
POLITECNICO DI TORINO

Dipartimento di Automatica e Informatica
Master of Science Degree in Mechatronic Engineering

Master’s Degree Thesis

Design and Simulation of
Autonomous Driving Algorithms

Relatore
Prof. Massimo Violante

Candidato
Marco Cattaruzza

July 2019

Alla mia famiglia

Summary

In the last years many research groups and companies worked on the development of self-
driving cars. Among the first automation layers there is the lane keeping functionality.
This thesis introduces two lane keeping control algorithms and a computer vision algo-
rithm for lane identification through a camera mounted on the vehicle. In the first part
of the thesis, algorithms for tracking the center of the lane have been developed through
PID control and optimal control techniques such as non-linear MPC. The vehicle models
exploited for controller design are derived from the well known bicycle model and have
been widely used in literature. Starting from a simple lateral dynamics linear model for
PID control, a more complicated model has been adopted for its possibility to take into
account longitudinal vehicle dynamics and vision dynamics. It has been adopted to design
a nonlinear MPC. The algorithm should autonomously steer, accelerate and brake to keep
the vehicle on track while minimizing the jerk, the steer rate and the difference between
the expected speed and the actual one. In this phase Matlab & Simulink have been widely
used. Subsequently, computer vision algorithms have been studied, developed in Python
with the OpenCV package and tested with the simulator CARLA. These algorithms are
needed to extract useful information from camera images, as the lateral offset of the car
from the center of the lane, the yaw error and the lane lines curvature. These data are
then used by the MPC controller to compute the optimal control inputs. Finally, the use
of Convolutional Neural Networks for lane keeping in urban environments have been ad-
dressed. An algorithm to collect training and validation data (images) and labelling them
has been coded but no training nor testing has been done for lack of computational power.

Keywords: nonlinear model predictive control, lane keeping, autonomous vehicles, auto-
motive control, perception, computer vision, convolutional neural networks.

4

Sommario

Negli ultimi anni si è vista una crescita di interesse verso lo sviluppo di algoritmi e tecnologie
rivolte ai veicoli a guida autonoma. Tra i primi livelli di automazione, una funzionalità rile-
vante è costituita dal mantenimento automatico delle traiettorie. La tesi seguente introduce
due algoritmi per tale obiettivo ed un algoritmo di visione artificiale per l’identificazione
delle linee di corsia attraverso le immagini provenienti da una videocamera montata sul
veicolo autonomo. Nella prima parte della tesi sono stati sviluppati algoritmi per il man-
tenimento di centro corsia attraverso un controllore PID e tecniche di controllo ottimo
quale l’MPC non lineare. I modelli dinamici del veicolo utilizzati per la progettazione dei
controllori sono stati derivati dal modello della bicicletta, ben noto e molto utilizzato nella
letteratura scientifica sull’argomento. Partendo da un modello lineare approssimante la
dinamica laterale, utilizzato per il design di un controllore PID, un modello più complesso
è stato adottato per la sua capacità di tenere in considerazione anche la dinamica longitudi-
nale e quella data dal sistema di visione. Questo modello è stato utilizzato per lo sviluppo
di un model predictive controller non lineare. L’obiettivo dell’algoritmo è quello di ster-
zare, accelerare e frenare autonomamente il veicolo per mantenerlo in centro carreggiata,
minimizzando la derivata dell’accelerazione (jerk), la velocità di sterzata e la differenza
tra velocità reale e desiderata. In questa fase Matlab e Simulink sono stati ampiamente
utilizzati. Successivamente, algoritmi di visione artificiale sono stati studiati, sviluppati
in Python con il pacchetto OpenCV e testati con il simulatore CARLA. Questi algoritmi
sono necessari per estrarre informazioni utili dalle immagini provenienti dalla telecamera,
come gli errori laterale e angolare tra automobile e carreggiata e la curvatura delle sue
linee. Questi dati vengono poi utilizzati dal controllore MPC per calcolare gli input di
controllo ottimali. Infine sono stati considerati, per l’utilizzo in ambienti urbani, modelli
di reti neurali convoluzionali end-to-end quale il modello NVIDIA. Un algoritmo per la
raccolta dei dati in CARLA (le immagini) necessari al modello e per etichettarli, è stato
scritto in Python. Tuttavia, per mancanza di capacità di calcolo, non è stato possibile fare
il training della rete neurale e quindi testarla.

Parole chiave: model predictive control non lineare, mantenimento della corsia, veicoli
a guida autonoma, sistemi di controllo automobilistici, percezione, visione artificiale, reti
neurali convoluzionali.

5

Contents

List of Figures 8

List of Tables 10

1 Introduction 11
1.1 Thesis motivation . 12
1.2 Introduction to lane keeping systems . 13

2 Automated Driving Toolbox 15
2.1 Coordinate Systems in Automated Driving Toolbox 15
2.2 Driving Scenario Designer App . 16
2.3 Bird’s-Eye Scope . 16
2.4 Generate Synthetic Detections . 19
2.5 Scenario Reader . 20

3 CARLA simulator 21
3.1 Configuration of the simulation and of the actors 22
3.2 Server-Client communication . 27
3.3 Running the simulation . 30

4 Computer vision 33
4.1 Camera models and characteristics . 34
4.2 Lane Line Marking Detection . 34

4.2.1 Lane line feature extraction with Hough transform 37
4.2.2 Lane line feature extraction with CARLA 44
4.2.3 Top-view transform . 45
4.2.4 Model fitting . 48
4.2.5 Time integration . 55

4.3 Vision dynamics . 56

5 Vehicle dynamics 59
5.1 Notation for vehicle dynamics . 59
5.2 Longitudinal Vehicle Motion . 61
5.3 Lateral Vehicle Motion . 62

5.3.1 Model derivation . 62
5.3.2 Stability analysis of the linear model 64

6

5.3.3 Augmented model . 64

6 Control 67
6.1 PID controller . 67

6.1.1 Plant . 68
6.1.2 Scenario Reader and sensor simulation 70
6.1.3 Controller . 74

6.2 Model Predictive Control . 80
6.2.1 MPC fundamentals . 80
6.2.2 MPC vehicle model . 84
6.2.3 NMPC controller . 86

6.3 Controllers comparison . 98
6.4 End-to-end control with Convolutional Neural Networks 99

6.4.1 Basic theory about CNN . 99
6.4.2 NVIDIA model . 100
6.4.3 Data collection and preprocessing 102

7 Conclusions and future works 109

Bibliography 111

A Matlab 114
A.1 PID . 114
A.2 NMPC . 115
A.3 CKLA CARLA . 116

B CARLA 117
B.1 NMPC . 117
B.2 Data collection and preprocessing . 117

7

List of Figures

1.1 SAE levels of automation in Autonomous Driving1 12
1.2 Lane Keeping Algorithm building block . 14
1.3 Lane Keeping Algorithm: performance metrics. (a) Lane-departure warn-

ing, (b) driver attention monitoring, (c) vehicle control [5] 14

2.1 Driving Scenario Designer App . 17
2.2 Various ways to visualize simulation data in Simulink 17
2.3 Open Bird’s-Eye view . 18
2.4 Run Bird’s-Eye view . 18
2.5 Vision Detection Generator block . 19
2.6 Conversion of the Bus containing lane lines information 19

3.1 CARLA client-server communication [9] 21
3.2 Configuration of the simulation and of the actors 23
3.3 CARLA Simulator: town 7 . 24
3.4 Vehicle spawned at start of the track . 24
3.5 Main loop and server-client communication 28

4.1 Lane line marking detection algorithm pipeline 35
4.2 Canny method and ROI isolation . 39
4.3 Polar coordinates for Hough transform [15] 40
4.4 Lane identification . 40
4.5 Camera image processing . 44
4.6 Top-view image transformation: general idea [15] 46
4.7 Top-view image transformation: linear and angular coordinates [15] 46
4.8 Top-view and cropped image . 47
4.9 Model fitting algorithm: accuracy . 49
4.10 The vision system derives the distance yL between the vehicle speed line at

the lookahead L and the lane boundaries and also the yaw error εL 56

5.1 Vehicle dynamics coordinate system-SAE J7602 59

1http://cyberlaw.stanford.edu/loda.
2https://law.resource.org/pub/us/cfr/ibr/005/sae.j1733.1994.html.

8

5.2 Bycicle model [19] . 60

6.1 The Simulink model used for PID control 68
6.2 Pole-zero map at different velocities: as speed increases the zeros and poles

move towards the right-half plane making the system less stable 69
6.3 Simulink model of the plant for the PID control strategy 70
6.4 From SAE J670E to ISO8855 . 71
6.5 Scenario Reader block . 72
6.6 Vision Detection Generator block . 72
6.7 Lane center computation: the functions are selectively activated depending

on which lanes are detected . 73
6.8 Vision bus . 74
6.9 Bode plots of magnitudes for various longitudinal velocities 75
6.10 Plots of steering angle and lateral deviation in time for the four conditions

reported in figure 6.9 . 76
6.11 Knob used to tune the desired velocity of the ego vehicle. The real velocity

changes with a first-order dynamics . 77
6.12 MPC model structure [23] . 81
6.13 Conventions for the MPC dynamic model [23] 84
6.14 Simulink model of the Nonlinear MPC . 88
6.15 Lane center estimation and controller blocks 89
6.16 Extended Kalman Filter block . 90
6.17 Lower level dynamics block . 91
6.18 Vehicle Dynamics and environment Simulink scheme 92
6.19 Vehicle Dynamics Simulink block . 92
6.20 Plot of lateral deviation and steering timeseries at (a) 15 m/s and (b) 20 m/s 93
6.21 Architecture of a CNN [30] . 100
6.22 Training of the neural network [28] . 101
6.23 Once trained, the neural network is driven by images coming from a single

front-facing centred camera to compute steer values [28] 101
6.24 NVIDIA model’s layers [28] . 101
6.25 Camera frames for the training of the NVIDIA model. 104
6.26 Histogram of steering values before (a) and after (b) the cleaning process . 105

9

List of Tables

1.1 The three levels in the driving task [2] . 13

6.1 Ego-vehicle parameters . 68
6.2 Vision system parameters . 73
6.3 Vehicle and vision system parameters . 89
6.4 nmpc arguments . 90
6.5 Nonlinear MPC parameters . 91

10

Chapter 1

Introduction

Autonomous driving cars can be defined as vehicles that are able to drive in many driving
scenarios by substituting the human intervention at different levels. The environment on
which the cars have to drive must be considered partially unstructured. If it’s evident that
streets, signals, semaphores and lanes follow standards to be immediately recognizable by
humans, these scenarios are characterized by a certain variability due to different legisla-
tions, changing of weather conditions and traffic. Up to now, these are the main challenges
that researchers on autonomous vehicles have to deal with.

When talking about self driving cars, people usually have some doubts about the pos-
sibility that in a near future these systems will be reality. This happens specifically when
fully autonomous vehicles are addressed. A recent American survey [1] reported that more
than a half people of the poll are uncomfortable with the idea of riding in self-driving
cars, specially non-millennial people. For sure technology is already transforming the way
people live and travel but with autonomous vehicles we will have a shift in the way we look
at transport systems. From cruise control and lane keeping systems to fully autonomous
driving cars, commercial vehicles see an increasing degree of automation for safety and
comfort purposes. In addition, the rapid increasing of microprocessors performances, in
parallel to a constant drop of their costs, makes possible to monitor and control many
active components of a car concurrently with higher precision. It’s now feasible to imple-
ment complex vision algorithms and trained neural networks on an automotive embedded
system.

For sure there will be economic benefits because many people spend a lot of time driving
and, specially in big cities, this is largely inefficient. Moreover, there will be a social benefit
due to the absence of the human error and accessibility for people that for some reason can’t
drive. Obviously the transition to autonomous driving brings some challenges too. This
challenges are mainly related with decision making at the tactical level, that is related
to vehicle manoeuvre selection in a dynamic environment, characterized by a very high
variability. The actual algorithms in fact are not able to operate at this level without a
complete knowledge of the problem [2].

The Society of Automotive Engineers (SAE) proposed a classification of self driving
cars based on 5 levels of automation of the various tasks that are primary in the action
of driving (see Figure 1.1). This classification is useful to understand later on the level of
automation of the system is presented in this work and the possible evolutions and future

11

1 – Introduction

goals.

Figure 1.1: SAE levels of automation in Autonomous Driving1

1.1 Thesis motivation
In order to design and realize a complex system like that in a car, it is needed to acquire
meaningful information from the environment with many different kinds of sensors, elab-
orate them and take decisions about the trajectory of the vehicle (trajectory planning)
and the actions to undertake to follow this trajectory in the best way. The data coming
from the sensors are the "eyes" of the intelligent vehicle and the information have to be
extracted with efficient and real time algorithms. For example, to sense the lane computer
vision and artificial intelligence algorithms are used. But cameras aren’t the only sensors
available. Data coming from GPS, LiDAR, radars and others are collected together and
exploited. This important step is named sensor fusion.

As it’s evident, the complexity of these systems is huge. The levels reported in Table 1.1
are related to each other but the problems they face require different tools and skills to be
addressed properly. For this reason, this thesis will focus mainly on the operational level,
the one that the undersigned judges the most tailored to his skills and knowledge. The
reader interested in other levels will find some suggested readings in the references.

In particular, this work addresses the problem of lane keeping on high-curvature roads
with only one camera mounted on the vehicle. This is a challenging problem because the
speed in this type of roads varies consistently and non-linearities have to be considered in
the dynamic model. High steering rates contribute to this.

A problem, that should be addressed in further works, is the efficiency of the control
algorithms. Here, some choices has been done to reach this goal, but real-time testing

12

1.2 – Introduction to lane keeping systems

Level Characteristic Example Existing model
Strategic Static; abstract Planning a route; Esti-

mating time for trip
Planning programs (Ar-
tificial Intelligence)

Tactical Dynamic; physical Determining Right of
Way; Passing another
car

Human driving models

Operational Feedback control Tracking a lane; Follow-
ing a car

Robot control systems

Table 1.1: The three levels in the driving task [2]

has not been carried on. All the simulation are model-in-the-loop on a Notebook with a
i7-7500U 2.90GHz CPU and 16 GB of RAM. The simulators used are Simulink with the
Automated Driving Toolbox, described in Chapter 2, and CARLA Simulator, described in
Chapter 3.

1.2 Introduction to lane keeping systems
With the increasing speed of modern microprocessors it has become even more common
for computer vision algorithms to find applications in real-time control tasks. This, for
example, makes possible to address the problem of steer autonomous vehicles along high-
ways with lane keeping support functions using the output coming from one or more video
cameras mounted on it. This functionality is very useful to prevent accidents caused by
unintended lane departures. It automatically steers the vehicle to keep the center of the
lane detected with a vision system.

In the market are present different levels of lane keeping support functions, like [3]:
warning functions, intervention functions and control functions. This work address the
third category, that is the Automatic Lane Keeping Control. The system has the complete
control on the steer and, possibly, the throttle or brake of the vehicle and substitutes the
human intervention in these tasks. In this case, by looking at Figure 1.1, the SAE level of
these kind of system is 2 because the system can autonomously control the steer and the
acceleration/deceleration but all the other aspects of the dynamic driving task are left to
the human driver.

In this work all the three main building blocks of Figure 1.2 have been analysed, that
generally speaking belong to: Computer Vision (Chapter 4), Vehicle Dynamics (Chapter 5)
and Control Algorithms (Chapter 6).

The lane detection step converts the input image, coming from the camera, in a more
meaningful one, that contains only the pixels associated to lane lines, seen from the top
view. This image is then exploited to extract the lane parameters through model fitting
techniques. In this work a least-squares approach is used to identify the parameters of a
parabolic model and the Hough transform is applied to identify the parameters of straight
lines.

Another possibility is to use a Kalman filter for lane estimation, that has the advantage
to filter noise and to provide time integration. This way the past measurements are taken

13

1 – Introduction

Figure 1.2: Lane Keeping Algorithm building block

into account during the current one and errors in one frame of the camera are handled well
[4]. With estimation techniques, the lateral and yaw error of the lane center position and
orientation with respect to the ego car are computed and passed to the controller.

In this work, PID and nonlinear MPC has been used, the first for its simplicity, the
second for its accuracy to predict the future states of the car. Finally the steering and, in
the case of the nonlinear MPC, acceleration commands are applied to the ego vehicle. An
example of lane keeping performance metrics is shown in Figure 1.3.

Figure 1.3: Lane Keeping Algorithm: performance metrics. (a) Lane-departure warning,
(b) driver attention monitoring, (c) vehicle control [5]

14

Chapter 2

Automated Driving Toolbox

The Matlab’s Automated Driving Toolbox provides a set of algorithms and tools for design-
ing, simulating and testing ADAS and autonomous driving systems [6]. The main features
of this toolbox exploited in this work are the Driving Scenario Designer App (section
2.2), the Bird’s-Eye View plot (section 2.3), the Vision Detection Generator for generating
synthetic detections (section 2.4) and the Scenario Reader (section 2.5).

2.1 Coordinate Systems in Automated Driving Tool-
box

As reported in [7], the toolbox uses these coordinate systems:

• World: A fixed universal coordinate system (X, Y, Z) in which all vehicles and sensors
are placed. It’s a property of the Driving Scenario and these coordinates can be
retrieved during simulation from the Vehicle Block (see Chapter 6). They uniquely
define each actor’s position in the simulation.

• Vehicle: is the vehicle coordinate system (x, y, z) that is also explained in Chapter 5
and is attached to it. x points forward from the vehicle, y points to the left as viewed
when facing forward and z points up from the ground to maintain the right-handed
coordinate system. This is the ISO convention used by the toolbox and it is different
from the SAE J760 coordinate system adopted for vehicle modelling in Chapter 5.
A SAE J670E to ISO 8855 conversion will be necessary in the control algorithm to
correctly interpret the physical quantities coming from the vehicle dynamics block in
order to use them in the controller that uses the Automated Driving Toolbox.

• Sensor: coordinate system (Xc, Yc, Zc) attached to the sensor in the same way the
vehicle coordinate system is attached to the vehicle. That is, Xc points in the direction
the camera points to, Yc points to the left as viewed when facing forward and Zc points
up.

• Spatial: coordinate system (u, v) that defines the discrete grid of pixels of an image.
In some cases (x, y) has been used without ambiguity.

15

2 – Automated Driving Toolbox

2.2 Driving Scenario Designer App
This Matlab application is part of the Automated Driving Toolbox and has been used in
this work to design driving scenarios for control algorithms. In Figure 2.1 is visible the
user interface with a road and the ego vehicle positioned. This name refers to the car that
has to be driven autonomously. The blue dots are the waypoints that will be crossed by
the ego vehicle during the test of the scenario. During the real simulation their only role
is to set the start and the end of the bird’s eye view simulation. The other actors instead
are dummy and they will go through these points independently.
Building a Scenario from scratch is very simple:

1. Add road(s) and set their parameters like the number of lanes, lane width, lane
markings and road center positions.

2. Add actors as cars, trucks, pedestrians and bicycles and set their pose, their physical
dimensions and their trajectory. It’s important to note that the trajectory of the ego
vehicle is not exactly the one will be followed when the autonomous mode will be on.
It is only necessary to start and stop conditions in the simulation.

3. Attach sensor(s) to the ego vehicle to get the information we want for our control
system. In this work only one camera has been used, but it is possible to add multiple
sensors in different positions and orientations relative to the vehicle reference frame.
Up to now, only cameras and radars are available. Note that the sensors used in this
app won’t be retrieved in the workspace and so they won’t be used in Simulink but
only in this specific app. The only things that will be exploited are the initial pose,
the ego speed and the information about the road and other actors.

4. Run the application to see the car moving and following the desired trajectory, de-
tecting lanes with cameras and other actors with radars.

5. Save the model to be used in Matlab scripts.

It is also possible to use prebuilt scenarios.

2.3 Bird’s-Eye Scope
The Automated Driving Toolbox offers a nice simulation environment for self-driving cars.
On Simulink, after having run the Matlab script to set the controller and all the needed
parameters, it’s possible to open the Bird’s-Eye Scope (Figure 2.3), in addition to the tra-
ditional Simulation Data Inspector and Logic Analyzer for logging simulation data (Fig-
ure 2.2). This tool offers a top view of the car and the Driving Scenario and offers a visual
understanding of what is going on during the simulation and how the car behaves. At
each time step the Scenario Reader block receives the information on the vector pose
and moves the car in the Bird’s-Eye Scope accordingly. It highlights also the estimated
lanes, from which the Vision Detection Generator computes the parameters depending
on the camera’s characteristics. A picture of this view is presented in Figure 2.4. To start
the simulation on the Bird’s-Eye Scope, click on Find Signals the first time or whenever
blocks, ports or signal lines are added or removed and then click on Run each time to start

16

2.3 – Bird’s-Eye Scope

Figure 2.1: Driving Scenario Designer App

the simulation. The ego-vehicle will remain in the center of the scope of the driving sce-
nario and the street and other actors will move accordingly to simulate the control actions.
It’s not necessary to click on Find Signals each time a block parameter is modified. An
important parameter is the simulation time, that cannot be higher that the time at which
the car reaches its final position. This position is computed automatically a priori from
the information about waypoints and ego car’s velocity in the Driving Scenario Designer
App. Otherwise, an error will occur.

Figure 2.2: Various ways to visualize simulation data in Simulink

17

2 – Automated Driving Toolbox

Figure 2.3: Open Bird’s-Eye view

Figure 2.4: Run Bird’s-Eye view

18

2.4 – Generate Synthetic Detections

2.4 Generate Synthetic Detections

Another important building block of this toolbox is the visionDetectionGenerator Sys-
tem object, shown in Figure 2.5. It generates synthetic detections from a camera mounted
on the ego vehicle. Its detections are referenced to the ego-vehicle coordinate system and
they can interest lane lines or objects. It uses a statistical mode which simulates detec-
tions in real world with random noise components and false alarms. It uniquely identifies
the sensor and its intrinsic and extrinsic parameters. Also properties about the noise and
the accuracy of lane lines and objects detection can be tuned, as well as the maximum
detection range. In the case of lane lines detection, the output bus of this system contains
the two buses (left and right line) containing the following physical quantities: curvature,
curvature derivative, heading angle, lateral offset and strength. An useful block found on
the Matlab help has been exploited to convert some angular quantities from degrees to
radians, see Figure 2.6.

