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Abstract

Gesture recognition is an important topic in modern IoT applications, being used to
control mobile apps, robotics and also videogames. Many technologies are in use to
detect gestures and make them suitable to digital processing and machine learning
classifier. One widely used way to collect data, especially in biomedical researches,
is based on surface ElectroMyoGraphic (sEMG) signals, obtained simply applying
non-invasive electrodes on the skin of the area of interest. This approach makes
gesture recognition suitable for Human-Machine Interface (HMI), like prosthesis
and robotic limb control.

This thesis work studies a possible implementation of hand gesture recognition,
using a system based on the Average Threshold Crossing (ATC) event-driven fea-
ture of the forearm sEMG signals. This feature is obtained averaging on a prede-
fined time window the events generated when a sEMG signal goes above a voltage
threshold; the obtained value is an index of muscle activation.
The proposed system is composed of three acquisition boards (which acquire sEMG
signals and process them to obtain the ATC values) and an Apollo2 MicroCon-
troller Unit (MCU) with an ARM Cortex M4F microProcessor (µP). For demon-
stration purpose two Bluetooth 3.0 modules have been added to communicate with
an Arduino-based tank able to execute performed movements. The thesis work
focuses on firmware optimization on the ARM µP as well as software on Matlab®

environment, in order to obtain the lowest power consumption possible, with a la-
tency suitable for real-time applications (< 300 ms).

Dataset creation has involved 25 healthy people, each one performing five move-
ments within five repeated sessions. The neural network has been trained using
the holdout validation method, implemented at low computational level, to exploit
ARM library capabilities. Power consumption analysis have been performed on
both acquisition channel and MCU, obtained values are 0.7 mW and 0.8 mW, re-
spectively; overall power consumption results in 2.9 mW. Maximum latency of the
classifier has been measured 8.5 ms, that added to the acquisition windows, bring
to a latency of 268.5 ms from the gesture to the effective movement of the actuator.
The above results make the system suitable for wearable real-time applications.
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Summary

The goal of this thesis is to implement a low power system, based on event-driven
approach, which would be able to classify six hand gesture. The system is composed
by three Analog Front Ends (AFEs), which acquire and pre-process the surface Elec-
troMyoGraphic (sEMG) signal obtained by the forearm skin, one ultra-low power
microcontroller unit, which implements the classifier and manage all the useful pe-
ripherals, two Bluetooth modules to communicate and an actuator, which is used
to show the correctness and fastness of the system.

Six chapters compose this document.

In the first chapter, the Introduction, a general information about possibly use-
ful idea to understand this thesis are given, taken by some literature works, mainly
articles. The chapter is divided in four sections: The Skeletal Muscular System
(sec. 1.1) introduce some basic notions about how the skeletal muscle is made and
how it behaves when it is stimulated from the nervous system; then, ElectroMyo-
Graphic (EMG) signal (sec. 1.2) explains the different types of EMG acquisition,
focusing on the surface one and listing some possibility of feature extraction; The
Average Threshold Crossing Technique (sec. 1.3) introduces the feature extraction
process used in this thesis, explaining how it is obtained; last, State of the Art
(sec. 1.4) hake a summary about some previous work on gesture recognition, from
some older initial work to other more recent and performing.

After the introduction, the narration tries to follow a logic path, starting describing
the hardware, then the data acquisition, last the software part.
Chapter two, called System Configuration, describes in detail all the hardware by
which the system is composed. This chapter is divided in four sections too: Ac-
quisition Channels (sec. 2.1) illustrate the whole structure of the AFEs, explaining
in detail what each part does and why, and it also describes which are the elec-
trodes used and related advantages and disadvantages; the Apollo2 board (sec. 2.2)
is then introduced, explaining the motivation for its employment and the most
interesting functionality, including a brief list of the code routines; then the Blue-
tooth Modules (sec. 2.3) are described, showing their capabilities, and last the Zumo
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Robot (sec. 2.4) is depicted, including some technical details and the behavior of
its firmware.

In the third chapter, Data Acquisition, all the process required to acquire data is
described. Three sections composed this chapter: Performed Movements (sec. 3.1)
explain how the final set of movements has been obtained and by which gestures is
composed; Electrodes Placement (sec. 3.2) describes in the most accurate possible
way the muscles on which the electrodes have to be placed, including some initial
test; Acquisition Protocol (sec. 3.3) then introduces the complete procedure to be
followed to acquire the data, including some placement issues and the way to solve
them in the easy way.

The forth chapter, Classification Algorithms, describes the software that has been
used to implement the classifier both offline and online. The Offline Training
(sec. 4.1) has been performed on a Matlab platform, using some backpropagation
algorithms and finally obtaining the desired parameters, while the Online Prediction
(sec. 4.2) has been made directly on the Apollo2 board, enhancing its computational
capabilities thanks to an ARM native library.

The fifth chapter, Experimental Results, makes an overview on the performances
obtained by the classifier and on the ones of the overall system. The division in
section is straight-forward: Classifier Accuracy (sec. 5.1) takes in account the ac-
curacy performances of the classifier, analyzing some results; the System Latency
(sec. 5.2) has been measured on the board and is divided between the classifier one
and the one of the whole system; last, Power Consumption (sec. 5.3) is analyzed,
considering both the Apollo2 and the three acquisitions channels.

Last, the Conclusions chapter closes the paper, summarizing the work described in
the previous chapters, and introduce some possible Future Works (sec. 6.1).
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Chapter 1

Introduction

Nowadays tech market is becoming day by day more competitive. Continuous tech-
nology improvements regarding power consumption and product area have brought
embedded systems to a new era. Customers are requesting increasingly performing
products, with smart objects like watches and glasses that are on top of their pop-
ularity [1].
Researchers and developers have recently focused their work on these topics, trying
to continuously increase computational capability of their processor, while keeping
small the final size of the device. According to this, wearable devices have been
involved in multiple type of applications, including gesture recognition.
Using the correct type of data, acquired in the proper way, gesture recognition can
be employed in many field [2], from unblocking the mobile phone smiling at it, to
simulating movements in a video game, or also to command a prosthetic hand, or
whatever.

In biomedical applications the most used technology to acquire gestures is the sur-
face ElectroMyoGraphy (sEMG), which is made applying non invasive electrodes on
the skin. Typically, for upper limb prosthesis or to control an external device, the
electrodes are placed on the forearm, in order to collect muscular activities when the
hand is moved. The recognition of the gestures is usually made by means of a ma-
chine learning technique, often a Support Vector Machine (SVM). Unfortunately,
to provide enough data to the classifier, the sEMG signal has to be entirely sent to
a processing unit, in order to extract the needed features, or it can be processed
directly on the acquisition boards, but it would take a lot power consumption [3],
and the so made device would not be suitable for wearable applications.

A possible solution is to implement the Average Threshold Crossing (ATC) event-
driven technique. This particular feature extraction is obtained configuring a
threshold above the rest value of a signal and raising the output every time the
threshold is crossed. The resulting quasi-digital signal contains the information
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1 – Introduction

about the muscular activation in the time domain, but its digital shape makes it of
easy interpretation by a microcontroller.
It has been demonstrated in previous works that the number of generated TC events
is proportional to the effective muscular activation [4]. Moreover, this event-driven
approach considerably relaxes hardware and software resources and decreases the
power consumption of the entire system [5], extending the life time of an external
battery supply.

In this thesis work the ATC technique is implemented with three acquisition chan-
nels, directly on the subject forearm. The acquired TC events are sent by wire
to a microcontroller, to avoid excessive power consumption. The processor used
to elaborate the data is an ARM Cortex-M4F, selected due to its ultra low power
capability and its optimized floating multiplication unit. A fully-connected Neural
Network (NN) has been chosen to classify acquired TC events and predict the per-
formed hand gesture.
An in vivo study has been made, involving 25 healthy people, of different genre
and age. Six hand gestures have been executed: Wrist Extension, Wrist Flexion,
Radial Deviation, Ulnar Deviation, Grasp and Idle (i.e. the rest position of the
hand). The experimentation has been divided in two steps: first, twenty people
have been employed to acquire TC data to train the classifier, then the remaining
five have tested the online system, configured with the already trained NN.
The output class is then sent to a small tank, via Bluetooth 3.0 modules, to demon-
strate the effective correlation between the hand movement and the obtained out-
put. The tank has an Arduino shield on board and it has been configured to execute
simple commands.

