
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

EDA tools for emerging
nanotechnologies: from layout to

VHDL

Relatori:
Prof. Maurizio Zamboni
PhD Fabrizio Riente

Candidato:
Riccardo Chiola

July 2019

I

Table of contents

1 Introduction 1

2 Technological Background 3
2.1 QCA Logic . 3
2.2 Nanomagnetic Logic . 5

2.2.1 iNML . 5
2.2.2 pNML . 7

2.3 Molecular QCA . 9

3 MagCAD 11
3.1 Overview . 11
3.2 Common features . 14

3.2.1 Pin vectors . 14
3.2.2 Drawing setting streamlining 16

4 iNML plugin 17
4.1 Automatic functionality detection algorithm 17

4.1.1 Algorithm details . 18
4.1.2 Advantages . 24
4.1.3 Limits . 25
4.1.4 Performance analysis . 26
4.1.5 Examples . 27
4.1.6 Pseudocode . 34

4.2 Magnet resizing . 38

5 pNML plugin 40
5.1 Critical path estimation for hierarchical circuits 40

5.1.1 Computation of the paths in non-hierarchical layouts 41
5.1.2 Saving of the paths . 42
5.1.3 Computation of the paths in hierarchical layouts 43
5.1.4 Performance analysis . 44
5.1.5 Examples . 44

6 Molecular QCA 51
6.1 Drawing settings . 51

6.1.1 Intermolecular Distance . 52
6.1.2 Clock Zone Max series . 52

II

6.1.3 Number of clock phases . 53
6.1.4 Available molecules . 53

6.2 QCA Items . 53
6.3 Molecule manipulation . 54
6.4 Layout export . 56

7 Unit testing 57
7.1 General . 57
7.2 iNML . 59
7.3 pNML . 61

8 Conclusions 63

Bibliography 64

III

List of figures

1.1 MagCAD structure . 2
2.1 QCA states . 3
2.2 QCA clock . 4
2.3 QCA logic gates . 4
2.4 iNML states . 5
2.5 iNML clock . 6
2.6 iNML coupling . 7
2.7 iNML logic gates . 7
2.8 pNML states . 8
2.9 pNML structures . 8
2.10 pNML notch . 9
2.11 pNML 1-bit full adder . 9
2.12 MolQCA cell and molecule model . 10
2.13 MolQCA states . 10
3.1 MagCAD drawing settings . 11
3.2 MagCAD interface . 12
3.3 Circuit pins . 13
3.4 MagCAD iNML items . 13
3.6 Pin vector creation . 15
3.7 Drawing settings comparison . 16
4.1 Preliminary steps . 18
4.2 Iteration of unambiguous pin list . 19
4.3 Iteration of ambiguous pin list . 20
4.4 Found majority voter . 21
4.5 Found coupler . 22
4.6 Complete algorithm . 23
4.7 iNML magnet pins . 24
4.8 Symmetrical circuit that should not be solved 25
4.9 Examples of magnets resized . 38
4.10 MagCAD magnet size interface . 39
5.1 How paths are stored inside MagCAD 41
5.2 Example 1 layout . 45
5.3 Example 2 layout . 47
5.4 Example 2 as a flat layout . 47
6.1 MolQCA drawing settings . 51
6.2 Available items . 54

IV

6.3 MolQCA properties interface . 55
6.4 Example of single molecules in a cell and various rotations and shifts 55

V

Chapter 1

Introduction

As the scaling speed of CMOS technology projected by Moore’s law is slowing down

due to physical limitations, new technologies, called Beyond CMOS, are undergoing

scrutiny to find candidates to allow further progress when the limits will be finally

reached. Among these emerging devices, field-coupled technologies are considered

promising thanks to their low power consumption and the possibility of integrating

logic and memory elements. Based on this principle, many implementations exists,

in particular, three have been considered during this work: in-plane Nano Magnetic

Logic (iNML), perpendicular Nano Magnetic Logic (pNML) and Molecular QCA.

Since these technologies are at an early stage of the development, the availability of

CAD software is still very limited due to the absence of commercial tools. For this

reason, at the VLSI laboratory at the Politecnico di Torino, a software framework

has been developed, providing a flexible set of tools capable of helping in the design,

simulation and verification of circuits based on these emerging nanotechnologies.

The framework is composed of two software: ToPoliNano and MagCAD. ToPoli-

Nano, which gives the name to the framework itself, is able to perform simulations

of layouts and to generate them by parsing a VHDL netlist, while MagCAD’s func-

tion is to provide an environment in which the user can graphically design custom

circuits and generate their associated VHDL netlists (figure 1.1).

The overall purpose of this thesis has been the expansion of the features of Mag-

CAD: this has been achieved by working on separate objectives, affecting different

elements of the software.

The first part of the thesis is related to the development of a new, general algorithm

for the detection of functional blocks within the design starting from basic element

connectivity. Starting from custom designs based on simple nanomagnets, the al-

gorithm is able to identify basic gates according to the signal flow directionality

1

1 – Introduction

MolQCAiNML pNML

MagCAD

VHDL netlist Layout

Figure 1.1: MagCAD structure

defined by input/output pins. The detection of the functionality is a fundamental

step toward the generation of the final VHDL netlist describing the circuit.

The algorithm has been verified through the implementation of an automated test

environment. A database of custom circuits having different complexity has been

defined and the capability of determining the propagation direction in case of am-

biguous paths has been verified.

The second part of the thesis was focused on the development of an algorithm able

to report critical paths within hierarchical pNML circuits.

This is crucial when dealing with long interconnection wires that starts from an

higher level of the hierarchy and terminate in some inner block. The VHDL gen-

eration algorithm has been extended to include this functionality. Similarly, the

automated test environment has been extended to the pNML technology. A circuit

database has been developed covering all critical cases.

The last part has been focused in the implementation of the MagCAD plugin for

Molecular QCA. In particular, the basic molecules and their physical properties

have been defined. This features make it possible to design custom molecular cir-

cuits based on BisFerrocene that can be simulated exploiting the SCERPA simulator

developed by the VLSI group.

In addition to this, other minor features were added, such as the ability to organize

pins in vectors and the ability to change the size of individual iNML magnets, with

the purpose of making the tool more versatile and the user experience more pleasant.

2

Chapter 2

Technological Background

2.1 QCA Logic

A cellular automaton (CA) is a system defined as a grid of cells which can be in

one of a finite number of states at a discrete time and the rules that determine how

the system evolves as time passes. The rules that determine the state of each cell

consider only the cell previous state and the states of the neighboring cells. The

first physical implementation of the cellular automaton theory is called Quantum

dot Cellular Automata (QCA) because it uses as cells an array of quantum dots

connected by tunnel coupling. With 4 quantum dots placed at the corners of a

square, electrostatic repulsion pushes electrons to occupy opposite corners, creating

2 states that can be seen as a logic 0 and 1.

(a) Logic 0 (b) Logic 1

Figure 2.1: QCA states

The system can’t evolve on its own, because the interaction between cells is not

strong enough to force a cell outside of a stable state, so an external force must be

applied. This external force is the clock of the QCA, which forces a part of the cells

in an unstable state, so that when it is removed the cells align themselves based on

their stable neighbors. To regulate the flow of the information, the circuit is then

divided in zones that receive the clock signal with a different phase. Usually 3 or 4

3

2 – Technological Background

phases are used, and if the clock is properly confined inside its own zone it’s possible

to make logic signal propagate in the desired way.

Figure 2.2: QCA clock

Having defined inputs and outputs in stable and unstable cells, logic functions

can be obtained by placing a cell with 3 neighbors as input. This cell is called a

Majority Voter and its output assume the value 1 only if at least 2 of the inputs are

1. By forcing one of the inputs at 0 a AND gate can be obtained, and similarly, an

OR gate is a Majority Voter with an input fixed at 1. The NOT function is obtained

by making cells interact diagonally, forcing an inversion of the input.

(a) QCA majority voter (b) QCA inverter

Figure 2.3: QCA logic gates

4

2.2 – Nanomagnetic Logic

It’s important to note that every QCA cell is naturally a memory element, and

every transition between clock zones acts like a buffer, making QCA circuits intrin-

sically pipelined.

2.2 Nanomagnetic Logic

Nanomagnetic logic (NML) is an implementation of the QCA model where the cells

are nanomagnets whose magnetization has 2 stable states. There are 2 variants:

• in-plane Nano Magnetic Logic (iNML) [1]

• perpendicular Nano Magnetic Logic (pNML) [2–4]

2.2.1 iNML

In the iNML technology, the basic elements are single domain magnets with a rect-

angular shape and typical dimension of 90nm x 60nm x 20nm. The magnets are

anisotropic and their magnetization is only stable in the directions parallel and an-

tiparallel of the long side of the magnet.

