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Efficient belief propagation decoding of polar codes: algorithms and
architectures

by MARINO Mattia

Nowadays considering the large transmission infrastructures of data that travel at
very high speeds, they must be transferred with considerable efficiency. Important
results have been achieved almost at the limit of the maximum capacity of the trans-
mission channel with different types of Error Correction Code (ECC), although they
have never fully saturated it.

The new generation polar codes, as demonstrated, are able, due to their recur-
sion, to reach the maximum capacity of the channel with low complexity coding
structures. Instead, in the information decoding process the Belief Propagation, an
iterative parallel decoding algorithm which allows to improve low latency perfor-
mance, has been studied. To eliminate the same latency times due to the iterative
convergence procedure, the early stopping criteria have been studied and intro-
duced. The objective of this thesis is the study of their performance, considering
the complexity of the methods themselves; the introduction of a new early stopping
method based on the Cyclic Redundancy Check (CRC) and finally a hardware im-
plementation of the Frozen Bit Error Rate (FBER) criterion.

We will start with the analysis of the state of the art of the stopping criteria try-
ing to compare the performances weighing them to the computational cost. It will
continue with the software implementation of the very low FBER method only. Fur-
thermore, the criterion based on the CRC will be devised and created so as to enter
into synergy with the other methods given its construction.

Finally, the FBER method will be implemented in hardware considering an ar-
chitecture optimized to minimize the cost of complexity by trying to maintain and
improve its performance.
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Chapter 1

Introduction to polar codes

To realize a data transmission through a noisy channel, it is possible to apply the
Error Correction Code (ECC) techniques since they allow to increase the reliability
of the transmission with a substantial cheapness. Currently, to consider a reliable
transmission it is necessary to have a certain degree of reliability even at low SNR;
to do this, redundant information is added to the transmission itself trying to reduce
the costs related to its transmission.

In information theory, there are a large number of ECCs (for example Low Den-
sity Parity Check (LDPC) or Turbo Codes) but in this work the Polar Codes will be
examined. The fundamental equations and their constitutive parameters will be de-
scribed for explicit mathematical validity. Moreover, its encoding process will be
illustrated with a hardware implementation and, subsequently, the decoding algo-
rithm of the Belief Propagation (BP) will be explained with its relative optimizations.

1.1 Polar codes description

Polar codes are a type of ECC created by Arikan in [1] where he formally proves that
they ensure a reliable channel for an infinite length code. In his paper, he concen-
trates on Binary-input Discrete Memory-less channels (B-DMCs) trying to achieve a
low encoding and decoding complexity. To make these concepts explicit, mathemat-
ical formulas will be introduced first and then the method created by Arikan for the
construction of the code itself.

1.1.1 Channel polarization

The polar codes are based on the idea that for a channelW exist two capacity types
I(W):

1: I(W) = 1 then the channel is perfect in transmission and ECC is not needed;

2: I(W) = 0 then the channel is useless and no transmission is allowed.

The ultimate goal of polar codes is that to commute ordinary channel W into
one of these two types. This is obtained through the polarization which requests a
variable copies of the channel. Exploiting a transformation 1 to 1, it’s obtainable a
second set in which the channel capacity tends to 1 or 0.

Mathematically, we start from a B-DMC indicated withW : X −→ Y where X
is the input with values [0, 1] only, Y is the output andW(y|x), x ∈ X , y ∈ Y is the
transition probability. Therefore two parameters are important:
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• symmetric capacity of the channel described by

I(W) , ∑
y∈Y

∑
x∈X

1
2
W(y|x)log

(
W(y|x)

1
2W(y|0) + 1

2W(y|1)

)
(1.1)

• Bhattacharyya parameter described by

Z(W) , ∑
y∈Y

√
W(y|0) +W(y|1) (1.2)

The first one indicates the maximum rate at which the reliable communication
can be realized; the second one is an upper bound on the probability of maximum-
likelihood (ML) decision error to transmit a 1 or 0. It’s simple to understand that
both of them can take values in [0, 1]. I(W) will be equal to the Shannon capacity
only when I(W) is a symmetric channel.

FIGURE 1.1: W2 basic channel

The channel polarization occurs into two different phases divided in combining
and splitting channel.

Combining channel It combines N = 2n (with n ≥ 1) independent copies ofW to
construct a more complex channelWN : X N −→ YN . To achieve theWN channel it
is necessary to start from the basicW2 arranging the transition probabilities in this
way:

W2(y1y2|u1u2) =W(y1|u1 ⊕ u2)W(y2|u2) (1.3)

The graph in Figure 1.1 shows the basic combining channel withW2.
Going forward withW4, it’s possible to condense the whole transition probabil-

ity simplifying the reading with a generator matrix G4 described as

G4 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

 (1.4)

In Figure 1.2 we have the graph forW4 and the overall relation is

W4(y4
1|u4

1) =W4(y4
1|u4

1G4) (1.5)

The general expression of the combining operation is presented in Figure 1.3
where the sub-block RN is called reverse shuffle. It works on its input to create the
input for the two copies ofWN/2. The probabilities with N factor is determined by
the generator matrix GN and by the relation
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FIGURE 1.2: W4 channel

WN(yN
1 |uN

1 ) =WN(yN
1 |uN

1 GN) with yN
1 ∈ Y , uN

1 ∈ X (1.6)

Splitting channel In the splitting step N different polarized channels must be ob-
tained and it’s possible to demonstrate that

I(WN) = I(UN ,YN) =
N

∑
i=1

I(Ui;YN ,U i−1) (1.7)

FIGURE 1.3: WN channel composed by two copies ofWN/2
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Thus, defining a new bit line channel Wi : Ui −→ (YN ,U i−1), it’s possible to con-
clude that:

I(WN) = I(UN ,YN) =
N

∑
i=1

I(Ui;YN ,U i−1) =
N

∑
i=1

I(Wi) (1.8)

After that it’s possible to affirm that the capacitance of the polarized channel is
the same of the not polarized one.

It’s necessary to notice that a random permutation with a mapping transforma-
tion 1 to 1 is most likely a good polarizer but it’s not simple to implement. To remedy
this, isotropic and step-wise proprieties have to be chosen in order to obtain a low
complexity polarizer. Indeed the same Arikan introduces this transformation type
as figured in 1.4.

FIGURE 1.4: WN channel capacity to vary index

Furthermore, Arikan managed to create a recursive transformation composed by
an encoder with Nlog(N) complexity which reaches a good channel polarization.
More insights and details can be found in [2].

1.2 Encoding process

After the definition and description of channel polarization formalities, the encoding
process can be analyzed. The bits’ set which carries the information will be namedA
and it is compound by K high capacitance channels; its complementary, the bits’ set
which does not carry information (then fixed to 0, usually called frozen bits), will be
Ac. The x vector is the transmitted codeword; instead u is the input of the encoder
which performs the following operation:

xN
1 = uN

1 GN (1.9)
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Considering the sets described above, it’s possible to rewrite the equation 1.9
dividing the two contributions:

xN
1 = uAGN(A)⊕ uAc GN(Ac) (1.10)

However, as explained before, GN is the generator matrix with N = 2n dimen-
sion with n ≥ 0 and, generalizing, it can be described as:

GN = RN(F⊗ IN/2)(I2 ⊗ GN/2) = RN(F⊗ GN/2) f or N ≥ 2 (1.11)

where:

• Ik is the k-dimensional identity matrix for k ≥ 1;

• RN is the reverse shuffle operator;

• F is a 2x2 matrix defined as F ,
[

1 0
1 1

]
;

• the operand ⊗ is the Kronecker product of matrix determined as

A⊗ B =


A1,1B A1,2B · · · A1,nB
A2,1B A2,2B · · · A2,nB

...
...

. . .
...

Am,1B Am,2B · · · Am,nB

.

Substituting for two times GN/2 = RN/2(F ⊗ GN/4) in 1.11 and exploiting the
identity propriety (AC)⊗ (BD) = (A⊗ B)(C⊗ D) with A = I2, B = RN/2, C = F,
D = F⊗ GN/4, we obtain

GN = BN F⊗n (1.12)

FIGURE 1.5: Encoder hardware implementation for G8 = F⊗3, N = 8
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BN is a permutation matrix since it derives from a product of two permutation
matrices and it’s defined as:

BN , RN(I2 ⊗ RN/2)(I4 ⊗ RN/4) · · · (IN/2R2) = RN(I2 ⊗ BN/2) (1.13)

In Figure 1.5 it is shown a circuit which realizes the encoding process for N = 8.
In the implementation BN is omitted since it is preferable only to use F⊗n in order
to simplify the implementation itself. The total latency is equal to NlogN and it’s
necessary to notice that the u bit-input vector is not processed in its natural order
only to get the output in the correct index progression.

As Arikan exhibits in [1], the latency’s implementation could be improved ap-
plying in parallel N processors in order to execute the encoding operation column-
by-column thus reducing the total latency to logN. At the end, the encoder can be
synthesized using only XOR logic gates.

1.3 Decoding process

Going on to examine the decoding techniques, we can affirm that, in literature, the
decoding of the polar codes is essentially formed by two main families:

• Successive cancellation (SC);

• Belief propagation (BP).

The first one is characterized by a sequential algorithm which decodes the frame
in a recursive approach involving a finite number steps: starting from the root, the
decoder computes the ûi step exploiting the channel output y and the previous cal-
culated step ûi−1.

(A) Polar codes tree for successive can-
cellation decoder N = 8

(B) Local node decoder N = 8

FIGURE 1.6: Basic elements for successive cancellation

This recursive way of proceeding offers a natural binary representation for polar
codes figured in 1.6a; instead the local operative node (illustrated in 1.6b) needs to be
fed, in order to start the decoding process, at root with (λ1, · · · , λN) channels with
the Log Likelihood Ratio (LLR) where

λi = log
(

P(yi|xi = 0)
P(yi|xi = 1)

)
(1.14)

The SC decoder has the advantage of requiring few computational costs for de-
coding an input frame and, in doing this, it reaches a good error-correcting perfor-
mance for long code lengths. However, the most significant problem of this decoder
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is its latency since every decoding step is not independent from each others. Op-
timizations can be done but this nature can not be changed. This type of decoder
will not be taken into account in this work and more information on the successive
cancellation can be found at [3]. We will focus on belief propagation decoder that
ensures a low-latency response given from the possibility of performing calculations
in parallel.

1.3.1 Belief propagation decoder

The belief propagation decoder manages to eliminate the problem of sequentiality
introduced by the SC since the BP algorithm operates in separate stages [4]. It can
be used for the decoding of polar codes exploiting the factor graph shown in Figure
1.7.

FIGURE 1.7: Factor graph of Belief Propagation decoder for N = 8

It’s possible to generalize for a N code length with (logN + 1)N nodes (denoted
with a couple (i, j) : 1 ≤ i ≤ n; 1 ≤ j ≤ N/2) which have, for each one, two different
message types: L and R. The nodes at first layer are connected with the source vector

FIGURE 1.8: Basic Processing Element (PE) of Belief Propagation de-
coder
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u and the last (n + 1) nodes’ layer is linked with the code-word x. The calculations
are performed by the basic PE in Figure 1.8.

These messages are the LLRs and they propagates and updates them-self among
adjoining nodes in according with the following equations:

Li,j = g(Li+1,2j−1, Li+1,2j + Ri,j+N/2)

Li,j+N/2 = g(Ri,j, Li+1,2j−1) + Li+1,2j

Ri+1,2j−1 = g(Ri,j, Li+1,2j + Ri,j+N/2)

Ri+1,2j = g(Ri,j, Li+1,2j−1) + Ri,j+N/2

(1.15)

where

g(x, y) = ln
(
(1 + xy)
(x + y)

)
(1.16)

By the way, the last equation is too complex to be integrated into the circuit, then
it’s approximated in hardware implementation with the following expression:

g(x, y) ≈ sgn(x)sgn(y)min(|x|, |y|) (1.17)

The R1,j messages generated from the vector u are set as

R1,j =


0 if j ∈ A
∞ if j ∈ Acand uj = 0
−∞ if j ∈ Acand uj = 1

Instead, the messages LN+1,j, 1 ≤ j ≤ N, that originate from the channel block are
given by

LN+1,j = log
(

P(yj|xj = 0)
P(yj|xj = 1)

)
(1.18)

As shown so far and supported by [5], BP polar decoder has the advantage of
processing data in parallel and, when compared with SC, offers a certain advantage
for all low-latency solutions. Given the iterative nature of the BP polar decoder,
the number of iterations performed will be fundamental for the increase’s latency
and energy consumption. Exactly for this reason, the computational cost is high
exactly in the presence of a large number of iterations. To overcome this problem,
according to the literature, early stop criteria have been introduced in Chapter 2
while maintaining the same level of error-correcting performance.

