
POLITECNICO DI TORINO
Master Degree Course in Mechatronic Engineering

Master Degree Thesis

An Off-board Model Predictive
Control With Obstacle Avoidance

For Unmanned Aerial Vehicles

Supervisors
Prof. Alessandro Rizzo
Dr. Stefano Primatesta

Candidate
Kamil Umur Güzel

July, 2019

To my beloved family...

Summary

The Unmanned Aerial Vehicle technology, which was supported for the development
of military technology in the early periods, has become one of the most challenging
engineering research topics with the recent development of microcomputer, sensor
and battery technology. The UAV field of application has been expanding relative
to the increase in the capability and the feasibility of the UAV technology itself.

The aim of this thesis is to design an off-board linear Model Predictive Control
with obstacle avoidance, improving vehicle capability. In fact, the control problem
is split into two parts: an attitude controller and a motion controller. The attitude
controller is provided by a low-level controller on-board (e.g. the on-board autopi-
lot). Hence, off-board, the motion controller provides an optimal trajectory. In this
thesis, the off-board controller is performed with a linear Model Predictive Control
with obstacle avoidance capabilities. According to the goal of the project, the de-
velopment of the UAV is followed from the beginning to the current stage in order
to understand the role in the challenging engineering problems. The UAV concept,
components and the control theory are comprehensively covered and discussed dur-
ing this thesis report. The theory of the linear model predictive control, which is
based on the predictions of the future steps by considering the mathematical model
of the plant, is examined and combined with the Object Oriented Programming
skills based on the C++ language in order to develop and improve the control of the
vehicle which is selected as quadcopter for this research. In particular, the proposed
control strategy is implemented to be used in the Robotic Operating System(ROS)
framework. The mathematical model of the vehicle is evaluated to have proper
representation of the system in order to increase the accuracy and the control. On
the other hand, the obstacle avoidance capability is derived thanks to the adopted
Mixed Integer Linear Programming(MILP) technique which is employed in the our
ROS-based implementation. For that implementation, the convex optimization pro-
cedure is operated with the selected solver which is developed in Python language
thanks to the compatibility benefit of the ROS framework. Thus, the implemented
approach is tested with the different target points which are selected in order to
test capability limits and the results are discussed in the sense of the feasibility and
performance in the last chapter.

i

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Overview . 1
1.2 Problem and motivation . 3
1.3 Outline of this thesis . 5

2 Background 7
2.1 Robot Operating System . 7

2.1.1 ROS File System . 8
2.1.2 ROS Main Concepts . 10

2.2 Notations . 14
2.2.1 Rotation Matrix . 17
2.2.2 Transformation Matrix to Avoid Heading Angle 18
2.2.3 Forces Acting On Quadcopter 19

2.3 Model Predictive Control . 20
2.3.1 Model Predictive Control Theory 20
2.3.2 Mathematical Models . 26
2.3.3 Objective Function . 28
2.3.4 Feasibility . 29
2.3.5 Stability . 30

3 Quadcopter Control and Trajectory Planner 31
3.1 Introduction . 31
3.2 Internal Control Loop . 32

3.2.1 Quadcopter Dynamic Model 32

ii

3.2.2 Quadcopter Dynamic Model Linearization 34
3.2.3 Internal Measurement Unit . 35
3.2.4 PID Attitude Controller . 36

3.3 External Control Loop . 37
3.3.1 Linear Model Predictive Control 37
3.3.2 Extended Kalman Filter State Prediction 40
3.3.3 Linear Model Predictive Control Objective Function 40

3.4 Robotic Operating System Implementation 42
3.4.1 Trajectory Planning With CVXGEN 43

3.5 Motion Control With CVXPY . 48
3.5.1 ROS Service . 49
3.5.2 Opt Node . 52
3.5.3 Obstacle Avoidance with MILP 56

3.6 Computation Specs . 58

4 Results 59
4.1 Experiments . 59

4.1.1 Obstacle Avoidance with One Obstacle 59
4.1.2 Obstacle Avoidance with Two Obstacle 65
4.1.3 Obstacle Avoidance with Three Obstacle 72

4.2 Discussion . 74
4.2.1 One Obstacle Cases . 74
4.2.2 Two Obstacle Cases . 75
4.2.3 Three Obstacle Case . 76
4.2.4 Error Analysis . 77

4.3 Simulation Environment & Simulation Images 78
4.3.1 Simulation Images . 80

5 Conclusion and Future Work 83

Acknowledgement 85

Bibliography 87

iii

List of Figures

1.1 Kettering Bug. 2
1.2 ”DH.82B Queen Bee”. 2
1.3 ”RQ-1 Predator”. 3

2.1 ”ROS File Structure”. 9
2.2 The relation of The Master Node with the other Nodes 11
2.3 The relation of The Master Node with the other node and the example

message . 13
2.4 The relation of The Node via Service 13
2.5 Inertial-Body Frames. 14
2.6 Roll,Pitch and Yaw Angles. 15
2.7 Thrust Force. 15
2.8 Roll to the left. 16
2.9 Pitch Backward. 16
2.10 Yaw to the left. 17
2.11 MPC Block Diagram . 24
2.12 MPC Discrete Time Horizon Scheme 24
2.13 Model Blocks of The MPC. 26

3.1 Quadcopter Control Block Diagram. 31
3.2 Quadcopter Internal Control Block Diagram. 32
3.3 Quadcopter Hovering Condition. 34
3.4 Internal Measurement Unit. 35
3.5 Quadcopter External Control Block Diagram. 37
3.6 Active Ros Nodes. 42
3.7 CVXGEN Performance . 44
3.8 CVXGEN Interface. 48
3.9 ROS Service-Client. 49

v

4.1 Simulation of the different prediction horizon length for the same
target position. 60

4.2 Simulation of the different prediction horizon length for the same
target position. 61

4.3 Simulation of the different prediction horizon length for the same
target position. 63

4.4 Simulation of the different prediction horizon length for the same
target position. 64

4.5 Simulation of the different prediction horizon length for the same
target position. 66

4.6 Simulation of the different prediction horizon length for the same
target position. 68

4.7 Simulation of the different prediction horizon length for the same
target position. 69

4.8 Simulation of the different prediction horizon length for the same
target position. 71

4.9 Simulation of the prediction horizon length 20 for the target position
x:30 y:40. 73

4.10 Error Analysis. 78
4.11 Gazebo Simulation with ROS. 79
4.12 RotorS Simulation with ROS. 80
4.13 Simulation Snapshot 1. 81
4.14 Simulation Snapshot 2. 81
4.15 Simulation Snapshot 3. 82
4.16 Simulation Snapshot 4. 82

vi

List of Tables

4.1 Simulation case 1 position definitions for quadcopter and obstacle
with buffer zone. 60

4.2 Computation Time Performances case 1. 61
4.3 Simulation case 2 position definitions for quadcopter and obstacle

with buffer zone. 62
4.4 Computation Time Performances case 2. 62
4.5 Simulation case 3 position definitions for quadcopter and obstacle

with buffer zone. 63
4.6 Computation Time Performances case 3. 64
4.7 Simulation case 4 position definitions for quadcopter and obstacle

with buffer zone. 65
4.8 Computation Time Performances case 4. 65
4.9 2 obstacle simulation case 1 position definitions for quadcopter and

obstacle with buffer zone. 67
4.10 Computation Time Performances case 1. 67
4.11 2 obstacle simulation case 2 position definitions for quadcopter and

obstacle with buffer zone. 68
4.12 Computation Time Performances case 2. 69
4.13 2 obstacle simulation case 3 position definitions for quadcopter and

obstacle with buffer zone. 70
4.14 Computation Time Performances case 3. 70
4.15 2 obstacle simulation case 4 position definitions for quadcopter and

obstacle with buffer zone. 71
4.16 Computation Time Performances case 4. 72
4.17 3 obstacle simulation case position definitions for quadcopter and

obstacles with buffer zone. 73
4.18 Computation Time Performance Case. 74

vii

Chapter 1

Introduction

1.1 Overview

The first record of the unmanned aerial vehicles (UAV) in the history was 22 August
1849, The Austrian incendiary balloon attack on the Venice, Italy. The balloons were
designed to perform air bombardment with the guidance of smaller pilot balloons.
However,by the virtue of the fluctuating winds,the operation targets were missed.
Then a quite few balloons drift back over the Austrians [1]. That military operation
was failed but it was just the beginning for the Unmanned Aerial Vehicle concept
to be noticed in further.

In the early 20th century, the military funding of science has had a powerful
impact on the progress and practise of scientific researches. In 1916, when the world
war I was about the end , the first pilotless radio controlled unmanned aerial vehicle
which is ”Ruston Proctor Aerial Target” made its first flight on the sky. It was
designed to used in ramming strikes against hydrogen filled Zeppelins[2].

Even at the time that the aerial vehicle technology has been starting to develop,
there was no doubt that the aerial superiority of an air force of the army was
significant military advantage. The first gyroscopes controlled unmanned aerial
vehicle project which is ”Hewitt-Sperry Automatic Airplane” completed in Britain
in September 1917 [3]. It was designed to use as aerial torpedoes. In October 1917,
the ”Hewitt-Sperry Automatic Airplane” project is purchased and upgraded by The
US Army then it called as ”Kettering Bug” which took off in October 1918 [4].

1

1 – Introduction

Figure 1.1: Kettering Bug.

In the end of the WWI, The US Army noticed the promising concept of UAV.
Hence they decided to convert three of the standart E-1 fighter aircraft to UAV [5].
In 1927-1929 the Royal Navy which is United Kingdom naval warfare force started
to test of their pilotless auto guided anti-ship aircraft ”Larynx”[6]. The development
of the radio technology led up new capabilities. When it comes to 1931 The British
aircraft company which is ”De Havilland Aircraft” attained fascinating commercial
success by the light weight training aircraft model named ”Tiger Moth”. It was the
first commonly used aircraft for the training of the military pilots[7].

In 1935 the new radio technology implemented on ”Tiger Moth” aircraft then
they introduced new radio controlled anti-aircraft gunner ”DH.82B Queen Bee” .
The radio signals used to control servomechanisms on the aircraft. But also the
name father of the word of the Drone that we use for UAV in general use. Since the
drone is the name for male bee which makes his last flight to find queen bee[8].

Figure 1.2: ”DH.82B Queen Bee”.

In 1940 , the first mass drone production made in United States by Radioplane
Company. Approximately 15.000 unit of radio controlled target drone planned to
use in US army for the anti-aircraft gunnery during the WWII. After the WWII
drones were modernized with the jet engines and increased their capabilities. In the
end of the 1950, The US army started to support drone progress in order to reduce
pilot loss in military operations. At the same time development of the camera

2

1.2 – Problem and motivation

technology open the new gate for the UAV. Advance in military surveillance and
reconnaissance became very significant capability during the Cold War. For that
reason drones were evaluated by equipping camera system to achieve intelligence[9].
Surveillance missions provided by pilots who were trained on control of drone to fly
on different targets to scan and monitor locations.

The first modern military UAV which is ”RQ-1 Predator” built by the support
of the United States Department of Defence in 1995. Development of the sensor
technology and sophisticated precision control on the RQ-1 predator could provided
reliable information about ground situation more accurate than in any previous
aerial vehicles.

Figure 1.3: ”RQ-1 Predator”.

Although the driving force behind the UAV history of progress was military
purpose, the interest of use increasing through different areas such as commercial,
scientific, recreational, agricultural, policing, peacekeeping, product deliveries, aerial
photography, smuggling and drone racing[10]. The Federal Aviation Administration
of US started to give the initial commercial drone permit to civilians in 2006, also
some other agencies introduced new drone systems for the different tasks rather than
use in military. Because the drone capability would offers new solutions to prob-
lems in disaster emergency situations,rescue, border controls, commercial delivering
systems, firefighting and agricultural spraying.

1.2 Problem and motivation

Current technological advance in capability of the sensor,performance of the proces-
sor and the efficiency of the battery leads up the progress of the unmanned aerial
vehicles in the recent years. The variety of use of the UAV is enlarging day by
day thanks to the growing interest not only in military use but also in the research
of robotic science and the commercial applications. The sufficient agility in 3 di-
mension space and the endurance during the flight under the reasonable payload
open the gate for new operational areas. In particular, the use of UAV in enclosed
industrial inspection tasks can be good solution in order to avoid from dangerous
situations. [11]. Moreover, the use of the small scale of UAV offers great perfor-
mance in the sense of the practical convenience for the experimentation and feasible

3

1 – Introduction

cost for the implementation. Quadcopter is one of the type of the small scale un-
manned rotorcraft that has 4 propeller located at the vertices of a square frame and
two pairs counter-rotating rotors [12]. These advantages may speed up the research
of autonomous capability in aerial robotics. But the small scale model has richer
dynamics rather than typical UAV. In addition to that, the small scale of UAV has
increased sensitivity to control inputs and disturbance [13]. The appropriate sensors
selection and the robust, reliable, effective control design become very fundamental
issue of UAV, since it has the highly unstable and nonlinear behaviour[14]. Some
of the researchers developed controller by adopted different control approaches. In
the [15], the PID control and linear quadratic control approaches are compared and
developed for the real quadrotor application. It is found that general stabilization
is highly affected by propellers speed control. Especially, classical PID approach
has better performance than linear quadratic control approach when the quadrotor
tries to stabilize at the hovering condition. The performance difference of the two
approaches is obviously related with the model deficiency. However both of the con-
trol approaches are not sufficient if the strong perturbations like strong wind exist
on the device. Moreover, some other suitable control approaches are implemented
for the control of quadrotor. Sliding-mode control is one of the suitable commonly
use approach for the nonlinear systems. But when it comes to real application,
high frequency of the switching mode control signals would trigger the unmodeled
dynamics of the real system, consequently, undesired oscillations which are named
as chattering can appear. To avoid this, it is important to consider also sensors and
actuators dynamics which are relatively faster than system dynamics for the sys-
tem modelling [16]. In the real application of sliding mode control of the quadrotor
shows that even the chattering appears in the control signal, the stabilization at the
hovering condition is maintained with this approach where the roll, pitch and yaw
angles converged into zero[17]. Contrarily, challenging initial condition of the yaw
angle drives the system to have big negative overshoot in the pitch angle. Another
possible suitable approach is backstepping control which is designed for nonlinear
dynamics systems. Even though, the hard initial conditions initialized, it is capable
to converge the roll, pitch, yaw angles into zero. But in that case, some angle drift
happens on the control signal of the yaw angle [17]. Linear quadratic regulator ap-
proach has satisfactory results in the optimization of the closed loop control whereas
the assumptions mismatches with the real conditions. Because of the fact that the
quadcopter dynamical model has strong non-linearities. Some different control ap-
proaches can also be adopted, but the most convenient control can only be obtained
through the best performance in the real application scenarios. For that reason,
disturbance effects and physical constraints should take into account for the robust
and reliable control. These disturbance and constraints limitations can be directly
calculated in each iteration step ahead in the model predictive control optimization
procedure[18]. The model predictive control applied as hierarchical divided system
where the linear model predictive control used for the stabilization tasks and and
hybrid model predictive control employed to prevent drone from any collision by the
on-board generated trajectory[19]. On the other hand, the real application perfor-
mance under the strong disturbance conditions have not verified yet for hierarchical
model predictive control approach [18].

4

1.3 – Outline of this thesis

Based on the given evaluated control strategies, the obstacle avoidance motion
control capability will be implemented on The Linear Model Predictive Control
approach for the quadcopter and the adopted approach performance will be discussed
and tested through the varying scenarios in this project.

1.3 Outline of this thesis

In this thesis, we started with the history of Unmanned Aerial Vehicles and then the
problem of controlling unmanned aerial vehicles and the our motivation are covered
in the Chapter 1. One of main concept which is Robotic Operating System will be
discussed and the further details will be given in the Chapter 2. Moreover, we will
discuss the mathematical notations which will be involved during the report and
project in the Chapter 2. Some of the important concepts about the mathemat-
ical modelling will be covered too. After that, we will give brief introduction and
more detailed knowledge about the model based predictive control theory. One of
the most important topic which is objective function will be discussed in the same
chapter. When we comes in to the Chapter 3, we will describe the adopted con-
trol approach in a comprehensive way by explaining from the quadcopter dynamic
model to the subsystems. In the same chapter, we will also discuss and introduce the
robotic operating system integration of the project by us and also our software im-
plementation will be shown in the same chapter. In the Chapter 4, we will present
the result that we will have about the performance and capability of the developed
solution. We will show the test scenarios and the outputs by considering the com-
putation time performance. Also some comments about the result,simulation and
the error analysis will be placed in the same chapter as well. In the last Chapter 5,
we will conclude the project, explain some limitations and give our opinions about
the future works.