(a) Logic 0 (b) Logic 1 (c) Unstable state

Figure 2.4: iNML states

As with the quantum dot technology, iNML also need a clock signal to destabilize

the magnets and allow signal propagation. Since the elements are magnets, the clock

takes the form of an external magnetic field which is generated by currents flow-

ing through wires placed under the plane of the magnets and is confined by means

5

2 – Technological Background

of a ferrite yoke. An example of the working of a 3 phases clock is shown in figure 2.5.

Figure 2.5: iNML clock

Due to the magnets rectangular shape, cascading them horizontally or vertically

is not indifferent: when placed with their short sides adjacent, the interaction is

weaker, so they need to be placed closer and less of them can be placed inside the

same clock zone. As a result, the preferential direction of wires is the direction

perpendicular to the magnets polarization, which means that the coupling between

the magnets is antiferromagnetic and the signal gets naturally inverted (see figure

2.6.b). For that reason, the number of magnets inside a clock zone is usually chosen

to be even, typically 4 or 6, resulting in an even number of inversions which equates

to no inversion at all.

AND and OR logic gates are not made using majority voters because it’s possi-

ble to shape magnets in special ways to obtain elements that favor 0 or 1 when the

inputs are different, as shown in figure 2.7.

The iNML technology has limited clock speed, but it has very low switching

6

2.2 – Nanomagnetic Logic

(a) Ferromagnetic coupling (b) Antiferromagnetic coupling

Figure 2.6: iNML coupling

(a) AND gate (b) OR gate

Figure 2.7: iNML logic gates

power consumption and no leakage currents, in addition to the possibility of fabri-

cation with current processes.

2.2.2 pNML

The basic cell of pNML technology is made of a stack of Co/Pt and his magnetic

anisotropy is perpendicular to the plane of the cell. Thus, the stable states of the

magnetization are out-of-plane.

To propagate the signal, the magnets are made with an area more sensitive to

the external magnetic fields, called nucleation center, where we want the magnet

to have an input. In pNML there are no clock zones: the clock signal is a periodic

perpendicular magnetic field administrated to the entire circuit and its role is to

provide the additional energy required to overcome the nucleation threshold and

trigger the switch, which propagates from the nucleation center along the magnetic

domain.

Wires are not made with chain of magnets, but with a domain wall: a long magnetic

7

2 – Technological Background

(a) Logic 0 (b) Logic 1

Figure 2.8: pNML states

nanowire with a single domain that propagates the signal. If the domain wall has

branches, it propagates the signal to all of them, making it possible to drive multiple

gates.

Majority voters are not present in pNML because the interaction between magnets

is antiferromagnetic, there is instead a minority voter which can be used to create

NAND and NOR by fixing one input to 0 or 1.

(a) Example of domain wall (b) Example of minority voter

Figure 2.9: pNML structures

The propagation of the signal through a domain wall can be stopped by using

variations in the geometry of the magnet to create barriers that require an in-plane

magnetic field to be overcome. This field has to be provided in addition to the clock

and allows finer control of the flow of the signal through the wires.

Another interesting characteristic that makes the pNML technology interesting

is the ability to create monolithic 3D structures to make compact circuits. The

magnets can be placed in different layers and can communicate through magnetic

8

2.3 – Molecular QCA

Figure 2.10: pNML notch

vias which allow vertical coupling between magnets. The vertical coupling, unlike its

horizontal counterpart, is ferromagnetic, so special care has to be considered when

creating voters with inputs on different layers.

Figure 2.11: pNML 1-bit full adder

2.3 Molecular QCA

Molecular QCA cells are realized with pair of molecules with 3 quantum dots each to

store the charges, 4 of the dots of the cell are used to encode the logical information,

and the remaining 2 are used for the null state that enables the transition between

states. The charges are confined in the cell and so no currents are involved in the

switching [5].

The design of Molecular QCA circuits follows the same principles outlined in the

QCA section: a clock is needed to enable the switching and the circuit has to be

divided into clock zones with different clock phases to define the direction of the

9

2 – Technological Background

Figure 2.12: MolQCA cell and molecule model

signal propagation. The basic logic gates are again the majority voter, which can be

used to obtain the AND and OR functions, and the inverter, which exploits oblique

coupling to perform the NOT function.

(a) Logic 0 (b) Logic 1 (c) Unstable state

Figure 2.13: MolQCA states

This technology is characterized by an high switching frequency, which coupled

with the low power consumption makes it particularly attractive among the emerg-

ing technologies.

10

Chapter 3

MagCAD

MagCAD is a software used to design logic circuits based on QCA technologies [6,7].

The main goal of this work was to improve the functionality of MagCAD by adding

new features and improve the existing ones, so before continuing it’s important to

understand what it can do and how it works.

3.1 Overview

MagCAD can design circuits based on multiple technologies. The available technolo-

gies are included under the form of plugins, in order to make the software universal

and extensible. It currently supports iNML, pNML and Molecular QCA.

(a) iNML (b) MolQCA (c) pNML

Figure 3.1: MagCAD drawing settings

When MagCAD is started, it immediately presents to the user the Drawing Set-

tings window, shown in figure 3.1, which is used to create a new drawing by selecting

the technology and changing various physical parameters. After confirming the cre-

ation of the new drawing, the main window of MagCAD appears, as shown in figure

3.2. The creation of the layout is then performed graphically by selecting and plac-

ing the desired elements in the drawing area. In addition to the pins working as the

11

3 – MagCAD

Figure 3.2: MagCAD interface

1) Drawing area; 2) Open tabs; 3) Item selection; 4) Pin creation properties; 5)
Selected item properties; 6) Available components

input and output of the circuit, every technology has its own set of items that can

be used, and it’s possible for the circuit to be fully hierarchical, using previously

saved circuits as components.

The layouts are saved in the .qll file format, which is an XML file listing all the set-

tings for the technology used and all the items placed in the design. When choosing

to export a layout as a component, a second file is created, in .qcc format, which

is also an XML file containing the list of items, but without the settings and with

the pins separated from the rest of the items because they are used to define the

connection points of the component.

Finally, for the plugins that support it, which currently are both the NML technology

ones, when exporting the component MagCAD can also generate a netlist of the lay-

out and write it in the form of a VHDL description that can be used for simulations.

The generation of the VHDL description requires the program to correctly link

12

3.1 – Overview

Figure 3.3: Circuit pins

A red arrow indicates an output pin, a blue arrow an input pin.

Figure 3.4: MagCAD iNML items

The coupler and the majority voter are legacy items that have been functionally
replaced by the magnet.

a) Magnet; b) OR gate; c) AND gate; d) Inverter; e) Majority voter; f) Coupler; g)
Crosswire

the placed items respecting the direction of the signals: this is done by giving every

item input and output pins that define the position and the direction of the possible

13

3 – MagCAD

connections and then by going through the elements and linking every input pin of

an item with the output pin of a neighboring item.

It’s important to keep in mind that the input and output pins of the circuit are

items, and as such they also have the aforementioned item pins, but the input pins

only have an output pin and vice versa, as shown in figure 3.3. This is because the

input pin needs to output the signal it receives from outside to the element that

follows and similarly the output pin needs an input pin to receive the signal that is

then relayed to the outside.

Figure 3.4 shows the items of the iNML technology and the position of their pins.

With the exception of the magnet, which can serve multiple logic functions, when

an element can connect an input/output in multiple directions, only one can be used

at a time and any attempt to do otherwise results in an error.

3.2 Common features

MagCAD itself has been the subject of some improvements of existing features dur-

ing the course of this work: the introduction of vectors of pins and the streamlining

of the definitions of the drawing settings.

3.2.1 Pin vectors

For MagCAD, every IO pin inserted in the design is a separate item with no rela-

tion to any other pin. For the designer, on the other hand, multiple pins can be the

different bits of a single input, and it’s desirable to have them represented as such

when exporting the layout.

For this reason, MagCAD has been instructed to detect inputs named ”charac-

ters(number)” and write them as a std logic vector ”characters(max number downto

min number)” in the VHDL files.

Furthermore, the pin insertion interface inside MagCAD has been modified to sim-

plify the creation of pin vectors: checking the box ”Vector” and entering numbers

in the fields ”From” and ”To” generates in a single click an array of pins with the

14

3.2 – Common features

(a) Pin insertion interface (b) Placement of the pins in the
drawing area

(c) Example circuit

1 entity iNML_custom_PinVectorsExample is

2 port(

3 O: out std_logic;

4 O_param: out param_data := (others => 0.0);

5 A: in std_logic_vector (3 downto 0);

6 A_param: in param_data_vector (3 downto 0) := (others

=> (others = >0.0));

7 CLK: in std_logic_vector (0 to 2));

8 end iNML_custom_PinVectorsExample;

(d) Generated VHDL entity

Figure 3.6: Pin vector creation

15

3 – MagCAD

correct names.

3.2.2 Drawing setting streamlining

To facilitate the creation of new drawings, the drawing settings window has been

enhanced and made more natural to use by the addition of the ”Ok” button and

the removals of checkboxes in the technology selection panel.