In the following sections a brief introduction about the background of the thesis
is provided to the reader. In the first two sections fundamentals about the mus-
cular system and sEMG signals are introduced. Then an overview about the ATC
technique and how it has been applied in the recent past is given. Last, gesture
recognition and machine learning technique are illustrated.
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1 – Introduction

1.1 The Skeletal Muscular System
The main actors in the execution of our movements are the skeletal muscles, which
generate action potential when stimulated by the Nervous System. The tension pro-
duced in the muscle by this stimula induces the effect which is usually call muscular
force. The entity of this force is dependent by multiple factors, but it is possible to
denote that it is directly proportional to the cross section of the muscle which has
taken part in that movement.

Figure 1.1: Structure of the skeletal muscles. [6]

All skeletal muscles are voluntary, they belong to the striated tissues family and are
tied to the skeleton bones with their tendons, which allow them to transmit their
power and produce movement. Their structure is not so elementary, in fact it is
composed by a lot of subunits (shown in Figure 1.1). Starting from the macroscopic
level, and going towards the inner part, it is possible to distinguish the muscular
fascicles, protected by a connective membrane called epimysium, which is the ap-
pendix that connect the whole muscular body to the tendons. Fascicles, which are
divided one from the others by the perimysium membrane, are in turn composed
of muscular fibers, each one protected by the endomysium, the inner membrane of
the muscle. This last membrane also contains the extracellular fluid and all the
nutrients needed by the fibers to survive.
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1 – Introduction

In the inner part of the muscle, inside each fiber, multinuclear cells, sarcolemma
and sarcoplasm, which is actually the cytoplasm of the muscular cells, are located.
Quality, quantity and allocation of fibers internal biomaterial depend on the nu-
cleus type, while muscular characteristic, like reactiveness, resistance and power,
are related to the different proteins they produce [7].
In the cytoplasm, in particular, mitochondria are in charge of producing the neces-
sary energy, transforming the substances that arrive via the circulatory system into
the ATP (Adenosine TriPhosphate). Quantity of mitochondria can vary depending
on the function that the fiber has in the body, up to a 20% of the total volume
when the fiber is particularly oxidative.

Going into the fiber, it is possible to found the myofibrils, organized in a parallel
scheme. They are composed by the sarcomeres, which are instead placed serially
one to the other and are considered the basic functional units of the skeletal mus-
cle. Sarcomeres are in turn made up of parallel overlapping matrices of myosin and
actin, which are proteins shaped in thick and thin filaments, respectively.

I band A band

Contracted myofibril

H band Z lineZ line

actin
myosin

Figure 1.2: Inner view of a sarcomere. [8]

The sarcomeres (Figure 1.2) are studied by means of the polarized light microscopy
and five different areas can be distinguished:

• Z line (from german Zwischen-Scheibe): it is a dark protein-based line, which
connects actin filaments of one sarcomere to its neighbors’ ones.
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1 – Introduction

• I band (from Isotropy): it is the outer band of the sarcomere, made only of
actin filaments, and it is the lighter one, when seen with the microscope.

• A band (from Anisotropy): it is the darker band of the sarcomere, due to
the presence of both actin and myosin filaments.

• H band (from german Helle-Scheibe): it is the central area of the sarcomere
and it is slightly lighter than the A band, due to the absence of actin.

• M line (from german Mittel-Scheibe): it is a dark line right in the middle,
made of cytoskeletal proteins, which connect myosin filaments of the two side.

In mammalian muscles each sarcomere can be long 2–3 mm. When a contraction is
performed the I band and the H band become thinner, while the A band preserve
its width.

1.1.1 Skeletal Muscle Physiology
Muscular fibers are activated by the Central Nervous System (CNS), which sends
signals through the motor neurons. Inside the spinal cord, α-motoneurons receive
signal from the CNS and send the activation order to groups of muscular fibers,
through their axons. This functional unit, composed by one single motor neuron
and one group of fiber, is called Motor Unit (MU, in Figure 1.3).
Each MU works on a continuous cycle of polarization and depolarization. Without
any conduction, the transmembrane differential voltage is −70 mV, also called rest
potential. This voltage is kept constant thanks to the sodium-potassium pump, a
special protein with control the traffic through the membrane of the axon. This
protein makes the Na+ ions go out and accepts only the K + ions in.
When the neuron is is stimulated, the action potential propagates through the axon,
opening the sodium doors (allowing the entry of Na+ and increasing the differential
voltage to 40 mV). The subsequently opening of the potassium doors (which allows
the output of K +), allows the repolarization of the membrane, which reduce again
its potential, reaching the resting value of −70 mV. During this process, the neu-
rotransmitters stocked in the neuron are released and can reach the muscle fibers.
Though, after a short time interval, the protein responsible for the transmission
closes the path and ends the process.
As soon as the transmitters reach the terminal head of the axon, they directly stim-
ulate the fibers innervated from that neuron, causing immediately a contraction.

Each muscles has all the α-motoneurons gathered together. The number of MUs
is dependent by the force precision necessary to perform a defined movement and,
concerning humans, can vary between 100, for a small muscle (e.g. in the hand),
and 1000 in a limb bigger muscle.
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1 – Introduction

Figure 1.3: Motor Unit anatomy. [9]

All the fibers work together, both in terms of generated force and of activation
timing. They can not produce a small or intermediate action, if they activate they
have to release all their power. Once the potential get over the voltage threshold,
the contraction is active, lasts few seconds and then stops.
The difference between an harder and a softer exercise does not produce a difference
in the force of the activation, but causes instead a repeated stimulus in the muscle.
If the stimula are really one next to the other, the muscle suffers the maximum
activation possible, called tetanus. After a certain time of activation, even if the
stimulus is still active, muscular fatigue starts to arise and the muscle has to relax
itself.
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1 – Introduction

1.2 ElectroMyoGraphic (EMG) Signal
The action potential caused in the MU by the CNS, which has been discussed in
Sec. 1.1.1, is responsible of some fluctuations in the electromagnetic field around
the muscle. The discipline that studies and collects these fluctuations is called
ElectroMyoGraphy (EMG) and can be performed using invasive or non-invasive
methods:

• the Deep EMG signal represent the activity of one single MU, using nee-
dles or thin wires electrodes, inserted in the skin. This technique is generally
preferred when the aim of the acquisition is to study the physiology and
pathology of MUs. At a central level it can be use to evaluate MUs recruit-
ment and activation path through the body, while at a peripheral level it
is possible to study injury effects, loss of muscular innervation or effects of
neurodegenerative diseases.

• surface EMG (sEMG) is performed using superficial electrodes, applied
on the skin, and it is so able to acquire signals from more than one MU. This
technique is more useful when the aim is to:

– characterize a movement on a temporal base, studying the duration of
the muscular activation;

– apply biofeedback techniques to inform a patient of how one of its muscle
is contracted;

– obtain information about the global activity of a muscle, or group of
muscles;

– control external actuator;
– measure the EMG signal in all the cases when it is not considerable to

put electrodes in the patient, in order to perform fast and non invasive
application, like in rehabilitation or in medical visit for sport practice.

1.2.1 The surface EMG signal
The surface ElectroMyoGraphic (sEMG) signal can vary its amplitude between
0 mV and 10 mV and has a frequency spectrum in the range 6–500 Hz, with the
major power contribution between 20 Hz and 150 Hz.
Unfortunately, this particular signal is affected by multiple noise sources:

• the friction between the skin, the immediate under skin substrates and the
electrode generates a noise with a frequency usually lower than 10 Hz. This
contribution, called movement artifact, can easily be filtered in the prepro-
cessing phase, being out of the sEMG spectrum;

7



1 – Introduction

Figure 1.4: Decomposition technique of sEMG signal. [10]

• the presence on a body area of multiple muscles, like in the forearm, can
make difficult the acquisition from a single muscle. This cross-talk can not
be filtered, unfortunately, but can be lowered with an accurate placement of
the electrodes;

• muscular fatigue is another contribution to take in account. In fact, as
written in Sec. 1.1.1, early or later the muscle activity will start o decrease,
causing the sEMG to have a lower frequency and a falsified amplitude;

• all the external contributions can be dangerous for a clean acquisition. In
fact, the voltage supply itself would introduce in the system a 50 Hz noise,
which is often maintained in the circuit because is in the frequency spectrum.