Figure 2.5: Vision Detection Generator block

Figure 2.6: Conversion of the Bus containing lane lines information

19

2 – Automated Driving Toolbox

2.5 Scenario Reader
The helperScenarioReader reads actor poses and road data from a recorded driving
scenario [7]. The following description is so clear that has been reported as presented in
the Matlab help:

If the actor poses data contains the ego vehicle pose, you can specify which index
is used for the ego data. In that case, the block will convert the poses of all the other
actors to the ego vehicle coordinates. This allows the actor poses to be used by the
visionDetectionGenerator and radarDetectionGenerator objects.

If ego vehicle index is not provided, all the actor poses will be provided in sce-
nario coordinates. You will then have to convert them to ego vehicle coordinates
using the driving.scenario.targetsToEgo function before generating detections using
the visionDetectionGenerator and radarDetectionGenerator objects.

In addition to reading actor poses data, if you specify an ego actor, you can use this
block to read road boundaries data in ego coordinates. Road boundaries in scenario
coordinates are obtained using the roadBoundaries method of drivingScenario. They
must be saved to the same file as the actor poses using the name RoadBoundaries.

20

Chapter 3

CARLA simulator

CARLA is an open source photorealistic simulator [8] developed to train, validate and
test autonomous driving algorithms. It is written in C++ and its driving scenarios are
based on Unreal Engine. It provides digital assets and complete control on actors on the
map, environmental conditions control, a sensor suite, maps generation, a flexible API and
a server-client based communication. In addition to CARLA Simulator, that embeds all
the control logic, the rendering, the physics and all the actor properties, CARLA offers a
Python API module. So the server is the Simulator and the client-server communication
is controlled through the Python API (see Figure 3.1).

Figure 3.1: CARLA client-server communication [9]

Most of the aspects of the simulation are accessible from the Python API. With Python
scripts it is possible to retrieve raw data coming from CARLA sensors attached to the ego
vehicle, process them, compute all the parameters needed by the controller and send to
CARLA Simulator the controls of throttle, brake and steering.
Each Python script from the client side can be logically divided into two different parts:

• Configuration of the simulation and of the actors: before starting the control algo-
rithm, the connection with the server and all the settings of the simulation and the
actors has to be done. Here information on the world can be retrieved, actors can be
spawned at arbitrary locations and orientations, sensors can be attached to the ego
vehicle and other actors can be created, spawned or destroyed.

21

3 – CARLA simulator

• Client-Server synchronized communication: the control algorithm is contained in this
part, where the proper simulation is started. The sensor(s) attached to the vehicle
produce raw data and the client subscribe to the sensor stream by providing a call-
back function that is called each time a new data is generated by the sensor. This
callback function is the one that stores the images in a queue accessed by the control
algorithm to return the controls to the vehicle. At the end of the simulation the client
disconnects.

3.1 Configuration of the simulation and of the actors
All the steps required to configure the simulation and the driving scenario are presented
in Figure 3.2. The Client class is used to connect to the client and returns an object that
can be used to access all the information of the running simulation. By default, there are
seven worlds available in CARLA 0.9.5. In this thesis, the 7th has been used because it is a
rural environment with different types of streets and lane lines, with different curvatures.
This is the best setting to test the algorithm.

Images of the map are visible in Figures 3.3 and 3.4. The goal is to keep the center of the
lane with autonomous steering, throttle and brake operations. From the client object the
world has been retrieved with get_world() and the synchronous mode has been activated.
This simulation modality is used to synchronize client-simulator communication. When
activated, the simulation is paused at each step until a tick message is received. This
signal can be sent to the simulator with world.tick(). This is very useful when dealing
with GPU-based sensors (cameras), that are usually generated with a delay of a couple of
frames with respect to data coming from CPU-based sensors (see CARLA documentation
[9]).

The newly acquired images produced by the camera can be put in a Queue instance,
that has been called image_queue, by using the listen method of the Sensor class, that
provides a callback function that is called each time a new image is generated. The get()
method of the image queue is used to retrieve the images at each tick with a first-in first-out
logic.

To use the synchronous mode in a consistent and predictable way the Simulator has to
run with fixed time-step. Here the step size is 0.1 seconds and is the same value of the
sample time of the Nonlinear Model Predictive Controller and between camera captures.
The correct way to run the simulation is shown in section 3.3.

Another important part of the configuration interests the actors of the simulation.
Actors can be cars, pedestrians, traffic signs and lights, the spectator of the simulation etc.
The spectator characteristics can be accessed by calling world.get_spectator(). From
this instance, it is possible to change the spectator position and orientation, for example
to have the desired view of the ego car behaviour.

The actors information objects are instances of the ActorBlueprint class. It con-
tains all the tags and attributes of each available actor in CARLA, not only the ones
actually alive in the simulation. To access the set of all the blueprints available use the
get_blueprint_library() method. From this the desired blueprints of the actors can
be selected by calling blueprint_library.find(tag), where the tag uniquely identify a
blueprint with three words separated by a dot. If we want to select all the actors alive in

22

3.1 – Configuration of the simulation and of the actors

the simulation that have in common a feature, for example being a vehicle, the command
world.get_actors().filter('vehicle.*.*') returns a list of actors of type ActorList
that are all vehicles. This is an iterable object. Note that here a carla.Actor is some-
thing alive in the simulation, while carla.ActorBlueprint contains information about
actor that are spawnable but not necessarily alive.

Said that, the blueprints can be modified by calling set_attribute(key, value), for
example to change the aspect, and then an actor can be spawned with the spawn_actor
method. It requires as arguments the blueprint and the carla.Transform objects, that
contains the information about the desired 3D pose. This procedure can be used for all
the actors, also for sensors that has to be attached to the vehicle. It’s important to send
a tick message each time an actor is spawned or modified in order to avoid errors in code
execution. Modifications of the world in the Simulator happens only after the tick.

Then it is suggested to instantiate in this part the object that will be used for the
control algorithm execution. Some of its methods, related to the computation of control
inputs, will be called inside the main loop, at a frequency determined by the fixed time
step size. In this case the class used for the lane keeping control algorithm has been called
LaneKeepingAlgorithm and will be described later.

CARLA offers the possibility to tune the physical parameters of the wheels and the
whole car. The carla.WheelPhysicsControl class is used to set wheels parameters and
the class carla.VehiclePhysicsControl for car parameters, including wheels that are
passed as arguments. To apply these parameters to the ego vehicle in simulation use the
apply_physics_control(vehicle_physics_control) method.

Finally, a queue to store sensors information, in this case images, can be instantiated
and image_queue.put called each time a new image is available. This thanks to the
listen(image_queue.put) method of the carla.Sensor class, a callback function. At
each measurement, the function is called and a camera frame is appended to the queue.

Figure 3.2: Configuration of the simulation and of the actors

23

3 – CARLA simulator

Figure 3.3: CARLA Simulator: town 7

Figure 3.4: Vehicle spawned at start of the track

In the next page is presented the part of the code that configures the simulation and
the actors inside it.

24

3.1 – Configuration of the simulation and of the actors

def main(args):

actor_list = []
Connect to the client
client = carla.Client('localhost', 2000)
client.set_timeout(10.0)
Load the world for the simulation (default is world 7, if different change
also the spawn point of the ego vehicle and its initial pose)
client.load_world(args.world)
print(args.world + " loaded")
Retrieve the world and the settings to activate synchronous mode
world = client.get_world()
settings = world.get_settings()
settings.synchronous_mode = args.synchronous_mode
world.apply_settings(settings)
if settings.synchronous_mode:

print("Activating synchronous mode")

Get the spectator information to set its 3D pose to observe the ego car
behaviour
spectator = world.get_spectator()

try:
mymap = world.get_map()
Get the world scenario and all the object's blueprints in a list
blueprint_library = world.get_blueprint_library()

Destroy all the vehicles present before starting the simulation
actors = world.get_actors().filter('vehicle.*.*')
for actor in actors:

actor.destroy()

world.tick()
world.wait_for_tick()
Creating the ego vehicle and positioning it
ego_blueprint = blueprint_library.find('vehicle.mini.cooperst')
ego_blueprint.set_attribute('color','255,0,0')
transform = carla.Transform(carla.Location(x=70, y=-4, z=0.3),

carla.Rotation(yaw=-60))
ego_vehicle = world.spawn_actor(ego_blueprint, transform)
world.tick()
world.wait_for_tick()
Set spectator pose
transform.location.z += 30
transform.rotation.pitch = -60
spectator.set_transform(transform)
world.tick()
world.wait_for_tick()
print(ego_vehicle.get_location())
print ("%s %s %s created and positioned" %(ego_blueprint.tags[0],

25

3 – CARLA simulator

ego_blueprint.tags[1],
ego_blueprint.tags[2]))

actor_list.append(ego_vehicle)
print("Ego vehicle center of mass: ", ego_vehicle.bounding_box.location)
print("Ego vehicle extention: ", ego_vehicle.bounding_box.extent)
Select the type of camera and its features, then spawn it in a specific
pose in ego vehicle coordinates and attached to it
cam_blueprint = blueprint_library.find('sensor.camera.semantic_segmentation')
cam_blueprint.set_attribute('image_size_x', '800')
cam_blueprint.set_attribute('image_size_y', '600')
cam_blueprint.set_attribute('fov', '110')
cam_blueprint.set_attribute('sensor_tick', '0.1')
transform = carla.Transform(carla.Location(x=1.1, z=1.4),

carla.Rotation(pitch=-5.0))
semantic_cam = world.spawn_actor(cam_blueprint, transform,

attach_to=ego_vehicle)
world.tick()
world.wait_for_tick()
print(semantic_cam.get_location())
actor_list.append(semantic_cam)

Istantiate a LaneKeepingAlgorithm object
mpc_algorithm = LaneKeepingAlgorithm(ego_vehicle, cam_blueprint,

semantic_cam, 2, args.save_to_disk)

Create front and back Wheels Physics Control
front_wheel = carla.WheelPhysicsControl(

tire_friction=4.5,
damping_rate=1.0,
steer_angle=degrees(mpc_algorithm.max_steer)
Now position cannot be modified in Python but CARLA team
is working on give the possibility to change distances
of rear and front axles from center of gravity
and change the wheelbase and axles length

)

back_wheel = carla.WheelPhysicsControl(
tire_friction=4.5,
damping_rate=1.0,
disable_steering=True
#position=carla.Vector3D(-mpc_algorithm.b, 0.0, 0.0)

)

wheels = [front_wheel, front_wheel, back_wheel, back_wheel]

Set the physical parameters of the ego vehicle
ego_vehicle.apply_physics_control(carla.VehiclePhysicsControl(

use_gear_autobox=True,
mass=mpc_algorithm.m,
drag_coefficient=mpc_algorithm.Dc,

26

3.2 – Server-Client communication

center_of_mass=carla.Vector3D(0.0, 0.0, 0.0),
wheels=wheels))

Subscribe to the sensor stream by providing a callback function,
this function is called each time a new image is generated by the
sensor. The image queue is useful for storing images in it, waiting
to be processed by the mpc_algorithm object
by the mpc_algorithm object
image_queue = queue.Queue()
semantic_cam.listen(image_queue.put)
world.tick()
world.wait_for_tick()
frame = None

HERE THE MAIN LOOP

except KeyboardInterrupt:
print('\nExit by user.')

finally:
if args.synchronous_mode:

print('Disabling synchronous mode.')
settings = world.get_settings()
settings.synchronous_mode = False
world.apply_settings(settings)

print('destroying actors.')
for actor in actor_list:

actor.destroy()

print('done.')

3.2 Server-Client communication
After the configuration, the control algorithm can be activated to put in motion and control
the ego vehicle in the street shown in Figure 3.4. Fundamental in this part is the correct
synchronization between the image frames coming from the camera and the timestamp’s
frame produced by the tick function. Some control loops suggested by CARLA team on
GitHub has been implemented to detect frame skip or wrong image timestamp and wait
the correct matching. In this part the main cycle, that repeats itself at each tick received
by the simulator, does what is shown in Figure 3.5. The image from the queue is get by
using the get() method.

There are two possible ways to compute the parameters needed by the controller. One
is based on the top view image and computes the lateral error by computing the pixels
between the center of the car and the center of the lane in the image. Then it converts this
number to meters by knowing the lane width. The yaw error is computed from the slope

27

3 – CARLA simulator

of the near view section lines w.r.t. the vertical, that is the direction of the camera and of
the car. This measure is then converted in radians.

Another way is based on carla.Waypoint, that is a class that offers the possibility to
access meaningful points of the map. They can be exploited for trajectory planning and to
retrieve the coordinates and directions of points in the center of the lane. By comparing
this information with the position and orientation of the car inside the lane, it is possible
to compute lateral error and yaw error for the controller.

After having computed the control inputs, they are sent to the ego vehicle by instantiat-
ing a carla.VehicleControl object that contains as arguments steer, throttle and brake.
This object is then passed to the apply_control method of the Vehicle object.

Figure 3.5: Main loop and server-client communication

Follows in the next page the code of the main loop.

28

3.2 – Server-Client communication

while True:
Get vehicle location and its nearest waypoint
ego_location = ego_vehicle.get_location()
vechicle_waypoint = mymap.get_waypoint(ego_location)

As before, to synchronize the Server-Client communication a tick is sent
to the Server (the world) and the Client waits the response before letting
the python interpreter going on.
To have perfect synchronization, the frame number of the image has to be
equal to the frame count of the tick
world.tick()
ts = world.wait_for_tick()

if frame is not None:
if ts.frame_count != frame + 1:

logging.warning('frame skip!')

frame = ts.frame_count

It checks if the image frame number from the queue is equal to the
tick frame number end exits from the loop only in this case
while True:

image = image_queue.get()
if image.frame_number == ts.frame_count:

break
logging.warning(

'wrong image time-stampstamp: frame=%d, image.frame=%d',
ts.frame_count,
image.frame_number)

lane_width = vechicle_waypoint.lane_width

right_lane_waypoint = vechicle_waypoint.get_right_lane()
if right_lane_waypoint:

It computes the vehicle lane level localization and lane curvature needed
by the controller with the get_params method of the LaneKeepingAlgorithm
curvature, lateral_error, yaw_error = mpc_algorithm.get_params(image,

lane_width)

Other way to compute lateral and yaw error, by using carla.Waypoint class
e1 = sqrt((right_lane_waypoint.transform.location.x -

ego_location.x)**2 +
(right_lane_waypoint.transform.location.y - ego_location.y)**2) -
lane_width/2

e2 = radians(right_lane_waypoint.transform.rotation.yaw -
ego_vehicle.get_transform().rotation.yaw)

print("e1= %.2f, e2= %.2f" %(e1, e2))

v = ego_vehicle.get_velocity().x

29

3 – CARLA simulator

Computes the control inputs for the ego car by using the
get_control_inputs method, that connects to Matlab to
exploit the designed NMPC controller
steer, throttle, brake = mpc_algorithm.get_control_inputs(curvature,

e1, e2, v)

else:
steer = 0.0
throttle = 0.4
brake = 0.0

print("INPUTS: steer={0:.3f} throttle={1:.3f} brake={2:.3f}".format(
steer, throttle, brake))

Apply control values to the ego vehicle
ego_vehicle.apply_control(carla.VehicleControl(

steer=steer,
throttle=throttle,
brake=brake))

3.3 Running the simulation
To run this simulation are needed:

• Matlab & Simulink with Control, Model Predictive Control, Vehicle Dynamics Block-
set and Automated Driving toolboxes.

• Windows or Linux x64 operating systems with Python 3.7 and the following python
packages: OpenCV, Numpy, Matplotlib, PIL, Imageio, matlab and matlab.engine
(see "Calling MATLAB from Python" in the Matlab help).

• CARLA 0.9.5 binary or compiled version. The binary version is ready to use and
contains the Unreal Engine’s components needed for maps, blueprints, actors etc.
It occupies less space in hard disk but obviously doesn’t allow modifications of the
Python API neither of the C++ simulator’s code. Moreover, the precompiled version
doesn’t allow to build new maps but only to use the pre-existing ones. Build a map
with RoadRunner is very easy and they can be imported in Unreal Engine directly
to save them properly. Then it is sufficient to compile from source to have the newly
created map available. RoadRunner is the software used by the creators of CARLA
for its simplicity compared to Unreal Engine. To use it with a long-term academic
license at no cost is sufficient to contact them as a professor of an academic institution.

Follow these steps to run the simulation with the compiled version:
1. Open Matlab and run the script ckla_carla to set the workspace for the Python

script. The Matlab script contains all the parameters of the controller, the vehicle
and the simulation. The tuning of these parameters have to be done directly here.
The python script will retrieve these data from workspace when launched. Matlab
creates the controller and Kalman filter structures needed.

30

3.3 – Running the simulation

2. Run the command matlab.engine.shareEngine to make the Matlab workspace
shareable with a python script.

3. Run CARLAUE4 executable (.exe for Windows, .sh for Linux) from the terminal with
the following string to run the simulator with fixed-time step mode:
E:\ CARLA_bin > CarlaUE4 .exe -benchmark -fps =10

4. Run the Python client named NMPC.py without passing any argument. The de-
fault ones are: –synchronous-mode(-s): True; –save-to-disk(-d): True; –fps(-f): 10;
–world(-w): "Town07". In this way the simulation runs at 10 frames-per-second in
synchronous mode, on map Town07 and saves the input and processed images to disk
inside the "PythonAPI\examples\top_view" folder:
E:\ CARLA_bin \ PythonAPI \examples > python NMPC.py

5. Look at CARLAUE4 to watch the car moving on the photorealistic world, to "top_view"
folder for the top-view image of the lanes and the near and far section lines identi-
fication, to the DOS terminal of the client for the information about the actor, the
world and the input commands.

31

32

Chapter 4

Computer vision

In Autonomous Driving, vehicle localization with respect to lane coordinates is fundamental
for lane keeping and obstacle avoidance. The vehicle localization can be addressed by
exploiting different technologies and fuse their data for getting more precision. GPS is
very effective for geolocalization of the car and is heavily used by global motion planning
algorithms to choose the best route on a digital street map. In this case the goal is
achieved using a number of different sensors: Global Navigation Satellite System, Inertial
Measurement Unit and odometry.

The localization of the ego car w.r.t. the other actors in its proximity can be accurately
achieved by the LIDAR technology. CARLA offers natively LIDAR sensors. It produces a
map of digital points that are produced by a laser emitter that sends pulses at a specified
frequency in all the directions. This source of pulses spins to have a 360 degree and
3D "vision" of the neighbourhood of the car, at a sufficiently high angular speed have
near enough samples of the surroundings. However, it is an expensive technology for its
intrinsic cost and for the high performing hardware that needs in the background to crunch
this huge amount of data. In fact, the points of the LIDAR maps aren’t meaningful by
themselves but require multiple steps for extract useful informations, as: segmentation &
outlier elimination, feature extraction and classification. Usually these steps require more
or less complex computer vision techniques for the first 2 steps and artificial intelligence
for the last (e.g. Convolutional Neural Networks).

Among the various types of sensors used in autonomous driving, the camera is for sure
one of the most important. In fact, the real time images captured by the camera can
be processed by algorithms in order to extract useful features from the data and use this
features in the control strategy. In autonomous vehicles the vision system normally involves
road detection and on-road object detection. The first includes two subcategories: lane
line marking detection and road surface detection [10]. For lane keeping purposes, in this
work most of the attention has been devoted to lane line marking detection with a single
camera outside the vehicle, positioned on its longitudinal axis.

33

4 – Computer vision

4.1 Camera models and characteristics
Images can be considered as 2D discrete functions of intensity values. In this work has been
extensively used the RGB representation of an image, that is a three channels representa-
tion (red-green-blue) with a matrix of pixels for each channel. The color of each pixel is
determined by the value on the respective entry on each channel. We have to keep in mind
that an image is a 2D projection of the real world, representable by 3D Cartesian space of
spatial coordinates. The medium that does this projection is the camera. It is mounted
on the vehicle near the view mirror or on the front, it is positioned on the longitudinal
axis of symmetry and it is slightly inclined towards the road surface. This is assumed
flat and implies that there is a projective relationship between the reference frame on the
image plane and the corresponding reference frame on the ground plane. In general the
relationship between vectors of coordinates of the two reference frames is:xy

1

 = H

uv
1

 (4.1)

where H is a homography that can be recovered through calibration. This equation holds
for cameras with a wide field of view (110 in our case) and for areas not too far from the
vehicle. By using CARLA virtual cameras we don’t need to take into consideration the
distortion produced by the camera model because it is absent.

4.2 Lane Line Marking Detection
High precision lane/vehicle localization is of fundamental importance in the Autonomous
Driving field. This work addresses lane following and identifies mathematically lane lines
is the first step to estimate the pose of the vehicle w.r.t. the lanes and feed the control
system with data about lateral offset, yaw error and previewed curvature. Here a purely
vision system is proposed. It exploits Hough transform and least-squares for second order
polynomial fitting. A Kalman Filter should be used to improve continuity of the solution.
However, it will be shown that this algorithm is very sensitive to noise and road uncertain-
ties. To work properly it needs both lane lines to be present. Otherwise it is not able to
steer correctly the car. The control algorithm proposed bases its predictions and control
solutions entirely on lane lines identification. Other researchers have addressed this prob-
lem by using stereovision and particle filters [11], integrating lane and vehicle detections
[12]. Most computer vision algorithm for lane detection can be subdivided in the following
parts [11] (see Figure 4.1):

• Lane line feature extraction: lane sensing is required to identify the pixels that be-
long to lane line markings and eliminate non-lane marking pixels. Image descriptors
present in the literature include adaptive and global threshold [13, 14] (e.g. adaptive
Canny), steerable filters [5], edge detection [15] and top-hat filters [14]. An algorithm
to implement this part is presented in section 4.2.1. It adopts a linear model by
using Hough transform. CARLA Simulator contains a useful feature to get a mean-
ingful representation of the objects present in the virtual world. By using a semantic

34

4.2 – Lane Line Marking Detection

segmentation camera the images received by it contain classified objects that are dis-
played in a different color according to the object class. Each BGRA image has the
tag encoded in the red channel. So this feature will be used in the algorithm written
in Python to select pixels that represent lines and put them to 255 value and put all
the others to 0.