5

6

Chapter 2

Background

In this chapter, we will explain the basics of the Robotic Operating System(ROS)
and then the basic notations which are used in the modelling will be covered. The
derivation of the dynamic mathematical model which will be used by the control
algorithm of the drone will be presented and the theory of the Model Predictive
Control approach will be introduced.

2.1 Robot Operating System

It has been experienced that the software programming of the robotics applications
occupied too much time during the development of the robotic technology in the
past. Since the researchers and developers had to spend abundant amounts of time
designing the embedded software within a robot and also the hardware itself. So
that it could be imagined as the programming start with a driver level of the com-
ponents to more higher level control and even artificial intelligence algorithms. In
general, it is not easy to write code that can be implemented into various type of
the platforms or robots, and the developers may become from different field of en-
gineering disciplines as such as mechanical engineering, electronics and computer
science. Additionally they may prefer to use different type of the coding languages
which creates a code integration and interpretation problem in order to build robotic
control and operating system for the complex applications.

For these reasons, robot operating system (ROS) is invented as a meta-operating
system which can be positioned between operating system and a software which
provides services to applications outside of capability of the operating system. It
makes enable clear and brief communication links between robotic applications in
order to minimize integration efforts and avoids from the repeatedly rewriting code.
It creates a convenient way to use your developed code with different platforms,
through different programming languages and different levels of the software by
simplifying a work load to develop an experimental set and making it possible to
perform the experiments in efficient way. It includes the common operating system
capabilities such as hardware abstraction, low-level device control, implementation
of commonly-used functionality, message-passing between processes and package
management. It also offers a convenient features thanks to the tools and wide range

7

2 – Background

of the libraries for collecting, developing and compiling code across not only in the
individual computer but also with the multiple computers. The advantages of the
ROS could be easily noticed in the stage of writing drivers to manage hardware,
controlling the process and organizing the memory, controlling the availability of
the data. The ideas behind the Robot Operating System can be listed as follows :

• The architecture is developed in a peer-to-peer topology, which makes en-
able a number of processes can be running in a single host computer or in
multiple hosts computers and communicate to each other via standard UDP
protocols. A peer-to-peer architecture coupled to a buffering system and a
master process, enables each component to communicate directly with any
other, synchronously or asynchronously as required. The coordination of the
communication tasks is provided by a master process that can run in any
computer in the network according to the your own preferences.

• It allows to write a node program in various type of programming languages.
Since the ROS is a language-neutral. Also it has message describer which is
named as Interface Definition Language (IDL), that characterise each field of
the message for the code generators and compilers of each language to generate
an implementation native to the related language,in order to support a new
language, either C++ classes are re-wrapped or classes are written enabling
messages to be generated.

• It is quite robust and flexible system because of the adopted decentralized
run time environment system. This strategy can offer a convenient solution
to a complex executing problem where one executable does not affect the
others since each command is in fact an executable. Thanks to the adopted
microkernel design in the ROS, it uses a large number of small tools to build
and run the various ROS components.

• The drivers and other algorithms are placed in standalone executables. The
reason behind this partition can be explained through the challenging in the
development of algorithms that are entangled to a greater or lesser degree with
the robotic operating system and are therefore hard to reuse subsequently.
Thanks to the adopted approach, it guarantees maximum reusability and re-
duce the size but without wrapping the written code by developer.

2.1.1 ROS File System

In the ROS file system, it organizes resources files into a hierarchical structure on
disc. The general structure can be seen in the Figure 1.4.

8

2.1 – Robot Operating System

Figure 2.1: ”ROS File Structure”.

Some of the important concepts of the file system can be introduced as follows :

• Packages: Packages are the major unit for organizing software in ROS. Since,
software in ROS is organized in packages. A package can hold ROS nodes, a
ROS-independent library, a dataset, configuration files, a third-party piece of
software, or anything else that coherently constitutes a useful module. The
objective of the package use is to provide this useful functionality in an easy-
to-consume manner so that software can be easily reused again and again. In
general, ROS packages are designed through a ”Goldilocks” principle which
means that the functionality to be convenient, but not too much that the
package is over size and difficult to use from other software.

• Metapackages: Metapackages are designed particularly as Packages in ROS.
They can be considered as collection of packages which create high level library.
They do not required to install files and they do not contain any tests, code,
files, or other items usually found in packages.A metapackage is used in a
similar way as virtual packages are used in the debian packaging world. A
metapackage simply references one or more related packages which are loosely
grouped together.

• Messages: ROS uses a simplification on the messages description language
for describing the data values that ROS nodes publish. So that the description
creates convenient way for ROS tools to automatically generate source code for
the message type which can be used by the various target languages. Message
descriptions are located in ”.msg” files in the ”msg/” subdirectory of a ROS
package. A ”.msg file” can be divided into two section which are fields and

9

2 – Background

constants. Fields are the data that is sent inside of the message. Constants
describe useful values that can be used to interpret those fields.

• Package Manifest: The package manifest is a type of XML file which is
called as package.xml that must be involved with any catkin-compliant pack-
age’s root folder. This file presents properties about the package, for instance,
the package name, version numbers, authors, maintainers, and dependencies
on other catkin packages. It is important to address that system package
dependencies are declared in ”package.xml”. If they are missing or incorrect,
it may be possible to build from source and run tests on your the machine,
however, the package will not work correctly when released to the ROS com-
munity.

• Services: ROS performs a simplified service description language ”srv” in
order to describe the ROS service types. Moreover, it builds directly upon
the ROS ”.msg ” format to enable request or response communication between
the created nodes. Service descriptions are located in ”.srv” files in the ”srv/
subdirectory” of a package.

2.1.2 ROS Main Concepts

The fundamental goal of a robot operating system is to operate a considerable num-
ber of executable at the same time and also it should allow the data exchange syn-
chronously or asynchronously in a communication manner. For instance, a robotics
operating system needs to query sensors which are mounted on the robot. The sen-
sor could be camera, accelerometer, temperature sensor, pressure sensor, gyroscope,
distance sensor and any other sensors for the desired frequency. The operating sys-
tem should should be able to capture sensor data, process it, pass it to processing
algorithms which can be artificial vision, image process, simultaneous localization
and mapping and more. Furthermore, it should control the motors in return. All
the explained procedure is carried out continuously and in parallel. Also, the robotic
operating system should operates contention to ensure efficient access to robot re-
sources.

The given process and methods are collected and labeled inside the ROS Com-
putation Graph. Some of the important concepts are described as in the below:

10

2.1 – Robot Operating System

Figure 2.2: The relation of The Master Node with the other Node1.

• ROS Master Node: The Master Node is a special node that is used for
the declaration and registration service for the rest of the nodes. It pursues
publishers and subscribers to topics. It is clear to say that without using
master node, it is not possible to enable individual ROS nodes to locate one
another and also it is not possible to have peer to peer communication in order
to exchange the data between the nodes. The ROS master node also provides
Parameter Server which can be seen as central database for the node data
storing actions. The relation of the Master Node with the other nodes can be
found in the Figure 1.5.

• Topic: A topic is designed for the data transfer actions where the messages
are transmitted through a topic. A node is a responsible to publish a certain
type of a message into the related topic. The relation between the node and
the topic can be visualized as given as in the Figure. Furthermore, the great
convenience of the topic that is able to identify the content of the message.
When the topic is typed which means that the type of data published by the
node which is a message is always structured in the same way since the nodes
are regulated to send and receive messages on topics. It is possible to have
multiple nodes are able to publish data to a topic and multiple nodes can
read data on that topic. A topic can also be interpreted as an asynchronous
message bus. This concept of an asynchronous, many-to-many bus is essential
in a distributed system situation. Mostly, publishers and subscribers are not
aware of each others existence. The idea is to manage the data transition in a
efficient way to decouple the production of information from its consumption.
In a nutshell, it is possible to consider the topic as a strongly typed message
bus where each bus has a name, and anyone can connect to the bus to send
or receive messages unless they are in the right type.

• Message: Nodes communicate with each other thanks to the passing mes-
sages. The context of the message can be the integer type, floating point type,
Boolean type arrays or the combination which can be arbitrarily nested struc-
tures of them. For instance, in the Figure 1.6 , the basic nodes communication

1Image courtesy from Introduction to ROS, Clearpath Robotics,2015.

11

2 – Background

can be seen via topic feature and also the various type of the variables can
be noticed inside the message context. The node 1 employed to publish the
proper type of message into a topic and the node 2 which is designed as sub-
scriber receive the message from topic itself. It is also possible to demonstrate
this data transfer structure with a intuitive example. Robot servo motor can
be introduced as a node, therefore, the context of the receiving messages can
be floating type for the motor position and speed or Boolean type to check
logical predefined constraints as the designer preferences.

• Services: Services are designed to maintain synchronous communication be-
tween two nodes. As it is explained in the topic section which is an asyn-
chronous communication method used for many-to-many communication so
that one way direction is not adequate for the request and reply interactions.
However, these interactions are mostly expected in the distributed system. Ser-
vices are used to maintain and manage request and reply interactions which
can be seen in the Figure 1.7. Services are defined a pair of message structures
in such a way that one for the request and one for the reply. A providing
node offers a service under a name and a client uses the service by sending the
request message and awaiting the reply.

• Bags: Bags are a format for storing and playing back ROS message data. Bags
are an important mechanism for storing data, such as sensor data, that can be
difficult to collect but is necessary for developing and testing algorithms. For
instance, to collect data measured by sensors and subsequently play it back
as many times as desired to simulate real data. It is also a very useful system
for debugging a system after the event.

12

2.1 – Robot Operating System

Figure 2.3: The relation of The Master Node with the other node and the example
message1.

Figure 2.4: The relation of The Node via Service1.

1Image courtesy from https://wiki.ros.org/Messages
1Image courtesy from http://www.rignitc.com/introduction-to-ros/

13

 https://wiki.ros.org/Messages
 http://www.rignitc.com/introduction-to-ros/

2 – Background

2.2 Notations

It is well known that it is required to use reference frame in order to describe the
motion of the body in the space. For that reason we implement world fixed inertial
frame in a 3-D space as a reference point to describe the subsequent motions of the
body, as shown in the Figure 2.5. In addition, the origin of the body frame is fixed
on the center of the gravity of the quadcopter.

Figure 2.5: Inertial-Body Frames.

The velocity and the position of quad-copter’s center of the gravity which is body
frame origin can be describe in the inertial frame by using translation in the 3-D
space. Additionally, the orientation of the quadcopter can be define in the inertial
frame as well [18].

Tait-Bryan Euler Angle approached is adopted to define orientation of the quad-
copter. These angles are also commonly known as roll, pitch and yaw angles [14].
The selected direction of the rotation axis are compatible with the roll, pitch and yaw
conventions. Therefore, the counterclockwise rotation around the x axis is consid-
ered as positive angle and it is named as roll angle. Similarly, the counterclockwise
rotation around the y axis can be considered as positive pitch angle. Lastly, the
positive yaw angle can be determine by the counterclockwise rotation around the z
axis. All the explained angles are represented in the Figure 2.6.

14

2.2 – Notations

Figure 2.6: Roll,Pitch and Yaw Angles.

The quadcopter motions are created by the changing rotational speed rates of
the rotor propellers. Naturally, quadcopter is built by 4 rotors where 2 diagonal
positioned pair of them rotate clockwise and the other diagonal positioned pair
rotate counterclockwise. The quadcopter has 6 degree of freedom in 3-D space and
each movements are generated by control over the rotational speed of the rotors.

In the vertical plane, quadcopter can rise, descend or hover in the air. All of
these moves are provided by the lifting force of the quadcopter rotors where if the
generated lifting force which is called as thrust force is more than gravity force,
quadcopter moves to upward which is shown in Figure 2.7. On the contrary, if the
thrust force is not adequate, quadcopter loses altitude. In the case of balance of the
thrust and gravity forces, quadcopter is stabilized at the desired altitude which is
named as ”hover”.

Figure 2.7: Thrust Force.

For the side-way manoeuvre, rotor speeds of the right or the left pairs can be
increased according to planned action and the limits of the vehicle. Hence, quad-
copter begins to move leftward or rightward as well. Because of the roll,pitch and
yaw angle convention adopted, roll angle assumed as positive value for rightward

15

2 – Background

move and negative value for leftward move. In the Figure 2.8, the leftward move is
represented.

Figure 2.8: Roll to the left.

For the forward move, front pairs rotors speeds decrease and back pairs of the
rotors speed increase, however the increase rate of the speed and the decrease rate
of speed for the rotors should be equal in order to prevent from losing altitude and
imbalanced forces acting on it. Tilt angle which is calling as pitch, is created on
the quadcopter while the speed of the rotors are adjusting. As a result, it moves
forward or backward respectively. In the Figure 2.9, the pitch move is illustrated.

Figure 2.9: Pitch Backward.

When it comes to changing the direction of the quadcopter head, it is easy
to handle by adjusting yaw angle. Thanks to angular momentum, if the propellers
angular speeds are not increased or decreased relatively, the imbalance of the angular
momentum create spin around the origin of the quadcopter. Although the total
force and the gravitational force acting on the quadcopter are balanced, quadcopter
maintains it’s altitude and hovering conditions. The yaw motion is described in
Figure 2.10.

16

2.2 – Notations

Figure 2.10: Yaw to the left.

2.2.1 Rotation Matrix

It is well known that any rotation of a 3-D point can be defined by using rotation
matrix. By using rotation matrix, we can monitor the new rotated linear map of the
body respect to the our reference linear map. Since we will use inertial frame and
body frame to describe dynamics and motion of the vehicle. For that reason, it is
important to explain adopted rotation matrix approach. Roll, pitch and yaw angles
are just the kind of Tait-Bryan angles which are also subclass of the Euler angles.
The advantage of the Euler angles is not because of their simplicity in calculation
and control but also it has intuitively convenient structure to analyse.