(a) Before (b) After

Figure 3.7: Drawing settings comparison

The new ”Ok” button has inherited the functions previously held by the ”Close”

button, i.e. the creation of a new drawing with the selected settings, while the

”Close” button now closes the windows without doing anything.

The removal of the checkboxes has been accompanied by a change in the way the

technology get chosen: now the technology used is the one selected, which means

that the settings currently shown are the ones that get used when the new drawing

gets created, as one would expect.

These changes have also made it possible to add a default selection to the technology

panel, so that an inattentive user can’t forget to select the technology and have to

input the settings again after being reminded by the program that a drawing can’t

be created without a technology.

16

Chapter 4

iNML plugin

4.1 Automatic functionality detection algorithm

Only for some elements the position of inputs and outputs is predetermined, the

others get their direction defined as they get linked with their neighbors. Of partic-

ular interest are iNML simple magnets as none of their pins have a direction known

from the start, and because the number of inputs and outputs is not known a priori:

if provided with 1 input and 1 output they act as a wire; if connected with 1 input

and 2 or 3 outputs they work as a coupler; finally, if fed 3 inputs, they work as a

majority voter.

The goal of this work is thus to provide an algorithm to correctly perform the gen-

eration of the netlist of an iNML layout.

The basic idea is to start from the pins of elements with univocal direction, such

as those at the border of the circuit and the pins of logic gates, and then follow

the signal direction, linking elements along the way, until either the design has been

fully connected or some ambiguous elements has been found.

Any time the algorithm reaches a magnet with more than 2 adjacent magnets, it

has to put it aside and determine which of his neighbors are inputs and which are

outputs to know in which way to propagate the signal.

To do so it uses a recursive function that takes a pair of elements, checks their clock

zones and if they are different it uses that information to define the direction, other-

wise, it moves one element forward and repeats the operation until it either reaches

another ambiguous element or it discovers the direction.

After all the neighbors have been analyzed it’s at last possible to use the number

of inputs and outputs found to guess the function of the element and deduce the

direction of any ambiguous signal to perform the links.

17

4 – iNML plugin

4.1.1 Algorithm details

Figure 4.1: Preliminary steps

Start

Create a list of unambiguous input pins

Select the first element of
the unambiguous pin list

Iteration of unambiguous pin list

The first part of the algorithm is represented in the flowchart 4.1 and consists in

the creation of the list of the unambiguous elements. This list serves as the starting

point for the signal propagation. To create the list, all the input pins of the elements

of the layout are checked and those that don’t belong to a magnet or an inverter are

inserted into the unambiguous pin list.

The second part is the iteration of the unambiguous pin list, shown in the

flowchart 4.2. Every input pin of the list gets connected with a neighboring output

and then the element to which the output belongs is analyzed: if it’s not a mag-

net, the input pins of the element are added to the unambiguous pin list; if it is

a magnet, its neighbors are also considered: if there is only one neighbor then it’s

possible to conclude that the magnet is used as a wire and the input is added to the

unambiguous pin list, otherwise it’s necessary to determine whether it’s a coupler

or a majority voter and it’s added to the ambiguous pin list.

Once the end of the unambiguous pin list is reached, it’s time to see if there are

elements in the ambiguous pin list. This is shown in the flowchart 4.3. If the list is

not empty, then it is also iterated to solve the ambiguities.

18

4.1 – Automatic functionality detection algorithm

Figure 4.2: Iteration of unambiguous pin list

Iteration of unambiguous pin list

For each output pin that can be linked
to the currently selected element

Link the two pins

Does the linked output
pin belong to a magnet?

Retrieve the input pin of the magnet

Can the input pin of the
magnet be connected to

more than one output pin?

Add the input pin to the
ambiguous element list

Add the input pin to the
unambiguous element list

End of unambiguous pin list?

Select the next element
of the unambiguous list

Iteration of ambiguous pin list

true

false

truefalse

true

false

Every element in the list is a magnet that have more than 2 elements that it can

connect to. For each of these elements, the algorithm tries to determine if it’s an

input or an output of the ambiguous element under scrutiny. If the direction can’t

be resolved, the connection is counted as undetermined. This happens when the

19

4 – iNML plugin

Figure 4.3: Iteration of ambiguous pin list

Iteration of ambiguous pin list

Is the ambiguous list empty? End

Set the flag indicating the first
execution of the loop to true

Select the first element
of the ambiguous list

For each neighbour check the di-
rection of the signal and count the
number of inputs, outputs and the

neighbours that can’t be determined

Inputs = 3 and Undetermined = 0 OR
Inputs = 2 and Undetermined = 1

Inputs = 1 and Undetermined <2 OR
Outputs >1 and Undetermined = 1

Undetermined + Inputs = 3 AND
Outputs = 1 AND

not first execution of the loop

Found majority voter

Found coupler

Found majority voter

End of ambiguous pin list?

First execution of the loop?
Select the next ele-

ment of ambiguous list

Set the flag indicating the first
execution of the loop to falseError

false

true

false

true

false

true

false

true

false

true

false

true

exploration of the circuit finds another ambiguous element. Undetermined connec-

tions do not necessarily prevent the algorithm from finding the correct function of

the magnet: knowing that an even number of inputs is impossible (2 inputs are not

20

4.1 – Automatic functionality detection algorithm

enough for a majority voter, 4 inputs would mean no output) allows the algorithm

to guess whether the undetermined connection is an input or an output based on

the others.

More precisely, the magnet is a majority voter if it has 3 inputs and 1 output, or

if it has 2 inputs, 1 output and 1 undetermined connection. It’s instead a coupler

if it has 1 input and 0 or 1 undetermined connections or if it has more than one

output and exactly 1 undetermined connection. In this second case it’s necessary

to have only 1 undetermined connection because if a magnet has 2 outputs and 2

undetermined connections we can’t decide which of the undetermined connections

is the input of the coupler, so we are still unable to connect it.

Finally, there is a third condition that is only used if the previous 2 have failed for

all of the ambiguous magnets, that is considering anything with exactly 1 output

and 3 other neighbors a majority voter. This is riskier, because a coupler can also

meet these conditions, for this reason the algorithm first tries to solve one ambiguity

with the other 2. If this fails and the end of the ambiguous list is reached, the list

is iterated again with this third condition enabled.

Figure 4.4: Found majority voter

Found majority voter

Remove element from ambiguous list

Add element to unambiguous list

Select the next element
of the unambiguous list

Iteration of unambiguous pin list

Once the function of any ambiguous element is found, the element is removed

from the ambiguous list and the iteration is stopped. If the found element was a

21

4 – iNML plugin

Figure 4.5: Found coupler

Found coupler

Remove element from ambiguous list

Link element to its input

Does the linked output
pin belong to a magnet?

Retrieve the input pin of the magnet

Can the input pin of the
magnet be connected to

more than one output pin?

Add the input pin to the
ambiguous element list

Add the input pin to the
unambiguous element list

Select the next element
of the unambiguous list

Iteration of unambiguous pin list

true

false

truefalse

22

4.1 – Automatic functionality detection algorithm

majority voter, the element is just added to the unambiguous list to be connected

with its inputs, as shown in flowchart 4.4, if it was a coupler, the element is con-

nected to its input and the input is added the the ambiguous or unambiguous list

depending on the number of its possible connections, as shown in flowchart 4.5.

Then the algorithm goes back to the unambiguous pin list to connect the pins that

were possibly added, in order to make the next iteration of the ambiguous list easier.

Figure 4.6: Complete algorithm

Start

Preliminary steps

Iteration of unambiguous pin list

Iteration of ambiguous pin list

Found majority voter

Found coupler

Error End

23

4 – iNML plugin

4.1.2 Advantages

Before the development of the new connection algorithm, the magnet item had pre-

determined input pins on the left and top sides, and output pins on the right and

bottom sides. This was necessary because the old algorithm linked input and out-

put pins without performing additional checks, meaning that every item could only

support predefined connections. The result of this limit was the necessity to flip

pins horizontally or vertically in the case of wires that needed to propagate the

signal from right to left or from the bottom to the top, and the necessity of having

dedicated items to perform the roles of couplers and majority voters. This issues

were made worse by the inability to flip multiple items at once, the symmetrical

shape of the magnets, which made it impossible to determine at a glance whether

they had been flipped or not, and the fixed shapes of the coupler and the majority

voters, which made certain layouts outright impossible.

The ability to automatically determine the function of a magnet given to MagCAD

by the new algorithm, has removed all these limits, making the design process faster

and more versatile.

(a) Old magnet (b) New magnet

Figure 4.7: iNML magnet pins

24

4.1 – Automatic functionality detection algorithm

4.1.3 Limits

Figure 4.8: Symmetrical circuit that should not be solved

The reliance of the new algorithm on finding either an unambiguous element or a

clock zone difference to determine the signal direction, may result in problems when

having multiple ambiguous elements connected to each other.

