

3.2 – Matlab description

• SX2: on 16 bit;

• SY2: on 16 bit;

• SXY: on 16 bit;

• SXT: on 36 bit

• SYT: on 36 bit;

Once the sums of the matrix have been computed, the calculation of the inverse is carried
out. The function called to perform this task is Adjoint.m.

Its components can be calculated according to the formulas inside paragraph 3.1, and
have the following parallelism:

• adj11: 24 bit;

• adj12: 24 bit;

• adj13: 28 bit;

• adj22: 24 bit;

• adj23: 28 bit;

Obtained these values, the next step is to have [𝑎, 𝑏, 𝑑𝑒𝑡]𝑇, coming from the matrix product
(𝐴𝑇𝐴)−1(𝐴𝑇𝑌):

• 𝑎𝑑𝑒𝑡: 62 bit;

• 𝑏𝑑𝑒𝑡: 62 bit;

• 𝑑𝑒𝑡: 42 bit;

The last thing to do is to compute the inverse components of the velocity vector. It is the
Cordic.m function that performs this work.

The calculation of a and b values is derived by the ratio between 𝑎𝑑𝑒𝑡 and 𝑏𝑑𝑒𝑡 with det.
Knowing that the number of the quotient bits between two integers is given by their width
difference:

• a: 25 bit, 21 of integer part and 4 of fractional part;

• b: 25 bit, 21 of integer part and 4 of fractional part;

41

3 – Modelling the algorithm

To calculate the theta angle, these values are passed to a function that calls up the arctan-
gent in fixed-point (atan2), which returns a 16-bit value (3 integers and 13 fractional) at
the output. Then the angle goes to the cordicsincos, that allows to calculate its sine and
cosine. On the output, both results will also be on 16 bits (2 integers and 14 fractional).

To obtain, instead, the inverse square root, the first step consists in calculating the squares
of both coefficients.

• a2: 50 bit, 42 of integer part and 8 of fractional part;

• b2: 50 bit, 42 of integer part and 8 of fractional part;

Then they are added together, thus obtaining a ”c” value on 51 bits, in order to avoid any
overflow (43 integers and 8 fractional). The next module is the square root: Cordicsqrt
is the function, and provides out a result on 51 bits (23 integers and 28 fractional). By
inverting the output coming from the square radix, the desired value is allocated on 26
bits (6 integers and 20 fractional).
Multiplying both sine and cosine values by the inverse of the root just found, the com-
ponents of the gradient are ready. Both dt/dx and dt/dy are on 42 bits (34 integers and 8
fractional).

3.3 Results and comparisons
In this section the results coming from the Matlab script simulations are shown. The
dataset belongs to two DVS recordings and so, starting from it, the chosen parameters are
expressed in the table below.

Parameter Value
dxsx 0
pol 221

dT_in 153
Rf 104
Cf 258
R 3-5-9-15
C 3-5-9-15

min_events 3-8-15-21
n_iter 0-1-2
thr_in 0.05
n_shift 1-5-8

Table 3.16. Parameters used for the simulations

42

3.3 – Results and comparisons

All the optical flow computations have been done by fixing the dimensions of the visual
matrix (128x128), the polarity (ON) and the right-eye as reference.
By varying the size of the local space-time matrix and associating to each of them a min-
imum number of events, the flow vectors are computed for different numbers of iterations
(from 0 to 2).
The information losses, moreover, are caused by the number of shifts done on the Ts: for
that reason, their impact on the results has been evaluated in a statistic way.

n_shift = 1
For a right-shift of one position, the mean error, the standard deviation and the distribution
of the error for the three types of iterations are computed.

Figure 3.5. Mean Error for r-shift = 1

Figure 3.6. Standard Deviation for r-shift = 1

43

3 – Modelling the algorithm

Figure 3.7. Error distribution for iter = 0 Figure 3.8. Error distribution for iter = 1

Figure 3.9. Error distribution for iter = 2

As can be seen from the previous graphs, the highest error concentrations are around the
3x3 and 5x5 solutions, for the number of iterations equal to one and two.

Analysing in detail the mean error, the highest percentage is found in correspondence of
the smallest matrices. This can be partly explained also because the number of results
obtained in output is decidedly higher for small sizes, compared to larger matrices.

For a 3x3 or 5x5 matrix, only 3 or 8 events will be necessary inside them in order to
proceed with the processing. By increasing the dimensions of the matrix, the value of the
mean error tends to decrease. It is important, however, to observe that the percentages of
error are at most contained in a range between the 0.05% and the 0.2%: extremely small
values, whose weight can be neglected. In this way all the considerations are superfluous.

44

3.3 – Results and comparisons

However, it is the distribution of the error, for all the possible iterations, that shows the
real trend of the same. There are three main informations that can be extrapolated:

• The percentage of error decreases as the size of the local matrix increases: this is
due to the lower number of results processed, which also means fewer samples to be
compared;

• The error grows as the number of iterations: this is due to the increased number of
operations in fixed-point, which accumulate the errors;

• A higher occurrence for the largest errors (around 0.18%), with the same trend de-
scribed in the first sentence.

It is also important to notice the particular behaviour of the mean error for a 15x15 matrix
and 𝑛_𝑖𝑡𝑒𝑟 = 0. This is visible also by analysing the distribution of the error for the same
number of iterations.

n_shift = 5
The static analysis in this case is done for a five bits right shift.

Figure 3.10. Mean Error for r-shift = 5

45

3 – Modelling the algorithm

Figure 3.11. Standard Deviation for r-shift = 5

The shift of 5 positions to the right means that, on 24 bits, more or less the 21% of the
precision is lost. In this way, the difference between the results can be higher with respect
to the previous case, with the possibility to meet nonsense results.

In this case, however, by looking at the mean error, its trend is more or less the same as
before. The only difference is related to the increased peak in correspondence of the 5x5
matrix (2.7%), and, the reduced one for the 3x3.

Figure 3.12. Error distribution for iter = 0 Figure 3.13. Error distribution for iter = 1

But the deep differences emerge focusing on the distribution of the error for all the pos-
sible iterations. As just discussed, the error induced by the cut of an important part of the
inputs influences in a significant way the result: in fact, the most affected matrix by this
issue is the 15x15. In this case, the higher number of elements to be elaborated results in
a greater carriage of the error.

46

3.3 – Results and comparisons

Figure 3.14. Error distribution for iter = 2

This problem is also present, again, in the 5x5 neighbourhood: another explanation is that
the way of implementation of the functions used in the Matlab scripts (as cordicsincos,
cordicsqrt, divider and so on) for fixed-point version. The same considerations can be
done for n_shift = 8.

n_shift = 8
The static analysis in this last case is done for eight bits right shift.

Figure 3.15. Mean Error for r-shift = 8

47

3 – Modelling the algorithm

Figure 3.16. Standard Deviation for r-shift = 8

As expressed for n_iter = 5, even more in this case, the results lose all meaning. The main
thing that stands out is that, by eliminating about 33% of the time stamp to be processed,
the average error goes into a range between 6% and 65%.

The error becomes extremely heavy for a 15x15 matrix, by doing the same considerations
as before.

Figure 3.17. Error distribution for iter = 0 Figure 3.18. Error distribution for iter = 1

48

3.3 – Results and comparisons

Figure 3.19. Error distribution for iter = 2

As result, the best solution, as expected, is for n_shift = 1. In this way it is possible to take
under control the overflow problem, maintaining at the same time the error very low and
limited in range.

𝑛_𝑠ℎ𝑖𝑓 𝑡 Error range (%)
1 [0.06 – 0.18]
5 [0.5 – 2.6]
8 [6 – 65]

By doing a linear interpolation, the intermediate ranges are obtained:

𝑛_𝑠ℎ𝑖𝑓 𝑡 Error range (%)
2 [0.17 – 0.79]
3 [0.28 – 1.39]
4 [0.39 – 1.99]

If the maximum acceptable error has a percentage error lower than 1%, it is possible to
perform a right-shift at most of two positions.

49

50

Chapter 4

Guidelines for the hardware
design

4.1 General view
The purpose of this chapter is to provide some guidelines for the implementation of the
hardware structure, basing on the already expressed considerations in the Matlab model.
The design flow starts from a definition of the system specifications, passing through
the implementation of the building blocks in VHDL language, and finally arriving at the
simulation, synthesis and 𝑝𝑙𝑎𝑐𝑒&𝑟𝑜𝑢𝑡𝑒 of the architecture.
As in the software previously examined, the analyses and the various computations are
done separating the data by direction (if right or left eye) and polarity, in the same way the
proposed architecture is dedicated to a well-defined type of informations. The proposition
of an interface with the data coming from the outside is not the scope of this elaborate.
In this case the focus will be only specifically on its processing.
The device therefore presents, in general, as inputs:

• X: vertical coordinate of the event;

• Y: horizontal coordinate of the event;

• Ts: time stamp of the event;

• sready: control signal, asserted at the arrival of a new event from outside;

• clock.