Firstly, roll angle is measured through the x axis of the inertial frame as shown
in Figure 2.6. The roll angle which is denoted with φ symbol. As it is explained
before, roll angle takes positive values for counterclockwise changes and negative for
clockwise changes. So the roll angle rotation matrix is provided as below:

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

Secondly, pitch angle is measured through the y axis of the determined inertial

frame also shown in Figure 2.6. Moreover, we used θ symbol to identify pitch angles
changes through rotation both in positive for counterclockwise and negative for
clockwise changes. Pitch angle rotation matrix is shown as below:

Ry(θ) =

cos(θ) 0 sin(θ)
0 1 0

sin(θ) 0 cos(θ)

Thirdly, yaw rotation angle can be identified along the z axis which is also shown

in the Figure 2.6. Also, it holds the same counterclockwise positive angle notation

17

2 – Background

and clockwise negative angle notation like the previous steps. Yaw angle is repre-
sented as ψ symbol and the yaw angle rotation matrix is used as below:

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

In order to find complete rotation in 3 axis and the new orientation of the body

frame, we can multiply firstly the roll matrix and pitch matrix and then yaw rotation
matrix respectively. Therefore we can obtain the rotation from inertial frame to body
frame. Multiplication order is a important notion which would change the rotations
unexpectedly. For the simplicity the cosine function labeled as ”c” and the sine
function labeled as ”s” full rotation matrix from inertial frame to body frame is
given as below:

RIB(φ, θ, ψ) =

 c(ψ)c(θ) c(θ)s(ψ) −s(θ)
c(ψ)s(φ)s(θ)− c(φ)s(ψ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) c(θ)s(φ)
s(φ)s(ψ) + c(φ)c(ψ)s(θ) c(φ)s(ψ)s(θ)− c(ψ)s(φ) c(φ)c(θ)

Furthermore, it would be convenient to show the rotation from body frame to

inertial frame as well. Since we will use some measurements coming from the quad-
copter which is represented as the body frame. So the rotation matrix is shown
below:

RBI(φ, θ, ψ) =

c(ψ)c(θ) c(ψ)s(φ)s(θ)− c(φ)s(ψ) s(φ)s(ψ) + c(φ)c(ψ)s(θ)
c(θ)s(ψ) c(φ)c(ψ) + s(φ)s(ψ)s(θ) c(φ)s(ψ)s(θ)− c(ψ)s(φ)
−s(θ) c(θ)s(φ) c(φ)c(θ)

2.2.2 Transformation Matrix to Avoid Heading Angle

As it is briefly explained in the previous section rotation matrix are not only quite
significant in order to describe the change in attitude but also for the estimation of
the future of the states. In the control approach that we adopted [18], it is suggested
that the heading free angle of the drone should be avoided so that heading is not
allowed through the change specifically in the attitude. As it is given in the Figure
2.2, the rotation align on the the z axis about the counter clock wise direction can
be defined as yaw angle. However, the measured changes in the roll, pitch and yaw
angles are defined in the body frame since they are obtained by the change on the
their introduced axis such as x, y and z. So that the rotation between the heading
free angle which can be assumed as yaw and the roll, pitch angle can be given as
follows:

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

18

2.2 – Notations

Because of the adopted control approach and the notation preferences, the con-
trol input signal calculation should consider the states which are projected on the
inertial frame defined references. The desired command roll and pitch angles are
represented with the φcom and θcom respectively in the formula. For that reason, the
transformation of the roll and pitch angle states from the inertial frame to the body
frame by ignoring the heading angle can be formulated as given in the below:

C
φbf
θbf

D
=

C
cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

D
×

C
φcom
θcom

D

2.2.3 Forces Acting On Quadcopter

Quadrotor has rigid and x shaped structure which has four rotors vertically oriented
and mounted on the each edges. The thrust force which is generated by the each four
rotors, is always perpendicular to mounted place which is a edge of the drone[20].
So the generating thrust force can be described as follows [18]:

• Fth = Thrust force

• i = Index number of the each rotors

• ni = Angular velocity of the each rotor

• ez = Unit vector in z direction

• kn = Positive constant

• km = Positive constant

Fth,i = knn
2
i ez

While the rotors are generating thrust force, it is noticed that they also induced
drag force around the rotor structure and that drag force is generating from the
angular momentum[20] which is formulated as below [18]:

Mi = (−1)i−1kmFth,i

Furthermore, when the quadcopter changes its orientation and position,the an-
gular speed of the quadcopter frame reacts with the gyroscopic torque on it[20]. In
addition, the flowing air velocity through the rotor blades induces a differential force
between the advancing and receding blades[20]. As it is shown in the [18], explained
forces above can be collected into the aerial force equation as shown below:

• Fae,i = Aerial force

• ft,i = z component of the i-th thrust force

19

2 – Background

• v = Velocity vector of the quadcopter

• kD = Drag coefficient

• Kdrag = diag(kD,kD,0)

Fae,i = ft,iKdragR
T
IBv

2.3 Model Predictive Control

2.3.1 Model Predictive Control Theory

Model predictive control (MPC) has been using and developing in the industrial
applications for more than 30 years. The first application fields were mainly related
with the process and petrochemical industries. The increased interest of the MPC
could be explained by great the performance and the capability. In addition, stability
of the control through the process is quite important requirement for the selection
of the control approach by the reason of the potential hazardous incidents. On the
other hand, the control approach should handle with the more constraints in order
to be reliable and robust for the use in the sensitive processes and applications. The
model predictive control can offer a solution to the introduced issues, constraints and
performance requirements that are commonly faced in the industry. In fact, model
predictive control is suitable for the multiple input and output systems(MIMO).

According to the [21] The general objectives of the MPC approach can be listed
as a below:

• Generate optimized control signal by taking into account the constraints in
both inputs and outputs.

• Force the output variables into their calculated steady state optimal values.

• Force the input variables into the their steady state optimal values.

• Avoid the input variables from the unstable and uncontrollable conditions.

• Maintain the control even if the signal and actuators fail.

In the main sense, the model predictive control differs from the general control
approaches thanks to the minimization control signal stage through the objective
function and constraints. The procedure of the predictive control approach concept
can be described as follows [22]:

• Generate predictions of the future outputs of the system or process in the
future time horizon which is defined by the controller designer by considering
the accurate and proper mathematical model of the system.

20

2.3 – Model Predictive Control

• Calculate the control signals with the minimization of the objective function
which relies with the constraints and restrictions.

• Adopt the receding control approach which makes forward time step shifting in
the horizon. For the simplicity, receding control approach gives the advantage
of being informed about the future of the states which are outputs of the system
in the prediction horizon at the current time step. However, only the first
calculated and optimized control signal is used and the rest of the calculated
control sequence is refused. In addition, this optimization technique is repeated
with respect to the recent measurements feedback for the each following time
instant in the future horizon .

Moreover, the MPC algorithms can be varied and the regarding dynamic op-
timization problems can be introduced with the different mathematical model and
objective functions modifications through different performance and constraints lim-
itations. Hence, corresponding feature of the MPC offers great freedom for the wide
range of the different applications[23]. In addition to that practical convenience,
some other advantages of the model predictive control approach which differs from
the other classical control methodologies are listed below [22]:

• In the design procedure of the MPC, it allows to handle hard and soft con-
straints systematically inside the design.

• It is easily applicable for the multivariable input and multivariable output
systems.

• In the presence of the measurable disturbances,the sufficient compensation can
be achieved thanks to the feed forward control advance in natural way.

• In the case of implementation, the corresponding control law of the MPC is
simple to obtain and apply for the controller.

• It is quite effective control approach if a-priori informations about the future
actions are exist. For instance, desired and pre-defined trajectory of the robot
can be used as the future reference for the trajectory planning applications.

• It can provide satisfactory performance not only limited with the simple dy-
namics systems but also with the highly complex dynamics system even if the
system characteristics involves unstability, non-minumum phase or long delay
times.

Besides of the introduced advantages of the MPC, it could be considered as
insufficient in a theoretical sense when it overcomes the challenging requirements
which are listed as following:

• Even though, the implementation of the controller law is convenient, it may re-
quires more sophisticated derivation rather than common classical approaches.

21

2 – Background

• Execution time limit of the optimization step is also one of the major obstacle
of the MPC implementation. The optimization should be finished as quick as
possible inside the each sampling time instant. However, in the case of the
higher complexity and the faster dynamics systems with the increased number
of constraints may force the optimization to the delay in the time because of
the computation time limitations of the processors. On the other hand, this
trade off between the performance and the computation time limitation can be
adjustable regarding to the proper prediction horizon variable selection which
is defined in the designing process of the controller.

• Predictions of the states and outputs are based on the mathematical model
which is adopted inside the MPC algorithm directly. For that reason, it is very
important to have accurate and sufficient mathematical model which should
covers the major dynamics of the system in the MPC design.

It is possible introduce industrial experience of the model predictive control
applications since it is commonly used in the petro-chemical and refining industries.
Some of the great applications and the different variations of the producers can be
listed as in the [22]:

• AspenTech: Dynamic Matrix Control (DMC)

• Adersa: Identification and Command (IDCOM) , Hierarchical Constraint Con-
trol (HIECON) and Predictive Functional Control (PFC)

• Honeywell Profimatics: Robust Model Predictive Control Technology (RM-
PCT) and Predictive Control Technology (PCT)

• Setpoint Inc.: Setpoint Multivariable Control Architecture (SMCA) and IDCOM-
M (multivariable)

• Treiber Controls: Optimum Predictive Control (OPC)

• ABB: 3dMPC

• Pavillion Technologies Inc.: Process Perfecter

However, the model predictive control approach is not still extended into the
various areas because of the some practical inadequacies which might be related in
the case of strong non linearity characters of the objective process and frequently
changing operating conditions [22]. According to the [24] some of the industrial
practical disadvantages can be listed as follow:

• Overparameterized models: It is commonly known that the impulse response
or the step response approach are used to model the process or plant in the
many applications of the commercial products and also these type of the mod-
els are classified as overparameterized. For example, a first-order process can
be used to describe a model by using a transfer function approach which use
only three parameters which are gain, time constant and dead time. In the

22

2.3 – Model Predictive Control

step response case, it requires at least thirty coefficients in order to describe
same dynamics. In addition to that, given models are not suitable and ac-
curate for unstable processes. These problems can be overcome by using an
auto-regressive parametric model.

• Tuning: The tuning can not be formulated in the obvious and convenient way
because of the changing performance expectations and the changing condi-
tions as well as the changing environment. In addition to that it is not easy
to manage the trade-off between the closed loop behaviour and the tuning
parameters. Especially, when it comes to the case that constraints are exist,
to maintain closed loop stability in the control is not always easy. this is the
reason why the MPC designer should make prior simulations. Lastly, the fea-
sibility of the problem is another major obstacle which should be solved in the
MPC.

• Suboptimality of the dynamic optimization: There are various types of soft-
ware which provides suboptimal solutions to the minimization of the cost func-
tion to be able to speed up the solution time. Some of the good computation
performance convex optimization tools can be used also in the embedded sys-
tems which will be showed in the implementation section. It is clear that
solution computation time is a very significant issue especially for the high-
speed applications like a tracking systems. It should be known that solving
the problem at every sampling time may not be feasible, however, it is not
easy to justify for process control applications unless it can be shown that the
suboptimal solution is always very nearly optimal.

• Model uncertainty: There some model identification packages which are com-
monly used in the industry in order to estimate the model uncertainty, how-
ever, that estimation is used only in the robust model predictive control ap-
proach. It is possible to tune the other model predictive controller by managing
the trade off between the performance and robustness, although the relation
between performance and robustness is not very clear.

• Constant disturbance assumption: Probably one of the most logical approach
can be assumed the output disturbance will remain constant in the future,
if the distribution of the disturbance could be determined more detailed, it
would have better feedback in the control.

• Analysis: In the initial formulation of the finite horizon, there is no systematic
way of analysis for the stability and the robustness of the MPC. When it comes
to the obtaining control law especially in the constrained case, The control law,
in general time-varying and it cannot be represented in the standard closed-
loop form. In addition to that the outcomes of the scientific researches and
applications in the stability and the robustness manner are limited into quite
small area in the sense of state space and control horizon.

23

2 – Background

Figure 2.11: MPC Block Diagram

Figure 2.12: MPC Discrete Time Horizon Scheme
By Martin Behrendt

As it is shown in the Figure 2.11, it is possible to visualize the block diagram
of the MPC which may improve better interpretation. Future plant outputs are
generated from the mathematical model of the plant by using the past and current
values of the inputs, outputs and also by considering the optimizer output which is
basically the future control signal. This future control signal is generated regarding
to the principle of the minimization of the objective function which can be customize
as the designer preferences but without violating the initialized constraints which
can be both in input and output of the model. It is important to notice that only the
first value of the generated future control signal is employed by the mathematical

24

2.3 – Model Predictive Control

model and by the plant.
Furthermore, accuracy of the mathematical model of the plant is crucial point

for the performance of the proposed control approach. The model should comprise
the significant dynamics of the plant, however, the higher complexity of the model
extends the computation time which is very critical especially to catch the fast
dynamics systems such as the control of the unmanned aerial vehicles.

The performance of the optimizer is also decisive for the MPC. The trade off
between the performance, robustness, stability an the trajectory tracking capability
can be represented inside the objective function which will be discussed more detailed
in the further sections.

It is possible to explain MPC methodology in the discrete time domain horizon
as illustrated in the Figure 2.12 and the procedure steps can be described as follows;

• Prediction horizon is the length of the future time instants array which can
be adjusted by the performance preferences. As it is given in the Figure
2.8, the prediction horizon length is the number of ”p”.The use of the notation
x(k+i|k) points out that the value of the variable x at the x(k+i) is calculated
at the time instant ”k”. The future output predictions which can be denoted
as y(k + i|k) are calculated not only based on the value of the past measured
outputs and past control inputs for the time instant index ”i” which is starts
from ”0” to the number of ”p” consecutively, but also based on the calculated
future control signals u(k + i|k) where the it starts from ”1” to the ”p-1”.

• The calculation of the future control signals u(k + i|k) are based on the opti-
mization preferences which can be named as the minimization of the objective
function alternatively. One of the expecting feature of this optimization is
to maintain reference trajectory tracking. The performance of the trajectory
tracking can be determined as quadratic function which signifies the error be-
tween the predicted output signal and the reference trajectory. Also, it is
possible to perform constraints in the future control signal prediction.

• The plant only receives the first element of the calculated future control signal
which is u(k|k). On the other hand, the rest of the calculated control signal
are ignored to send to the plant. Since,at the time ”k” ,the output of system
for the next time instant which is y(k + i) is already known and the future
output predictions are required to updated with this new value again. Hence,
the control signal may recalculated respectively.

Daily Life Example

It is possible to demonstrate the practical interpretation of the MPC by giving a
simple daily life example. Let’s assume that we would like to fill up the bucket with
a water but avoiding the overflow in the end. The water flow could be controlled via
the water tap to change the water flow rate. Let’s imagine that we divide the whole
process in to the smaller discrete time steps. Naturally, we can adjust the flow rate
relative to the state of the water level and while the water level reaches the to the

25

2 – Background

top, we gradually reduce the water rate in order to avoid overflow. It is clear that
we decide to change the water flow rate according to water level in the bucket and
the our instinctive visual prediction. In that step, The control approach can be seen
as pid control approach. Because the person regulate the water flow according to
the previous setting of the water flow which means the open rate of the water tap.
So it can be seen as in the pid approach, previous error is used to update the future
action. The major distinction between the pid and the mpc can be noticed in that
step. By adopting Mpc approach, if we can predict the future action error which is
the possible overflow rate in the example, we can have better control by updating
the control signal thanks to the previous error and the predicted future error which
can be obtain by considering the reference trajectory. In the mathematical way, let’s
describe the water filling process by creating proper mathematical model of it and
we have only the water flow rate to be controlled. In each time step, water filling
rate can be controlled by the prediction of the water level increase and the potential
error according the mathematical model and the difference between the prediction
and the actual water. Therefore, if we minimize that error by updating the control
input which is water flow rate for the next discrete time step, we could optimize the
water flow rate in each time steps. Hence, we could have a optimal control which
converge the error to the zero subsequently, practically, that avoids the water level
from overflow in the end of the process.

2.3.2 Mathematical Models

Figure 2.13: Model Blocks of The MPC.

Mathematical Model For Prediction

The mathematical representation of the model of the plant or the system to be
controlled is a critical part of the model predictive control design. As it is noted

26

2.3 – Model Predictive Control

in the previous parts, the derived mathematical model which is employed for the
accurate future prediction of the states should cover the significant dynamics of the
plant. However, it should be used in a efficient way such that the complexity of the
formulation may remains as low as possible because of the computation cost in the
optimization step. As it is shown in the Figure 2.13, manipulated variables which
are input signals, the future outputs which are generated by the optimization and
the measured outputs which are taken from the plant are executed in the prediction
model in order to generate prediction of the outputs.

On the other hand, it is important to consider the unknown disturbances and the
modelling errors may affect the accuracy of the prediction. In order to reduce these
weakness, model can be modified through the iterations by using state estimator.
Unmeasured disturbances and varying parameters of the model could be estimated
by using the Kalman filter. However, the use of The Kalman filter could be available
only with the linear problems.

Mathematical Model For Plant

Mathematical formulation of the plant is employed to receive the actual measured
outputs which is the main goal of the model predictive control application. It is
possible to adopt various types of the models by considering the proper and efficient
representation of the plant to be controlled. Some of the common used modelling
approaches are state space and transfer functions representations which are given
as below:

• In the State Space approach, the plant can be represented as a mathematical
model in such a way that the first order differential equation or difference
equation system. The states can be obtained by the linear arranging of the
preceding values of the states itself. The quadcopter dynamics and motions are
classed as strong non-linearity nature. Since the equation system constructed
as a linear equations, the mathematical representation of the model would be
linearized according to the designer target. The linearization for the control
of the quadcopter can be applied for the hovering condition. Although, it
is important to remember that through the linearization procedure some of
the assumptions are made in order to reduce the complexity and replace the
nonlinear behaviours with the close linear representations. The general form
of the state space representation is given as below:

x(k + 1) = Ax(k) +Bu(k) (2.1)

y(k) = Cx(k) (2.2)

To clarify the elements of the system definition, A,B and C are the matrix
that signifies the input and output relations of the physical states. Also x is
notates the state variables which are selected by the designer. One of the most
important convenience of using state space could be that the direct integration
and evaluation for the multiple input and output system is possible.