The test performed have shown that the algorithm is able to connect properly a

multitude of different layouts, in fact every working circuit provided was correctly

solved. In addition to working circuits, layouts with errors where tested, and the

algorithm could detect errors such as magnets with an even number of inputs or

disconnected elements, as well as mismatches on pin connections. A kind of errors

that the algorithm is not able to detect, can be found in symmetrical circuits such

as the one shown in figure 4.8. In the layout shown, there are 2 ambiguous elements,

which are the magnets directly to the left of the outputs. As they are both found

to have 1 input, 1 output and 2 connections with an undetermined direction, one of

them gets arbitrarily chosen as a majority voter, resulting in the other being a 3-way

coupler, even though the layout itself shows no difference between the two magnets.

The magnet chosen as a majority voter is not predictable, as it depends on the order

the pins are stored in the lists MagCAD uses. The declaration of a magnet as a

majority voter is caused by the way the algorithm have to guess the function when

ambiguous elements are connected to other ambiguous elements, and due to the fact

that unambiguous elements are always linked before ambiguous elements, once one

25

4 – iNML plugin

of the two ambiguous element gets declared a majority voter, all its supposed inputs

get connected, resulting in the symmetry of the layout not being noticed and the

circuit being solved.

4.1.4 Performance analysis

The algorithm makes extensive use of iteration, so it’s important to know how its

performance scales with the number of items in the layout.

The algorithm is composed of a main loop that continues until everything is con-

nected or an error is detected. Inside this loop reside two more loops which iterate

the lists of ambiguous and unambiguous pins.

The first loop of the algorithm is the iteration of the unambiguous pin list. As the

index reached is saved between the iterations of the main loop, it’s immediately

evident that the number of iterations scales linearly with the number of elements of

the list, which is directly proportional to the number of items of the layout, because

every pin is processed at most once, and every item has a fixed number of pins. This

means that the complexity of this loop is O(n).

The second loop is the iteration of the ambiguous pin list. The iteration of this loop

stops as soon as the function of an ambiguous element is determined, and always

starts from the beginning of the list, in order to detect changes caused by the new

connections made in the meantime. This means that in the worst case, where every

ambiguous pin is in the list at once and the list has to be completely iterated every

time to solve a pin, the number of iterations has a quadratic growth, giving the loop

a complexity of O(n2).

On the other hand, the second loop goes over pins that can be solved immediately

only once, so, in the best case, the complexity of the part of the algorithm tasked

with the resolution of the ambiguity can be as low as O(n).

As a consequence, the overall complexity ranges from O(n) to O(n2) depending on

the amount of ambiguous elements connected to each other inside the same clock

zone. This is usually not a concern for circuits that respect the physical limitations

for the number of magnets that can be cascaded inside a clock zone, but in general,

to achieve the best performance, it’s advised to make use of hierarchical structures

26

4.1 – Automatic functionality detection algorithm

to reduce the number of items present in the layout.

4.1.5 Examples

To better explain how the algorithm works some examples are provided. Magnets

are given a number in order to be better addressed in the text, arrows are placed

whenever two elements are linked and question marks are placed when the direction

of the signal is been investigated.

Example 1: Majority voter

The first example is a majority

voter, which will allow us to

see how the algorithm treats

ambiguous elements.

27

4 – iNML plugin

1) To start, the unambiguous pins are
added to the unambiguous pin list. For
this circuit, the only pin added is the
input pin of the pin O.

2) The unambiguous pin list is iter-
ated and the first element, the input
of the pin O, is linked with the magnet
1. The magnet 1 has only one other
neighbor, so it’s added to the unam-
biguous pin list.

3) Magnet 1 is linked with magnet 2
and magnet 2 is added to the unam-
biguous pin list.

4) Magnet 2 is linked with magnet 3.
Magnet 3 has more than one neighbor
it’s not connected to, so it’s added to
the ambiguous pin list. This is the end
of the unambiguous pin list. As the
ambiguous pin list is not empty, it will
be iterated next.

28

4.1 – Automatic functionality detection algorithm

5) The first element is magnet 3. For
each of its possible connections, the di-
rection has to be determined. We start
with magnet 4. Magnet 4 is in the
same clock zone as magnet 3, so it’s
not possible to determine the direction
of the signal at this step, but since it’s
a magnet used as a wire, the function
moves along the wire and analyzes the
pair magnet 7/magnet 4.

6) Magnet 7 and magnet 4 are also in
the same clock zone, but like before it’s
possible to move along the wire and
check the magnet 9/magnet 7

7) Magnet 9 and magnet 7 are again in
the same clock zone, so the algorithm
moves to magnet 9/pin A(0)

8) Since pin A(0) has a predetermined
direction, we know that the signal goes
from A(0) to magnet 9. This direction
is the same for all the other pairs in
the wire, meaning that magnet 4 is an
input of magnet 3.

29

4 – iNML plugin

9) The same steps are executed to de-
termine the direction of the connec-
tions 3-5 and 3-6, which are both in-
puts. This concludes the analysis of
magnet 3. We have 1 already con-
nected output and 3 inputs, so magnet
3 is a majority voter.

10) Magnet 3 is linked with magnets 4,
5 and 6, and they added to the unam-
biguous pin list. After that magnet 3 is
completely connected and it’s removed
from the ambiguous pin list.

11) Since new pins were added to the
unambiguous pin list, we go back to
that and pick up where we left off,
starting with linking magnet 4 to mag-
nets 7 and adding magnet 7 to the un-
ambiguous pin list.

12) In the same way, the remaining el-
ements are linked. After magnet 10 is
linked with pin A(2) we reach again the
end of the unambiguous pin list, but
since the ambiguous pin list is empty,
the algorithm has finished and every-
thing is connected.

30

4.1 – Automatic functionality detection algorithm

Example 2: Coupler

The second example is a coupler,

which will be fully connected

without being considered am-

biguous.

1) The first step is populating the un-
ambiguous pin list. In this case we
have the input pins of the pins O(0)
and O(1).

2) As in the previous example, the list
is iterated and O(0) is linked to mag-
net 1, O(1) to magnet 2 and magnet
1 to magnet 5. Magnet 5 can be con-
nected to 2 magnets, so it’s added to
the ambiguous pin list.

3) The iteration of the unambiguous
list continues and 2 is linked with 3, 3
with 4 and 4 with 5. Now magnet 5 can
only be connected to one other magnet,
so it’s not ambiguous anymore. It is
thus removed from the ambiguous list
and added to the unambiguous list.

4) The algorithm proceeds linking 5
with 6, 6 with 7 and 7 with pin A,
reaching the end of the unambiguous
list. Since the ambiguous list is empty,
the algorithm has finished.

31

4 – iNML plugin

Example 3: More complex circuit

This example is the combination

of the previous two and shows a

case when there are connections

whose direction can’t be deter-

mined by the function.

1) As in the previous examples, the un-
ambiguous pin list is initialized with
the input pin of the pin O and then
pin O is linked to magnet 1, which is
added to the ambiguous input list.

2) Now the algorithm tries to deter-
mine the direction of the connections
between magnet 1 and its neighbors 2,
3 and 4. Magnet 2 is easily found as
an input to magnet 1. Magnet 3 and
4, though, lead to magnet 12, which
is ambiguous, leading to both connec-
tions labeled as undetermined.

32

4.1 – Automatic functionality detection algorithm

3) Since a magnet with 1 output, 1
input and 2 undetermined connections
can’t be solved without a doubt, the al-
gorithm repeats its analysis, but with
an additional condition: that anything
with 1 output and 3 possible inputs is a
majority voter. This is exactly the sit-
uation magnet 1 is in, so magnet 2, 3
and 4 are considered inputs and linked
to magnet 1.

4) After magnet 1 is solved the algo-
rithm solves the the bottom part of the
circuit immediately because it’s a sim-
ple wire and upper part is solved as
in example 2. After everything is con-
nected, the algorithm has finished.

33

4 – iNML plugin

4.1.6 Pseudocode

This is the pseudocode of the main part of the algorithm. It takes the list of all

the input and output pins of the layout and continues until it either finishes or it

encounters an error (not shown in the pseudocode).