1.3.2 Belief propagation optimizations

Over the years, there have been numerous advances and progresses in the improve-
ment of the BP algorithm with the inclusion of a scaling factor [6], in order to balance
the approximations, and the exploitation of the frozen bits position to sharpen per-
formance for a finite-length polar codes exposed in [7] and [8].

Scaling factor Given the introduction of an approximation from the equation 1.17
in hardware implementation, it is necessary to take into account the performance
losses. In order to minimize them, a scaling parameter s has been introduce to miti-
gate this errors. Applying s, the set’s equations 1.15 becomes:
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Li,j = s ∗ g(Li+1,2j−1, Li+1,2j + Ri,j+N/2)

Li,j+N/2 = s ∗ g(Ri,j, Li+1,2j−1) + Li+1,2j

Ri+1,2j−1 = s ∗ g + (Ri,j, Li+1,2j + Ri,j+N/2)

Ri+1,2j = s ∗ g(Ri,j, Li+1,2j−1) + Ri,j+N/2

(1.19)

The correction introduces significantly improves in the decoding performance
due to the fact that the g function is more faithful to the original without approxima-
tion. In fact, this parameter permits the alignment of the errors allowing a consid-
erable gain comparable with the non-scaled algorithm. Given the tests, we find that
the best value to apply is s = 0.9375 = 1− 2−4 with an improvement of 0.5dB and,
therefore, in the hardware implementation the scaling factor can be realized with a
simple shift-sum circuit.

Frozen bit position In accordance with the equation 1.15, it’s possible to observe
that when the lower left node linked to PE (i, j + N/2) is frozen, the node (i + 1, 2j)
is frozen as well; similarly, when the two nodes (i, j + N/2) and (i, j + N/2) are
frozen, the two nodes (i + 1, 2j − 1) and (i + 1, 2j) are frozen as well. With this
mind, optimizations can be made to avoid the allocation of registers that have to
store messages related to frozen nodes, the computation of frozen messages and to
allocate simplified PEs when the inputs are frozen.

Taking into account these observations, it is possible to affirm that by analyzing
the BP decoding algorithm and referring to the Figure 1.9, the nodes can be clas-
sified as frozen and information. As for the former, the values they can assume are

FIGURE 1.9: Simplified BP decoder factor graph with highlighted
frozen bits in red, N = 16
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already known and independent from formulas; the latter necessarily depends on
the algorithm. Moreover, a third type of node is introduced, called check node, which
exchanges messages to simplify the algorithm itself, shortening the path. The new
type of node is described by the following formulas:

L∗i,j = Li,j + Pi,j

R∗i,j = Ri,j + Pi,j
(1.20)

where Pi,j value is decisive. In fact, initializing P = ∞ we will set the next node as
frozen; contrariwise if P = 0 the next node will be an information node. For more
insights see [7].

However, it is possible to change the point of view using optimized PE rather
than varying the inputs. This approach, explained in [8], allows the classification of
PEs into 4 categories figured in 1.10:

• all input are frozen nodes;

• lower frozen input nodes;

• only upper right input node is frozen;

• no frozen input nodes.

FIGURE 1.10: Types of PE with highlighted frozen bits in red

The savings with this technique are possible in the first three cases because in
the last one canonical equations need to be used. The tests show that the cost of
complexity is reduced by 19.9% up to 25% maintaining the same error correction
performance.

By the way when the whole nodes are frozen the equations become simplified:

Li,j = Li,j+N/2 = Ri+1,2j−1 = Ri+1,2j = ∞ (1.21)

In second case equations will be:

Li,j = Li+1,2j−1

Ri+1,2j−1 = Ri,j

Li,j+N/2 = Ri+1,2j = ∞

(1.22)
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In third case there is the least savings as it is possible to simplify only few elements:

Li,j = ∞

Li+1,2j−1 = Li+1,2j−1 + Li+1,2j

Ri+1,2j−1 = Li+1,2j + Ri,j+n/2

Ri+1,2j = Li+1,2j−1 + Ri,j+n/2

(1.23)
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Chapter 2

Stopping criteria for belief
propagation polar codes decoders

To reduce the decoding process time given by the decoder’s iterative nature, it’s fun-
damental to find some early stopping criteria in order to increase performances and
throughput, always trying to detect the correct decoding of the frames. However
the main goal of early stopping criteria is to find the correct solution before reaching
the imposed maximum number of iteration.

In literature distinct stopping criteria exist and afterwards are described the more
interesting ones. Although the first two methods G-Matrix and minLLR are efficient
criteria, they have expensive computational costs. The third, the H-Matrix criterion,
is an improvement of the first one and promises better performances using fewer
additional resources. Furthermore, to decrease these computational costs, Worst of
Information Bits (WIB) and Frozen Bit Error Rate (FBER) are presented as low com-
plexity early stopping criteria.

2.1 G-Matrix

G-Matrix criterion [9] has the purpose of reducing computational costs exploiting
the G generation matrix. The G-Matrix is created as

GN = F⊗n

A pair of (n, k) is needed to create a message: N is the length (in bit) of whole code-
word, K are the information bits and (N − K) is the set of frozen bits fixed to "0"
value. The N − bit message, hereafter called u, is multiplied with the generator ma-
trix G and the x codeword output is transmitted through the polar code channel.

Considering xj = Ln+1,j + Rn+1,j and the formula’s approximation just above
x̂ = ûGN , if x̂ = û then we have a successful decoding and the iteration process can
be stopped; contrariwise if we do not reach this condition at iteration’s maximum
value then the decoded frame is incorrect. Accordingly we repeat the process at
every iteration.

G-Matrix method is able to reduce iterations, without FER’s loss performance,
from 23% at 2.5 dB to 42% at 3.5 dB with 40 iteration’s maximum threshold.

Computational cost Following the hardware scheme in Figure 2.1, we obtain the
computational cost described in Table 2.1: we need 2N adders to calculate x̂ and
û, 3N comparators to check if convergent conditions are set and N log N XOR to
perform the multiply with G-Matrix.
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G-Matrix performances

SNR Avg iter Iterations’ drop

2.5 dB 30.8 23.0 %
3.0 dB 26.1 34.7 %
3.5 dB 23.0 42.5 %

G-Matrix complexity costs

Type Quantity

Adder 2n
Comparator 3n

XOR n log n

TABLE 2.1: G-Matrix performances with 40 maximum iterations and
complexity costs

FIGURE 2.1: Hardware architecture of G-Matrix criterion

2.2 minLLR (minimum Log-Likelihood Ratio)

With minLLR criterion [9] we can obtain a measure of the reliability of ûi probability
of being 0 or 1 considering ûi = sign(LLRt

i,1). Hence a larger
∣∣∣LLRt

i,1

∣∣∣means that the

corresponding computation has greater reliability. So using the minimum
∣∣∣LLRt

i,1

∣∣∣
corresponds to identify a valid û. Thus, if

min
∣∣∣LLRt

1,j

∣∣∣ > β

with β tipically 2.5, the ûi is likely a valid estimation of u, the real information present
on the channel.

Adaptive minLLR minLLR criterion has not a uniform behaviour when varying
the SNR. This means that a different threshold of β is needed during the growth of
SNR value. To have a better and uniform trend without getting worse performances,
modifying β constant is necessary: an higher SNR value needs an higher β constant.
The problem can be solved estimating the channel condition using the Hamming



2.3. H-Matrix 15

distance between ûG and x̂. The distance, called λ, is equal to 0 when ûG = x̂ and
it means that ûG is an accurate approximation of the output x̂; thus β value can be
chosen dynamically.

minLLR criterion suffers from confined performance degradation starting from
SNR = 3.5dB of <0.05dB. It is due to the fact that the β choice is not always opti-
mal. By the way the criterion reaches a good reduction of iteration keeping in mind
computational cost’s savings.

Computational cost Regarding adaptive minLLR computational parts are lower
than G-Matrix ones since it has a different operations’ pattern: a halving of adders,
a third less of comparator and absence of XORs.

FIGURE 2.2: Hardware architecture of Adaptive minLLR criterion

Adapt. minLLR performances

SNR Avg iter Iterations’ drop

2.5 dB 35.7 10.7 %
3.0 dB 33.9 15.2 %
3.5 dB 30.7 23.2 %

Adapt. minLLR complexity costs

Type Quantity

Adder N
Comparator 2N

XOR -

TABLE 2.2: Adaptive minLLR performances with 40 maximum itera-
tions and complexity costs

2.3 H-Matrix

The H-Matrix method, also called "Parity check matrix", has the aim to find a syn-
drome composed only by zeros which means the decoding is successful and correct.
This early stopping criterion can be used only with linear block codes, as explained
in [10], since we can obtain the parity check matrix starting from the generator ma-
trix GN and thus a certain syndrome.
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The encoding of polar codes is described as x = uGN , where u = (u1, u2, ..., un)
is container of information bits (coded with 1) or frozen ones (coded with 0); x is
the codeword formed as x = (x1, x2, ..., xn). Remembering this steps, H-Matrix is
developed as following:

1. from GN N × N matrix we derive a G-Matrix K × N considering only the
columns of the information bit’s index (always supposing k information bits
in the code);

2. through the Gaussian Elimination we get a systematic matrix G =
[
PK×(N−K) IK×K

]
;

3. reversing the last one we find the H-Matrix H =
[

I(N−K)×(N−K) PT
(N−K)×N

]
from which calculating the syndrome.

If syndrome contains only zeros, early stopping criterion has found the correct
codeword x̂ and the process is stopped; else if syndrome is not composed by only
zeros, x̂ is not a valid codeword and the process must continue. If correct x̂ is not
found within maximum iterations, it is considered failed.

H-Matrix early stopping criterion guarantees minus iterations without loss per-
formances from 11.6% at SNR = 3dB with 20 maximum iterations until 71.7% at
SNR = 3dB with 80 iterations.

Computational cost Regarding the fact that we need G-Matrix to compute the par-
ity check matrix, the computational costs are the same respect the G-Matrix case.
Moreover we have to include to 2.3 the Gaussian Elimination operations and trans-
position matrix.

H-Matrix performances

SNR Avg iter Iterations’ drop

2.5 dB 25.6 36.0 %
3.0 dB 21.9 45.3 %
3.5 dB 18.2 54.5 %

H-Matrix complexity costs

Type Quantity

Adder 2N
Comparator 3N

XOR N log N

TABLE 2.3: H-Matrix performances with 40 maximum iterations and
complexity costs

2.4 WIB (Worse of Information Bits)

The Worse of Information Bits (WIB), described in [10], is the information cluster
with whom it is possible to stop the iteration process detecting a successful de-
code. The WIB cluster is composed by polarized bits with the highest error prob-
abilities and in this set are present only the frozen-bits. Applying Bhattacharyya
bound Z(W) for polar codes (because it has the lowest complexity) the method is
created exploiting the proportion of average Bhattacharyya values (PoB) described
as

PoB =
1

nWIB
∑l∈WIB Z(σ2

l )
1

k−nWIB
∑l∈WIB Z(σ2

l )

where nWIB are the observed necessary bits, k the whole information bits and σ2

is the Gaussian noise. It’s simple to notice that when nWIB increases also the PoB
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increases drastically (and vice-versa); in this way a higher value of nWIB means a
better behaviour in decoding process. Ultimately it’s used nWIB = 128.

To simplify the computation, we observe only the LLR’s (both left and right) sign
mutation of WIB with

ût
i = sign(Rt

i,1 + Lt
i,1)

After calculating this partial formula, we must control that the following formula

∑
l∈WIB

∑
v=t−M+1

ûv
i ⊕ ûv−1

i

has not "0" as result. The M parameter indicates for how many steps results must be
stable to "0". If the condition is fulfilled we can say that the method is successful and
the iterations can be stopped. Varying M parameter depending on the SNR value
we can exploit a kind of adaptive WIB that can still reduce the computational time.