• Top-view image transformation: this perspective transformation is useful to eliminate
the perspective distortion from the image. The car direction and orientation can
be estimated better because applying model fitting to the top-view image is easier,
although disturbances on the camera position and the flatness of the road can have
a significant influence on the transformation.

• Model fitting: It is the process to extract a mathematical representation of the lane
from the previous step. Here linear and parabolic models has been used. Obviously
these models are good approximations of the real lines, that have the advantage of be-
ing computationally and memory efficient. Real lines are better described by clothoid
models and splines. Rural and urban roads may contain various discontinuities, which
can require more sophisticated road modelling.

• Time integration: is usually applied to make use of the previous information to guide
the search in the current image. Most of the approaches in scientific papers are
stochastic. Mostly, Kalman and particle filters are used. The vehicle dynamic model
can be taken into account to improve estimation. The vehicle pose can be derived
from the fitted model. It can be also used to guide the lane line detection in the
next frame to improve continuity. Kalman filters tend to work well for continuous
structured roads, as the one considered here. In this work has not been implemented.

Figure 4.1: Lane line marking detection algorithm pipeline

The steps until the 4th are coded inside the LaneEstimator class, that is instantiated by
the LaneKeepingAlgorithm constructor. Its public method, called process, receives as
input a semantic segmentation coded image and returns the warped top-view image. This

35

4 – Computer vision

is ready for the road model fitting, done by the RoadModel class. The time integration step
has been left out but should be added in future works to give robustness to this algorithm.
Below is shown the constructor and the process method, while the specific methods for
lane detection and top-view transform are addressed in subsections 4.2.2 and 4.2.3. Some
of the object variables in the constructor will be addressed in subsection 4.2.3.

class LaneEstimator(object):
def __init__(self, camera_info, camera_actor, poly_order,

save_to_disk=False):
Camera characteristics
self._camera_info = camera_info
pose = camera_actor.get_transform()
self._H = float(pose.location.z) # Height
self._pitch = radians(float(pose.rotation.pitch)) # Pitch angle
Horizontal field of view
self._h_fov = radians(float(camera_info.get_attribute('fov')))
Horizontal image size
self._V = int(camera_info.get_attribute('image_size_x'))
Vertical image size
self._U = int(camera_info.get_attribute('image_size_y'))
Vertical field of view (derived from other camera info)
self._v_fov = 2*atan(float(self._U / self._V) * tan(self._h_fov / 2))
Camera tilt angle (derived)
self._tilt = pi / 2 + self._pitch - self._v_fov / 2
self.__str__() # print camera characteristics
rectangle of the image to be considered, upper-left and lower-right points
self.box = (280, 130, 510, 750)
Width and height values choosen to crop the image to improve efficiency
self._width_crop = self.box[3] - self.box[1]
self._height_crop = self.box[2] - self.box[0]

These source-points have been found to be optimal for the camera
pose and parameters we're dealing with. This resulted in a better
top-view transform than the set of functions reported in the section
named "Top-view transform"
self._source_points = np.array([[150, 0],

[self._width_crop - 300 - 1, 0],
[500, self._height_crop - 1],
[300, self._height_crop - 1]],
dtype = "float32")

Order of the polynomial fitting (the default value is 2)
self.n = poly_order
Stride and skip values are used to identify lane lines pixels on the
top-view image in function compute_poly_params
self.stride = 2
self.skip = 5
self.l = np.empty(6)
Kernel of the filter adopted to sharpen the image
self.kernel = np.array([[-1,-1,-1],

36

4.2 – Lane Line Marking Detection

[-1, 9,-1],
[-1,-1,-1]])

self.save_to_disk = save_to_disk

def _detect_lanes(self, image):
Addressed in "Lane line feature extraction with CARLA" section

def process(self, image):
sharp_image = self._detect_lanes(image)
warped_image = four_point_transform(sharp_image, self._source_points)
if self.save_to_disk:

imageio.imwrite('top_view/lanes.png', warped_image)
return warped_image

def __str__(self):
print('*' * 60)
print ("%s %s %s created and positioned" %(self._camera_info.tags[0],

self._camera_info.tags[1], self._camera_info.tags[2]))
print("-----PARAMETERS-----")
print("Height: %.2f" %self._H)
print("Pitch angle: %.2f" %degrees(self._pitch))
print("Tilt angle: %.2f" %degrees(self._tilt))
print("Image size: %d x %d" %(self._V, self._U))
print("Horizontal field of view: ", round_up(degrees(self._h_fov)))
print("Vertical field of view: ", round_up(degrees(self._v_fov)))
print('*' * 60)

4.2.1 Lane line feature extraction with Hough transform
In this subsection, an algorithm for detecting lanes from camera recordings is shown. This
algorithm is similar to the one presented in a web-course on self driving cars1. Data are
preprocessed and then used to supply to the control system with vehicle location and
response signals to calculate appropriate steering and acceleration/deceleration. An useful
tool for computer vision in general is OpenCV, an open source library extensively used
all around the world for this kind of applications. It allows image processing and feature
extraction. It has been used to identify lane parameters and the pose of the car with
respect to the lanes. Typically, the operations needed to pre-process data and identify lane
lines are the following [16]:

1. Acquire an image

2. Digitize image

3. Detect edge (Sobel filter, Canny methods)

4. Thresholding (generate a binary image)

1https://eu.udacity.com/course/self-driving-car-engineer-nanodegree–nd013.

37

4 – Computer vision

5. Noise cleaning

6. Hough transform

7. Identify lane-marker candidates

8. Decide the lane markings

9. Apply least squares or Kalman Filter techniques to identify line parameters

Here edge detection is used in order to find regions in an image where there are sharp
changes in intensity and in color. In order to recognize the edges in a mathematical way,
the gradient is applied to the image, seen as a matrix of pixels, thanks to a digitalization
of spatial coordinates (i.e. image sampling). Each pixel mapped in the matrix contains the
light intensity at some location in the image, denoted by a numeric value that ranges from
0 to 255 (i.e. 0 means black and 255 means white). This is the so called intensity or grey
level quantization. So the gradient is a measure of the change in brightness over adjacent
pixels. The function to which the gradient is applied is the pixels intensity function in the
two spatial variables x and y:

∇f(x, y) =
[
Gx

Gy

]
=

∂f

∂x
∂f

∂y

 (4.2)

where Gx and Gy are the so called Sobel operators, a robust implementation of gradient
discretization. In the simplified case of 3x3 kernels, they are equal to:

Gx =[f(x+ 1, y − 1) + 2f(x+ 1, y) + f(x+ 1, y + 1)]−
[f(x− 1, y − 1) + 2f(x− 1, y) + f(x− 1, y + 1)]

Gy =[f(x− 1, y + 1) + 2f(x, y + 1) + f(x+ 1, y + 1)]−
[f(x− 1, y − 1) + 2f(x, y − 1) + f(x+ 1, y − 1)]

If there is a strong change between two adjacent pixels the gradient will be high and
the other way around. The algorithm shown here can detect edges as rapid changes in
brightness, so edges correspond to pixels where the gradient is higher than a fixed threshold.
To do this operation easily, the image has been converted to grayscale. Numpy, a python
library for scientific computing, has been used for dealing with data structures and pixels’
brightness intensities. Then noise has been filtered out with a Gaussian filter with a 5x5
kernel (a good size for most cases) to avoid false edges that ultimately affect edge detection.
The Gaussian filter is a low-pass filter because it removes the high-frequency components of
the image to which is convoluted. An equivalent way to explain this is that rapid changes
in brightness are filtered out and by consequence the image is blurred. The kernel is an
approximation of a 2D Gaussian function in the discrete 2D space of the image pixels. The
classical formula for a 2D Gaussian distribution is:

h(u, v) = 1
2πσ2 exp

(
−u

2 + v2

σ2

)
(4.3)

38

4.2 – Lane Line Marking Detection

and the equivalent kernel representation in case of dimension 5 is:

H[u, v] = 1
256

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (4.4)

The Gaussian kernel is symmetric, all its values are symmetric and sum to 1. The amount
of smoothing is proportional to the mask size.

For edge detection, the Canny method is used, as it is one of the most robust methods
while it allows a reduction of the amount of data to be processed. It uses double thresh-
olding to determine potential edges, which lead to the definition of strong and weak edges.
If an edge pixel’s gradient value is higher than the high threshold value, it is marked as
a strong edge pixel. If an edge pixel’s gradient value is smaller than the high threshold
value and larger than the low threshold value, it is marked as a weak edge pixel. If an
edge pixel’s value is smaller than the low threshold value, it will be suppressed. A weak
edge is considered only if it is connected to a strong edge. In the code below the low
threshold is equal to 50 and the high threshold is equal to 150. The canny function does
the grayscale conversion, applies the Gaussian filter and the Canny method. In Figure 4.2b
is reported the output of this function. The image clearly traces an outline of the edges
that correspond to the most sharp changes in pixel’s intensity, where gradients exceed the
high threshold.

(a) Original (b) Canny

(c) Vertices (d) ROI

Figure 4.2: Canny method and ROI isolation

39

4 – Computer vision

In Figure 4.2b it’s now possible to define a region of interest (called ROI) which cor-
responds to the lanes that the car has to track. In order to isolate this region of in-
terest, the Matplotlib library has been used to plot the image with (x, y) coordinates.
The ROI has been considered a triangle mask that has, as vertices, points of coordi-
nates (200,700) − (1100,700) − (550,250). The mask has been computed through the
region_of_interest function. The zeros_like function gives as output an image with
the same number of pixels of the input image but with all zero values (i.e. all pixels are
black). Then the function fillPoly fills the black picture with the triangle specified with
an array of its vertices and sets the value of the pixels inside the triangle to to 255 (i.e.
white). Then, with a bitwise_and operation, the result reported in figure 4.5c has been
obtained.

Figure 4.3: Polar coordinates for Hough transform [15]

Figure 4.4: Lane identification

After that, the Hough transform is used to detect straight lines. With this tool, a single
line in a Cartesian space of equation y = mx + b can be represented as a single point
of coordinates (m, b) in the Hough space. Taking the coordinates of a segment’s starting
point (x1, y1) and end point (x2, y2) the formulas for the map from Cartesian to Hough

40

4.2 – Lane Line Marking Detection

space can be easily obtained:

b = (y2 − y1)
(x2 − x1) , a = y1 −

(y2 − y1)
(x2 − x1)x1 (4.5)

A single point in the Cartesian space is mapped as a line in the Hough space. So it is
possible to get the line that pass through some points in the Cartesian space by looking at
the intersection of the corresponding lines in the Hough space. This point has coordinates
m and b that uniquely identify a line in the Cartesian space. Usually, points in this space
are not perfectly aligned, so a method to decide if some points have to be considered part
of a single line or not is needed. To this aim, the Hough space is discretized in accumulator
cells, defining a matrix with null initial entries. For each cell with unique coordinates
(m, b), a vote equal to the number of intersections inside is casted. The cell with the
highest score is the one corresponding to the parameters m and b of the best fitting line.
A problem of using Cartesian coordinates in Hough transform is that cannot deal with
vertical lines, because m tends to infinity. The solution is using polar coordinates (ρ, θ) to
represent lines, with the difference that the set of lines in the Cartesian plane corresponds
to a sinusoid in the Hough space (see Figure 4.3). In the code, the function HoughLinesP
has been used, giving as arguments the image, the resolution of accumulator cells in pixels
with one degree of precision in radians, the threshold (i.e. minimum number of votes
needed to accept a candidate line), a place-holder, the minimum length for a line to be
accepted and the maximum distance in pixels between segmented lines which we will allow
to be connected. It implements a probabilistic Hough Transform, that is an optimized
version of the Hough Transform we saw. It takes into consideration only a random subset
of points and that is sufficient for line detection. The function display_lines takes an
image and the lines detected through the Hough transform and display them. Then, the
function addWeighted blends in a weighted way the original image with the detected lines.
In this way, lane-marker candidates has been identified as the lines which best describe
data, visible in Figure 4.4.

As last step, a further optimization on displaying lane-markers is suggested. The func-
tion make_points computes the end-points of both right and left lane lines at fixed vertical
coordinates v, from the bottom of the image to 3/5 of the height of the image. In this way,
at each iteration we get the same length of the identifies lines.

Title : Find lane lines
Author : Udacity
URL : https://eu.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
Description : Simple algorithm used to compute the parameters of lane lines
with Hough transform and 1st order fitting from RGB camera images

import cv2
import numpy as np

def make_points(image, line):
"""
It computes the end points of the lines from the values of slope

41

4 – Computer vision

and intercept. The y values are at the bottom and at 3/5 of the
image, that is a value chosen as the end of the near section of
the image.
"""
slope, intercept = line
y1 = int(image.shape[0]) # bottom of the image
y2 = int(y1*3/5) # slightly lower than the middle
x1 = int((y1 - intercept)/slope)
x2 = int((y2 - intercept)/slope)
return [[x1, y1, x2, y2]]

def average_slope_intercept(image, lines):
"""
1st order fitting of the line's points and separation in left
line and right line based on the intercept sign. Then it averages
the slope and intercept values of both the lines and computes the
start and end points for both.
"""
left_fit = []
right_fit = []
if lines is None:

return None
for line in lines:

for x1, y1, x2, y2 in line:
Polyfit computes the 1st order fitting of the lane points
fit = np.polyfit((x1,x2), (y1,y2), 1)
slope = fit[0]
intercept = fit[1]
if slope < 0: # y is reversed in image

left_fit.append((slope, intercept))
else:

right_fit.append((slope, intercept))

add more weight to longer lines
left_fit_average = np.average(left_fit, axis=0)
right_fit_average = np.average(right_fit, axis=0)
left_line = make_points(image, left_fit_average)
right_line = make_points(image, right_fit_average)
averaged_lines = [left_line, right_line]
return averaged_lines

def canny(img):
"""
- It does the RGB to GRAY conversion (from 3 channels to 1)
- It does the convolution of the image with a 5x5 gaussian

kernel to smooth the image and remove the high frequency components
- It applies the Canny algorithm with 50 and 150 as thresholds
"""
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
kernel = 5

42

4.2 – Lane Line Marking Detection

The standard deviation is passed as 0, so it is automatically
calculated from the kernel size
blur = cv2.GaussianBlur(gray, (kernel,kernel), 0)
canny = cv2.Canny(gray, 50, 150)
return canny

def display_lines(img,lines):
"""
It brings to 0 value all the pixels and draws the left and right
lines from the end points. The thickness is 10 pixels
"""
line_image = np.zeros_like(img)
if lines is not None:

for line in lines:
for x1, y1, x2, y2 in line:

cv2.line(line_image, (x1,y1), (x2,y2), (255,0,0), 10)
return line_image

def region_of_interest(canny):
"""
It produces a mask of 0 values of the same shape of the canny image
with a triangle inside that is our region of interest, that is the
region where we want to find and consider the lane lines. It fills
the triangle with 255 pixels and it does a bitwise and logic operation
to reveal the lane lines inside the triangle coordinates.
Then it returns the masked image.
"""
height = canny.shape[0]
width = canny.shape[1]
mask = np.zeros_like(canny)

triangle = np.array([[
(200, height),
(550, 250),
(1100, height),]], np.int32)

cv2.fillPoly(mask, triangle, 255)
masked_image = cv2.bitwise_and(canny, mask)
return masked_image

cap = cv2.VideoCapture("test2.mp4")
It cycles each frame of the video until the end, then it exits
while(cap.isOpened()):

_, frame = cap.read()
canny_image = canny(frame)
cropped_canny = region_of_interest(canny_image)
lines = cv2.HoughLinesP(cropped_canny, 2, np.pi/180, 100, np.array([]),

minLineLength=40, maxLineGap=5)
averaged_lines = average_slope_intercept(frame, lines)

43

4 – Computer vision

line_image = display_lines(frame, averaged_lines)
It blends the original image with the one that comes from the image
processing algorithm with a weight coefficient of 0.8
combo_image = cv2.addWeighted(frame, 0.8, line_image, 1, 1)
cv2.imshow("result", combo_image)
if cv2.waitKey(1) & 0xFF == ord('q'):

break

cap.release()
cv2.destroyAllWindows()

Some of the features present in this algorithm will be used in the Python script that
communicates with CARLA Simulator, but in that case the fitting will be done once the
Inverse Perspective Mapping is applied and the top view transform is subdivided in near
view and far view image. The first part will be fitted using a similar procedure with Hough
transform while in the second a least-squares 2nd order fitting is applied.

4.2.2 Lane line feature extraction with CARLA
In CARLA Simulator this procedure can be done automatically by using a semantic seg-
mentation camera. It returns a carla.Image object that contains sensor data attributes
and the raw data, that contain an array of BGRA 32-bit pixels with the tag information
encoded in the red channel. The function save_to_disk_sem has been written to save
converted semantic segmentation images to disk. To highlight the pixels that represent
lane lines the function detect_lanes reshape the image array representation to get the
ARGB equivalent and selects the red channel, that is the channel that encodes the object
tag. The pixels corresponding to the tag associated to road lines are put at maximum
brightness while the other to 0 value. Then the image is cropped to get the region of
interest (ROI) and sharpened (see Figure 4.5). Follows the python script that implements
the already described functionality.

(a) RGB image (b) Semantic segmentation (c) Line’s pixels highlighted

Figure 4.5: Camera image processing

44

4.2 – Lane Line Marking Detection

def _detect_lanes(self, image):
"""
This function highlights in white the lanes in a semantic
segmentation image coming from a CARLA sensor and put every other
pixel to 0 (black). Originally it is an BGRA. Note that the CARLA
server encodes the tag information in the red channel and the tag
for lane lines is 6
"""
array = np.array(image.raw_data, copy=True, dtype='uint8')
copy of the sensor data to be manipulated
array = np.reshape(array, (image.height, image.width, 4)).T
reshaping in ARGB
array = array[2, :, :].T # I get only the second channel where

the tag is, the RED one

I put the pixels referred to lanes to 255 (white) and the other to 0
for pixel in np.nditer(array, op_flags=['readwrite']):

if pixel[...] == 6:
pixel[...] = 255

else:
pixel[...] = 0

#pixel coordinates for cropping the image in the area I'm interested in
array[360:, 398:402] = 255
cropped_image = array[self.box[0]:self.box[2], self.box[1]:self.box[3]]
sharpened = cv2.filter2D(cropped_image, -1, self.kernel)
return sharpened.astype(float)

4.2.3 Top-view transform
Top-view image transformation is a very effective tool for lane detection and fitting. It
removes the perspective effect and makes easier to compute lane parameters and vehicle’s
lateral offset and yaw error. This mapping is dependent of the pose of the camera w.r.t.
the ego vehicle and of the street characteristics. An important assumption that is usually
made is to consider fixed camera pitch angle and height, plus the assumption of flat road.
These kinds of disturbances can affect drastically the transform and aren’t considered here.
With these assumptions, after the top view image transformation the shape of the lane on
the image becomes almost the same as the real road lane with a minimal distortion. Here,
the inverse perspective transform is used for lane keeping purposes, so it’s really important
to get a lane representation that presents lane lines as parallel when are straight. The
methods, the equations and the images for the transform that are presented here have
been taken from [15]. The general idea is to map pixels from the front-view image to the
top-view image and is shown in Figures 4.6 and 4.7.

In Figure 4.7 are shown the coordinates needed for the transform, that map pixels of
coordinates (Ui, Vi) in the front-view image to pixels of coordinates (Xi, Yi) in the top-view
image. Here θv is the vertical field of view, abbreviated as vfov, θh is the horizontal field
of view (hfov), H is the height of the camera from the ground, α is the tilt angle, L0 the
horizontal distance between the camera and the first observable pixels from below and Li
the horizontal distance between the camera and pixel Pi we’re actually considering. The

45

4 – Computer vision

Figure 4.6: Top-view image transformation: general idea [15]

Figure 4.7: Top-view image transformation: linear and angular coordinates [15]

same reasoning can be applied to Wmin and Wi. The angles γ and β depend on the pixel
we are considering. So at each pixel corresponds a set of parameters {Li,Wi, γ, β}. Here
are reported the various equations that can be used to implement the following relation:

Pi(Ui, Vi) −→ Pt(Xi, Yi) ∀i ∈ Image (4.6)

46

4.2 – Lane Line Marking Detection

That is,

Lmin = H tanα

Wmin = 2Lmin tan
(
θh
2

)
K = V

Wmin

The height of the camera located in pixel data Hpixel is computed by Hpixel = H · K
and the inverse perspective mapping transformation equations can be computed with the
following equations:

γ = θv

(
U − Ui
U

)
Li = Hpixel tan(α + γ)
L0 = Hpixel tanα
xi = Li − L0 = Hpixel tan(α + γ)−Hpixel tanα

β = θh

(
V − Vi
V

)
yi = Li tan(θh − β)

This algorithm has been reported and tested with Python (see the _top_view_transform
function) but the result was a not complete removal of perspective effect. So another simple
method based on OpenCV docs has been adopted (see four_point_transform).

The LaneEstimator class has been created for lane detection, by using _detect_lanes
function, and the top-view transform called four_point_transform. This function or-
ders the source points found to be optimal for the transformation in our particular case
and computes the perspective transformation map through getPerspectiveTransform, a
OpenCV function. Then it is possible to apply this map to the original image through the
warpPerspective function. Finally, the final image is cropped again to focus only on the
area we are interested in, shown in Figure 4.8. Note that this image is converted to uint8
type in order to allow an easy postprocess later on.