1 inputPins // List of input pins - given as input to the

algorithm

2 outputPins // List of output pins - given as input to the

algorithm

3

4 unambiguousInputPins

5 ambiguousInputPins

6

7 f o r each pin P in inputPins do

8 i f P i s not a pin o f a Magnet then

9 append P to unambiguousInputPins

10

11 pinIndex = 0 // Index of the next pin in unambiguousInputPins

that will be linked

12 repeat

13 whi le pinIndex < s i z e o f unambiguousInputPins

14 current Input = unambiguousInputPins [pinIndex]

15 f o r each pin otherPin in outputPins that can be connected

to current Input

16 l i n k current Input to otherPin

17 i f otherPin i s a pin o f a Magnet then

18 i f otherPin can be connected to only one c e l l

19 append otherPin to unambiguousInputPins

20 e l s e i f otherPin can be connected to more than one c e l l

21 append otherPin to ambiguousInputPins

22 increment pinIndex

23 f o r each current Input in ambiguousInputPins

34

4.1 – Automatic functionality detection algorithm

24 currentOutput = output pin o f the c e l l parent o f

current Input

25

26 nInputs = number o f inputs a l r eady connected to current Input

27 nOutputs = number o f outputs a l r eady connected to

currentOutput

28 nUndetermined = 0

29 f o r each pin P in outputPins that can be connected to

current Input

30 d i r e c t i o n = d i r e c t i o n o f the s i g n a l between current Input

and P

31 i f d i r e c t i o n = output then

32 increment nOutputs

33 e l s e i f d i r e c t i o n = input then

34 increment nInputs

35 lastOutputFound = P

36 e l s e // direction could not be determined

37 increment nUndetermined

38 lastUndeterminedFound = P

39 i f (nInputs = 3 and nUndetermined = 0) or (nInputs = 2 and

nUndetermined = 1) then

40 append current Input to unambiguousInputPins

41 remove current Input from ambiguousInputPins

42 e x i t loop

43 e l s e i f nInputs = 1 and nUndetermined <= 1 then

44 l i n k current Input to lastOutputFound

45 lastInputFound = input pin o f the c e l l parent o f

lastOutputFound

46 i f lastInputFound i s a pin o f a Magnet then

47 i f lastInputFound can be connected to only one c e l l then

48 append lastInputFound to unambiguousInputPins

49 e l s e i f lastInputFound can be connected to more than

one c e l l

35

4 – iNML plugin

50 append lastInputFound to ambiguousInputPins

51 remove current Input from ambiguousInputPins

52 e x i t loop

53 e l s e i f nOutputs > 1 and nUndetermined = 1 then

54 l i n k current Input to lastUndeterminedFound

55 lastInputFound = input pin o f the c e l l parent o f

lastUndeterminedFound

56 i f lastInputFound i s a pin o f a Magnet then

57 i f lastInputFound can be connected to only one c e l l then

58 append lastInputFound to unambiguousInputPins

59 e l s e i f lastInputFound can be connected to more than

one c e l l

60 append lastInputFound to ambiguousInputPins

61 remove current Input from ambiguousInputPins

62 e x i t loop

63 e l s e i f (nOutputs = 1 and nUndetermined + nInputs = 3) and

the loop ended i n c o n c l u s i v e l y the f i r s t time then

64 append current Input to unambiguousInputPins

65 remove current Input from ambiguousInputPins

66 e x i t loop

67 un t i l a l l unambiguous input p ins are connected and no ambiguous

input p ins are l e f t

36

4.1 – Automatic functionality detection algorithm

This is the pseudocode of the function that is used to determine the direction of

the connections between two elements.

1 f unc t i on checkS i gna lD i r e c t i on (inputPin , outputPin)

2 // Function inputs

3 inputPin // Input pin of the reference cell

4 outputPin // Output pin of a cell connectible to the reference

cell

5

6 i f inputPin i s a pin o f a Magnet then

7 i f c l o ck phase o f outputPin = (c l o ck phase o f inputPin − 1)

mod number o f c l o ck phases then

8 re turn output

9 e l s e i f c l o ck phase o f outputPin = (c l o ck phase o f inputPin

+ 1) mod number o f c l o ck phases then

10 re turn input

11 e l s e i f c l o ck phase o f outputPin = c lo ck phase o f inputPin

then

12 newInputPin = input pin o f the c e l l parent o f outputPin

13 Count = count o f the c e l l s c onne c t i b l e to newInputPin

14 i f Count = 1 and number o f c e l l s a l r eady connected to

newInputPin = 0 then

15 newOutputPin = c e l l c onne c t i b l e to newInputPin

16 re turn checkS i gna lD i r e c t i on (newInputPin , newOutputPin)

17 e l s e i f Count = 0 and number o f c e l l s a l r eady connected to

newInputPin = 1 then

18 re turn input

19 e l s e

20 re turn undetermined

21 e l s e

22 re turn undetermined

23 e l s e

24 re turn input

37

4 – iNML plugin

4.2 Magnet resizing

Another functionality that has been added to the iNML plugin is the ability to

resize magnets. This is done by using the interface shown in figure 4.10, which is

positioned in the bottom left corner of MagCAD window, and it works by adding

to the selected item optional properties that override the default ones. When an

item is selected its current dimensions are displayed in the height and width fields

and then new ones can be entered and set by pressing ”Apply changes”. If the

entered values are equal to the default ones or if the button ”Restore default” is

pressed, the optional properties are reset. The new size can’t exceed the size of the

grid, and a check is performed to prevent the copy from one drawing to another of

items whose dimensions is incompatible with the drawing settings. The properties

are saved in the .qll and .qcc files, but they don’t affect MagCAD VHDL export, as

the VHDL description is used for the behavioral testing of the circuit and not for

physical simulations of the magnets.

(a) 60x90 nm (b) 30x45 nm (c) 60x60 nm (d) 80x45 nm

Figure 4.9: Examples of magnets resized

38

4.2 – Magnet resizing

Figure 4.10: MagCAD magnet size interface

39

Chapter 5

pNML plugin

5.1 Critical path estimation for hierarchical cir-

cuits

The clock signal in pNML circuits works differently from that of other QCA imple-

mentations, and to guarantee the correct functioning of the circuit, its frequency

must allow the full propagation of the magnetic domain across all domain walls be-

fore triggering a switch.

This means that the maximum frequency of operation depends on the length of the

longest path between elements that interrupt the propagation (nucleation centers,

including inverters, and notches). For this reason, when the elements are linked

during the VHDL generation, it’s useful to keep track of the various paths of the

signal to find the longest one. As the clock period constraint depends on the sum

of the nucleation time and the propagation time, two longest paths are considered,

the longest path that starts with a nucleation center and the longest that does not.

When using hierarchical layouts, the longest paths of the components has to be

considered as well, as they may be the longest paths of the entire design. MagCAD

already did that, but under the assumption that all the connections of the compo-

nent with the outside pass through a nucleation center or a notch, meaning that the

internal and the external paths are separated. This is not necessarily the case, a

path can start or end inside a component and it’s even possible for a signal to pass

without interruptions through a component, creating a long domain wall that both

starts and ends outside of it.

If the paths are not separated, they have to be summed together to discover the

real longest path. To do so, when exporting a component, it’s necessary to save

not only the longest paths, but also any other path that can be continued outside

40

5.1 – Critical path estimation for hierarchical circuits

the component. More precisely, for every input pin, only the longest path that ends

inside the circuit is saved, and only if it is longer than any path that start from that

pin and exits the circuit, because this are the only paths that have the possibility

to be the longest.

5.1.1 Computation of the paths in non-hierarchical layouts

When the netlist for the VHDL generation is created, connections between items

are formed by linking together their pins. During this step the length of the paths

are calculated.

Every path is saved in a data structure containing the length, the number of free

pins and the start of the path. The free pins value is the number of connections yet

to be used of the end point of path, and it’s used to take into account branches. The

list of paths is then saved into an hash table with the coordinates (in the format

x.y.layer) of the end of the path as the key, as shown in figure 5.1.

Hash table

key 1 value 1

key 2 value 2

key 3 value 3

key 4 value 4

key 5 value 5

key 6 value 6

· · · · · ·

(a) Generic hash table

Paths

end of path 1 length 1

free pins 1

start 1

end of path 2 length 2

free pins 2

start 2

· · · · · ·

(b) Paths hash table

Figure 5.1: How paths are stored inside MagCAD

When two pins are linked, the input pin is analyzed. If the input pin is a pin of

the circuit, nothing is done, as it is not considered a physical element of the circuit.

If the input pin belongs to a nucleation center, inverter or notch item, then a new

41

5 – pNML plugin

path with length 0 and the item whose input pin is currently being considered as the

starting point is created and added to the table under the coordinates of the input

pin. In every other case, the output pin is considered: if the path table doesn’t

contain a path with the coordinates of the output pin, a new one with 0 length

and the output pin as the starting point is created. Otherwise, the existing path

is retrieved, its length is incremented by one and it is added to the table with the

coordinates of the output pin. Then the free pins of the older path are decreased

by one and if they become 0 the path is removed from the table, otherwise it is

updated in the table, because it means that there is a continuation of this path not

yet connected, which will need this path in the future.

5.1.2 Saving of the paths

Once every element is linked and all the paths are accounted for, it’s time to find

the longest ones for the clock frequency calculation, and the ones that need to be

saved for usage as components.

The search for the longest paths is done in the obvious way: the path table is

iterated and every time a path is found that is longer than the previously found

longest path, the path is replaced. The resulting two paths are saved with the name

”longest path nuc” and ”longest path noNuc”.

The search for the paths that continue outside the component is done in two steps.

First of all, every path that ends with an element connected to a pin of the circuit

has to be added unless that element is a notch or a pad. This is done by taking the

list of all output pins of the circuit, and for each of them getting the coordinates of

the element they are connected to and retrieving from the path table the one with

the end point corresponding to that coordinates. This path is then added to the

table of paths to save. The second step requires an iteration of the path table to

search every path that has a pin indicated as the start element. Then, unless a path

with the same starting point exist and is longer, or the current path has 0 length,

the path is added to the table of paths to save with the starting point as the key.