On the outputs, instead:

• dt_dx: inverse component of the velocity vector in the x direction;

• dt_dy: inverse component of the velocity vector in the y-direction;

51

4 – Guidelines for the hardware design

• go: output signal, asserted at the end of the computation.

The block will therefore have the following conformation:

Figure 4.1. The top device

More generally, the pipe queue that composes the entire architecture follows the trend
already shown in chapter 3.2.

At the input of the calculation unit there is a memory management block. Its goal is to
allocate in the visual matrix the event received at the coordinates (X,Y) provided by the
outside and, at the same time, to extract the space-time window around it. In the software
algorithm, the allocation of the matrix (R,C) is parametrized: in this way it is easy to
provide optical-flow results for different types of sensors and resolutions. In the case of
hardware development this solution is not feasible.

However, the size of the memory blocks to be reserved for the allocation of the events has
been calibrated for a visual matrix 304x240 (ATIS sensor). This means that have to be
allocated:

• 9 bits representing the X coordinates

• 8 bits representing the Y coordinates

Anything prohibits to interface this block with a DVS of size 128x128. The addressing
mechanism remains the same, even though fewer bits are needed to represent the coordi-
nates (X,Y). Only the size of the time-stamps changes.

In the first case, in fact, they are expressed on 14 bits, in the second one on 24 bits. The
width of a memory line has been sized in the case of 24 bits, just for the worst case.

Once data have been extracted, the next step is to process them through a series of cal-
culation entities set as in the Matlab model: a Mult block for the definition of the 𝐴𝑇𝐴

52

4.1 – General view

matrix product, followed by an Adjoint block for the computation of (𝐴𝑇𝐴)−1(𝐴𝑇𝑌). The
final results will be a_det, b_det, and det.

If necessary, the new window is modelled by an iteration unit that eliminates the outliers,
and then repeats the track of the two previous units. At most two cycles are needed to
converge.

The last part reserved to the calculation of the differentials includes a divider which re-
turns the a and b coefficients of the plan, followed by a certain number of computational
blocks (using the IP cores in the FPGA) which provide at the end the values dt_dx and
dt_dy.

Technical characteristics
The SoC used in this work is a Trenz Electronic TE0715-04-30-1C, which mounts a Xilinx
Zynq XC7Z030-1SBG485C. The FPGA model belongs to the Kintex-7 series. This target
device has been adopted due to the good availability in terms of hardware resources: this
allows fewer restrictions on the number of processing units to be used.

Figure 4.2. The Trenz Electronic SoC

According to the device datasheet, the internal characteristics of the FPGA are:

• Programmable logic cells: 125000;

• LUTs: 78600;

• Flip-Flops: 157200;

• RAM block (36 Kb blocks): 265, true dual-port;

• DSP Slices (18x25 MACCS, 48 bit adder/accumulator): 400;

• 𝑓𝑚𝑎𝑥: 667 MHz;

53

4 – Guidelines for the hardware design

The oscillator is fixed at 100 MHz: this is the operating frequency of the device. Another
fundamental parameter to be taken into consideration is related to the timing of the input
events: in the worst case, in fact, the input rate is one event every 80 ns. Is is like to have a
new data to be processed every eight clock cycles. This is important to optimize the best
resources available, without any waste.

4.2 Memory Addressing
As previously defined, in the worst working case, a new event arrives every 80 ns. The
idea, therefore, is to do all the necessary operations to extract from the memory (and then
process) the neighbourhood matrix in the eight available clock cycles between the arrival
of an event and the next.

Assuming, then, to work in the worst case condition, that is with a space-time window
of 15x15 (so that 15 columns have to be extracted in eight cycles) the only solution is
to take two columns per cycle out from the memory. Therefore, one of the key points of
the design is that, for any size of the window, two columns at a time are elaborated. Each
extracted column contains a number of events equal to twice the number of rows of the
window itself, and each event, in turn, is represented on 24 bits.
The idea of how to organize the data in the memory is to divide the vertical dimension of
the visual matrix (X) into a number of blocks of 15 pixels.

Figure 4.3. Block separation

Let’s assume to work with an ATIS sensor. Its matrix dimensions are 304x240.

54

4.2 – Memory Addressing

It will result:

• Along the X direction a subdivision into 21 macro-blocks of 15 lines (pixels) each;

• 240 columns for each macro-block.

It should be noted that 21 macro-blocks of 15 rows correspond to a size (X) of 315 el-
ements, that is 11 more than the actual 304. The latter eleven are the same allocated as
memory space, but not used.

The individual columns that make up each macro-block are then allocated in memory
with the idea to pull out twice of them at a time. One solution, in this sense, could be to
put thirty BRAM blocks in parallel, and associate to each row a pixel belonging to the
same column of the visual matrix.

Consider the figure below:

Figure 4.4. Memory allocations

Let’s assume, for example, to divide the matrix into two macro-blocks (upper and lower),
each of them composed by eight rows and Y columns. The sorting in memory is organized
as follows:

• The first eight elements (red) of the first column are allocated in rows 0 (24 bit each)
of the BRAM blocks from number 0 to 7.

• The first eight elements (green) of the second column are allocated in rows 0 (24 bit
each) of the BRAM blocks from number 8 to 15.

55

4 – Guidelines for the hardware design

• The first eight elements (blue) of the third column are allocated in rows 1 (24-bit
each) of the BRAM blocks from number 0 to 7.

• The first eight elements (yellow) of the fourth column are allocated in rows 1 (24-bit
each) of the BRAM blocks from number 8 to 15.

And so on, until the end of the first macro-block of the visual matrix. It will then occupy
the first Y/2 lines of each BRAM, from 0 to (Y/2) - 1.

The second macro-block, in turn, will occupy the rows from Y/2 to Y-1. By looking at
the following organization there are:

• The second eight elements (grey) of the first column, are allocated in the rows Y/2
(24 bit each) of the blocks BRAM from number 0 to 7.

• The second eight elements (brown) of the second column, are allocated in the rows
Y/2 (24 bit each) of the blocks BRAM from number 8 to 15.

• The second eight elements (purple) of the third column are allocated in the rows
(Y/2)+1 (24 bit each) of the BRAM blocks from number 0 to 7.

• The second eight elements (blue) of the fourth column are allocated in the rows
(Y/2)+1 (24 bit each) of the BRAM blocks from number 8 to 15.

Again, until the end of the columns of the second macro-block.

This allocation scheme allows to optimize the extraction of two columns at the same time.
It is clear, therefore, that the addressing mechanism presents two parts that make up the
final address of the object:

𝑎𝑑𝑑𝑟𝑒𝑠𝑠 = 𝑛_𝑏𝑙𝑜𝑐𝑘 ∗ 120 + 𝑌 (7𝑑𝑜𝑤𝑛𝑡𝑜1) (4.1)

With Y that is the coordinate of the incoming event, and n_block that allows to select
which of the 21 macro-blocks should be taken into account.

As said, therefore, if the X coordinate is between 0 and 14, then the event belongs to
macro-block 0, if it is between 15 and 29 to macro-block 1 and so on. Y, in turn, allows
to select the row of the memory block where a certain column of the macro-block is al-
located.

Shortly, n_block allows to select a certain group of rows of the visual matrix, and there-
fore a certain group of columns allocated in the BRAM. Y(7 downto 1) instead points to
the desired column.

56

4.2 – Memory Addressing

Working principle
The main hypothesis is to work in the worst case (i.e. a 15x15 window), and so to have
8 clock cycles between one event and the next to pull out 15 columns. As soon as a new
input comes, thanks to the state machine that generates the addresses, two columns are
extracted at a time, for each cycle. The n_block is kept fixed, what is changed is the line
address:

Figure 4.5. Y generation for addresses

This means that, at the end of the eight cycles, 16 columns will be available, so one more
than expected: either the first or the last one. It remains to be understood which is the one
to be neglected.

As the memory structure has been organized, the address obtained by combining the block
number and Y(7 downto 1), allows to point simultaneously to the locations of two adjacent
columns. It is thanks to this mechanism that it is possible to pull out thirty elements at a
time (in the worst case).

Figure 4.6. Memory separations

In the example above, in fact, let’s suppose to extract a 5x5 matrix, and the central event
is at the address 1000010 (yellow line). This opens up two possibilities:

57

4 – Guidelines for the hardware design

• If the column in which the central event is contained is [Y(0) = 0], the events corre-
sponding to the addresses 1000001, 1000010, 1000011 are extracted.

The result will be:

Figure 4.7. Matrix for Y(0) = 0

It is therefore clear that the last column [Y(0) = 1] at address 1000011 should be disre-
garded.