Figure 4.8: Top-view and cropped image

47

4 – Computer vision

def four_point_transform(image, src):
obtain a consistent order of the points and unpack them
individually
(tl, tr, br, bl) = src

width = br[0] - bl[0]
height = br[1] - tr[1]
now that we have the dimensions of the new image, construct
the set of destination points to obtain a "birds eye view",
(i.e. top-down view) of the image, again specifying points
in the top-left, top-right, bottom-right, and bottom-left
order
dst = np.array([

[0, 0],
[width - 1, 0],
[130, height - 1],
[120, height - 1]], dtype = "float32")

compute the perspective transform matrix and then apply it
M = cv2.getPerspectiveTransform(src, dst)
warped = cv2.warpPerspective(image, M, (width, height))
warped = warped[100:, 60:150]
return the warped image
return warped.astype('uint8')

def _top_view_transform(self, cropped_image):
top_image = np.empty([self.U, self.V], dtype=int)
L0 = self.H_pixel * tan(self.tilt)
for Ui in range(self.U):

gamma = self.v_fov * ((self.U - Ui) / self.U)
Li = self.H_pixel * tan(self.tilt + gamma)
x = int(Li - L0)
for Vi in range(self.V):

beta = self.h_fov * ((self.V - Vi) / self.V)
y = int(Li * tan(self.h_fov - beta))
print(x, y)
top_image[x][y] = cropped_image.getpixel((Ui, Vi))

top_image = Image.fromarray(top_image, 'P')
imageio.imwrite('top_view/_lanes.png', top_image)

4.2.4 Model fitting

After the Inverse Perspective Transformation, the obtained image has been used for model
fitting, whose aim is to extract meaningful information from the pixels associated to lane
lines. In this work, the python class RoadModel has been built to implement this step. Its
constructor is called each time the method compute_params, part of the LaneKeepingAl-
gorithm class, is passed to the interpreter in the main cycle. This class divides the image
received as input in two different sections, as suggested in [15]:

48

4.2 – Lane Line Marking Detection

1. Near view image: for this section, a straight line detection algorithm has been
developed by using a probabilistic Hough transform. The basic theory behind this
technique has been already explained in subsection 4.2.1.

2. Far view image: on this section is applied a least-squares polynomial fitting by
identifying the pixels that represent the curved lines and using the Numpy function
polyfit inside get_coeff to compute the polynomial’s parameters (c, d, e). By de-
fault, the polynomial order has been set equal to two, so a parabolic model is used.
Giving the identified points representative of the lines, ordered as {(x1, y1), . . . , (xn, yn)},
the problem is quite simple:

n
∑n
i=1 xi

∑n
i=1 x

2
i∑n

i=1 xi
∑n
i=1 x

2
i

∑n
i=1 x

3
i∑n

i=1 x
2
i

∑n
i=1 x

3
i

∑n
i=1 x

4
i

︸ ︷︷ ︸

M

cd
e

 =

∑n
i=1 yi∑n
i=1 yixi∑n
i=1 yix

2
i

︸ ︷︷ ︸

Y

(4.7)

So the well known least-squares solution can be computed:cd
e

 = M †Y (4.8)

where M † is the pseudo-inverse.

An idea of the accuracy of the model fitting algorithm is given in Figure 4.9.

Figure 4.9: Model fitting algorithm: accuracy

49

4 – Computer vision

Follows the code with detailed comments.

def get_coeff(points, n):
Returns the coefficients of the polynomial of order n fitting the points
in 2D with Least Squares
return list(np.polyfit(np.flip(points[:, 0]), np.flip(points[:, 1]), n))

def poly(coeff, y, n, w, point):
Uses the poly coefficients to compute x coordinates from y ones
x2 = 0
y2 = np.copy(y[:point])
for i in range(n+1):

x2 += coeff[i]*(y2**(n-i))

h = len(x2) - 1
Limits the computation of x coordinates to the ones inside the image width
for i in range(h, -1, -1):

if x2[i] < 0 or x2[i] >= w:
x2 = x2[h:i:-1]
y2 = y2[h:i:-1]
break

return x2, y2

class RoadModel(object):
"""
The constructor receives as input the image for model fitting, the lane
width currently measured, the polynomial order for the far view section,
the save-to-disk option and the fraction of the image height that is
considered as near view section.
"""
def __init__(self, img, lane_width,

poly_order=2, save_to_disk=False, fract=0.5):
self.img = img # Input image
if self.img is None:

print("Error")
quit()

self.h2 = self.img.shape[0] # Image's height
self.fract = fract # Near view section's fraction
self.h = int(self.h2 * self.fract) # Near view section
self.w = int(self.img.shape[1]) # Image's width
self.error = False # Error variable
self.stride = 2 # n° of pixels ahead to be considered for the fitting
self.skip = 5 # n° of pixels to skip when a line's pixel is identified
y, x = self._get_left_point() # get the pixel at the bottom of left line
self.img[y:, x:(x+1)] = 255 # extends the left line with a straight line
self.image_to_display = np.copy(self.img) # image to be saved to disk
self.real_width = lane_width # Current lane width
self.save_to_disk = save_to_disk # Save-to-disk option
self.poly_order = poly_order # Polynomial order for far view

50

4.2 – Lane Line Marking Detection

def _get_left_point(self):
"""
It gets the pixel at the bottom of the left line
"""
for i in range(self.h2 - 1, -1, -1):

for j in range(int(self.w/3)):
if self.img[i, j] > 200:

return i, j

def get_dfc(self, center_line, right_line):
"""
It returns the number of pixels between the center of the lane and the
position of the front of the car. This measure is needed for converting
it to meters
"""
for i in range(self.h2-5, -1, -1):

for j in range(center_line[0]+5, right_line[0]-5, 1):
if self.image_to_display[i, j, 0] > 100:

dfc = j - center_line[0]
return dfc

def compute_params(self):
"""

- It computes the Hough transform for the near view image by cropping
the top view image to extract all the pixels that have the y
coordinate between the bottom and a fraction of the height determined
by the variable "fract" (default 0.5).

- It converts the top view image from grayscale to RGB to be displayed
after linear and parabolic fitting lines will be drawn on it.

- It saves the points where the straight lines computed through Hough
transform end. From this points to the upper end of the image, a
polynomial least-squares fitting will be applied.

- It checks if the straight lines have been detected or not.
The fundamental ones are the ones that delimit the lane on which the
car is. The opposite one is useful to mediate the lines parameters,
keeping the supposition that the lines have quite identical parameters
at a certain point.

- It computes the lane slope from center and right line segments and the
yaw error from it, converting the measure in radians.

- It computes the lateral offset, that is the distance from the front of
the car and the center of the lane, by using the distance in the image,
measured in pixels, and then converting it to meters by exploiting the
knolwedge of the lane width.

- It uses the method "compute_poly_params" to fit the far view section and
compute the curvature of the lane.

- Finally, it returns lateral offset, yaw error and curvature, the
parameters needed by the nonlinear MPC.
"""
crop_img = self.img[self.h:, :]
lines = cv2.HoughLinesP(crop_img, 4, np.pi/60, 10,

51

4 – Computer vision

minLineLength=10, maxLineGap=10)
self.image_to_display = cv2.cvtColor(self.image_to_display,

cv2.COLOR_GRAY2RGB)
flag = [False, False, False]
[left_line, center_line, right_line] = (None, None, None)

for line in lines:
for x1, y1, x2, y2 in line:

y1 += self.h
y2 += self.h

if any(flag):
if abs(x1-point[1])<5:

continue

if y1 < y2:
point = [y1, x1]

else:
point = [y2, x2]

if all 3 lines are detected, display them and
if x1 < self.w/3:

left_points = np.array(point, dtype='int')
left_line = (x1, y1, x2, y2)
flag[0] = True

elif x1 > self.w*2/3:
right_points = np.array(point, dtype='int')
right_line = (x1, y1, x2, y2)
flag[1] = True

elif x1 > self.w/3 and x1 < self.w*2/3:
center_points = np.array(point, dtype='int')
center_line = (x1, y1, x2, y2)
flag[2] = True

cv2.line(self.image_to_display, (x1,y1), (x2,y2), (0,255,0), 1)
plt.plot([y1, y2], [x1, x2])
if self.save_to_disk:

cv2.imwrite('top_view/houghlines.png',
self.image_to_display)

if all(flag):
break

lines = [left_line, center_line, right_line]
left_detected = True
for cnt, line in enumerate(lines):

if not line:
if cnt == 0:

print("Opposite lane line not detected")
left_detected = False

if cnt in (1, 2):

52

4.2 – Lane Line Marking Detection

raise Exception("""Attention,
line detection not ended correcty""")

if left_detected:
points = [left_points, center_points, right_points]
end_points = (left_points[0], center_points[0], right_points[0])

else:
points = [center_points, right_points]
end_points = (center_points[0], right_points[0])

lane_width_pixel = right_line[0] - center_line[0]
#slope of the straight lines wrt the vertical direction of the image
lane_slope=((right_line[2]-right_line[0])/(right_line[3]-right_line[1])

+ (center_line[2]-center_line[0])/(center_line[3]-center_line[1]))/2
yaw_error = radians(np.arctan(lane_slope))
dfc = self.get_dfc(center_line, right_line)
if dfc is None:

dfc = lane_width_pixel
lateral_error = (0.5 - float(dfc/lane_width_pixel))*self.real_width
print("Lateral error: %.2f" %lateral_error)
print("Yaw error: %.2f" %yaw_error)
curvature = self.compute_poly_params(points, end_points, left_detected)
return curvature, lateral_error, yaw_error

def compute_poly_params(self, points, end_points, left_detected):
"""

- This function does the polynomial fitting of the lane lines in the far
view section. It identifies the pixels that are representative of the
lines and it inserts their coordinates in 3 different vectors, one for
each line.
In order to have more measurements to meadiate, also the line of the
opposite lane is fitted (the left line). This isn't always detected
and in this case the computation of lane parameters is done without
the information coming from this line. The loop iterates through the
entire image, when it identifies a pixel with value higher than a
threshold it stacks the coordinate of the pixel x steps ahead,
with x=stride. This to be near the center of the line and not at the
border.
The image is vertically subdivided in 3 equal parts in order to
cathegorize the pixels in left, center and right points. When a pixel
is cathegorized, the loop advances of a number of pixels equal to "skip",
to leave the already identified line and search for the others in the row.

- The get_coeff function is applied to each vector of points to get the
coefficients of the identified polynomial and the mean of the curvature
of the 3 lines is computed.

- Another loop uses the information obtained before to display in red the
identified lines on the top-view image, if save_to_disk=True

- Finally, the mediated curvature needed by the contoller is returned
"""
Curved line detection

53

4 – Computer vision

if left_detected:
left_points, center_points, right_points = points

else:
center_points, right_points = points

Builds the data-structures that are used for fitting of the lane lines
for i in range(self.h2 - 1, -1, -1):

p = 0
for j in range(self.w):

if (j + p) < self.w:
if self.img[i, j + p] > 100:

point = np.array([i, j + p + self.stride])
p += self.skip
if (j + p) < (self.w / 3 - 1):

if left_detected:
left_points = np.vstack((left_points, point))

elif (j + p) < (2 * self.w / 3 - 1):
center_points = np.vstack((center_points, point))

else:
right_points = np.vstack((right_points, point))

else:
break

center_coeff = get_coeff(center_points, self.poly_order)
right_coeff = get_coeff(right_points, self.poly_order)

if left_detected:
left_coeff = get_coeff(left_points, self.poly_order)
curvature = np.mean([left_coeff[0], center_coeff[0], right_coeff[0]])
coeffs = [left_coeff, center_coeff, right_coeff]

else:
curvature = np.mean([center_coeff[0], right_coeff[0]])
coeffs = [center_coeff, right_coeff]

print("Curvature: %.2f" %curvature)

Y = np.linspace(0, self.h2, self.h2, endpoint=False)
for i, coeff in enumerate(coeffs):

X2, Y2 = poly(coeff, Y, self.poly_order, self.w, end_points[i])
X2 = np.around(X2)
d = np.c_[X2, Y2]
for row in d:

self.image_to_display[int(row[1])][int(row[0])] = [0, 0, 255]

if self.save_to_disk:
cv2.imwrite('top_view/final.png', self.image_to_display)

return curvature

54

4.2 – Lane Line Marking Detection

4.2.5 Time integration
Scene recognition during motion is easier with a static camera if some knowledge about
the motion behaviour of the vehicle carrying the camera, the so called "ego vehicle", is
given. From Carla, it is possible to get velocity and position of the vehicle, augmenting the
data coming from the sensor used for estimation of road parameters. This method uses a
differential geometry representation of the road lines combined with an inverse perspective
mapping (IPM) model based on a Cartesian space representation of the environment.
During the estimation process, temporal continuity constraints derived from the known
dynamics of the vehicle and constraints on the control input can be exploited.

In this work time integration is used for the estimation of the state of the vehicle for
the NMPC but not for tracking of lane lines or objects. A Kalman filter could be used
to build a model of the motion of the lane lines w.r.t. the ego-vehicle. This estimate is
updated using the previous states and the current measurements. So this is a recursive
approach that aim to keep the state estimate as accurate as possible, while minimizing the
mean-square error and giving robustness to the vision algorithm. This step has not been
implemented in this work because isn’t part of the thesis goals. The result is that lane
estimations can vary a lot between two successive time steps, even if we don’t trust a lot the
new measurements coming from the camera and we have a good a priori knowledge of the
lane lines parameters. For example, from CARLA we can derive easily informations about
lane width and near waypoints of the lines that could be used to enhance the dynamic
model of the lines as a priori informations. In addition, in case of abrupt changes of line
parameters when the car cross an intersection, without a Kalman filter the rapid changes
in model fitting parameters could be critical.

The parabolic model fitting used here for the far section view and presented in 4.2.4
can be used for design a Kalman filter that is proposed in [12] and is reported here for
clarity:

x(k|k − 1) = Ax(k − 1) + w(k − 1)
y(k) = Cx(k) + v(k)

x =
[
φ φ̇ bl br C W

]T

A =

1 v∆t 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C =

1 0 0 0 0 −1
2

1 0 0 0 0 1
2

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

Other lane line dynamic models for Kalman filtering can be found in literature, for example
in [7, chap. 3] and [5].

55

4 – Computer vision

4.3 Vision dynamics
Here is presented a way to take into consideration the information coming from the camera
to get the position of the car w.r.t the lane in order to perform a correct control action
to steer the car[17]. The additional measurements provided by the vision system are
(Figure 4.10):

• yL The lateral offset of the center of mass of the car w.r.t. the center of the lane

• εL The relative yaw angle of the front of the car w.r.t. the tangent of the lane
boundaries at the lookahead

Figure 4.10: The vision system derives the distance yL between the vehicle speed line at
the lookahead L and the lane boundaries and also the yaw error εL

The dynamic of these two variables is fundamentally the following:

ẏL = vxεL − vy − ψ̇L (4.9)
ε̇L = vxKL − ψ̇ (4.10)

where KL represents the curvature of the road.
We can now combine the vehicle lateral dynamic and the vision dynamic systems to-

gether into a single augmented dynamical system with an exogenous measured disturbance:

ẋ = Ax +Bu + Ew
y = Cx

where x = [vy, ψ, yL, εL]T is the state vector of the augmented system, y = [ψ̇, yL, εL]T is
the output vector, u = δf is the control input and w = KL is the measured exogenous
disturbance. The resulting combined model is:

v̇y

ψ̈

ẏL

˙εL

 =

−Cf + Cr

mu
−u− Cfa− Crb

mu
0 0

−Cfa− Crb
Izu

−Cfa
2 + Crb

2

Izu
0 0

−1 −L 0 u
0 −1 0 0

vy

ψ̇

yL

εL

+

Cf
m
aCf
Iz
0
0

 δf +

0
0
0
vx

KL (4.11)

56

4.3 – Vision dynamics

y =

0 1 0 0
0 0 1 0
0 0 0 1

vy

ψ̇

yL

εL

+

0
0
0

 δf (4.12)

As before, it is possible to derive the transfer function between the steering angle and the
lateral offset from the state-space model. The difference in this case is only that this TF
considers the offset at the lookahead and not the actual offset as before. This improvement
is important mostly at high speeds, where the lookahead plays an important role for the
stability of the systems. For the purposes of this thesis, high curvature roads with low
speed, this difference is secondary if the sampling time is below 0.1 seconds but the system
become unstable for higher sampling times. The analysis of possible control systems using
these models is addressed in the next chapter.

57

58

Chapter 5

Vehicle dynamics

To effectively design a control system for autonomous vehicles, a good and possibly simple
to handle dynamic model of the system under study is needed. In this chapter are presented
the dynamic models that will be used for the design of the controllers. Here kinematic and
dynamic aspects are explained in details to give a clear overview to the reader. All these
models are derived from the bicycle model, whose dynamics is already implemented in the
Vehicle Dynamics Blockset™ of Matlab[18]. This toolbox has been extensively used for
the development of all the control strategies presented in this work.

5.1 Notation for vehicle dynamics
Vehicle motion is typically described in terms of the velocities: forward, lateral, vertical,
roll, pitch and yaw in the vehicle-fixed coordinate system as referenced to an earth-fixed
(i.e. inertial) reference frame (respectively u, v, w, p, q and r). A vehicle is decomposed
in two main parts: the unsprung mass (the wheels and the part of suspension and braking
system directly connected) and the sprung mass (all the rest). The Society of Automotive
Engineers (SAE) has introduced standard coordinates and a notation to describe vehicle
dynamics that are widely used [16, p. 54]. Here the earth-fixed reference frame’s axes are
referred as X, Y and Z and the vehicle reference frame’s axes as x, y and z. The angles
are roll (θ), pitch (φ) and yaw (ψ).

Figure 5.1: Vehicle dynamics coordinate system-SAE J7601

59

5 – Vehicle dynamics

Figure 5.2: Bycicle model [19]

Referring to Figure 5.2:

• ψ is the yaw angle

• β is the sideslip angle

• u is the forward velocity

• ν is the lateral velocity

• ρ = 1/R is the turn radius, where R = OO′

The forces (Fx, Fy, Fz) and moments (Mx, My, Mz) are associated with both the tires
and the subscripts f and r stay for front and rear tire respectively. In this simple case, to
derive the equations of longitudinal and lateral motion we can use Newton’s equations for
translational motion in x and y and Euler’s equations for angular motion in z. The external
forces that act on the vehicle are tyre contact forces and aerodynamic forces. Before
addressing the problem of modelling a simple dynamical system, a series of simplifications
has been done:

• A "bicycle" dynamical model is considered, having longitudinal, lateral and yaw mo-
tion. That is, planar motion is parallel to the road’s surface and no vertical, pitch or
roll motion is present (left and right tyre side-slip angles are equal).

• The mass of the vehicle is lumped in the center of mass, lying in the segment that
connects the two wheels.

• The tractive force comes only from the front wheel.

60

5.2 – Longitudinal Vehicle Motion

• The rolling resistance for both wheels is directly proportional to the normal force on
the tire.

• Clearance and deformation of the steering system is neglected.

• The rotation angle of the front wheel δf is taken as an input directly.

• The change of the tyre characteristics and the role of the aligning torque on the left
wheel caused by load changes are disregarded.

• The aerodynamic force is ignored (but will be taken into consideration by the Simulink
model).

So, in the case of the linear model, the control system will have as control signal the angle
of the front wheel δf . Thus the centrifugal force is generated at the center of mass, which
causes the lateral reaction forces Fy1 and Fy2 and the corresponding cornering angles α1
and α2. The forward-velocity vector is ~V = ui + vj. Despite these simplifications, the
compliance of the pneumatic tires has been taken into account because it has a significant
effect on vehicle dynamics. Recalling that di

dt
= rj and dj

dt
= −ri it is possible to write:

aG = dVG

dt
= u̇i + urj + j− vri = (u̇− vr) i + (v̇ + ur) j = axi + ayj (5.1)

ax = u̇− vr = u̇− u2ρβ (5.2)
ay = v̇ + ur = uβ̇ + u̇β + u2ρ (5.3)

5.2 Longitudinal Vehicle Motion
Application of Newton’s equation in the x direction gives[16, p. 58]:

max = Fxr −Rxr −Rxf −DA −mg sinα (5.4)
Where the aerodynamical force DA is given by:

DA = 0.5ρCdA(u+ uw)2 (5.5)
and F is the tractive force, R is the rolling resistance, Cd the drag coefficient, ρ the air
density, A is the maximum vehicle cross-sectional area, u the vehicle velocity and uw the
wind velocity. As supposed before, a direct relationship between the rolling resistance and
the normal force on the tire is present [16]:

Rx = Rxr +Rxf = f(Fzf + Fzr)
where f is the rolling-resistance coefficient and Fzf , Fzr are the normal forces that act on
the tire due to the vehicle weight.

Obviously, at the equilibrium the weight is balanced by the normal forces at the wheels.
If the vehicle is still, the forces distribution is symmetric w.r.t. the longitudinal direction,
but the more the vehicle is accelerating the more the forces distribution will act ahead from
the center of the wheel and the rolling friction increases. In fact, the rolling coefficient is:

f = B0 +B2V
2 (5.6)

where B0 depends mainly on the road surface and B2 on the tire.