Electrical Model
The signal acquired with superficial electrodes is the summation of the action po-
tentials generated by the depolarization of each fiber of a MU, and it is called
MUAP (Motor Unit Action Potential). Starting from the nerve insertion point of
each muscular fiber, two depolarization area propagate towards the opposite ex-
treme with a speed of 3–5 m s−1. These areas are not spatially aligned, neither in
the time they reach the acquisition electrodes, due to different point of innervation
and different propagation speed between one fiber and the other. The resulting sig-
nal is the summation of all these contribution (as shown in FIgure 1.4). A repeated
activation of a MU generates a train of action potential, called MUAPT.
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1 – Introduction

The behavior of a single Intracellular Action Potential (IAP) can be approximated
adding together simple contributions (as shown in Figure 1.5). Generally speaking,
IAP is structured in an initial depolarization phase, followed by a repolarization
phase and ending with a longer iperpolarization phase. Its shape can vary depend-
ing on muscle conditions, in particular, when the fatigue arises it is difficult to
distinguish among the different phases. In fact, the repolarization phase become
slower, bringing to a more wide peak.

Three phases of IAP:
Phase 1: Depolarisation
Phase 2: Repolarisation
Phase 3: Hyperpolarisation

Figure 1.5: Intracellular Action Potential. [11]

1.2.2 sEMG Feature Extraction
In sEMG analyses it is possible to distinguish three different features group: in
the time domain, in the frequency domain, or in the time-frequency domain. The
last domain is not considered in this introduction, due to its high complexity that
make it not suitable for the training of a classifier. Only the features of the first
two domains are then reported below.

Features in the time domain
This type of features extraction is largely use in literature, thanks to their straight-
forward calculation, without needing any transform. Mayor disadvantage is that
they assume no variations in the signal frequency.

• Root Mean Square: RMS is modeled as amplitude modulated Gaussian
random process whose RMS is related to the constant force and non fatiguing
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1 – Introduction

contraction.

RMS =

⌜⃓⃓⎷ 1
N

N∑︂
n=1

x2
n

• Mean Absolute Value: MAV is calculated by taking the average of the
absolute values of sEMG signal.

MAV = 1
N

N∑︂
n=1

|xn|

where the terms have the same meaning as above.

• Mean Absolute Value Slope: MAVSLP is defined as the difference be-
tween the MAVs of adjacent segments of EMG signal.

MAV SLPi = MAVi+1 − MAVi

where i is the index of considered MAV.

• Integrated EMG: IEMG is defined as the area under the curve of the
rectified EMG signal.

IEMG =
N∑︂

n=1
|xn|

where N denotes the length of the signal and xn represents the sEMG signal
in a segment.

• Variance of EMG: VAR uses the power of the sEMG signal as features.
In fact, it is calculated using the following formula:

V AR = 1
N − 1

N∑︂
n=1

|xn|2

• Simple Square Integral: SSI is the summation of absolute square energy
of sEMG signal in time domain.

SSI =
N∑︂

n=1
|xn|2

• Waveform Length: WL is the cumulative length of the waveform over time
segment and can be mathematically represents as:

WL =
N∑︂

n=1
|xn+1 − xn|

All of these features above (RMS, MAV, MAVSLP, IEMG, VAR, SSI, WL) are
computed based on sEMG signal amplitude.

10



1 – Introduction

Features in the frequency domain

• Median Frequency: MDF is the frequency value that divides signal power
spectrum in two equal areas:

MDF∑︂
j=1

Pj =
M∑︂

j=MDF

Pj = 1
2

M∑︂
j=1

Pj

where Pj represents signal power spectrum value corresponding to j frequency
and M is the maximal spectrum frequency.

• Mean Frequency: MNF is an average frequency which is calculated as the
sum of product of the sEMG power spectrum and the frequency divided by
the total sum of the power spectrum:

MNF =
M∑︂

j=1
fjPj

/︄
M∑︂

j=1
Pj

where terms have same definition of previous case.

Both these frequency domain features describe fatigue in an appropriate way. MDF
is usually less affected by noise than MNF, but MNF has an higher value.

1.3 The Average Threshold Crossing Technique
Acquisition systems already on the market have usually a standard structure:

• the electrodes placed on the skin surface allow the acquisition of the sEMG
signal with the bipolar configuration;

• an analog circuit is responsible of the preprocessing of the signal, by means of
amplifiers and filters, which let pass only the useful frequency contribution,
blocking the undesired ones;

• an Analog to Digital Converter (ADC) converts the signal from its analog
shape to a digital information, readable by common logic;

• last a microcontroller takes the digital information from the ADC and can
process it onboard or just transmit it to a computer.

However, the IAP shape and behavior have made researchers think about a possi-
ble acquisition system based on a threshold. In particular, the Average Threshold
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Crossing (ATC) technique has been formalized. The ATC is an event-driven tech-
nique: when the myoelectric signal crosses a predefined threshold an output signal
is arisen. This technique, proposed by [4,5,12] is completely different with respect
to literature. It is in fact implemented directly in hardware by means of a voltage
comparator Two signals are compared to determine the output state: one is the
threshold, externally provided, and the other is the sEMG signal, already filtered
and amplified. The output signal of the comparator is a quasi-digital signal, in
fact contains the information in the time domain and not on its analog value. In
particular, the output would be high when the sEMG value is above the threshold,
and low otherwise. A more detailed scheme of a possible acquisition channel is
described in Sec. 2.1

t [s]

sEM G

T hreshold

F s

t [s]
T C

t [s]

W indowObservation window (Tw)

t (s)

t (s)

t (s)
TC

fs

sEMG
Threshold

Figure 1.6: Payload comparison between ATC and standard sampling.

The ATC parameter is then the number of times the sEMG signal crosses the
threshold, in a defined time period, divided by the duration of the period itself.
Considering that the sEMG signal is usually wireless sent to an external process-
ing node, this approach allows to drastically lower the power consumption of the
transmission. In Figure 1.6 a comparison between the two payload is shown. The
difference is clear, the number of packets sent using this approach is far lower with
respect to the constant payload of the standard sampling.
In this representation the threshold is fixed, but it has already been demonstrated
that a dynamic threshold could fit as well, being adaptable to each environment

12



1 – Introduction

and further reducing the power consumption. The advantages of this event-driven
transmission can be summarized in two main contribution:

• a lower power consumption, thanks to a reduced and not constant sampling
frequency, and a resulting lower necessary throughput.

• a simpler acquisition hardware; in fact, the ADC becomes useless and the
hardware can be reduced to a size suitable for wearable applications [13,14].

Although, this technique is not perfect and actually can not be used for diagnostic
reasons or similar. In fact, the original information contained by the sEMG is
completely destroyed and no reconstruction is possible. However, an earlier study
as demonstrated the correlation between the ATC parameter and the strength of a
performed movement, allowing some comparison on that research field. The ATC
is now during a validation phase for what concern more complex tasks, like gesture
recognition, which are based on the strength applied but require a certain amount
of precision.

1.4 State of the Art
Gesture recognition ia an hot topic in recent days researcher work, with a wide
application range: depending on the aim of the implementation, it is possible to
found in literature a lot of different approaches. They all have something in com-
mon, though: the modules to optimize most, in order to improve the classifier and
have an effective gesture recognition, are data preprocessing, features extraction
and classification methods. In the following pages are shown the most important
literature works which use sEMG signals applied to gesture recognition.

Momen et al. [15] group has implemented a classifier which permit the user to
make voluntary movements, without any restrictions or predefined set of gesture.
They used only two sEMG features to obtain a result: the RMS and its logarithm,
both calculated in real time on a 200 ms window. In the testing phase they demon-
strated that the classifier worked fine with the movements provided by the user,
having obtained a final average accuracy of 87%, with a standard deviation of about
13%. The algorithm used in this work was the fuzzy clustering C-means.

In a later work, Shenoy et al. [16] have reduced the dimensions of the features
vector, by using only the RMS, but to obtain a good result they had to assign a
predefined set of movements. Features extraction has been performed on a win-
dows made of 128 samples, with a sampling frequency of 2048 Hz. The acquisition
window is slightly wider than 60 ms, being really suitable for a robot control in real
time. This work has also introduced a new type of classifier, different from the one
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Figure 1.7: Acquisition protocol with standard sEMG features. [16]

used in the previous work. This new classifier is called Support Vector Machines
(SVM), and is able to disclaim between classes using complex non linear functions.
Using a cross validation method this classifier can reach an accuracy of 90%. In
Figure 1.7 the system flow of this work is shown.