• If the column in which the central event is contained is [Y(0) = 1], the events corre-
sponding to the addresses 1000001, 1000010, 1000011 are extracted.

The result in this case will be:

Figure 4.8. Matrix for Y(0) = 1

The first column [Y(0) = 0] at the address 1000001 will be now neglected.

The last case to be analysed is when two adjacent pixels belong to different blocks. Let’s
suppose to have the usual visual matrix, from which extract the event of interest:

58

4.2 – Memory Addressing

Figure 4.9. Window between two blocks

As highlighted, the event (in orange) belongs to block 2, however the surroundings in part
fall into the adjacent block 1. In this case, the Y(7 downto 1) coordinates of the various
columns to be extracted are the same, what changes is only n_block.

The address, in this case, for some BRAMs will refer to the same line number, but identi-
fied in the previous block. Assuming to work with an ATIS sensor (304x240), the corre-
sponding position of the columns contained in block 1 will be 120 locations higher than
the address calculated for block 2.

In summary:

• address - 120: if the matrix exceeds block borders above;

• address: if the matrix is perfectly inside the block;

• address + 120: if the matrix exceeds block borders below.

The output from the memory block will be, for each clock cycle, a 30 events array of 24
bits each (i.e. the two columns of pixels at a time), combined with a start signal for the

59

4 – Guidelines for the hardware design

next block in cascade, and a Y(0) bit able to identify the column to be ignored.

As previously expressed in the disquisition on the software model, the extraction of a local
matrix that goes beyond the dimensions of the visual one does not take place. The event
is saved, but the start signal associated with the extraction of the columns is not asserted.

If (X,Y) are the coordinates of the new central incoming event, will be defined:

𝑛𝑟𝑜𝑤 = floor(R/2)

𝑛𝑐𝑜𝑙 = floor(C/2)

By considering:

𝑋𝑚𝑖𝑛 = 𝑋 − 𝑛𝑟𝑜𝑤

𝑋𝑚𝑎𝑥 = 𝑋 + 𝑛𝑟𝑜𝑤

𝑌𝑚𝑖𝑛 = 𝑌 − 𝑛𝑐𝑜𝑙

𝑌𝑚𝑎𝑥 = 𝑌 + 𝑛𝑐𝑜𝑙

If 𝑋𝑚𝑖𝑛 < 0 || 𝑋𝑚𝑎𝑥 > 𝑅𝑓 || 𝑌𝑚𝑖𝑛 < 0 || 𝑌𝑚𝑎𝑥 > 𝐶𝑓 then the start signal is maintained
equal to zero.

4.3 Events extinction
Another important element to take under control is the lifetime of each single event. The
spatio-temporal window in exam, by considering the description in the paper exposed in
2.2, is dT ms wide: this means that the difference between the oldest and the newest in-
coming event should not be higher than dT. Also this is a parameter of the reconfigurable
structure.

By looking at the Matlab description, the idea is to compare, every time an event is in
input, its time stamp with the others stored inside the visual matrix. If their difference is
higher than dT then the Ts is substituted with zero, else it’s maintained.

In order to perform the same operation in hardware, the idea is to allocate a FIFO, that
saves the incoming triplet (X,Y,Ts) in the time frame under observation. Internally, this
memory has two counters: 𝑟𝑒𝑎𝑑𝑐𝑜𝑢𝑛𝑡𝑎𝑛𝑑𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑢𝑛𝑡. These increments every 8 cycles, al-
lowing to keep track of the time evolution. The value at which they reset, if the dT = 1
ms, should be 12500. That’s because if there is an increment of 1 every 80 ns, in order to

60

4.4 – The overflow detection

have 1 ms 12500 counts are needed.

So, if a new event comes, it is stored inside the FIFO, a validation bit is set to ‘1’ and the
write counter is incremented. A check signal in out indicates when a comparison has to be
done. When it is asserted, the triplet coming out from the validation memory (Xv,Yv,Tsv)
is compared with the other stored in the event-memory at the same coordinates. If they
are equal, the event has to be eliminated.

In this way, the Ts is now set to zero. If, instead, the contents are different, the event stored
is more recent. Also for this case, the coordinates (Xv, Yv) are calculated as before.

4.4 The overflow detection
As seen in the paragraph related to the Matlab model [3.3], overflow detection involves
comparing the time-stamp related to the new incoming event with the previous one and,
based on the result, setting a control bit.

The idea, very simple, is to insert an input registers where the reference MSB of the Ts
of the newer event is taken and compared with that of the previous one. Normally, the
possible combinations are:

𝑇 𝑠𝑛[𝑀𝑆𝐵] 𝑇 𝑠𝑛−1[𝑀𝑆𝐵] Out
0 0 0
0 1 1
1 0 0
1 1 0

The function that describes this behaviour will return a null value at the output for all the
combinations, except for the one where the MSB of the time-stamp at the current instant
(0) is lower than that of the previous (1).

The combinatorial circuit thus elaborated will be the one in Figure 4.10.

The current value is saved in the upper register, the older one is passed instead in the lower
register. As soon as there is an overflow, it is immediately indicated by the cascading AND.

It remains to be understood how to allocate and modify the MSBs in the memory from
time to time. The overflow management mechanism is the same as previously illustrated

61

4 – Guidelines for the hardware design

Figure 4.10. Circuit for overflow detection

in the fixed-point model: the idea is to associate a guard-bit to each incoming time-stamp.
Every time an overflow occurs, the bits already saved are reset to 0, while the incoming
bits are set to 1. In this way is replicated in hardware what has been seen previously in
the scripts.

In this sense, an additional memory space has been allocated. Each control bit is saved at
the related coordinates of the event. The addressing mode is the same viewed in paragraph
4.3. There is no need to replicate the address generation machine, it is possible to safely
use the outputs intended for BRAM also for this additional memory space. Each location
reserved for the Ts, hence, will have the same address as the one reserved for the related
control bit.

In addition, the memory space for the guard bits can be reset. This allows to delete the
content in case of overflow. There will be a finite state machine dedicated to administering
the operations and the control process.

62

Chapter 5

Hardware description

This section describes in detail all the properties of the individual blocks used in the
VHDL design phase. The digital project has been developed, as already expressed in
the previous chapters, considering the worst operating conditions, in order to stress, as
possible, the characteristics of the device. The tool adopted is Vivado Design Suite 2017.1.
The structure has been totally parametrized. In this way is allowed to modify the working
algorithm at synthesis time. The variables adopted are the follows:

Parameter Use
R Number of rows for the spatio-temporal window (3-5-7-9-11-13-15)
C Number of columns for the spatio-temporal window (3-5-7-9-11-13-15)
dT Life-time of an event
thr Threshold set to eliminate the outliers

min_events Minimum number of events to process the window
n_iter Number of iterations of the algorithm (0-1-2)
n_shift Number of shift to control the overflow problem (0 to 8)

type_sens Allows to choose between DVS (0) and ATIS (1) architecture

Table 5.1. Parameters used for the hardware design

5.1 Memory block and validation FIFO
The first block in input is the memory management. It is made-up of four main basic units:

• MEM_READ

• BRAM

• VLD_MEM

63

5 – Hardware description

• mux_out

Figure 5.1. Memory block scheme

MEM_READ
This part is composed of a finite state machine that at each clock cycle, as described in
paragraph 4.2, provides the memory address from which to extract two columns at a time
of the local space-time matrix.

The inputs of this block are:

• Xi: on 9 bits, is the vertical coordinate of the event placed in the visual matrix;

• Yi: on 8 bits, is the horizontal coordinate of the event placed in the visual matrix;

• Tsi: on 24 bits, is the time stamp associated with the event that occurred at the co-
ordinates (Xi, Yi);

• Xv: on 9 bits, is the vertical coordinate of the event to be evaluated for validity in
temporal terms;

• Yv: on 8 bits, is the horizontal coordinate of the event to be evaluated for validity in
temporal terms;

64

5.1 – Memory block and validation FIFO

• Tsv: on 24 bits, is the time stamp associated with the event to be evaluated for validity
in temporal terms;

• check: is an active high signal, and indicates when an event is expired;

• dob: it is an input matrix of 30 elements, 24 bit each. It corresponds to the output of
the 30 BRAM blocks, from which it’s possible to extract two columns per cycle;

• bit_msb: it corresponds to the bit set by the overflow manager (FSM) in order to
control the wraparound problem.

The outputs are instead:

• addra, addrb: these are the addresses related to the BRAM ports A and B. The first is
used to write the time stamp related to the new event, and read the output columns,
the second is used for the validation part;

• wea, web: these are active high signals, for both BRAM ports, which are useful to
signal to the memory that a data is ready to be written;

• dina, dinb: these are the 24 bit inputs, reserved for time stamps, of the BRAM ports
A and B;

• dia_ovf, dib_ovf: these are the 24 bit inputs, reserved for the overflow control bits
of the BRAM ports A and B;

• MEM_num: it allows to multiplex the outputs of the memories according to how the
data are organized internally, in order to position them correctly.