61

5 – Vehicle dynamics

5.3 Lateral Vehicle Motion

5.3.1 Model derivation
Now the dynamic equations for the single track (bicycle) model are derived. The velocities
we have to consider are:

• u: forward speed

• v: lateral speed

• r = ψ̇: yaw rate

Referencing the center of mass we have:

VG = ui + vj (5.7)
ψ̇ = rk̇ (5.8)

Being V the speed of the centroid and R the distance between O and O′, we have
V = Rψ̇ (ωr = ψ̇) and the following relationship hold:

u = V cos β (5.9)

As the sideslip angle at the GC β is very small, we can assume u = V = Rψ̇ and:

β = arctan v
u
≈ v

u
(5.10)

Consider now the lateral dynamics of the vehicle in the y direction due to steering. The
following equations are derived applying Newton’s second law to both lateral and circular
motion:

Fy1 + Fy2 = may = m(v̇ + uψ̇) (5.11)
aFy1 − bFy2 = Izψ̈ (5.12)

where Fy1, Fy2 are the lateral reaction forces on the front and rear wheels, m is the vehicle
mass, a, b are the horizontal distance between the front and rear axles and the vehicle
centroid, and Iz is the moment of inertia of the vehicle body with respect to the z-axis.
The lateral forces are related to the slip angles α1 and α2. This relationship is nonlinear
but for small slip angles we can use the approximation:

Fy = −Cαα

For the sake of simplicity this linear relationship will be used for the development of the
theory. However, the bicycle model of Matlab divides the normal forces by the nominal
normal load to vary the effective friction parameters during weight and load transfer:

Fy1 = −Cy1α1µf
Fz1

Fznorm
Fy2 = −Cy2α2µr

Fz2
Fznorm

62

5.3 – Lateral Vehicle Motion

The block uses these equations to maintain pitch and roll equilibrium:

Fz1 = bmg − (u̇− vψ̇)mh
a+ b

Fz2 = amg − (u̇− vψ̇)mh
a+ b

The front and rear tire slip angles can be obtained from the following geometrical relation-
ships:

α1 = arctan
(
v + aψ̇

u

)
− δf ≈

aψ̇

u
+ β − δf (5.13)

α2 = arctan
(
v − bψ̇
u

)
≈ β − bψ̇

u
(5.14)

Therefore,

α1 − α2 = (a+ b) ψ̇
u
− δf = L

R
− δf (5.15)

or
δf = L

R
− (α1 − α2) (5.16)

where the static part is equal to L
R (known as the Ackermann angle) and the dynamic part

is equal to the difference between the two tire slip angles. Assuming that the vehicle is in
a steady turn can give us a deep insight of the importance of the slippage of the tires in
vehicle dynamics. In this condition ψ̇ = 0 and equations (2.5) and (2.6) becomes:

mu2/R = Fy1 + Fy2 (5.17)
0 = Fy1a− Fy2b (5.18)

Thus the lateral forces become:

Fy2 = m
au2

LR
Fy2 = m

bu2

LR

Using the relation between lateral forces and slip angles gives:

α1 = mu2b

RLCf
α2 = mu2b

RLCr

where h is the vertical distance from center of mass to axle plane. Now, substituting these
relationships in (2.9) and knowing that, in steady-state, ay = u2/R gives:

δf = L

R
−
(
mb

LCf
− ma

LCr

)
u2

R
≡ L

R
−Kay (5.19)

where K is the stability factor [19]. When K > 0 the vehicle is termed understeer ; when
K < 0, the vehicle is termed oversteer ; and when K = 0, the vehicle is termed neutral
steer. For example, an understeer vehicle (as all commercial vehicles), the steer angle must
increase with speed to maintain a constant-radius turn.

63

5 – Vehicle dynamics

Having said that, transient 2-dof linear models are now considered. Rewriting equations
(2.5) and (2.6) and still assuming that the front and rear tires are linear [16, p. 70], we
have:

m(β + uψ̇) = Cfδf − (Cf + Cr)β −
(Cfa− Crb

u

)
ψ̇ (5.20)

Izψ̈ = aCfδf −
(
Cfa+ Crb

)
β −

(Cfa2 − Crb2

u

)
ψ̇ (5.21)

where u is the velocity component in the longitudinal direction. Rearranging this equations
yields the state space system described as below:

Ẋ = Ax + Bu (5.22)

and, remembering that β = v/u, it is possible to expand it obtaining:

d

dx

[
β

ψ̇

]
=

−
(
Cf + Cr

m

)
−
(
Cfa− Crb

mu

)
− u

−
(
Cfa− Crb

Iz

)
−
(
Cfa

2 + Crb
2

Izu

)

[
β

ψ̇

]
+

Cf
m
aCf
Iz

 δf (5.23)

5.3.2 Stability analysis of the linear model
The system above is internally stable if all the eigenvalues of the state matrix A have
negative real part. In this case, the characteristic polynomial must have two roots with
negative real part:

s2 − tr(A)s+ det(A) = 0 (5.24)

tr(A) = −
[(

Cf + Cr
m

)
+
(
Cfa

2 + Crb
2

Izu

)]
< 0 (5.25)

det(A) = CfCr
(
a2 + b2

)
− u2m (Cfa− Crb)
mIzu

(5.26)

Analysing equation 5.26, it is possible to compute the velocity that makes the state matrix
singular, hence an eigenvalue becomes null and the system looses asymptotic stability.
Imposing det(A) = 0 this speed, called critical, is:

Vcr =
√

CfCrL
2

m (Cfa− Crb)
(5.27)

5.3.3 Augmented model
An augmented state space model of this problem is present in the literature [20] and will
be used as the final model for the linear control strategy. For clarity yr is defined as
the lateral deviation of the mass center and ψd is the yaw angle of the trajectory to be
followed, so the quantity ψ − ψd has to be minimized too. So the final linear model of the

64

5.3 – Lateral Vehicle Motion

front-wheel-steering vehicle is:

d

dx

yr
ẏr

ψ − ψd
ψ̇ − ψ̇d

 =

0 1 0 0

0 A1

u
−A1

A2

u

0 0 0 1

0 A3

u
−A3

A4

u

yr
ẏr

ψ − ψd
ψ̇ − ψ̇d

+

0
B1
0
B2

 δf +

0

A2 − u2

0
A4

 ρ (5.28)

where:

A1 = −(Cf + Cr)
m

A2 = −(Cfa− Crb)
m

A3 = −(Cfa− Crb)
Iz

A4 = −(Cfa2 + Crb
2)

Iz
B1 = Fx + Cf

m
B2 = a(Fx + Cf)

Iz

where Fx is the tractive force in the front wheel. The output equation is:

y = yr + ds(ψ − ψd) = [1 0 ds 0]x (5.29)

that represent the lateral deviation obtained when the distance between the center of the
vehicle and the camera is ds. The transfer function from the front wheel steer angle δf and
the output y is[16, p. 354]:

y(s)
δf (s) = 1

∆(s)

[
(dsB2 +B1)s2 + ds(B1A3 −B2A1) +B2A2 −B2A4

u
s+B1A3 −B2A1

]
(5.30)

where
∆(s) = s2

[
s2 − A1 + A4

u
s+ A1A4 − A2A3

u2 + A3

]
This state space equation with its transfer function will be used in PID control presented
in Chapter 6, in parallel with the bicycle model block present in the Vehicle Dynamics
Blockset. Also the nonlinear MPC will use a model similar to 5.28, but simple longitudinal
dynamics is added and the longitudinal speed in this case is a state variable.

65

66

Chapter 6

Control

In this chapter are shown three different control strategies found in literature and adapted
to this case. The vehicle control can be decoupled into lateral and longitudinal control
and this way is used here for the design of the PID controller, focusing on lateral control.
Other control techniques include Nonlinear Model Predictive Control, which is based on a
nonlinear vehicle model, and end-to-end convolutional neural networks.

First of all, a linear feedback control strategy with PID control has been adopted. It is
based on the vehicle linear model presented in Chapter 5.

Another hugely adopted control solution for trajectory tracking is the MPC, that allows
to optimize a cost function over a prediction horizon in order to take present control
actions that consider the estimated future behaviour of the system. Being an optimization
problem, it naturally takes into account constraints on the various signals and saturation
(i. e. physical limitations of the actuators). In particular, a Nonlinear MPC has been used
[21]. These results have been obtained using Matlab and Simulink.

Finally, a ready-to-run code for end-to-end convolutional neural-networks has been writ-
ten specifically to get informations from CARLA cameras and train the model. The training
and the test wasn’t possible for lack of computational power but a lot of research and test
has been done these years for introducing models like this in steering control because they
are able to extract all the relevant information from the road scenario without the need to
label manually all the different actors.

6.1 PID controller
The main advantage of PID control is that is simple to design, to understand in action and
to implement. The disadvantages are that doesn’t provide any kind of optimization and
adaptiveness to uncertainty in the plant and in the disturbances. In the algorithm that is
proposed here, this control strategy works well for lane keeping but if the road and plant
characteristics change consistently, the control parameters needs to be adjusted manually.
This obviously isn’t good for autonomous vehicles, that’s why in the literature many kinds
of adaptive PID controllers are proposed to update control parameters online. A possible
and simple solution is based on the generalized minimum variance method [22]. Another
possible strategy is to tune the PID parameters at different velocities and use the PID

67

6 – Control

coefficients that have been tuned for speeds near to the actual one. Obviously in this way
the adaptive capability of the controller considers only the speed and not the kind of road
the car is riding on. The Simulink model of this control strategy is reported in figure 6.1.

Figure 6.1: The Simulink model used for PID control

6.1.1 Plant
The plant used for controller design is linear and derived from the "bicycle" model state-
space. The corresponding transfer function has been derived in Chapter 5, equation 5.30.
The vehicle parameters are the following:

Parameter Symbol Value
Mass m 2350 kg
Longitudinal distance from center of mass to front axle a 1.4 m
Longitudinal distance from center of mass to rear axle b 1.6 m
Vertical distance from center of mass to axle plane h 0.5 m
Front tire corner stiffness Cf 80000 N/rad
Rear tire axle corner stiffness Cr 90000 N/rad
Yaw polar inertia Iz 4132 kgm2

Constant forward velocity u 5-10-15-20 m/s
Distance between the center of the vehicle and the camera ds 0.9 m

Table 6.1: Ego-vehicle parameters

The plant continuous time transfer functions for different longitudinal velocities have
been computed with Matlab an they are equal to:

• u = 5 m/s

G = 438(s+ 14.11)(s+ 2.698)
s2(s+ 17.62)(s+ 15.59)

• u = 10 m/s

G = 58.438(s2 + 8.404s+ 38.07)
s2(s2 + 16.6s+ 74.48)

68

6.1 – PID controller

• u = 15 m/s

G = 58.438(s2 + 5.603s+ 38.07)
s2(s2 + 11.07s+ 37.4)

• u = 20 m/s

G = 58.438(s2 + 4.202s+ 38.07)
s2(s2 + 8.302s+ 24.43)

Looking at these transfer functions, it’s evident that increasing the speed moves zeros
and poles towards the imaginary axis on the complex plane. They are all systems of
type 2, so the systems are "structurally" unstable. This is obvious because a system with
zero steering angle as input will never bring to zero the lateral error (or lateral offset as
previously called) neither keep it constant.

Consider instead the transfer function without the 2 poles at the origin (Gs2), that
simply represents the system that has the steering angle as input and the acceleration as
output. This is stable for velocities lower that the critical speed, as evident by looking to
equation 5.27. The zeros and poles for each velocity can be visualized in Figure 6.2.

Figure 6.2: Pole-zero map at different velocities: as speed increases the zeros and poles
move towards the right-half plane making the system less stable

With all these velocities set as reference ones, during simulations the vehicle has been
able to successfully complete the track with a proper PID controller. The dynamical model
of the vehicle used in simulations is encoded inside the the Vehicle Body 3DOF block,
Figure 6.3. It implements a rigid two-axle vehicle body model to compute longitudinal,
lateral, and yaw motion. The block accounts for body mass, aerodynamic drag and weight
distribution between the axles due to acceleration and steering. It has been chosen because
of its simplicity and the absence of pitch and roll motion dynamics that in this case can
be neglected in first approximation.

69

6 – Control

Figure 6.3: Simulink model of the plant for the PID control strategy

It has been configured with the parameters in Table 6.2 and with options Single and
External longitudinal velocity. Its input are the velocity, that is a constant, and the
steering angle signal coming from the controller. This signal and its derivative (the steering
rate) are clamped with saturation constraints to take into account the physical constraints
of a steering system. Also, being the control signal digital, a zero-order-hold (ZOH) block
has been added before feeding it into the plant, that is simulated as a continuous dynamical
system.

The outputs of the plant are:

• position and velocity components of the center of mass in inertial cartesian coordinates
X, Ẋ, Y , Ẏ

• velocity components in ego coordinates ẋ, ẏ

• yaw angle and its derivative ψ, r

Follows additional blocks called Rate transition that make the signal discrete before
the scenario reader and the vision system. These blocks must receive discrete signals to
update the vehicle state in the driving scenario and update the sensor measurements. The
rate of transition is equal to the controller sample time. Then another block converts the
physical quantities coming from the 3DOF block, expressed in SAE J670E convention (see
Figure 5.1, Chapter 5), to ISO8855 convention (the lateral and yaw vectors have opposite
directions, see Figure 6.4).

6.1.2 Scenario Reader and sensor simulation
The physical quantities of the ego vehicle converted before are then packed in a Mat-
lab structure through the function packEgo, that is exploited by the Scenario Reader
block. This Simulink block reads the scenario information and updates the pose and the
speed of the ego car accordingly to data coming from the vehicle dynamics block. A
valid recorded scenario has to be given. This data structure is obtained from the Mat-
lab file coming from the Driving Scenario Designer App by invoking two functions. The

70

6.1 – PID controller

Figure 6.4: From SAE J670E to ISO8855

helperSessionToScenario extracts the scenario information plus the one of the ego car
and other actors and put it in Matlab structures into the workspace.

The helperSaveScenarioToFile saves only the scenario structure in another file,
the one used by Scenario Reader. This block outputs actors detections and the lane
boundaries in ego coordinates at different equispaced lookaheads (see Figure 6.5). In
this case, actor detections are discarded and lane boundaries detections are fed into the
Vision Detection Generator block, that simulates a lane detection algorithm from cam-
era measurements (see Figure 6.6). Here are defined the pose of the sensor, the output bus
type, measurements and camera intrinsics settings. Also parameters related to precision
and noise of lane detection can be set in order to put ourselves in a more realistic situation.

Finally, few words about the output bus. This is created by an already existing Matlab
script called helperCreateLanSensorBuses, that creates a bus with 2 bus lines, one for
left road line and one for the right one. Both lines are buses themselves that bring the line
parameters identified by the Vision Detection Generator block. The angular quantities
are converted in radians.

In this case, the lateral offset that is considered is the actual one, without lookahead.
So, information about curvature of the lane ahead of the vehicle isn’t necessary. All that
is needed is the actual offset. This information is used to compute lane center. A Matlab
function uses information about the strength of the lane lines captured by the vision system
to conclude if both lines are observed or only one of them. In the first case, the lane center
is computed by using the a-priori knowledge about the lane width (3.7 m in our situation)
and adding or subtracting it to the offset depending if the line detected is the right or
left one. In the second case both lines offset is used and an average is computed for noise
filtering purposes (see Figure 6.7). Finally, a unitary minus is applied to be compliant with
SAE J670E.

To connect lane detection data to the controller, specific buses created for this purpose
have been used. The function CreateLaneSensorBuses creates a Simulink bus type that
describes sensor structure interface for lane boundaries from lane sensor. It contains infor-
mation about κ, κ̇, ψ, e1, e2 and lane strength. This bus type is used by another bus, the
Lane Sensor bus, to output left and right lane lines information in a single bus. This bus

71

6 – Control

Figure 6.5: Scenario Reader block

Figure 6.6: Vision Detection Generator block

type is used by the Vision Detection Generator block to send the information to the
Estimate Lane Center block, see Figure 6.8.

72

6.1 – PID controller

Parameter Value
Required interval between sensor updates (s) Ts
Required interval between lane detection updates (s) Ts
Sensor’s (x,y) position (m) [ds, 0]
Sensor’s height (m) 1.1 m
Yaw angle of sensor mounted on ego vehicle (deg) 0
Pitch angle of sensor mounted on ego vehicle (deg) 30
Roll angle of sensor mounted on ego vehicle (deg) 0
Maximum number of reported lanes 2
Coordinate system used to report detections Sensor Cartesian
Maximum detection range (m) 5
Minimum lane size in image (pixels) [20,3]
Accuracy of lane boundary (pixels) 3
Focal length (pixels) [100,100]
Optical center of the camera (pixels) [320,240]
Image size produced by the camera (pixels) [800,600]
Radial distortion coefficients [0,0]
Tangential distortion coefficients [0,0]
Skew of the camera axes 0

Table 6.2: Vision system parameters

Figure 6.7: Lane center computation: the functions are selectively activated depending on
which lanes are detected

73

6 – Control

(a) Lane Sensor Boundaries bus

(b) Lane Sensor bus

Figure 6.8: Vision bus

6.1.3 Controller
Now that all the information needed are available (both a-priori and real time ones), we can
design and test our PID controller. As stated before, a classical Proportional-Integrative-
Derivative controller is designed with the help of Matlab Control System Toolbox. The
control law in continuous time is given by:

Gc(s) = δf
yr

= Kp + KI

s
+KDs (6.1)

First, the three gains of the controller are computed with the Matlab function pidtune.
Then these gains have been tuned manually to test the effect they have on the control
performance and to get the best possible one. This controller in parallel form must be
converted to a digital controller, so discretization must be applied after this manual tuning.
The sampling time is Ts = 0.1 s for velocities up to 10 km/h and Ts = 0.05 s for higher
speeds. A zero order hold (ZOH) is applied to the control input coming from the controller.
The open loop transfer function is computed for each of the controllers and the bode
diagrams with PID constants are reported in Figure 6.9. In Figure 6.10 are reported the
corresponding graphs with plots of lateral velocity and steering angle.

The tuning of the PID controller has to be done taking into consideration two conflicting
goals: handling, that means requiring the lateral error to be bounded during all the travel,
and comfort, that is directly related to the lateral acceleration and so to the steering rate.

74

6.1 – PID controller

(a) u = 5 m/s - Ts = 0.1 s (b) u = 10 m/s - Ts = 0.1 s

(c) u = 15 m/s - Ts = 0.05 s (d) u = 20 m/s - Ts = 0.05 s

Figure 6.9: Bode plots of magnitudes for various longitudinal velocities

The trade-off can be set by tuning the PID coefficients. Some considerations have to be
done about that:

• KP: it multiplies directly the lateral deviation and is important to put it high enough
to guarantee good lane-keeping action but moderate to avoid instability.

• KI: integral action is needed to have zero steady-state error. The higher the coefficient
is, the faster the system will reach this condition. The counterpart of this action is
that it has a phase delay of 90 degrees and this can bring problems in sharp changes of
road curvature, in particular on S-shaped curves, where the lag can cause the vehicle
to get out of the street.

• KD: derivative action that is very useful during high curvature rates to keep the
vehicle on track. It produces a phase lead of 90 degrees that causes the system to
react promptly on curves. The counterpart is that it amplifies the ripple due to errors
in measurements, noise and unmodelled dynamics. In fact, when this term is too high,
it forces the vehicle to steer right and left at a very high frequency even when the
road is straight. This greatly worsens the comfort goal.

75

6 – Control

(a) KP = 4.16 KI = 5.25 KD = 0.28 (b) KP = 3.5 KI = 6 KD = 0.7

(c) KP = 7 KI = 3 KD = 0.7 (d) KP = 6 KI = 7 KD = 0.8

Figure 6.10: Plots of steering angle and lateral deviation in time for the four conditions
reported in figure 6.9

By looking at the PID coefficients related to the various velocities, we see that when
the speed is higher, the coefficients tend to be higher. This can be explained intuitively by
the need of high controller action at high speeds, in particular in the derivative term that
anticipates the changes in curvature and the integral one to reach zero steady state faster
at higher speed.

A sort of adaptive control strategy has been obtained by simply dividing the speed
range between 0 and 20 m/s in four equal intervals and by change the PID parameters
depending on the interval on which the speed is. This allows speed variations, keeping in
mind that high accelerations could be critical for this control system, that uses a 3DOF
bicycle model.

A UI knob object, visible in Figure 6.11, has been created with the uiknob function to
tune the speed of the car and adopt the gain-scheduling technique. Its initial value has
been set to the initial velocity of the ego vehicle. The function knobTurned is called each
time the knob is turned and updates the value of uc and Ts in the running simulation. This
last parameters is set to 0.1 s when uc < 12.5 m/s and to 0.05 s when 12.5 < uc < 20 m/s.
The scheduling logic and the modified PID gains for this case are:

76

6.1 – PID controller

• C1: KP = 4.16 KI = 5.25 KD = 0.28 Ts = 0.1 0 ≤ uc < 7.5

• C2: KP = 5 KI = 6.5 KD = 0.7 Ts = 0.1 7.5 ≤ uc < 12.5

• C3: KP = 7 KI = 5 KD = 0.7 Ts = 0.05 12.5 ≤ uc < 17.5

• C4: KP = 8 KI = 7 KD = 1 Ts = 0.05 17.5 ≤ uc < 22

The block Adapter runs each step a Matlab function that selects the correct controller
parameters depending on uc and updates the PID parameters at runtime. This speed
is the one controlled by the knob filtered by a low-pass-filter of type 1/(τs + 1) to more
realistically simulate the acceleration of the car. In fact, the 3DOF block takes as input the
desired velocity but a step on it produces an abrupt acceleration on the vehicle that needs
to be smoothed for comfort purposes. The time constant τ used to simulate longitudinal
dynamics is 1 second.