From these good results, the literature continue mainly on this road. In partic-
ular, the work of Lucas et al. [17] is interesting because slightly differs from the
main flow, using the Discrete Wavelet Transform (DWT) as unique feature. This
approach improve the use of the standard DWT by introducing a minimum error
classifier, which enhance the general performances, but reduces the flexibility of the
system and increases the computational time. The used classifier is again the SVM,
with an overall performance fo 95%, slightly better with respect to earlier works.

Another work that perform a classification using as feature the DWT is the work of
Kartsch et al. [18]. They implement a electrode wristband and exploit low power
possibility by using a ultra-low power microcontroller as processing unit and adding
a solar harvester. The classifier used is always the SVM, which in this case classi-
fies among five gestures from four input channels. The feature extraction process
is performed directly on the wristband, but some elaborating unit are still needed,
consuming extra power with respect to the needs of the classifier alone.

Also a commercial article [19] has used a wristband to perform gesture recognition,
but with worst results than the previous one (in fact, it is now out of production).
They implemented a wristband with eight couple of electrodes, with embedded
processor and transmitter, useful for example to virtually control the mouse of a
computer. They use a Radial Basis Functions (RBF) Neural Network (NN), reach-
ing only an accuracy of 66% classifying six gestures. They had also other features,
like accelerometer and gyroscope, but the product had not enough success.

In this thesis work, the SVM has not been used, thinking that its high perfor-
mances are not needed for this simple task, while it has been decided to implement
a simpler fully-connected NN, which has been considered suitable to enhance the
ATC capabilities of having a small payload and generating few data. In the follow-
ing sections, the system will be introduced.
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Chapter 2

System Configuration

The system used in this thesis is composed by four main parts, as shown in Fig-
ure 2.1: three acquisition channels, which filter and amplify the sEMG signals ac-
quired from the surface electrodes; the ultra low power AmbiqMicro Apollo2 board,
with an ARM Cortex-M4F processor that is in charge of all the computations; two
Bluetooth 3.0 modules which allow the communication between the Apollo2 board
and the last part of the system, a Zumo mini-robot, used to verify the effective
correctness of the classified movements.

sEMG
acquisition

sEMG
acquisition

sEMG
acquisition

DAC

Zumo
robot

TC events

TC events

TC events

Threshold SPIconf

Predicted
Class

Figure 2.1: System schematic.

2.1 Acquisitions Channels
The acquisition of sEMG signals is performed applying standard surface electrodes
on the skin of the forearm; in particular, we used the pre-gelled Ag/AgCl H124SG
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Covidien electrodes, with circular shape and a diameter of 24 mm. The so obtained
signals are brought to the channels using shielded wires with a clip head, directly
connected on the acquisition board.

E1
Overvoltage
Protection

Voltage
Follower

E2
Overvoltage
Protection

Voltage
Follower

Diff. HPF
33.86 Hz

INA
Gain = 922

LPF
397.42 Hz

Voltage
Comparator

Er
Voltage
Follower

LPF
10.43 Hz

DAC

Output to
Apollo2 MCU

ACQUISITION CHANNEL

Figure 2.2: Structure of the acquisition board.

The channel itself is a full-custom Printed Circuit Board (PCB) made only with
off-the-shelf components, obtained improving an older version, composed of four
channels and a microcontroller on a single PCB [14]. As shown in Figure 2.2, the
channel has eight distinguishable stages:

• Overvoltage protection obtained with four different components:

– two ESD5Z3.3 ElectroStatic Discharge (ESD) suppressor Zener diodes
(Texas Instrument™ (TI));

– two CMAD6001 ultra low leakage switching diodes (Central Semicon-
ductor Corp.™);

– two BLM15AX102SN1 noise suppression ferrite beads (Murata);
– one TPD2E001 two-channel Transient Voltage Suppressor (TVS) pro-

tection diode array (TI).

• Impedance decoupling using an OPA2347 dual voltage follower integrated
circuit.

• A differential high-pass filter to reduce movements artifacts, with cutoff fre-
quency of 33.86 Hz.

• Differential amplification of the two sEMG signals, referencing them to a
voltage of 1.65 V, by means of an INA321 with a gain of 922.

• A low-pass filter on the negative feedback of the INA321, with a cutoff fre-
quency of 10.43 Hz, necessary to reject eventual noise inserted by the INA
itself.
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• Another voltage follower, between the 1.65 V source and the reference elec-
trode, needed to prevent noise injection from the arm.

• One more low-pass filter, made with an OPA333, used to reduce high fre-
quency noise, above the desired spectrum.

• Last, a TLV3691 voltage comparator, generates the TC events, comparing the
pre-processed sEMG signal with an adjustable threshold that is usually set to
1.8 V. A 30 mV hysteresis ensures a stable commutation between the digital
high and the digital low state, letting us to obtain a quasi-digital signal.

The reference voltage needed by the comparator is provided by an external Digital-
to-Analogue converter. The chosen module is a Maxime MAX5742 which provides
a compatible Serial Pheripheral Interface (SPI) to easily connect with the µP and
four output voltage channels to set any different threshold value for each acquisition
board.

Acquisition channels have two output signals:

• EMG obtained after last filter stage, usable for visual purpose or to check the
correct behavior of the board;

• quasi-digital signal obtained after the voltage comparator, connect on an input
of the microcontroller, with basic interrupt interface.

2.2 Apollo2 board

Figure 2.3: The AmbiqMicro Apollo2 evaluation board.

The main core of the whole system is certainly the AmbiqMicro Apollo2 EVB (Fig-
ure 2.3), which supplies power to the three AFEs, to the external DAC and to the
BT module, as well as doing all the computations needed to define the right class
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depending on the inputs. The processor embedded in the Apollo2 EVB is an ARM
Cortex-M4F, which is a 32-bit microprocessor (µP) ”designed to enable developers
to create cost-sensitive and power-constrained solutions” [20].

The Apollo2 has been chosen for its really competitive technical characteristic,
especially regarding low power consumption. In Table 2.1 main features are re-
ported [21].

Table 2.1: Apollo2 technical sheet

Max operating frequency 48 MHz
MCU 32-bit ARM Cortex-M4F
MCU min power 10 µA MHz−1

Flash/SRAM 1 MB/256 kB
VDD 1.8–3.6 V

I/O
I2C/SPI (6x)
UARTS (2x)

For this application a frequency of 24 MHz has been chosen for the main clock,
while the low frequency, more precise, 32.768 kHz crystal has been used for the
time window implementation needed by the ATC. The buck converters have been
enabled to guarantee a really low power consumption by the µP.

2.2.1 Firmware
The firmware for the MCU has been written using the Keil µVision IDE v5.24.2.0,
as suggested from AmbiqMicro developers due to its high compatibility with the
ARM products family. In fact, a lot of specific ARM libraries are available di-
rectly in Keil Pack Installer, making possible to add or delete any library package.
For this application the Digital Signal Processing (DSP) library has been chosen,
according to its low computational cost and to its easy usage; this library is an
ARM-native part of the CMSIS package [22] and provides very useful support for
matrix calculations. Moreover, lots of board support packages are supplied by Am-
biqMicro itself, permitting the developer to use high level functions to interact with
each single small component of the system, even performing complex tasks.

The program is as usual divided in three main parts: first all the needed con-
stants and variables are defined, then useful routines are implemented and last the
main function executes the desired commands. Here there is a brief list of the
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routines used in the main functions, in order as they are called:

• Initial configuration: some basic function are called depending on the value
of environmental constants; if high frequency is required, the MCU would be
set to 48 MHz instead of 24 is enabled if needed, low power mode is entered,
activating the buck converters and the debug interface is configured, if the
mode is needed.

• Led initialization: LEDs are configured according to library functions, they
are made controllable from the µP and then switched off.

• GPIO configuration: the three pins required to collect data from the three
AFEs are activated as input, with interrupt on the rising edge. For each of
them an appropriate function is registered in the interrupt service table. No
hazards occur in case of multiple concurrent interrupt are received. The inter-
rupts are then cleared for security reasons and the GPIO master is enabled.