WIB criterion reaches a good iterations’ cut from 11.8% at 2.5 dB for both variants
to 33.3% at 3.5 dB only for the fixed one. In every test iteration’s maximum is set
to 40 and nWIB = 128. Adaptive WIB has better performances at low SNR where
overcomes the fixed variant which has also a performance degradation of 0.05 dB at
3.5 dB.

FIGURE 2.3: Hardware architecture of WIB criterion

Computational cost Both variant methods have same computational costs how
summarized in 2.4. Synthesis is achieved from hardware architecture figured in 2.3.
WIB criterion does not use comparator blocks but obtains good results expending
few adders and XOR blocks.
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WIB performances adaptive / fixed

SNR Avg iter Iterations’ drop M

2.5 dB 35.3 / 35.3 11.8 %/ 11.8 % 5 / 5
3.0 dB 28.4 / 28.4 29.0 %/ 29.0 % 5 / 5
3.5 dB 28.4 / 26.7 29.0 %/ 33.3 % 7 / 5

WIB complexity costs

Type Quantity

Adder M + 2N/8
Comparator −

XOR N/8

TABLE 2.4: WIB performances with 40 maximum iterations and com-
plexity costs

2.5 FBER (Frozen Bit Error Rate)

This method, presented in [11], uses the Frozen Bit Error Rate (FBER) to detect when
the belief propagation decoding is successful. The Ft

BER at t-th iteration is defined as

Ft
BER =

1
|Ac| ∑

i∈Ac

[(1 + sign(Lt
i,1))/2]⊕ ui

where ui is a frozen bit. The stopping criterion, however, is based on the calculation
of

Ft
M =

t

∑
v=t−M+2

∣∣∣Fv
BER − Fv−1

BER

∣∣∣
where M is the iteration number in which Ft

M remains stable. For a complete and
successful BP decoding Ft

M = 0 is needed.
It’s further possible to reduce the computational cost considering Ac

p ⊂ Ac in
which there are only the most reliable frozen bits. Ac

p is a partial index set of frozen
bits and then the formulas become

Ft
PBER =

1
|Ac| ∑

i∈Ac

[(1 + sign(Lt
i,1))/2]⊕ ui

Ft
M =

t

∑
v=t−M+2

∣∣∣Fv
PBER − Fv−1

PBER

∣∣∣

FBER performances

SNR Avg iter Iterations’ drop

2.5 dB 33 17.5 %
3.0 dB 28 29.8 %
3.5 dB 26.5 34.0 %

FBER complexity costs

Type Quantity

Adder M + N/16
Comparator −

XOR N/16

TABLE 2.5: FBER performances with 40 maximum iterations and
complexity costs

Computational cost Analysing the Table 2.5, we can conclude that FBER criterion
offers a iteration’s reduction equal to 17.5% at 2.5 dB until 34% at 3.5 dB. This gain
is obtained with a very low complexity cost which includes only a few adders and
XORs components cutting out the comparators.
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2.6 Comparison between early stopping criteria

Comparing all the early stopping criteria and using at least one of them, we obtain a
minimum saving in the order of 10.7% of iterations applying the adaptive minLLR,
as shown in Table 2.6 and in Figure 2.4. However it is pretty expensive even taking
into account the performances which offers. In fact compared with the two most
expensive criteria (G-Matrix and H-Matrix), minLLR only halves the numbers of
adders and comparators providing just a third of iteration savings.

Performance comparison between early stopping criteria

Criterion G-Matrix H-Matrix minLLR WIB FBER

SNR Average Iterations / Iterations’ drop

2.5 dB 30.8/23 % 25.6/36 % 35.7/10.7 % 35.3/11.8 % 33/17.5 %
3.0 dB 26.1/34.7 % 21.9/45.3 % 33.9/15.2 % 28.4/29 % 28/29.8 %
3.5 dB 23/42.5 % 18.2/54.5 % 30.7/23.2 % 26.7/33.3 % 26.5/34 %

TABLE 2.6: Performance comparison between criteria normalized to
40 iterations

G-Matrix and H-Matrix give the best performances among all criteria and they
have a comparable similar cost and benefits: between them the minimum reduction
is 23% of G-Matrix until 54.5% due from H-Matrix. Although the last one referred
criterion needs more computational costs to obtain the parity check matrix, it is still
preferred to G-Matrix since it has a better behaviour in the entire SNR scale. Never-
theless they still remain very expensive criteria how is highlighted in Table 2.7 and
in Figure 2.5.
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FIGURE 2.4: Performance comparison between criteria normalized to
40 iterations
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Complexity costs comparison between early stopping criteria

Criterion G-Matrix H-Matrix minLLR WIB FBER

Type Components’ quantity

Add 2N 2N N M + 2N/8 M + N/16
Comparator 3N 3N 2N - -

XOR Nlog(N) Nlog(N) - N/8 N/16

TABLE 2.7: Complexity costs comparison between criteria
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FIGURE 2.5: Complexity cost comparison between high computa-
tional costs criteria with N = 1024

Finally WIB and FBER are the cheapest presented methods which offer limited
benefits in terms of iterations’ reduction. They are comparable with minLLR despite
being better: WIB has a 11.8% of savings, FBER has 17.5%. They also have a very
similar behaviour at high SNR but FBER criterion provides those result with fewer
adders and XORs components how can be seen in Figure 2.6.
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FIGURE 2.6: Complexity costs comparison between simplified criteria
with N = 1024



21

Chapter 3

Software simulation

Once introduced a global view of BP in Chapter 1 and defined the stopping criteria
in Chapter 2, it is possible to go beyond in testing phase. Starting from a prefixed
C code which already includes a BP decoder, custom schedule implementations and
G-Matrix stopping criterion, it is necessary to recall the BP’s parameters and some
basic aspects of the scheduling concepts.

Moreover, it is presented a FBER implementation and a first CRC application in
its variants. Finally, test’s results are shown with relative analysis and conclusions.

For all the tests have been used computational resources provided by VLSI Lab.

3.1 Software model

It’s useful to remind the main parameters of already existing and tested C model of
BP decoder. These parameters are:

• N is the size (in bit) composing a single frame;

• K is the size (in bit) of the information contained in a single frame;

• intrinsic information refers to how much a message coming from channel can
vary;

• extrinsic information is the range of how a message can vary internally with a
dynamic behavior of the decoder;

• s is the so called scaling factor used to improve BP’s decoder performances in
order to have a better approximation of g function.

In Chapter 4 is described analytically the whole parameters’ set to perform the
simulations.

3.1.1 Scheduling profiles

Due the intrinsic parallelism of the belief propagation algorithm, it is possible to
apply a different operations’ order. It is important to point out that a schedule profile
is only a way to control the succession of operations relative to LLR messages.

The single PE can propagate both L and R messages at once (bidirectional sched-
ules) or only one of them at the time (unidirectional schedules). Examining the
whole PE’s set, a PE can be used in parallel or sequentially according to the schedul-
ing logic. In this scope, a iteration is over when all messages belong to a factor graph
(2N log N) are updated, in any order.

In this work four schedules are used, divided in basic and advanced.

https://www.vlsilab.polito.it/
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Basic schedules The simplest one used is Linear RL that processes the rightmost
nodes first (PE5 in Figure 3.1). In this way the last PE column to be activated is PE1.
At the end of computation, the LLR restarts with the index n. It also propagates
messages bidirectionally.

FIGURE 3.1: RL schedule

Overall, this schedule computes for each step 2N messages and so a iteration
needs (2NlogN)/2N = logN to be completed.

FIGURE 3.2: Stepped schedule

The other basic schedule is Stepped. It involves alternately the odd PE columns
(blue in Figure 3.2) with the even ones (light blue). The whole NlogN messages are
elaborated in only two steps and it propagates them bidirectionally as Linear RL.

Advanced schedules The advanced schedules are more complex than the basic
ones but they ensure better performances in precision and velocity convergence.

The Biwave (shown in Figure 3.3) is composed by Linear RL schedule and its op-
posite Linear LR and it runs them at the same time on the factor graph. In its uni-
directional implementation, it processes 2N messages per step and needs logN in
order to finish an iteration.

Moreover, the Circular LR in Figure 3.4 starts the computation from first leftmost
column up to n rightmost one. The iteration is concluded by completing the path
in reverse starting from n rightmost column up to first leftmost one. It calculates N
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FIGURE 3.3: Biwave schedule

messages for each PE and it needs 2logN steps to finish an iteration in its unidirec-
tional implementation.

FIGURE 3.4: Circular LR schedule

For further details and clarifications see [5], [12] and [13].

3.2 Software implementations

In view of the above, it has been decided to add to the system the algorithmic sim-
plified early stopping criterion FBER and a CRC implementation in order to perform
a direct control over data. Both applications have been developed and integrated to
the main program as defined below in 3.2.1 and 3.2.2.

3.2.1 FBER application

The FBER criterion allows us to obtain relatively important savings of iterations with
simple and a few components. The criterion implementation in C language has been
developed as precise as possible to the description provided from literature in 2.5.
For this purpose, an algorithm has been created to perform the entire operation set
and it is presented in the box below.



24 Chapter 3. Software simulation

1: INPUT:

2: Lt
i,1 left messages; max_iterations; xi coded vector; M parameter;

3: ITERATION PROCESS (t= current iteration)

4: setting: maximum code length N, decision bit ∀ i ∈ 0 < i < N

5: if(Lt
i,1 > 0) dec_FBERi = 0; else dec_FBERi = 1;

6: Ft
BER+ = [(1 + dec_FBERi)/2]⊕ xi;

7: if(t > 1)

8: FM = Ft+1
BER − Ft

BER;

9: if(FM == 0) FBER_COUNT ++; else FBER_COUNT = 0;

10: if(FBER_COUNT == M)

11: stop iteration;
12: FBER_COUNT = 0;

13: else continue iteration (t ++);

14: if(t = max_iteration) FM = FBER_COUNT = 0;

In the iteration process (from 3 to 6) the data to be processed are prepared and
hard decision vector is elaborate. Subsequently, only when a complete iteration
is performed, the computations useful for stopping iterations are calculated (from
7 to 13). The parameter M ensures stability to the entire criterion. Only when
FBER_COUNT variable is equal to M then current iteration t will be stopped. In
the event that iteration reaches the simulation’s imposed limit, then variables will
be manually reset.
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FIGURE 3.5: Software validation for FBER error with Linear RL
scheduling compared with [5]
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Software validation For software validation, it has been used Linear RL and Cir-
cular LR schedules; results are compared with [12] and [5]. Parameters’ test are dif-
ferent between them: in first case they are N = 1024, K = 512 and 40 maximum
iterations; in second one maximum iterations is fixed to 60. Obviously only FBER
criterion was activated. Instead, M is set to 4, the lowest value for which no perfor-
mance losses were registered.

It can be noticed a similar trend between curves in Figure 3.5. Until SNR = 2.5dB
trends of simulated curves and literature ones are practically the same; at higher
SNR a slight difference between them can be found.
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FIGURE 3.6: Software validation for FBER error with Circular LR
scheduling compared with [12]

A different behavior has been observed regarding Circular LR schedule in Fig-
ure 3.6 where at lower SNR simulations show a better trend than literature results.
Contrariwise, for SNR > 2.5dB the errors evicted are sharply lesser. By the way
simulated curves don’t evince any differences between them.

These discrepancies can be dictated to the fact that an analysis on the position of
frozen bit was performed in order to identify optimizations in terms of memory and
processing elements. More information in 1.3.2 and for other tests and insights see
Chapter 4.

3.2.2 CRC (Cyclic Redundancy Check) error data control application

The CRC system (presented in [14]) calculates checksum useful for identifying data
transmission errors. It is very simple to realize in binary coding since it’s composed
by only XOR logic gates. In its canonical form, shown in Figure 3.7, CRC system
generates a string of control bit usually attached to its relative data sequence and
finally transmitted.