Figure 6.11: Knob used to tune the desired velocity of the ego vehicle. The real velocity
changes with a first-order dynamics

77

6 – Control

The Matlab script and knob tuning function are presented below:

1 close all
2 %% PID deltas for tuning
3 Dd = 0.8;
4 Di = 7;
5 Dp = 6;
6 Ts = 0.05;
7 %% Input constraints
8 steering_saturation = 1.2;
9 steering_rate_saturation = 5;
10 %% Vehicle parameters
11 m = 2350; %[kg] − mass
12 a = 1.4; %[m]
13 b = 1.6; %[m]
14 h = 0.5; %[m] − Vertical distance from center of mass to axle plane
15 Cf = 80000; %[N/rad]
16 Cr = 90000; %[N/rad]
17 Iz = 4132; %[kg*m^2]
18 Fx = 0; %[N] − 0 if the vehicle drives at uniform velocity
19 ds = 0.9; %[m] − distance between the center of the vehicle and the

camera
20
21 %% Configuration of buses and simulation
22
23 % The drivingScenario session file is converted to a drivingScenario object
24 % initial conditions of ego car and actor profiles
25 fileName = 'laneFollowingScenario';
26 [scenario,egoCar, actor_Profiles] = helperSessionToScenario('Scenario1');
27 helperSaveScenarioToFile(scenario,fileName);
28 load(fileName)
29 simStopTime = vehiclePoses(end).SimulationTime;
30
31 % Position and velocity selectors
32 posSelector = [1,0,0,0,0,0; 0,0,1,0,0,0]; % Position selector
33 velSelector = [0,1,0,0,0,0; 0,0,0,1,0,0]; % Velocity selector
34
35 % Initial condition for the ego car in ISO 8855 coordinates
36 v0_ego = egoCar.v0; % Initial speed of the ego car (m/s)
37 uc = v0_ego;
38 x0_ego = egoCar.x0; % Initial x position of ego car (m)
39 y0_ego = egoCar.y0; % Initial y position of ego car (m)
40 yaw0_ego = egoCar.yaw0; % Initial yaw angle of ego car (rad)
41 L = Ts*uc; % Lookahead distance (m)
42
43 % Convert ISO 8855 to SAE J670E coordinates

78

6.1 – PID controller

44 y0_ego = −y0_ego;
45 yaw0_ego = −yaw0_ego;
46
47 % Save the driving scenario to the file to be read by Scenario Reader
48 modelName = 'PID_sim';
49 load_system(modelName)
50 CreateLaneSensorBuses;
51 blk=find_system(modelName,'System','helperScenarioReader');
52 s = get_param(blk{1},'PortHandles');
53 get(s.Outport(1),'SignalHierarchy');
54
55 %% Transfer function
56 s = tf('s');
57 A1=−(Cf+Cr)/m;
58 A2=−(Cf*a−Cr*b)/m;
59 A3=−(Cf*a−Cr*b)/Iz;
60 A4=−(Cf*a^2+Cr*b^2)/Iz;
61 B1=Cf/m;
62 B2=a*Cf/Iz;
63 Delta_s = s^2*(s^2−(A1+A4)/uc*s+(A1*A4−A2*A3)/uc^2+A3);
64 G=1/Delta_s*((ds*B2+B1)*s^2+(ds*(B1*A3−B2*A1)+B2*A2−B2*A4)/uc*s+B1*A3−B2*A1

);
65 G = zpk(minreal(G,10e−3))
66 Gd = c2d(G,Ts);
67 Gd=zpk(Gd);
68 [C,info]=pidtune(G,'PID')
69 Kp = C.Kp + Dp;
70 Kd = C.Kd + Dd;
71 Ki = C.Ki + Di;
72 Cd = pid(Kp,Ki,Kd,1,Ts)
73 cl = feedback(Cd*Gd,1)
74 bodemag(cl), grid on
75
76
77 %% Plant analysis
78 load G1
79 load G2
80 load G3
81 load G4
82
83 figure
84 pzmap(G1,'r',G2,'g',G3,'b',G4,'k'), sgrid
85 legend('u=5 m/s','u=10 m/s','u=15 m/s','u=20 m/s')
86
87 %% Simulation
88 fig = uifigure('Name','Speed Knob','Position',[100 100 283 275]);

79

6 – Control

89 num = uieditfield(fig,'numeric','Position',[69 82 100 20]);
90 kb = uiknob(fig,'Position',[89 142 60 60],...
91 'limits',[0 20],'ValueChangedFcn',@(kb,event) knobTurned(kb,event,num))

;
92 kb.Value = uc;

1 % Create ValueChangingFcn callback
2 function knobTurned(kb,event,num)
3 num.Value = event.Value;
4 assignin('base','uc',event.Value)
5 set_param('PID_sim/uc','Value','uc');
6 pause(0.5);
7 if event.Value <= 12.5
8 assignin('base','Ts',0.1);
9 else
10 assignin('base','Ts',0.05);
11 end
12 set_param('PID_sim/PID','SampleTime','Ts');
13 end

6.2 Model Predictive Control
A limitation of the PID controller in automated driving applications is the complete absence
of predictions about the future state of the system in order to improve the performance.
Information about future vehicle position and orientation w.r.t. the lane can be done using
a dynamic model of the ego vehicle and vision system dynamics, reported in Chapter 5.
Also disturbance and noise models can be used for prediction and state estimation. The
model structure used in an MPC controller appears in Figure 6.12.

6.2.1 MPC fundamentals

Consider a discretized model of the continuous state space dynamical model of the vehicle,
we have:

~x(k + 1) = A~x(k) +B~u(k) + E~w(k) + F ~wud(k) (6.2a)
~y(k) = C~x(k) (6.2b)

where ~x is the state, ~u is the manipulated input, ~w contains measured disturbance, ~wud
the unmeasured one and ~y is the output of the system. This is a numeric LTI state-space
model with stochastic disturbance. As common in this case, to achieve zero steady-state
error, an integrator is included in the dynamical system:

~x(k + 1)− ~x(k) = A(~x(k)− ~x(k − 1)) +B(~u(k)− ~u(k − 1)) + E(~w(k)− ~w(k − 1))

80

6.2 – Model Predictive Control

Figure 6.12: MPC model structure [23]

and, more compactly:

~∆x(k + 1) = A ~∆x(k) +B ~∆u(k) + E ~∆w(k) (6.3a)
~y(k + 1)− ~y(k) = C(~x(k + 1)− ~x(k)) = CA ~∆x(k) + CB ~∆u(k) + CE ~∆w(k) (6.3b)

The state space equations of the augmented model can be rearranged in this form [21]:

~x(k+1)︷ ︸︸ ︷ ~∆x(k + 1)

~y(k + 1)

 =

A′︷ ︸︸ ︷[
A 0T

CA 1

] ~x(k)︷ ︸︸ ︷ ~∆x(k)

~y(k + 1)

+

B′︷ ︸︸ ︷[
B

CB

]
~∆u(k) +

E′︷ ︸︸ ︷[
E

CE

]
~∆w(k) (6.4a)

~y(k) =
C′︷ ︸︸ ︷[

0 1
] ~∆x(k)

~y(k)

 (6.4b)

The model predictive control is a digital control strategy based on the recursive computa-
tion of the state and the output of the dynamical system presented by equations 6.4 for Hp

time steps. It minimizes a cost function of these variables with mathematical optimization
solvers. This happens at each time step and the interval between two consecutive steps is
equal to the sampling time Ts. The solver computes a trajectory of the control variable ~u
to minimize the desired cost function. To reduce the computational complexity, only the
first Hc control input components are computed, while the rest are put equal to the last
one. In MPC terminology, Hp is called prediction horizon and Hc is called control horizon.
Finally, only the first component of the control input vector is applied to the plant and the
other are discarded. This technique is called Receding Horizon Principle and gives to the
controller robustness against disturbances and unmodelled dynamics. Some considerations
about these three coefficients has to be done here:

81

6 – Control

• Ts has to be chosen low enough to consider fast dynamics. Too broad discretization
values can cause instability and weak control performances. Also the presence of
delays must be considered before choosing the right Ts. Obviously, increasing the
sampling time increases also the computational burden for the controller.

• Hp is the prediction horizon and indicates at how many steps ahead the controller
will compute the state and the output of the system. The length of this time window
must be at least equal to the slowest meaningful dynamics of the system. Its length
has to be moderated to allow real time capabilities.

• Hc is the control horizon and indicates how many steps ahead the optimizer in the
controller computes the control input. Usually is lower than half Hp.

Using Matlab, the controller updates its state automatically using the latest plant mea-
surements [23]. It uses a steady-state Kalman filter. In our case, if we consider the linear
system presented in Chapter 5, the predictions at each future time step can be analytically
written. Note that these states are computed using linear predictions but then are filtered
by the Kalman filter for the presence of an unmeasured disturbance wud, considered Gaus-
sian. This input is a stochastically independent white noise, with zero mean and identity
covariance.

~x(k + 1|k)
~x(k + 2|k)
~x(k + 3|k)

...
~x(k +Hp|k)

︸ ︷︷ ︸

~x

=

A
A2

A3

...
AHp

︸ ︷︷ ︸

G

~x(k)+

B 0 . . . 0
AB B . . . 0
A2B AB . . . 0
...

...
AHp−1B AHp−2B . . . AHp−HcB

︸ ︷︷ ︸

H

~∆u(k)
~∆u(k + 1)
~∆u(k + 2)

...
~∆u(k +Hp − 1)

︸ ︷︷ ︸

~∆u

+

E 0 . . . 0
AE E . . . 0
A2E AE . . . 0
...

...
AHp−1E AHp−2E . . . AHp−HcE

︸ ︷︷ ︸

I

~∆w(k)
~∆w(k + 1)
~∆w(k + 2)

...
~∆w(k +Hp − 1)

︸ ︷︷ ︸

~∆w

(6.5a)

82

6.2 – Model Predictive Control

~y(k + 1|k)
~y(k + 2|k)
~y(k + 3|k)

...
~y(k +Hp|k)

︸ ︷︷ ︸

~y

=

CA
CA2

CA3

...
CAHp

︸ ︷︷ ︸

S

~x(k) +

CB 0 . . . 0
CAB CB . . . 0
CA2B CAB . . . 0

...
...

CAHp−1B CAHp−2B . . . CAHp−HcB

︸ ︷︷ ︸

R

~∆u

+

CE 0 . . . 0
CAE CE . . . 0
CA2E CAE . . . 0

...
...

CAHp−1E CAHp−2E . . . CAHp−HcE

︸ ︷︷ ︸

Q

~∆w (6.5b)

So, in the case of a LTI system, the future predictions of our system can be computed
with the a priori knowledge of A, B, C, E, the previewed measured disturbance vector ~∆w
and the control input vector ~∆u computed by the optimizer. This part of the controller
have to minimize a suitable cost function, chosen by the designer to meet some functional
and performance goals. In the case of traditional linear MPC this cost function must be
linear and this can be shown to lead to a quadratic program, that is a convex problem [21].
Moreover, the optimizer can handle constraints on the manipulated variables and their
maximum variation between two successive steps. This is useful to incorporate physical
constraints and limitations of the actuators inside the optimization directly and gives to the
designer an important tool to reach his design goals. The constraints can be also imposed
on the output vector:

~umin(ki)− ε ≤ ~u(ki) ≤ ~umax(ki) + ε

~∆umin(ki)− ε ≤ ~∆u(ki) ≤ ~∆umax(ki) + ε

~ymin(ki)− ε ≤ ~y(ki) ≤ ~ymax(ki) + ε

This for i = 1, ..., Hp. Matlab uses also a slack variable ε to soften constraints in case of
necessity but this is important for numerical problems and is negligible in practice.

In the next subsection, it’s presented the model for the design of the MPC controller.
Many researchers have studied the MPC for the problem of lane keeping on low-curvature
roads by linearisation of the dynamic model and by decoupling longitudinal and lateral
dynamics, as have been done here with a simpler PID controller (see [24], [25], [26] and
[27]). In this work, MPC has been used to control not only the steering, as in the previous
case, but also the acceleration. This goal can be reached by implementing the longitudinal
dynamics inside the model, side-by-side with lateral dynamics previously considered. This
means that the longitudinal velocity can change. It enters in the state vector and the
differential equations of the model. That is, the longitudinal velocity has a nonlinear
characteristic and the problem can be solved by moving from linear models to nonlinear
or adaptive models.

Adaptive models are computationally more efficient because the prediction model is
updated at run time with the current values of the parameters and the model stays constant
for all the prediction horizon. This condition has been found to impact a lot on lane keeping

83

6 – Control

performance in case of high varying curvature roads, where velocity can change a lot and
the model is highly nonlinear. For this reason, adaptive MPC has been studied and tested,
but isn’t shown in this thesis. Further works shall investigate the use of this control strategy
in similar scenarios.

The nonlinear MPC (NMPC) has the same characteristics of traditional linear MPC
but the prediction model, the constraints and the scalar cost function to be minimized can
be nonlinear functions. This broadens a lot the possibilities of using a more realistic model
of the system, but complicates a lot the mathematical problem, that now requires non-
convex optimization techniques to find the optimal solution. The minimization algorithm
that Matlab uses for the NMPC is inside the fmincon function. This kind of controller is
the one used in this section to implement a lane keeping algorithm with curvature preview.

6.2.2 MPC vehicle model

So the MPC bases its entire prediction capability on the dynamical model that we give
to it. That’s why a suitable model has to be chosen as a trade-off between simplicity for
real time needs and complexity for taking into consideration the significant dynamics. In
this case the model is derived from the bicycle model used for PID control, but simple
longitudinal dynamics and unmeasured disturbance have been added. The adopted model,
with equations 6.6, has been found in [23]. To avoid confusion between the control input
and the longitudinal velocity, another naming convention has been adopted, as visible in
Figure 6.13. The model presented here is nonlinear because the longitudinal velocity varies
in a nonlinear way, and depends on the input acceleration. This term varies a lot during
rapid changes of curvature and enters in the state of the system.

Figure 6.13: Conventions for the MPC dynamic model [23]

84

6.2 – Model Predictive Control

d

dx

Vy
ψ̇
Vx
V̇x
e1
e2
xud

=

A1 A2 0 0 0 0 0

A3 A4 0 0 0 0 0

ψ̇ 0 0 1 0 0 0

0 0 0 −1
τ

0 0 0

1 0 e2 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

Vy
ψ̇
Vx
V̇x
e1
e2
xud

+

0 B1

0 B2

0 0
1
τ

0

0 0

0 0

0 0

[
a
δf

]
+

0
0
0
0
0
−Vx

0

ρ+

0
0
0
0
0
0
1

wud

(6.6a)

y =

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

Vy
ϕ̇
Vx
V̇x
e1
e2
xud

(6.6b)

where:

A1 = −2Cf + 2Cr
mVx

A2 = −2Cfa− 2Crb
mVx

− Vx B1 = 2Cf
m

A3 = −2Cfa− 2Crb
IzVx

A4 = −2Cfa2 + 2Crb2
IzVx

B2 = 2Cfa
Iz

Here these coefficients have to be recomputed at each iteration because the speed is a
variable. The measured disturbance in this case is the curvature, previewed by the vision
system and lane estimation block. The unmeasured disturbance wud instead is a white
noise that enters in the state of the system in the state equation and contributes as an
additive error to the yaw error e2 at the output. The constraints on the input variables
and their derivative are encoded directly in the controller.

It’s evident that the equations are nonlinear because products between state variables
happen. So the system is not linear nor time-invariant. For example, ψ and Vx multiply
other state variables. To improve the efficiency by exploiting a linearization of the system,
the functions that contains the Jacobians of the state and output equation are passed to
the nonlinear MPC Matlab object. The Jacobians of the state equation are computed each

85

6 – Control

time step easily:

JA =

∂V̇y
∂Vy

∂V̇y

∂ψ̇

∂V̇y
∂Vx

0 0 0 0

∂ψ̈

∂Vy

∂ψ̈

∂ψ̇

∂ψ̈

∂Vx
0 0 0 0

∂V̇x
∂Vy

∂V̇x
∂Vx

0 1 0 0 0

0 0 0 −1
τ

0 0 0

1 0 ∂ė1

∂Vx
0 0 ∂ė1

∂e2
0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

JB =

0 ∂V̇y
∂δ

0 ∂ψ̈

∂δ

0 0

∂V̈x
∂a

0

0 0

0 0

0 0

(6.7)

Being the output equation LTI, the Jacobian is not needed because it coincides with the C
matrix of equation 6.6b. Now that the plant and disturbance models have been presented,
the controller features are shown.

6.2.3 NMPC controller

The nonlinear optimization problem can be written as:

min
~u

J = ‖W̃~y‖2 + ‖Ỹ ~u‖2 + ‖Ṽ ~∆u‖2

s.t.
[
−I
I

]
~u ≤

[
−~umin
~umax

]
[
−I
I

]
~∆u ≤

[
− ~∆u

min

~∆u
max

] (6.8)

86

6.2 – Model Predictive Control

where W̃ , Ỹ and Ṽ are diagonal and positive definite matrices of weights of the form:

W̃ =

W1 0 . . . 0 0 . . . 0 0 . . . 0
0 W1 . . . 0 0 . . . 0 0 . . . 0
...

...
...

...
0 0 . . . W1 0 . . . 0 0 . . . 0
0 0 . . . 0 W2 . . . 0 0 . . . 0
...

...
...

...
0 0 . . . 0 0 . . . W2 0 . . . 0
0 0 . . . 0 0 . . . 0 W3 . . . 0
...

...
...

...
0 0 . . . 0 0 . . . 0 0 . . . W3

(6.9)

Ỹ = 0p Ṽ =

V1 0 . . . 0 0 . . . 0
0 V1 . . . 0 0 . . . 0
...

...
...

0 0 . . . V1 0 . . . 0
0 0 . . . 0 V2 . . . 0
...

...
...

0 0 . . . 0 0 . . . V2

(6.10)

The vectors ~y, ~u and ~∆u are computed as shown in equation 6.5 and are rearranged
grouping their components w.r.t. the parameter type and chronological order, for example:

~y =

Vx(k + 1|k)
Vx(k + 2|k)

...
Vx(k +N |k)
e1(k + 1|k)
e1(k + 2|k)

...
e1(k +N |k)

e2(k + 1|k) + wud(k)
e2(k + 2|k) + wud(k + 1)

...
e2(k +N |k) + wud(k +N)

~u =

a(k + 1|k)
a(k + 2|k)

...
a(k +N |k)
δ(k + 1|k)
δ(k + 2|k)

...
δ(k +N |k)

~∆u =

∆a(k + 1|k)
∆a(k + 2|k)

...
∆a(k +N |k)
∆δ(k + 1|k)
∆δ(k + 2|k)

...
∆δ(k +N |k)

The first matrix is used to weight the outputs, that in this case are the speed Vx, the
lateral error e1 and the yaw error e2, all inside the prediction horizon. The second and
third matrices are used to weight the control input ~u and its rate ~∆u, that in our case
are the steering and acceleration and their derivatives. As evident from definitions in 6.10,
the input vector ~u hasn’t been considered in the cost function of the controller and to
reach this goal its weigh matrix has been set as a null matrix. The motivation for this
choice is that we don’t want to penalize acceleration and steering as long as they fulfill

87

6 – Control

the constraints on them. It’s important that in sharp curves the car is allowed to brake
and steer continuously with its full potential if necessary. The constraints instead will be
active during some operations and a considerable effort has been put to choose the optimal
constraints for the controller. Note that the constraints are not only necessary to take
into account physical limitations of the mechanics of the car but also to limit some control
inputs that would be simply unbearable for the system or annoying for the passengers. So
they are much stricter than the real physical constraints. Opposite considerations has to
be done about the input rate ~∆u because the magnitude of its component has important
consequences on stability and comfort of the passengers. Steering rate and jerk has to
be limited with suitable constraints to have a smooth ride with minimal longitudinal and
lateral jerks. By studying the scientific literature about passenger comfort in transport
systems, it has been found that a good limit on jerk is 0.9m/s3 and a good limit on
steering rate is 1.5 rad/s.

The controller and vehicle parameters are reported in Table 6.3 and the Simulink model
in Figure 6.14. The Collision Detection block was pre-built in Matlab examples and

Figure 6.14: Simulink model of the Nonlinear MPC

simply stops the simulation in case of collisions with other actors. The vehicle dynamics
and vision camera parameters used for simulation is the one used with PID control in the
previous section, so all the considerations done before hold. The differences here regard the
lane center estimation and the controller. The lane parameter estimation and controller
blocks are presented in Figure 6.15. About the first, the informations of interest are not
only the lateral offset as in PID control, but also the yaw error, the previewed curvature
and its derivative. As before, the Simulink model checks how many lanes are detected
by the Vision Detection Generator block. If both are detected, it computes the mean
values for each lane parameter to filter noise. Else, it returns the unique identified lane
parameters or the previous ones in case of failed detection. Then it computes the previewed
curvature knowing the velocity Vx, the curvature and its derivative at time k:

ρ(k + i) = ρ(k) + Vxρ̇∆ti, ∀i = 1, . . . , Hp (6.11)

where ∆ti = T (k + i) − T (k) and i is the number of steps ahead at which curvature is

88

6.2 – Model Predictive Control

Parameter Symbol Value
Mass (kg) m 1575
Yaw moment of inertia (kgm2) Iz 2875
Longitudinal distance from c.g. to front tires (m) a 1.2
Longitudinal distance from c.g. to rear tires (m) b 1.8
Vertical distance from center of mass to axle plane (m) h 0.5
Cornering stiffness of front tires (N/rad) Cf 19000
Cornering stiffness of rear tires (N/rad) Cr 33000
Distance between c.g and camera (m) ds 0.9
Time constant for modelling longitudinal dynamics (s) τ 0.2
Required interval between sensor updates (s) Ts
Required interval between lane detection updates (s) Ts
Sensor’s (x,y) position (m) [ds, 0]
Sensor’s height (m) 1.1
Yaw angle of sensor mounted on ego vehicle (deg) 0
Pitch angle of sensor mounted on ego vehicle (deg) 1
Roll angle of sensor mounted on ego vehicle (deg) 0
Maximum number of reported lanes 2
Coordinate system used to report detections Ego Cartesian
Maximum detection range (m) 30
Minimum lane size in image (pixels) [20,3]
Accuracy of lane boundary (pixels) 3
Focal length (pixels) [100,100]
Optical center of the camera (pixels) [320,240]
Image size produced by the camera (pixels) [800,600]
Radial distortion coefficients [0,0]
Tangential distortion coefficients [0,0]
Skew of the camera axes 0

Table 6.3: Vehicle and vision system parameters

Figure 6.15: Lane center estimation and controller blocks

89

6 – Control

computed.
In order to estimate the state of the system through the estimates coming from the
Estimate Lane Center block and the longitudinal velocity, an Extended Kalman filter is
used. It estimate the state of a nonlinear system using the first-order discrete time extended
Kalman filter algorithm [23]. The biggest contribution to the process noise comes from the
lane detection. In fact, in the Vision Detection Generator block noise has been added.
Other sources of noise could be added in the dynamic measurements of the 3DOF model,
that by itself produces precise values, as the longitudinal velocity. In real applications, ve-
locity must be estimated itself and the estimation error is modelled here adding noise to the
simulation. The Kalman filter block needs the state transition and measurement functions
of the system as input (see Figure 6.16). These functions (LaneFollowingEKFStateFcn
and LaneFollowingEKFMeasFcn) are provided by the Matlab help and have been modified
for the specific dynamic model. That’s all the Kalman filter needs to estimate the state
of the system. This estimate is used by the nonlinear MPC controller that predicts future
outputs of the system and solves the problem 6.8. The design of the controller has been
done using the Matlab class nlmpc that creates a nonlinear MPC controller object ready
to be designed and deployed in a Simulink block. To instantiate this object the arguments
in Table 6.4 must be passed. The controller parameters and constraints are reported in
Table 6.5. In order to improve numerical conditioning for optimization, scale factors has
been added for each input variable, looking at the operating range of each one.