BRAM
The input/output signals have been described previously. It is important, in this case, to
use two different memory spaces: one reserved to the time stamps, the other instead to
the control bit set in order to prevent the wraparound.

VLD_MEM
This block is represented by a FIFO, whose task is to provide a useful tool that controls
the state of an event. A generic input 𝑒𝑡 arrives at a certain instant t, crosses the memory
with a frequency of 12.5 MHz, and after a certain interval of time dT (externally set) it is
put on the output. When this condition is verified the event is considered extinct.

The inputs are:

• sready: is an active high signal, which allows the FIFO to store the incoming event;

• evt: is the input event represented on 41 bits, consisting of the triplet (X,Y,Ts).

65

5 – Hardware description

The outputs are expressed inside the triplet (Xv, Yv, Tsv) accompanied by the check
signal, which signals the just expired event.

mux_out
It represents a register that acts as a multiplexer. It allows to position the output events
coming from the BRAMs correctly. The first column in positional order will occupy the
first R positions (from 0 to R-1), the second column will occupy the following R positions
(from 15 to 15+(R - 1)).

The inputs are:

• clock;

• sready: is the active high signal that indicates the validity of a data from the memory
management;

• doa: is the output matrix from the BRAM blocks, composed of 30 time stamps (in
the worst case) of 24 bits each;

• doa_ovf_t: is an array of 30 control bits related to the output time-stamps on doa;

• MEMnum: multiplexer selection signal. It allows to vary the position of the elements
(both Ts and guard-bit) in order to organize them according to the desired matrix
structure.

The outputs are:

• srdy_out: is the active high signal associated with the input sready, delayed with its
relative time-stamp by the register;

• Tsout: is the matrix associated with doa, after being properly multiplexed and de-
layed by the register. Its dimensions are always 30 elements of 24 bits;

• doa_ovf: is the array related to doa_ovf_t, also multiplexed and delayed by the reg-
ister.

5.2 Overflow detector FSM
This unit has the task of detecting the presence of an overflow and set, consequently, a
control bit that allows the management. The detection task is entrusted to a purely com-
binatorial block described in section 4.4, while the guard bit selection is linked to a finite
state machine (ovf_detector).

Its schematic is in Figure 5.2.

66

5.2 – Overflow detector FSM

Figure 5.2. Overflow control

The inputs are:

• clock;

• sready: active high signal, when a new event is available;

• rst_in: active high signal, when there is a reset from outside;

• ovf: is the output bit of the combinatorial circuit that signals the presence of an
overflow;

The outputs are:

• rst_mem: control signal whose task is to start a reset of the memory space where
the guard bits are allocated. Every time an overflow occurs, in fact, the control bits
stored in the BRAM are reset;

• ld_n_bit: control signal that, in correspondence of a new input event, activates the
register where the MSBs have to be allocated. In addition, it also activates the loading
of the register where the MSB of the previous event is saved;

• bit_msb: corresponds to the control-bit of the new event to be stored in memory.

The flow chart of the FSM is illustrated as follows:

67

5 – Hardware description

Figure 5.3. Control chart of the state machine

68

5.3 – Shifter and valid generator

5.3 Shifter and valid generator
In this part of the design the developed elements have the main scope to take the matrix
coming out from the memory manager, mix it with the guard-bit, shift it to the right of a
certain quantity, and generate the valid vector. The outputs are, at the end, destined to the
computation part of the pipe chain.

This block is made up of three important elements:

• Input register

• gen_valid

• pipe_mem_mult

Its global scheme is represented as follows:

Figure 5.4. Valid generator and shifter blocks

Input register
This is an input pipe register that saves the values of the two Ts columns per cycle taken
out from the memory. It also stores their related guard-bits, used to manage the overflow
problem, and the start signal, delayed to maintain coherence with the time-stamps. This
last is used also as load signal for the register itself, in order to avoid the storage of un-
useful elements.

It acts also as a multiplexer that shifts the two input columns to have a position as follows
in Figure 5.5:

69

5 – Hardware description

Figure 5.5. Shifter behaviour

In this way, let’s suppose that R is the number of the selected rows (with R < 15) for a sin-
gle column. In the original implementation, if Tsout is made up of 30 rows, the elements
of the first column are allocated from the line 0 to R-1, and the others of the second one
are allocated from 15 to 15+(R-1).
With this multiplexer, the two columns are placed adjacent to each other, by occupying the
first 2*R lines (from 0 to 2*R-1). This is done for Tsout and msb_ovf, that is the control bit.

gen_valid
It is a block whose purpose is to generate a different valid vector associated to the two
columns that, each cycle from the time that a new event is generated, come out from the
memory.
It is a 30 rows array of one bit each. In this way, its value can be 0 in correspondence of
an un-valid event (like for Ts = 0), or 1 for the others.
The inputs of this block are:

• yin0: it represents the LSB of the Y coordinate, useful to understand if the first
columun at the beginning cycle, or the last at the last one, has to be ignored;

• start_t: it is the active high signal that starts the generation of the valid vector.

The output is:

• valid: it is the valid vector generated as described before.

70

5.4 – Mult block

pipe_mem_mult
It represents a pipe stage whose main aim is to combine the time stamps with their relative
control-bit and then right-shift them of a n_shift quantity.

The inputs of this block are:

• Ts_out: it is the matrix (30 x 24 bits) representing the two extracted columns;

• doa_ovf: it is the input vector (30 x 1 bit) of control-bit associated to the two columns
of Ts;

• n_shift: it is an input parameter, at synthesis level, which allows to choose the num-
ber of bits to shift;

The outputs of this block are:

• Ts_m: it is the output matrix (30 x 24 bits) representing the time stamps with the
managed control bit associated to them, and shifted to the right of 𝑛_𝑠ℎ𝑖𝑓 𝑡.

5.4 Mult block

Figure 5.6. Mult block scheme

This block, as described in the section 3.2 (fixed-point model), is designed to calculate
the matrix product 𝐴𝑇𝐴. To do this, the idea is to take each column of time-stamps that
compose the neighbourhood of the new incoming event, and associate to it its spatial co-
ordinates (𝑋0, 𝑌0).

Starting from the new event, a couple of adjacent columns is extracted from the memory
and processed. Thereby, two blocks (GENY and GENX) have been designed to generate
the coordinates for any element of the local window.

As input values, there are:

71

5 – Hardware description

• X, Y: matrix composed by 2*R rows,of 4 bits each;

• T: matrix composed by 2*R rows of 24 bits each;

The first step is to eliminate the coordinates (by substituting zeros instead of their real
values) where the time stamps are null. That is done using a multiplexer.

The results that have to be generated, later, are X, Y, T, X2, Y2, XY, XT, YT. In order to
obtain them, for each row a multiplier has to be allocated.

• X, Y, T: no need for a multiplier;

• X2, Y2, XY: 2*R multipliers to allocate, 8 bits each;

• XT, YT: 2*R multipliers to allocate, 28 bits each.

In the figure above, only a little fraction of this block is shown. In particular, the part under
analysis shows the calculation of only one of the rows of X2. So, it’s easy to understand
that the structure has to be replicated for other 29 times, to have the complete X2 vector,
and for all the other needed vectors Y2, XY and so on.

The decision to allocate a pipelined architecture for so huge multipliers has been taken to
reduce their critical paths. In this way, no risk for timing problems is encountered.

The next part of the pipe queue is made up of adders that have the task of adding-up the
results just obtained: all the 2*R raws of X, Y, T, X2, Y2, XY, XT, YT are added, result-
ing in their corresponding single-row values SX, SY, ST, SX2, SY2, SXY, SXT, SYT. It
is important to remember that this partials are related to only two columns extracted per
cycle.

At the end, in order to have the total result of the whole columns that compose the neigh-
bourhood, an accumulator is put in cascade.

The inputs of this block are:

• start: it is the active high signal that starts the computation;

• y0: it is the LSB bit of Y that allows to ignore the first or the last column;

• Tsin: it is the input matrix that contains the two columns of events;

• valid: it is the valid vector that allows to validate or not its related time stamp;

The outputs of this block are:

72

5.5 – Adjoint block

• SX, SY, ST, SX2, SY2, SXY, SXT, SYT, SN: they are the output sums (2*R rows
of a certain number of bits each) of the block, that correspond to the components of
the product matrix 𝐴𝑇𝐴.

• sur15, sur15_2: they are two storage elements whose scope is to save the input
columns for the next iterations. Two of these blocks are necessary because, if a new
event comes after exactly 8 cycles the previous one, its corresponding input columns
cannot be stored (i.e. in sur15). That’s because sur15 is already occupied by the pre-
vious event neighbourhood. For that reason is necessary to allocate another set of
registers (𝑠𝑢𝑟15_2).