This difference in the usual convention of using the end point as the key is motivated

by two considerations: 1) when saving the path it allows the program to quickly see

42

5.1 – Critical path estimation for hierarchical circuits

if a path with the same starting point already exists, instead of having to iterate

the entire list to check the start point; 2) comparing the coordinates stored in the

start field and the coordinates that make up the key is a simple way to see whether

a path passes through the component or not: if they are the same, we can conclude

that the path ends inside the component.

The paths are saved in a tab-separated values format in a hidden .csv file, stored in

the same folder as the VHDL outputs. Only the key, the length and the start in-

formation is saved, as the number of free pins is only useful during the linking phase.

5.1.3 Computation of the paths in hierarchical layouts

The calculation of the path length for hierarchical layout is the same as those of

non-hierarchical ones, with the added step that when the input or output pin that

is being considered belongs to a component, the paths of the component have to be

considered. More precisely, the file containing the paths of the component is opened

and read, the coordinates of the pin are translated to the relative position inside the

component, because otherwise they wouldn’t match with the ones saved in the file,

and then the type of the pin is considered.

If the pin was an input, all the paths that have that pin as the starting point have

their start point compared with the key saved in the file. If they are equal it means

that they end inside the component, so their length is added to the length of the

path until this point and it is added to the path table with a key corresponding to

the coordinates of the pin. If, on the other hand, their key list a different set of

coordinates, it means that the end is another pin of the component, so the old path

is kept as it is in order to avoid summing the length twice when it is connected with

the other end later.

If the pin was an output, the path is retrieved by using the coordinate of the pin as

the key and the length of the path internal to the component is always added to the

new path. Then, if the starting point of the path is an item, it is set as the starting

point of the new path, so that it is still possible to determine whether it was from

a nucleation center or not. If instead it lists a pin, the start point of the new path

is called ”ConnectTo x.y.layer”.

43

5 – pNML plugin

Finally, the path labeled ”longest path nuc” is added to the table, and the path

labeled ”longest path noNuc” is added as well, if it doesn’t have a pin as start.

After all the items are connected, the path table is iterated and all the paths which

have the ”ConnectTo” start sum their length to the path indicated by the coordi-

nates, as to make a single long path with the correct start point.

5.1.4 Performance analysis

The algorithm used for the calculation of the critical path does not include any

nested loop, and the number of operations required for its execution scales linearly

with the number of elements.

According to the documentation of the Qt library, the container class ”QHash”,

which is used for the storing of the paths, has worst case lookup and insertion com-

plexity of O(n), with an amortized behavior of O(1) for repeated calls. This means

that the average time required for each data insertion and retrieval can be approxi-

mated as constant, resulting in an overall performance of the entire algorithm that

depends on the complexity of the main loop, so O(n), making the algorithm well

suited for working with layouts containing a large number of elements.

5.1.5 Examples

Two examples will be presented to provide a more practical explanation of how the

paths are saved and used. For the sake of simplicity, no multilayer layouts will be

used (so the layer coordinate will always be 0) and MagCAD grid will be shown to

help with the reading of the lengths and of the coordinates.

Example of non-hierarchical layout

The first example is a non-hierarchical layout with 3 paths, which in the figure are

named a, b and c:

44

5.1 – Critical path estimation for hierarchical circuits

Figure 5.2: Example 1 layout

• a is a path that starts from pin A, which has coordinates (-1, 3), and ends

with the magnet at (2, 3), which is connected to the pin O(1), meaning that

this is a direct path that crosses the entire layout. This path is saved in the

paths hash table with the key ”2.3.0”, which is its end point, and with length

= 3 and start = ”Pin -1.3.0”.

• b also starts from pin A, but it ends with the magnet at (0, 0), which is con-

nected to an inverter. This path is saved with key ”0.0.0”, length = 4 and

start = ”Pin -1.3.0”.

• c starts with the inverter at position (1, 0) and ends with the magnet at (2, 0),

which is connected to the pin O(0). It is saved with key ”2.0.0”, length = 1

and start = ”Inverter”. The coordinates of the inverter don’t matter, because

it’s an internal item of the component.

Now the paths are saved to the .csv file.

The longest path starting from a nucleation center is path c, which will be written

as

45

5 – pNML plugin

longest_path_nuc 1 Inverter

The longest path not starting from a nucleation center is path b, which will be

written as

longest_path_noNuc 4 Pin -1.3.0

Then all the output pins are iterated: the first output pin is O(0), which is connected

to the magnet at (2, 0), so the path with key ”2.0.0”, which is path c, is written to

the file as

2.0.0 1 Inverter

The second output is O(1), which is connected to the magnet at (2, 3), so the path

with key ”2.3.0”, which is path a, is written to the file as

2.3.0 3 Pin -1.3.0

Finally, all the path whose start contains ”Pin” are considered as well: these paths

are a and b, of those only b is written because a is shorter. Since path a ends inside

the layout, it is written with the coordinates of the start as the key:

-1.3.0 4 Pin -1.3.0

The final file will then look like this:

Listing 5.1: Generated .csv file

-1.3.0 4 Pin -1.3.0

2.0.0 1 Inverter

2.3.0 3 Pin -1.3.0

longest_path_nuc 1 Inverter

longest_path_noNuc 4 Pin -1.3.0

Path b and c are written twice in the file, one time because they are path that

start/end with a pin and the other time because they are the longest paths of the

entire layout. It’s possible for a path to be even written three times, if it starts

and ends with a pin and is one of the longest ones of the layout: one time with

the start as the key, one time with the end as the key and the last time with

”longest path nucnoNuc” as the key. Removing them has been deemed unnecessary

46

5.1 – Critical path estimation for hierarchical circuits

at this point, as they do not affect the capability of the algorithm to correctly cal-

culate the lengths of the paths.

Example of hierarchical layout

Figure 5.3: Example 2 layout

For the second example, we use the layout used in the first example as a com-

ponent and see how MagCAD calculates the paths.

Figure 5.4: Example 2 as a flat layout

In figure 5.4, we see how the layout would look if it was flat instead of hierarchical.

We expect to have the same paths of the first example, but longer.

47

5 – pNML plugin

Going back to the hierarchical layout, there are three paths present, one going from

pin B to pin A of the component, one going from O(0) to P(0) and one going from

O(1) to P(1). All three are of length 1, externally, but all three are extensions of

the internal path of the component.

The linking process for the pNML technology works similarly to the iNML one, but

instead of starting from the input pins of the items, it starts from the input pins of

the circuit. In this case there is only pin B, so it starts from there.

Pin B is linked with the magnet in front of it and a path with length 1 is created,

with the key ”0.3.0”, which corresponds to the coordinates of the magnet, then the

magnet is linked to the pin A of the component. In doing so it detects that pin A

belong to a component and loads the .csv file of said component, which is the one

shown in the figure 5.1.5. Then it translates the coordinate of the magnet with the

coordinates of the component: the magnet is at (0, 3) and the component is at (1,

0) (every item larger than one square is considered located in its top left square).

This means that the pin we are looking for has coordinates (0, 3) - (1, 0) = (-1, 3).

This is reformatted in ”-1.3.0” (the layer undergoes the same treatment as the other

coordinates, but since it’s always 0 we are ignoring it). The paths of the component

are searched for a path that contains ”-1.3.0” in the start field and three are found.

For each of them, the key is analyzed. The first one comes from the path

2.3.0 3 Pin -1.3.0

This path has a key different than the coordinates in the start field, so it’s not added

to the path table. The same happens to the path

longest_path_noNuc 4 Pin -1.3.0

because it also has a key different than the coordinates in the start field. Finally

the path

-1.3.0 4 Pin -1.3.0

is loaded. This path has a key ”-1.3.0”, which corresponds to the coordinates in the

start field, meaning that it ends inside the component. So, a new path is created,

its length is set as 1+4 = 5 and it is inserted in the path table with the key ”1.3.0”,

which is the position of the pin A in the current layout. Then the path labeled

”longest path nuc” is also added to the table. The ”longest path noNuc” is not

48

5.1 – Critical path estimation for hierarchical circuits

added because it has ”Pin -1.3.0” as the start.

So currently the path table has 3 paths, ”0.3.0” with length = 1, and ”1.3.0” with

length = 5 and ”pNML ExampleComponent nuc” with length = 1.

The algorithm then proceeds to the pins P(0) and P(1). P(0) is linked with the

magnet in front of it and the file is read again. As before, the coordinates are

translated and result in (3, 0) - (1, 0) = (2, 0), which results in the string ”2.0.0”.

In this case the string is directly used as the key to retrieve the path

2.0.0 1 Inverter

which is used as the base for the new path which is created. The length of the path

is then incremented by 1 (making it 2), the free pins value is updated with the value

of the magnet, which is 1, and the path is then added with the key of the coordinates

of the magnet ”4.0.0”.