In order to compute CRC control a polynomial generator necessarily must be
chosen. Data is linked to another polynomial b(x) (degree n− 1) and assuming that
the CRC has a generator G(x), b(x) is shifted of G position to the left achieving
P(x) polynomial of h = n− 1 + g degree. The division P(x)/G(x) takes place ex-
ploiting module 2 polynomial long division without carryovers. This last operation
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FIGURE 3.7: Basic CRC diagram

in binary arithmetic can be performed using only XOR gates obtaining a quotient
Q(x) and a remainder R(x). Whatever polynomial divisor will be used, the fun-
damental functioning is the same. Finally R(x) is attached to P(X) and sent over
transmission channel. Receiver will execute same operations considering data equal
to M(x) = P(X)− R(X) and if the new R′(x) will result equal to the sent one then
received data will be unchanged.

Every generator polynomial defines a particular kind of CRC code and two ver-
sions have been implemented:

• CRC32 with characteristic polynomial equal to
x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
or in hexadecimal 0x04C11DB7;

• CRC16 with characteristic polynomial equal to x16 + x12 + x5 + 1 or in hex-
adecimal 0x8005.

It’s highlighted that the basic program of the algorithm that calculates the CRC
in C language has been provided by Lambert Bies under open source license and
can be found entirely at https://www.libcrc.org/.

The complete implementation is described in the box below. At the beginning,
the messages to process are stored in specific vectors. The input data from which we
will calculate the CRC are saved in crc_input_uncoded1

i and this one is built only at
the first iteration. In the second vector crc_input_codedt

i left messages Lt
i,1 are stored.

Both operations are performed in the iteration process (from 3 to 7). In step 8 and
9 the CRCs of crc_input_uncoded1

i and crc_input_codedt
i (relative to current iteration

t) are obtained. In passage 10 the comparison takes place and only if both CRCs are
equal then CRC_COUNT will be increased. Still here like in FBER application, a
parameter M is necessary to ensure stability but, performing the tests, the minimum
and optimal value is M = 1 (best iterations’ stopping and no performance losses).

The others tested values are M = 3, M = 4 and M = 6. Choosing M = 1 we will
stop iterations as soon as the first couple of CRCs is identical; otherwise in step 15

https://www.libcrc.org/
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iterations’ counter is increased and at last iteration CRC_COUNT is manually reset
if criterion does not give a positive reply.

1: INPUT:

2: Lt
i,1 left messages; max_iterations; uncodedN coded vector; M parameter;

3: ITERATION PROCESS

4: setting: maximum code length N, decision bit ∀ i ∈ 0 < i < N

5: if(t == 1) crc_input_uncoded1
i =uncodedNi;

6: if(Lt
i,1 > 0) dec_CRCi = 0; else dec_CRCi = 1;

7: crc_input_codedt
i=dec_CRCi;

8: if(t == 1) crc_uncoded1= f unction_crc(crc_input_uncoded1, N);

9: crc_codedt= f unction_crc(crc_input_codedt, N);

10: if(crc_codedt == crc_uncoded1) CRC_COUNT ++; else CRC_COUNT = 0;

11: if(CRC_COUNT == M)

13: stop iteration;

14: CRC_COUNT = 0;

15: else continue iteration (t ++);

16: if(t = max_iteration) CRC_COUNT = 0;

Software validation Since two versions of the CRC (CRC16 and CRC32) have been
implemented, they have been compared to each other in order to find their precise
correspondence. As already done in FBER application, for software validation has
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FIGURE 3.8: Software validation for CRCs errors with Linear RL
scheduling compared with [5]
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been used Linear RL and Circular LR schedules and the results are compared respec-
tively with [12] and [5]. Also in this case parameters are in first case N = 1024,
K = 512 with 40 maximum iterations and in the second one max iterations are 60.

As can be seen in Figure 3.8, CRCs errors are practically identical to the Linear RL
and no particular differences stand out. Literature’s curve has still a better behavior
at higher SNR.
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FIGURE 3.9: Software validation for CRCs errors with Circular LR
scheduling compared with [12]

Instead different trends come out analyzing the graph in 3.9 in which CRCs con-
firm in all SNR steps the no stopping results. Surprisingly, CRCs errors at SNR =
3.5dB are a little bit less than no stopping ones. Also in this case, at SNR < 2.5dB
simulated curves are better respect to the literature one but at higher SNR situation
is reversed. As explained above in FBER application, these differences are caused
from frozen bit position’s optimization (see 1.3.2).

The Figure 3.8 and Figure 3.9 affirm that it does not matter what is the polynomial
generator G(x) chosen to compute the CRC because they reach the same results.
From here on, for later tests, only CRC32 version will be used in comparisons in
order to simplify reading.
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Numerical simulations

After the FBER and CRC systems’ validation, the outcomes of numerical tests will be
analyzed. More precisely, results will be separated first considering the parameters
N and K, then they will be grouped taking into account the stopping criterion and,
at the end, which schedule’s band has been used. Schedules’ groups will be called
basic and advanced schedule as presented in 3.1.1.

Finally, hybrid tests will be compared. In hybrid solutions, both the stopping
criterion and the CRC data control have been activated trying to find out a better
compromise between performance and computational costs. In the construction of
the hybrid methods, precedence has been given to algorithmic criteria rather than
to the CRC method. Precisely for this reason, in the case in which both operating
criteria reply positively at the same iteration, the algorithmic one will prevail.

The parameters used to perform the whole tests, except N and K, are:

• max iteration= 40 (when different is specified);

• max simulated frames= 300000;

• max wrong simulated frames= 150;

• intrinsic information fractional bits= 7.

• intrinsic information: [min, max] = [−2048, 2047];

• extrinsic information: [min, max] = [−2048, 2047];

• R messages initialization value= 2047:

• s scaling factor: [le f t, right] = [0.937500, 1.00]

4.1 N=1024, K=512: numerical results

For the following comparisons, reference was made to [12] as regards Linear RL and
Stepped schedules and to [5] for Circular LR and Biwave. Besides, results from [10]
have been introduced in order to achieve a broad spectrum analysis.

Afterwards the complete analysis of the criteria, a general comparison between
them is presented in order to understand which has the better stopping behavior
varying SNR scale.
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4.1.1 G-Matrix criterion

In these tests, the G-Matrix is the only early stopping criterion to have been acti-
vated. Great differences between basic and advanced schedules has been detected
both in errors’ comparison and in iterations’ stopping.
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FIGURE 4.1: G-Matrix BER-FER with Linear RL and Stepped N = 1024,
K = 512

Basic schedules In Figure 4.1 BER performances with Linear RL and Stepped sched-
ules are aligned with the other ones except at lower SNR where H-Matrix works
better. FER’s curves follow same validation trend even if Stepped is the worst and
H-Matrix reaches the lowest FER value.

Instead, analyzing Figure 4.2 and Table 4.1, it’s possible to notice that iterations of
the two basic schedules are quite efficient reaching 22 (45% savings) and 20.6 (48.5%)
average iterations respectively for Linear RL and Stepped. Also they exceed G-Matrix
literature result.
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FIGURE 4.2: Iterations with G-Matrix criterion and basic schedules
N = 1024, K = 512
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FIGURE 4.3: G-Matrix BER-FER with Circular LR and Biwave sched-
ules N = 1024, K = 512

Advanced schedules Circular LR and Biwave have in all cases best performances
if compared with basic schedules. However, FER trends in Figure 4.3 are similar
between them and only at SNR = 2.5dB they almost converge in a point. Before
this, simulated curves have a lower error; after literature results become better. Talk-
ing about BER, simulated cases have a optimal conduct for all SNR spectrum: they
always stay below the others curves and they conclude almost close to 10−6.

Viewing iteration results in Figure 4.4 and still in Table 4.1 it can be concluded
that G-Matrix criterion with advanced schedules outclasses H-Matrix with a mini-
mum gap of about 7 iterations until a max of about 10. Circular LR and Biwave reach
a iteration drop equal to 80.8% for Biwave and 86.3% for Circular LR. It’s necessary to
underline that the advanced schedules with G-Matrix criterion is the most complex
case concerning hardware components in no hybrid group.
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G-Matrix criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 31.6 21 %
3.0 dB 26.0 35 %
3.5 dB 22.0 45 %

Stepped
2.5 dB 29.6 26 %
3.0 dB 24.2 39.5 %
3.5 dB 20.6 48.5 %

Circular LR
2.5 dB 8.06 79.9 %
3.0 dB 6.36 84.1 %
3.5 dB 5.49 86.3 %

Biwave
2.5 dB 11.8 70.5 %
3.0 dB 9.15 77.1 %
3.5 dB 7.69 80.8 %

TABLE 4.1: Average iterations with G-Matrix criterion N = 1024, K =
512

4.1.2 FBER criterion

Here the implementation explained in 3.2.1 has been put to the test in order to un-
derstand how much the system is reliable and performing. Obviously only FBER
criterion has been activated as early stopping termination.
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FIGURE 4.5: FBER BER-FER with Linear RL and Stepped schedules
N = 1024, K = 512

Basic schedules The error diagram shown in 4.5 evinces that the simulations give
practically the same outcomes of validation test and basic schedules have the same
slight difference in FER with the curves in [5]; this proves and confirms the method’s
coherence and its actual correctness both in terms of theory and its application. The
H-Matrix’s error is still the better FER against the basic schedules. Contrariwise the
BERs’ results end for all tests and literature’s data at the same value.
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FIGURE 4.6: Iterations with FBER criterion and basic schedules N =
1024, K = 512

The stopping iterations’ attainments are very similar for both basic schedules
with a very light benefits for Stepped one (see Figure 4.6 and Table 4.2); indeed they
distance themselves by only 1.3% @3.5dB in stopping rate, half iteration. The liter-
ature’s FBER value arrives to 26.5 iterations (already shown in 2.6) with a gap from
the simulated tests of about 4% (1.9 iterations).

Advanced schedules The situation changes when we use advanced schedules since
FERs’ results are quite close to lower SNRs and after SNR = 2.5dB they almost coin-
cide. In Figure 4.7 Circular LR and Biwave schedules are very similar in FER’s terms.

Furthermore, FER’s trends and the validation test look alike too and this demon-
strate the tests’ reliability. The BER parameter is better throughout the SNR scale
remaining below enough the H-Matrix literature’s values.
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FIGURE 4.8: Iterations with FBER criterion and advanced schedules
N = 1024, K = 512

The advanced schedules achieve about fifteen iterations and they succeed to
overtake H-Matrix method reaching at SNR = 3.5dB 16.5 iterations for Biwave and
14.5 for Circular LR with a savings of respectively 58.8% and 63.8%. Moreover they
outdistance from H-Matrix criterion of 1.7 iterations and 3.7 (4.3% and 9.3% less).
The whole data are referred to Figure 4.8 and Table 4.2.

FBER criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 35.4 11.5 %
3.0 dB 31.4 21.5 %
3.5 dB 28.4 29 %

Stepped
2.5 dB 35.4 11.5 %
3.0 dB 31.2 22 %
3.5 dB 27.9 30.3 %

Circular LR
2.5 dB 19 52.5 %
3.0 dB 16.1 59.8 %
3.5 dB 14.5 63.8 %

Biwave
2.5 dB 22.1 44.8 %
3.0 dB 18.5 53.8 %
3.5 dB 16.5 58.8 %

TABLE 4.2: Average iterations with FBER N = 1024, K = 512

4.1.3 CRC criterion

As done with the FBER criterion, CRC method has been tested in order to include
an all-around analysis and understand its strengths and reliability. Also in this case
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only CRC criterion has been put into operation and, as mentioned before in 3.2.2,
only CRC32 version’s tests will be analyzed just to improve the reading.
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FIGURE 4.9: CRC32 BER-FER with Linear RL and Stepped schedules

Basic schedules With Linear RL and Stepped, CRC criterion replies with a perfect
alignment between schedules in FERs’ performances. Their trends, represented in
Figure 4.9, overlap each other for all SNR values compared to the validation test.
Besides, the same behavior can be found in BER path attaining, at high SNR, the
H-Matrix method’s result. Hence we can consider definitively CRC as a reliable
method because it proves coherence and convergence.