• Timer configuration: a timer is set according to ATC requirements. The
best trade-off to generate a 130 ms time window without dissipating to much
energy it is to use the external high precision low frequency clock (F =
32.768 kHz). A interrupt is then set to a compare value of 4260, obtain-
ing a window of 130.005 ms, and corresponding service function is registered.
REPEAT mode is activated, so the timer restarts from the beginning after
the interrupt occurs.
If a time measurement is required for performance reasons, another timer
would be activated, with a frequency a quarter of the selected Hard Clock
(HCLK), tipically 6 MHz.

• SPI configuration: the SPI interface is configured to communicate with the
external DAC.

• UART initialization: if the tank is in use, uart is set to communicate with
BT module. Parameters are reported in Sec. 2.3.

• Matrices initialization: if online mode is selected, all the matrices needed
to store intermediate value and parameters of the NN are paired with their
relative DSP instance.

• Threshold setting: this routine takes as input a number of channel and a
value in V and sends data to the DAC through the SPI. If the channel value
is set to ’4’, all the channels are configured together. Two data packets are
used (8 b each) according to parallelism of MAX5742, one containing control
characters and few bits of the threshold value and the other with only the
threshold.
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• Movement loop: a for loop is implemented and used if the acquisition mode is
active. Depending on the number of acquisitions that have been selected, the
loop will separate each movement from the other, letting the user understand
when a change in the gesture has to be performed.

• Running loop: the program enters then in a while loop, basically evaluating
the NN output and going to deep sleep mode till the next interrupt(s). In
case time or current measurements are desired, some variables are set in the
appropriate way.
NN behavior will be debated in Sec. 4.2.

The board could be powered via USB cable or with an external supply, like a
battery or a voltage generator, to be connected directly on the power pin on the
power header of the board.

2.3 Bluetooth modules
In order to satisfy the will to show the output class of the classifier in a more visible
way than the embedded leds, a small friendly tank (named Zumo) has been used,
constructed with the intent to participate to robot sumo battles, but used in this
thesis in an harmless way. Connecting this small robot with the Apollo2 board
using two Bluetooth modules allows to show in a fast efficient way the behavior of
the system.

Figure 2.4: The SPBT3.0DP1, by STMicroelectronics

Two SPBT3.0DP1 bluetooth modules (shown in Figure 2.4) have been chosen to
satisfy the constraints. In particular, these modules, made by STMicroelectronics,
use the old Bluetooth 3.0 technology, which includes a SPI-transparent usemode,
permitting a fast effective transmission, with few constraints. The modules are
connected to the host through an UART interface, both on the Apollo side and on
the Zumo side, configured with the parameters listed in Table 2.2.
Their serial profile reach a throughput of 1500 kbit s−1, resulting in a very fast
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Table 2.2: UART configuration

Baud rate 115 200 s−1

Packet length 8 bit
Stop bit 1 bit
Parity none
Flow control none

transmission compared with the latency of the system. Moreover, the configuration
is really simple (it’s possible to do it also with a free BT mobile app) and the
data transfer does not require any control packet or server configuration, typical of
standard BT, allowing to normally send data, as if the connection was wired.

2.4 Zumo robot
As mentioned in 2.3, a small tank called Zumo, made by Pololu Robotics & Elec-
tronics [23], has been chosen to show to a possible audience the correct behavior of
the system, and it is possible to power it using four standard batteries, making it
free to move. The product is delivered together with an Arduino Leonardo, mak-
ing the motor shield easily configurable and controllable. Arduino Leonardo is one
among few products of the Arduino family that has two Serial profile on board,
making possible to communicate with the computer and with the BT module at
the same time.

Figure 2.5: Zumo robot top view.
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The robot, whose top view is shown in Figure 2.5, is composed of:

• Integrated 75:1 HP micro metal gearmotors

• Mounted array of six IR reflectance sensors

• Integrated DRV8835 dual motor drivers

• A piezo buzzer

• Integrated LSM303D 3-axis accelerometer and 3-axis magnetometer

• Integrated L3GD20H 3-axis gyroscope

• Optional user pushbutton

• 7.5 V boost regulator

• Convenient access to Arduino I/O lines

• Arduino Leonardo board.

For the purpose of this thesis only few features have been used, directly control-
ling the two motors and not considering any additional possibility, but for future
improvements Zumo will be suitable for security checks and more sophisticated
maneuvers.

2.4.1 Arduino firmware
All the commands needed by the Zumo robots are delivered from the Arduino
Leonardo assembled on top of the motor shield. Arduino IDE v1.6.12 has been
used to write the control code. Pololu Electronics provides a specific library (Zu-
moShield.h) to control all the Zumo peripheral, from edge detection IR to motor
driver. Another library is then added, to allow communication between the Ar-
duino and the BT module (Wire.h).

In a first phase of the work, the Arduino has been used to configure the two BT
modules, being programmable in an easier way and at higher programming level
with respect to the Apollo2 MCU. A small routine has been written to set some
parameters on the modules Flash memory, in order to make them controllable from
a remote device and continuing then the configuration from the personal mobile
phone.

The main program has then been written, including useful control command for
Zumo motors as well as a routine to play music from the on-board buzzer. Like
all Arduino scripts, the file is composed of four different parts: the global scope,
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where some useful variables are set, the Setup function, which is called only at
the reset of the µC, the Loop function, which is continuously called during the
execution of the program, and some other custom routines, used to enhance main
code readability.

• In the global scope different types of variables are set: some velocity con-
stants, used to control the speed of the motors and to adjust a small traction
difference between the two track (MAX_SPEED, MAX_L, REV_DELTA
and MOTOR_STEP), a lot of boolean control variables, to manage program
flow (playing, leftRun, rightRun, reverse, etc.) and a character array to store
all the information needed for the song.

• The Setup routine enables the Zumo led as output and configures the two
serial connection with the computer (Serial) and the BT module (Serial1 ),
setting them to a Baud rate of 9600 s−1 and 115 200 s−1 respectively.

• The Loop routine initially waits for a string to be sent on the Serial1 con-
nection. It continues the execution either when the termination character ’̃’
is received or when the waiting time of 500 ms is elapsed. At this point, it
takes the first n-1 characters of the acquired string and it compares them to
the previous value: if they are identical, it means that the selected action has
not changed and it has nothing to do on Zumo, while if they are different a
switch case is performed to choose the right routine to call:

case 0: turnRight;
case 1: turnLeft;
case 2: goForward;
case 3: goBackward;
case 4: playMusic;
case 5: stopMoving.

Default state execute a reset of all the environment variables of the Zumo
robot, stopping it from moving and playing, if needed. Last, the state of the
variable blinky is checked, to decide if the led as to blink or not, used mainly
for debugging reasons. The routine is then terminated and the loop restart
from the begins, waiting for a string to arrive.

• The custom routines are the six reported above plus others secondary ones,
used to keep the code flow clear. Some of them are related, others are inde-
pendent; most of them are movement command, so they check the variables
that define the current state of the two motors and they optimize the action,
in order to make a gradual acceleration of the tank, without skidding. More-
over, if a needed track is already moving in the right direction, the action
ignores it and acts only on the other one.
The only routine different from the others is playMusic, which simply checks if
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the buzzer is playing and switches its state. Every time the music is stopped,
it will restart from the beginning.

The whole code is normally charged on the Arduino flash using serial USB connec-
tion.
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Chapter 3

Data Acquisition

The whole system is based on the acquisition of the sEMG signal from the forearm
skin surface. The placement of the electrodes has to be really accurate, to prevent
misleading values to be acquired. An initial study has been performed, concerning
where the electrodes have to been placed, according to biomechanics of the forearm,
as well as how many of them are really needed, trying to minimize their number.
Once the placement has been defined and the movements are chosen, the data
acquisition could finally start.

3.1 Performed movements

Figure 3.1: Superficial muscle on medial section of the forearm.

The list of gestures to be executed from the volunteers has been selected accord-
ing to some recent literature works [16, 24] and in a way that would be suitable
for controlling an external actuator, without requiring an excessive effort from the
subject. The final list of movements, obtained considering that the actuator would
have been a tank (2D direction are necessary), is the following: Wrist extension to
perform right turns, Wrist flexion to turn left, Wrist radial deviation to make the
tank go forward, Wrist ulnar deviation to make it go backward and Hand grasp
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to execute some special task, included in order to be competitive with respect of
other similar works. A sixth gesture has then been considered, the Idle state or
Rest position of the hand, necessary to consider as a class when no movements are
done as well.