Finally, we have pin P(1), which is treated the same way as P(0). Its coordinates are

translated to obtain (2, 3) which becomes the key ”2.3.0” which is used to retrieve

the following path.

2.3.0 3 Pin -1.3.0

This path is different, though, because it lists a pin as the starting point. So, in

addition to the previous steps, the pin coordinates are summed with the component

coordinates, resulting in (-1, 3) + (1, 0) = (0, 3), and so its start is changed to

”ConnectTo 0.3.0”.

The magnets are then connected to pins P(0) and P(1), ending the paths, and the

linking process is finished.

At this point the path table is

4.3.0 4 ConnectTo 0.3.0

4.0.0 2 Inverter

0.3.0 1 Pin -1.3.0

1.3.0 5 Pin -1.3.0

pNML_ExampleComponent_nuc 1 Inverter

The final step is searching for all the paths with a ”ConnectTo” and combining it

with the proper path. In this case we have path ”4.3.0” which has to be connected

to path ”0.3.0”. This means that the length of the path ”4.3.0” is summed to the

49

5 – pNML plugin

length of the path ”0.3.0”, resulting in a length of 5, and the start of the path ”4.3.0”

becomes the same as the start of the path ”0.3.0”, which is ”Pin -1.3.0”.

The final table is

4.3.0 5 Pin -1.3.0

4.0.0 2 Inverter

0.3.0 1 Pin -1.3.0

1.3.0 5 Pin -1.3.0

pNML_ExampleComponent_nuc 1 Inverter

The creation of the .csv file follows the same steps seen in the previous example and

results in

Listing 5.2: Generated .csv file

4.3.0 5 Pin -1.3.0

4.0.0 2 Inverter

-1.3.0 5 Pin -1.3.0

longest_path_nuc 2 Inverter

longest_path_noNuc 5 Pin -1.3.0

This layout can then be used as component in another hierarchical layout, and so on.

50

Chapter 6

Molecular QCA

Originally MagCAD already had a plugin for the Molecular QCA (MolQCA) tech-

nology, but as it was very bare-bones and lacked many functionalities, one of the

goal of this work was to flesh it out by adding everything required to create a com-

plete layout.

6.1 Drawing settings

The choice of drawing settings to use is an important step that deeply affects the

rest of the plugin, so its sections will be analyzed more in detail.

51

6 – Molecular QCA

Figure 6.1: MolQCA drawing settings

6.1.1 Intermolecular Distance

The intermolecular distance setting affect the size of the cells that compose the grid

of the drawing. The grid is square, so only one value of distance is required, as

opposed to iNML, where there are different values for the height and the width, and

the length of a side is twice that of the intermolecular distance, because as explained

in the chapter about the technology, MolQCA cells are made by a pair of molecules.

Initially a more physical approach was considered, where the grid would represent

the crystal lattice of the substrate and the molecules would have different span in

the drawing calculated from their height and width. In this case instead of the inter-

molecular distance, the distance between two binding point of the substrate would

be provided, and the molecules span would be the result of the division between this

distance and their dimensions. This resulted in rectangular elements, which could

not be rotated freely.

As a result of these considerations, intermolecular distance was chosen as the pa-

rameter to use, and all the cells are 1x1 squares in the drawing.

The distances provided in the settings window go from 600 to 1500 pm, which are

the values most commonly used, and the arrows increment or decrement the value

by 100 pm at a time. If other values in the range are required, there is the possibility

of entering them manually in the text box.

6.1.2 Clock Zone Max series

This is a setting present also in the iNML plugin, which refers to the maximum

number of elements that can be placed in a single clock zone.

This setting only affect the clock zone that can be optionally drawn to aid with the

definition of the phases of the items and does not affect the design. This value goes

from 2 to 10.

52

6.2 – QCA Items

6.1.3 Number of clock phases

This is a self-explanatory setting which serves the same purpose as the one found

in the iNML plugin, defining the number of clock phases to be used in the drawing.

The possible values are 3 and 4.

6.1.4 Available molecules

This is simply a list of the molecules available to use in the drawing.

Initially it was a proper setting that made possible to select individual molecules

from the list to enable and disable them from use, but it was deemed unnecessary

and now every molecule is always available.

Currently only 2 molecules are present: Bisferrocene and Butane.

6.2 QCA Items

The only items available to use in the drawing are cells composed of pairs of

molecules, with no pre-made logic structures present. In figure 6.2.a we can see

the buttons used to create them, and in figure 6.2.b and 6.2.c are present the cells

as they appear in the drawing itself.

While the span of the molecule items in the drawing is now fixed, the physical di-

mensions of the molecules are still used to scale the drawings: there is a file called

”moleculedata.h”, shown in the listing 6.1, which contains the heights of bisferrocene

and butane, which are used to make the butane drawing smaller than the bisfer-

rocene one. The data about the widths are still present, albeit commented, because

they were used when the span of the items was variable.

Listing 6.1: moleculedata.h

1 #ifndef MOLECULEDATA_H

2 #define MOLECULEDATA_H

3

53

6 – Molecular QCA

4 // Molecule size (unit is pm)

5 const int bisferroceneHeight = 1500;

6 //const int bisferroceneWidth = 800;

7 const int butaneHeight = 1100;

8 //const int butaneWidth = 500;

9

10 #endif // MOLECULEDATA_H

(a) MolQCA Items

(b) Bisferrocene (c) Butane

Figure 6.2: Available items

6.3 Molecule manipulation

Despite the fact that molecules are usually used as a pair, it can still be required to

manipulate them separately or even to have single molecules alone to create drivers.

For this reason, it has been made possible to enable, rotate and shift the molecules

individually. Figure 6.4 shows some of the possibilities. Additionally, it is still pos-

sible to rotate the entire cell by steps of 90◦.

54

6.3 – Molecule manipulation

The ability to interact with individual molecules has been implemented by adding

an extensive set of properties to every item, which can be modified using the inter-

face shown in figure 6.3.

Molecule 1 and 2 refer to the molecules respectively on the left and the right when

the cell is not rotated.

Movements of the molecule in the z axis are not visible due to the constraints of

using a bidimensional drawing scene, but the ability to do so has been added so that

it can be used by simulations that make use of the layout produced by MagCAD.

Figure 6.3: MolQCA properties interface

Figure 6.4: Example of single molecules in a cell and various rotations and shifts

55

6 – Molecular QCA

6.4 Layout export

For layouts using the Molecular QCA technology, behavioral simulations based on

the VHDL netlist, like those used to verify iNML and pNML circuits, would be of

limited use. As a consequence, no VHDL library of the molecules has been devel-

oped, and as such the Molecular QCA plugin is not capable of exporting its layouts

to VHDL.

Instead, the creation of the plugin was done with the goal of having the layout file

saved by MagCAD directly simulated, exploiting the SCERPA simulator developed

by the VLSI group. Since the simulator works with the physical properties of the

molecules, it’s possible to take full advantage of the abilities to rotate and shift

molecules implemented, to create different geometries or to take into account pro-

cess variations.

56

Chapter 7

Unit testing

Unit testing refers to tests performed on a specific part of a software to verify that its

behavior is what’s expected. To test the functionality of the algorithms developed

for MagCAD, a project capable of automated unit tests has been developed. The

tests are entirely functional, executing the desired function in a controlled environ-

ment and only checking the correctness of the results.

7.1 General

The test project is composed of a simple main function which calls the individual

subtests that need to be run, as shown in the listing 7.2. The selection of tests to run

is performed by editing an header file called ”testtorun.h”, shown in the listing 7.1,

which through the use of ”#define” directives set to 1 or 0 allows the switching on

and off of individual tests. If all tests are to be run, there is the possibility to define

”RUN ALL” as 1, which overrides all the other defines.

Listing 7.1: testtorun.h

1 #ifndef TESTTORUN_H

2 #define TESTTORUN_H

3

4 #define RUN_ALL 0

5

6 #define TST_GENERATEVHDLTEST 0

7 #define TST_PNMLCRITICALPATH 1

8

57

7 – Unit testing

9 #endif // TESTTORUN_H

Listing 7.2: test.cpp

1 int main(int argc , char *argv [])

2 {

3 int dummyArgc = 0; // Used to launch "app"

4 QApplication app(dummyArgc , nullptr);

5 int status = 0;

6

7 #if RUN_ALL == 1 || TST_GENERATEVHDLTEST == 1

8 // TEST generateVhdlTest //

9 tst_generateVhdlTest generateVhdlTest;

10 status |= QTest::qExec (& generateVhdlTest , dummyArgc ,

nullptr);

11 #endif

12

13 #if RUN_ALL == 1 || TST_PNMLCRITICALPATH == 1

14 // TEST tst_pnmlCriticalPath //

15 tst_pnmlCriticalPath pnmlCriticalPath;

16 status |= QTest::qExec (& pnmlCriticalPath , dummyArgc ,

nullptr);

17 #endif

18

19 return status;

20 }

Currently two tests are present, which check the VHDL generation algorithm of

the iNML and pNML plugin. Each of these tests has a folder where the files used for

testing are kept, which are called respectively ”INML Test” and ”PNML Test”. In-

side these folders they have the .qcc and .qll files they use as a input, a ”QCC List.csv”

file which list the files that have to be loaded and the expected results, and the VHDL

folder where the outputs of the generation are put. There is a way to comment lines

in the .csv file: when reading it, both tests ignore any row that begins with the

58

7.2 – iNML

character ”#”, resulting in an easy way to exclude files without deleting the entire

row. The first line in the file is commented in this way and is used as a title, to

label the data in each column.