Under the profile of stopping performances in Figure 4.10 and Table 4.3, CRC
criterion with basic schedules sure suprises since they catch the G-Matrix literature’s
result presented in 2.6: at SNR = 3.5dB the Stepped is distant 0.4 iteration, only 1%
more, while the Linear RL even overtake G-Matrix result with 22.9 iterations against
23 iterations. The gap is really sligth, only the 0.25% less, but this data confirms that
CRC system can also provide optimal stopping results.
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FIGURE 4.10: Iterations with CRC32 criterion and basic schedules
N = 1024, K = 512
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FIGURE 4.11: CRC32 BER-FER with Circular LR and Biwave schedules
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Advanced schedules The overcomes with Circular LR and Biwave validate the ar-
gumentation just made for basic schedules. Indeed even the trends figured in 4.11
confirm the CRC method’s goodness: it provides a FERs’ path completely in line
with the validation test. As in the others advanced performed tests, still here BERs’
trends are always below the H-Matrix result.
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FIGURE 4.12: Iterations with CRC32 criterion and advanced sched-
ules N = 1024, K = 512

Analyzing Figure 4.12 and the following table, we can notice that CRC32 gives a
less steep iterations’ drop but it gets off under fifteen iterations fot both schedules.
Biwave reaches at SNR = 3.5dB 12.2 average iterations (69.5% of savings) and Circu-
lar LR achieves 10.3 (74.3%). It’s an excellent result that supports the idea that CRC
can offer optimal performances with seriously poor costs.
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CRC32 criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 31.6 21 %
3.0 dB 26.7 33.3 %
3.5 dB 22.9 42.8 %

Stepped
2.5 dB 31.8 20.5 %
3.0 dB 27.1 32.3 %
3.5 dB 23.4 41.5 %

Circular LR
2.5 dB 15.1 62.3 %
3.0 dB 12.3 69.3 %
3.5 dB 10.3 74.3 %

Biwave
2.5 dB 18.0 55 %
3.0 dB 14.6 63.5 %
3.5 dB 12.2 69.5 %

TABLE 4.3: Average iterations with CRC32 N = 1024, K = 512

4.1.4 Hybrid solution: G-Matrix merged with CRC

The first hybrid solution is composed by the synergy of the G-Matrix criterion with
CRC32 data error control. As mentioned in Chapter 4, priority has been given to the
algorithmic method, in this case the G-Matrix. This method will also be named as
hybrid 1 for brevity if necessary.
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FIGURE 4.13: Hybrid G-Matrix + CRC32 BER-FER with Linear RL and
Stepped schedules N = 1024, K = 512

Basic schedules Observing the curves in Figure 4.13 relative to FER parameter it’s
possibile to notice that the trends are very close to the validation FER value and
at SNR = 3.5dB both Linear RL and Stepped schedule considerably approached to
literature’s curves. The same thing happens for BER parameter’s curves that slightly
end @3.5dB below the H-Matrix value although at lower SNR they still suffer against
the last one.
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FIGURE 4.14: Iterations with G-Matrix + CRC32 criterion and basic
schedules N = 1024, K = 512

As regards the stopping efficiency in Figure 4.14 and Table 4.4, it highlights a
functioning beyond expectations with a solid drop that halves maximum iterations’
number. The basic schedules reach 19.8 iterations for Linear RL and 20.4 for Stepped
one (respectively 50.5% and 49% less). They are in any case better then G-Matrix’s
result in the whole SNR scale (with a minimum and maximum iteration’s gap of 1.6
and 3.2) and the elaborated tests are also close to the H-Matrix’s outcome with only
a maximum diffrence of 2.2 iterations. It’s necessary to underline that the CRC32
method adds only a check in cascade to G-Matrix criterion.

FIGURE 4.15: Percentage of stopping criteria’s successes between G-
Matrix and CRC32 with basic schedules N = 1024, K = 512. Left

Linear RL, right Stepped

It has been possible to assess the working of individual criteria regarding hybrid
solutions too. Indeed, as shown in Figure 4.15, the data have been summarized and
approximated in order to examine discrepancies. In leftmost pie chart the uses for
the Linear RL schedule are shown and it underlines an absolute predominance of
the CRC with a percentage of successes equal to 91%. Contrariwise, in Stepped case
on right, results are reversed with a G-Matrix’s overpowering working with 95% of
successes.
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Advanced schedules The errors figured in 4.16 describes a situation very similar
to validation test since FER’s data follows the same validation’s path even if the
Circular LR has a better precision if compared with Biwave. Until SNR = 3.0dB the
simulated curves have a better trends than H-Matrix one. Also in BER’s performance
each schedules are below H-Matrix literature curves.
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FIGURE 4.16: Hybrid G-Matrix + CRC32 BER-FER with Circular LR
and Biwave schedules N = 1024, K = 512

In Figure 4.17 is represented the average stopping iterations’ yield for the ad-
vanced schedules and it displays the best steepness between SNR = 1.0dB to 2dB so
far encountered. After that threshold, curves become much less steep concluding at
SNR = 3.5dB with 7.63 iterations for Biwave and 5.48 for Circular LR (data are from
Table 4.4). These are the lowest obtainable results but we must consider that this
hybrid solution is the most complex and expensive criterion between all of them in
terms of components.
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FIGURE 4.17: Iterations with hybrid G-Matrix + CRC32 criterion and
advanced schedules N = 1024, K = 512

Moreover, looking at Figure 4.18, the outcomes obtainted with advanced sched-
ules are very similar among them. In the leftmost pie chart concerning Biwave, the
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G-Matrix criterion is widely predominant rather than CRC32 with a hits’ percentage
of 94%. The same trend is obeserved for Circular LR schedule on the right with a
result even more unbalanced: G-Matrix has a success rate equal to 99% against only
1% of CRC32.

FIGURE 4.18: Percentage of stopping criteria’s successes between G-
Matrix and CRC32 with advanced schedules N = 1024, K = 512. Left

Biwave, right Circular LR

G-Matrix + CRC32 hybrid criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 29.0 27.5 %
3.0 dB 23.5 41.3 %
3.5 dB 19.8 50.5 %

Stepped
2.5 dB 29.2 27 %
3.0 dB 23.9 30.3 %
3.5 dB 20.4 49 %

Circular LR
2.5 dB 7.88 80.3 %
3.0 dB 6.30 84.3 %
3.5 dB 5.48 86.3 %

Biwave
2.5 dB 11.5 71.3 %
3.0 dB 9.03 77.4 %
3.5 dB 7.63 80.9 %

TABLE 4.4: Average iterations with G-Matrix + CRC32 N = 1024,
K = 512
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4.1.5 Hybrid solution: FBER merged with CRC

The second hybrid criterion is the combination between algorithmic standard FBER
and CRC data error control. As already done previously, it reiterates that leading has
been given to FBER method (the algorithmic one) rather than CRC. This solution will
also be named as hybrid 2 for brevity if necessary.
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FIGURE 4.19: Hybrid FBER + CRC32 BER-FER with Linear RL and
Stepped schedules N = 1024, K = 512

Basic schedules The error’s curves shown in Figure 4.19 let us guess that FERs’
values are very close between the two path of Linear RL and Stepped. They overlap
each other in every SNR point except at 3.0dB where the Stepped one is a slightly
below. The BER’s performance is aligned with H-Matrix one and at high SNR all
curves are practically the same.

Regarding the stopping iterations’ performances, it’s possibile to notice that both
tested basic schedules exceed G-Matrix literature’s result. Stepped behaves really
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FIGURE 4.21: Percentage of stopping criteria’s successes between
FBER and CRC32 with basic schedules N = 1024, K = 512. Left

Linear RL, right Stepped

well achieving at 3.5dB 20.1 iterations with a drop of 49.8%; the H-Matrix criterion is
not that far with a gap of 1.9 iterations. Instead the Linear RL schedule reaches 22.2
iterations with a distance from G-Matrix of only 0.8 iteration. Observing the results
altogether, we can say that this hydrid solution offers an optimal iteration reduction
considering that it saves a large number of components. All results are in Figure 4.20
and Table 4.5.

How it can be seen from 4.21, the 95% of successes for Linear RL (on left side) is
given from CRC32 at the FBER’s expense; this establishes that CRC32 is absolutely
fundamental for the operation of the method. On right is shown the uses’ distribu-
tion of the two stopping criteria for Stepped schedule; here the outcomes are more
balanced with an 80% for CRC32 against a 20% of FBER system.
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FIGURE 4.22: Hybrid FBER + CRC32 BER-FER with Circular LR and
Biwave schedules N = 1024, K = 512

Advanced schedules If we observe the graph in Figure 4.22, we can verify that
the FERs’ trends are aligned with the validation one and the Circular LR schedule
conclude its path at 3.5dB at the lower limit of 10−3. The BER parameter results to
be better in every case than the H-Matrix one and, moreover, the Circular LR obtains
a great outcome reaching about 10−4 at SNR = 3.5dB.
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FIGURE 4.23: Iterations with hybrid FBER + CRC32 criterion and ad-
vanced schedules N = 1024, K = 512

The second graph inherent to average iterations in 4.23 describes excellent re-
sults’ curves because they get very close to 10 iterations and even the Circular LR
attains 8.63 iterations (a drop of 78.4%). The Biwave schedule stops at 10.6 iterations.
Details can be found in Table 4.5. Also in this case, it’s possible to assert that this
hybrid method can get very close to more complex criteria only using a fraction of
their computational costs.

Advanced schedules provide in 4.24 outcomes very similar among them since
the gap between hits’ percentages of CRC32 and FBER criteria is minimal: the dif-
ference is less of 1% between the two schedules with values that fluctuate from 94%
to 95% for CRC method. The CRC, also in this case, proves to be the key criterion in

FBER + CRC32 hybrid criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 31.4 21.5 %
3.0 dB 26.2 34.5 %
3.5 dB 22.2 44.5 %

Stepped
2.5 dB 29.7 25.8 %
3.0 dB 24.6 38.5 %
3.5 dB 20.1 49.8 %

Circular LR
2.5 dB 13.0 67.5 %
3.0 dB 10.3 74.3 %
3.5 dB 8.63 78.4 %

Biwave
2.5 dB 16.3 59.3 %
3.0 dB 12.8 68 %
3.5 dB 10.6 73.5 %

TABLE 4.5: Average iterations with hybrid FBER + CRC32 and ad-
vanced schedules N = 1024, K = 512
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FIGURE 4.24: Percentage of stopping criteria’s successes between
FBER and CRC32 with advanced schedules N = 1024, K = 512. Left

Biwave, right Circular LR

order to achieve excellent results.

4.1.6 Comparison between criteria

In Table 4.6 the most relevant results presented so far are grouped in order to com-
pare them with each other. Data are divided by schedules and which early stopping
criterion has been applied.

Comparison between early stopping criteria with 40 maximum iterations

Criterion G-Matrix FBER CRC G-Matrix+CRC FBER+CRC

Schedule SNR Average iterations / Iterations’ drop

Linear RL
2.5 dB 31.6/21% 35.4/11.5% 31.6/21% 29.0/27.5% 31.4/21.5%
3.0 dB 26/35% 31.4/21.5% 26.7/33.3% 23.5/41.3% 26.2/34.5%
3.5 dB 22.0/45% 28.4/29% 22.9/42.8% 19.8/50.5% 22.2/44.5%

Stepped
2.5 dB 29.6/26% 35.4/11.5% 31.8/20.5% 29.2/27% 29.7/25.8%
3.0 dB 24.2/39.5% 31.2/22% 27.1/32.3% 23.9/40.3% 24.6/38.5%
3.5 dB 20.6/48.5% 27.9/30.3% 23.4/41.5% 20.4/49% 20.1/49.8%

Circular LR
2.5 dB 8.06/79.9% 19.0/52.5% 15.1/62.3% 7.88/80.3% 13.0/67.5%
3.0 dB 6.36/84.1% 16.1/59.8% 12.3/69.3% 6.3/84.3% 10.3/74.3%
3.5 dB 5.49/86.3% 14.5/63.8% 10.3/74.3% 5.48/86.3% 8.63/78.4%

Biwave
2.5 dB 11.8/70.5% 22.1/44.8% 18.0/55% 11.5/71.25% 16.3/59.3%
3.0 dB 9.15/77.1% 18.5/53.8% 14.6/63.5% 9.03/77.4% 12.8/68%
3.5 dB 7.69/80.8% 16.5/58.8% 12.2/69.5% 7.63/80.9% 10.6/73.5%

TABLE 4.6: Stopping performance comparison between criteria with
40 maximum iterations and N = 1024, K = 512

The best criterion in terms of absolute performance is certainly the hybrid cri-
terion G-Matrix + CRC which is superior in every test except for the case FBER +
CRC with Stepped schedule. Benefits range from a minimum of 27% for Linear RL up
to a maximum of 86.3% of Circular LR. By the way viewing the results of G-Matrix
pure tests, it can be affirm that there are no important differences among them which
justify the CRC execution too. In fact in Figure 4.25 and 4.26, the deviations are prac-
tically absent at higher SNRs.