27

2 – Background

• In the Transfer Function approach, the mathematical model could be derived
by executing the laplace transform of the input and output. However, transfer
function could be very effective and easy technique, especially, when the system
is single input and single output. The output prediction formulation can be
given as following:

y(t+ k|t) = B(z−1)
A(z−1)u(t+ k|t)

2.3.3 Objective Function

Objective function can be implemented and customized according to the model
predictive control approach and the performance requirement related to the target
of the application. The minimization of objective function will generate a control
signal array which is obtained by considering the constraints at the input and output,
constraints at the control signal effort itself, trajectory tracking performance and
some penalties which could be defined for the states. The general form of the
objective function could be given as follows [22]:

min(J) =
NHØ
i=NL

δ(i)[ŷ(k + i|k)− w(k + i)]2 +
NCØ
i=1

λ(i)[∆u(k + i− 1)]2

As it is shown in the above equation, the length of the prediction horizon which
is denoted as ”p” could be divided into the two parameters which are NL for the
minimum time instant limit which can be taken as 0 and NH for the maximum
time instant limit which can be determined by the designer. The reason behind this
notation is to show that prediction calculation could start at the time instant not
only limited for the current time step but also for the selected future time instant
period. Additionally, it allows the designer to prevent response of the plant from
the non-minimum phase and the sharp response conditions by eliminating the first
prediction instants in the case of error thanks to adjusting prediction horizon. NC

is used as the control horizon parameter in the objective function. The ”δ” and
”λ” terms are used as a coefficients in order to modify and tune the future actions
according to the preferences.

The output signal estimation at the time instant k which is shown in the figure
2.8 for the further time instants is defined with the ŷ(k+i|k) and also w(k+i) points
out the reference trajectory signal which is defined a initially in many applications.
Furthermore, the control signal effort is expressed with the ∆u(k + i− 1) term.

Another advantage of the MPC objective function could be given as the inte-
gration of the constraints systematically inside the minimization of the objective
function. The reason of the usage of the constraints could be explained with the
real physical limitations of the components which are performed in the system or
plant such as the actuators and sensors. Additionally, these constraints could be
used to define the environmental conditions, the energy consumption efficiency and
safety regulations. The fact that MPC algorithm may generate optimal solution

28

2.3 – Model Predictive Control

even if the variables are approached too close to the constraints. For instance, con-
trol signal limitation which is stands for the slew rate and amplitude and the output
signal boundary could be added into the objective function which are shown as in
the below;

umin ≤ u(t) ≤ umax (2.3)
ymin ≤ y(t) ≤ ymax (2.4)

2.3.4 Feasibility

Reliability is a common issue for the proper controller design. In the case of the
MPC, computation of the valid control signal which is generated by the optimization
should be respected to the given constraints. However,for the some challenging
conditions, optimization may not provide sufficient solution which satisfies for the all
given constraints. Therefore, it creates an in-feasibility problem which can be related
also with the strong disturbances. In the initialization of the mpc, it may be far from
the desired operating range and even it may violate some of the constraints. When
MPC faced with a such a in-feasible optimization problem, it is significant that the
controller should maintain the solution and avoid terminate the operation. Instead,
it is expected to observe decrease in the performance of the controller respect to the
increase of the violation of the constraint and also controller should be able to drive
the process into an operation region where all constraints are feasible.

In the case of the incoherent constraints are applied for the optimization, if there
is no operating point exist for the optimization than the problem formulation should
be modified. Coherence of the constraints can be ensured through practical point of
view where the physical limits of the components of the system to be controlled are
known. In addition to that, physical constraints cannot be violated. The constraints
which are directly effects the input signal should not be violated by the optimized
solution. In contrast, states and outputs constraints do not always signify the fun-
damental operational restrictions, sometimes they indicate only for the preferable
operational conditions. So that violation on the state or output constraints is a pos-
sible option for a brief time interval. For this purpose, MPC optimization problem
can be modified in order to allow the constraints violation on the state and output.
Some of the possible modification strategies can be implemented as a given below;

• Eliminating the state and output constraints for the a close range time interval.
However, it should be known that it may result with excessive amount of a
redundant constraints violation. Also determining the duration of the required
time interval for the constraints elimination may not be easy to find. Since this
modification should be done by considering the input constraints, operation
range and the severity of the disturbance.

• Solving the infeasible part of the optimization problem by separating before the
actual optimization process. In this concept, it is important to determine how
many state and output constraints should be violated in order to have feasible

29

2 – Background

optimization problem. Also if the separate computed part of the optimization
problem can be defined as linear programming problem, the solution can be
obtained conveniently.

• Another approach can be adopted by defining the penalty function inside the
optimization problem. Constraints can be modified in order to maintain fea-
sible solution by proposing additional variables which are adequately large
values. This modification converts the hard constraints into the labelled as
soft constraints. Naturally, objective function should be replaced with the new
modification of the constraints by adding a term which provides the penalty on
the magnitude of the constraints violations. These located variables provide
the feasibility of the constraints and converted into free variables in the opti-
mization. Even the feasibility is maintained, however, the size of the problem
is already increased.

2.3.5 Stability

Thanks to the model predictive control optimization approach, it is naturally ex-
pected to ensure stability in a closed-loop control system. In the most of the model
predictive control implementations, receding horizon strategy is adopted, so that
successfully developed optimization up to the horizon can be seen as pretty much
optimal value. However, it may not fully satisfied with some requirements. One
of the suggested approach according to this situation may be used in the case of
the positive definite cost function exist. The cost function can be considered as
Lyapunov function and the stability analysis may become efficient[25].

On the other hand, there is still another difficulty exist because of the optimiza-
tion problem which is defined only up to the finite optimization horizon. For that
reason, it is possible to say that about the overall stability in period of the finite
horizon is not a complicated issue since finite horizon which is greater than the
optimization horizon. A possible convenience could be add a proper cost function
weighting and constraints on the terminal state of the optimization horizon in order
to notice the impact of the actions which are directly related with the optimization
horizon[26]. So that system should be driven into the given restricted terminal region
for a time which is determined from the optimization calculation time availability.
From this point of approach, stability can be ensured by the system manipulation.
It is possible to have further information about the Lyapunov function which is em-
ployed for the cost function in the [27] and also the manipulation of the terminal
constraints in order to maintain stability in the [28].

30

Chapter 3

Quadcopter Control and
Trajectory Planner

3.1 Introduction

In this chapter we will briefly explain the control approach which is adopted.

Figure 3.1: Quadcopter Control Block Diagram.

Typically, quadcopter system can be seen as nonlinear and unstable in terms
of the control. For that reason, it is crucial to design and select proper tools such
as sensor and the control approach. According to the [14],in that sense, there are
techniques that have been developed to solve this problem. A common strategy
which is employed from the researchers is to develop cascaded control approach.
They suggested to divide the complex control system in to the two connected sub-
systems. Therefore, one of the divided subsystem can be employed for the attitude
purpose and the other one can be used for the positional control over the coordi-
nates. Particularly, the attitude control problem has been largely examined and
many possible solutions have been found. For instance, in the [17], the researchers
determined the advantages and the disadvantages of the “Backstepping” and the
“Sliding Mode” controller approaches. Both these methods provide a satisfactory

31

3 – Quadcopter Control and Trajectory Planner

stabilize solution to the control problem. However, according to the [14], This is
performance and stability problem for the attitude controller can be tackled by using
simple PID controller as well. In the Figure 3.1, quadcopter control block diagram
is visualized in order to have better interpretation. The adopted approach could be
investigated and the input output relations can be seen in the general sense. In the
further section more detailed information about the controller and the block will
be introduced. As it is given in the Figure 3.1, the approach is divided in to two
subsystem which are internal closed loo and the external closed loop. In the internal
closed loop, attitude requirements are controlled and regulated. On the other hand,
in the external closed loop trajectory tracking and the positional requirements are
handled. It is important to note that the transition between the internal and the
external loop will be examined in the further sections.

3.2 Internal Control Loop

In this chapter we would like to introduce the adopted internal loop control ap-
proach. One of the major issue arises in the cascaded control approach is to paired
the internal and the external subsystems properly in order to have good trajectory
tracking ability and the good attitude control. For that reason, external control
method might be designed to be react to the changes at the attitude for the calcu-
lated time.

Figure 3.2: Quadcopter Internal Control Block Diagram.

3.2.1 Quadcopter Dynamic Model

Mathematical modelling of the quadcopter is quite critical process in order to de-
scribe quadcopter moves and response to given input selection. Intuitively, the
relationship between the input and the output of the system can be determined

32

3.2 – Internal Control Loop

with the functions which provide the characteristic of the quadcopter. Additionally,
it is possible to predict and simulate the future move, states and the response for
the changing conditions of the environment by controlling the rotor speed of the
propellers which are mounted on the quadcopter[29]. In order to improve accuracy
and reduce the uncertainty of the model of quadcopter, more complex and detailed
modelling can be chosen. However, it would have high computational cost for the
processors in real the applications. Hence, this trade off between the accuracy and
the practicability could be overcome by considering only the important dynamics of
the quadcopter and by neglecting the minor priority dynamics in the mathematical
model[29].

Some of the assumptions are adopted through the obtaining dynamical mathe-
matical model as follows:

• Centre of mass of the quadrotor positioned at origin of the body fixed frame.

• Axes of the body frame matches up with the body principal axes of inertia.

In this section, we explain the dynamical modelling approach which we adopted
in this work. The given equations hold Newton’s law of motion as well.And we
followed the modelling approach which is given in the [18]. Also it is convenient to
define used symbols as a given below:

ρ = Position of the center of the gravity of the quadcopter reference to inertial
frame

υ = Quadcopter velocity reference to inertial frame

Fth = Thrust force which is generated from the rotors as a lifting force

Fae = Aerodynamics force

Fex = The external forces

RIB = Quadcopter orientation

ω = Quadcopter body angular rate

m = Quadcopter mass

J = Inertia matrix

A = Allocation matrix

g = Acceleration due to gravity

ni = Rotor speed

Nr = Number of the rotors

Consecutively the motion of the quadcopter could be defined [18]as a written
below;

ρ̇ = υ

33

3 – Quadcopter Control and Trajectory Planner

υ̇ = 1
m

(RIB

NrØ
n=0

Fth,n −RIB

NrØ
n=0

(Fae,n + Fex) +

 0
0
−g

˙RIB = RIB[ω×]

Jω̇ = A

n2

1
n2

2
n2

3
n2

4

− ω × Jω

3.2.2 Quadcopter Dynamic Model Linearization

Figure 3.3: Quadcopter Hovering Condition.

As it is explained in the previous section, the quadcopter dynamics have some
strong nonlinearities because of the mathematical modelling which is referenced
by it’s nature. For that reason, mathematical model might be linearized in order
to make it available for the linear control approaches and for the simplification of
the nonlinear system. In addition to that, linearization could be applied around
the equilibrium points which are basically the derived solution of the system states
where the derivatives of the states are taken as zero condition. In the proposed lin-
earization case, linearization is applied for the hovering condition of the quadcopter.
The hovering condition can be described in a such a way that, the quadcopter stays
at desired altitude without any orientation and altitude changes. The visualization
of the hovering condition can be seen in the Figure 3.3. The linearization around

34

3.2 – Internal Control Loop

the stable quadrotor hovering condition is quite critical step in order to have proper
control law which is capable to control the quadcopter system and maintain trajec-
tory tracking[30]. Moreover, the adopted linearization approach neglects the small
orientation angles changes and the yaw angle “ψ” considered as zero.

3.2.3 Internal Measurement Unit

Internal Measurement Unit (IMU) is a sensor that consist of the 3-axis accelerom-
eter and 3-axis gyroscope inside. It can be employed to measure the angular rates,
position and force. Because of the sensor composition inside, it operates the mea-
surement through the 6-axis which makes 6 degree of freedom which can be seen
in the Figure 3.4. The accelerometer is used to determine the linear acceleration
through a single axis and the direction. In addition to that it is can be performed
in order to measure gravity force and for the position. When it comes to measure
angular velocity changes, the accelerometer may not be sufficient enough. From
this standpoint, Gyroscopes, can be considered as solution for this specific problem.
Each angular velocities of the principal three axis which are orientation angles are
roll angle “φ”, pitch angle “θ” and the yaw angle “ψ” can be found directly thanks
to the gyroscope sensor inside the IMU.

Figure 3.4: Internal Measurement Unit.

35

3 – Quadcopter Control and Trajectory Planner

3.2.4 PID Attitude Controller

As it is given in the Figure 3.2, commanded control states which are generated
from the linear model predictive controller (LMPC) is taken as a input for the
PID-Attitude controller. The PID attitude controller considers not only the input
coming from the LMPC but also the input which is the measured orientation angles.
The orientation measurement is done thanks to the internal measurement unit.
Practically, these orientation angles are roll angle “φ”, pitch angle “θ” and the yaw
angle “ψ”. The practical demonstrations of the orientation angle are done in the
Notation section. Moreover, Attitude controller is designed to regulate the roll
angle and the pitch angle. Also the the yaw angle is defined in a such a way that
the rotation around the vertical axis “z” as a angular velocity of the quadcopter. In
addition to that total thrust force is also determined by the attitude controller. As
it can be seen in the Figure 4.2, PID- attitude controller generates appropriate rotor
signal to the four rotor of the quadcopter in order to maintain calculated orientation.
The attitude controller could be identified by applying basic system identification
techniques in the case of unknown controllers exist on the commercial quadcopter
systems. According to the [18], the attitude controller dynamics for the roll move
and angle is given as follows:

φ̇ = kφφcom − φ
τφ

The term “φ̇” signifies the roll angle rate and the “kφ” is denoted for the deter-
mined gain and the ”τφ” is denoted for the determined time constant thanks to the
system identification techniques. The “φcom” term is used to remark commanded
roll angle. The attitude controller dynamics for the pitch move and angle is given
as follows:

θ̇ = kθθcom − θ
τθ

As it is given in the previous equations,The term “θ̇” points out the pitch angle
rate “kθ” is specified by the determined gain, also the “τθ” is used for the obtained
time constant and the “θcom” is employed for the commanded pitch angle. It is
significant to notice that the yaw angle rate might be taken directly as equal to the
commanded yaw angle rate since the quadcopter is expected to react the command
reference so quickly according to the our assumption. So it can be formulated as
follows;

ψ̇ = ψcom

36

3.3 – External Control Loop

3.3 External Control Loop

Figure 3.5: Quadcopter External Control Block Diagram.

In this section we will introduce external control loop in details. As it can
be seen in the Figure 3.5, external control loop comprises linear model predictive
control which is dedicated for the trajectory planning and the trajectory tracking
capabilities and the extended Kalman filter which is employed for the proper and
accurate state estimation to feed up the (LMPC) controller. The controller takes
two kind of input as it is seen in the Figure 3.5, the reference states are designed
and introduced from the user as a target for the quadcopter. So that, quadcopter
may be forced to have or to be close to the given reference values of the states. The
measured output states are considered by the state predictor in order to feed the
controller as well. Further details about the controller and the extended Kalman
filter can be found in the next sections.

3.3.1 Linear Model Predictive Control

Linear Model Predictive Control can be seen as optimal control which aims to ob-
tain a control law that considers the series of differential equations relied on the
constraints and reduces cost by optimizing the state variables in the defined cost
function[31]. Variables states are determined as follows:

xstates =

px
py
pz
vx
vy
vz
φin
θin

The position is defined with the P on the x,y and z axis in the inertial frame as it is
shown above and the linear velocities which are also defined with the v on the x,y

37

3 – Quadcopter Control and Trajectory Planner

and z axis in the same frame. So these positional and velocity states are measured
by the internal measurement unit which is described in the previous section. The
roll angle variable which is defined as “φin” and the pitch angle variable “θin” are
obtained thanks to the body frame to inertial frame transformation which avoids
the use of yaw angle in the model. Since the roll and the pitch angles are measured
in the body frame with internal measurement unit as well. The input variables are
defined as given in the below:

uinput =

φcomθcom
Tin

The “φcom” can be used to describe the input commanded roll angle and the
“θcom” is used to define the input commanded pitch angle. The “Tin” variable is
designated for the thrust force and determined in the inertial frame[18].