As both test deal with the proper connection of the layout items, the unit whose be-

havior is tested is the function ”generateVhdl” of the class ”VhdlController”, which

has the task to generate the VHDL description of a component, described inside

MagCAD using an object ”QcaComponent”. To obtain the required object, a class

called ”qcaFileReader” is used. This class mirrors the ”DrawingReader” class used

inside MagCAD to read the files .qll and .qcc, but differs from the original in the

way it handles hierarchical layouts: instead of using MagCAD ”ComponentsWid-

get”, the element on the right side of MagCAD’s main window which is also used

to insert the components in the drawing, to retrieve the component data, ”qcaFil-

eReader” uses the component library and name to find the component’s .qcc file

inside the test folder and then calls itself to load it.

Both the .qcc and .qll files are used during the tests because while the .qcc file con-

tains all the required informations about the items and the pins, it lacks any data

about the settings, resulting in errors when those differ from their default value. As

the .qcc and .qll files only differ for the extension, in the .csv file only the .qcc is

saved, and the other is obtained by a simple replacement.

7.2 iNML

The iNML test was designed to verify that the algorithm to automatically detect

the functionality of magnets worked as expected. To do so, the test uses the element

count generated during the VHDL generation. The element count has an entry for

every item of the layout, and generates a different entry for every function that the

magnet can have:

• ”magnet” is used when the magnet acts as a wire

59

7 – Unit testing

• ”magnet coupler2” and ”magnet coupler3” are used for couplers with respec-

tively 2 and 3 outputs

• ”magnet mv” is used for majority voters

The counts for the other elements are ignored, as they are not subject to ambiguities.

During the VHDL generation, the element count is printed in the ”definition inml.vhd”

file, but the debug build, which is the one used for testing, also outputs it to a .csv

file in the same folder, which is easier to read.

If the VHDL generation fails, the test is also capable of reading the log of the gener-

ation to determine the kind of error that occurred, and some tests that are expected

to fail are included in the .csv file, with the expected error string for comparison.

So, the content of the ”QCC List.csv” file is as follows: name of the .qcc file, expected

number of ”magnet”, expected number of ”magnet coupler2”, expected number of

”magnet coupler3”, expected number of ”magnet mv”, expected error.

Some example lines from the actual file, including the title, are shown below:

#FileName ,magnet ,magnet_coupler2 ,magnet_coupler3 ,magnet_mv ,LogError

custom/BasicLoop1.qcc ,33,1,0,1,

custom/InputDisconnectedAnd1.qcc ,0,0,0,0,Input

disconnected

components_created/rca4bit_hier.qcc ,5660,0,0,0,

#custom/Test_1.qcc ,55,1,0,2,

It’s important to notice that the file name of the component has to include its

library, because the reader assumes the same folder structure of MagCAD, which is

.qll file in ”drawings” and .qcc in ”liblibrary name” and can’t find the components

of hierarchical layouts if the folder structure differs. The libraries shown in the list

are ”custom”, which is the default one for components created by MagCAD, and

”components created”, which is the one used by components generated by ToPoli-

Nano.

To sum up, the test operates as follows:

60

7.3 – pNML

1. Read the ”QCC List.csv” file to retrieve the list of files to process and the

expected results

For each file:

2. Use ”qcaFileReader” to read the .qcc file to generate the component and the

.qll file to obtain the drawing settings

3. Use ”generateVhdl” to produce the VHDL for the component

4. Read the element count or the error in the log

5. Compare the read results with the expected ones

7.3 pNML

The work on the pNML algorithm concerned the calculation of the longest paths of

the circuit, so these are the results that are tested. The contents of the ”QCC List.csv”

file for this test are: name of the .qcc file, expected length of longest path not start-

ing from a nucleation center, expected length of the longest path starting from a

nucleation center.

A few lines of example of the file are shown below:

#FileName ,longest_path ,longest_path_noNuc

custom/test_multilayer1.qcc ,2,6

custom/rca32_3d.qcc ,16,0

The length of the longest paths is saved in the hidden file used by MagCAD for

the hierarchical layouts, so in this case there are no differences between the debug

and the release builds, as far as the test is concerned. Since no work was done on

the detection of errors during the generation of VHDL, this test does not read the

log in case of error and simply fails the test if the VHDL generation doesn’t produce

the file with the paths length.

The steps executed are then the same of the iNML case:

61

7 – Unit testing

1. Read the ”QCC List.csv” file to retrieve the list of files to process and the

expected results

For each file:

2. Use ”qcaFileReader” to read the .qcc file to generate the component and the

.qll file to obtain the drawing settings

3. Use ”generateVhdl” to produce the VHDL for the component

4. Read the length of the longest paths

5. Compare the read results with the expected ones

62

Chapter 8

Conclusions

As the research in the field of emerging technologies continues, the importance of a

flexible design tool like MagCAD should not be underestimated, and the work that

has been done has successfully improved and expanded its functionalities.

The newly designed algorithm for the iNML technology has removed several limita-

tions imposed by the previous way of performing the VHDL generation, and while

its worst case performance of O(n2) is not optimal, it is capable of performing well

even when working with layouts containing a large number of elements, as long as

the physical limits of magnets are taken into account in the design.

The improvement of the pNML critical path detection algorithm is instead focused

on increasing the versatility of custom components, allowing the use of hierarchical

structures that previously would have resulted in a mistaken clock frequency calcu-

lation. The VHDL generation algorithm complexity has not been degraded by this

addition, resulting in an adaptable system able of dealing effectively with any kind

of circuit.

Finally, the development of a plugin for the Molecular QCA technology has been a

valuable addition to the set of supported technologies, and its inability to generate a

VHDL netlist is overcome by the SCERPA simulator developed by the VLSI group.

A possible direction for the further development of MagCAD could then be the ex-

pansion of the Molecular QCA plugin with the addition of new molecules or even

with the ability to use user defined molecules, exploiting the generality with which

the current items have been implemented.

63

Bibliography

[1] A. Di Mauro, M. Geuna, F. Viggiano, and E. Plozner. Vhdl model for domain

magnet logic devices, design and simulation of a generic n-bit mac. Low Power

Electronic Systems course, Prof. M.Zamboni, 2014-2015.

[2] F. Cairo, G. Turvani, F. Riente, M. Vacca, S. Breitkreutz v. Gamm, M. Becherer,

M. Graziano, and M. Zamboni. Out-of-plane nml modeling and architectural

exploration. IEEE 15th International Conference on Nanotechnology (IEEE-

NANO), 2015.

[3] G. Turvani, F. Riente, E. Plozner, M. Vacca, M. Graziano, and S. Breitkreutz

v. Gamm. A pnml compact model enabling the exploration of 3d architectures.

IEEE Transactions on Nanotechnology, 2017.

[4] E. Plozner. P-nml architecture: modelling and analysis. Master’s thesis, Po-

litecnico di Torino, 2016.

[5] Y. Ardesi, A. Pulimeno, M. Graziano, F. Riente, and G. Piccinini. Effectiveness

of molecules for quantum cellular automata as computing devices. Journal of

Low Power Electronics and Applications, 2018.

[6] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. R. Roch, and M. Graziano.

Magcad: A tool for the design of 3d magnetic circuits. IEEE Journal on Ex-

ploratory Solid-State Computational Devices and Circuits, vol. 3:65–73, 2017.

[7] S. Pennavaria. Design and implementation of a graphic editor for nanotechnolo-

gies. Master’s thesis, Politecnico di Torino, 2015.

64

	Introduction
	Technological Background
	QCA Logic
	Nanomagnetic Logic
	iNML
	pNML

	Molecular QCA

	MagCAD
	Overview
	Common features
	Pin vectors
	Drawing setting streamlining

	iNML plugin
	Automatic functionality detection algorithm
	Algorithm details
	Advantages
	Limits
	Performance analysis
	Examples
	Pseudocode

	Magnet resizing

	pNML plugin
	Critical path estimation for hierarchical circuits
	Computation of the paths in non-hierarchical layouts
	Saving of the paths
	Computation of the paths in hierarchical layouts
	Performance analysis
	Examples

	Molecular QCA
	Drawing settings
	Intermolecular Distance
	Clock Zone Max series
	Number of clock phases
	Available molecules

	QCA Items
	Molecule manipulation
	Layout export

	Unit testing
	General
	iNML
	pNML

	Conclusions
	Bibliography