Figure 6.16: Extended Kalman Filter block

Parameter Value
Number of state variables ~x 7
Number of output variables ~y 3
Indices of measured inputs ~u [1 2]
Index of the measured disturbance ~w 3
Index of the unmeasured disturbance wud 4

Table 6.4: nmpc arguments

90

6.2 – Model Predictive Control

Parameter Symbol Value
Time gap (s) TG 0.1
Sampling time (s) Ts 0.1
Maximum acceleration (m/s2) amax 1
Minimum acceleration (m/s2) amin -1
Maximum jerk (m/s3) ∆amax 0.9
Minimum jerk (m/s3) ∆amin -0.9
Maximum steering angle (rad) δmax 0.8
Minimum steering angle (rad) δmin -0.8
Maximum steering rate (rad/s) ∆δmax 1.5
Minimum steering rate (rad/s) ∆δmin -1.5
Set velocity (m/s) Vset 15-20
Prediction Horizon (s) Hp 6
Control Horizon (s) Hc 2
Output’s weight matrix non-zero entries W1, W2, W3 0.2, 1, 0
Input rate’s weight matrix non-zero entries V1, V2 2, 1

Table 6.5: Nonlinear MPC parameters

After having set all the MPC parameters, the dynamic model of the car and its Jaco-
bian has been used in the controller. With this information, the optimizer computes the
predictions and consequently the value of the cost function to be minimized.

The control inputs are then sent to the plant (Figure 6.18), that is similar to the one
used in section 6.1. However, here the vehicle is controlled by steering and acceleration
commands. There’s no need of saturation blocks for these quantities here, because the
constraints are embedded directly in the controller in the form of mathematical optimiza-
tion constraints. Using a simple 1st order transfer function to model longitudinal dynamics
behaviour [23, chap. 11] allows to use the bicycle model with force input instead of velocity
input as with PID controller (see Figure 6.19). The force signal is applied by a half to the
front axle and by the other half to the rear axle (see figure 6.17). Another difference already
discussed is the presence of an additive noise on the longitudinal velocity measurements.

Finally the function validateFcns is used to validate the prediction model functions
at an arbitrary operating point. The results of the simulations at 15 m/s and 20 m/s are
presented in Figure 6.20.

Figure 6.17: Lower level dynamics block

91

6 – Control

Figure 6.18: Vehicle Dynamics and environment Simulink scheme

Figure 6.19: Vehicle Dynamics Simulink block

92

6.2 – Model Predictive Control

(a)

(b)

Figure 6.20: Plot of lateral deviation and steering timeseries at (a) 15 m/s and (b) 20 m/s

93

6 – Control

The Matlab code is presented below:

1 %% Lane Following Using Nonlinear Model Predictive Control
2
3 %% Path following Controller Parameters
4 time_gap = 0.1; % Time gap (s)
5 Ts = 0.1; % Sampling time (s)
6 max_ac = 1; % Maximum acceleration (m/s^2)
7 min_ac = −2; % Minimum acceleration (m/s^2)
8 max_jerk = 0.9; % Maximum jerk (m/s^3)
9 min_jerk = −0.9; % Minimum jerk (m/s^3)
10 max_steer = 0.8; % Maximum steering (rad)
11 min_steer = −0.8; % Minimum steering (rad)
12 max_steer_rate = 1.5; % Maximum steering rate (rad/s)
13 min_steer_rate = −1.5; % Minimum steering rate (rad/s)
14 v_set = 20; % Driver set velocity (m/s)
15 Measurement_noise = 0.01; % Measurement noise (m/s)
16 PredictionHorizon = 6; % Prediction Horizon (s)
17 ControlHorizon = 2; % Control Horizon (s)
18 %% Create driving scenario
19 % The scenario name is a session file created by the Driving Scenario

Designer App.
20 scenariosNames = {
21 'Scenario1.mat',... % scenarioId = 1
22 'Scenario2.mat',... % scenarioId = 1
23 };
24 scenarioId = 2;
25 fileName = 'laneFollowingScenario';
26
27 % The drivingScenario session file is converted to a drivingScenario object
28 % initial conditions of ego car and actor profiles
29 [scenario,egoCar,actor_Profiles] = helperSessionToScenario(scenariosNames{

scenarioId});
30
31 % Save the driving scenario to the file to be read by Scenario Reader
32 helperSaveScenarioToFile(scenario,fileName);
33
34 %% Configuration of the simulation
35 % Initial condition for the ego car in ISO 8855 coordinates
36 v0_ego = egoCar.v0; % Initial speed of the ego car (m/

s)
37 x0_ego = egoCar.x0; % Initial x position of ego car (m)
38 y0_ego = egoCar.y0; % Initial y position of ego car (m)
39 yaw0_ego = egoCar.yaw0; % Initial yaw angle of ego car (

rad)
40

94

6.2 – Model Predictive Control

41 % Convert ISO 8855 to SAE J670E coordinates
42 y0_ego = −y0_ego;
43 yaw0_ego = −yaw0_ego;
44
45 % get the simulation stop time from scenario
46 load(fileName)
47 simStopTime = vehiclePoses(end).SimulationTime;
48
49 % Position and velocity selectors.
50 posSelector = [1,0,0,0,0,0; 0,0,1,0,0,0]; % Position selector (N/A)
51 velSelector = [0,1,0,0,0,0; 0,0,0,1,0,0]; % Velocity selector (N/A)
52
53 %% Ego Car Parameters
54 m = 1575; % Total mass of vehicle (kg)
55 Iz = 2875; % Yaw moment of inertia of vehicle (m*N*s

^2)
56 a = 1.2; % Longitudinal distance from c.g. to front tires (m)
57 b = 1.6; % Longitudinal distance from c.g. to rear tires (m)
58 h = 0.5; % Vertical distance from center of mass to axle plane (m)
59 Cf = 19000; % Cornering stiffness of front tires (N/rad

)
60 Cr = 33000; % Cornering stiffness of rear tires (N/rad

)
61 ds = 0.9; % Distance between c.g and camera (m)
62 tau = 0.2; % Time constant
63
64 %% Simulation settings
65
66 v0 = v0_ego; % Initial ego velocity
67 Duration = 75; % Simulation duration
68 t = 0:Ts:Duration; % Time vector
69
70 %% Bus Creation
71 % Load the Simulink model
72 modelName = 'LaneFollowingNMPC2';
73 wasModelLoaded = bdIsLoaded(modelName);
74 if ~wasModelLoaded
75 load_system(modelName)
76 end
77
78 % Create buses for lane sensor and lane sensor boundaries
79 createLaneSensorBuses;
80
81 % load the bus for scenario reader
82 blk=find_system(modelName,'System','helperScenarioReader');
83 s = get_param(blk{1},'PortHandles');

95

6 – Control

84 get(s.Outport(1),'SignalHierarchy');
85
86
87 %% Design Nonlinear Model Predictive Controller
88
89 % Create a NMPC object
90 nlobj = nlmpc(7,3,'MV',[1 2],'MD',3,'UD',4);
91 nlobj.Ts = time_gap;
92 nlobj.PredictionHorizon = PredictionHorizon;
93 nlobj.ControlHorizon = ControlHorizon;
94
95 % Specify the state function for the nonlinear plant model and its
96 % Jacobian.
97 nlobj.Model.StateFcn = @(x,u) LaneFollowingStateFcn(x,u);
98 nlobj.Jacobian.StateFcn = @(x,u) LaneFollowingStateJacFcn(x,u);
99

100 % Jacobians
101 nlobj.Model.OutputFcn = @(x,u) [x(3);x(5);x(6)+x(7)];
102 nlobj.Jacobian.OutputFcn = @(x,u) [0 0 1 0 0 0 0;0 0 0 0 1 0 0;0 0 0 0 0 1

1];
103
104 % Set the constraints for manipulated variables.
105 nlobj.MV(1).Min = min_ac;
106 nlobj.MV(1).Max = max_ac;
107 nlobj.MV(1).RateMin = min_jerk*Ts;
108 nlobj.MV(1).RateMax = max_jerk*Ts;
109 nlobj.MV(2).Min = min_steer;
110 nlobj.MV(2).Max = max_steer;
111 nlobj.MV(2).RateMin = min_steer_rate*Ts;
112 nlobj.MV(2).RateMax = max_steer_rate*Ts;
113
114 % Set the scale factors.
115 nlobj.OV(1).ScaleFactor = v_set; % Typical value of

longitudinal velocity
116 nlobj.OV(2).ScaleFactor = 3.6; % Range for lateral

deviation
117 nlobj.OV(3).ScaleFactor = 1; % Range for relative yaw

angle
118 nlobj.MV(1).ScaleFactor = (max_ac−min_ac); % Range of acceleration
119 nlobj.MV(2).ScaleFactor = 2*max_steer; % Range of steering angle
120 nlobj.MD(1).ScaleFactor = 1; % Range of Curvature
121
122 nlobj.Weights.OutputVariables = [0.2 1 0];
123
124 % Penalize jerk more for smooth driving experience.
125 nlobj.Weights.ManipulatedVariables = [0 0];

96

6.2 – Model Predictive Control

126 nlobj.Weights.ManipulatedVariablesRate = [2 1];
127
128 %% Validate the nonlinear controller object
129
130 x0 = [0.1 0.5 25 0.1 0.1 0.001 0.5];
131 u0 = [0.125 0.4];
132 ref0 = [22 0 0];
133 md0 = 0.1;
134 validateFcns(nlobj,x0,u0,md0,{},ref0);

97

6 – Control

6.3 Controllers comparison
In this chapter a PID controller and a nonlinear MPC have been presented, together with
their simulated behaviour in a two-lanes high-curvature road. By looking at Figures 6.10
and 6.20, it’s evident that the second one gives better performances in terms of lateral
deviations and steering rates. This was expected from the beginning and the goal of
moving from PID to MPC controller was to improve performance and car handling in high
curvature roads at a relatively high speed, up to 20 m/s.

The PID controller lacks the optimization and prediction of the further steps. This
causes the car to depart from the center of the lane considerably during sharp curves
and the controller correction becomes very high in that case, specially if the proportional
and derivative coefficients are high. This produces high steering and steering rates that
are unwanted but necessary at high speeds to maintain the car on track. To counteract
this critical problem, a speed-tuning knob has been implemented to give the user the
possibility to reduce the speed of the car depending on the street configuration. The speed
variation follows a first order dynamics and causes the parameters of the PID controller to
vary discretely. This solution works well and makes this technology suitable for a simple
control. The simplicity is due to the absence of automatic throttle control, that requires a
manual intervention. By the way, this is an effective solution for applications that have a
low speed hardware.

With NMPC instead, the performances are better. They are obtained also by the
longitudinal control embedded, that causes the car to decelerate in points where the lateral
deviation would increase (i.e. curves). By imposing the weights higher for the lateral offset
compared to the proximity to the set velocity, the optimizer is led to decelerate in order
to promote center lane keeping more than speed keeping. The result are: the maximum
lateral deviation is halved, the maximum steering has been decreased from 1.2 to 0.8 rad
and the maximum steering rate from 5 to 1.5 rad/s. This traduces in much better comfort
for the passengers in a real scenario and in better driveability. All this improvements
are brought by the optimization and the receding horizon principle. That is, the future
state of the nonlinear model are predicted by the optimizer and filtered with the Kalman
Filter. Then only the first control input is applied and this improves the robustness of
the system from noise and unmodelled dynamics. Being the controller nonlinear and the
computational costs high, low prediction and control horizons have been chosen. By the
way, they guarantee a good performance and are necessary for real time applications.

Note that in this work only model-in-the-loop simulations have been addressed. So the
simulations aren’t running on a specific hardware through compiled code but in Simulink
on a personal computer. The NMPC is known for its high computing power demands
and only with the rapidly reduction of computing platforms costs of the last years has
found applications in real-time embedded systems. Further works shall verify real-time
capabilities of controllers like the one presented in this work.

98

6.4 – End-to-end control with Convolutional Neural Networks

6.4 End-to-end control with Convolutional Neural Net-
works

Artificial intelligence is assuming an increasing importance in the field of autonomous
driving for the improvement of the computing platforms and the accuracy and efficiency
of the algorithms themselves. During the development of this thesis the huge world of
deep learning has been addressed. The use of Convolutional Neural Networks (CNN) in
objects recognition is tempting for the simplicity of the designing phase and the accuracy
of the results. The counterpart of this is the big amount of computing power required for
the training of the network. Nevertheless, the lowering of computational costs makes this
approach attractive. In particular, end-to-end in this case means the use of raw data for
training a neural network with the aim to map raw pixels from a single front facing camera
directly to steering commands [28]. This section is organized in the following way: (1) the
basic theory about convolutional neural networks is presented, (2) the model developed
by NVIDIA and highly studied by researchers in this field is presented, (3) the algorithm
written ad hoc for getting training and validation data from CARLA is shown.

6.4.1 Basic theory about CNN
A convolutional neural network is a class of deep neural networks highly used in image
classification because they take into consideration the spatial structure of pixels. The
main difference from multilayer fully connected perceptrons is the extraction of meaningful
information and patterns from images through convolutions of the image with kernels
whose weights are tuned in the training phase. Convolutional networks exploit spatially
local correlation by connecting each neuron to only a small number of other neurons. The
amount by which we are shifting the kernel at every operation is known as the stride.
The convolution allows a reduction of the number of neurons and of the complexity of
the network, by reducing the number of free parameters. The result of this convolution
is another "image" that is more abstract but also more meaningful and is named feature
map. Each feature map contains the information of a detected image feature with a specific
kernel. The smaller the stride, the bigger will be the corresponding feature map. A layer
that does this operation is called convolutional layer and the size of the kernel for each
layer has to be set a priori. In case of RGB images the kernel will be NxNx3, with N
choosen a priori. To reduce the number of parameters in computations in the network,
the so called pooling layers can be inserted. This layer shortens the training time and is
useful to avoid overfitting. A CNN usually have many convolutional and pooling layer in
cascade to remove all the unnecessary information and extract the most important patterns
that will be processed by the fully connected layers. The weights of the kernels are tuned
during the training process, so during this phase the network learns which are the main
features to be detected in an input image in order to classify it. Different filters are able
to detect different features in an image and the translational invariance property of the
convolution allows to use a single filter to detect features in any area of the image. To
make the output non-linear, an activation function will be applied to the output of the
convolutional layer and of the fully connected layers. This could be the ReLU activation
function, which applies the non-saturating and continuous function f(x) = max(0, x). For
a detailed explanation of layers, activation functions and optimizers, consult the Keras

99

6 – Control

guide or any book about deep learning, as [29].

Figure 6.21: Architecture of a CNN [30]

6.4.2 NVIDIA model
The NVIDIA model [28] is a simple but quite effective deep learning model that can be
used to automatically steer a car by using the information coming from the raw pixels of
the frames coming from a single camera positioned in the front of the vehicle. As reported
by the authors in [28]:

With minimum training data from humans the system learns to drive in traffic
on local roads with or without lane markings and on highways. It also operates in
areas with unclear visual guidance such as in parking lots and on unpaved roads.
The system automatically learns internal representations of the necessary processing
steps such as detecting useful road features with only the human steering angle as
the training signal. We never explicitly trained it to detect, for example, the out-line
of roads. Compared to explicit decomposition of the problem, such as lane marking
detection, path planning, and control, our end-to-end system optimizes all processing
steps simultaneously. We argue that this will eventually lead to better performance
and smaller systems. Better performance will result because the internal components
self-optimize to maximize overall system performance, instead of optimizing human-
selected intermediate criteria, e. g., lane detection.

This model has become so popular for its simplicity that is cited in many articles and
web courses about self driving cars 1. The training data come from three camera positioned
on the left, the center and the right of the front of the ego car. Each triple of camera’s
frames captured at the same time is labelled with a steering value as shown in Figure 6.22.
Then the network can be driven with a single camera positioned in front of the vehicle as
shown in Figure 6.23.

All the training details can be found in [28], some in Figure 6.24. The contribution of
this thesis in this case concerns the data collection phase through CARLA, shown in the
next subsection.

1e.g. Self-Driving Car Engineer Nanodegree, Udacity

100

6.4 – End-to-end control with Convolutional Neural Networks

Figure 6.22: Training of the neural network [28]

Figure 6.23: Once trained, the neural network is driven by images coming from a single
front-facing centred camera to compute steer values [28]

Figure 6.24: NVIDIA model’s layers [28]

101

6 – Control

6.4.3 Data collection and preprocessing
For this part, CARLA 0.8.2 has been used because it is the stable version and at the
beginning of this work version 0.9.5 presented several bugs. The Python API is quite
different but easy to understand. The goal of data collection is to save the images captured
by the three RGB cameras in three different folders. For each folder, each image is named
based on its frame number. A steering value for each frame is saved in a python list and,
after the end of data collection, the list is saved on a file using pickle. It is possible to
chose the number of episodes and the number of frames per episodes, depending on the
trade-off between training time and network accuracy. For each episode, the weather is
selected randomly to have variability of the training data and give to the network robustness
to work on all the virtual weather conditions. The print_measurements function prints
on the terminal the position and speed of the cars, the number of collisions, the number
of agents and the intersections with the other lane and offroad. The run_carla_client
function is called at each iteration, until the last frame of the last episode is considered.
This function is a sample already present in CARLA python API and has been modified
to be used for NVIDIA model’s data collection.
Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
Barcelona (UAB).

def run_carla_client(args):
steering_angles = []
We assume the CARLA server is already waiting for a client to connect at
host:port. To create a connection we can use the `make_carla_client`
context manager, it creates a CARLA client object and starts the
connection. It will throw an exception if something goes wrong. The
context manager makes sure the connection is always cleaned up on exit.
with make_carla_client(args.host, args.port) as client:

print('CarlaClient connected')

for episode in range(0, NUMBER_OF_EPISODES):
Start a new episode.
Create a CarlaSettings object. This object is a wrapper around
the CarlaSettings.ini file. Here we set the configuration we
want for the new episode. The weather is selected randomly to
add variety to training images and generalize the possible
scenarios. Synchronous mode is activated
settings = CarlaSettings()
settings.set(

SynchronousMode=True,
SendNonPlayerAgentsInfo=False,
NumberOfVehicles=15,
NumberOfPedestrians=20,
WeatherId=random.choice([1, 3, 7, 8, 14]),
QualityLevel=args.quality_level)

settings.randomize_seeds()

Now we want to add three cameras to the player vehicle.
We will collect the images produced by these cameras every

102

6.4 – End-to-end control with Convolutional Neural Networks

frame.

The center camera.
camera0 = Camera('CameraRGB_Center')
Set image resolution in pixels.
camera0.set_image_size(800, 600)
Set its position relative to the car in meters.
camera0.set_position(2.20, 0, 0.6)
camera0.set_rotation(1, 0, 0)
settings.add_sensor(camera0)

The right camera.
camera1 = Camera('CameraRGB_Right')
camera1.set_image_size(800, 600)
camera1.set_position(2.20, 0.8, 0.6)
camera1.set_rotation(1, 28, 0)
settings.add_sensor(camera1)

The left camera.
camera2 = Camera('CameraRGB_Left')
camera2.set_image_size(800, 600)
camera2.set_position(2.20, -0.8, 0.6)
camera2.set_rotation(1, -28, 0)
settings.add_sensor(camera2)

Now we load these settings into the server. The server replies
with a scene description containing the available start spots for
the player. Here we can provide a CarlaSettings object or a
CarlaSettings.ini file as string.
scene = client.load_settings(settings)

Choose one player start at random.
number_of_player_starts = len(scene.player_start_spots)
player_start = random.randint(0, max(0, number_of_player_starts - 1))

Notify the server that we want to start the episode at the
player_start index. This function blocks until the server is ready
to start the episode.
print('Starting new episode...')
client.start_episode(player_start)

Iterate every frame in the episode.
for frame in range(0, FRAMES_PER_EPISODE):

Read the data produced by the server this frame.
measurements, sensor_data = client.read_data()

Print some of the measurements.
print_measurements(measurements)

103

6 – Control

Set autopilot to collect data for the CNN autonomously,
without the human supervision
control = measurements.player_measurements.autopilot_control

Save the images to disk if requested.
for name, measurement in sensor_data.items():

filename = args.out_filename_format.format(episode, name, frame)
measurement.save_to_disk(filename)

Append steer values sent by the autopilot to the list
steering_angles.append(control.steer)
client.send_control(control)

Save the list in a file that will be loaded during training
with open('steering', 'wb') as fp:

pickle.dump(steering_angles, fp)

Before the training of the neural network with these data, we must pre-process them.
In fact, as visible in Figure 6.26a, most of the time the car goes straight or it’s still at a red
semaphore. In these cases, the steer value is zero. In order to avoid unbalanced training
data, part of the data labelled with a 0 steer need to be removed from the dataset. The main
cause is that they are too much. The function clean_labels uses the matplotlib.python
python package to show the histogram of the number of data collected for each steer value
interval. Then it reduces the samples of each bin of the histogram to samples_per_bin, if
higher. In order to avoid the elimination of subsequent labelled frames, that could refer to
a specific situation that should be captured by at least one frame, the list of frame’s indices
to be deleted is shuffled. Then the only samples_per_bin indices are kept, while the others
are put in remove_list to be eliminated. For example, in the case of a number of frames
per episode equal to 1000 and only one episode, if the maximum number of samples per
bin is equal to 40 the number of the removed labelled data from the set is 802. Obviously,
for a good training process, much more data are needed. The remaining data are plotted
again in an histogram, visible in Figure 6.26b.