Furthermore, according to the quadcopter dynamic model linearization section, it
is possible to introduce vehicle dynamics as shown in the below in order to complete
controller design:

ẋ = Actx(t) +Bctu(t) +Bd,ctd(t)

Also it can be convenient to give the extended matrix representation of the
initialized quadcopter dynamic equation system in order have better interpretation
as follows:

ẋ =

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 −Ax 0 0 g 0
0 0 0 0 −Ay 0 0 −g
0 0 0 0 0 −Az 0 0
0 0 0 0 0 0 − 1

τφ
0

0 0 0 0 0 0 0 − 1
τθ

x(t)+

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
Kφ
τφ

0 0
0 Kθ

τθ
0

u(t)+

38

3.3 – External Control Loop

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

d(t)

However, the quadcopter dynamic system is represented as continuous time do-
main as it can be seen in the above, it is necessary to convert continuous time
domain representation into the discrete time domain in order to make suitable for
the controller which is defined in the discrete time domain[32]. For that purpose, it
is possible to transform the the matrix respecting to the predefined sampling time
“Ts” such that;

A(dt) = eA(ct)Ts (3.1)

B(dt) =
Ú Ts

0
eA(ct)τdτB(ct) (3.2)

Bd(dt) =
Ú Ts

0
eA(ct)τdτBd(ct) (3.3)

In the next step, the control input might be calculated by adding feed-forward
term to preserve from the coupling issues. In addition to that, quadcopter control
signal should consider the initial upward thrust force which performs against to the
gravitational force and air drag in order to maintain the quadcopter in the hovering
condition where the stabilization and linearization are executed. Similarly, the good
trajectory tracking capability might be maintained and the control inputs can be
introduced as given in the below:

T̃ = T + g

cos(φ) cos(θ) + z̈d
(3.4)

φ̃d = gφd − ÿd
T̃

(3.5)

θ̃d = gd + ẍd

T̃
(3.6)

According the given equations at the above, the terms “T̃”, “φ̃d” and the “θ̃d”
are employed to address actual control inputs. The “g” refers to the gravitational
force acting on the quadcopter. Moreover, the feed-forward terms “ẍd”, “ÿd” and
the “z̈d” are initialized to point out the desired acceleration of the quadcopter on
the three dimensional space directions respect to the defined body frame.

39

3 – Quadcopter Control and Trajectory Planner

3.3.2 Extended Kalman Filter State Prediction

The disturbances may be modelled and considered in the discrete time mathematical
model of the system in order to maintain trajectory tracking capabilities as we
desired to have according to the objective. For the convenience term “dk” can be
adopted as a modelled disturbance to describe system model inconsistency. So the
system output can be introduced as follows:

yk = Cxk

In addition to that, we would like to have convergence characteristic of the error
between the estimation states and the actual states for the future of the system. For
that reason it is possible to define the “x̂” for the estimated states and the “d̂” for
the estimated external disturbance which can be interpreted as strong wind applied
on the quadcopter. “Lx”, “Ld” are the gains which are computed for the observer
and the “ymk” may be determined as a output in the discrete time as it is given
in the [32]. According to the given approach the Extended Kalman Filter can be
performed to have proper estimation of the disturbance and the states by referring
the model which is performed as given in the below:

C
x̂k+1

d̂k+1

D
=

C
A Bd

0 I

D C
x̂k
d̂k

D
+

C
B
0

D
Uk +

C
Lx
Ld

D
(Cx̂k − ymk) (3.7)

In addition to that, in order to maintain stable observer for the state and dis-
turbance predictions to feed the linear model predictive controller, it may required
to determine state reference and the control input reference as for the discrete time
in the equation below;

C
A− I Bd,k

C 0

D C
xref,k
uref,k

D
=

C
−Bd̂k
rk

D

(3.8)

3.3.3 Linear Model Predictive Control Objective Function

The general structure and the prior knowledge about the objective function is given
in the previous sections. Furthermore, it is convenient to propose the adopted
quadratic form minimization of the objective function as follows:

40

3.3 – External Control Loop

J(u, x) = min
3N−1Ø

i=0
(xk+i − xref,k)TQx(xk+i − xref,k)

+ (uk+i − uref,k)TRu(uk+i − uref,k)

+ (uk+i − uk+i−1)TR∆(uk+i − uk+i−1)
4

+ (xN − xref,N)TP (xN − xref,N)

subject to :

xk+1 = Axk +Buk +Bdk;
dk+1 = dk;
uk ∈ U ;
x0 = xt0;
d0 = dt0

(3.9)

As it is given in the the below, the optimal control problem is defined according
to the linearized system dynamics and respect to the linear constraints which can
be declared both for the input, output and the states. Additionally, the efficient
trajectory tracking capability can be expected as one of the major requirement for
the model predictive control and this requirement has been broadly studied and
many reasonable solutions have been implemented both for the linear and nonlinear
model predictive control [33]. To overcome given issue, one of the convenient way
might be followed the [34], the disturbance can be introduced as a steady state
“d(t)” and the model of the linearized system can be upgraded with the disturbance
state in order to compensate the model inaccuracy which is caused by the system
model uncertainties.

Moreover, the “xref” , “uref” terms are used to address the reference signal which
might be altered according to the targets. The term “Bd” is employed to introduce
the disturbance model that could be designed respecting to the disturbance form
and “d(k)” represents the external disturbance as well.

Further, the term “P” is used to define the penalty on the terminal state error[32].
The weighting matrices Qx, Ru and R∆ are initialized as positive semi-definite and
they signify the penalties for the errors which are respectively on the states, control
input and the control change rate. It is worth noting that the variation in the
control input magnitude is restricted by enforcing the linear constraints through the
objective function.

When it comes into the stability and feasibility of the mentioned linear model
predictive controller, it may not be convenient to obtain a specific strategy that has
been proposed for this problem. A possible approach to solve this problem sug-
gests to use longer prediction horizon which is defined as ”N” in our representation,
however, it may not guaranteed the stability and feasibility of the controller[35]. In
addition to that, extending the prediction horizon length may rise the complexity
of the minimization problem which would cause to the computation burden. As it
is emphasized in the preceding sections, the control input calculation should be fast

41

3 – Quadcopter Control and Trajectory Planner

enough to apply to the quadcopter system since the dynamics can be seen as quite
agile. On the other hand, another approach which is mentioned in the [36] confirms
that the terminal constraint “P” adjusting can be good method for maintaining
closed-loop stability and the feasibility.

3.4 Robotic Operating System Implementation

The defined quadcopter dynamics and the trajectory planning actions are evalu-
ated and integrated in the ROS environment which is introduced in the previous
sections. Moreover, the programming language is selected as C++ because of the
advantage which allows us to manage the memory allocation and create a way that
we can interpret the algorithm as in the machine code level. The use of The ROS
environment can offer great number of packages which are already developed by
the other developers. These packages are very useful especially in order to avoid to
write common use tools and algorithms again and again. The other advance can be
introduced through the varying code language adaptation. For instance, it allows
to develop a script in the python language and integrate in to the C++ packages
without any cost. In addition to that, it is possible to simulate the defined sys-
tems in the common simulation environment which is ”Gazebo”. So the real world
simulations are available because of this convenience.

Figure 3.6: Active Ros Nodes.

In the Figure 3.6, It is possible to demonstrate actively employed ROS nodes
which performs required communications between the systems [18]. The created
linear model predictive controller script is developed as a node which is named
as ”mav linear mpc”. This node receives 3 different messages from the 3 differ-
ent nodes. In more terminological way, The ”mav linear mpc” node subscribes the
odometry node which is generating odometry message which contains state variables
measured by the sensor system and describes the actual odometrical variables. The

42

3.4 – Robotic Operating System Implementation

”command pose” is defined by the user in order to define target position for the
quadcopter. And the trajectory message is created thanks to the optimization step
which is covered by the convex optimization solver. Therefore, the ”mav linear mpc”
node publishes the calculated roll, pitch and the yaw rate to the internal loop unit
which is PID controller named as ”lowlevel attitude controller” node. As it is de-
scribed in the internal loop section, PID controller calculates related required motor
speeds as a revolution per time unit for the each rotors. It is significant to point
that, internal control loop which is operated by PID performs at 100 Hz because of
the attitude dynamics, however, outer loop which is operated by the linear model
predictive controller can perform slower than inner loop.

3.4.1 Trajectory Planning With CVXGEN

For the trajectory tracking path planning system we followed the ”CVXGEN” solver
which is offered as in the [37]. In the embedded system applications, it is important
to use robust and accurate convex optimization solver since the solution should be
available by avoiding any fatal error. On the other hand, a computation time is
well-known problem particularly for the UAV embedded system applications. Also,
we should remind that computation time takes into account the complexity of the
quadratic optimization problem. It is commonly known that the computation time
problem could not be easily tackled by reducing the complexity of the problem since
the system model should maintain significant dynamics of the actual quadcopter
system. The efficient computation time can be obtained by using ”CVXGEN” solver.
According to the [37], it is possible to show the computation time performance and
the complexity allowance of the solver in the Figure 3.7. After the proper installation
of the system dynamics, constraints

43

3 – Quadcopter Control and Trajectory Planner

Figure 3.7: CVXGEN Performance
[37]

It is convenient to introduce how the linear model predictive controller parame-
ters are used and applied into the ”CVXGEN” solver in that step. For that purpose,
we can start to introduce how the model of the system is created and how the pa-
rameters are assigned for the solver in the ”mav linear mpc” script. The model
continuous time model can be created as follows;

44

3.4 – Robotic Operating System Implementation

Code Fragment

Eigen::MatrixXd A_continous_time(kStateSize, kStateSize);
A_continous_time = Eigen::MatrixXd::Zero(kStateSize,

kStateSize);
Eigen::MatrixXd B_continous_time;
B_continous_time = Eigen::MatrixXd::Zero(kStateSize,

kInputSize);
Eigen::MatrixXd Bd_continous_time;
Bd_continous_time = Eigen::MatrixXd::Zero(kStateSize,

kDisturbanceSize);
A_continous_time(0, 3) = 1;
A_continous_time(1, 4) = 1;
A_continous_time(2, 5) = 1;
A_continous_time(3, 3) = -drag_coefficients.at(0);
A_continous_time(3, 7) = kGravity;
A_continous_time(4, 4) = -drag_coefficients.at(1);
A_continous_time(4, 6) = -kGravity;
A_continous_time(5, 5) = -drag_coefficients.at(2);
A_continous_time(6, 6) = -1.0 / roll_time_constant_;
A_continous_time(7, 7) = -1.0 / pitch_time_constant_;

Code Fragment

B_continous_time(5, 2) = 1.0;
B_continous_time(6, 0) = roll_gain_ / roll_time_constant_;
B_continous_time(7, 1) = pitch_gain_ /

pitch_time_constant_;

Bd_continous_time(3, 0) = 1.0;
Bd_continous_time(4, 1) = 1.0;
Bd_continous_time(5, 2) = 1.0;

After that, it is possible to convert the model in the discrete time domain for
the specified sampling time of the system. The discrete time model of the system is
evaluated to use not only for the steady state calculations but also for the parameters
in the ” CVXGEN ”.

45

3 – Quadcopter Control and Trajectory Planner

Code Fragment

model_A_ = (prediction_sampling_time_ *
A_continous_time).exp();

Eigen::MatrixXd integral_exp_A;
integral_exp_A = Eigen::MatrixXd::Zero(kStateSize,

kStateSize);
const int count_integral_A = 100;

for (int i = 0; i < count_integral_A; i++)
{

integral_exp_A += (A_continous_time *
prediction_sampling_time_ * i /
count_integral_A).exp()
* prediction_sampling_time_ / count_integral_A;

}

model_B_ = integral_exp_A * B_continous_time;
model_Bd_ = integral_exp_A * Bd_continous_time;

As we obtained the model, it is possible to assign parameters of the solver such
as;

Code Fragment

Eigen::Map<Eigen::MatrixXd>(const_cast<double*>(params.A),
kStateSize, kStateSize) = model_A_;

Eigen::Map<Eigen::MatrixXd>(const_cast<double*>(params.B),
kStateSize, kInputSize) = model_B_;

Eigen::Map<Eigen::MatrixXd>(const_cast<double*>(params.Bd),
kStateSize, kDisturbanceSize) =
model_Bd_;

In addition to that, the other required parameter variables are calculated in
varying proper methods, however, it is not favorable to show all the parameters
which are used by solver in this section because of the extensive size of the code.
Some of the parameters can be seen in the below ;

46

3.4 – Robotic Operating System Implementation

Code Fragment

Eigen::Map<Eigen::MatrixXd>(const_cast<double*>
(params.Q), kStateSize, kStateSize) = Q;
Eigen::Map<Eigen::MatrixXd>(const_cast<double*>
(params.Q_final), kStateSize, kStateSize) =

Q_final;
Eigen::Map<Eigen::MatrixXd>(const_cast<double*>
(params.R), kInputSize, kInputSize) = R;
Eigen::Map<Eigen::MatrixXd>(const_cast<double*>
(params.R_omega), kInputSize, kInputSize) = R_delta

* (1.0 / sampling_time_ * sampling_time_);

params.u_max[0] = roll_limit_;
params.u_max[1] = pitch_limit_;
params.u_max[2] = thrust_max_;

params.u_min[0] = -roll_limit_;
params.u_min[1] = -pitch_limit_;
params.u_min[2] = thrust_min_;

After the proper and accurate initialization of the parameters and the con-
straints of the system, it is convenient to obtain optimal control input command
by calling the solve function which invokes the ”CVXGEN” and we may count the
solution time by using ”tic() and toc()” in order to guarantee the compatibility
with the system frequency. The optimum control inputs are stored in the ”lin-
earized command roll pitch thrust ” The following code scripts is adopted in the
algorithm such that;

Code Fragment

tic();
int solver_status = solve();
solve_time_average_ += tocq();

linearized_command_roll_pitch_thrust_ << vars.u_0[0],
vars.u_0[1], vars.u_0[2];

In the Figure 3.8, it is convenient to present how to initialize the objective func-
tion optimization problem into the ”CVXGEN” interface. Firstly, proper dimensions
of the matrix are defined, then the prediction horizon which is addressed as ”T” is
defined according to the preferences. After that step, the parameters dimensions
are defined in the parameter section, however, they are initialized and calculated in
the ”mav linear mpc” node. For the variables section, modelled system states and
inputs are defined. The objective function of the linear model predictive control
algorithm is derived to be used in the minimization respected to the ”CVXGEN”

47

3 – Quadcopter Control and Trajectory Planner

interface. After that, constraints are defined according to the performance require-
ments and physical limitations. For instance, control input limits are expressed as
”u min” and ”u max”. The exporting C program files are automatically generat-
ing by the interface and ready to integrate into the project files. However, for the
obstacle avoidance case, it may not be possible to adjust the ”CVXGEN” problem
definition and initialization scheme in order to implement mixed linear programming
techniques. In addition to that, the Boolean type of variable is not supported in
the constraints definition section in the ”CVXGEN” interface. For that reason, an-
other convex optimization solver which is ”CVXPY” is adopted in order to maintain
obstacle avoidance.

Figure 3.8: CVXGEN Interface.

3.5 Motion Control With CVXPY

As the limitations of the ”CVXGEN” is explained for the mixed integer linear pro-
gramming technique, it is possible to overcome these restrictions by replacing the
optimization stage and the solver with the ”CVXPY”. The ”CVXPY” is defined
as a Python-embedded modeling language for convex optimization problems. It is
significant to remember that the control algorithm of the quadcopter is created in

48

3.5 – Motion Control With CVXPY

the C++ language. The compatibility problem of the two different code language
is solved by the benefits of the ”ROS Service”. As it is mentioned in the previous
sections, Robotic Operating System allows us to create Python script node inside
the C++ based project. In addition to that, it offers great variety of the solver
which are applicable to the different types of the convex problems.