(a) Superficial (b) Deep

Figure 3.2: Muscles position in forearm distal section.

The muscles necessary to perform the desired movements are hand extrinsic muscles
(called extrinsic because they are in the forearm, out of the hand area), generally
originated in the elbow area and terminating in the metacarpal area. They are
divided in superficial and deep ones; the seconds, reported as an example in Fig-
ure 3.2b, are useless for this work because their position in the forearm is not
suitable for using surface electrodes. Only the superficial muscles have been then
taken into account, both the medial 3.1 and the distal section 3.2a.
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All the below match movement-muscles have been deduced from the Eaton Hand
online book [25].

Wrist Extension
The wrist extension is the act of move the back of the hand towards the distal
forearm. The mainly used muscles are the extensor carpi radialis lonugus, the
extensor carpi radialis brevis and the extensor carpi ulnaris, together with some
deep muscles.

Figure 3.3: Wrist extension.

Wrist Flexion
The wrist flexion is the movement of the hand palm, towards the inner arm. The
involved muscles are flexor carpi radialis, palmaris longus and flexor carpi ulnaris,
as well as flexor digitorum superficialis and profundus.

Figure 3.4: Wrist flexion.

Wrist Radial Deviation
The hand is moved up, following the thumb direction, in order to perform the
radial deviation. Muscles involved are abductor pollicis longus, flexor carpi radialis,
extensor carpi radialis longus and brevis.

Figure 3.5: Radial deviation.
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Wrist Ulnar Deviation
The hand is moved down, in the little finger direction, to perform ulnar deviation.
The useful muscles are extensor carpi ulnaris and flexor carpi ulanis.

Figure 3.6: Ulnar deviation.

Hand Grasp
Hand grasp is the action of closing all the finger towards the hand palm. Flexor
digitorum and palmaris longus are the most used, together with many intrinsic
muscles of the hand.

Figure 3.7: Grasp.

Idle state
The idle state is performed trying to relax all the above described muscles, keeping
the hand in a steady position, without contrasting gravity.

Figure 3.8: Rest position.

3.2 Electrodes Placement
The electrode placement is a critical aspect of this thesis. In fact, even using rela-
tively small electrodes, like the H124SG, the muscles are to close one to the other
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to not have crosstalk between them. Moreover, some muscles are so thin to be even
smaller than the 24 mm electrodes. Thus, an initial study on the optimal placement
has to be done, as well as continuously being wise when a new subject is considered,
to adapt to the different morphology of the forearm.

An initial study considered the number of channels to be used, according to the
five active movements determined in section 3.1. A first try with only two channels
has involved six different positions around the forearm, all of them near the elbow,
following a circular path. Signals have been recorded with an early version of the
Apollo2 firmware and then plotted on a Matlab® graph.
Data recorded individually from each of the six position brought to a configuration
that seemed acceptable, with the electrodes placed on the flexor carpi radialis, for
what concerns the medial section of the forearm, and on the extensor carpi ulnaris
on the distal section. Two different trials have been made, one setting the threshold
to 1.80 V and the other trying to recognize more activations using a threshold of
1.75 V. Both of them results in a bad overlap of different classes, due more to noise
contribution than to effective muscular activation, as shown in Figure 3.9.

(a) 1.80 V threshold (b) 1.75 V threshold

Figure 3.9: Initial trial with two channels.

Watching the graphical results, it seems the data are compressed on the 2D plane
and nothing could divide them appropriately. The choice to add a third channel
has then been made, considering that the power and computational cost of the
overall system would not have been affected so much.

Comparing the results obtained from the initial study with a previous thesis [26],
it seemed reasonable to slightly modify the placement of the already existing elec-
trodes pairs and to insert the third couple in a suitable way to take care of the
radial deviation movement, that was almost neglected by the first configuration.
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Extensor Carpi Ulnaris

Abductor Pollicis Longus

Reference

(a) Forearm back

Palmaris Longus

(b) Forearm front

Figure 3.10: Electrode placement on both sides of the forearm.

Tests realized on this set up resulted in a good discernment between classes and
the configuration has been made definitive. Final placement, shown in Figure 3.10
is the following:

• First couple of electrodes is placed on the palmaris longus, which originates
from the medial epicondyle and has its insertion on the proximal superficial
palmar fascia. The electrodes should be positioned on the lower area of the
palmaris, near to the flexor carpi ulnaris, in order to take into account some
good cross action from it. The main contribution is to the Flexion movement,
but some useful value are recorded also during Ulnar Deviation and Grasp.

• Second pair is placed on the superficial area of the abductor pollicis longus,
which has its origin in the radioulnar interosseous membrane and terminates
on the radial dorsal base of the thumb metacarpal. Placement of the elec-
trodes should be made near the wrist, where the muscle become superficial.
These electrodes are mainly used in Radial Deviation, but have nice effects
on Extension and Grasp.

• The third and last pair has to be placed on the extensor carpi ulnaris, which
has the origin in the lateral border of the distal humerus and the insertion
on the dorsal base of the small metacarpal. Main effects are obviously on the
Extension movement, but they are also necessary for Ulnar Deviation.

• Last, the reference electrode has been placed on the hand back, near the
wrist, in a bony electrical neutral area, in a way that does not prevent correct
execution of the movements.

As it is possible to see, the channels are used combined with others to obtain a
possible movement, allowing to reduce the number of electrodes used, while keeping
high the number of movements that are classified.

30



3 – Data Acquisition

3.3 Acquisition Protocol
After the initial test phase, an in vivo experimentation has been launched, in order
to collect from different people enough data for the classifier to be trained and
tested. In this part 25 people have been involved, 16 males and 9 females (with an
age between 23 and 37 years old). They have all been exhaustively informed about
the experiment and possible risks. They received the informed consent regarding
the study and they accepted to participate signing the form, redacted according to
the local bio-ethical committee regulations.

Volunteers have been divided in two different groups: 20 people have been des-
tined to the classifier training, while the remaining 5 have been enrolled in the
online testing phase. The two sessions have been performed subsequently, in dif-
ferent days, without in any way replicating environment conditions, in order to
guarantee that training data and testing ones were not dependent one to the other.
The two groups protocols differ for few procedures, but an initial calibration phase
is in common. Each subject has to sit in a comfortable way, in a way that the right
arm could stay above the table of interest, in an horizontal position, and that the
hand is free to move. After the explanation about the study, the subject has the
electrodes placed on the forearm. This placement is really critical, as written in
Sec. 3.2, because of the narrowness of the muscles and their small cross section. A
bad positioning could bring to a very bad quality of the acquired data, with an ac-
curacy degradation up to 30% [27,28]; to prevent this issue, a preliminary analysis
is performed, acquiring sEMG signals for a small time period and visualizing how
the results would be with that electrodes configuration.

• The volunteer execute one movement at a time, starting from the rest position
and keeping the gestures once reached. The acquisition lasts 6.5 s, during
which 50 values are acquired over the 130 ms time window.

• The hand returns in the rest position and a pause of 5 s is performed to avoid
muscular fatigue.

• A different movement is acquired on the available 6.5 s period. The routine
is repeated until all the five active movements are performed.

• Obtained data are then saved to a file and moved to Matlab® environment.
Here are 3D plotted and some visual observation takes place.

• If necessary, some electrodes could be placed in a slightly different way, to
enhance classifier performances.

The above protocol could be repeated in case of drastic conditions.
Once the calibration has finished, the real acquisition could begin.
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3.3.1 Training protocol

During training each individual had to perform only the five active movements,
always in the same order. The acquisition period is doubled with respect to the
calibration phase, to ensure enough data is collected and to allow the subject to
perform the movement in a clean way, without being too fast so no more noise is
introduced. The acquisition is made with the Apollo2, using the debug mode of the
board to stop and restart the flow when necessary. No skin treatment is performed
at the begin, to ensure robustness of the system even with not optimal condition
on the forearm.