(a) Left (b) Center (c) Right

Figure 6.25: Camera frames for the training of the NVIDIA model.

Then the function load_data pre-precess the data by cleaning the redundant labels and
their respective frames, in order to avoid biases on the neural network. Finally, it applies

104

6.4 – End-to-end control with Convolutional Neural Networks

(a) (b)

Figure 6.26: Histogram of steering values before (a) and after (b) the cleaning process

to the labelled dataset the train_test_split function to subdivide it into training and
validation datasets. Now the NVIDIA model can be trained. Unfortunately, for lack of
computing capability, the training process has not been done, although the NVIDIA model
has been modified to reduce the training time.

def clean_labels(data):
"""
It shows the histogram of the number of image frames for each steer
value interval. Then for each bin it creates a list of indices related
to frames, it shuffle it and it adds to the remove_list these indices.
Then it removes the values of steer corresponding to these indices from
the list of steer values
"""
num_bins = 25
samples_per_bin = 40
hist, bins = np.histogram(data, num_bins)
center = (bins[:-1]+bins[1:])*0.5
plt.bar(center, hist, width=0.05)
plt.xlabel('Steering intervals')
plt.title('Amount of steering values for each interval')
plt.show()
print("Total data:", len(data))
remove_list = []
for j in range(num_bins):

list_ = []
for i in range(len(data)):

if data[i] >= bins[j] and data[i] <= bins[j+1]:
list_.append(i)

list_ = shuffle(list_) # shuffle to avoid to remove consequent frames
list_ = list_[samples_per_bin:] # Save indices of data to be removed
remove_list.extend(list_) # Put these data indices in a list

105

6 – Control

print('removed', len(remove_list))
Remove the data on the list
for i in sorted(remove_list, reverse=True):

del data[i]

Plot the histogram after data reduction
print("Remaining:", len(data))
hist, _ = np.histogram(data, num_bins)
plt.bar(center, hist, width=0.05)
plt.xlabel('Steering intervals')
plt.title('Amount of steering values for each interval (modified)')
plt.show()

def load_data(args):
"""

- Load and preprocess training data and split it into training and
validation set. After having cleaned data, the function associate all
the images of the reduced set to their steer labels. It saves in another
variable the original labels and use this information to check if a triple
of (left,center,right) images corresponds to the label it had before the
cleaning process.

- Then it reshape the array of triples and vertically stacks them for passing
them as arguments to the train_test_split function

- Finally it returns the train and validation datasets and labels
"""
with open ('steering', 'rb') as fp:

y = pickle.load(fp)

yb = y[:]
clean_labels(y)

path_root = '/home/marco/CARLA_08/PythonClient/_out/'
img_dict = {

'center': 'CameraRGB_Center',
'left': 'CameraRGB_Left',
'right': 'CameraRGB_Right'

}
X = np.array([])
If the number of episodes is different from 5, update the following list
for i in ['episode_0000', 'episode_0001', 'episode_0002',

'episode_0003', 'episode_0004']:
path = path_root + i
X_temp = []
for t in img_dict.keys():

y_mod_iter = iter(y)
y_iter = iter(yb)
a = next(y_iter)
b = next(y_mod_iter)

106

6.4 – End-to-end control with Convolutional Neural Networks

for infile in sorted(glob.glob(os.path.join(path + '/' + img_dict[t],
'*.png'))):

If the steer values (the labels) coincide, append the triple
of frames in the variable X_temp
if a == b:

try:
X_temp.append(infile)
a = next(y_iter)
b = next(y_mod_iter)

except:
print("Stop loading")
break

else:
a = next(y_iter)

Reshape the 1D array to have an array of 3D arrays [left, center, right]
This will be the dataset that will be divided in training and validation
X_t = np.array(X_temp, dtype='object')
X_t = np.reshape(X_t, (3, -1))
X_t = X_t.T
X = np.vstack((X, X_t)) if X.size else X_t

assert(X.shape[0] == len(y)), """The number of frames is not equal
to the number of steering values"""

X_train, X_valid, y_train, y_valid = train_test_split(X, y,
test_size=args.test_size,
random_state=0)

return X_train, X_valid, y_train, y_valid

107

108

Chapter 7

Conclusions and future works

The goal of this thesis was the development and the simulation of control algorithms for
autonomous vehicles.

In this work some methodological aspects of lane keeping algorithms and some practical
aspects related to their implementation on different simulation environments have been
addressed.

From the methodological point of view, the results extend to the design of a PID controller,
for its simplicity and low computational power requirements, and the design of a nonlinear
model predictive controller, for its accuracy in predicting the state of the system. Both the
dynamical models, that have been used for the design of these controllers, are well-known
in the specific literature and are derived from the bicycle model.

The PID controller has shown an unexpected performance in lane keeping at speeds
up to 20m/s, that is a very high speed if we consider the kind of track that has been
used during testing. This thanks to a discrete adaptive strategy, that allows to use differ-
ent classical PID controllers for different longitudinal speeds. In particular, four different
controllers have been tuned to work from quasi-zero up to 20m/s, in four equally spaced
ranges. In this way, the dynamical system can be considered linear in its speed range and
the results show that this approximation is not drastic. Although this control strategy
resulted in an effective lane keeping, it misses completely the goal of the passengers’ com-
fort. Moreover, the fact that the dynamical model used neglects a good part of vehicle
dynamics, suggests that in real systems this technology can find applications, and it does,
only on low curvature roads with quasi-constant speed.

Higher expectations are directed towards the use of Nonlinear Model Predictive Control
for lane keeping. The possibility to include longitudinal dynamics inside the vehicle model
brings the algorithm closer to how a control algorithm for autonomous driving should
be. In fact, not only the steer is controlled autonomously but also the acceleration and
deceleration. With respect to the PID, this algorithm improves a lot the performances,
minimizing the lateral offset and yaw error values while reducing considerably the jerk and
steering rates during the manoeuvres. The kind of optimization required by this control
strategy is non-convex, in general not computationally efficient. In order to counteract
this characteristic, low prediction and control horizons have been adopted. In this way the
computational burden for the CPU has been reduced considerably.

109

7 – Conclusions and future works

Another algorithm this thesis introduces is a lane detection algorithm, written in Python
with the help of Numpy and OpenCV packages. This algorithm is able to extract the
information needed by the NMPC from camera frames. It detects lane lines, transforms
the resulting image in a top-view image and subdivides it into two sections, the near view
and the far view. Then it applies Hough transform to the first section and least-squares
to identify the parameters of a parabolic model for the second section. The algorithm
works well when the car moves slow and the road has low curvature. If it’s not the case,
the identification of parameters of the far view section gets worse quickly, in particular at
medium and high velocities. The main reason for this behaviour is the way the lane lines
are searched in the image, that is simply divided vertically into three equispaced regions.
The algorithm searches for the left line in the left region, for the center line in the center
region and the same for the right line. The result is that when the curvature is high the
lines invade the other regions and the algorithm considers their pixels outside the region
for least-squares fitting. A better solution, that should be addressed in case of a further
development of this work, is the use of a Kalman filter or a similar method to guide the
search of the pixels associated to lane lines, by taking into account the information coming
from previous measurements. In subsection 4.2.5 a possible model for the Kalman filter
proposed in [12] is shown.

From the practical point of view related to simulation environments, two of them have
been explored and tested. The first is the Automated Driving Toolbox provided by Matlab.
Chapter 2 has been devoted to this tool, that allows to build driving scenarios, get lane
lines information already processed to be used mathematically and an integration with
Simulink that allows to test the algorithms directly in the driving scenario with the Bird’s-
Eye view mode. The merit of the toolbox is the possibility to access high-level information
without computer vision algorithms and so to focus on controller design without looking
too much at all the other aspects of a complete algorithm for autonomous driving. The
main weakness is the lack of a photorealistic and ready-to-use urban environment, that
limits the possibility to algorithms in the family of the ones presented here. The vision
part is simulated through the VisionDetectionGenerator block and not by a camera that
produces raw data, like the real ones. This toolbox is not made for these purposes.

A software closer to this philosophy is CARLA, an open source photorealistic simulator.
It offers a Python API for the server-client communication that has been used to code a
lane keeping algorithm with the aim of autonomously control steer, throttle and brake of
the ego vehicle in CARLA Simulator. The NMPC, designed with the help of Matlab, has
been exploited also by this algorithm in Python by using the Matlab-Python integration.
In this way, the focus has been devoted to the understanding of the Python API and the
OpenCV package for image processing and to the development of the structure of the algo-
rithm. It has been divided in logical modules to give the possibility to change the various
parts independently. The pipeline works correctly and the connection with Matlab is useful
to retrieve data structures from the workspace and call Matlab functions on Python. By
the way, an interesting development of this thesis could be to improve the model fitting
algorithm inside the RoadModel class.

Finally, algorithms for the collection of data and the training of a Convolutional Neu-
ral Network model found in literature have been written, but the training has not been
completed for lack of computational power.

110

References

Cited books and papers
[1] Reuters and Ipsos. Autonomous Vehicles Readiness survey. 2018. url: http : / /

fingfx.thomsonreuters.com/gfx/rngs/AUTO-SELFDRIVING-SURVEY/010060NM16V/
AUTO-SELFDRIVING-SURVEY.jpg.

[2] Douglas A. Reece and Steven Shafer. A Computational Model of Driving for Au-
tonomous Vehicles. Research Report. Carnegie Mellon University, 1991.

[3] Canale Massimo. “Technologies for Autonomous Vehicles”. Slides at support of the
course. 2019.

[4] Chiu-Feng Lin, A. Galip Ulsoy, and David J. LeBlanc. “Lane Geometry Perception
and the Characterization of Its Associated Uncertainty”. In: Journal of Dynamic
Systems Measurement and Control (1999).

[5] J. McCall and M. Trivedi. “Video-based lane estimation adn tracking for driver assis-
tance: Survey, System and evaluation”. In: IEEE Transactions on Intelligent Trans-
portation Systems. Vol. 7. 1. Mar. 2006, pp. 20–37.

[6] MathWorks. Automated Driving Toolbox™ Getting Started Guide. 2019.
[7] MathWorks. Automated Driving Toolbox™ User’s guide. 2019.
[8] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In: Proceed-

ings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.
[9] CARLA team. CARLA Documentation. 2019. url: https://carla.readthedocs.

io/en/latest/.
[10] Scott Drew Pendleton et al. “Perception, Planning, Control, and Coordination for

Autonomous Vehicles”. In: Machines (2017).
[11] Xinxin Du and Kiong Tan Kog. “Comprehensive and Practical Vision System for Self-

Driving Vehicle Lane-Level Localization”. In: IEEE transactions on image processing
(2016).

[12] Sayanan Sivaraman and Mohan Manubhai Trivedi. “Integrated Lane and Vehicle De-
tection, Localization and Tracking: A Synergistic Approach”. In: IEEE Transactions
on Intelligent Transportation Systems. Vol. 14. 2. June 2013.

[13] M. Meuter et al. “A novel approach to lane detection and tracking”. In: 12th Int.
IEEE ITSC. Oct. 2009, pp. 1–6.

[14] T. Veit et al. “Evaluation of road marking feature extraction”. In: 11th Int. IEEE
ITSC. Oct. 2008, pp. 174–181.

[15] Byambaa Dorj and Deok Jin Lee. “A Precise Lane Detection Algorithm Based on Top
View Image Transformation and Least-Square Approaches”. In: Journal of Sensors
(2016).

[16] A. Galip Ulsoy, Huei Peng, and Melih Cakmakci. Automotive control systems. 2012.
[17] Camillo J. Taylor et al. “A Comparative Study of Vision-Based Lateral Control

Strategies for Autonomous Highway Driving”. In: IEEE (1999).

111

[18] MathWorks. Vehicle Dynamics Blockset™ User’s Guide. 2018.
[19] Wuweu Chen, Hansong Xiao, et al. Integrated Vehicle Dynamics and Control. 1st ed.

John Wiley & Sons, 2016. Chap. 5.
[20] Huei Peng and Masayoshi Tomizuka. Lateral Control Of Front-wheel-steering Rubber-

tire Vehicles. Research Report. California Partners for Advanced Transit and High-
ways, UC Berkeley, 1990.

[21] Nicola De Val and Andrea Fuso. “Model Predictive Control for an Autonomous Ve-
hicle”. Master thesis. Politecnico di Milano, 2013.

[22] Pan Zhao et al. “Design of a Control System for an Autonomous Vehicle Based on
Adaptive-PID”. In: International Journal of Advanced Robotic Systems (2012).

[23] MathWorks. Model Predictive Control™ User guide. 2018.
[24] Valerio Turri, Francesco Borrelli, et al. “Linear Model Predictive Control for Lane

Keeping and Obstacle Avoidance on Low Curvature Roads”. In: Proceedings of the
16th International IEEE Annual Conference on Intelligent Transportation Systems
(ITSC 2013). Ed. by IEEE. 2013.

[25] Chuanyang Sun et al. “Design of a Path-Tracking Steering Controller for Autonomous
Vehicles”. In: energies (2018).

[26] Yasuchika Mori and Fitri Yakub. “Autonomous Ground Vehicle of Path Following
Control through Model Predictive Control with Feed Forward Controller”. In: 12th
International Symposium on Advanced Vehicle Control. Ed. by Society of Automotive
Engineers of Japan. 2014.

[27] Vito Cerone, Mario Milanese, and Diego Regruto. “Combined Automatic Lane-Keeping
and Driver’s Steering Through a 2-DOF Control Strategy”. In: IEEE transactions on
control systems technology (2008).

[28] Mariusz Bojarski et al. “End to End Learning for Self-Driving Cars”. In: CoRR
abs/1604.07316 (2016). arXiv: 1604.07316. url: http://arxiv.org/abs/1604.
07316.

[29] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[30] MathWorks. Deep Learning Toolbox™ User’s Guide. 2019.

Other suggested readings
[31] Dean Pomerleau. “RALPH: rapidly adapting lateral position handler”. In: Proceed-

ings of the Intelligent Vehicles ’95. Symposium. Ed. by IEEE. Detroit, MI, USA,
2002.

[32] Ernst D. Dickmanns and Birger D. Mysliwetz. “Recursive 3-D Road and Relative
Ego-State Recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 14 (2 Feb. 1992): Special issue on interpretation of 3-D scenes. part II.
Ed. by USA IEEE Computer Society Washington DC, pp. 199–213.

[33] M. Bertozzi et al. “Artificial vision in road vehicles”. In: Proceedings of the IEEE 90
(7 July 2002). Ed. by IEEE, pp. 1258–1271.

112

[34] M. Bertozzi and A. Broggi. “GOLD: A parallel real-time stereo vision system for
generic obstacle and lane detection”. In: IEEE Trans. on Image Processing 7 (1 Jan.
1998). Ed. by IEEE, pp. 62–81.

[35] Giuseppe Calafiore and Laurent El Ghaoui. Optimization Models. Cambridge Uni-
versity Press, 2014. Chap. 15.

[36] V. Cerone, A. Chinu, and D. Regruto. “Experimental results in vision-based lane
keeping for highway vehicles”. In: Proceedings of the American Control Conference
Anchorage. 2002.

[37] Huei Peng and Masayoshi Tomizuka. “Preview Control for Vehicle Lateral Guidance
in Highway Automation”. eng. In: 1991 American Control Conference. IEEE, 1991,
pp. 3090–3095. isbn: 0879425652.

[38] Olivér Törő, Tamás Bécsi, and Szilárd Aradi. “Design of Lane Keeping Algorithm of
Autonomous Vehicle”. In: Periodica Polytechnica Transportation Engineering (2016).

113

Structure of project files folders A

Matlab

In this appendix are listed the files contained in each folder of this thesis project. The role
of each file or folder inside the project is explained briefly.

Software requirements: Matlab with Automated Driving Toolbox, Vehicle Dynamics
Blockset, Control System Toolbox and Model Predictive Control Toolbox.

A.1 PID
• Images: contains the plots of signals logged during simulations, bode plots, step

response and the pole-zero map.

• slprj: contains project configuration files needed by Matlab.

• PID.m: is the main Matlab script, that has to be run to set all the variables and data
structures needed during the simulations.

• PIDsim.slx : is the Simulink file that has to be open after the main script has been
run. It is preferable to run the simulation from the Bird’s-eye view mode, after having
clicked on Find signals. It is suggested to open also the Simulation Data Inspector
mode to view the plots of lateral deviation, steering angle etc.

• CreateDrivingScenario.m: contains an example of how to create a driving scenario
directly with a script rather than with the Driving Scenario Designer application.
The results are equivalent, the application is easier to use for road modelling but the
Matlab API is well documented in the help and is more straightforward in setting
camera and vehicle parameters.

• helperSessionToScenario.m: it extracts from the driving scenario created by the ap-
plication or the API the scenario data (in this case called Scenario1.mat), the ego
car parameters and the other actors’ profiles. Then this data structures are saved to
a file named laneFollowingScenario.mat.

• createSimulinkScenarioData.m: it gets the data from the built scenario and create
data in a format compatible with the Scenario Reader block. The new scenario will

114

A.2 – NMPC

not include ego vehicle because ego will be controlled by the simulation. Finally it
saves the Scenario to a file format used by Scenario Reader.

• CreateLaneSensorBuses.m: it is a Matlab function, used in the help by many Au-
tonomous Driving examples, that creates a bus type named LaneSensor, used by the
Vision Detection Generator block to output lane lines measurements.

• knobTurned.m: it is a callback function that is executed each time the speed knob,
used to change the speed of the car during PID lateral control, is turned. It changes
accordingly the longitudinal speed value and the corresponding sampling time in the
workspace.

• G1,G2,G3,G4 : they are the plant transfer functions, computed through the vehicle
state-space model at speeds of 5-10-15-20 m/s respectively.

• C1,C2,C3,C4 : they are the controller transfer functions, whose coefficients has been
determined through the pidtune function and then tuned through a trial-and-error
procedure.

A.2 NMPC
• slprj: contains project configuration files needed by Matlab.

• LaneFollowingUsingNMPC2.m: it is the main script that has to be run to set all the
variables and data structures needed during the simulations.

• LaneFollowingNMPC2.slx : it contains the Simulink model. As said for the PID
controller section, is possible to access the Bird’s-eye view and run from there the
simulation.

• LF.slx : it is the Simulink subsystem that does the lane’s center estimation and the
control input computation.

• createLaneSensorBuses.m: same as in PID folder

• helperSessionToScenario.m: same as in PID folder

• LaneFollowingEKFStateFcn.m and LaneFollowingEKFMeasFcn.m: are the functions
that contain the model of the Kalman filter used to estimate the states for the non-
linear MPC.

• LaneFollowingStateFcn.m: this function represents the nonlinear dynamical system
state function. From the current state and the input vector, it computes the state
derivative. It is the model used by the nonlinear controller for its predictions. The
output function is passed to the controller structure directly in the main script.

• LaneFollowingStateJacFcn.m: this function represents the Jacobians of the nonlinear
state function. It is needed by the nonlinear MPC to improve the efficiency of its
computations, although it isn’t mandatory. The Jacobian of the output equation is
so simple that is passed to the controller structure directly in the main script.

115

A – Matlab

• Scenario1.mat,Scenario2.mat: are two possible driving scenario that can be used to
test the algorithm. To select one of the two, simply change the scenarioId value to
1 or 2. To add other scenarios, add the .mat file in the NMPC folder and add their
names to the scenariosNames list.

• laneFollowingScenario.mat: is the file produced by the helperSessionToScenario
function, that is used by the Scenario Reader block.

• The other files are Simulink cache files that have to remain untouched.

A.3 CKLA CARLA
• cklaCARLA.m: is the main Matlab script that is needed to set the workspace with

the nonlinear controller and all the ego-vehicle, controller and simulation param-
eters. These data are then retrieved by the NMPC.py script that communicates
with CARLA Simulator to compute the control input. This Matlab script must be
run before the Python script and every first time in a Matlab session the command
matlab.engine.shareEngine has to be passed in command window to share the
workspace with Python.

• The other 4 functions have been already explained in the previous sections. The only
difference is that in this case the dynamical model they represent has been slightly
changed to include in vision dynamics the lookahead at which to compute lateral and
yaw errors.

116

Structure of project files folders B

CARLA

Software requirements: Python 3.7 64-bit with Numpy, OpenCV, Matplotlib, PIL,
imageio packages.

B.1 NMPC
Additional software requirements: CARLA 0.9.5 (latest), Matlab Engine for Python
and Matlab licence with Model Predictive Control Toolbox.

• NMPC.py: it is the main Python script which contains the configuration of the
simulation, the main algorithm and all the classes needed by it. It must be run after
the CARLA Simulator. Use CARLA 0.9.5.

• transform.py: Contains two functions for the Inverse Perspective Mapping. The first
is the four_point_transform and it is the one actually used in the algorithm. The
points that it needs as arguments have been found with a trial-and-error procedure.
The second is the _top_view_transform and it is based on the theory presented in
subsection 4.2.3.

B.2 Data collection and preprocessing
Additional software requirements: CARLA 0.8.2 (stable); Keras, Tensorflow-gpu and
Scikit-learn Python packages.

• CollectData.py: it is the script that configures the simulation and the cameras to
acquire three images at each step and labelling them with the actual steering value.
It saves the images, with the frame number as a name, in a folder with one subfolder
for each camera. The steering values are saved in a file through pickle.

• Train.py: it is the script that does the preprocessing of the data and builds the
training and validation datasets in a correct format for the training of the NVIDIA
model through Keras.

117