3.5.1 ROS Service

The new implementation of the ”CVXPY” is handled by creating an ROS services.
The ROS service is one of the communication way between the ROS nodes apart
from the classical ROS message type. ROS service has some good advantages which
can be listed as[38];

• In the ROS message type of communication, the message is publishing by the
node without considering that the message has been received by the other node
which is subscriber one. Although, ROS service call is able to wait, detect and
collect the response through the communication.

• ROS service call is regulated by the corresponding node where the response
of the call also stored. The ROS service can offer one to one communication
which can be seen as a difference from the ROS messages.

The concept of the ROS service communication can be visualized as it is given
in the following figure;

Figure 3.9: ROS Service-Client.
[38]

The client node can be employed to create request which can be seen as data
to send the server node. When the server node notices that request from the client
node, it begins to execute related defined actions which can be computation, con-
figuration and etc. After that point, the server node sends back the output data to
the client which is named as response [38]. So in our implementation two services
are created and evaluated. The first service is called as ”CvxpyOpt” and the service
data structure type is defined in the following code script;

49

3 – Quadcopter Control and Trajectory Planner

Code Fragment

float64[] u_ss
float64[] x_ss
float64[] d
float64[] u_prev
float64[] x_0

float64[] u
float64[] x

The data u ss, x ss, d, u prev amd the x 0 are used to define steady state control
input command, steady state condition of the states, disturbance, previous control
input command and initial states respectively and they can be classified as members
of the request. After the dash line, control input u and the states x are defined as
a response then they addressed to send back when the server completed required
actions.

The second service ”CvxpyOptInit” is implemented for the initialization sense
of the optimization problem. As it is adopted in the ”CVXGEN” case, steady state
discretizated model of the system should be initialized before then the solver process
in order to avoid from the unnecessary computational burden. The data structure
of this service can be seen in the following code script.

Code Fragment

float64[] Ad
float64[] Bd
float64[] B
float64[] Q_final
float64[] Q_int
float64[] R
float64[] R_delta
float64[] umin
float64[] umax

bool success

As in the ”CvxpyOpt” server structure, before the ”–” dash line elements are
defined for the request part of the service. Also Boolean type of data is adopted for
the response of the service in order to check the initialization is done successfully.
After that step, it may be convenient to show how to integrate these two created
service in to a ”mav linear mpc” script. The ”CvxpyOpt” service is implemented in
the ”mav linear mpc” script as it is given in the below;

50

3.5 – Motion Control With CVXPY

Code Fragment

mav_linear_mpc::CvxpyOpt srv;

After that definition, it allows us to assigned each of the ”CvxpyOpt” service
requests which can be as follows;

Code Fragment

Eigen::Map<Eigen::Matrix<double, kInputSize,
1>>(srv.request.u_ss) = target_input;

Eigen::Map<Eigen::Matrix<double, kStateSize,
1>>(srv.request.x_ss.data()) = opt_queue_[0];

Eigen::Map<Eigen::Matrix<double, kDisturbanceSize,
1>>(srv.request.d.data()) = estimated_disturbances;

Eigen::Map<Eigen::Matrix<double, kInputSize,
1>>(srv.request.u_prev.data()) =
linearized_command_roll_pitch_thrust_;

Eigen::Map<Eigen::Matrix<double, kStateSize,
1>>(srv.request.x_0.data()) = x_0;

After that step, the ”CvxpyOpt” service offers a response which is a optimized
control input values can be assigned such that;

Code Fragment

linearized_command_roll_pitch_thrust_ << srv.response.u[0],
srv.response.u[1], srv.response.u[2];

For that purpose, the client object is created to receive the response from the
server. The ”private nh” is knowns as common ROS private node handle object
and it allows to integrate created object inside ROS. Then the client object service
type is defined as ”mav linear mpc::CvxpyOpt” also the service name selected as
”/cvxpy solve opt” which can be seen in the below;

Code Fragment

client_ = private_nh_.serviceClient<mav_linear_mpc::CvxpyOpt>
("/cvxpy_solve_opt");

51

3 – Quadcopter Control and Trajectory Planner

3.5.2 Opt Node

In this section, we will briefly explain the created optimization node which is based
on the ”CVXPY” environment. The given code fragment can be used to describe
the initialization of the node and the service server respectively. Also we checked
that the initialization is completed without any problem. The ”rospy.spin()” is
mandatory callback function which executes the main of the code as an active until
the node shuts down.

Code Fragment

rospy.init_node(’cvxpy_optimization_node’)
rospy.Service(’cvxpy_init_opt’, CvxpyOptInit,

initialize_problem)
rospy.Service(’cvxpy_solve_opt’, CvxpyOpt, solve)
print "Ready_to_solve_the_optimization_problem"
rospy.spin()

In the next code fragment it possible to check the initialization of the discrete
time model from the created service request can be seen easily. So the ”cvxpy init”
is consisted of the given related code fragments. The client node create a request to
take the required discrete time model matrix data from the server.

52

3.5 – Motion Control With CVXPY

Code Fragment

Ad_temp = np.array(req.Ad)
Ad_temp = Ad_temp.reshape(8, 8).transpose()
Ad = sparse.csc_matrix(Ad_temp)

Bd_temp = np.array(req.Bd)
Bd_temp = Bd_temp.reshape(3, 8).transpose()
Bd = sparse.csc_matrix(Bd_temp)

[nx, nu] = Bd.shape

B_temp = np.array(req.B)
B_temp = B_temp.reshape(3, 8).transpose()
B = sparse.csc_matrix(B_temp)

Q_final_temp = np.array(req.Q_final)
Q_final_temp = Q_final_temp.reshape(8, 8).transpose()
Q_final = sparse.csc_matrix(Q_final_temp)

Q_int_temp = np.array(req.Q_int)
Q_int_temp = Q_int_temp.reshape(8, 8).transpose()
Q_int = sparse.csc_matrix(Q_int_temp)

R_temp = np.array(req.R)
R_temp = R_temp.reshape(3, 3).transpose()
R = sparse.csc_matrix(R_temp)

R_delta_temp = np.array(req.R_delta)
R_delta_temp = R_delta_temp.reshape(3, 3).transpose()
R_delta = sparse.csc_matrix(R_delta_temp)

umin = np.array(req.umin)
umax = np.array(req.umax)

In the following code fragment, elements of the objective function are defined and
the prediction horizon which is ”N” is defined. We will discuss further details about
the length of the prediction horizon and the effects of it in the result and discussion
part. But for similarity, we can assume the prediction horizon as 20 which is also
used by the previous convex solver ”CVXGEN”.

53

3 – Quadcopter Control and Trajectory Planner

Code Fragment

Q = Q_int
R_del = R_delta
Qf=Q_final
delta = Variable((4, N), boolean = True)
N = 20

x = Variable((nx, N+1))
u = Variable((nu, N))
x_0 = Parameter(nx)
u_prev = Parameter(nu)
u_ss = Parameter(nu)
xr = Parameter(nx)
d = Parameter(nu)

objective = 0
constraints = [x[:,0] == x_0]

The objective function variable definitions are done as it is given in the above
code fragment. Now it is convenient to describe the objective function definition in
the below. The constraints are evaluated for the discrete time quadcopter dynamics
and for the control input command magnitude as well. It is important to remind
that, because of the linear model predictive control algorithm, the optimum control
input variable is calculated through the prediction horizon. So practically, it calcu-
lates 20 step ahead in the each trajectory point repetitively. Theoretically, model
predictive control optimization calculates more accurate and more precise control
input command as long as prediction horizon extends. However, it may reveal com-
putational burden which may not be handled with the common used processors.

54

3.5 – Motion Control With CVXPY

Code Fragment

objective +=quad_form(x_0 - xr, Q) +
quad_form(u[:,0]-u_prev, R_del)

constraints +=[x[:,1] == Ad*x_0 + B*u[:,0] + Bd*d]
constraints +=[umin <= u[:,0], u[:,0] <= umax]

for k in range(1, N):
objective +=quad_form(x[:,k] - xr, Q) + quad_form(

u[:,k] - u[:,k-1], R_del) #+ quad_form(u2[:,k] -
u_ss, R)

constraints +=[x[:,k+1] == Ad*x[:,k] + B*u[:,k] + Bd*d]
constraints +=[umin <= u[:,k], u[:,k] <= umax]

objective +=quad_form(x[:,N] - xr, Qf)

prob =Problem(Minimize(objective), constraints)

result =CvxpyOptInitResponse()
result.success =True
return result

In the next code fragment, the solve function is defined. Also, the computation
time is significant parameter for the quadcopter control and it is counted in order
to ensure the compatibility. In addition to that, we decided to use the Gurobi
solver which is also used by the global technology companies. The advantage of the
”Gurobi” solver can be proposed with the powerful solution performance and the
robustness available for the ”MILP” problems.

55

3 – Quadcopter Control and Trajectory Planner

Code Fragment

def solve(req):
global x, u, x_0, u_prev, u_ss, xr, d, prob, delta
x0 = np.array(req.x_0)
u0 = np.array(req.u_prev)
xr_test = np.array(req.x_ss)
u_ss_test = np.array(req.u_ss)
t = time.time()
x_0.value = x0
u_prev.value = u0
xr.value = xr_test
u_ss.value = u_ss_test
d.value = np.array(req.d)

prob.solve(solver=GUROBI, warm_start=True, verbose=False)

elapsed = time.time() - t
print elapsed
result = CvxpyOptResponse()
result.u = u[:, 0].value
result.x = x[:, 0].value
return result

3.5.3 Obstacle Avoidance with MILP

As we discussed in the previous sections, the ”CVXGEN” does not allow to use
Boolean type of the variables in the constraint definitions which is a major require-
ment to perform mixed integer linear programming techniques in order to have
obstacle avoidance on the trajectory planning process.

Mixed Integer Linear Programming (MILP) can be described as very effec-
tive and robust mathematical programming technique that contains decision vari-
ables which are defined as integer values. Regarding to this decision variables, it
is possible to modify trajectory planning optimization through the defined linear
constraints[39]. In more practical sense, these binary integer constraints can only
be ”0” or ”1” values in order to generate discrete decisions which are used to de-
cide that quadcopter would pass to the right or to the left of the the static object.
According to the definition of the MILP, the optimization problem is defined as
linear naturally. So, the output of the MILP calculation ensures that the solution
is globally optimal[40].

Moreover, in the adopted approach, we decided to define the lower left corner
and the upper right corner of the rectangular static obstacles as constraints. The
obstacle avoidance could be ensured if the all computed trajectory points of the
quadcopter are out of the defined obstacle rectangular areas through the each time
step[41].

56

3.5 – Motion Control With CVXPY

xmin − x ≥Mα1;
x− xmax ≥Mα2;
ymin − y ≥Mα3;
y − ymax ≥Mα4;q4

i=1 αk ≤ 3;

(3.10)

As it can be seen in the above equations, the rectangular obstacle lower left corner
coordinates are defined as xmin and xmax. The upper right corner is also defined
with the ymin and ymax. It is important to notice that, through the each time
steps, at least one of the constraints has to be enforced in order to avoid quadcopter
trajectory positions which x and y are not inside the restricted obstacle region. The
given constraint enforcing condition is controlled with the last defined constraint.
The main objective of the optimum trajectory planning could be assumed as the
minimum cost to go principle. Referring to that, quadcopter trajectory plan may
be inclined to pass the object very close and also the optimum trajectory may not
be calculated during the iterative calculation of the optimization if the quadcopter
is located so nearly to the obstacle. So that, one of the convenient ways of tackling
that defined problem is to introduce a slack variable which is determined as ”M” in
the constraint equations.

That ”M” slack variable is defined to be sufficiently large where it is employed
in the constraints equation. For instance, the binary decision variables which are
defined with the α1,2,3,4 take ”0” or ”1” value depends on the which constraint
equation will be enforced. So that, when the α takes ”0” value, then the variable
in the constraint equation is enforced in order to find feasible solution. Contrarily,
when the the α takes ”1” value, then the constraint equation is relaxed.

In our code implementation, we decided to use ”1000” for that M value which
you can notice on the code fragment. It may be ensured the feasibility of the
optimized trajectory[41]. The obstacle avoidance can be evaluated with the following
code fragment substitution in the constraints. Also, the last constraint in the 3.10
equation ensures that at least one constraint equation is enforced.

57

3 – Quadcopter Control and Trajectory Planner

Code Fragment

objective += quad_form(x_0 - xr, Q)
+quad_form(u2[:,0]-u_prev, R_del)

constraints +=[x[:,1] == Ad*x_0 + B*u2[:,0] + Bd*d]
constraints +=[umin <= u2[:,0], u2[:,0] <= umax]

constraints +=[(20)- x[0, k] >= - 10000 * delta2[0, k]]
constraints +=[x[0, k] - (30) >= - 10000 * delta2[1, k]]
constraints +=[(20) - x[1, k] >= - 10000 * delta2[2,k]]
constraints +=[x[1, k] - (30) >= - 10000 * delta2[3, k]]
constraints +=[delta2[0, k] + delta2[1, k] + delta2[2,

k] + delta2[3, k] <= 3]

As it is shown in the below, an example obstacle is defined by the 20 to 30 meter
on the x axis and from 20 to 30 on the y axis for the two dimension space. In the
result and discussion part we will briefly introduce and comment about the obstacles
and the avoidance scenarios as well.

3.6 Computation Specs

The results and simulations are maintained for the computer which has the system
specifications and the used software environment version can be given as follows;

• Processor: Intel Core i7-6700HQ CPU 2.60GHz

• Graphics: Intel HD Graphics 530 (Skylake GT2)

• Ram: 16 GB

• Operating System: Ubuntu 16.04 LTS

• Robotic Operating System Kinetic Kane Version May 23rd, 2016

58

Chapter 4

Results

In Section 4.1, the obtained results from different experiments will be discussed.
The effect of prediction horizon length will be discussed through the computation
time, the efficiency sense. Also, we will discuss and show the simulations about the
capability of the obstacle avoidance algorithm for the multiple obstacle cases and
for the different scenarios.

4.1 Experiments

4.1.1 Obstacle Avoidance with One Obstacle

In this simulation, we will test the obstacle avoidance algorithm for the defined
target position of the quadcopter with the different prediction horizons in order to
illustrate the varied behaviour of the trajectory planning. For that purpose, we
designed some proper test case and target points to be ensured about the capability
and accuracy of the adopted technique. So it is possible to define the case 1 such
that;

• Obstacle Buffered Location: The obstacle with buffered zone is colored
with red and it is defined between the given distance on the x axis and on the
y axis which could be noticed in the each case position tables respectively.

• Obstacle Actual Location: The obstacle actual location is colored with
black and defined for 1 meter minimized and both for the x and y axis in
order to prevent from unfeasible solution and crush.

• Quadcopter Initial Position: The quadcopter initial point is always defined
as 0 on the x axis and 0 on the y axis for the beginning.

• Quadcopter Target: The each target point is defined for the each case which
could be seen respectively in the related table.

• Prediction Horizon Length: It is decided to test the three different proper
prediction horizons which are 20, 30 and 40 for each case.

59

4 – Results

• Computation Time: The computation time will be obtained as minimum,
maximum and the average which is an arithmetic mean in order to be ensured
about the compatibility of the algorithm inside the control frequencies.

Case 1:

Figure 4.1: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 40-40.

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Initial 0 0

Target 40 40

Table 4.1: Simulation case 1 position definitions for quadcopter and obstacle with
buffer zone.

60

4.1 – Experiments

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.22 sec 0.39 sec 0.24 sec

Prediction Horizon
30

0.33 sec 0.53 sec 0.37 sec

Prediction Horizon
40

0.45 sec 0.76 sec 0.51 sec

Table 4.2: Computation Time Performances case 1.

Case 2:

So it is possible to introduce the case 2 such that;

Figure 4.2: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 32-32.

61

4 – Results

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Initial 0 0

Target 32 32

Table 4.3: Simulation case 2 position definitions for quadcopter and obstacle with
buffer zone.

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.22 sec 0.39 sec 0.24 sec

Prediction Horizon
30

0.34 sec 0.58 sec 0.38 sec

Prediction Horizon
40

0.46 sec 0.77 sec 0.54 sec

Table 4.4: Computation Time Performances case 2.

Case 3:

So it is possible to propose the case 3 such that;

62

4.1 – Experiments

Figure 4.3: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 32-28.

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Initial 0 0

Target 32 28

Table 4.5: Simulation case 3 position definitions for quadcopter and obstacle with
buffer zone.