• go: it is the active high signal which indicates to the next block that a new compu-
tation can start.

5.5 Adjoint block

Figure 5.7. Adjoint block scheme

This block performs the matrix product (𝐴𝑇𝐴)−1(𝐴𝑇𝑌): it allows to calculate the partial
plane coefficients 𝑎𝑑𝑒𝑡,𝑏𝑑𝑒𝑡 and det.
It is composed by three pipe stages, which, first, compute the adjoint matrix components,
then, the temporary results for 𝑎𝑑𝑒𝑡,𝑏𝑑𝑒𝑡 and det, and at the end their final sum.
The initial part allows to understand if the number of valid events is lower with respect to
the set (at synthesis level) min_events. If this condition is not respected, the start signal
is not propagated inside the structure, and no computation occurs.

The inputs of this block are:

• start: it is the active high signal that corresponds to the ”go” coming out from the
MULT block;

73

5 – Hardware description

• SX, SY, ST, SX2, SY2, SXY, SXT, SYT, SN: they are the components of the product
matrix 𝐴𝑇𝐴.

The outputs of this block are:

• a_detin, b_detin and detin: they are the partial plane coefficients expressed on 62
bits (the two first) and 42 bits (the last one);

• go_iter: it is the signal which allows the next block to start its process.

5.6 Iteration block
This is the block that eliminates the outliers by verifying the condition:

𝑎𝑑𝑒𝑡(𝑥 − 𝑥𝑐) + 𝑏𝑑𝑒𝑡(𝑦 − 𝑦𝑐) + (𝑡–𝑡𝑐) < 𝑡ℎ𝑟

Where (𝑥𝑐,𝑦𝑐,𝑡𝑐) is the triplet of the central event, and 𝑎𝑑𝑒𝑡,𝑏𝑑𝑒𝑡 are the coefficients of the
local window around it.

As defined in 5.4, the matrices from which remove the events that do not respect the in-
equality above can be sur15 or sur15_2. Thanks to a switching mechanism, it is possible
to process the correct neighbourhood related to the 𝑎𝑑𝑒𝑡 and 𝑏𝑑𝑒𝑡 plane values calculated
in the previous stages.

In the following figure, the structure of the device is shown:

Figure 5.8. Iteration block scheme

For each cycle, two columns are processed. There are four stages that compose the block:

74

5.6 – Iteration block

• switch: as described before, it is a little process that, every time a new couple of
plane coefficients are available in input, switches between sur15 and sur15_2. This
allows to process the correct neighbourhood;

• calc_param: it is the first part of the process that calculates in parallel – for each pixel
belonging to the two extracted columns per cycle – their related values 𝑎𝑑𝑒𝑡(𝑥 −
𝑥𝑐), 𝑏𝑑𝑒𝑡(𝑦 − 𝑦𝑐) and (𝑡–𝑡𝑐);

• calc_comp: this stage of the pipe chain adds the results of calc_param, for each
element, in order to obtain the sum 𝑎𝑑𝑒𝑡(𝑥 − 𝑥𝑐) + 𝑏𝑑𝑒𝑡(𝑦 − 𝑦𝑐) + (𝑡–𝑡𝑐);

• calc_thr: at the end, the sums of the last part are compared to thr in order to remove
(by substituting zeros) the outliers.

The choose of process two columns per cycle was made in order to have a correct man-
agement of a Mult-block in cascade. That’s because Mult itself works with two columns
per cycle.

The inputs of this block are:

• sur15_1, sur15_2: they are the two storage elements coming from the Mult-block;

• git: it is active high only at the first cycle, when the computation starts. In this way,
when 8 cycles (in worst case) are elapsed, it changes the ”sur” input basing on switch;

• git_evt: if git is low, it means that any new computation can start. Though there’s
the possibility that externally the parameters of the plane and their original neigh-
bourhood are available, but cannot be processed because SN is lower than n_events.
In this case is necessary to switch anyway internally the input ”sur”, in order to
maintain the correct behaviour of the device. This signal is useful to understand this
eventuality;

• a_detin, b_detin, detin: they are the plane-coefficients coming from Adjoint-block.

The outputs of this block are:

• sub15o: it is the output matrix (2*R rows of 24 bits each) without outliers;

• valid: it is the valid matrix (2*R rows of 1 bit each) related to the new subsurface
sub15o;

• go: it is the active high signals to start the next operation.

75

5 – Hardware description

5.7 Final computation
This is the last stage that performs the final computation of the algorithm. Taking the
results 𝑎𝑑𝑒𝑡, 𝑏𝑑𝑒𝑡 and det coming from the matrix operations, and the iterations done to
eliminate the outliers, the next step is: know the value of the plane-coefficients and elab-
orate them in order to obtain the inverse components of the velocity vector.

In order to do this, the flow of the operations is shown as follows:

Figure 5.9. Final stage block scheme

Each element of this structure has been included in the project by using the ”IP Core
Generator” tool of Vivado Design Suite 2017.1. In this way, by modelling the core with a
simple wizard of configuration, it is possible to choose the best available solution for this
purpose.

Divider
The first core-block is composed by two input dividers that perform in parallel the oper-
ation:

𝑎 =
𝑎𝑑𝑒𝑡
𝑑𝑒𝑡

𝑏 =
𝑏𝑑𝑒𝑡
𝑑𝑒𝑡

The inputs of this block are:

• s_axis_dividend_tdata: it is the dividend of the division, and it is represented on 64
bits;

76

5.7 – Final computation

• s_axis_dividend_tvalid: it is an active high signal, ready when the dividend is avail-
able;

• s_axis_divisor_tdata: it is the divisor of the division, and it is represented on 48 bits;

• s_axis_divisor_tvalid: it is an active high signal, ready when the divisor is available;

The outputs of this block are:

• m_axis_dout_tdata: it is the result of the division, composed by an integer part and
a fractional one. It is represented on 72 bits;

• m_axis_dout_tvalid: it is an active high signal, and it is ready when the output is
available;

As seen in section 3.2, in fact, the operand widths are not the ones set during the design
phase. To remember:

• Dividend: integer on 62 bits;

• Divisor: integer on 42 bits;

• Quotient: fractional number on 66 bits, composed by 62 bits of integer and 4 bits of
fractional part.

The presence of some extra-bits is due to the data packing used in the protocol of the
device, as follows:

Figure 5.10. Data packing for division inputs

It is necessary, so:

• To allocate the divider in the first 62 bits, leaving zeros in the 2 leading bits;

• To allocate the divisor in the first 42 bits, leaving zeros in the other leading bits.

77

5 – Hardware description

The output is expressed as follows:

Figure 5.11. Data packing for division outputs

It is important to precise that only the first 25 LSBs are taken out from it: the ones be-
longing to the range 24-4 represent the integer part, the last one in the range 3-0 are the
fractional component.

By looking at the communication protocol, there are two ways of working:

• Non blocking mode: it means that the division is performed only when all the input
channels receive a tvalid high. In other case any operation is done.

Figure 5.12. Non-blocking mode

• Blocking mode: it means that, even if only one of the channels receives a tvalid, its
related input is buffered. This will be available to perform the operation when the
other channel will receive its own tvalid (Figure 5.13).

The first way has been chosen during the design phase of the core.

The latency of this block is 70 clock cycle to complete: that’s due to the radix-2 archi-
tecture adopted in this work. There was another, faster, possibility that is the high-radix
solution. In this case, in fact, the latency will be reduced to 40 clock cycles but with
the counterpart of the increased throughput. The radix-2 divider is a pipelined structure,

78

5.7 – Final computation

Figure 5.13. Blocking mode

which the highest achievable throughput: it is possible to start a new computation every
clock cycle. The high-radix, instead, presents an internal loop which severely limits the
performances. Any new operation can start without completing the last. Furthermore, la-
tency is not a critical parameter in this kind of application and the timing, related to the
entire structure, is not heavily affected by the presence of 70 clock cycles. Throughput,
vice-versa, is a fundamental specific, even more considering the strong flow of the pipe
framework.

Arctan
The scope of this core is to obtain:

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑎
𝑏

)

The inputs of this block are:

• s_axis_cartesian_tdata: it is the input composed by a and b values in a single line
vector. It is represented on 64 bits;

• s_axis_cartesian_tvalid: it is the active high signal which indicates if a data is avail-
able in input.

The outputs of this block are:

• m_axis_dout_tdata: it is the output result represented on 16 bits, divided into 3 in-
teger and 13 fractional bits;

• m_axis_dout_tvalid: it is the active high strobe that signals the end of the computa-
tion;

79

5 – Hardware description

The input/output formats are expressed as follows:

Figure 5.14. Data packing for arctangent inputs

Figure 5.15. Data packing for arctangent outputs

In the Y_in field is put the “a” value, in the X_in one instead the ”b” result. Thereby, from
the bit 0 to 24 ”b” is allocated, instead, from the bit 49 to 25.
The latency of this block is 12 clock cycles.