The CRC criterion succeeds in overcoming the FBER by distancing itself by a
minimum of 9% with Stepped schedule at SNR = 2.5dB up to 12.9% with Linear RL at
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FIGURE 4.25: Comparison between stopping criteria sorted by basic
schedules N = 1024, K = 512

SNR = 3.5dB. The higher the SNR value, the more the gap between them increases.
Moreover, the CRC criterion often comes close to the results of the G-Matrix one
above all in basic schedules.

Instead the FBER criterion fails to reach others finishing last in each tests: it does

FIGURE 4.26: Comparison between stopping criteria sorted by ad-
vanced schedules N = 1024, K = 512
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not achieve a iteration’s drop greater than 30.3% and 63.8% with respectively basic
and advanced schedules. It can be stated that the FBER criterion is parsimonious
from the point of view of complexity costs but does not excel in the performance.

The best compromise between performance and complexity costs is represented
by the hybrid solution that combines FBER with the CRC. Indeed it has very similar
performances to the G-Matrix criterion even though it does not cost as much as it.
This hybrid solution provides outcomes of iteration’s drop ranging from 21.5% up to
78.4%. Only for advanced schedules at SNR = 2.5dB it is outdistanced from the G-
Matrix criterion and its hybrid version of several percentage points. It is undeniable
that it offers excellent performance with savings in terms of complexity costs.

Instead, observing the behaviors of the single schedules it can be noted that all
curves in figures have the same trends except for the Stepped schedule that overlaps
G-Matrix, hybrid G-Matrix + CRC and hybrid FBER + CRC almost on a single line.
This behavior is surprising for a simple criterion.

The comparison between advanced and basic schedules under the stop point of
view of iterations cannot be made, given the overwhelming victory of the first group.

4.1.7 Comparison between criteria varying maximum iterations

At the end, tests have been carried out to assess how much a stop criterion can be
valid when the maximum iterations vary. The same parameters as the other tests
were maintained and only the maximum number of iterations was changed.

Comparison between stopping criteria with 20 maximum iterations

Criterion G-Matrix FBER CRC G-Matrix+CRC FBER+CRC

Schedule SNR Average iterations / Iterations’ drop

Linear RL
2.5 dB 20/-% 20/-% 20/-% 20/-% 20/-%
3.0 dB 19.9/0.5% 20/-% 19.8/1% 19.7/1.5% 19.9/0.5%
3.5 dB 19.6/2% 20/-% 19.1/4.5% 18.8/6% 19.1/4.5%

Stepped
2.5 dB 20/-% 20/-% 20/-% 20/-% 20/-%
3.0 dB 19.9/0.5% 20/-% 19.9/0.5% 19.9/0.5% 19.7/1.5%
3.5 dB 19.3/3.5% 20/-% 19.5/2.5% 19.2/4% 19.3/3.5%

Circular LR
2.5 dB 7.65/61.8% 13.4/33% 10.4/48% 7.55/62.3% 9.86/50.7%
3.0 dB 6.27/68.7% 11.8/41% 8.76/56.2% 6.24/68.8% 8.14/59.3%
3.5 dB 5.48/72.6% 10.7/46.5% 7.56/62.2% 5.47/72.7% 7.00/65%

Biwave
2.5 dB 11.3/43.5% 16.1/19.5% 13.2/34% 11.2/44% 13.0/35%
3.0 dB 9.04/54.8% 14.1/29.5% 11.0/45% 8.94/55.3% 10.6/47%
3.5 dB 7.67/61.7% 12.6/37% 9.44/52.8% 7.61/62% 9.01/55%

TABLE 4.7: Stopping performance comparison between criteria with
20 maximum iterations and N = 1024, K = 512

Starting from Table 4.7, with 20 maximum iterations the FBER does not provide
any stop of the iterations for the basic schedules and with those advanced it is diffi-
cult to keep pace. G-Matrix fails to offer an important iteration drop for basic sched-
ulers, max 2%, and the application of the CRC is required to raise the iteration stop.
Indeed for Linear RL and Stepped schedule the best solutions are the hybrid ones. By
the way, observing altogether the data, the FBER + CRC hybrid solution and pure
G-Matrix remain preferable considering performance and costs.

Instead increasing the iterations to a maximum of 60 in Table 4.8, the situation
is more relevant and balanced. The FBER remains the worst criterion but it also



4.2. N=2048, K=1024: numerical results 47

Comparison between stopping criteria with 60 maximum iterations

Criterion G-Matrix FBER CRC G-Matrix+CRC FBER+CRC

Schedule SNR Average iterations / Iterations’ drop

Linear RL
2.5 dB 32.7/45.5% 42.0/30% 36.7/38.8% 29.6/50.7% 35.4/41%
3.0 dB 26.2/56.3% 35.8/40.3% 30.2/49.7% 23.6/60.7% 28.6/52.3%
3.5 dB 22.1/63.2% 31.3/47.8% 25.6/57.3% 19.8/67% 24.0/60%

Stepped
2.5 dB 30.4/49.3% 42.4/29.3% 36.8/38.7% 29.8/50.3% 33.4/44.3%
3.0 dB 24.3/59.5% 36.1/39.8% 30.6/49% 24.0/60% 26.8/55.3%
3.5 dB 20.6/65.7% 31.8/47% 26.2/56.3% 20.5/65.8% 21.7/63.8%

Circular LR
2.5 dB 8.47/85.9% 24.5/59.2% 19.7/67.7% 8.13/86.5% 16.1/73.2%
3.0 dB 6.49/89.2% 20.5/65.8% 15.9/73.5% 6.36/89.4% 12.7/78.8%
3.5 dB 5.54/90.8% 18.3/69.5% 13.1/78.2% 5.49/90.85% 10.5/82.5%

Biwave
2.5 dB 12.3/79.5% 27.6/54% 22.6/62.3% 11.8/80.3% 19.4/67.7%
3.0 dB 9.3/84.5% 22.9/61.8% 18.2/69.7% 9.11/84.8% 15.2/74.7%
3.5 dB 6.73/88.8% 19.9/66.8% 15.0/75% 7.66/87.2% 12.4/79.3%

TABLE 4.8: Stopping performance comparison between criteria with
60 maximum iterations and N = 1024, K = 512

offers a maximum iteration’s drop equal to 69.5% with Circular LR schedule. In the
middle there is CRC criterion which achieves a maximum drop of 78.2%. The best
solutions are G-Matrix and G-Matrix + CRC but the differences between them are
really minimal: a minimum of 0.05% with Circular LR at SNR = 3.5dB up to 5.2%
with Linear RL at 2.5dB. Also in this case, the FBER + CRC hybrid criterion is the most
balanced solution because it offers optimal performance with the typical complexity
savings of the FBER.

4.2 N=2048, K=1024: numerical results

In this set of tests, no comparisons with literature results have been made since no
tests with the same parameters were found. Therefore, the comparisons have been
carried out among the criteria set out so far to assess their reliability.
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Also in this case, a general comparison between the criteria is done to compare
stop performance across the SNR scale.

4.2.1 G-Matrix criterion

Although N and K are doubled, the results of the G-Matrix criterion are not essen-
tially changed as shown in Figure 4.33. The FER parameters for Linear RL and Stepped
(with continuous line) are very close among them and they present the same trends.
Indeed, Circular LR and Biwave schedules deviate slightly at low and high SNRs
while retaining a reliable behavior. The BER parameter shows the same trends for
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FIGURE 4.28: Iterations with G-Matrix criterion N = 2048, K = 1024

all schedules obtained for N = 1024, K = 512 ensuring reliability with results close
to 10−5

G-Matrix criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 37.1 7.3 %
3.0 dB 31.2 22 %
3.5 dB 26.2 34.5 %

Stepped
2.5 dB 34.8 13 %
3.0 dB 28.5 28.8 %
3.5 dB 24.0 40 %

Circular LR
2.5 dB 9.02 77.5 %
3.0 dB 7.07 82.3 %
3.5 dB 6.06 84.9 %

Biwave
2.5 dB 12.7 68.3 %
3.0 dB 9.74 75.7 %
3.5 dB 8.10 79.8 %

TABLE 4.9: Average iterations with G-Matrix criterion N = 2048, K =
1024
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In iterations’ stop, presented in Figure 4.28 and Table 4.9, the worst schedule
is Linear RL that reaches only a maximum iterations’ drop of 34.5% at 3.5dB. The
Stepped schedule is not that far overcoming the first one of 5.5%. With the com-
plex schedules, performances start to get interesting because the Biwave reaches a
maximum drop of 79.8% and, indeed, Circular LR schedule, coming to 6.06 average
iterations, is the best with a drop equal to 84.9%.
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FIGURE 4.29: FBER BER-FER with all schedules N = 2048, K = 1024

4.2.2 FBER criterion

The FBER criterion achieves a good outcome’s error as can be seen in Figure 4.29.
For basic schedules, FERs’ and BERs’ curves are very near between them and they
conclude at 3.5dB in the same zone of complex schedules. In the same way, Circular
LR and Biwave have the same behaviors both for the FER and BER. Also in this case
the results do not differ much from the previous ones confirming their goodness.
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FIGURE 4.30: Iterations with FBER criterion N = 2048, K = 1024

In stopping iterations’ performance, FBER with Linear RL and Stepped does not
shine remaining for simple schedules always above the average 30 iterations, as
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highlighted in Figure 4.30 and Table 4.10. They provide the exact same results unless
small percentage differences. In reverse, advanced schedules provide good results
reaching 63.5% for Circular LR and 59.5% for Biwave. It’s important to underline that
FBER is the simplest early stopping criterion tested in terms of complexity cost.

FBER criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 38.6 3.5 %
3.0 dB 34.3 14.3 %
3.5 dB 30.3 24.3 %

Stepped
2.5 dB 38.4 4 %
3.0 dB 34.1 14.8 %
3.5 dB 30.3 24.3 %

Circular LR
2.5 dB 19.5 51.3 %
3.0 dB 16.4 59 %
3.5 dB 14.6 63.5 %

Biwave
2.5 dB 22.7 43.3 %
3.0 dB 18.7 53.3 %
3.5 dB 16.2 59.5 %

TABLE 4.10: Average iterations with FBER criterion N = 2048, K =
1024

4.2.3 CRC criterion

Analyzing the results of the CRC criterion in Figure 4.31, we note that the FER curves
are very similar both for the Linear RL and Stepped. They are quite close together
but they do not coincide perfectly as in the case N = 1024, K = 512. Instead, for
the advanced schedules the curves approach and manage to exceed the threshold
of 10−3. Regarding BER, there are behaviors beyond expectations because all the
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FIGURE 4.31: CRC32 BER-FER with all schedules N = 2048, K =
1024
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trends abundantly exceed the results with the other N and K: the best is Circular LR
extremely close to 10−5.
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FIGURE 4.32: Iterations with CRC32 criterion N = 2048, K = 1024

Under the stop performance point of view, we have a similar behavior to that
seen in the FBER where the basic schedules have identical trends (except for small
percentage variations) and for advanced ones the curves are more smooth and less
steep. However, the CRC manages to get good performances, as figured in 4.32 and
summarized in Table 4.11, because Linear RL and Stepped obtain a minimum drop of
iterations equal to 9.5% up to 34%; Circular LR and Biwave double basic schedules
performances reaching respectively 72.3% and 68% at 3.5dB.