63

4 – Results

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.22 sec 0.39 sec 0.24 sec

Prediction Horizon
30

0.33 sec 0.53 sec 0.37 sec

Prediction Horizon
40

0.47 sec 0.81 sec 0.53 sec

Table 4.6: Computation Time Performances case 3.

Case 4:

So it is possible to define the case 4 such that;

Figure 4.4: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 28-32.

64

4.1 – Experiments

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Initial 0 0

Target 28 32

Table 4.7: Simulation case 4 position definitions for quadcopter and obstacle with
buffer zone.

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.22 sec 0.39 sec 0.25 sec

Prediction Horizon
30

0.34 sec 0.54 sec 0.38 sec

Prediction Horizon
40

0.47 sec 0.79 sec 0.54 sec

Table 4.8: Computation Time Performances case 4.

4.1.2 Obstacle Avoidance with Two Obstacle

In this section, we will observe the obstacle avoidance algorithm for the defined
target position of the quadcopter with the different prediction horizons in order to
notice the change in the behaviour of the trajectory planning. So that, we decided
to use similar test scenarios and target points to be ensured about the efficiency and
the capability of the derived technique. So it may be convenient to introduce the
two obstacle case terms such that;

• Obstacles Buffered Location: The each obstacle with buffered zone which
is colored with red or blue according to the obstacle and it is defined between
the given distance on the x axis and on the y axis which could be noticed in
the each case position tables respectively.

• Obstacles Actual Locations: The each obstacle actual location is colored
with black and defined for 1 meter minimized and both for the x and y axis
in order to prevent from unfeasible solution and crush.

65

4 – Results

• Quadcopter Initial Position: The quadcopter initial point is always defined
as 0 on the x axis and 0 on the y axis for the beginning.

• Quadcopter Target: The each target point is defined for the each case which
could be seen respectively in the related table.

• Prediction Horizon Length: It is decided to test the three different proper
prediction horizons which are 20, 30 and 40 for each case.

• Computation Time: The computation time will be obtained as minimum,
maximum and the average which is an arithmetic mean in order to be ensured
about the compatibility of the algorithm inside the control frequencies.

Case 1:

Figure 4.5: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 40-40.

66

4.1 – Experiments

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Obstacle 2 Buffer 10-15 18-28

Obstacle 2 Actual 11-14 19-27

Initial 0 0

Target 40 40

Table 4.9: 2 obstacle simulation case 1 position definitions for quadcopter and ob-
stacle with buffer zone.

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.31 sec 0.52 sec 0.36 sec

Prediction Horizon
30

0.48 sec 0.78 sec 0.52 sec

Prediction Horizon
40

0.67 sec 1.14 sec 0.76 sec

Table 4.10: Computation Time Performances case 1.

Case 2:

67

4 – Results

Figure 4.6: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 32-32.

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Obstacle 2 Buffer 10-15 18-28

Obstacle 2 Actual 11-14 19-27

Initial 0 0

Target 32 32

Table 4.11: 2 obstacle simulation case 2 position definitions for quadcopter and
obstacle with buffer zone.

68

4.1 – Experiments

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.31 sec 0.52 sec 0.36 sec

Prediction Horizon
30

0.48 sec 0.78 sec 0.52 sec

Prediction Horizon
40

0.67 sec 1.14 sec 0.76 sec

Table 4.12: Computation Time Performances case 2.

Case 3:

Figure 4.7: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 32-28.

69

4 – Results

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Obstacle 2 Buffer 10-15 18-28

Obstacle 2 Actual 11-14 19-27

Initial 0 0

Target 32 28

Table 4.13: 2 obstacle simulation case 3 position definitions for quadcopter and
obstacle with buffer zone.

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.31 sec 0.58 sec 0.34 sec

Prediction Horizon
30

0.48 sec 0.80 sec 0.54 sec

Prediction Horizon
40

0.67 sec 1.41 sec 0.78 sec

Table 4.14: Computation Time Performances case 3.

Case 4:

70

4.1 – Experiments

Figure 4.8: Simulation of the different prediction horizon length which are 20 on the
upper left figure, 30 for the upper right figure, 40 for the middle down figure for the
same target position 28-32.

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Obstacle 2 Buffer 10-15 18-28

Obstacle 2 Actual 11-14 19-27

Initial 0 0

Target 28 32

Table 4.15: 2 obstacle simulation case 4 position definitions for quadcopter and
obstacle with buffer zone.

71

4 – Results

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.31 sec 0.53 sec 0.34 sec

Prediction Horizon
30

0.48 sec 0.80 sec 0.53 sec

Prediction Horizon
40

0.67 sec 1.03 sec 0.79 sec

Table 4.16: Computation Time Performances case 4.

4.1.3 Obstacle Avoidance with Three Obstacle

In the following section, we will present the obstacle avoidance technique for the
defined target position of the quadcopter with the predefined and used prediction
horizons in order to evaluate the varying character of the trajectory planning points.
So, we performed only one test scenario and target point which can be assumed as
adequate to show the capability of the obstacle avoidance method through three ob-
stacle collapsed environment. The defined case terms could be presented as follows;

• Obstacles Buffered Location: The each obstacle with buffered zone which
is colored with red or blue or green according to the obstacle and it is defined
between the given distance on the x axis and on the y axis which could be
noticed in the each case position tables respectively.

• Obstacles Actual Locations: The each obstacle actual location is colored
with black and defined for 1 meter minimized and both for the x and y axis
in order to prevent from unfeasible solution and crush.

• Quadcopter Initial Position: The quadcopter initial point is always defined
as 0 on the x axis and 0 on the y axis for the beginning.

• Quadcopter Target: The target point is selected carefully to show the ob-
stacle avoidance.

• Prediction Horizon Length: It is decided to test only one prediction hori-
zon which is 20 for the case.

• Computation Time: The computation time will be obtained as minimum,
maximum and the average which is an arithmetic mean in order to be ensured
about the compatibility of the algorithm inside the control frequencies.

72

4.1 – Experiments

Case :

Figure 4.9: Simulation of the prediction horizon length 20 for the target position
x:30 y:40.

Position x axis y axis

Obstacle 1 Buffer 20-30 20-30

Obstacle 1 Actual 21-29 21-29

Obstacle 2 Buffer 10-15 18-28

Obstacle 2 Actual 11-14 19-27

Obstacle 3 Buffer 15-25 35-40

Obstacle 3 Actual 16-24 36-39

Initial 0 0

Target 30 40

Table 4.17: 3 obstacle simulation case position definitions for quadcopter and ob-
stacles with buffer zone.

73

4 – Results

Computation Time Minimum Maximum Average

Prediction Horizon
20

0.90 sec 1.51 sec 1.10 sec

Table 4.18: Computation Time Performance Case.

4.2 Discussion

In this chapter we discuss the given results and the figures in order have better
interpretation on the performance of the adopted algorithm which provides motion
control and obstacle avoidance capabilities.

4.2.1 One Obstacle Cases

The obstacle avoidance and the optimum path planning capabilities are aimed to test
for the one obstacle which is preliminary defined as a constraints for the objective
function of the algorithm.

In the Case 1, the obstacle is defined with the buffer zone which can be noticed
as red coloured area and the actual obstacle area is illustrated as black colored.
The corresponding obstacle is placed from 21 to 29 on x axis and from 21 to 29 on
the y axis. The generated optimum paths are varied through the changing length
of the prediction horizon in the given Figure 4.1. It is worth to signify that the
longer prediction horizon provides better and smoother trajectory points. However,
the longer prediction horizon comes with the cost that computation time arises.
As it can be seen in the Table 4.2, the different prediction horizon lengths and
corresponding computation times are given. From that result table, it may be easy
to notice that average computation time when the prediction horizon taken as 40 is
almost two times bigger than the prediction horizon 20. So prediction horizon length
selection could be adjusted according to the practical application requirements in
order to sync the control frequency which is discussed in the internal control loop
section.

When it comes into case 2, it is decided to change the target point of the quad-
copter into the (32,32) on x axis and y axis to enforce the quadcopter for the more
challenging target point. In this case, it was expected to have more aggressive be-
haviour of the path planning. As it is given in the Figure 4.2, when we adjusted
the prediction horizon as 20, we can notice that the behaviour is quite aggressive
as we predicted before. This is can be related with the mathematical model of the
quadcopter and the physical limitations of the components which are equipped on
the quadcopter simulation model. Although, it may be possible state that when
the prediction horizon changed for the 40 steps ahead, we can have smoother and
more efficient trajectory path ways. It may be important to notice the computation
time results which are given in the Table 4.4 that there is no difference in the sense

74

4.2 – Discussion

of computation time for prediction horizon 20 both for the target points which are
(40,40) and (32,32). As it is obtained in the case 1, more accurate and proper char-
acter of the trajectory can be achieved with the longer prediction horizon which is
40 in this case. On the other hand, the computation time for prediction horizon
length 40 could be very demanding for the practical implementations.

In the case 3, it is aimed to propose the changing optimum path planning related
to the desired target position for the quadcopter. It is presented in the Figure 4.3,
that the target position is changed from 32 to 28 on the y axis and the same position
which is 32 for the x axis. Because of the minimum cost to go principle involved in
the objective function, the algorithm generates alternative path which is different
from the case 1 and case 2 in order to maintain minimum cost for the target position.
Additionally, it may be convenient to notice that the behaviour of the generated path
is varied according to the selected prediction horizons as well as in the previous cases.
The proper and smooth character can be obtained by adopting prediction horizon
as 40 but the computation time of that problem complexity could be problem which
could not be overcame for the high frequency control system applications.

We decided to keep the same challenging target position strategy where the
obstacle remains in the same position like in the case 1, 2 and 3. In the case 4, we
only discussed to change the target point in order to notice the change in the cost
function that generates efficient and accurate path regarding to the minimum cost
to go principle again. In the Figure 4.4, the varied behaviour of the generated path
for the different prediction horizons can be shown. For the prediction horizon 20,
the generated path points can be identified as not so smooth and efficient for the
target position which is given as (28,32) on the x axis and y axis. However, we can
have better and more proper character in the prediction horizon 30. Also it may
be possible to note that proper and efficient behaviour could be obtained not only
for the prediction horizon 40 but also for the prediction horizon 30 in that case. So
desired behaviour can be achieved with relatively less computation time cost when
the prediction horizon is adjusted into 30 for that scenario.

4.2.2 Two Obstacle Cases

In the two obstacle avoidance capability test scenarios, we decided to keep same
target positions which are presented also for the one obstacle avoidance scenarios.
The reason behind that selection is to determine how the algorithm changes the
generation of the path relying on the new and more challenging conditions.

In the case 1, the new obstacle which can be noticed with the blue colored
area with the buffer zone and black colored area for the actual obstacle area. The
new obstacle positioned is maintained after carefully consideration which should
provide to show two tangential behaviour that proves double obstacle avoidance is
obtained through the path plan. As in the previous one obstacle scenarios, the first
object placed in the same location where from 20 to 30 on x axis and from 20 to
30 on the y axis. Also the new second obstacle is placed on the x axis from 10
to 15 on x axis and from 18 to 28 on y axis. It is wort to notice that 1 meter
buffer zone around the obstacles are placed to increase reliability and avoid from
the problems that are related with the sampling time limitation and the physical

75

4 – Results

limitations of the quadcopter which are integrated in the mathematical model of
it. For the given case 1, generated trajectories can be achieved as it is given in
the Figure 4.5. It can be easy to state that behaviour of the quadcopter for the
given target position is varied related to the prediction horizon settings. Also we
can notice that smoother and proper character is achieved in the prediction horizon
40 step ahead for the target position 40 on x and 40 on y axis. In addition, the
algorithm may be adjusted to reach goal position in more proper velocities and in
more natural way by adopting 40 for the prediction horizon. The two times obstacle
avoidance could be interpreted because of the s shape curve of the generated path.
However, that obtained satisfactory behaviour of the path comes with more than
the two times computation time cost as it can be seen in the Table 4.10 and again
it may be important issue for the some specific real applications.

In the case 2, we aimed to force the algorithm for the more challenging target
position which is more near to the obstacle to test the capability of the adopted tech-
nique. Just like in the one obstacle case 2, we changed the target location into the
(32,32) on x axis and y axis. It could be present that the overshoot occurs while the
prediction horizon decreases as it is given in the Figure 4.6. As we expected like in
the previous cases, using longer prediction horizon increase the smooth and natural
way of approaching to reach the desired target position. Not surprisingly, compu-
tation time of the given condition increase through the extension of the prediction
horizon which can be checked on the Table 4.12.

When it comes into case 3, we tried to test the two obstacle case with the other
target position which is taken as same as in the one obstacle case 3. The target
position is defined for (32,28) on x axis and y axis. Also we expected to have
another trajectory from the case 2 because of the changed cost directly related with
the calculated cost on the objective function. So the Figure 4.7 proves that path is
changed as like we expected. Additionally, the smoothness also varied because of
the chosen prediction horizons. It is clear to see that better character is achieved
with the longer prediction horizon which 40 again. However, this trade of between
the computation time could be noticed in the Table 4.14 and the expected behaviour
can be managed by the designer of the path planning algorithm.

In the last case which is 4, we used exactly same target points like in the one
obstacle case 4. So the desired target position placed (28,32) on the the x axis and
y axis. The varied behaviour might be seen in the Figure 4.8 where the corner-
ing capabilities are maintained for both two obstacles. Moreover, it is found that
algorithm generates similar character which can be satisfactory for the prediction
horizon 30 and 40. And according to the Table 4.16, the particular convenience
may be offer to use prediction horizon 30 which computation time in 0.53 as average
rather than the prediction horizon 40 which computation cost 0.79 on average.

4.2.3 Three Obstacle Case

In this section we will present the test case which 3 obstacles are defined in the path
plane. We discussed in the previous that one and two obstacle cases and in that
step we decided to add one more obstacle in order to find the computational cost
limit which can be reached. Unlikely to the previous test scenarios, we implemented

76

4.2 – Discussion

this test for only one condition that we found after carefully selection that provides
to show 3 obstacle avoidance can be achievable with the adopted algorithm. For
that reason, we forced the algorithm that we could had three cornering behaviour
on the generated path plan. So the red and the blue obstacles are positioned at
the same place as like in the previous. The green colored area used to define the
third obstacle and also the black colored area is used to present actual obstacle
region. The target position is determined as 30 on x axis and 40 on y axis which are
evaluated as proper goal points to have desired characteristic on the generated path.
When we checked the Figure 4.9, it is possible notice three cornering is maintained
for the target for the prediction horizon 20. It is also tested for the longer prediction
horizon but as we can see in the Table 4.18, computation time is very demanding
even if we set for 20 steps ahead. In the average computation time it reaches to
the 1.1 second which may not be convenient to use in the practical application of
the quadcopter. However, it may be possible to state that three obstacle avoidance
could be enhanced with the derived algorithm.

4.2.4 Error Analysis

In this section, we would like to investigate issues which could be happened during
the path planning. For that reason, we decided to take a close look to the generated
path by the algorithm that we adopted in this research. In the given Figure 4.10,
the generated path points can be identified with the blue point easily. As we can
notice, the difference between the blue path points are not equally distributed by
the algorithm. This might be explain with the dynamical condition of the drone
itself and also with the discretization sampling time preference of the design. The
dynamical conditions of the quadcopter are defined with the mathematical model
and with the physical limitations which are the components equipped on the model.
So it may not be possible to adjust the physical limitations such that the maximum
rotor speed. In addition to that, the dimension of the quadcopter is considered
inside the mathematical model and it may not be possible to change for some specific
conditions.

When it comes into a discretization, that could be adjusted according to the
design process of the control system. Moreover, it can be directly related with the
sampling time selection of the designer. For instance, in our implementation we
followed and designed the external control loop where the linear model predictive
controller performs that must be compatible with the internal control loop frequency.
Otherwise, there might be some uncertainties and uncontrollable situations which
may drives the system into a instability so quickly.

77

4 – Results

Figure 4.10: Error Analysis.