1. The supervisor remembers to the subject which is the movement to be per-
formed.

2. A Start command is given to the volunteer and the debug is told to continue
the program.

3. The person reaches the desired gesture, then comes back to the rest position
and executes the movement again.

4. When the 13 s period is finished and all the 100 sets of data are acquired, a
Stop command is given to the subject.

5. A rest of 5 s is observed. If there are still movements to be execute, the flow
goes back to point 1.

6. If all the movements are done, a pause of 1 min is performed, letting the
person to lay the arm on the table.

7. Data is saved on the computer. Flow restarts from 1, unless five session have
already been finished.

During the acquisition it was not possible to display any output, since the classifier
is not trained yet, so the volunteers had to perform with their most capabilities.
The electrodes are then removed from the forearm.

3.3.2 Testing protocol

After the classifier is trained, the remaining five people are called and the testing
phase begins. The acquisition period is set to 5.2 s (40 windows of 130 ms), in
order to keep the execution low and not let the subject arm become tired, as well
as to have 1000 acquisition packet for each subject, at the end. The debug mode
is used like in training protocol. The output is not visible even if the classifier is
now trained, in order to do not let the volunteers adapt their gestures, in case of
mistake. All the six movements, including Idle, are requested now, to value also
the idle performance.
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1. The supervisor remembers to the subject which is the movement to be per-
formed.

2. A Start command is given to the volunteer.
3. As soon as the person reaches the desired gesture, the debug is told to con-

tinue.
4. The gesture has to be kept steady for the 5.2 s period.
5. When the 40 sets of data are acquired, a Stop command is given to the

subject.
6. A rest of 5 s is observed. If there are still movements to be execute, the flow

goes back to point 1.
7. If all the movements are done, a pause of 1 min is performed, letting the

person to lay the arm on the table.
8. Data is saved on the computer. Flow restarts from 1, unless five session have

already been finished.

The debug window immediately returns the accuracy value of the session and both
the confusion matrix and the statistics related to that subject.
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Classification Algorithms

The data acquired during training acquisition phase have to be processed in order to
be useful for the classification process. Once they are saved in the computer, they
have been uploaded to Matlab® to be elaborated. The output label is added,
depending on the movement that was performed, to tell the classifier which the
desired value is. Then, for each person, data from the five consecutive sessions are
added together and plotted on a 3D graph. Here a custom routine creates the idle
data, transforming all the values below a predefined threshold, according to 4.1

Idle =
√︂

x2
i + y2

i + z2
i ≤ N (4.1)

where N is the user-defined value and xi, yi and zi are the three TC values that
constitute an acquisition set.
Once obtained the six-classes dataset, it is possible to delete some points, in case
they appear to be generated from a environment problem, in order to not let them
influence the classifier. If the obtained results seems good, the dataset is saved and
could now be used as training input for the classifier.

The aim of the system is to keep low computational effort and power consumption,
so a fully-connected Neural Network (NN) has been chosen as classifier architec-
ture. This NN is the simplest implementation possible, regarding small datasets
like the one used in this work. Moreover, its forward propagation prediction is
made of just matrices multiplication, making it suitable for the CMSIS-DSP usage,
as explained in Sec. 2.2.1. The training of the network has been performed offline
on a computer, while the prediction has been done online on the Apollo2 MCU.
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4.1 Offline Training
The training of the NN classifier has been made offline on the Matlab® environ-
ment. This implementation allows a relatively fast and repeatable training routine
and provides the usual powerful tools of the software. The back-propagation func-
tion needed to optimize the NN cost has been studied in [29].

Initially, some considerations and trials have been made, looking for the best im-
plementation possible. With fewer data than the final ones, which are too many
and it would have taken too much time, a preliminary study on the NN has been
performed. A special routine, taking into account all network possibilities, has been
written. The program had trained and tested 63 different NN, each one consider-
ing 10 different regularization values, starting from 1 hidden layer made of only 10
nodes and ending with 3 hidden layers with 30 nodes each. The top five results are
shown in Table 4.1.

Table 4.1: NN preliminary study (250 iterations)

Layers # Nodes # Regularize
(λ) Val. Error Accuracy

(%)
Training
time (s)

2 26 0.300 0.321 94.98 63.104
2 27 0.300 0.330 94.70 63.666
3 28 0.001 0.332 94.65 94.054
2 23 0.001 0.335 94.93 59.189
2 25 0.010 0.336 94.61 62.386

Since this characterization, the NN structure (shown in Figure 4.1) has always
been defined according to the best result obtained, with 2 hidden layer and 26
nodes each. However, the regularization parameter λ has been always changed,
trying every time the whole vector of ten values (i.e., ranging from 0 to 10, with a
logarithmic progression), in order to perform a subtle adjustment and improve the
overall performance.
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Figure 4.1: Neural Network structure.

4.1.1 Matlab Firmware
A Matlab® script is used to train the NN. In the top of the code, global variables
specify how the NN is structured. The code flow is the following:

• The input datasets (e.g. the one in Figure 4.2) are loaded separately, granting
that no correlation occurs between them. Data matrices are divided into train
set and validation set. They are then shuffled to enhance the performance of
the back propagation. No standardization has been made, in fact data are
already evenly distributed and the range of the three features is almost the
same (0–30 TCevents).

• A regularization λ is picked from the vector and the training starts. The
external routine NNtrain performs as many iterations as configured from the
user. Of course, the more you iterate, the more the NN will be precise, but
after a certain value improvements are no more significant (final implemen-
tation has been iterated 1500 times).

• The computational error of the network, computed on the validation test, is
saved in a vector. Preceding task is repeated till the end of the λ vector.

• Once terminated, best result is picked among the ten trained network, ac-
cording to the lower computational error.
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Figure 4.2: Dataset from one subject.

• Theta parameters obtained with corresponding λ are then picked and saved
in specific variables.

• The user is asked whether he wants to save theta values, statistics or other
parameters of interest.

The NN that has been used at the end of this work, is reported in Table 4.2.

Table 4.2: NN final implementation (1500 iterations)

Layers # Nodes # Regularize
(λ) Val. Error Accuracy

(%)
Training
time (s)

2 26 0.010 0.630 92.31 2110
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4.2 Online Prediction
The obtained network is then transferred to the Apollo2 MCU, copying the related
theta parameters to a configuration file of the Apollo firmware. This values are
then put in the specific matrices, as explain in 2.2.1.
Every time a 130 ms time window ends, the timer interrupt arises and the board
exits the deep sleep mode. The service routine takes the TC values counted by
the GPIO interrupts transform them into the NN inputs. Two routine are then
involved, one after the other, to define the output class:

• the actuate routine is in charge of taking the NN and forward propagate them
to the output, using the theta provided by the training phase. Practically, for
each layer, the values of the preceding one are multiplied by the correspondent
parameters and are then normalized using the sigmoid activation (sigmoid is
a function limited between 0 and 1) in order to not let the network diverge.
Every layer a node is added, the so called bias node, needed to guarantee
always a known value in the network. Once the output layer is reached, the
predicted class is defined as the class which has the greater activation value
at the end. The so obtained class is passed as a parameter to the second
routine.

• The checkState routine takes the predicted class as input and it is in charge of
controlling if the class is within the possible ones and if it is a long or a short
change with respect to the previous one, and finally sends the value out on the
UART to the BT module, if needed. First a delay slot is implemented: the
class is taken into account only if it is equal to the previous one and different
w.r.t. the one before. If it does not respect these constraints it means either
it has not changed its value in the last two time windows or the value is
changed since the present window only. Single window glitch are neglected
in order to enhance the robustness of the system. Then the class is passed
in a switch statement and if it matches one of the options the output value
is displayed on the LEDs (if enabled) and the related character is written
into the transmitting string. Last, if the TANK mode is enabled, a string
containing the class and the terminator character ’̃’ is sent towards the Zumo
robot via the UART interface.
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Experimental Results

At the end of the work, some measurement of interest have been taken. In following
sections, accuracy of the classifier, latency of the system and power consumption
of the boards are analyzed in details. An overall view of the results, including a
comparison with others SoA works, is shown in Table 5.1.