CRC32 criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 36.2 9.5 %
3.0 dB 30.9 22.8 %
3.5 dB 26.4 34 %

Stepped
2.5 dB 35.8 10.5 %
3.0 dB 30.7 23.3 %
3.5 dB 26.4 34 %

Circular LR
2.5 dB 16.2 59.5 %
3.0 dB 13.2 67 %
3.5 dB 11.1 72.3 %

Biwave
2.5 dB 18.9 52.8 %
3.0 dB 15.3 61.8 %
3.5 dB 12.8 68 %

TABLE 4.11: Average iterations with CRC32 criterion N = 2048, K =
1024
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4.2.4 Hybrid solution: G-Matrix merged with CRC

In the first hybrid solution, composed by G-Matrix criterion with the CRC32 in cas-
cade and also called hybrid 1, excellent results are obtained both in terms of errors
and in the stops of the iterations.
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FIGURE 4.33: G-Matrix + CRC32 BER-FER with all schedules N =
2048, K = 1024

In fact, the FER parameter reaches very low values in all the schedules used and
is quite homogeneous throughout the SNR scale. Also the BER assumes very con-
tained values but in Circular LR it touches the 1 ∗ 10−5, an unprecedented outcome.
All trends are illustrated in Figure 4.33.

In the stop of the iterations, this method achieves excellent results (Figure 4.34
and Table 4.12) in every schedules too. The lowest saving threshold is obtained from
Linear RL with a maximum iterations’ drop of 34.5% and the Stepped schedule is
distant only 2.3 iterations (5.8% less). For advanced schedules the best is Circular LR
that takes the Biwave out of 5% (equal to 2 iterations).
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FIGURE 4.34: Iterations with G-Matrix + CRC32 criterion N = 2048,
K = 1024
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FIGURE 4.35: Percentage of stopping criteria’s successes between G-
Matrix and CRC32 with basic schedules N = 2048, K = 1024. Left

Linear RL, right Stepped

FIGURE 4.36: Percentage of stopping criteria’s successes between G-
Matrix and CRC32 with advanced schedules N = 2048, K = 1024.

Left Biwave, right Circular LR

Hybrid G-Matrix + CRC32 criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 37.1 7.3 %
3.0 dB 31.2 22 %
3.5 dB 26.2 34.5 %

Stepped
2.5 dB 34.5 13.8 %
3.0 dB 28.3 29.3 %
3.5 dB 23.9 40.3 %

Circular LR
2.5 dB 8.68 78.3 %
3.0 dB 6.97 82.6 %
3.5 dB 6.01 85 %

Biwave
2.5 dB 12.3 69.3 %
3.0 dB 9.59 76 %
3.5 dB 8.01 80 %

TABLE 4.12: Average iterations with G-Matrix + CRC32 criterion N =
2048, K = 1024
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The stop of the iterations in this method is shared, for the basic schedules, as
shown in the Figure 4.35: for Linear RL almost all of the iterations (95%) are inter-
rupted by the CRC32; contrariwise, for Stepped the situation is overturned with 95%
for G-Matrix criterion and the rest for the CRC32. In the case of advanced schedules
in Figure 4.36, the G-Matrix is Circular LR the only leader in the stop of the iterations
with 95% for the Biwave and even 99% for the Circular LR.

4.2.5 Hybrid solution: FBER merged with CRC

The second hybrid method, composed by FBER and CRC32 referenced with hybrid
2, provides good results regarding errors and iterations stop.
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FIGURE 4.37: FBER + CRC32 BER-FER with all schedules N = 2048,
K = 1024

The FER curves of basic schedules are very close among them and they reach the
same performance as the advanced ones at 3.5db. In Figure 4.37 can be noticed that
Circular LR and Biwave have better behavior from 1dB up to 3dB. The BER has even
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FIGURE 4.38: Iterations with FBER + CRC32 criterion N = 2048, K =
1024
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better trends but in this case only the Circular LR behaves better by coming close to
1 ∗ 10−5.

FIGURE 4.39: Percentage of stopping criteria’s successes between
FBER and CRC32 with basic schedules N = 2048, K = 1024. Left

Linear RL, right Stepped

The Figure 4.38 and Table 4.13 describe how the hybrid criterion stops iterations
with excellent results with both basic and advanced schedules. Indeed, Linear RL,
even if it’s the worst, attains a maximum stop equal to 26 iterations (35% less); also
the Stepped provides a great result with 44.3% iteration’s drop. The situation is even
better with advanced schedules because the method stops 71.8% of Biwave iterations
and 76.2% for the Circular LR.

As underlined by the Figure 4.39 and 4.40, in this criterion CRC method is pre-
dominant in the Linear RL (with 95% of successes) and, to the same extent, the hits
for the Biwave and Circular LR are equal to 94%. The only schedule that differs from
the others is Stepped which distributes the successes between FBER and CRC respec-
tively in 22% and 78%.

Hybrid FBER + CRC32 criterion

Schedule SNR Avg iter Iter drop

Linear RL
2.5 dB 36.1 9.8 %
3.0 dB 30.7 23.3 %
3.5 dB 26.0 35 %

Stepped
2.5 dB 35.0 12.5 %
3.0 dB 29.4 26.5 %
3.5 dB 22.3 44.3 %

Circular LR
2.5 dB 14.1 64.8 %
3.0 dB 11.3 71.8 %
3.5 dB 9.53 76.2 %

Biwave
2.5 dB 17.2 57 %
3.0 dB 13.7 65.8 %
3.5 dB 11.3 71.8 %

TABLE 4.13: Average iterations with FBER + CRC32 criterion N =
2048, K = 1024
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FIGURE 4.40: Percentage of stopping criteria’s successes between
FBER and CRC32 with advanced schedules N = 2048, K = 1024.

Left Biwave, right Circular LR

4.2.6 Comparison between criteria

From Table 4.14 we can see that the least performing criterion, in absolute terms, is
the FBER which offers minimum gains with all schedules: at 3.5dB the minimum
decrease in iterations is equal to 24.3% with the Linear RL schedule up to the max-
imum of 63.5% (14.6 iterations) with the Circular LR. Although these are a limited
savings, we can consider it a good result because it is necessary to take into account
the minimum resources used.

Comparison between stopping criteria with 40 maximum iterations

Criterion G-Matrix FBER CRC G-Matrix+CRC FBER+CRC

Schedule SNR Average iterations / Iterations’ drop

Linear RL
2.5 dB 37.1/7.3% 38.6/3.5% 36.2/9.5% 37.1/7.3% 36.1/9.8%
3.0 dB 31.2/22% 34.3/13.3% 30.9/22.8% 31.2/22% 30.7/23.3%
3.5 dB 26.2/34.5% 30.3/24.3% 26.4/34% 26.2/34.5% 26.0/35%

Stepped
2.5 dB 34.8/13% 38.4/4% 35.8/10.5% 34.5/13.8% 35.0/12.5%
3.0 dB 28.5/28.8% 34.1/14.8% 30.7/23.3% 24.0/29.3% 29.4/26.5%
3.5 dB 24.0/40% 30.3/24.3% 26.4/34% 20.5/40.3% 22.3/44.3%

Circular LR
2.5 dB 9.02/77.5% 19.5/51.3% 16.2/59.5% 8.68/78.3% 14.1/64.8%
3.0 dB 7.07/82.3% 16.4/59% 13.2/67% 6.97/82.6% 11.3/71.8%
3.5 dB 6.06/84.9% 14.6/63.5% 11.1/72.3% 6.01/85% 9.53/76.2%

Biwave
2.5 dB 12.7/68.3% 22.7/43.3% 18.9/52.8% 12.3/69.3% 17.2/57%
3.0 dB 9.74/75.7% 18.7/53.3% 15.3/61.8% 9.59/76% 13.7/65.8%
3.5 dB 8.10/79.8% 16.2/59.5% 12.8/68% 8.01/80% 11.3/71.8%

TABLE 4.14: Stopping performance comparison between criteria with
40 maximum iterations and N = 2048, K = 1024

For the basic schedules, the results are extremely uniform: with the exception of
the FBER, all the other criteria vary among them in the stop of the iterations at the
most of 10% and at the minimum of 0.3%. The highest level of homogeneity is for
the Stepped schedule as can be seen in Figure 4.41; in this case the best performances
are reached, surprisingly, with the FBER + CRC hybrid method which exceeds the
G-Matrix + CRC by 4% (1.8 iterations) at 3.5dB. The Linear RL schedule also behaves
similarly but with lower gains.
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FIGURE 4.41: Comparison between stopping criteria sorted by basic
schedules N = 2048, K = 1024

FIGURE 4.42: Comparison between stopping criteria sorted by ad-
vanced schedules N = 2048, K = 1024
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Reflecting on the advanced schedules, the performances are more distributed
(Figure 4.42) due to the fact that the minimum stop rate occurs with the CRC method
(59.5% at 2.5dB) up to the absolute maximum of 85% reached by the G-Matrix +
CRC. Despite the performance obtained from this hybrid criterion, it is necessary to
consider the computational resources applied: the G-Matrix + CRC is much more
expensive than the FBER + CRC which offers inferior but acceptable results. The
latter obtains results ranging from 57% in the Biwave to 2.5dB of savings up to below
the wall of the 10 iterations in the Circular LR at 3.5dB (76.2%).

Considering all the analyzes carried out so far, it can be concluded that the best
compromise between performance and complexity is certainly given by the hybrid
criterion FBER + CRC.
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Chapter 5

Hardware implementations

In the last chapter, we will analyze the mathematical formulas of FBER in order to
derive a simplified architecture to obtain area savings.

Developed a reduced architecture, it will be realized in hardware in VHDL lan-
guage and the sub-blocks that compose it will be explored. Furthermore we will
present a theoretical integration with the BP decoder.

Finally, the synthesis results of the FBER implementation with the related addi-
tions will be listed.

5.1 FBER implemetation

Among all the stopping criteria analyzed so far, the FBER method was chosen for
hardware implementation as described in 2.5. It has been selected due to the fact that
it offers decent stopping iterations’ performance considering the minimum compu-
tational cost. Furthermore it has been taken into consideration because it allows a
considerable reduction of the classical components that generate latency (for exam-
ple the adders) and in this work an alternative architecture has been sought, with
respect to the simple application of the formulas, to optimize the area expenditure
computational cost.

The architectural reductions and the proposed architecture has been directly de-
rived from the mathematical formulas of the criterion and the procedure in detail
will be illustrated below.

5.1.1 Derivation of FBER architecture from mathematical formulas

Moving on to the analysis of the mathematical formulas that will lead to the con-
struction of architecture, it is necessary to remember the equations constituting the
FBER criterion:

Ft
BER =

1
|Ac| ∑

i∈Ac

[(1 + sign(Lt
i,1))/2]⊕ ui (5.1)

Ft
M =

t

∑
v=t−M+2

∣∣∣Fv
BER − Fv−1

BER

∣∣∣ (5.2)

In the first, the argument of the summation, as can be seen, involves the vector of
the encoded information ui (or as in other papers indicated with xi) and the vector
sign(Lt

i,1). The calculation present between the square brackets of the 5.1 can be
reduced to two extreme cases:

1. sign(Lt
i,1) = 0;
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2. sign(Lt
i,1) = 1.

In the first case the operation will be equal to

[(1 + sign(Lt
i,1))/2]

∣∣
sign(Lt

i,1)=0 = [(1 + 0)/2] = 0.5 (5.3)

and hence it agrees with the sign of Lt
i,1 = 0 (considering the truncation 0.5 ≈ 0). In

the second case instead it will be obtained:

[(1 + sign(Lt
i,1))/2]

∣∣
sign(Lt

i,1)=1 = [(1 + 1)/2] = 1 (5.4)

Also in this case the result obtained will agree with the sign of Lt
i,1 = 1

As shown, rather than adding the sum of the term in square brackets, it can be
reduced to the calculation of the sign only.

[(1 + sign(Lt
i,1))/2] = sign(Lt

i,1) (5.5)

Using this reduction it is possible to perform the XOR operation directly with the
vector ui

Ft
BER =

1
|Ac| ∑

i∈Ac

[(1 + sign(Lt
i,1))/2]⊕ ui =

1
|Ac| ∑

i∈Ac

sign(Lt
i,1)⊕ ui (5.6)

As for the equation 5.2, it is necessary to keep in mind that the subtraction in
the argument of the summation is always referred to two consecutive iterations and
that the result of the summation itself Ft

M must remain constantly equal to zero for
M iterations. In this way, the criterion responds positively.

Observing the subtraction from another angle and bearing in mind that Ft
M must

remain constant, it is possible to reduce the subtraction to a continuous XNOR oper-
ation on two consecutive iterations to search only when the result of Ft

M is the same
on two successive iterations.