In the given Figure 4.10, the explained possible issues can be tackled by introduc-
ing the buffer zone which is defined that surrounds the obstacle with the red colored
area. That buffer area is created to be 1 meter away from the actual position of the
obstacle both for each corner of it. As we can notice on the Figure 4.10, some of
the generated path points or the distance between the two blue path points might
be inside that red colored area, especially, when the quadcopter reaches to pass the
corner of the obstacle. So that, we designed an buffer zone surround the obstacle in
order to avoid the quadcopter from the issues which are explained at the above.

4.3 Simulation Environment & Simulation Images

In the following section, we will explain simulation details of the developed algorithm
which is based on the mixed integer linear programming technique for the obstacle
avoidance and path planning as we mentioned before. For that purpose, Gazebo
simulation environment is adopted which could be fitted with the application re-
quirements. Gazebo simulation environment can be defined as a dynamic simulator
which is capable to allow to simulate indoor and outdoor conditions through great
variety of different robot models[42]. Additionally, it can perform and simulate ac-
curate physical dynamics response of the model by considering the accurate sensor
dynamics as well. Since Gazebo is a open source developed project provided by the
researchers and users, it could always be convenient to find the proper solutions
for the specific problems and issues thanks to that contribution of the community.
For that reason, the use of gazebo arises particularly among the robotic system
researchers and developers[43].

78

4.3 – Simulation Environment & Simulation Images

Figure 4.11: Gazebo Simulation with ROS[44]

In the given Figure 4.11, the Gazebo simulation integration to the ROS could
be illustrated by the given interface diagram of the package which provides com-
munication between the ROS and the Gazebo. Thanks to the that package, it may
be possible control of the interface which simulates the robot in the Gazebo simula-
tion environment by adopting ROS messages and services[44]. In the corresponding
package, it may offers great freedom to modify and change conditions due to specific
requirements of the simulation. Also, it may performed high quality graphics output
thanks to the robust and efficient performance of the Gazebo engines.

79

4 – Results

Figure 4.12: RotorS Simulation with ROS.[45]

In more detail, we followed a specific type of the gazebo simulator which is
compatible with the ROS. Corresponding simulator which Rotors is developed by the
[45] allow us to use well modelled and defined varied multicopters. As it is mentioned
before, it is decided to implement path planning and obstacle avoidance capability
for the quadcopter model of the UAV. Also, the followed simulator provides accurate
simulation outputs of the simulated sensor which are IMU, stereo camera, odometry
sensor and they can be configured according to the specific application. In addition
to that, given simulator provides a direct acces to the each sensor data that may be
convenient in the sense of debugging and accessibility[45]. As it is given in the above
Figure 4.12, it is possible to show the RotorS simulator overview. According to the
[45], each of the given simulator structure components are developed in a way that
each of the components can be operated on the real platform without any changes.

4.3.1 Simulation Images

According to the described Gazebo simulation environment and specifications, some
of the simulation image snapshots of the improved obstacle avoidance capability can
be given as below;

80

4.3 – Simulation Environment & Simulation Images

Figure 4.13: Simulation Snapshot 1.

Figure 4.14: Simulation Snapshot 2.

81

4 – Results

Figure 4.15: Simulation Snapshot 3.

Figure 4.16: Simulation Snapshot 4.

82

Chapter 5

Conclusion and Future Work

The UAV technology, which was driven for the advance in the military technology
at the beginning era, have been developing and expanding through the different
potential application areas due to the fact that it may provide a solution to the
challenging engineering problems in an alternative way. Based on this motivation,
the concepts of the UAV control techniques have been investigated and the obstacle
avoidance motion control capability of the proposed quadcopter has been developed,
discussed and tested through the varying scenarios in this project. The project based
on varying background information which are presented and discussed through the
thesis report. Robotic operating system is one of the concept which is involved in
the project. It was required to understand the relations,hierarchy and the capability
of that environment in order to manage and develop according to the our goal.

On the other hand, some mathematical modelling concepts are covered dur-
ing this project. It is important to understand the advantages and drawbacks of
the adopted mathematical modelling approaches. The concept of the linear model
predictive control is discussed and evaluated in detailed and the conformity of the
control approach was also considered for our goal. As we referenced before, we fol-
lowed the project which was developed by the [18], [32] at the ”ETH Zurich” and
we developed that system for the obstacle avoidance capability in the robotic lab at
the Politecnico Di Torino. It was clear that there were specific performance limita-
tions which are directly related with the determined performance capability of the
quadcopter model and with the convex optimization solver in the beginning.

Furthermore, we were capable to change the optimization step by creating new
Robotic Operating System(ROS) node. Thanks to the developed node, we applied
mixed integer linear programming technique in order to make obstacle avoidance
capability through the path planning of the quadcopter. Once the system was
implemented, it was possible to test the design and obtain the results through sim-
ulations that have been reported in this thesis in Chapter 5. All the test scenarios
are measured in the sense of computation time to have better interpretation about
the conformity of the selected approach. As it is discussed in the previous, one of
the major problem was the computation time of the optimization process. Since the
control frequency is limited for the optimization calculations for the real applica-
tions.

83

5 – Conclusion and Future Work

As the time is limited for the thesis project, it might not be convenience to de-
termine very specific details about the subsystems of the whole project. Some other
limitations might be occurred because of the kinodynamic constraints which are ad-
dressed to the physical limits of the components equipped on the quadcopter. There
is no doubt that the control design and the components of the vehicle should be se-
lected properly according to the defined performance requirements of the desired
applications.

In the future research, the implemented Off-board Model Predictive Control ap-
proach can be realized on the Cloud based systems. Consequently, we will have
more computational resources and improved performance with the concept of Cloud
Computing. Additionally, we assume that the performance of the obstacle avoidance
capability may be improved with the better processor performance which would be
found in the future market, what’s more, it would be possible to adopted better op-
timization solver tools which would be offered by the developers and researchers and
also there might be more sophisticated sensor communication and battery improve-
ments that provides enlarging in the application area for the UAV in the future.

84

Acknowledgement

I would like to thank my thesis advisor Prof. Alessandro Rizzo of The Department of
Electronics And Telecomunications at the Politecnico Di Torino for lead me to work
on this project. I would like to special thank to my advisor Dr. Stefano Primatesta
for his invaluable feedback during the development stage of my thesis. He was always
been very helpful and perfect mentor that he provided me a proper pathway with
his experiences and with his knowledge which was required to complete this thesis
successfully.

I am also grateful to Berkay Çalışır, Çagrı Karakuş, Serkut Şimşek and Berk
Bayam for their priceless friendship and supporting me through my master education
duration since I met with them.

Huge thanks to Burcu Cesur, for her infinite encouragement and unfailing sup-
port throughout my years in university and motivate me during my pleased and
hard times. I am very lucky to have you in my life.

Finally, I would like to thank my parents for their endless, limitless and priceless
support in every moment of my life. Without them, any of my achievements would
not have been possible to have.

Kamil Umur Güzel
July, 2019

Torino

85

86

Bibliography

[1] John Buckley. Air power in the age of total war. Routledge, 2006.
[2] Anthony Finn and Steve Scheding. Developments and challenges for au-

tonomous unmanned vehicles. Intelligent Systems Reference Library, 3:9–33,
2010.

[3] John William Ransom Taylor and Kenneth Munson. Jane’s pocket book of
remotely piloted vehicles: robot aircraft today. Collier Books, 1977.

[4] Lee Pearson. Developing the flying bomb. Naval Aviation in World War I,
pages 70–73, 1969.

[5] David Donald. Encyclopedia of world aircraft (etobicoke, ontario, 1997.
[6] P Werrell Kenneth. The evolution of the cruise missile. Washington DC: Air

University, page 29, 1985.
[7] Alan Bramson and Neville Hamilton Birch. The Tiger Moth Story. Airlife,

1982.
[8] Ben Zimmer. The flight of âĂŸdroneâĂŹfrom bees to planes. The wall street

journal, 26, 2013.
[9] Laurence R Newcome. Unmanned aviation: a brief history of unmanned aerial

vehicles. American Institute of Aeronautics and Astronautics, 2004.
[10] Ulrike Esther Franke. Civilian drones: Fixing an image problem? ISN Blog.

International Relations and Security Network. Retrieved, 5, 2015.
[11] Janosch Nikolic, Michael Burri, Joern Rehder, Stefan Leutenegger, Christoph

Huerzeler, and Roland Siegwart. A uav system for inspection of industrial
facilities. In 2013 IEEE Aerospace Conference, pages 1–8. IEEE, 2013.

[12] Taeyoung Lee, Melvin Leok, and N Harris McClamroch. Geometric tracking
control of a quadrotor uav on se (3). In 49th IEEE conference on decision and
control (CDC), pages 5420–5425. IEEE, 2010.

[13] Agus Budiyono. Advances in unmanned aerial vehicles technologies. In Inter-
national symposium on intelligent unmanned system, pages 1–13, 2008.

[14] Michael Blösch, Stephan Weiss, Davide Scaramuzza, and Roland Siegwart. Vi-
sion based mav navigation in unknown and unstructured environments. In
2010 IEEE International Conference on Robotics and Automation, pages 21–
28. IEEE, 2010.

[15] Samir Bouabdallah, Andre Noth, and Roland Siegwart. Pid vs lq control tech-
niques applied to an indoor micro quadrotor. In 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2451–2456. IEEE, 2004.

[16] J Guldner and VI Utkin. The chattering problem in sliding mode systems. In
Fourteenth Intenational Symposium of Mathematical Theory of Networks and

87

Bibliography

systems, MTNS2000, 2000.
[17] Samir Bouabdallah and Roland Siegwart. Backstepping and sliding-mode tech-

niques applied to an indoor micro quadrotor. In Proceedings of the 2005 IEEE
international conference on robotics and automation, pages 2247–2252. IEEE,
2005.

[18] Mina Kamel, Michael Burri, and Roland Siegwart. Linear vs nonlinear mpc
for trajectory tracking applied to rotary wing micro aerial vehicles. IFAC-
PapersOnLine, 50(1):3463–3469, 2017.

[19] Alberto Bemporad, Carlo A Pascucci, and Claudio Rocchi. Hierarchical and
hybrid model predictive control of quadcopter air vehicles. IFAC Proceedings
Volumes, 42(17):14–19, 2009.

[20] Paul Pounds, Robert Mahony, Peter Hynes, and Jonathan M Roberts. Design
of a four-rotor aerial robot. In Proceedings of the 2002 Australasian Conference
on Robotics and Automation (ACRA 2002), pages 145–150. Australian Robotics
& Automation Association, 2002.

[21] S Joe Qin and Thomas A Badgwell. An overview of industrial model predictive
control technology. In AIChE Symposium Series, volume 93, pages 232–256.
New York, NY: American Institute of Chemical Engineers, 1971-c2002., 1997.

[22] Eduardo F Camacho, Carlos Bordons, and M Johnson. Model predictive con-
trol. advanced textbooks in control and signal processing, 1999.

[23] Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control:
theory and practiceâĂŤa survey. Automatica, 25(3):335–348, 1989.

[24] Kenneth R Muske and James B Rawlings. Model predictive control with linear
models. AIChE Journal, 39(2):262–287, 1993.

[25] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM
Scokaert. Constrained model predictive control: Stability and optimality. Au-
tomatica, 36(6):789–814, 2000.

[26] Graham Goodwin, Maŕıa M Seron, and José A De Doná. Constrained control
and estimation: an optimisation approach. Springer Science & Business Media,
2006.

[27] H.D. Cheng, Xiaopeng Cai, Xiaowei Chen, Liming Hu, and Xueling Lou.
Computer-aided detection and classification of microcalcifications in mammo-
grams: a survey. 36:2967–2991, 12 2003.

[28] SS a Keerthi and Elmer G Gilbert. Optimal infinite-horizon feedback laws for a
general class of constrained discrete-time systems: Stability and moving-horizon
approximations. Journal of optimization theory and applications, 57(2):265–
293, 1988.

[29] Zoran Benić, Petar Piljek, and Denis Kotarski. Mathematical modelling of
unmanned aerial vehicles with four rotors. Interdisciplinary Description of
Complex Systems: INDECS, 14(1):88–100, 2016.

[30] M Belkheiri, A Rabhi, A El Hajjaji, and C Pegard. Different linearization
control techniques for a quadrotor system. In CCCA12, pages 1–6. IEEE, 2012.

[31] Mark L Darby and Michael Nikolaou. Mpc: Current practice and challenges.
Control Engineering Practice, 20(4):328–342, 2012.

[32] Mina Kamel, Thomas Stastny, Kostas Alexis, and Roland Siegwart. Model pre-
dictive control for trajectory tracking of unmanned aerial vehicles using robot
operating system. In Robot Operating System (ROS), pages 3–39. Springer,

88

Bibliography

2017.
[33] Tiago P Nascimento, Carlos Eduardo Trabuco Dórea, and Luiz Marcos G

Gonçalves. Nonlinear model predictive control for trajectory tracking of non-
holonomic mobile robots: A modified approach. International Journal of Ad-
vanced Robotic Systems, 15(1):1729881418760461, 2018.

[34] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control
for linear and hybrid systems. Cambridge University Press, 2017.

[35] Christoph Trabert, Andreas Ulbig, and Göran Andersson. Model predictive
frequency control employing stability constraints. In 2015 American Control
Conference (ACC), pages 5678–5685. IEEE, 2015.

[36] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock,
and Moritz Diehl. qpoases: A parametric active-set algorithm for quadratic
programming. Mathematical Programming Computation, 6(4):327–363, 2014.

[37] Jacob Mattingley and Stephen Boyd. Cvxgen: A code generator for embedded
convex optimization. Optimization and Engineering, 13(1):1–27, 2012.

[38] Jason M O’Kane. A gentle introduction to ros. 2014.
[39] Arthur Richards and Jonathan P How. Aircraft trajectory planning with colli-

sion avoidance using mixed integer linear programming. In Proceedings of the
2002 American Control Conference (IEEE Cat. No. CH37301), volume 3, pages
1936–1941. IEEE, 2002.

[40] Christodoulos A Floudas. Nonlinear and mixed-integer optimization: funda-
mentals and applications. Oxford University Press, 1995.

[41] Alexander Papen, Ray Vandenhoeck, Jan Bolting, and François Defay.
Collision-free rendezvous maneuvers for formations of unmanned aerial vehi-
cles. IFAC-PapersOnLine, 50(1):282–289, 2017.

[42] Gazebo gazebo. http://gazebosim.org/tutorials?tut=guided_b1&cat=.
[43] Luigi Mazzara. Risk-aware path planning and replanning algorithm for UAVs.

PhD thesis, Politecnico di Torino, 2018.
[44] Gazebo gazebo ros simulation. http://gazebosim.org/tutorials?tut=ros_

overview&cat=connect_ros.
[45] Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Siegwart. Ro-

torsâĂŤa modular gazebo mav simulator framework. In Robot Operating System
(ROS), pages 595–625. Springer, 2016.

89

http://gazebosim.org/tutorials?tut=guided_b1&cat=
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros
http://gazebosim.org/tutorials?tut=ros_overview&cat=connect_ros

	List of Figures
	List of Tables
	Introduction
	Overview
	Problem and motivation
	Outline of this thesis

	Background
	Robot Operating System
	ROS File System
	ROS Main Concepts

	Notations
	Rotation Matrix
	Transformation Matrix to Avoid Heading Angle
	Forces Acting On Quadcopter

	Model Predictive Control
	Model Predictive Control Theory
	Mathematical Models
	Objective Function
	Feasibility
	Stability

	Quadcopter Control and Trajectory Planner
	Introduction
	Internal Control Loop
	Quadcopter Dynamic Model
	Quadcopter Dynamic Model Linearization
	Internal Measurement Unit
	PID Attitude Controller

	External Control Loop
	Linear Model Predictive Control
	Extended Kalman Filter State Prediction
	Linear Model Predictive Control Objective Function

	Robotic Operating System Implementation
	Trajectory Planning With CVXGEN

	Motion Control With CVXPY
	ROS Service
	Opt_Node
	Obstacle Avoidance with MILP

	Computation Specs

	Results
	Experiments
	Obstacle Avoidance with One Obstacle
	Obstacle Avoidance with Two Obstacle
	Obstacle Avoidance with Three Obstacle

	Discussion
	One Obstacle Cases
	Two Obstacle Cases
	Three Obstacle Case
	Error Analysis

	Simulation Environment & Simulation Images
	Simulation Images

	Conclusion and Future Work
	Acknowledgement
	Bibliography