Table 5.1: Comparison with existent EMG-based classifier

Work Features Classifier Accuracy
(%)

Channels
#

Gestures
#

Power
[mW]

[19] multiple RBF1 66 8 6 n.d.
[30] n.d. HD2 90-96 64 5 n.d.
[24] ATC SVM3 93 3 5 20.2
[18] DWT4 SVM 94 4 5 5.1

This ATC NN 96 3 6 2.9
1Radial Basis Functions, 2High Dimensional classifier, 3Support Vector Machine
4Discrete Wavelet Transform

5.1 Classifier Accuracy
The accuracy of the classifier has been measured directly on the Apollo2 MCU,
implementing specific routines able to take count of the prediction and to under-
stand if it has been correct or not. Saved values have then been printed on the
results files, being accessible for later discussions. Table 5.2 shows the confusion
matrix of the whole testing phase. The predicted values of the five people that
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have taken part in the in vivo experiment are added together. The value on the
main diagonal of the matrix should be 1000, if all the movements were performed
correctly. Unfortunately it is possible to see some consistent variations from the
theoretical value.

Table 5.2: Validation Confusion Matrix

Predicted
Ext Flex Rad Uln Grasp Idle

Ext 992 0 4 4 0 0
Flex 0 883 67 0 42 8

Actual Rad 0 29 913 12 40 6
Uln 180 6 0 749 27 38

Grasp 0 60 11 35 804 90
Idle 0 0 0 0 0 1000

The statistics obtained from this confusion matrix are reported in Table 5.3. The
average accuracy is 96.34%, reaching a comparable, if not higher, value with re-
spect of other SoA works. It is possible to observe that Ulnar Deviation and Grasp
are the worst performing movements. Those gestures, due to the few electrodes
used, have an overlap in features space and are difficult to classify. An accurate
placement of the electrodes during the initial calibration can solve part of those
issues, keeping the accuracy performances over a good value of confidence.

Table 5.3: Statistical Results

Accuracy(%) Precision(%) Recall(%) F1-score(%)

Ext 96.87 84.64 99.20 91.34
Flex 96.47 90.29 88.30 89.28
Rad 97.18 91.76 91.30 91.53
Uln 94.97 93.63 74.90 83.22

Grasp 94.92 88.06 88.40 84.06
Idle 97.63 87.57 100.00 93.37
Avg 96.34 89.32 89.02 88.80
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5.2 System Latency
Latency has been measured on the Apollo2 board, implementing a timer with a fre-
quency of 6 MHz. The timer is started when the end of the time window occurs. It
continues running through all the computations and it is stopped after the output
class is defined. In this way it takes into account the whole computational phase,
without neglecting anything. The average value obtained from the measurement is
8.5 ms. The MCU is then active with a duty cycle of 6.5%, obtained considering as
full period the acquisition time window (8.5/130 = 0.065).

Though, to calculate the overall latency, from when the user performs the desired
movement to when the actuator (in this case the tank) executes it, it is necessary to
add together two time windows. In fact, with the implementation of the delay slot
during prediction, the first acquisition period is always neglected, being not enough
to determine the correctness of the inputs. Fortunately the second time window
starts immediately, without waiting for the calculations to be done, resulting in a
global latency of 268.5 ms (130 + 130 + 8.5 at the end).This value is still suitable
for real-time applications, as it is lower than the usual limit of 300 ms.
The throughput of the BT module does not significantly influence the latency of
the system, because the ATC computing is far slower than 1500 kbit s−1.

5.3 Power Consumption
Power consumption analysis has been performed using an external equipment. Re-
garding the MCU consumption, the measurement has been made removing a small
jumper on the board, usually inserted between board power and MCU VDD, and
applying an instrument on its extremities.

Figure 5.1: Current absorption, measured with the active current probe.
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At the beginning an active current probe has been chosen to perform the measure.
The probe is connectible to the oscilloscope and provides on the output a voltage
ten times greater than the related current one (1 mA -> 10 mV). The obtained
measurements are shown in Figure 5.1. Even if the generic behavior is represented,
the displayed waveform is not satisfying, having a lot of noise and sometimes even
a negative average value.

Considering this issue another instrument has been taken into account and the
final measurements have been made using an INA126P. The measure is made tak-
ing the loss of voltage on a 10 W resistance and configuring the INA to amplify by
a value of 85.1. As it is possible to see in Figure 5.2, current consumption follows
exactly the behavior of the µP, being low during the acquisition window and having
a higher step during the 8.5 ms calculation.
Obtained deep sleep power consumption is 0.70 mW, while in active mode 2.05 mW
are measured. Considering the duty cycle of 6.5% an average power consumption
of 0.80 mW is obtained.

Figure 5.2: Current absorption, measured with the INA126P.

Current absorption of the acquisition channels has then been analyzed. During a
previous work [14] a power consumption of 0.635 mW was measured, but since in
this version of the PCBs some more components have been added, the measurement
has been done again. Obtained value is 0.701 mW for each channel.
Adding together the different contributions, a total power consumption of 2.9 mW
is obtained, making this system suitable for wearable applications and competitive
with other SoA works (e.g. [18]).
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Conclusions

This thesis proposed a low power system able to recognize hand gestures, by means
of an embedded classifier, acquiring surface electromyographic signals from the fore-
arm. The Average Threshold Crossing (ATC) event-driven technique has been used
to preprocess data. The final implementation results suitable for wearable real-time
applications, thanks to low latency and power consumption.

Three sEMG acquisition channels are able to acquire muscular activity from the
forearm, giving as output a filtered sEMG signal, to check the health of the system,
and a TC quasi-digital signal, sent to an Apollo2 microcontroller to process the
data. The signal elaboration is performed with negligible delay and with a power
consumption of only 0.701 mW for each channel.
The TC events sent to the microcontroller are counted with a simple interrupt
routine and then averaged over a time window of 130 ms. The obtained values
are initially saved on the computer and used as training data for a fully-connected
Neural Network (NN). In a second phase, obtained parameters are then used to
classify data in real-time directly on the board.
The predicted class is then sent to a small tank, via a Bluetooth 3.0 module, to
show the effective correctness of the onboard classifier.

Final solution implements a NN with 3 input features, 2 hidden layer, with 26
nodes each, and 6 output classes. An in vivo validation has been made, with 25
people involved, in order to test the accuracy of the classifier, obtaining a value
of 96.34%. Power consumption of the overall system is measured of 2.9 mV, using
an external instrumentation amplifier. Latency of the classifier, measured with a
firmware routine, results in 8.5 ms.
These statistics make this work comparable with other SoA works, or even more
competitive.
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6.1 Future Works
Future improvements could take different directions: an optimization of the µP
firmware is possible, in order to reduce power consumption and enhance computa-
tional capabilities, as well as a system rethinking, addressing different problems or
adding new features.

Regarding the firmware upgrades, an opportunity to reduce computational effort on
the microcontroller is to implement approximate computing methods. This would
bring to a faster computation and possibly to a lower power consumption too. It
would concern both the neural network sigmoid activation, which could be rectified
to avoid the exponential, and the type of data used, evaluating if a different data
type would be better for this application.
Another improvement could be the introduction of a reinforcement learning on-
line, in particular for what concerns the initial manual calibration of the electrodes
placement. A software routine could train the last layer of the network to improve
adaptability of the system to each individual.

On the hardware side a lot of upgrades can be made, depending on the desired
application. Changing the number of the electrodes as well as their shape, could
bring to a more powerful system, with possibly a classifier able to distinguish among
more and more different gestures, even more similar to each other.
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Appendix A

3D Datasets Representation

In this first appendix, the graphical representations of the twenty datasets used for
the training phase are displayed. Each figure contains 2500 points, obtained by one
single person in a session. Each color corresponds to a different class and the three
axis are equivalent to the three acquisition channels used in this work. The idle
class has already been generated and it is displayed in cyan.
From the graphics it is possible to notice that from one person to another there
could be even big differences in the class displacements. Though, the classifier has
been able to distinguish between them obtaining good results as shown in 5.1.

Figure A.1: Legend of the movements.

(a) Subject 1 (b) Subject 2

Figure A.2: Datasets of the 20 people involved in the training phase (1 of 4).
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(c) Subject 3 (d) Subject 4

(e) Subject 5 (f) Subject 6

(g) Subject 7 (h) Subject 8

Figure A.2: Datasets of the 20 people involved in the training phase (2 of 4).
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(i) Subject 9 (j) Subject 10

(k) Subject 11 (l) Subject 12

(m) Subject 13 (n) Subject 14

Figure A.2: Datasets of the 20 people involved in the training phase (3 of 4).
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(o) Subject 15 (p) Subject 16

(q) Subject 17 (r) Subject 18

(s) Subject 19 (t) Subject 20

Figure A.2: Datasets of the 20 people involved in the training phase (4 of 4).
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