Sincos
The scope of this core is to obtain:

𝑠𝑖𝑛(𝜃) 𝑎𝑛𝑑 𝑐𝑜𝑠(𝜃)

The inputs of this block are:

• s_axis_phase_tdata: it is the angle vector represented on 16 bits, 3 integer and 16
fractional;

• s_axis_phase_tvalid: it is the active high signal which indicates that the angle is
available in input.

The outputs of this block are:

• m_axis_dout_tdata: it is the output result represented on 32 bits, indicating the sine
and the cosine of the input angle;

• m_axis_dout_tvalid: it is the active high strobe that indicates the availability of the
results;

The input/output formats are expressed in Fig. 5.16 and 5.17.

The Y_out field is the sine value, the X_out one represents instead the cosine. The latency
of this block is 20 cycles of clock.

80

5.7 – Final computation

Figure 5.16. Data packing for sine and cosine inputs

Figure 5.17. Data packing for sine and cosine outputs

Square and add
This part is a pipelined structure which is made up of a multiplier followed by an adder,
which performs:

𝑐 = 𝑎2 + 𝑏2

The results ”a” and ”b” are represented both, as described previously, on 25 bits (21 in-
teger and 4 fractional). Two multipliers act in parallel to calculate their relate squares. In
this way, their outputs are on 50 bits (42 integers and 8 fractional). After, a pipe stage,
separates them from the adder that, in the next cycle, calculates their sum. The two inputs,
as known, are on 50 bits, the result in order to avoid overflow, is on 51 bits (43 integers
and 8 fractional).

Its latency is two clock cycles.

Square root
The scope of this core is to obtain:

√𝑐

The inputs of this block are:

• s_axis_cartesian_tdata: it is the “c” vector given by the sum a2 + b2, and it is repre-
sented on 48 bits;

• s_axis_cartesian_tvalid: it is the active high signal which indicates if a data is avail-
able in input.

The outputs of this block are:

• m_axis_dout_tdata: it is the result of the square root represented on 24 bits;

• m_axis_dout_tvalid: it is the active high signal that indicates the end of the square
root computation;

81

5 – Hardware description

The input/output formats are expressed as follows:

Figure 5.18. Data packing for square root inputs

Figure 5.19. Data packing for square root outputs

If the PAD bit is excluded, the output result is represented on 23 bits (from the 0 to 22).
The latency of this block is 23 clock cycles.

Reciprocal
This block is a divider that performs the reciprocal operation of an input:

1
√𝑐

The inputs of this block are:

• s_axis_dividend_tdata: it is the dividend of the division, in this case its value is 1,
and it is represented on 24 bits;

• s_axis_dividend_tvalid: it is an active high signal, ready when the dividend is avail-
able;

• s_axis_divisor_tdata: it is the divisor of the division, and it is represented on 24 bits;

• s_axis_divisor_tvalid: it is an active high signal, ready when the divisor is available;

The outputs of this block are

• m_axis_dout_tdata: it is the result of the division, represented on 25 bits (5 integer
and 20 fractional);

• m_axis_dout_tvalid: it is an active high signal, and it is ready when the output is
available;

82

5.7 – Final computation

The latency of the reciprocal block is 46 clock cycles.

Total computation
The difference between the times needed to complete the two branch operations is given
by calculating the latency of each of them:

First brench: 𝑡1 = 𝑡𝑎𝑡𝑎𝑛 + 𝑡𝑠𝑖𝑛𝑐𝑜𝑠 = 12 + 20 = 32 clock cycles

Second brench: 𝑡2 = 𝑡𝑝𝑖𝑝𝑒 + 𝑡𝑠𝑞𝑟𝑡 + 𝑡𝑟𝑒𝑐𝑖𝑝 = 2 + 23 + 46 = 71 clock cycles

The difference in time is of 39, so it means that a 21 clock cycles delay is required for the
first branch in order to have both results at the same time. Only at this point is possible to
calculate the products:

1
√𝑎2 + 𝑏2

𝑠𝑖𝑛(𝜃) ,
1

√𝑎2 + 𝑏2
𝑐𝑜𝑠(𝜃)

83

84

Chapter 6

Simulation, synthesis and results

In this chapter all the simulation and synthesis results are shown. The analysis is con-
ducted by using three different couples of data: one coming from the same dataset used
for the Matlab simulation in chapter 3, the second that starting from the previous one
includes also an additional part where an incoming wraparound is artificially inserted,
and the other properly prepared in order to highlight some particularities of the hardware
algorithm. Part of the simulation has been made on each single block of the entire ar-
chitecture, the other one, instead, is focused on the system level. All the waveforms have
been obtained with the simulation environment ModelSim - Intel FPGA Starter Edition
10.5c

The first two sets of events are applied to illustrate the working principle of the memory
interface (both in writing and reading phases), how the device behaves in presence of an
overflow, and all the computational steps to be performed. The parameters set in the three
cases are:

Parameters Dataset Modified Dataset Casual events
R 15 15 3
C 15 15 3
dT 205 205 9

min_evts 10 10 3
n_iter 2 2 2
n_shift 0 1 0

Table 6.1. Parameters used for hardware simulation

The tables 6.2 and 6.3 show the temporal evolution of the received events.

85

6 – Simulation, synthesis and results

t X Y Dataset Modified Dataset
1 65 68 9586520 9586520
2 68 58 9593330 9593330
3 68 56 9593705 9593705
4 64 62 9593751 9593751
5 67 57 9593820 9593820
6 74 57 9593869 9593869
7 77 67 9594050 9594050
8 78 67 9596366 9596366
9 69 64 9596483 9596483
10 70 64 9596543 9596543
11 71 63 9596578 9596578
12 70 63 8388606
13 71 64 9586520

Table 6.2. Dataset and modified version

t X Y Time Stamps
1 1 3 2
2 1 2 33
3 0 4 100
4 4 1 256
5 2 3 320
6 4 3 550
7 0 3 675
8 3 1 1024
9 3 0 3240
10 0 2 6449
11 0 0 7024
12 2 4 7470
13 2 2 7590
14 1 1 7600

Table 6.3. Casual events

6.1 Single-block testbenches

Memory addressing
The flow of incoming events used in this phase is a small extract of the dataset given by
the Istituto Italiano di Tecnologia (iit). It’s interesting to notice how the time stamps are

86

6.1 – Single-block testbenches

saved, inside the different allocated block RAMs, by evaluating the generated addresses
for the memory locations.

In figure 6.1 a general view of the memory management, basing on the Table 6.2, is
proposed.

Figure 6.1. Working principle of the memory block

As can be noticed, when a new event is ready, the sready signal is pulled-up. In corre-
spondence of the rising edge of the clock, this signal is acquired by the control machine of
the memory interface and contemporary starts the reading phase. After six clock cycles
two columns per cycle are extracted from the memory and, at the same time, the new time
stamp is allocated at its related coordinates inside the BRAM.

Let’s now suppose to extract the 15x15 matrix around the event number 11 in table 6.2.
The expected neighbourhood should be:

Figure 6.2. 15x15 matrix

The address generation block, by remembering the equation 4.1, will return:

• n_block: 4 for the 60 < X ≤ 75, 5 for the 75 < X ≤ 90. The central event is in block
4, thereby will be necessary to add 120 in order to select the other;

87

6 – Simulation, synthesis and results

• Y(7 downto 1): its values will be 28, 29, 30, 31, 32, 33, 34, 35.

By observing the waveform, the results are the same as expected:

Figure 6.3. Generation of the addresses

The output matrix extraction is directly related to this step: in this way it is possible to
have the corresponding 15 columns in 8 clock cycles. Thanks to the Y(0) bit, the column
in excess is deleted by associating it to a valid vector with zeros inside. The description
step-by-step of this process is shown in the following simulations:

Figure 6.4. First cycle

88

6.1 – Single-block testbenches

Figure 6.5. Last cycle

The local matrix is the same expected and, in this case, the last column is totally ignored.

Processing blocks
This part of the digital implementation represents the computation stage where the two
columns per cycle are processed following the algorithm steps. It is composed by three
units: Mult, Adjoint and Iteration blocks.

The math operations involved have been described in section 3.1. The outputs of each
unit were compared with the Matlab results to verify their correctness.