Ft
M =

t

∑
v=t−M+2

∣∣∣Fv
BER − Fv−1

BER

∣∣∣ = t

∑
v=t−M+2

Fv
BER ⊗ Fv−1

BER (5.7)

The last step is to find a valid alternative to the summation. This operation can
be carried out with a counter that resets whenever the input does not return a log-
ical value 1. if Ft

M reaches the threshold M, then the FBER criterion will return an
affirmative answer and it will be possible to stop the iterations.

5.2 Proposed architecture

As shown, by assembling all the simplifications performed, the following architec-
tural proposal is obtained:

As can be seen from Figure 5.1, the inputs are exactly the sign(Lt
i,1) and ui ∀i ∈

[N − 1, 0] where N is the number of input bits. The next XNOR operation is per-
formed once by iteration comparing the inputs bit by bit and the result is saved in
the splitter component described in detail in Figure 5.2. The XNOR operation

The splitter is composed by a de-multiplexer, two 1-bit registers connected in
output with an 2-bits AND. This allows us to check the variable Ft

i,M between two
successive iterations. All the comparisons between Ft

i,M are conveyed in a N-bit AND
that allows us to have the definitive feedback on Ft

M for the iteration t.



5.3. Realization of the proposed architecture 61

FIGURE 5.1: Proposed architecture with N = 4

FIGURE 5.2: Schematic of splitter component

The response of the N-bit AND is connected to a counter to enumerate the sta-
bility of Ft

M and it is reset every time its input, connected to the enable port, does not
return a logical value 1. The final equality operation represents the threshold M to
be reached to retain the convergent criterion.

5.3 Realization of the proposed architecture

Beginning to illustrate the realization in VHDL of the proposed architecture, we will
start from the top-level description of the FBER stopping iterations’ system. Two
different solutions will be presented: the first the system is totally independent from
the BP decoder and in the second one the structure is flanked by a decoder. The
FBER entity is therefore equipped with its own FSM and it is used both for carrying
out the tests and for the integration with BP decoder. In both cases the top-level
representation of the FBER will be the same and it is shown in Figure 5.3.

The architecture relates to a code of length N = 1024 but, in general, it is possible
to scale the system for any N by modifying exclusively the input size registers and
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the number of the components of the data path. However, the signals described in
the figure below are associated with:

• CLK (input): clock signal;

• START (input): start operation signal;

• RESET (input): reset signal of components with memory. Active low;

• L,X (input): input data vectors N-bits;

• LOAD_NEW (input): a new data is ready to be loaded from the external source;

• DONE (input): convergence response from the decoder;

• DONE_FBER (output): convergence response from the FBER;

• REST (output): system on hold, out of all operations.

FIGURE 5.3: Top-level of FBER component

5.3.1 FBER hardware implementation

Focusing attention on the implementation of the FBER, we note that, going down a
description level, it is possible to distinguish an execution unit (EU) and a control unit
(CU) as explained in Figure 5.4

The execution unit generates the output signal DONE_FBER which decrees the
convergence of the criterion. On the contrary, the control unit, after starting op-
erations with the activation of the START signal, establishes when the system is
ready to receive further input data by enabling the REST signal and waiting for a
LOAD_NEW signal rise.

The coordination between the two units is carried out by the following signals:

• ENABLE_W (from CU to EU): enabling the writing of input registers;

• ENABLE_S (from CU to EU): enabling the writing of the registers that make
up the splitter component;
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FIGURE 5.4: First level of FBER component

• SEL (from CU to EU): selector for the splitter;

• ENABLE_X (from CU to EU): enabling the writing of the registers after the
splitter;

• DATA_VALID (from CU to EU): enabling data to be saved only after at least
two iterations;

• ENABLE_O (from CU to EU): activation for the outgoing counter;

• OUTPUT_COUNT (from EU to CU): counting in output from the EU;

• N_LOAD (from EU to CU): upload number of the minimum incoming data. It
is connected with a counter 2-bit with a maximum value equal to 2.

The operations of both the EU and the CU will be explained below. The execution
unit is composed of several sections (as shown in the Figure 5.5) and all the operation
is regulated on the rising edge of the clock.

Execution unit Once the input data are made available, they are stored in the N
dimensional registers (sign(Li,1) and Xi respectively) via the ENABLE_W=1. Subse-
quently, bit by bit and in groups of two bits the time, the binary operation XNOR is
executed between sign(Li, 1) and Xi and the result is saved by means of the signal
ENABLE_S=1 in the 1-bit splitter registers. Since it is necessary to save two suc-
cessive elaborations, the de-multiplexer, thanks to the SEL signal, will alternate the
saving between the two 1-bit registers of the splitter. After this, the 2-bits AND op-
eration between these registers of the splitter will be carried out and the data will be
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FIGURE 5.5: Execution unit of FBER implementation

kept in an N-bit register maintaining the relative position of the bits by means of the
signal ENABLE_X=1.

The bits will be compared in the N-bit AND logic gate and the result will be
saved in a further 1-bit register only after a rise of the DATA_VALID signal which
decides that at least two input data have been processed and stored. Finally, the
REG1_OUT is connected to the ENABLE port of the 3-bit counter and it will be
possible to increase it only when the ENABLE_O signal is equal to 1. If the data
stored in REG1_OUT is 1, the counter will increase its value; in the opposite case,
then it would reset itself so as to achieve the stability required by the FBER criterion.
In conclusion, if the output of the counter is equal to 4 (or more generally equal to
M), then the signal DONE_FBER will be issued for the stop of the iteration.

Control unit After the presentation of the EU, the CU is designed. Considering all
the signals already described, in the Figure 5.6 only their status changes during each
passage in the FSM will be highlighted.

The states of the control unit are:

• IDLE1: it waits for the signal START=1 to arrive; REST=1, SEL=0 and RESET=0
is active.

If START=1 then next_state⇒ INIT1, otherwise next_state⇒ IDLE1;

• INIT1: ENABLE_W = 1 is enabled for writing the first input data on the input
registers. RESET=1 (not active) and REST=0.

next_state⇒ INIT2;
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• INIT2: ENABLE_S=1 is enabled for writing the first processing in the split-
ter component and ENABLE_W = 0 is disabled. The counter is incremented
through N_LOAD++ and the writing is alternated with SEL=SEL.

If N_LOAD=2 then next_state⇒ ELAB1, otherwise next_state⇒ IDLE2;

• IDLE2: we await the arrival of a second pair of input data to carry out the
first processing since at least two iterations are required. ENABLE_S = 0 and
REST=1.

If LOAD_NEW=1 then next_state⇒ INIT1, otherwise next_state⇒ IDLE2;

• ELAB1: it starts processing by activating ENABLE_X = 1 storing data in N-bits
register and deactivating ENABLE_S=0.

next_state⇒ ELAB2;

• ELAB2: it is possible to compare the data, therefore DATA_VALID=1, EN-
ABLE_X=0.

next_state⇒ ELAB3;

FIGURE 5.6: FSM of FBER control unit implementation
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• ELAB3: DATA_VALID is disabled and the writing in the counter is enabled
with ENABLE_O = 1.;

next_state⇒ CONTROL;

• CONTROL: the signal ENABLE_O is set to 0 and the output of the counter is
compared to evaluate the state of the system.

If OUTPUT_COUNT=100 then next_state ⇒ IDLE1, otherwise next_state ⇒
IDLE3;

• IDLE3: after processing it expects the availability of another pair of incoming
data. REST = 1.

If N_LOAD=2 then next_state⇒ LOAD1, otherwise next_state⇒ IDLE3;

• LOAD1: ENABLE_W = 1 is activated so as to input new data and the rest mode
is disabled (REST=0).

next_state⇒ LOAD2;

• LOAD2: the data is passed to the splitter block with ENABLE_S=1 enabled and
the alternance of SEL=SEL. ENABLE_W=0.

next_state⇒ ELAB1.

FIGURE 5.7: FSM fully parallel for BP decoder with FBER signal im-
plementation. In green the added state; in red the added signals.
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5.3.2 Integration with belief propagation decoder

Once the whole FBER realization in hardware has been explained, we move on to
a theoretical integration with the belief propagation decoder. From the analysis of
the previous works, it was possible to recover two solutions concerning the control
units. In both cases, only a few states have been added to the CUs in order to obtain a
unique interfaced system that offers both the performance of the decoder combined
and the possibility of interrupting the iterations.

The first FSM, called fully parallel (Figure 5.7) which implements the schedule
Stepped in hardware, has been enriched with a status (highlighted in green) so that
it is possible to check the REST signal coming from the FBER and it send back the
availability of a new data. The position of the additional state has been chosen be-
cause in the FBER it is necessary to load exclusively the data processed by the de-
coder sign(Li,1), therefore relative to the first elaboration. However, at each end of
an iteration the FBER is fed by a pair of new data.

FIGURE 5.8: FSM single column for BP decoder with FBER signal
implementation. In green the added state; in red the added signals.

Instead in the second one, the control unit, called single column figured in 5.8, is
related to the schedule Circular LR and, also in this case, the addition of a single state
was sufficient. The interchange of the signals is the same as in the previous case
allowing the integration much easier for each BP decoder of the polar codes. The
latter solution is the best with regards to performance and convergence speed.

In this way a complete system is reached having the classic features of low la-
tency of the BP decoder combined with the FBER stopping performance.
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5.3.3 Synthesis results

Following the functional description of the FBER architecture in VHDL, the whole
structure was positively validated through the use of Mentor Modelsim. Subse-
quently, the synthesis was performed with Synopsys Design Compiler to detect area
occupancy and maximum clock frequency. For the synthesis it was set N = 1024
and the standard cell at 45 nm.

Three tests were carried out: the first involved a low-frequency test (500 MHz =
10 ns) for the validation of the target timing and wide margins of improvement was
noted. In fact, in the second test, the clock period was reduced to 0.90 ns (equivalent
to 1.11 GHz) and it was likewise reached the target timing with minimal chances for
improvements. In the last one, the maximum reachable frequency estimated in 1.16
GHz (0.86 ns) was obtained.

At the same time, tests were also carried out for the occupation of the area and, in
all three cases, it remained unchanged since the data path is dependent exclusively
on parameter N.

Synthesis area results (45nm)

Area type FBER FBER + fully parallel FBER + Single column

Combinational 0.021 mm2 6.301 mm2 1.813 mm2

Sequential 0.044 mm2 3.764 mm2 1.504 mm2

Total 0.065 mm2 10.065 mm2 3.335 mm2

TABLE 5.1: Synthesis area results for FBER implementation and for
complete integration

For the total estimate of the system, in Table 5.1, the data from previous works
were used for the area calculation of the BP decoder with the two implementations
analyzed above. The results are combined with the FBER synthesis results presented
herein; they show a overpowering use of area from the BP decoder.
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Chapter 6

Conclusion

All the expectations of search for the efficiency of the belief propagation decoding of
polar codes can be said to be widely satisfied since the stopping algorithms already
present in the literature have been tested and verified and a new and unpublished
algorithm has been implemented in software. Furthermore, in this work, an archi-
tecture optimized for area savings by using an already low-cost algorithm has been
proposed, achieving the desired results.

The path to demonstrate what has been said is started by mathematical formulas
to introduce the potential of polar codes and the fundamental characteristics of BP
decoding.

We continued by examining the literature concerning the algorithms of the early
stopping criteria of BP and, after a careful analysis, the Frozen Bit Error Rate method
was chosen for the software tests because it was found to be the cheapest under the
point of view of computational costs.

The FBER criterion was implemented in C looking for results that validate the
literature. The tests proved that the FBER, although it was the worst of the criteria
analyzed, it was found to be the most convenient for the performance/cost ratio
due to its really minimal costs. Furthermore, the unpublished algorithm based on
the Cyclic Reduntant Check has been created and it offers both wide possibilities
for integration in cascade with the other algorithms and high results in terms of
performance and area occupation.

In the end, we proceeded with the implementation in VHDL of an FBER archi-
tecture optimized for the minimization of computational costs. This architecture
was derived directly from the formulas of literature and finally an integration was
carried out on paper with the BP decoder. The results were excellent both for the
reduced area expenditure and for the operating frequencies reached.

A possible future development could concern the expansion of efficiency by inte-
grating the CRC-based algorithm into hardware, as tested and verified by software,
to improve early stopping performance.
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