Figure 6.6. The Mult block

The results for Mult, without iterations, are:

• SX = 67

• SY = 67

• ST = 105535015

• SX2 = 617

• SY2 = 605

89

6 – Simulation, synthesis and results

Figure 6.7. The Adjoint block

Figure 6.8. The Iteration block

• SXY = 467

• SXT = 642864303

• SYT = 642789925

• N = 11

The results for Adjoint, without iterations, are:

• 𝑎𝑑𝑒𝑡 = 139460208

• 𝑏𝑑𝑒𝑡 = -71721444

• 𝑑𝑒𝑡 = 414324

It is important to remember that the output generation of the Iteration block is similar to
the mechanism of the memory addressing: two columns per cycle are taken out, so that
is possible to re-use the Mult entity to process again the neighbourhood. Note well that if
min_evts condition is not reached, no iteration stage is called. In this way the algorithm
stops and waits for the next computation.

90

6.1 – Single-block testbenches

Overflow detection
As described in section 3.3, the overflow detector allows to signal the presence of a
wraparound and manage a control bit. This last, every time a wrap occurs, is set equal
to zero for the past events just saved in memory, and will be one from the overflow event
onward. Thanks to this state machine that controls the process, it is possible then to main-
tain fixed the distance between the events.

The following figure shows how this part works:

Figure 6.9. The Overflow detection block

From Figure 6.9 it is clear that the presence of a time stamp as 8388606 lower than the
previous one (9596578) generates a reset of the doa_ovf bits. It is interesting to notice,
though, that this new event will have no zero as control bit any more, but one.

Final stage
The last stage is composed by a certain number of logic cores which perform several steps
in order to obtain the values of the differentials.
The first operation is made up by two dividers in parallel which calculate the divisions:

𝑎𝑑𝑒𝑡
𝑑𝑒𝑡

and
𝑏𝑑𝑒𝑡
𝑑𝑒𝑡

The simulations for this step are done in Vivado Design Suite 2017.1.
The expected results are:

• a =
𝑎𝑑𝑒𝑡
𝑑𝑒𝑡

= 336.59

• b =
𝑏𝑑𝑒𝑡
𝑑𝑒𝑡

= -173.10

The outputs of the block are:

91

6 – Simulation, synthesis and results

Figure 6.10. The Divisor block

Then the quotients are passed to two different branches. The first is made up of the arct-
angent followed by the cordic for sine/cosine computation. Let’s analyse it.

The math results are:

• 𝜃 = atan(a/b) = 2.0458

• sin(𝜃) = 0.8893

• cos(𝜃) = -0.4573

The outputs of atan and cordic blocks are:

Figure 6.11. The Atan block

92

6.1 – Single-block testbenches

Figure 6.12. The Cordic block

The other branch performs firstly the square, followed by the sum, of the division outputs.
Then, the sum is sent to a cordic in vectoring mode (to calculate square root) and, at the
end, its output is inverted.

The math results are:

• c = 𝑎2 + 𝑏2 = 143260

• √𝑐 = 378.4970

• (√𝑐)−1 = 0.0026

The outputs of square and add, square root and reciprocal blocks are:

Figure 6.13. The Square and Add block

93

6 – Simulation, synthesis and results

Figure 6.14. The Square Root block

Figure 6.15. The Reciprocal block

Validation memory
In order to verify the correct behaviour of the validation memory, the dataset and some
simulation parameters have been changed. As described at the beginning of this chapter,
the ”Casual events” set of data [Table 6.3] substitutes the one used until now. Also the
local matrix becomes a 3x3 neighbourhood, with a minimum number of events equal to
3, and a dT lifetime of 9.This last condition means that, due to the fact that the FIFO
increments its own counter with a frequency of 12.5 MHz (in the worst case of 1 event/80
ns incoming), an event can be considered extinct after 9*80ns = 720 ns.

The visual matrix associated to the Table 6.3 is represented as follows:

It is clear that, after 9 events received, the oldest are deleted from the memory. The ad-
dressing mechanism is the same. The output of the FIFO returns the time stamp to delete
and its related coordinates. These last are elaborated as the memory manager does for the
new incoming events: if they point to a memory location where the content is equal to the
FIFO-out, the event is expired. Otherwise the event in the BRAM is more recent, and so
anything has to be done.

By looking at the figure 6.16, it is shown how the local matrix around the last event (n. 14)
should not present the value of the time stamp (33) at the coordinates(1,2). This because
between them there are more than nine events. As highlighted in 6.16, in fact, the expected
Ts between 6449 and 7590 is not present.

94

6.2 – System simulations

Figure 6.16. Second cycle for 3x3 matrix

Borders detection
Also for this case, the used dataset is ”Casual events”. The idea is to see for which inputs
the computation starts. By looking at the table 6.3 and to the final expected matrix shown
above, for the elements belonging to the entire column 0 and the row 0 any neighbour-
hood can be extracted.

The time stamps not considered are 100, 675, 3240, 6449 and 7024. In figure 6.17 these
are marked in red:

Figure 6.17. Border elements

6.2 System simulations
In order to have a complete view of the architecture behaviour, it results necessary to
show the different working conditions for n_iter ∈ [0-1-2], and the latency associated to
each of them. The used dataset is, as before, the one furnished by the iit.

The first case is related to a 15x15 local matrix, with no iterations.

95

6 – Simulation, synthesis and results

Figure 6.18. Top view with n iter = 0

As can be seen, only the last received event is elaborated and then passed to the other
computational block (final stage). That’s due to the min_events condition (10) that is not
reached. The same happens for the other two simulations (Figures 6.19 and 6.20): in both
cases the results are different from the first. This can be explained thanks to the removing
of the outliers introduced by the first iteration stage. In the second, instead, no event is
deleted and for that reason the outputs are the same of the first.

Figure 6.19. Top view with n iter = 0

96

6.3 – Synthesis outcomes

Figure 6.20. Top view with n iter = 0

The latency values, by using a 100 MHz clock, are:

Iteration Latency [ns]
0 230
1 430
2 630

Table 6.4. Latency for different iterations

6.3 Synthesis outcomes
In this section all the informations related to the hardware implementation are shown for
different configurations of the parametrized structure. By using the target device (Zynq
XC7Z030-1SBG485C) inside the Vivado environment, all the libraries used for this kind
of architecture are called. The estimations on power consumption, delays and area, hence,
are explored after the synthesis and the implementation stages. The software tool, starting
from the RTL design in VHDL language, generates a gate-level netlist in the first part and,
then, moves on to the Place & Route in the second phase.

As just described, the only constraint used for this step is a 10 ns clock period. The struc-
ture is fully pipelined in order to satisfy this working condition. The entire digital design
has been made to achieve the highest possible throughput, sacrificing at the same time the
latency. In order to do this, an important parameter to take under control is the number of

97

6 – Simulation, synthesis and results

FPGA resources used.
The analysis has been conducted by varying the neighbourhood dimensions (from 3x3 to
15x15) and the number of iterations (from 0 to 2).

The number of active BRAMs inside the structure is constant (16.98%): that’s because
this is not a parametrized element. It is independent from the variables set at synthesis
level. Same considerations have to be done for the IO part (72.67%).

In the following graphs are shown, instead, the percentages of use of the units depending
on the configuration parameters.

Figure 6.21. Number of used DSPs for different iterations

As expected, the growth associated to the increasing dimensions of the local matrix is lin-
ear for every kind of working condition. It is interesting to notice how also the difference
between the values for n_iter equal to 0, 1 and 2 becomes relevant with this trend. Another
important aspect to consider is related to n_iter = 2: after the R = C = 7 condition, the
number of DSP stops growing. This can be explained with the capacity of the synthesizer
to optimize better the resources inside the FPGA. This is evident also for other elements
like LUTs and Flip Flops.

98

6.3 – Synthesis outcomes

Figure 6.22. Number of used LUTs for different iterations

Figure 6.23. Number of used FFs for different iterations

The power consumption is a critical aspect of a system design. The implementation stage
returns, in fact, an estimation of the total on-chip power and the fractions related to the
dynamic part and the static one, only by using the set constraint on the clock.

99

6 – Simulation, synthesis and results

Figure 6.24. Total power consumption for different iterations

Also in this case the behaviour doesn’t present any surprise. By increasing the number of
iterations, the chip power needing becomes markedly dominant for huge neighbourhood
dimensions. For n_iter = 0 any significant difference is appreciated. For n_iter = 2, vice-
versa, the growth rate is decidedly higher.

The distribution of the two contributions is shown in Figure 6.25, 6.26 and 6.27.

Figure 6.25. Static and Dynamic contributions for n iter = 0

100

6.3 – Synthesis outcomes

Figure 6.26. Static and Dynamic contributions for n iter = 1

Figure 6.27. Static and Dynamic contributions for n iter = 2

The last element analysed at the end of the design synthesis is the worst setup slack. It is
a fundamental value which indicates whether the timing constraints are met. It represents
the remaining time that in the path, between two registers, can be taken without losing
the system stability. In this case, it is referred to the critical path, before the arriving of a
new edge (setup time).

101

6 – Simulation, synthesis and results

Figure 6.28. Worst setup slack

As can be seen from the Figure 6.28, it is evident that the growth of the system area (and
so the number of the digital elements used) will result in a reduction of the available time
to complete the path. The synthesizer will have more difficult in finding the best possible
placement of the individual blocks that does not affect timing performances.

6.4 Future developments
This work has closely followed the entire development process of a reconfigurable and
flexible architecture, which ensures the best performances starting from fixed system
specs.
The aim will be, in this paragraph, to propose possible solutions to further improve the
device both in terms of used resources and speed.

Test and comparisons
The next step will be to physically test the algorithm on FPGA and to compare the ob-
tained results with their corresponding in the software version. This has already been
done, partially, at simulation level with the insertion (inside the various test-benches seen
in paragraphs 6.1 and 6.2) of a portion of events coming directly from the real dataset.

Fix parameters
As already seen in paragraph 3.3, the best architectural solution that allows an optimal use
of the algorithm is for a number of iterations equal to 2 (in this case the results converge).
The cost is to lose something in terms of precision. The error, in these cases, tends to be
reduced for large matrices (case n_shift = 1), and this indicates a way to choose the best
parameters. The idea of a reconfigurable device at synthesis time is useful for the different

102

6.5 – Conclusion

experimentations, because it allows to evaluate from time to time the hardware impact of
every combination of parameters. However, with the perspective of an ASIC realization
it is advisable to rethink and optimize the system in order to allow savings in terms of
area, consumption and performance.

Reduce the data parallelism
Also the choice of the righ-shifts to make on the input time stamps, in order to allow a
correct management of the wraparound (2 at most), can be an interesting way to reduce
the data parallelism. This can also involve significant reductions in terms of area of each
block, always taking into account the possible implications from the point of view of
the result accuracy. Moreover, the idea of adopting a dedicated library for each type of
computational block (adders, multipliers and so on) can bring considerable advantages.

6.5 Conclusion
The purpose of this paper was to create an architecture, both in software and hardware,
able to calculate the optical flow coming from an event-based vision camera. This new
type of sensor introduces significant improvements in terms of performances (low la-
tency) and the use of memory resources (no data redundancy), compared to the frame-
based version.

The proposed device, totally reconfigurable, can be adapted to both the main types of
sensors in commerce (ATIS and DVS). For any new incoming event, it extracts from the
memory a matrix of neighbouring events that occurred in the previous moments. From
that, it is then possible to obtain informations about the movement perceived by the cam-
era.

The parameters that allow a personalized management at synthesis time are:

• The type of sensor to interface with;

• The dimensions of the local matrix, both rows and columns;

• The extinction time, after which an event is considered too old and, therefore, no
longer valid;

• The minimum number of valid events, thanks to which is possible to start the com-
putational step;

• The number of necessary iterations to make the results converge;

• The number of shifts to allow an optimal wrap-around management, without exces-
sively losing in precision.

103

6 – Simulation, synthesis and results

The statistical analysis carried out at software level, using a dataset provided by the Isti-
tuto Italiano di Tecnologia (iit), has highlighted the need to adopt a dedicated structure,
optimized both for matrix dimensions and data parallelism, and, at the same time, with a
minimum impact in terms of loss of precision.

Once all the advantages and possible disadvantages have been analysed, thanks to accurate
tests on the structure, will be possible to integrate it with the iCub robot.

104

Bibliography

[1] [web] Il futuro dell’AI, [ℎ𝑡𝑡𝑝𝑠 ∶ //𝑤𝑤𝑤.𝑤𝑖𝑟𝑒𝑑.𝑖𝑡/𝑎𝑡𝑡𝑢𝑎𝑙𝑖𝑡𝑎/𝑡𝑒𝑐ℎ/2016/12/21/𝑓𝑢𝑡𝑢𝑟𝑜−
𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑧𝑎 − 𝑎𝑟𝑡𝑖𝑓 𝑖𝑐𝑖𝑎𝑙𝑒/?𝑟𝑒𝑓𝑟𝑒𝑠ℎ_𝑐𝑒 =]

[2] D. J. Amit, Modeling brain function, New York, NY, Cambridge University Press,
1989.

[3] Jan Larsen, Introduction to Artificial Neural Networks, 1st Edition, 1999.
[4] Simon Haykin, Neural Networks and Learning Machines, Third Edition, McMaster

University, Canada, 2009, chapter 1.
[5] [web] Reti Neurali [ℎ𝑡𝑡𝑝 ∶ //𝑏𝑖𝑎𝑠.𝑐𝑠𝑟.𝑢𝑛𝑖𝑏𝑜.𝑖𝑡/𝑚𝑎𝑙𝑡𝑜𝑛𝑖/𝑚𝑙/𝐷𝑖𝑠𝑝𝑒𝑛𝑠𝑒𝑃 𝐷𝐹 /8_𝑀𝐿_

𝑅𝑒𝑡𝑖𝑁𝑒𝑢𝑟𝑎𝑙𝑖.𝑝𝑑𝑓]
[6] J. Von Neumann and R. Kurzweil, The computer and the brain, Yale University Press,

2012
[7] C. Mead, Neuromorphic electronic systems, Proceedings of the IEEE, vol. 78, no. 10,

pp. 1629–1636, Oct 1990.
[8] C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S.

Plank, A survey of neuromorphic computing and neural networks in hardware,in
arXiv preprint arXiv:1705.06963, 2017.

[9] N. Izeboudjen, C. Larbes, and A. Farah, A new classification approach for neural
networks hardware: from standards chips to embedded systems on chip, Artificial
Intelligence Review, 2014.

[10] M. Liu, H. Yu, and W. Wang, FPAA based on integration of cmos and nanojunction
devices for neuromorphic applications, in Nano-Net. Springer, 2009, pp. 44–48.

[11] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam, et al., Truenorth: Design and tool flow of a 65
mw 1 million neuron programmable neurosynaptic chip in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, v. 34, n. 10, pp. 1537–
1557, 2015.

[12] S.B. Furber, F. Galluppi, S. Temple, L.A. Plana, The spinnaker project in Proceed-
ings of the IEEE, v. 102, n. 5, pp. 652–665, 2014.

[13] I.S. Han, Mixed-signal neuron-synapse implementation for large scale neural net-
work, Neurocomputing, vol. 69, no. 16, pp. 1860–1867, 2006.

[14] B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J. Bussat,

105

Bibliography

R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, and K. Boahen, Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulation, Proceedings of the
IEEE, vol. 102, no. 5, pp. 699–716, 2014.

[15] [web] The brainscales project. brainscales - brain-inspired multiscale computation
in neuromorphic hybrid systems. [https://brainscales.kip.uniheidelberg.de/]

[16] P. Lichtsteiner, C. Posch, T. Delbruck, A 128x128 120 dB 15 𝜇s Latency Asyn-
chronous Temporal Contrast Vision Sensor, in IEEE journal of solid-state cir-
cuits,2008.

[17] C. Posch, D. Matolin, R.Wohlgenannt, A QVGA 143 dB dynamic range frame-free
PWM image sensor with lossless pixel-level video compression and time-domain CDS
in IEEE Journal of Solid-State Circuits, 2011.

[18] D. Fortun, P. Bouthemy, C. Kervrann, Optical flow modeling and computation: a
survey, in Computer Vision and Image Understanding, v. 134, pp. 1–21, 2015.

[19] B.K. Horn, B.G. Schunck, Determining optical flow in Artificial intelligence, v. 17,
n. 1-3, pp. 185–203, 1981.

[20] M. Jakubowski and G. Pastuszak. Block-based motion estimation algorithms, a sur-
vey. Opto-Electronics Review, 2013

[21] M.B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt, G. Indiveri, Y.
Sandamirskaya, Obstacle avoidance and target acquisition for robot navigation us-
ing a mixed signal analog/digital neuromorphic processing system in Frontiers in
neurorobotics, v. 11, p. 28, 2017

[22] R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, C. Bartolozzi, Event-based visual
flow in IEEE Trans. Neural Netw. Learning Syst., 2014.

[23] Ibrahim Shour, A reconfigurable architecture for event-based optical flow in FPGA,
Master’s Thesis in Electronics Engineering, 2018.

106

	Neural networks and learning systems
	The role of AI in the contemporary world
	Artificial Neural Networks
	ANN hardware implementations
	Neuromorphic Vision Sensors

	State of art
	The optical flow
	Event-based visual flow
	Performances and limitations

	Modelling the algorithm
	Matrix computation flow
	Matlab description
	Results and comparisons

	Guidelines for the hardware design
	General view
	Memory Addressing
	Events extinction
	The overflow detection

	Hardware description
	Memory block and validation FIFO
	Overflow detector FSM
	Shifter and valid generator
	Mult block
	Adjoint block
	Iteration block
	Final computation

	Simulation, synthesis and results
	Single-block testbenches
	System simulations
	Synthesis outcomes
	Future developments
	Conclusion

	Bibliography

